WorldWideScience

Sample records for ferrite icrf tuning

  1. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    Science.gov (United States)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  2. High-Q perpendicular-biased ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.

    1983-01-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Modest power tests of a small (10-cm-dia) quarter-wave singly re-entrant cavity tuned by nickel-zinc ferrites and aluminum-doped garnets indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity at power levels from 2 to 200 watts

  3. Tuning the magnetism of ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Viñas, S. Liébana [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Departamento de Física Aplicada, Universidade de Vigo, Vigo 36310 (Spain); Simeonidis, K. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Li, Z.-A.; Ma, Z. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Myrovali, E.; Makridis, A.; Sakellari, D. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Angelakeris, M., E-mail: agelaker@auth.gr [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Wiedwald, U.; Spasova, M. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Farle, M., E-mail: michael.farle@uni-due.de [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany)

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe{sub 2}O{sub 4} where M=Fe, Co, Mn) and core–shell ferrite nanoparticles consisting of a magnetically softer (MnFe{sub 2}O{sub 4}) or magnetically harder (CoFe{sub 2}O{sub 4}) core and a magnetite (Fe{sub 3}O{sub 4}) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe{sub 2}O{sub 4}) by Fe{sub 3}O{sub 4} provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe{sub 3}O{sub 4} outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects. - Highlights: • Magnetic hyperthermia is studied for 10 nm single and core/shell ferrite nanoparticles. • Maximum heating rate is observed for Fe{sub 3}O{sub 4}-coated CoFe{sub 2}O{sub 4} nanoparticles. • The increase is attributed to the interaction of phases with different anisotropy. • The presence of biocompatible Fe{sub 3}O{sub 4} shell potentially minimizes toxic side-effects.

  4. New design concepts for ferrite-tuned low-energy-booster cavities

    International Nuclear Information System (INIS)

    Schaffer, G.

    1991-05-01

    The design concepts for ferrite-tuned accelerating cavities discussed in this paper differ from conventional solutions using thick ferrite toroids for frequency tuning. Instead, tuners consisting of an array of ferrite-loaded striplines are investigated. These promise more efficient cooling and higher operational reliability. Layout examples for the SSC-LEB rf system are presented (tuning range 47.5 to 59.8 MHz, repetition frequency 10 Hz). 15 refs., 4 figs., 1 tab

  5. Enlargement of Tuning Range in a Ferrite-Tuned Cavity Through Superposed Orthogonal and Parallel Magnetic Bias

    CERN Document Server

    Vollinger, C

    2013-01-01

    Conventional ferrite-tuned cavities operate either with bias fields that are orthogonal or parallel to the magnetic RF-field. For a cavity that tunes rapidly over an overall frequency range around 100-400 MHz with high Q, we use ferrite garnets exposed to an innovative new biasing method consisting of a superposition of perpendicular and parallel magnetic fields. This method leads to a significant enlargement of the high-Q cavity tuning range by defining an operation point close to the magnetic saturation and thus improving ferrite material behaviour. A further advantage of this technique is the fast tuning speed resulting from the fact that tuning is carried out either with pure parallel biasing, or together with a very small change of operating point from perpendicular bias. In this paper, several scaled test models of ferrite-filled resonators are shown; measurements on the set-ups are compared and discussed.

  6. Transversely-biased ferrite-tuned cavity for the SSC booster

    International Nuclear Information System (INIS)

    Carlini, R.D.; Friedrichs, C. Jr.; Thiessen, H.A.

    1985-01-01

    Ferrite tuning of rf cavities is used to provide the change in frequency necessary as the velocity of particles in synchrotrons increases. A new technique in which the ferrite bias field is applied in a direction perpendicular to the rf field offers the possibility of greatly reducing the rf power dissipation in the ferrite. A possible 60 MHz design is discussed for the SSC booster. The cavity design is based on a simple coaxial quarter-wave resonator. A brief discussion is given fo the theory of perpendicular biasing. The measured electric Q's of five different microwave-type ferrite samples are reported and compared with the manufacturer's specifications. 9 fig

  7. Performance of the AC perpendicular biased ferrite tuned cavity for the TRIUMF KAON factory booster synchrotron

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enchevich, I.B.; Mitra, A.K.; Fong, K.; Blaker, G.C.; Fang, S.

    1992-11-01

    The rf cavity for the Booster Synchrotron requires a frequency swing from 46 Mhz to 61 Mhz at a repetition rate of 50 Hz and a maximum accelerating voltage of 62.5 kV. These requirements were achieved on the prototype ferrite tuned cavity[1] for a short period of time and without any fast rf feedback or cavity tuning loops. Initially fast rf feedback and cavity tuning loops were closed at fixed frequencies (ferrite tuner dc biased ) to measure some of the response characteristics of the amplifier-cavity chain. Then a major effort was put into measuring the bandwidth response of the tuner in order to design the rf control loops for ac bias operation at 50 Hz. The performance of these control loops and results from long term running of the rf system are reported. (author) 3 refs., 5 figs

  8. ICRF modelling

    International Nuclear Information System (INIS)

    Phillips, C.K.

    1985-12-01

    This lecture provides a survey of the methods used to model fast magnetosonic wave coupling, propagation, and absorption in tokamaks. The validity and limitations of three distinct types of modelling codes, which will be contrasted, include discrete models which utilize ray tracing techniques, approximate continuous field models based on a parabolic approximation of the wave equation, and full field models derived using finite difference techniques. Inclusion of mode conversion effects in these models and modification of the minority distribution function will also be discussed. The lecture will conclude with a presentation of time-dependent global transport simulations of ICRF-heated tokamak discharges obtained in conjunction with the ICRF modelling codes. 52 refs., 15 figs

  9. A perpendicular AC biased ferrite tuned cavity for the TRIUMF KAON factory booster synchrotron

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.A.; Haddock, C.; Enchevich, I.

    1990-06-01

    The rf cavity for the booster synchrotron requires a frequency swing of 46 MHz at a repetition rate of 50 Hz. This will be accomplished using a tuner containing yttrium garnet ferrite where the bias field is perpendicular to the rf magnetic field. Conventional methods use parallel biased NiZn ferrite. Yttrium garnet ferrite possess a high electric quality factor. However the ac magnetizing circuit is much more complicated and special care must be taken to minimize the induced eddy current losses when designing the tuner. A dc biased prototype cavity was constructed and tested at Los Alamos. As part of the project definition study for the proposed KAON factory, this cavity has now been almost entirely rebuilt at TRIUMF with a completely redesigned tuner for ac bias operation. Measurements and test results will be reported. (Author) 2 refs., 8 figs

  10. Magnetic losses and instabilities in ferrite garnet tuned RF cavities for synchrotrons

    International Nuclear Information System (INIS)

    Shapiro, V.E.

    1994-01-01

    The aim of this paper is to introduce basic notions and elucidate the main features of magnetic losses and nonlinear effects in high power rf cavities with perpendicularly biased ferrite garnet used for varying the frequency in rapid cycling synchrotrons. A method of analysis is developed using a minimum of specific details. Simple formulae and estimates of the trend of magnetic loss, nonlinear frequency shift and possible instabilities in the cavities as a function of rf power level and ferrite garnet parameters are presented. Numerical examples correspond to the TRIUMF KAON Booster synchrotron. (author). 14 refs., 5 figs

  11. Perpendicular biased ferrite tuned RF cavity for the TRIUMF KAON Factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.; Haddock, C.

    1989-03-01

    The rf cavity for the booster ring requires a frequency swing of 46 MHz to 62 MHz at a repetition rate of 50 Hz. The possibility of using the LANL booster cavity design with a yttrium garnet ferrite tuner biased perpendicular to the rf field, in the longitudinal direction, is being investigated. In order to minimize the stray magnetic biasing field on the beam axis, an alternative scheme similar to the design being proposed for the LANL main ring cavity in which the ferrite is perpendicular biased in the radial direction, is being considered. The behaviour of the rf cavity and the magnetizing circuit for both designs are discussed

  12. Status of the AC perpendicular biased ferrite tuned cavity development program at TRIUMF

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enchevich, I.B.

    1993-01-01

    The rf cavity for the Booster Synchrotron requires a frequency swing from 46 MHz to 61 MHz at a repetition rate of 50 Hz and a maximum accelerating voltage of 62,5 kV. These parameters have been achieved on a prototype cavity at TRIUMF using yttrium garnet ferrites rather than the conventional parallel biased NiZn ferrites. The results of the tests performed on the prototype cavity as well as some of the problems encountered and their solutions are reported. 4 refs.; 8 figs

  13. ICRF edge modeling

    International Nuclear Information System (INIS)

    1991-01-01

    This report describes the technical progress for the DOE sponsored grant, ''ICRF Edge Modeling.'' An emphasis is placed on the progress since the Technical Progress Report (January 10, 1990) was submitted to the Department of Energy. The design of ICRF antennas for C-Mod and TFTR was investigated during this period. In addition, quasilinear models for electron heating were refined and applied to the design of ICRF antennas. The relevant professional activities sponsored by this grant are given. 4 refs., 11 figs

  14. Test results of the Los Alamos ferrite-tuned rf cavity

    International Nuclear Information System (INIS)

    Friedrichs, C.C.; Spalek, G.; Carlini, R.D.; Smythe, W.R.

    1987-03-01

    An rf accelerating cavity appropriate for use in a 20% frequency bandwidth synchrotron has been designed, fabricated, and is now being tested at Los Alamos. The cavity-amplifier system was designed to produce a peak rf gap voltage of 90 kV over the range from 50 to 60 MHz. Special features of the system are the transversely biased ferrite tuner, capacitive coupling of the amplifier to the cavity, and a 15-cm beam pipe. High-power rf testing of the cavity-amplifier system started in August 1986, using an adjustable dc power supply to bias the ferrite. This paper describes the cavity-amplifier circuit and the test results to the present time. Future plans are also discussed

  15. Analysis of eddy currents in the walls of the ferrite tuned RF cavity for the TRIUMF Kaon factory booster synchrotron

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Barnes, M.J.; Poirier, R.L.

    1991-05-01

    In the perpendicular biased ferrite tuned cavity of the proposed TRIUMF Kaon Factory Booster Synchrotron, magnetizing flux passes through the cavity walls. If special care is not taken to minimize eddy current loss in the walls, the dissipated power would be excessive and the magnetic fields set up by the eddy currents would disturb the magnetic field being applied. By electrically isolating the cooling structure from the cavity walls and introducing slots in the walls it is possible to bring to an acceptable level both the power loss and the maximal temperatures. Based on the measurements, an analytical model - essentially 3D - was derived and the eddy currents were predicted using the circuit analysis program PSpice. The calculated surface current and power distribution agree with measurements. PSpice can now be used to determine the effect of design changes on the eddy current and power distribution. (Author) 7 refs., 5 figs

  16. Status of rf development work on a ferrite tuned amplifier cavity for the TRIUMF KAON factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.

    1987-01-01

    Of the five synchrotron rings in the proposed TRIUMF KAON factory, the Booster ring to accelerate the proton beam from 440 MeV to 3 GeV has the most demanding rf requirements, primarily because of the relatively large frequency swing of 46.1 MHz to 61.1 MHz at a high repetition rate of 50 Hz. In the current reference design, the Booster lattice has twelve 3.9 m drift spaces with 2.5 m in each drift space available for installation of rf cavities to provide a required effective acceleration voltage of up to 600 kV per turn i.e. 50 kV per cavity. Design and development studies of a suitable cavity-amplifier system are in progress. For the initial reference design a system based on the one used in the Fermilab booster synchrotron has been chosen. That is, a double-gap drift-tube cavity with parallel-biased ferrite tuners and excited with a directly coupled Eimac Y567B tetrode. To meet the tuning and voltage requirements within the various mechanical and other constraints such as tube-to-gap voltage ratio, ferrite power density and available space, the reference design had to be further modified and a cold model of the cavity and tuners was constructed from copper-covered cardboard cylinders. From the results of the cold model measurements a new reference design was established and design work has begun on a full power prototype of the cavity-amplifier system

  17. Upgrade of ICRF heating system on EAST

    International Nuclear Information System (INIS)

    Chen Gen; Zhao Yanpin; Mao Yuzhou

    2013-01-01

    ICRF (Ion Cyclotron Range of Frequency) heating is an essential heating and current drive tool on EAST (Experimental Advanced Superconducting Tokamak). The high-power steady-state transmitters were designed as a part of research and development of ICRF heating system which aimed at output power of 1.5 MW for 1000 s in a frequency range of 25 to 70 MHz. There are 3 stage power amplifiers for each transmitter. Tube TH525A and TH535 were chosen for drive power amplifier (DPA) and final power amplifier (FPA), respectively. The power supply system of DPA and FPA were upgraded by using reliable PSM high voltage sources, whose response time is less than 5 μs. The ICRF system, which consists of 8 transmitters, will give out more than 10 MW total output power in the future. Four of them have been already fabricated, and another four are under construction. Three liquid stub tuners are used for impedance matching between antennas and transmitters, which can be only tuned shot to shot. There are two fast wave heating antennas which are assembled at I port and B port on EAST. Several projects are in progress including fast response impedance matching, distributed data acquisition and control system and so on for EAST ICRF heating system. (author)

  18. ICRF enhanced potentials

    International Nuclear Information System (INIS)

    Nelson, B.A.

    1987-01-01

    Ion-confining potentials in the Phaedrus tandem mirror are shown to be enhanced over Boltzmann-relations predicted values by radio-frequency (rf) waves in the ion cyclotron range of frequencies (ICRF). The ICRF enhanced potential is larger in the end cell with a lower passing density. Peak potential values decrease with increasing ion endloss current (or central cell density) for a constant rf capacitor bank voltage, and increase with increasing rf-capacitor bank voltage, for a constant ion endloss value (or central cell density). In fully axisymmetric operation, a potential peak is produced in an end cell by the central-cell rf, (with-out end-cell rf) and is found only in the end cell nearer the central-cell antenna. ICRF enhanced potentials are explained as an equilibrium between the electron-collisional filling-in rate and the electron pumping out rate provided by axial time-varying electric fields. Thermal barrier-like potential structures were found in the transition regions between the central cell and end cells, in the fully axisymmetric Phaedrus. Central-cell ICRF trapping effects combined with end-cell μΔ B forces create and pump the barrier potential wells

  19. Parallel bias vs perpendicular bias of a ferrite tuned cavity for the TRIUMF KAON Factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.A.

    1988-06-01

    The RF cavity reference design for the KAON Factory booster ring is a double gap drift-tube cavity with parallel biased ferrite tuners to vary the frequency from 46 MHz to 62 MHz. LAMPF has developed a single gap cavity with perpendicularly biased ferrite to vary the frequency from 50 MHz to 60 MHz. Measurements on the LAMPF cavity have indicated that their frequency range could be extended to cover our requirements while still maintaining a reasonable magnetic Q. The analysis and comparison of the RF circuit and the AC magnetizing circuit for both designs are reported. (Author) (14 refs., 6 figs.)

  20. AC bias operation of the perpendicular biased ferrite tuned cavity for the TRIUMF KAON Factory booster synchrotron

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.A.; Enchevich, I.B.

    1991-05-01

    The RF cavity for the booster synchrotron requires a frequency swing from 46 MHz at a repetition rate of 50 Hz and a maximum accelerating gap voltage of 65 kV. A DC biased prototype cavity built at LANL using perpendicular-biased yttrium-garnet ferrites, rather than the more conventional parallel-biased NiZn ferrites, has now undergone major reconstruction at TRIUMF for AC bias operation. RF signal level measurements have shown that the frequency swing at a repetition rate of 50 Hz can be accomplished and still handle the eddy current losses in the cavity structures with minimal effect on the magnetizing field. The prototype cavity is now undergoing high power RF tests with full power AC bias operation. The results of these tests and operational experience is reported. (Author) ref., 6 figs

  1. Bulk Ion Heating with ICRF Waves in Tokamaks

    DEFF Research Database (Denmark)

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.

    2015-01-01

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER...... when 3 MW of ICRF power tuned to the central 3He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LTi of about 20, which are unusually large for AUG...

  2. ICRF edge modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S. (Grumman Corp. Research Center, Princeton, NJ (USA)); Colestock, P.L. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-04-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating show no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. (orig.).

  3. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  4. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  5. Recent progress with ICRF heating on EAST

    International Nuclear Information System (INIS)

    Zhang Xinjun; Zhao, Y.P.; Mao, Y.Z.

    2014-01-01

    Radio Frequency (RF) power in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating techniques for Experimental Advanced Superconducting Tokamak (EAST). The ICRF system for the EAST has been developed to support long-pulse, high-β, advanced tokamak fusion physics experiments. The ICRF system can deliver 12 MW of RF power to the plasma for 1000 seconds through two antennas located in B- and I-ports. Each ICRF transmitter with high power up to 1.5 MW has been successfully tested on a dummy load. The main technical features of the ICRF system is described. Two simulation codes, TORIC (a full wave solver) and SSFPQL (the quasilinear Fokker-Planck solver), are combined to simulate the ICRF heating in the EAST 2D magnetic configuration. The fast wave propagation and absorption characteristics, power partitions among the plasma species and the RF driven energetic tails have been analyzed. (author)

  6. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  7. ICRF array module development and optimization for high power density

    International Nuclear Information System (INIS)

    Ryan, P.M.; Swain, D.W.

    1997-02-01

    This report describes the analysis and optimization of the proposed International Thermonuclear Experimental Reactor (ITER) Antenna Array for the ion cyclotron range of frequencies (ICRF). The objectives of this effort were to: (1) minimize the applied radiofrequency rf voltages occurring in vacuum by proper layout and shape of components, limit the component's surface/volumes where the rf voltage is high; (2) study the effects of magnetic insulation, as applied to the current design; (3) provide electrical characteristics of the antenna for the development and analysis of tuning, arc detection/suppression, and systems for discriminating between arcs and edge-localized modes (ELMs); (4) maintain close interface with mechanical design

  8. Current phase control test based on real-time measurement of impedance matrix of ICRF antennas

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K., E-mail: saito@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kumazawa, R.; Seki, T.; Kasahara, H.; Yokota, M.; Nomura, G.; Shimpo, F.; Mutoh, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-10-15

    New ion cyclotron range of frequencies (ICRF) antennas have just been installed in the large helical device (LHD). These side-by-side ICRF antennas are symmetrical and designed to launch fast waves with various wave numbers parallel to the magnetic field line. The wave number can be controlled by changing the current phase on the straps; however, the mutual coupling between antennas changes antenna impedances, even if the plasma parameters are constant, leading to an increase in the reflected power. In addition to the current phase control, impedance matching devices must be tuned for the protection of tetrode tubes and efficient power injection. For this purpose, the impedance matrix of ICRF antennas must be determined, and it can be deduced from the forward and reflected waves at the outlet of the power amplifier by assuming geometric symmetry and reciprocity of the antennas. Using half-scale antennas, we successfully demonstrated simultaneous impedance matching and current phase control.

  9. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    Directory of Open Access Journals (Sweden)

    Gallart Dani

    2017-01-01

    Full Text Available During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ∼7.0 MW in D-T.

  10. EAST ICRF system for long pulse operation

    International Nuclear Information System (INIS)

    Zhao, Y.P.; Zhang, X.J.; Mao, Y.Z.

    2013-01-01

    Radio frequency (RF) power in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating techniques for Experimental Advanced Superconducting Tokamak (EAST). A 6.0 MW ICRF systems in the range of 25-70 MHz has been put into operation during the EAST 2012 spring campaign. The ICRF systems consist of two port-mounted antennas and each antenna is driven by two independent 1.5 MW RF power source. Another four 1.5 MW ICRF system is under way of construction.The system will deliver more than 10 MW of RF power to the plasma for 1000 sec pulse length. This paper gives brief introduction of the ICRF systems capability on EAST. (author)

  11. ICRF Review: From ERASMUS To ITER

    Science.gov (United States)

    Weynants, R. R.

    2009-11-01

    This is a personal account of how I saw ICRF evolve since 1974, with a presentation that is ordered according to the topics: heating, antenna coupling, impurity generation/mitigation and system technology. The nature of the main issues is each time reviewed, recent findings are incorporated, and it is shown how the ICRF community has been able to react to sometimes rapidly changing demands and is indeed resolutely preparing ITER.

  12. ICRF heating experiments in JFT-2 tokamak

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1986-01-01

    This is an experimental study of ICRF heating on JFT-2 Tokamak in Japan Atomic Energy Research Institute. In this study, we first clarified physical and engineering problems of ICRF heating of tokamak plasma. Next, we optimized the design of the ICRF heating system, and the plasma parameters for the heating. Finally, we could demonstrate a high efficiency of this additional heating method by launching RF power which is two or three times as large as an ohmic input power to a plasma. And we achieved following things. (1) We optimized a design of an antenna, and we improved a durability of the system for high voltage. With the result that we achieved the maximum power density on an antenna. (2) We demonstrated that electron heating regime and ion heating regime can be easily accessed by controlling plasma parameters. Also we found the optimum heating conditions in each heating regime. (3) We experimentally clarified the production mechanism of impurities during ICRF heating. We could reduce the influx of metal impurity ions to a plasma by employing low z materials for limiters and antenna shields. Consequently, we improved a heating efficiency of electrons. Next, we studied a power balance of plasma during ICRF heating, and we could compare heating characteristics of ICRF with other additional heatings on JFT-2. (author)

  13. The ICRF antennas for TFTR

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Colestock, P.L.; Gardner, W.L.; Hosea, J.C.; Nagy, A.; Stevens, J.; Swain, D.W.; Wilson, J.R.

    1988-01-01

    Two compact loop antennas have been designed to provide ion cyclotron resonant frequency (ICRF) heating for TFTR. The antennas can convey a total of 10 MW to accomplish core heating in either high-density or high-temperature plasmas. The near-term goal of heating TFTR plasmas and the longer-term goals of ease in handling (for remote maintenance) and high reliability (in an inaccessible tritium tokamak environment) were major considerations in the antenna designs. The compact loop configuration facilitates handling because the antennas fit completely through their ports. Conservative design and extensive testing were used to attain the reliability required for TFTR. This paper summarizes how these antennas will accomplish these goals. 5 figs, 1 tab

  14. ICRF/edge physics research on TEXTOR

    International Nuclear Information System (INIS)

    Oost, G. van; Nieuwenhove, R. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Weynants, R.R.; Dippel, K.H.; Finken, K.H.; Lie, Y.T.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Conn, R.W.; Corbett, W.J.; Goebel, D.M.; Moyer, R.A.; California Univ., Los Angeles

    1990-01-01

    Extensive investigations of ICRF-induced effects on the edge plasma and on plasma-wall interaction were conducted on TEXTOR under different wall- and limiter as well as plasma- and heating conditions. Several strong effects of ICRF on the edge parameters were observed on TEXTOR, such as density rise, instantaneous electron heating, modification of SOL profiles, influx of ligth and/or heavy impurities, increased heat flux to the limiters, and production of energetic ions in the SOL. The fast response time of some of the changes and the observation of a maximum in the SOL profile of electron temperature, heat flux and metal sputtering clearly demonstrated that RF power is directly absorbed in the SOL. Estimates of this power amount to several percent of the total RF power launched into the plasma. Plasma-wall interaction during ICRF was substantially reduced by an appropriate choice of the wall conditioning procedures (wall carbonization with liner at 400degC or, above all, boronization). As a result record low values of the radiated power fraction were achieved during ICRF and long pulse, high power, low impurity operation was possible. Further improvement was obtained by ICRF antenna phasing. When ICRF power is coupled to the plasma, several effects on the core and edge plasma influence the operation of the toroidal pump limiter ALT-II. Experimental and theoretical studies were performed to elucidate the mechanisms responsible for the ICRF-induced effects, including the propagation of plasma waves in the edge plasma and nonlinear phenomena such as parametric decay, important changes in the DC current between the antenna structure and the liner due to the sheath effect at the antennas, and the generation of waves at harmonics of the RF generator frequency. Radial profiles of the DC radial and poloidal electric fields as well as a localized RF electric field structure were measured in the SOL using a fast scanning probe. (orig.)

  15. Tuning magnet power supply

    International Nuclear Information System (INIS)

    Han, B.M.; Karady, G.G.; Thiessen, H.A.

    1989-01-01

    The particles in a Rapid Cycling Accelerator are accelerated by rf cavities, which are tuned by dc biased ferrite cores. The tuning is achieved by the regulation of bias current, which is produced by a power supply. The tuning magnet power supply utilizes a bridge circuit, supplied by a three phase rectifier. During the rise of the current, when the particles are accelerated, the current is controlled with precision by the bridge which operates a power amplifier. During the fall of the current, the bridge operates in a switching mode and recovers the energy stored in the ferrites. The recovered energy is stored in a capacitor bank. The bridge circuit is built with 150 power transistors. The drive, protection and control circuit were designed and built from commercial component. The system will be used for a rf cavity experiment in Los Alamos and will serve as a prototype tuning power supply for future accelerators. 1 ref., 7 figs

  16. ICRF stabilization of sawteeth on TFTR

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.; Stevens, J.; Wilson, J.R.; Bell, M.; Bitter, M.; Cheng, C.Z.; Darrow, D.; Fredrickson, E.; Hammett, G.W.; Hill, K.; Hsuan, H.; Jassby, D.; McCune, D.; McGuire, K.; Owens, D.K.; Park, H.; Ramsey, A.; Schilling, G.; Schivell, J.; Stratton, B.; Synakowski, E.; Taylor, G.; Towner, H.; White, R.; Zweben, S.; Phillips, M.W.; Hughes, M.; Bush, C.; Goldfinger, R.; Hoffman, D.; Houlberg, W.; Nagayama, Y.; Smithe, D.N.

    1992-01-01

    Results obtained from experiments utilizing high power ICRF (ion cyclotron range of frequency) heating to stabilize sawtooth oscillations on TFTR are reviewed. The key observations include existence of a minimum ICRF power required to achieve stabilization, a dependence of the stabilization threshold on the relative size of the ICRF power deposition profile to the q=1 volume, and a peaking of the equilibrium pressure and current profiles during sawtooth-free phases of the discharges. In addition, preliminary measurements of the poloidal magnetic field profile indicate that q on axis decreases to a value of 0.55±0.15 after a sawtooth-stabilized period of ∼0.5 sec has transpired. The results are discussed in the context of theory, which suggests that the fast ions produced by the ICRF heating suppress sawteeth by stabilizing the m=1 MHD instabilities believed to be the trigger for the sawtooth oscillations. Though qualitative agreement is found between the observations and the theory, further refinement of the theory coupled with more accurate measurements of experimental profiles will be required in order to complete quantitative comparisons

  17. Recent developments in ICRF antenna modelling

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Louche, F.

    2005-01-01

    The antennas presently developed for ICRF heating of the ITER plasma consist of a tightly packed array of a large number of radiating straps, in order to deliver a high power density without exceeding radio-frequency voltage standoffs. Recently developed commercial software has enabled important progress in the coupling analysis and optimisation of such demanding systems. Approximations allowing to convincingly include a realistic plasma description in these codes are discussed. Application of the resulting numerical tools is illustrated by simulation of the existing JET A2 ICRF array, with the goal to validate simulations for future antennas. Advances in the design of realistic test bed conditions, using salted water as a means of creating plasma-relevant antenna loading, and the appropriate scaling of a mockup are also presented. (author)

  18. Development of impedance matching technologies for ICRF antenna arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.

    1998-01-01

    All high-power ion cyclotron range of frequency (ICRF) heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time dependent on timescales as rapid as 10 -1 s, while the radio frequency (RF) generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the RF source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In 'lossy passive schemes', reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array. (author)

  19. Development of impedance matching technologies for ICRF antenna arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.

    1998-03-01

    All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array

  20. Uses of the ICRF and implications for future VLBI

    Science.gov (United States)

    Ma, Chopo

    2006-01-01

    Since its inception on 1 Jan 1998, the fundamental ICRF has been set by the VLBI positions of 212 "defining" extragalactic radio sources. In all there are approx.3000 sources with usefully accurate (< few mas) positions consistent with the ICRF. The uses of the ICRF include fundamental astrometry, monitoring of Earth orientation, and spacecraft navigation. For fundamental astrometry, stability and accuracy are most important, and realizations at different frequencies must be in proper registration. However, there is no preferred frequency, and the GAIA mission has the potential for an optical ICRF with 500,000 objects at the 50 microarcsec level some time after the planned 2011 launch. The radio ICRF should be properly prepared for a transition to assure long term stability and consistency. Earth orientation monitoring requires objects attached to the solid Earth, and VLBI will continue to be the fundamental technique. For this purpose it is essential that the new VLBI stations contemplated in the VLBI20l0 report be capable of observing a sufficiently large and well-distributed set of stable sources, and identifying these sources is an on-going effort. Spacecraft navigation by differential VLBI is planned using the Ka-band telemetry signal, and work has begun towards an ICRF realization suitable for this purpose. The balancing of different needs related to the VLBI ICRF will be discussed.

  1. ICRF-induced fusion product loss in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Chang, C.S.; Zweben, S.J.

    1994-01-01

    When ICRF power is applied to plasmas in which there is no externally-supplied minority species, an enhanced loss of DD fusion products results. The characteristics of the loss are consistent with particles at or near the birth energy having their perpendicular velocity increased by the ICRF such that those near the passing/trapped boundary are carried into the first orbit loss cone. A rudimentary model of this process predicts losses of a magnitude similar to those seen. Predictions based upon this data for hypothetical ICRF ash removal from reactor plasmas suggest that the technique will not be energy efficient

  2. A new radiation stripline ICRF antenna design for EAST Tokamak

    International Nuclear Information System (INIS)

    Qin, C. M.; Zhao, Y. P.; Wan, B. N.; Li, J.; Zhang, X. J.; Yang, Q. X.; Yuan, S.; Braun, F.; Notedame, J.-M.; Kasahara, H.

    2014-01-01

    A new type of toroidal long Radiation Stripline Antenna (RSA) is presented, which can effectively improve antenna radiation, leading in reduction of max voltage on transmission line and decrease of the sensitivity to ELM's of the ICRF system at some frequencies. Based on the new concept, a 4-straps RSA is proposed for EAST device. Using 3-D computing simulator code (HFSS), RF current distribution, S-parameters and electromagnetic field distribution on and near the RSA ICRF antenna are analyzed and compared with present ICRF antenna on EAST

  3. ICRF-induced DD fusion product losses in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Zweben, S.J.; Budny, R.V.

    1994-10-01

    When ICRF power is applied to TFTR plasmas in which there is no externally-supplied minority species, an enhanced loss of DD fusion products results. The characteristics of the loss are consistent with particles at or near the birth energy having their perpendicular velocity increased by the ICRF such that those near the passing/trapped boundary are carried into the first orbit loss cone. A rudimentary model of this process predicts losses of a magnitude similar to those seen. Extrapolations based upon this data for hypothetical ICRF ash removal from reactor plasmas suggest that the technique will not be energy efficient

  4. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  5. ICRF heating on the burning plasma experiment (BPX)

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.; Goulding, R.H.; Hoffman, D.J.; Jaeger, E.F.; Ryan, P.M.; Swain, D.W.; Tolliver, J.S.; Yugo, J.J.; Goldston, R.J.; Hosea, J.C.; Kaye, S.M.; Phillips, C.K.; Wilson, J.R.; Mau, T.K.

    1991-01-01

    RF power in the ion cyclotron range of frequencies (ICRF) has been chosen as the primary heating technique for BPX. This decision is based on the wide success of ICRF heating in existing experiments (JET, TFTR, JT-60), the capability of ion cyclotron waves to penetrate the high-density plasmas of BPX, the ability to concentrate ICRF power deposition near the plasma center, and the ready availability of high-power sources at the appropriate frequency. The primary task of the ICRF system is to heat the plasma to ignition. However, other important roles are envisaged; these include the stabilization of sawteeth, preheating of the plasma during current ramp-up, and possible control of the plasma current profile by means of fast-wave current drive. We give a brief overview of the RF system, describe the operating scenarios planned for BPX, and discuss some of the antenna design issues for BPX. 4 refs., 3 figs

  6. ICRF sawtooth stabilization: Application on TFTR and CIT

    International Nuclear Information System (INIS)

    Hosea, J.C.; Phillips, C.K.; Stevens, J.E.; Wilson, J.R.; Bell, M.; Boivin, R.; Cavallo, A.; Colestock, P.; Fredrickson, E.; Hammett, G.; Hsuan, H.; Janos, A.; Jassby, D.; Jobes, F.; McGuire, K.; Mueller, D.; Nagayama, Y.; Owens, K.; Park, H.; Schmidt, G.; Stratton, B.; Taylor, G.; Wong, K.L.; Zweben, S.

    1991-03-01

    The use of ICRF heating to stabilize the core plasma sawtooth relaxations has been extended to TFTR where such stabilization has been produced at relatively low power in the L Mode regime at moderate density (P RF = 4 MW, 2.6 MW in helium and deuterium discharges, respectively, for the minority hydrogen ICRF heating regime with bar n e ∼2.5 x 10 13 cm -3 ). These results, as in the case of those obtained on JET, are qualitatively consistent with energetic ion stabilization of the m = 1, n = 1 ideal/resistive kink mode. The relevance of sawtooth stabilization to the primary regimes of interest on TFTR -- the high-Q supershot regime and the high density pellet injection regimes -- and on CIT -- the high density ICRF heated regime -- is considered in the context of the present theory and the projected ICRF power deposition characteristics. 35 refs., 11 figs

  7. Mechanical design of the second ICRF antenna for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q., E-mail: yangqx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T.; Wu, S.T.; Zhao, Y.P.; Zhang, J.X.; Wang, Z.W. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The second ICRF antenna of EAST is capable of coupling higher power than the former ICRF antenna due to it has been designed with four current straps. Black-Right-Pointing-Pointer Many cooling channels have been designed for the key components of faraday shied, current strap, baffles and transmission lines, which can remove the dissipated RF loss power and incoming heat loads on them and make ICRF antenna being capable of coupling higher power in constant wave operation. Black-Right-Pointing-Pointer Extra structure via cantilever support beam has been designed to support the forepart of the ICRF antenna. Black-Right-Pointing-Pointer Numerical analysis by applying the thermo-mechanical coupling method have been applied to analyze for the key components of ICRF antenna. - Abstract: In order to satisfy the requirements of heating plasma on EAST project, 3 MW ion cyclotron range of frequency (ICRF) heating system will be available at the second stage. Based on this requirement, the second ICRF antenna, has been designed for EAST. The antenna which is planned to operate with a frequency ranging from 30 MHz to 110 MHz, comprises four poloidal current straps. The antenna has many cooling channels inside the current straps, faraday shield and baffle to remove the dissipated RF loss power and incoming plasma heat loads. The antenna is supported via a cantilever support box to the external support structure. Its assembly is plugged in the port and fixed on the support box. External slideway and bellows allow the antenna to be able to move in the radial direction. The key components of the second ICRF antenna has been designed together with structural and thermal analysis presented.

  8. Orbit losses of strongly ICRF-heated ions

    International Nuclear Information System (INIS)

    Anderson, A.; Dillner, Oe.; Lisak, M.

    1992-01-01

    An approximate analytical investigation is made to assess the importance of orbit losses of strongly ICRF-heated minority ions. Explicit expressions for the fraction of lost minority ions are derived and shown to be in good agreement with numerical simulation results. The results indicate that present day ICRF heating power density levels cannot be raised significantly without causing important particle and energy losses due to unconfined particle orbits. 6 refs., 5 figs

  9. ICRF heating in T.F.R

    International Nuclear Information System (INIS)

    Gambier, D.J.

    1983-06-01

    Experiments on plasma heating by RF in the ion cyclotron range of frequency have been performed on T.F.R. in various regimes, such as the mode conversion regime and the minority regime. The latest theoretical developments of ICRF modeling are presented and the experimental data obtained in a deuterium plasma containing 20% or 5% of hydrogen are reviewed. With 20% of hydrogen a large increase of both ion and electron temperature is observed while the level of metallic impurity radiation has been considerably reduced using a carbon limiter. With 5% of hydrogen the location of the antenna system in the minor cross section produces no dramatic differences with respect to ion heating. Finally the metallic impurity production is examined and thus allows one to eliminate the Faraday shield of the antenna as the main source of pollution by heavy ions of the plasma

  10. ICRF heating analysis on ASDEX plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Fukuyama, Atsushi; Morishita, Takayuki; Steinmetz, K.; Noterdaeme, J.-M.

    1988-01-01

    ICRF (ion cyclotron range of frequencies) waves heating in an ASDEX tokamak are analyzed. The excitation, propagation and absorption are studied by using a global wave code. This analysis is combined with a Fokker-Planck code. The waveform in the plasma, the loading resistance and the reactance of the antenna are calculated for both the minority ion heating and the second harmonic resonance heating. Attention is given to the change of the antenna loading associated with the L/H transition. Optimum conditions for the loading are discussed. In the minority heating case, the tail generation and thermalization are analyzed. Spatial profiles of the tail-ion temperature and the power transferred to the bulk electrons and ions are obtained. Central as well as off-central heating cases are investigated. The effect of the reactive electric field is discussed in connection with rf losses and impurity production. (author)

  11. Advanced fusion in ICRF injected plasmas

    International Nuclear Information System (INIS)

    Carpignano, F.; Coppi, B.; Detragiache, P.; Migliuolo, S.; Nassi, M.; Rogers, B.

    1994-01-01

    Fusion burning of a D- 3 He mixture in a high density, high magnetic field, compact toroidal experiment (Ignitor) with a high injected power density at the ion cyclotron frequency (ICRF) is investigated. A superthermal tail (with energies exceeding 1 MeV in the central part of the plasma column) is induced in the distribution of the minority 3 He population ( 0 20 m -3 ). This stems from the high value of the peak RF power density absorbed by the minority species (ρ RF ∼ 60 MW/m 3 ) that should be obtained in Ignitor when the total injected power is about 18 MW. This experiment is suitable to begin the study of advanced fusion burning, because of the high plasma currents (I p 3 He fusion powers of the order of 1 MW should be attained. (author) 8 refs., 3 figs

  12. Present and future JET ICRF antennae

    International Nuclear Information System (INIS)

    Kaye, A.; Brown, T.; Bhatnagar, V.; Crawley, P.; Jacquinot, J.; Lobel, R.; Plancoulaine, J.; Rebut, P.H.; Wade, T.; Walker, C.

    1994-01-01

    Since the initial operation of the JET ICRF system in 1985, up to 22 MW has been coupled to the plasma, many heating scenarios have been demonstrated and the main technological problem of RF-specific impurity production overcome. Many developments of the antennae have taken place over this period, notably the replacement of the water-cooled nickel screens with indirectly cooled beryllium screens, and the forthcoming installation of eight new A2 antennae for operation during the pumped divertor phase of JET. The A2 antennae include enhanced provision for fast wave current drive experiments on JET. This paper describes the beryllium screens, the technological results from operation and subsequent inspection of these screens, the design of the A2 antennae and the results from high power RF testing of a model of the A2 antenna. (orig.)

  13. Toroidal mode-conversion in the ICRF

    International Nuclear Information System (INIS)

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode-conversion is studied in the ion-cyclotron range of frequencies (ICRF) taking into account the toroidal geometry relevant for tokamaks. The global wavefields obtained using the gyrokinetic toroidal PENN code illustrate how the fast wave propagates to the neighborhood of the ion-ion hybrid resonance, where it is converted to a slow wave which deposits the wave energy through resonant interactions with the particles. The power deposition profiles obtained are dramatically different from the toroidal resonance absorption, showing that Budden's model is not a good approximation in the torus. Radially and poloidally localized wavefield structures characteristic of slow wave eigenmodes are predicted and could in experiments be driven to large amplitudes so as to interact efficiently with fast particles. (author) 5 figs., 1 tab., 48 refs

  14. Two frequency ICRF operation on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Majeski, R.; Wilson, J.R.; Hosea, J.C.; Schilling, G.; Stevens, J.; Phillips, C.K.

    1993-01-01

    Modifications have been made recently to allow two of the ICRF antennas (bays L and M) on TFTR to operate at either of two frequencies, 43 MHz or 64 MHz. This was accomplished by lengthening the resonant loops (2Λ at 43 MHz, 3Λ at 64 MHz) and replacing the conventional quarter wave impedance transformers with a tapered impedance design. The other two antennas (bays K and N) will operate at a fixed frequency, 43 MHz. The two frequency operation will allow a combination of 3 He-minority and H-minority heating at near full field on TFTR. The higher frequency, 64 MHz, may also be useful in direct electron heating and current drive experiments at lower toroidal fields. Models of the antenna, resonant loops and impedance matching system are presented

  15. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  16. Development and test of decoupler for ICRF antenna in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gen, E-mail: chengen@ipp.ac.cn; Mao, Yuzhou; Zhao, Yanping; Yuan, Shuai; Zhang, Xinjun; Qing, Chengming

    2016-06-15

    Highlights: • The mechanism of decoupler for ICRF antenna is proposed. • Three candidate assembly positions for the decouper can be used. • The performance relies on the ohmic dissipation and the assembly position of decoupler. - Abstract: Ion Cyclotron Range of Frequency (ICRF) heating has been adopted in EAST tokamak as one of main auxiliary heating methods. The ICRF antenna usually consists of multiple launching elements because of limited port and space of tokamak device. Mutual coupling between straps has been observed in previous EAST ICRF current drive experiments. Due to adverse effects of such mutual coupling, many issues induced by cross power cannot be ignored, such as power imbalance in feed lines, high voltage standing wave ratio (VSWR), and etc. To restrain such mutual coupling, A device named decoupler was developed and tested in EAST ICRF system. According to the admittance matrix of load, three assembly positions (oscillation position, optimum position, and smooth position) along transmission line for the decoupler were taken into account and tested. The test results showed that ohmic dissipation in decoupler could not be neglected, which partly influenced the decoupling performance. The oscillation position and optimum position could restrain such adverse effects of ohmic dissipation and showed good decoupling performance. However, they cannot ensure the steady operation during H-mod due to the load variation. Finally, the smooth position has been adopted for EAST I port antenna because of steady decoupling performance comprised with engineering error and load resilience, which sincerely enhance the capability of system operation.

  17. Fast ferrite tuner for the BNL synchrotron light source

    International Nuclear Information System (INIS)

    Pivit, E.; Hanna, S.M.; Keane, J.

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs

  18. High-power ICRF and ICRF plus neutral-beam heating on PLT

    International Nuclear Information System (INIS)

    Hwang, D.; Bitter, M.; Budny, R.

    1983-01-01

    PLT ICRF experiments with RF powers up to approx.=3 MW have demonstrated efficient plasma heating in both the minority fundamental and the second harmonic ion-cyclotron regimes. In the minority 3 He regime, ion temperatures of approx.=3 keV have been produced along with approx.=1 kW of D- 3 He fusion power and substantial electron heating. In the second harmonic H regime, an equivalent averaged ion energy of approx.=4 keV has been achieved. Combined ICRF plus neutral-beam heating experiments with auxiliary powers totalling up to 4.5 MW have provided insight into auxiliary heating performance at stored plasma energy levels up to approx.=100 kJ. Values of #betta#sub(phi) in the range of 1.5-2% have been attained for Bsub(phi) approx.=17 kG. Energetic discharges with n-barsub(e) up to approx.6x10 13 cm - 3 at Bsub(phi) approx.=28 kG have also been investigated. Preliminary confinement studies suggest that energetic ion losses may contribute to a direct loss of the input RF power in the H minority heating regime but are insignificant in the 3 He minority case. The energy confinement time for the H minority regime is reduced somewhat from the Ohmic value. (author)

  19. ICRF power limitation relation to density limit in ASDEX

    International Nuclear Information System (INIS)

    Ryter, F.

    1992-01-01

    Launching high ICRF power into ASDEX plasmas required good antenna-plasma coupling. This could be achieved by sufficient electron density in front of the antennas i.e. small antenna-plasma distance (1-2 cm) and moderate to high line-averaged electron density compared to the density window in ASDEX. These are conditions eventually close to the density limit. ICRF heated discharges terminated by plasma disruptions caused by the RF pulse limited the maximum RF power which can be injected into the plasma. The disruptions occurring in these cases have clear phenomenological similarities with those observed in density limit discharges. We show in this paper that the ICRF-power limitation by plasma disruptions in ASDEX was due to reaching the density limit. (orig.)

  20. Three-dimensional calculation analysis of ICRF heating in LHD

    International Nuclear Information System (INIS)

    Seki, Tetsuo; Kumazawa, Ryuhei; Mutoh, Takashi

    2004-01-01

    Ion cyclotron range of frequencies (ICRF) heating is one of the heating methods for the fusion plasma experiments and also effective for the helical plasmas. For the purpose of analysis of the ICRF heating in the helical plasmas, the three-dimensional full-wave code has been developed. The feature of the helical system compared with the tokamak device is the strong coupling of the toroidal harmonic modes. They cannot be treated independently. Dependence of the power absorption on the position of the ion cyclotron resonance layer is calculated including all toroidal modes. Strong power absorption was obtained when the position of the resonance layer is slightly different from the experimental results. Difference of the position of the resonance layer in different toroidal angle is thought to be important to achieve the good heating efficiency in the ICRF heating for the helical plasmas. (author)

  1. Benchmarking ICRF Full-wave Solvers for ITER

    International Nuclear Information System (INIS)

    Budny, R.V.; Berry, L.; Bilato, R.; Bonoli, P.; Brambilla, M.; Dumont, R.J.; Fukuyama, A.; Harvey, R.; Jaeger, E.F.; Indireshkumar, K.; Lerche, E.; McCune, D.; Phillips, C.K.; Vdovin, V.; Wright, J.

    2011-01-01

    Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by six full-wave solver groups to simulate the ICRF electromagnetic fields and heating, and by three of these groups to simulate the current-drive. Approximate agreement is achieved for the predicted heating power for the DT and He4 cases. Factor of two disagreements are found for the cases with second harmonic He3 heating in bulk H cases. Approximate agreement is achieved simulating the ICRF current drive.

  2. ICRF induced edge plasma convection in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Max Planck Institute for Plasma Physics, Garching/Greifswald (Germany); University of Ghent, Ghent (Belgium); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Feng, Yuehe; Lunt, Tilmann; Jacquot, Jonathan; Coster, David; Bilato, Roberto; Bobkov, Volodymyr; Ochoukov, Roman [Max Planck Institute for Plasma Physics, Garching/Greifswald (Germany); Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Garching/Greifswald (Germany); University of Ghent, Ghent (Belgium); Colas, Laurent [CEA, IRFM, Saint-Paul-Lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2016-07-01

    Ion Cyclotron Range of Frequency (ICRF) heating is one of the main auxiliary plasma heating methods in tokamaks. It relies on the fast wave to heat the plasma. However the slow wave can also be generated parasitically. The parallel electric field of the slow wave can induce large biased plasma potential through sheath rectification. The rapid variation of this rectified potential across the magnetic field can cause significant E x B convection in the Scrape-Off Layer (SOL). The ICRF induced convection can affect the SOL density, influence the ICRF power coupling and enhance the strength of plasma-wall interactions. To explore these physics, we not only show the experimental evidences in ASDEX Upgrade, but also present the associated simulation results with the 3D edge plasma fluid code EMC3-Eirene. Further simulations via combination of EMC3-Eirene and a sheath code SSWICH in an iterative and quasi self-consistent way can give good predictions for future experiments.

  3. DT simulation of ICRF heated supershots in TFTR using TRANSP

    International Nuclear Information System (INIS)

    Goldfinger, R.C.; Batchelor, D.B.; Phillips, C.K.; Budny, R.; Hammett, G.W.; Hosea, J.C.; McCune, D.M.; Stevens, J.E.; Wilson, J.R.

    1993-01-01

    The principal goal of ion cyclotron range of frequency (ICRF) heating on the Tokamak Fusion Test Reactor (TFTR) is to enhance plasma performance during the deuterium-tritium (DT) physics phase of operations. Strongly centralized ICRF heating may play a critical role in obtaining high Q DT and high β α operation in TFTR, as well as in future fusion reactors. ICRF heating of a dilute minority species leads to the formation of an energetic ion population that, in turn, provides strong central electron heating. The corresponding rise in the central electron temperature translates into an increase in the slowing-down time of either neutral beam or alpha particles in the discharge. Preliminary DT simulations of the experimental results in deuterium-deuterium (DD) plasmas performed with the TRANSP code are presented in this paper

  4. ICRF power limitation relation to density limit in ASDEX

    International Nuclear Information System (INIS)

    Ryter, F.

    1992-01-01

    Launching high ICRF power into ASDEX plasmas required good antenna-plasma coupling. This could be achieved by sufficient electron density in front of the antennas i.e. small antenna-plasma distance (1-2 cm) and moderate to high line-averaged electron density compared to the density window in ASDEX. These are conditions eventually close to the density limit. ICRF heated discharges terminated by plasma disruptions caused by the RF pulse limited the maximum RF power which can be injected into the plasma. The disruptions occurring in these cases have clear phenomenological similarities with those observed in density limit discharges. We show in this paper that the ICRF-power limitation by plasma disruptions in ASDEX was due to reaching the density limit. (author) 3 refs., 3 figs

  5. Heat Loads On Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Chantant, M.; Beaumont, B.; Ekedahl, A.; Goniche, M.; Moreau, P.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency launchers plasma facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. Lessons are drawned both with regards to Tore Supra possible operational limits and to ITER ICRF launcher design

  6. ICRF heating of passing ions in TMX-U

    International Nuclear Information System (INIS)

    Molvik, A.W.; Dimonte, G.; Barter, J.; Campbell, R.; Cummins, W.F.; Falabella, S.; Ferguson, S.W.; Poulsen, P.

    1986-04-01

    By placing ion-cyclotron resonant frequency (ICRF) antennas on both sides of a midplane gas-feed system in the central cell of the Tandem Mirror Experiment-Upgrade (TMX-U), our results have improved in the following areas: (a) The end losses out both ends show a factor of 3 to 4 increase in passing-ion temperatures and a factor of 2 to 3 decrease in passing-ion densities. (b) The passing-ion heating is consistent with Monte Carlo predictions. (c) The plasma density can be sustained by ICRF plus gas fueling as observed on other experiments

  7. Ripple losses during ICRF heating in Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Eriksson, L.-G.; Bergeaud, V.; Chantant, M.; Martin, G.; Nguyen, F.; Reichle, R.; Vallet, J.C.; Delpeche, L.; Surle, F.

    2004-01-01

    The toroidal field coils in Tore Supra are supra-conducting, and their number is restricted to 18. As a result, the ripple is fairly large, about 7% at the plasma boundary. Tore Supra has consequently been equipped with dedicated ripple loss diagnostics, which has allowed ripple loss studies. This paper reports on the measurements made with these diagnostics and provides an analysis of the experimental results, comparing them with theoretical expectations whenever possible. Furthermore, the main heating source accelerating ions in Tore Supra is ion cyclotron resonance range of frequency (ICRF) heating, and the paper provides new information on the ripple losses of ICRF accelerated ions. (author)

  8. Ferrite LTCC-based antennas for tunable SoP applications

    KAUST Repository

    Shamim, Atif; Bray, Joey R.; Hojjat, Nasrin; Roy, Langis

    2011-01-01

    tunable system-on-package applications. Measurements of rectangular microstrip patch antennas on a ferrite LTCC substrate display a maximum tuning range of 610 MHz near 12 GHz. Two different bias windings and their effect on the antenna performance

  9. Ferrite LTCC-based antennas for tunable SoP applications

    KAUST Repository

    Shamim, Atif

    2011-07-01

    For the first time, ferrite low temperature co-fired ceramic (LTCC) tunable antennas are presented. These antennas are frequency tuned by a variable magnetostatic field produced in a winding that is completely embedded inside the ferrite LTCC substrate. Embedded windings have reduced the typically required magnetic bias field for antenna tuning by over 95%. The fact that large electromagnets are not required for tuning makes ferrite LTCC with embedded bias windings an ideal platform for advanced tunable system-on-package applications. Measurements of rectangular microstrip patch antennas on a ferrite LTCC substrate display a maximum tuning range of 610 MHz near 12 GHz. Two different bias windings and their effect on the antenna performance are discussed, as is the effect of antenna orientation with respect to the bias winding. The antenna radiation patterns are measured under biased and unbiased conditions, showing a stable co-polarized linear gain. © 2011-2012 IEEE.

  10. ICRF [ion cyclotron range of frequencies] coupling on DIII-D and the implications on ICRF technology development

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Baity, F.W.; Mayberry, M.J.; Swain, D.W.

    1987-01-01

    Low-power coupling tests have been carried out with a prototype ion cyclotron range of frequencies (ICRF) compact loop antenna on the DIII-D tokamak. Plasma load resistance values higher than originally calculated are measured in ohmic and L-mode, beam-heated plasmas. Load resistance decreases by a factor of ∼2 in H-mode operation. When edge localized modes (ELMs) occur, the antenna loading increases transiently to several ohms. Results indicate that fast-wave ICRF antenna coupling characteristics are highly sensitive to changes in the edge plasma profiles associated with the H-mode regime

  11. Modeling of high power ICRF heating experiments on TFTR

    International Nuclear Information System (INIS)

    Phillips, C.K.; Wilson, J.R.; Bell, M.; Fredrickson, E.; Hosea, J.C.; Majeski, R.; Ramsey, A.; Rogers, J.H.; Schilling, G.; Skinner, C.; Stevens, J.E.; Taylor, G.; Wong, K.L.; Murakami, M.

    1993-01-01

    Over the past two years, ICRF heating experiments have been performed on TFTR in the hydrogen minority heating regime with power levels reaching 11.2 MW in helium-4 majority plasmas and 8.4 MW in deuterium majority plasmas. For these power levels, the minority hydrogen ions, which comprise typically less than 10% of the total electron density, evolve into la very energetic, anisotropic non-Maxwellian distribution. Indeed, the excess perpendicular stored energy in these plasmas associated with the energetic minority tail ions is often as high as 25% of the total stored energy, as inferred from magnetic measurements. Enhanced losses of 0.5 MeV protons consistent with the presence of an energetic hydrogen component have also been observed. In ICRF heating experiments on JET at comparable and higher power levels and with similar parameters, it has been suggested that finite banana width effects have a noticeable effect on the ICRF power deposition. In particular, models indicate that finite orbit width effects lead to a reduction in the total stored energy and of the tail energy in the center of the plasma, relative to that predicted by the zero banana width models. In this paper, detailed comparisons between the calculated ICRF power deposition profiles and experimentally measured quantities will be presented which indicate that significant deviations from the zero banana width models occur even for modest power levels (P rf ∼ 6 MW) in the TFTR experiments

  12. Advanced ponderomotive description of electron acceleration in ICRF discharge initiation

    Directory of Open Access Journals (Sweden)

    Wauters Tom

    2017-01-01

    An example for plasma production by the TOMAS ICRF system is given. Following the described conditions it can be derived that plasma production is (i most efficient close to the antenna straps (few cm's where the field gradient and amplitude are large, and (ii that the lower frequency field accelerates electrons more easily for a given antenna voltage.

  13. 2-D mapping of ICRF-induced SOL perturbations in

    Czech Academy of Sciences Publication Activity Database

    Colas, L.; Gunn, J. P.; Nanobashvili, I.; Petržílka, Václav; Goniche, M.; Ekedahl, A.; Heuraux, S.; Joffrin, E.; Saint Laurent, F.; Balorin, C.; Lowry, C.; Basiuk, V.

    363-365, č. 4 (2007), s. 555-559 ISSN 0022-3115 R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z20430508 Keywords : ICRF antenna * plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.643, year: 2007

  14. XXIst Century Ferrites

    International Nuclear Information System (INIS)

    Mazaleyrat, F; Zehani, K; Pasko, A; Loyau, V; LoBue, M

    2012-01-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Oersted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the down sizing of ceramics microstructure to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba 2+ Fe 12 O 19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  15. Tokamak wave coupling and heating in the ICRF

    International Nuclear Information System (INIS)

    Romero, H.; Scharer, J.; Sund, R.

    1983-01-01

    The authors consider wave propagation in the vicinity of the Ion Cyclotron Range of Frequencies (ICRF) in general tokamak geometries. The problem of wave coupling by means of waveguides is addressed. In particular, the reflection coefficient for a simple TE 10 waveguide is obtained by taking into account both the z and y spectrum of the launcher. In order to take into account spatial gradients in the plasma medium, they use a one-dimensional slab model of the plasma. Good coupling and heating results are obtained for the first few harmonics for sufficiently weak edge density gradient and > about 1 keV core temperatures. To analyze the heating of the plasma interior in the presence of ICRF, a 2-D differential equation is being developed which takes into account spatial gradients and mode coupling

  16. Alpha-particle simulation using NBI beam and ICRF wave

    International Nuclear Information System (INIS)

    Ogawa, Y.; Hamada, Y.

    1984-07-01

    A new idea to produce the distribution function similar to that of alpha-particles in an ignited plasma has been proposed. This concept is attributed to the acceleration of the injected beam up to about 1 MeV/nucleon by the ICRF wave with cyclotron higher harmonics. This new method makes it possible to perform the simulation experiments for alpha-particles under the condition of moderate plasma parameters (e.g., Tsub(e) = 4 keV, nsub(e) = 3.5x10 19 m -3 and B sub(T) = 3 T). And it is found that 3ωsub(ci) ICRF wave is preferable compared with other cyclotron harmonics, from the viewpoints of the effective tail formation with smaller bulk ion heating and lower amplitude of the applied electric field. The formula for the maximum energy of the extended beam is also derived. (author)

  17. RF field measurements in the vicinity of an ICRF antenna

    International Nuclear Information System (INIS)

    Majeski, R.; Intrator, T.; Roberts, D.; Hershkowitz, N.; Tataronis, J.; Grossmann, W.

    1988-01-01

    Measurements of the rf fields near an ICRF antenna installed in the central cell of the Phaedrus-B tandem mirror have been made, both in vacuum and in the presence of plasma. The antenna is a Faraday shielded partial turn loop. The front surface of the Faraday shield is composed of cylindrical elements in an arrangement similar to the Faraday shield design employed on TFTR. The antenna is run at relatively low power levels, in the 3.5-10 MHz frequency range. Two other ICRF systems in the phaedrus-B central cell sustain and heat the plasma at the 400 KW level. The vacuum field measurements are compared with the predictions of the ARGUS code, which models details of the Faraday shield structure. Fields in the plasma are modelled by the ANTENA code. Particle currents collected by the Faraday shield during plasma operation are also observed

  18. Numerical solutions of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.

    1985-01-01

    The results of a new numerical code called GARFIELD (Grumman Aerospace Rf Field code) that calculates ICRF Fields in axisymmetric mirror geometry (such as the central cell of a tandem mirror or an RF test stand) are presented. The code solves the electromagnetic wave equation using a cold plasma dispersion relation with a small collision frequency to simulate absorption. The purpose of the calculation is to examine how ICRF wave structure and propagation is effected by the axial variation of the magnetic field in a mirror for various antenna designs. In the code the wave equation is solved in flux coordinates using a finite element method. This should allow more complex dielectric tensors to be modeled in the future. The resulting matrix is solved iteratively, to maximize the allowable size of the spatial grid. Results for a typical antenna array in a simple mirror will be shown

  19. The numerical solution of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.; Todd, A.M.M.

    1986-01-01

    The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)

  20. Simulations of ICRF-fast wave current drive on DIIID

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1990-06-01

    Self-consistent calculations of MHD equilibria, generated by fast wave current drive and including the bootstrap effect, were done to guide and anticipate the results of upcoming experiments on the DIIID tokamak. The simulations predict that 2 MW of ICRF power is more than adequate to create several hundred kiloamperes in steady state; the total current increases with the temperature and density of the target plasma. 12 refs., 12 figs., 1 tab

  1. Assessment of ICRF Antenna Performance in Alcator C-Mod

    International Nuclear Information System (INIS)

    Schilling, G.; Wukitch, S.J.; Lin, Y.; Basse, N.; Bonoli, P.T.; Edlund, E.; Lin, L.; Parisot, A.; Porkolab, M.

    2004-01-01

    The Alcator C-Mod has presented a challenge to install high-power ICRF antennas in a tight space. Modifications have been made to the antenna plasma-facing surfaces and the internal current-carrying structure in order to overcome performance limitations. At the present time, the antennas have exceeded 5 MW into plasma with heating phasing, up to 2.7 MW with current-drive phasing, with good efficiency and no deleterious effects

  2. Recent results of JT-60U ICRF antenna operation

    International Nuclear Information System (INIS)

    Fujii, T.; Saigusa, M.; Kimura, H.

    1994-01-01

    Ion cyclotron range of frequencies (ICRF) heating is one of attractive plasma heating methods for reactor grade tokamaks, because it is quite effective in the wide ranges of plasma density and temperature. An antenna which should inject high power into plasma has been developed intensively because the heating efficiency and the coupling properties depend on its design. The antenna was operated at a small antenna-plasma gap in the JT-60 in out of phase mode, which showed the high heating efficiency to obtain high loading resistance, and similarly to other tokamaks. However, in order to reduce heat load to the antenna from plasma, a wide gap is required in reactor grade tokamaks such as ITER, in which the gap is designed to be 0.15 m in CDA. Two new antennas were fabricated for the JT-60U, which were designed to obtain high loading resistance at a wide gap for (π,0) phasing. The JT-60U ICRF heating system is explained. Also the JT-60U antenna is described. Antenna conditioning has been conducted well in the initial operation period. The phasing mode was set at (π,0) phasing, in which high heating efficiency is expected. The procedure is explained. The coupling and radiation loss properties during ICRF heating are reported. The JT-60U ICRF antennas were conditioned quickly with about 70 shots. The maximum coupled power was 6.4 MW for (π,0) phasing, and the power density was 6.1 MW/m 2 . (K.I.)

  3. Perspectives gained from ICRF physics studies on TFTR

    International Nuclear Information System (INIS)

    Phillips, C.K.; Bell, M.; Batha, S.

    1998-01-01

    The physics of ICRF heating and current drive has been studied on TFTR for over a decade. Following the early low power coupling studies, high power experiments resulted in sawtooth stabilization, the first observation of RF-driven excitation of toroidal Alfven eigenmodes, and the discovery of a mode conversion scenario for localized off-axis electron heating. The program culminated with the first studies of high power ICRF heating and profile control in tritium-rich high performance plasmas. A significant part of the concluding experiments centered on the potential of ICRF to drive sheared flows in order to suppress turbulence in the plasma core. Initial measurements taken with a novel poloidal velocity diagnostic suggest that localized sheared poloidal flows can be driven with ion Bernstein waves excited directly or else via mode conversion from a propagating fast magnetosonic wave. In this paper, recent results from TFTR on wave-based profile control techniques will be summarized along with suggestions for future studies elsewhere

  4. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  5. Global analysis of ICRF wave coupling on Tore Supra

    International Nuclear Information System (INIS)

    Goniche, M.; Bremond, S.; Colas, L.

    2003-01-01

    The Tore Supra tokamak is equipped with a multi-megawatt ion cyclotron range of frequency (ICRF) system for heating and current drive. The coupling of the fast wave to the plasma, characterized by the distributed coupling resistance along the radiating straps, is a crucial issue in order to launch large RF powers. Many factors can have an effect on ICRF wave coupling. Quantitative prediction from theoretical modelling requires the knowledge of the local inhomogeneous plasma density profile in front of the antenna for running sophisticated antenna codes. In this work, we have rather followed a 'global' approach, based on Tore Supra experimental results, for the parametric study of the coupling resistance. From a large data base covering seven experimental campaigns (∼2250 shots), a scaling law of the coupling resistance including the main parameters of the plasma and of the antenna configuration is established. This approach is found to be reliable for the analysis of coupling in the different scenarios: He/D 2 gas filling, gas/pellets for plasma fuelling, plasma leaning on inner wall/low field side limiter, limiter/ergodic divertor configuration, minority heating/direct electron heating. From one scenario to another, a significant variation of the coefficients of the scaling law is found. The study of these variations allows to get some insight on the main physical mechanisms which influence the ICRF wave coupling in a tokamak operation, such as the wall conditioning and recycling conditions, RF sheaths or frequency. (author)

  6. Characterization of local heat fluxes around ICRF antennas on JET

    Energy Technology Data Exchange (ETDEWEB)

    Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  7. Sequential modelling of ICRF wave near RF fields and asymptotic RF sheaths description for AUG ICRF antennas

    Directory of Open Access Journals (Sweden)

    Jacquot Jonathan

    2017-01-01

    Full Text Available A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing. Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.

  8. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    Science.gov (United States)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  9. Some design considerations for perpendicular biased ferrite tuners

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Poirier, R.L.

    1994-10-01

    Recently remarkable progress has been achieved in the development of perpendicular biased ferrite tuned rf resonators for fast cycled synchrotrons. Compared with the broadly used parallel biased rf cavities they provide higher resonator quality factor Q. However when designing perpendicular biased cavities, special attention should be paid to the methods to provide eddy current suppression in the resonator walls, the ferrite nonlinearity influence, the generated heat removal, the fast self resonant frequency control. The prospective of a faster additional biasing system are discussed and conclusions are drawn. (author). 8 refs., 6 figs

  10. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-06-01

    ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using the results based on Monte Carlo simulations. The global energy confinement time including energetic ion effect can be expressed in terms of ICRF heating power, plasma density, and magnetic field strength in heliotrons. Our results in the CHS plasma show the systematic decrement of the global energy confinement time due to the energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. Also we apply our model to the ICRF minority heating in the LHD plasma in two cases of typical magnetic configurations. The clear increment of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while the decrement is observed in the 'standard' configuration. (author)

  11. SOL RF physics modelling in Europe, in support of ICRF experiments

    Directory of Open Access Journals (Sweden)

    Colas Laurent

    2017-01-01

    Full Text Available A European project was undertaken to improve the available SOL ICRF physics simulation tools and confront them with measurements. This paper first reviews code upgrades within the project. Using the multi-physics finite element solver COMSOL, the SSWICH code couples RF full-wave propagation with DC plasma biasing over “antenna-scale” 2D (toroidal/radial domains, via non-linear RF and DC sheath boundary conditions (SBCs applied at shaped plasma-facing boundaries. For the different modules and associated SBCs, more elaborate basic research in RF-sheath physics, SOL turbulent transport and applied mathematics, generally over smaller spatial scales, guides code improvement. The available simulation tools were applied to interpret experimental observations on various tokamaks. We focus on robust qualitative results common to several devices: the spatial distribution of RF-induced DC bias; left-right asymmetries over strap power unbalance; parametric dependence and antenna electrical tuning; DC SOL biasing far from the antennas, and RF-induced density modifications. From these results we try to identify the relevant physical ingredients necessary to reproduce the measurements, e.g. accurate radiated field maps from 3D antenna codes, spatial proximity effects from wave evanescence in the near RF field, or DC current transport. Pending issues towards quantitative predictions are also outlined.

  12. Ferrite materials for memory applications

    CERN Document Server

    Saravanan, R

    2017-01-01

    The book discusses the synthesis and characterization of various ferrite materials used for memory applications. The distinct feature of the book is the construction of charge density of ferrites by deploying the maximum entropy method (MEM). This charge density gives the distribution of charges in the ferrite unit cell, which is analyzed for charge related properties.

  13. A self-biased 3D tunable helical antenna in ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2015-01-01

    A ferrite LTCC based helical antenna which also provides magneto-static bias for its frequency tuning is presented in this work. The 3D helical-cum-bias winding design avoids the use of large external electromagnets which are traditionally used with ferrite based tunable antennas. This reduces the overall size of the design while making it efficient by getting rid of demagnetization effect experienced at the air-to-ferrite interface. RF choke and DC blocking capacitor, required to isolate the RF and DC passing through a single structure, are integrated within the multi-layer Ferrite LTCC substrate. Magnetostatic and microwave simulations have been carried out for the design optimization. The prototype antenna demonstrates a tuning range of 10 % around 13 GHz. An optimized design with an air cavity is also presented which reduces the biasing power requirement by 40 %.

  14. A self-biased 3D tunable helical antenna in ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2015-07-19

    A ferrite LTCC based helical antenna which also provides magneto-static bias for its frequency tuning is presented in this work. The 3D helical-cum-bias winding design avoids the use of large external electromagnets which are traditionally used with ferrite based tunable antennas. This reduces the overall size of the design while making it efficient by getting rid of demagnetization effect experienced at the air-to-ferrite interface. RF choke and DC blocking capacitor, required to isolate the RF and DC passing through a single structure, are integrated within the multi-layer Ferrite LTCC substrate. Magnetostatic and microwave simulations have been carried out for the design optimization. The prototype antenna demonstrates a tuning range of 10 % around 13 GHz. An optimized design with an air cavity is also presented which reduces the biasing power requirement by 40 %.

  15. The ASDEX Upgrade ICRF system: Operational experience and developments

    International Nuclear Information System (INIS)

    Faugel, H.; Angene, P.; Becker, W.; Braun, F.; Bobkov, Vl.V.; Eckert, B.; Fischer, F.; Hartmann, D.A.; Heilmaier, G.; Kneidl, J.; Noterdaeme, J.-M.; Siegl, G.; Wuersching, E.

    2005-01-01

    The ICRF system at the ASDEX Upgrade tokamak is in operation since May 1992. Following some modifications of which the major one was the installation of 3 dB couplers it has become a reliable additional heating system. The maximum power coupled into the plasma has been raised up to 7.2 MW (90% of the installed RF power) for short pulses and up to 6.2 MW for pulses several second long with energy of up to 29 MJ. A power of 5 MW is delivered on a regular basis to replace two NBI sources

  16. ICRF waveguide coupler research. Progress report, July 1983-July 1984

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1984-01-01

    This report highlights results we have obtained on our ICRF (Ion Cyclotron Range of Frequencies) waveguide launcher research during the past year. We have completed an analysis of waveguide aperture launching of waves into a hot plasma with any prescribed edge density and temperature profile. The model Fourier analyzes the waveguide aperture fields and calculates the incident and reflected fast magnetosonic wave fields in the plasma edge region utilizing a stratified slab model. The requirement that the total wave fields at the waveguide-plasma interface match provides the boundary conditions which allow the solution for the plasma input impedance and reflection coefficient

  17. Improved confinement during ICRF heating on JFT-2M

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi; Ogawa, Toshihide; Tamai, Hiroshi

    1986-10-01

    Significant improvement of energy confinement was observed on JFT-2M during ICRF heating. This improvement is associated with the sudden depression of H α /D α emission and the following increase of plasma stored energy, electron density and the radiation loss. This should be the same phenomena as H-mode transitions observed in ASDEX, PDX, and D-III divertor experiments with neutral beam injection heating. However, this transition is also observed in limiter discharges as well as in open divertor configurations on JFT-2M. (author)

  18. ICRF heating in JET during initial operations with the ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.; Brix, M.; Graham, M.; Mayoral, M.-L.; Meigs, A.; Monakhov, I.; Sirinelli, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V.; Drewelow, P.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Brezinsek, S. [IEK-4, Forschungszentrum Jülich, Association EURATOM-FZJ (Germany); Campergue, A-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Klepper, C. C. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Lerche, E.; Van-Eester, D. [Association EURATOM-Belgian State, ERM-KMS, Brussels (Belgium); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Mlynar, J. [Association EURATOM-IPP.CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic); Collaboration: JET-EFDA Contributors

    2014-02-12

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall material on the JET Ion Cyclotron Resonance Frequency (ICRF) operation was assessed and also the properties of JET plasmas heated with ICRF were studied. No substantial change of the antenna coupling resistance was observed with the ILW as compared with the carbon wall. Heat-fluxes on the protecting limiters close the antennas quantified using Infra-Red (IR) thermography (maximum 4.5 MW/m{sup 2} in current drive phasing) are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can well reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. Some experimental facts indicate that main-chamber W components could be an important impurity source: the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions; the W content is also increased in ICRF-heated limiter plasmas; and Be evaporation in the main chamber results in a strong and long lasting reduction of the impurity level. The ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 20%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating efficiency; The ICRF power can be deposited at plasma centre and the radiation is mainly from the outer part of the plasma. Application of ICRF heating in H-mode plasmas started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core could be observed.

  19. International Celestial Reference Frame (ICRF): mantenimiento y extensión

    Science.gov (United States)

    Ma, C.; Arias, E. F.; Eubanks, T.; Fey, A. L.; Gontier, A.-M.; Jacobs, C. S.; Sovers, O. J.; Archinal, B. A.; Charlot, P.

    A partir de enero de 1998 el sistema de referencia celeste convencional está representado por el International Celestial Reference System (ICRS) y materializado a través de las coordenadas VLBI del conjunto de radiofuentes extragalácticas que conforman el International Celestial Reference Frame (ICRF). La primera realización del ICRF, fue elaborada en 1995 por un grupo de expertos designado por la IAU, la que encomendó al International Earth Rotation Service el mantenimiento del ICRS, del ICRF y del vínculo con marcos de referencia en otras frecuencias. Una primera extensión del ICRF se realizó entre abril y junio de 1999, con el objetivo primario de proveer posiciones de radiofuentes extragalácticas observadas a partir de julio de 1995 y de mejorar las posiciones de las fuentes ``candidatas" con la inclusión de observaciones adicionales. Objetivos secundarios fueron monitorear a las radiofuentes para verificar que siguen siendo adecuadas para realizar al ICRF y mejorar las técnicas de análisis de datos. Como resultado del nuevo análisis se obtuvo una solución a partir de la cual se construyó la primera extensión del ICRF, denominada ICRF - Ext.1. Ella representa al ICRS, sus fuentes de definición se mantienen con las mismas posiciones y errores que en la primera realización del ICRF; las demás radiofuentes tienen coordenadas mejor determinadas que en ICRF; el marco de referencia se densificó con el agregado de 59 nuevas radiofuentes.

  20. SQL Tuning

    CERN Document Server

    Tow, Dan

    2003-01-01

    A poorly performing database application not only costs users time, but also has an impact on other applications running on the same computer or the same network. SQL Tuning provides an essential next step for SQL developers and database administrators who want to extend their SQL tuning expertise and get the most from their database applications.There are two basic issues to focus on when tuning SQL: how to find and interpret the execution plan of an SQL statement and how to change SQL to get a specific alternate execution plan. SQL Tuning provides answers to these questions and addresses a third issue that's even more important: how to find the optimal execution plan for the query to use.Author Dan Tow outlines a timesaving method he's developed for finding the optimum execution plan--rapidly and systematically--regardless of the complexity of the SQL or the database platform being used. You'll learn how to understand and control SQL execution plans and how to diagram SQL queries to deduce the best executio...

  1. Theory and design of a tunable antenna on a partially magnetized ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.; Bray, Joey R.; Shamim, Atif

    2014-01-01

    For the first time, a theoretical model is presented to predict the frequency tuning of a patch antenna on a partially magnetized ferrite substrate. Both extraordinary (E) and ordinary (O) modes of the antenna are studied. The permeability tensor of the partially magnetized ferrite is calculated through the proposed theoretical model and is subsequently used to analyze the antenna's performance in a microwave simulator. Prototype antennas were built, using two different bias windings, embedded in a multilayer ferrite LTCC substrate, to demonstrate E and O mode tuning. The use of embedded windings negates the requirement of bulky electromagnets, thus providing miniaturization. The concept also eliminates the demagnetization effect, thus reducing the typically required bias fields by 95%. The prototype measurements at 13 GHz demonstrate an E-mode tuning range of 10%. The proposed theoretical model has been validated by simulations and measurements. The design is highly suitable for compact, light-weight, tunable and reconfigurable microwave systems. © 1963-2012 IEEE.

  2. The effect of ICRF antenna phasing on metal impurities in TFTR

    International Nuclear Information System (INIS)

    Stevens, J.E.; Bush, C.; Colestock, P.L.; Oak Ridge National Lab., TN; AN Ukrainskoj SSR, Kharkov

    1989-07-01

    ICRF power levels of up to 2.8 MW were achieved during the 1988 experimental run on TFTR. Metal impurity concentrations (Ti, Cr, Fe, Ni) and Z eff were monitored during ICRF heating by x-ray pulse height analysis and uv spectroscopy. Antenna phasing was the key variable affecting ICRF performance. No increase in metallic impurities was observed for P rf approx lt 2.8 MW with the antenna straps 0-Π, while a measurable increase in titanium (Faraday screen material) was observed for P rf approx gt 1.0 MW with 0-0 phasing. 18 refs., 8 figs

  3. Expanding the operating space of ICRF on JET with a view to ITER

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Bonheure, G.; Durodie, F.; Lerche, E.; Lyssoivan, A.; Van Eester, D.; Weyssow, B.; Mantsinen, M.J.; Heikkinen, J.; Salmi, A.; Santala, M.I.K.; Noterdaeme, J.M.; Bovkov, V.V.; Alper, B.; Beaumont, P.; Blackman, T.; Vries, P. de; Gowers, C.; Felton, R.; Kiptily, V.; Lawson, K.; Lomas, P.; Mayoral, M.L.; Monakhov, I.; Popovichev, S.; Sharapov, S.; Bertalot, L.; Castaldo, C.; Tardocchi, M.; La Luna, E. de; Eriksson, L.G.; Baar, M. de; Meo, F.; Mironov, M.; Nunes, I.; Piazza, G.; Noterdaeme, J.M.

    2004-01-01

    The paper reports on ITER-relevant ICRF (ion cyclotron resonance frequency) physics investigated on JET in 2003 and early 2004: minority heating of He 3 and D in H plasmas, minority heating of tritium in D, investigations of finite Larmor radius effects on the RF-induced high-energy tails, fast wave heating and current drive, and new results on the heating efficiency of ICRF antennas. ELM (edge localized mode) studies using fast RF measurements, experimental demonstration of a new ELM-tolerant antenna matching scheme, and technical enhancements planned on the JET ICRF system for 2005, themselves likewise strongly driven by the preparation for ITER, are also summarized. (authors)

  4. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  5. Heat loads on Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Beaumont, B.; Chantant, M.; Goniche, M.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency (ICRF) launchers plasma-facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. It is found that the most critical items for Tore-Supra operation are localized heat loads on the Faraday screen top left corner and vertical edges. Warming up close to maximum temperature limit originally set for protection of the plasma-facing components is found of high power pulses, but no erosion was observed after detailed inspection of the launcher in Tore-Supra vessel. Yet, the associated heat loads could be limiting for Tore-Supra operation in the future, and some dedicated work is under progress to improve the understanding of these power fluxes, pointing out the importance of getting a better knowledge of particle flows in the scrape of layer

  6. ICRF heating and current drive experiments on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Hosea, J.C.; Phillips, C.K.

    1996-01-01

    Recent experiments in the Ion Cyclotron Range of Frequencies (ICRF) at TFTR have focused on the RF physics relevant to advanced tokamak D-T reactors. Experiments performed either tested confinement in reactor relevant plasmas or tested specific ICRF heating scenarios under consideration for reactors. H-minority heating was used to supply identical heating sources for matched D-T and D only L-mode plasmas to determine the species scaling for energy confinement. Second harmonic tritium heating was performed with only thermal tritium ions in an L-mode target plasma, verifying a possible start-up scenario for the International Thermonuclear Experimental Reactor (ITER). Direct electron heating in Enhanced Reverse Shear (ERS) plasmas has been found to delay the back transition out of the ERS state. D-T mode conversion of the fast magnetosonic wave to an Ion Berstein Wave (IBW) for off-axis heating and current drive has been successfully demonstrated for the first time. Parasitic Li 7 cyclotron damping limited the fraction of the power going to the electrons to less than 30%. Similar parasitic damping by Be 9 could be problematic in ITER. Doppler shifted fundamental resonance heating of beam ions and alpha particles has also been observed

  7. ICRF current drive by using antenna phase control

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Itoh, K.

    1987-01-01

    A global analysis of current drive in tokamaks by using waves in the ion cyclotron range of frequencies (ICRF), considering the entire antenna-plasma system, is presented. A phase shifted antenna array is used to inject toroidal momentum into the electrons. Within the context of quasi-linear theory, a Fokker-Planck calculation is combined with an ICRF wave propagation-absorption analysis which includes kinetic effects and realistic boundary conditions. The radial profile of the current induced by the mode converted ion Bernstein wave and by the magnetosonic fast wave is obtained, together with the global current drive efficiency (total induced current/total emitted power from the antennas) in the high density and temperature plasma regime. The phase dependence of the global efficiency is investigated by changing the launching conditions such as the total antenna number and the antenna spacing. In medium size tokamaks, the electron power absorption and the associated driven current are found to be affected considerably by the plasma cavity resonance. It is also found that the global efficiency is sensitive to the antenna spacing. When the antenna spacing is increased, the global efficiency is reduced by counter current generation. (author)

  8. Foundations of ICRF heating--A historical perspective

    International Nuclear Information System (INIS)

    Hosea, J.C.

    1994-01-01

    Tom Stix has made many major contributions to the development of understanding of a wide array of rf heating and diagnostics methods, in experiment and theory. In recognition of his profound influence on ion cyclotron range of frequencies (ICRF) heating research, this paper is focused on two major building blocks contributed by him which served to help guide and quantify the research toward establishing ICRF heating as a viable technique for the reactor regime: (1) the formalism for quantitative evaluation of antenna loading contained in his 1962 text book and (2) his Fokker-Planck analysis for heating of ions and especially minority species ions in his 1975 Nuclear Fusion paper. Importantly, his work from the mid 1950s to the mid 1970s from which these two building blocks derive, provided a solid basis for the rapid developing ion cyclotron heating research in the 1970s and helped to guide that research to definitive demonstration of the viability of the minority ion heating regime as a reactor heating method by the end of the decade

  9. Arc detection for the ICRF system on ITER

    Science.gov (United States)

    D'Inca, R.

    2011-12-01

    The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.

  10. Electromagnetic simulations of the ASDEX Upgrade ICRF Antenna with the TOPICA code

    International Nuclear Information System (INIS)

    Krivska, A.; Milanesio, D.; Bobkov, V.; Braun, F.; Noterdaeme, J.-M.

    2009-01-01

    Accurate and efficient simulation tools are necessary to optimize the ICRF antenna design for a set of operational conditions. The TOPICA code was developed for performance prediction and for the analysis of ICRF antenna systems in the presence of plasma, given realistic antenna geometries. Fully 3D antenna geometries can be adopted in TOPICA, just as in available commercial codes. But while those commercial codes cannot operate with a plasma loading, the TOPICA code correctly accounts for realistic plasma loading conditions, by means of the coupling with 1D FELICE code. This paper presents the evaluation of the electric current distribution on the structure, of the parallel electric field in the region between the straps and the plasma and the computation of sheaths driving RF potentials. Results of TOPICA simulations will help to optimize and re-design the ICRF ASDEX Upgrade antenna in order to reduce tungsten (W) sputtering attributed to the rectified sheath effect during ICRF operation.

  11. Removal of particles by ICRF cleaning in HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Hu Jiansheng; Li Jiangang; Zhang Shouyin; Gu Xuemao; Zhang Xiaodong; Zhao Yanping; Gong Xianzu; Kuang Guangli; Li Chengfu; Luo Jiarong; Wang Xiaoming; Gao Xiang; Wan Baonian; Xie Jikang; Wan Yuanxi

    2001-01-01

    The ICRF (Ion Cyclotron Range Frequency) cleaning technique has been used as a routine wall cleaning method in the HT-7 superconducting tokamak. In a wide range of toroidal field, the removal rate of residual gas by ICRF cleaning was about twenty times higher than that of glow discharge cleaning (GDC). At different gas pressure and RF power levels, the ICRF cleaning is studied carefully. A good impurity cleaning effect and a very high hydrogen removal rate were obtained. The removal rate of hydrogen by 5 kW ICRF cleaning achieved was 1.6 x 10 -5 Torr.l/s. And the relationships among pressure P, outgassing rate Q, atomic layers L absorbed on surface and the cleaning mode were discussed briefly

  12. Localized bulk electron heating with ICRF mode conversion in the JET tokamak

    DEFF Research Database (Denmark)

    Mantsinen, M.J.; Mayoral, M.-L.; Eester, D. Van

    2004-01-01

    of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius......) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating...

  13. Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF

    International Nuclear Information System (INIS)

    Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.

    1984-10-01

    The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)

  14. ICRF-enhanced plasma potentials in the SOL of Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Ochoukov, R.; Whyte, D. G.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Terry, J. L.; Wukitch, S. J. [PSFC MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); D' Ippolito, D. A.; Myra, J. R. [Lodestar Research Corporation, 2400 Central Avenue, Boulder, Colorado 80301 (United States)

    2014-02-12

    We performed an extensive survey of the plasma potential in the scrape-off layer (SOL) of Ion Cyclotron Range-of Frequencies (ICRF)-heated discharges on Alcator C-Mod. Our results show that plasma potentials are enhanced in the presence of ICRF power and plasma potential values of >100 V are often observed. Such potentials are high enough to induce sputtering of high-Z molybdenum (Mo) plasma facing components by deuterium ions on C-Mod. For comparison, the plasma potential in Ohmic discharges is typically less than 10 V, well below the threshold needed to induce Mo sputtering by deuterium ions. ICRF-enhanced plasma potentials are observed in the SOL regions that both magnetically map and do not map to active ICRF antennas. Regions that magnetically map to active ICRF antennas are accessible to slow waves directly launched by the antennas and these regions experience plasma potential enhancement that is partially consistent with the slow wave rectification mechanism. One of the most defining features of the slow wave rectification is a threshold appearance of significant plasma potentials (>100 V) when the dimensionless rectification parameter Λ{sub −o} is above unity and this trend is observed experimentally. We also observe ICRF-enhanced plasma potentials >100 V in regions that do not magnetically map to the active antennas and, hence, are not accessible for slow waves launched directly by the active antennas. However, unabsorbed fast waves can reach these regions. The general trend that we observe in these 'un-mapped' regions is that the plasma potential scales with the strength of the local RF wave fields with the fast wave polarization and the highest plasma potentials are observed in discharges with the highest levels of unabsorbed ICRF power. Similarly, we find that core Mo levels scale with the level of unabsorbed ICRF power suggesting a link between plasma potentials in the SOL and the strength of the impurity source.

  15. Low activation ferritic alloys

    Science.gov (United States)

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  16. Review of ICRF antenna development and heating experiments up to advanced experiment I, 1989 on the JT-60 tokamak

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki

    1992-03-01

    Two main subjects of ion cyclotron range of frequencies (ICRF) heating on JT-60 are described in this paper from development phase of the JT-60 ICRF heating system up to advanced experiment I, 1989. One is antenna design and development for the high power JT-60 ICRF heating system (6 MW for 10 s at a frequency range of 108 - 132 MHz). The other is the experimental investigation of characteristics of second harmonic ICRF heating in a large tokamak. (J.P.N.)

  17. High coupling performance of JT-60U ICRF antennas

    International Nuclear Information System (INIS)

    Saigusa, M.; Moriyama, S.; Fujii, T.; Kimura, H.; Sato, M.; Hosogane, N.; Nemoto, M.; Yamamoto, T.

    1994-01-01

    Sufficient coupling of an ICRF antenna for high power experiments was obtained even for a wide gap between the separatrix and the antenna in JT-60U. The loading resistances for an out-of-phase mode are over 4 Ω for a gap of 13 cm between the separatrix and the Faraday shield over the wide range of electron density from 1 x 10 19 to 5.5 x 10 19 m -3 . In particular, the loading resistances for an in-phase mode are about 5 Ω for a gap of 33 cm between the separatrix and the Faraday shield for the same plasma parameters. However, the heating response for the out-of phase mode is much stronger than that for the in-phase mode. (author). Letter-to-the-editor. 11 refs, 6 figs

  18. ICRF heating experiments on JIPP T-II

    International Nuclear Information System (INIS)

    Ichimura, M.; Fujita, J.; Hirokura, S.

    1983-10-01

    Data of JIPP T-II ICRF heating experiments are presented. The experiment covers three typical cases: the low concentration hydrogen minority case, the high concentration hydrogen minority case, and the 3 He minority case. The best heating efficiency is obtained for the 3 Heminority case. It is shown through power balance analysis that the two H-minority cases are different in the wave energy deposition profile. The difference is explained by the presence of local cavity mode for the high concentration minority case. The ion temperature stops rising at the power density level of 0.65 W/cm 3 . An analytic solution of the Fokker-Planck equation is derived to interpret the deterioration of heating efficiency. (author)

  19. A predictive transport modeling code for ICRF-heated tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hwang, D.Q.

    1992-02-01

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3. Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5

  20. DIII-D ICRF high voltage power supply regulator upgrade

    International Nuclear Information System (INIS)

    Cary, W.P.; Burley, B.L.; Grosnickle, W.H.

    1997-11-01

    For reliable operation and component protection, of the 2 MW 30--120 MHz ICRF Amplifier System on DIII-D, it is desirable for the amplifier to respond to high VSWR conditions as rapidly as possible. This requires a rapid change in power which also means a rapid change in the high voltage power supply current demands. An analysis of the power supply's regulator dynamics was needed to verify its expected operation during such conditions. Based on this information it was found that a new regulator with a larger dynamic range and some anticipation capability would be required. This paper will discuss the system requirements, the as-delivered regulator performance, and the improved performance after installation of the new regulator system. It will also be shown how this improvement has made the amplifier perform at higher power levels more reliably

  1. Generation and Sustainment of Plasma Rotation by ICRF Heating

    Science.gov (United States)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  2. Design of optimized impedance transformer for ICRF antenna in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K., E-mail: saito@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan); Seki, T.; Kasahara, H.; Seki, R.; Kumazawa, R.; Nomura, G.; Shimpo, F.; Mutoh, T. [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan)

    2013-10-15

    Highlights: ► We developed optimization method of impedance transformer for ICRF antenna. ► Power loss will be one-third with the optimized impedance transformer. ► Possibility of damage on the transmission line will be drastically reduced. ► High performance will be kept in the wide antenna impedance region. -- Abstract: A pair of ion cyclotron range of frequencies (ICRF) antennas in the large helical device (LHD), HAS antennas showed high efficiency in minority ion heating. However the low loading resistance must be increased to prevent breakdown in transmission line. Moreover, the voltage and the current around the feed-through must be reduced to protect it. For these purpose, we developed a design procedure of the impedance transformer for HAS antennas. To optimize the transformer, the inner conductors were divided into several segments and the radii of them were given discretely and independently. The maximum effective loading resistance was obtained by using all combinations of radii within the limitations of the voltage and current at the feed-through and the electric field on the transformer. To get a precise solution, this procedure was repeated several times by narrowing the range of radii of inner conductors. Then the optimized impedance transformer was designed by smoothing the radii of inner conductors. For the typical discharge, the voltage and current at the feed-through were reduced to the half of the original values with the same power. The effective loading resistance was increased to more than four times. High performance is expected in wide impedance region.

  3. Embodied Tuning

    DEFF Research Database (Denmark)

    Mortensen, Christian Hviid; Vestergaard, Vitus

    2014-01-01

    and explore the physical gallery space. We implemented a simple low-cost prototype system called Exaudimus allowing users to search for the audio streams using their own bodies as a metaphorical radio tuning dial. We tested the concept in a public exhibition at the Media Museum in Denmark. A small qualitative......Most museum exhibitions favor vision, not hearing. When there is audio in exhibitions it tends to take on a secondary role as soundtrack or commentary. In some cases however audio should be the primary object of interest. Radio heritage is such a case. The traditional way of showcasing audio...... is through web accessible archives or through listening kiosks in the exhibition. Neither one takes advantage of the unique affordances of the spatiality and physicality of an exhibition. We therefore propose an alternative way of exhibiting radio heritage in a listening exhibition where users move around...

  4. Transient analysis of electromagnetic wave interactions on ferrite structures using Landau-Lifshitz-Gilbert and volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin

    2015-10-26

    Magnetization of a ferrite can be dynamically tuned using a biasing DC magnetic field. This makes ferrites a good choice of substrate for reconfigurable microwave devices and antenna designs. For example, antenna patterns and resonance frequencies can be shifted by adjusting the biasing DC magnetic field during the operation of the antenna or the device (A. Ustinov et al., Appl. Phys. Lett., 90, (031913), 2007).

  5. Transient analysis of electromagnetic wave interactions on ferrite structures using Landau-Lifshitz-Gilbert and volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2015-01-01

    Magnetization of a ferrite can be dynamically tuned using a biasing DC magnetic field. This makes ferrites a good choice of substrate for reconfigurable microwave devices and antenna designs. For example, antenna patterns and resonance frequencies can be shifted by adjusting the biasing DC magnetic field during the operation of the antenna or the device (A. Ustinov et al., Appl. Phys. Lett., 90, (031913), 2007).

  6. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  7. Permanent magnetic ferrite based power-tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  8. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    Science.gov (United States)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  9. Density convection near radiating ICRF antennas and its effect on the coupling of lower hybrid waves

    International Nuclear Information System (INIS)

    Ekedahl, A.; Colas, L.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Kazarian, F.; Noterdaeme, J.M.; Tuccillo, A.A.

    2003-01-01

    Combined operation of lower hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore-Supra and Jet tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore-Supra experiments. Moreover, recent experiments in Jet indicate that the LH coupling degradation depends on the ICRF power and its launched k / spectrum. The 2D density distribution around the Tore-Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced ExB convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum. (authors)

  10. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-01-01

    The ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated, including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using results based on Monte Carlo simulations (Murakami, S., et al., Fusion Eng. Des. 26 (1995) 209). The global energy confinement time including the energetic ion effect can be expressed in heliotrons in terms of ICRF heating power, plasma density and magnetic field strength. Results in plasmas at CHS show a systematic decrease of the global energy confinement time due to energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. The model is also applied to ICRF minority heating in LHD plasmas in two cases of typical magnetic configurations. A clear increase of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while a decrease is observed in the 'standard' configuration. (author)

  11. Density Convection near Radiating ICRF Antennas and its Effect on the Coupling of Lower Hybrid Waves

    International Nuclear Information System (INIS)

    Ekedahl, A.; Colas, L.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Kazarian, F.; Mayoral, M.-L.; Mailloux, J.; Noterdaeme, J.-M.; Tuccillo, A.A.

    2003-01-01

    Combined operation of Lower Hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore Supra and JET tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore Supra experiments. Moreover, recent experiments in JET indicate that the LH coupling degradation depends on the ICRF power and its launched k//-spectrum. The 2D density distribution around the Tore Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced ExB convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum

  12. Heat deposition on the first wall due to ICRF-induced loss of fast ions in JT-60U

    International Nuclear Information System (INIS)

    Kusama, Y.; Tobita, K.; Kimura, H.; Hamamatsu, K.; Fujii, T.; Nemoto, M.; Saigusa, M.; Moriyama, S.; Tani, K.; Koide, Y.; Sakasai, A.; Nishitani, T.; Ushigusa, K.

    1995-01-01

    In JT-60U, the heat deposition on the first wall due to the ICRF-induced loss of fast ions was investigated by changing the position of the resonance layer in the ripple-trapping region. A heat spot appears on the first wall of the same major radius as the resonance layer of the ICRF waves. The broadening of the heat spot in the major radius direction is consistent with that of the resonance layer due to the Doppler broadening. The heat spot is considered to be formed by the ICRF-induced ripple-trapped loss of fast ions. Although the total ICRF-induced loss power to the heat spot is as low as 2% of the total ICRF power, the additional heat flux will become a new issue because of the localized heat deposition on the first wall. ((orig.))

  13. Lead elimination by ICRF 158 in rats after chronic lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Witting, U; Hultsch, E

    1981-02-01

    Lead elimination by ICRF 158, a lipophilic derivative of ethylene-diaminetetra-acetate (EDTA), was investigated in rats after chronic lead exposure. The animals had received a lead concentration of 550 ppm in their drinking water for 140 days. Subsequent treatment with ICRF 158 for 30 days led to increased mobilization and elimination of incorporated lead, and the lead-induced inhibition of hemosynthesis was removed. ICR 158 produced no renal damage in excess to lead-induced tubular nephrosis. Separate toxicity tests in mice demonstrated that is less toxic than CaNa/sub 2/EDTA. ICRF 158 does not form stable complexes with lead ions in vitro. The mechanism of action of this lipophilic EDTA derivative is compared to that of its hydrophilic correspondent, the chelating agent CaNa/sub 2/EDTA.

  14. Rf sheaths and impurity generation by ICRF [ion cyclotron range of frequencies] antennas

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1988-11-01

    In general, Faraday screen elements in an ICRF antenna are not aligned precisely along the combined toroidal and poloidal magnetic fields. When plasma of density n > 2ε 0 V/eg 2 /approximately/ 10 9 cm -3 is present in the gap between elements, electron response to the parallel electric field shorts out the electric field over most of the gap, leaving a narrow sheath of positive space charge and intense electric field. Here V denotes the voltage across the gap and g the gap spacing. This intense electric field accelerates ions up to an appreciable fraction of the gap voltage (/approximately/ 1 kV), sufficient to cause physical sputtering of the screen material. Impurities so generated constitute the principal limitation on power density (kW/cm 2 ) for ICRF antennas. ICRF antenna and Faraday screen design principles which minimize sputtering are discussed. 24 refs., 9 figs., 1 tab

  15. Advanced impedance matching system for ICRF heating using innovative twin stub tuner and frequency variation

    International Nuclear Information System (INIS)

    Kumazawa, R.; Saito, K.; Kasahara, H.; Seki, T.; Mutoh, T.; Shimpo, F.; Nomura, G.; Kato, A.; Okada, H.; Zhao, Y.; Kwak, J.G.; Yoon, J.S.

    2008-01-01

    Ion cyclotron range of frequency (ICRF) heating has been a reliable tool for steady-state plasma heating with high RF power of several tens of megawatts. However, a sudden increase in the reflected RF power during ICRF heating experiments with ELMy H-mode plasmas is an issue which must be solved for future fusion experimental devices or fusion reactors. This paper describes an innovative ICRF heating system using a frequency feedback control to reduce the reflected power in response to the rapid change in the plasma impedance in the ELMy H-mode plasma. A twin stub tuner has been newly invented for this purpose. The feasibility of keeping the reflected RF power fraction at a low level, e.g. 1%, is demonstrated even with a large change in plasma resistance, e.g. 2 ∼ 8Ω. Calculated and experimental results are presented for the conventional double stub tuner impedance matching system equipped with the twin stub tuner.

  16. ICRF heating of passing ions in a thermal barrier tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Dimonte, G.; Campbell, R.; Barter, J.; Cummins, W.F.; Falabella, S.; Poulsen, P.

    1985-05-01

    Ion heating is used in the central cells of tandem mirrors to reduce the collisional trapping of passing ions in the end cell thermal barriers. In this paper, we reevaluate ICRF heating of the TMX-U central cell in two limits. The first we term isotropic, because we impose the condition that ions heated in the perpendicular direction be confined for at least one 90 0 scattering time, thereby heating the passing ions. The second we call anisotropic heating. It uses higher ICRF power to mirror trap a majority of the ions near the midplane, thereby reducing the density and collisionality of passing ions. Anisotropic heating has the advantage of increasing with ICRF power, whereas isotropic heating is limited by ion collisionality. Both techniques require gas fueling near the central cell midplane, with an ion cyclotron resonance toward each end cell to heat the cold ions

  17. ORNL diagnostic and modeling development for LAPD ICRF experiments

    Science.gov (United States)

    Isler, R. C.; Caughman, J. B. O.; Lau, C.; Martin, E. H.; Perkins, R. J.; Compernolle, B. Van; Vincena, S.; Tripathi, S. K. P.; Gekelman, W.

    2017-10-01

    PPPL, UCLA, and ORNL scientists have recently collaborated on a three week ICRF campaign at the upgraded LAPD device to study near field-plasma interactions associated with a single strap antenna driven at 2.38 MHz with 100 kW of RF power. This poster highlights ORNL involvement through implementation of the following diagnostics: an optical emission probe to measure neutral density, a retarding field energy analyzer to measure fast ions, phase locked imaging to measure line integrated RF-driven optical emission fluctuations, and an RF compensated triple Langmuir probe to measure density and temperature. To interpret the results of the experimental campaign a 3D cold plasma finite element model with realistic antenna and vacuum vessel geometry was developed in COMSOL. A summary of these results will be discussed. Highlights include a proof of principle localized and spatially resolved measurement of the neutral density, a strong increase in RF-driven optical emission fluctuations directly in front of the RF antenna strap, a shift in fast ion energies near the plasma edge, and qualitative agreement between the COMSOL cold plasma model with the various diagnostics. Funded by the DOE OFES (DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-07ER54918) and the Univ. of California (12-LR-237124).

  18. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  19. Design and control of phased ICRF antenna arrays

    International Nuclear Information System (INIS)

    Goulding, R.H.; Baity, F.W.; Hoffman, D.J.

    1993-01-01

    Phased antenna arrays operating in the ion cyclotron range of frequencies (ICRF) are used to produce highly directional wave spectra, primarily for use in current drive experiments. RF current drive using phased antennas has been demonstrated in both the JET and DIII-D tokamaks, and both devices are planning to operate new four-element arrays beginning early next year. Features of antenna design that are relevant to phased operation and production of directional spectra are reviewed. Recent advances in the design of the feed circuits and the related control systems for these arrays should substantially improve their performance, by reducing the coupling seen by the matching networks and rf power supplies caused by the mutual impedance of the array elements. The feed circuit designs for the DIII-D and JET phased antenna arrays are compared. The two configurations differ significantly due to the fact that one power amplifier is used for the entire array in the former case, and one per element in the latter. The JET system uses automatic feedback control of matching, phase and amplitude of antenna currents, and the transmitter power balance. The design of this system is discussed, and a time dependent model used to predict its behavior is described

  20. Resonance absorption of ICRF wave in edge plasma

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Yamanaka, Kaoru.

    1987-07-01

    An edge plasma is shown to significantly absorb ICRF wave when a resonant triplet, a cutoff-resonance-cutoff triplet, is constructed in the evanescent region. Two-ion-component plasmas in a torus are considered though the plasmas are modeled by a slab in which the density changes linearly along the x-axis. The resonance is a perpendicular-ion-cyclotron resonance, i.e., an Alfven resonance, and is formed when the applied frequency ω is smaller than the local cyclotron frequency, at the edge of the antenna side, of the lighter species of ions. Roughly the absorption rate A b is given by M 2 for M 2 >> S 2 and S 4 for S 2 >> M 2 where M = k y l and S ≅ k z l and l is a scale length of the order of the plasma minor radius and k y and k z are the perpendicular and the parallel components of the wave vector. It is noted that the both quantities, M and S, readily become of the order of unity. Since A b is not very sensitive to the density ratio of the two ion species, a few percent of impurities may cause a significant absorption. As the mass ratio of the two ion species comes close to unity the triplet forms readily. Therefore a D-T plasma seems to suffer more easily this kind of resonance absorption than a D-H plasma. (author)

  1. ICRF [Ion Cyclotron Range of Frequencies] edge modeling studies

    International Nuclear Information System (INIS)

    Lehrman, I.S.; Colestock, P.L.

    1989-01-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. 19 refs., 9 figs

  2. Design and RF Test of Broadband Coaxial Hybrid Splitter for ITER ICRF System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Wang, S. J.; Park, B. H.; Yang, H. L.; Kwak, J. G. [National Fusion Research Institute, Daejeon (Korea, Republic of); Choi, J. J. [Kwangwoon Univ., Seoul (Korea, Republic of)

    2013-10-15

    The ICRF system of the ITER is required to couple 20 MW to the plasma in the 40∼55 MHz frequency band for RF heating and current drive operation. The corresponding matching system of ICRF antenna must be load-resilient for a wide range of antenna load variations due to mode transitions or edge localized modes. Indeed the use of hybrid splitters ensures that no reflections occur at the generator when the reflections on the adjacent lines are equal both in magnitude and in phase, in which case all reflected power will not be seen by the generators and will be returned to the dummy loads. Most 3 dB coaxial hybrid circuits installed and implemented on the ICRF system is single section coupler providing best performance at the design frequency with narrow bandwidth. The bandwidth of such a single-section 3 dB hybrid coupler is limited to less than 20% due to the quarter wavelength transmission line requirement. The amplitude balance becomes rapidly degraded away from the center frequency. We designed, fabricated and tested a high power, ultra-wideband two-section 3 dB coaxial hybrid coupler over all frequencies from 40 MHz to 55 MHz for ITER ICRF system by configuring asymmetric impedance matching. We have designed, fabricated, and tested a 3-dB wideband hybrid coupler for stable and load resilient operation of the ITER ICRF system. The wideband two section 3-dB coaxial hybrid coupler was well designed by configuring asymmetric impedance matching using HFSS. In the rf measurements, we found that wideband hybrid splitter has an amplitude imbalance of 0.1 dB over all frequencies from 40 MHz to 55 MHz. We expect that wideband hybrid splitter will be applicable to ITER ICRF matching system for load resilient operation at fusion plasmas.

  3. Simulation study of energetic ion distribution during combined NBI and ICRF heating in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Kasilov, V.

    2006-01-01

    In the LHD, significant performances of ICRF heating (fundamental, minority heating regime) have been demonstrated and up to 500keV of energetic tail ions have been observed by fast neutral particle analysis (NPA). These measured results indicate a good property of energetic ion confinement in helical systems. From the 9th campaign of LHD experiment (FY2005) a new perpendicular NBI heating system (P<3MW) has been installed and an effective heating of perpendicularly injected beam ions by the higher harmonics ICRF heating is expected. ICRF heating generates highly energetic tail ions, which drift around the torus for a long time (typically on a collisional time scale). Thus, the behavior of these energetic ions is strongly affected by the characteristics of the drift motions, which depend on the magnetic field configuration. In particular, in a three-dimensional (3D) magnetic configuration, complicated drift motions of trapped particles would play an important role in the confinement of the energetic ions and the ICRF heating process. Therefore a global simulation of ICRF heating is necessary for the accurate modeling of the plasma heating process in a 3D magnetic configuration. In this paper we study the energetic ion distribution during combined NBI and 2nd harmonics ICRF heating in LHD using two global simulation codes: a full wave field solver TASK/WK and a drift kinetic equation solver GNET. GNET solves a linearized drift kinetic equation for energetic ions including complicated behavior of trapped particles in 5-D phase space. TASK/WM solves Maxwell's equation for RF wave electric field with complex frequency as a boundary value problem in the 3D magnetic configuration. (author)

  4. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  5. Combined therapy of the Walker-256 carcinosarcoma with X-rays and ICRF-159

    International Nuclear Information System (INIS)

    Schaphaus, A.

    1974-01-01

    The radiosensitivity of the Walker-256 carcinosarcoma of the rat under the influence of the tumour-inhibiting bisdioxopiperazine ICRF-159 was studied in collectives of 11-16 animals with tumours. In the combined radio- and chemotherapy, the animals received a daily i.p. injection of 30 mg/kg K.G. of the bisdioxopiperazine ICRF-159 in 1.0 ml NaCl solution containing carboxyl methyl cellulose. The tumour inhibition was determined by multidimensional measurements of the increase in tumour size with the aid of a slide gange. The combined therapy had a better inhibiting effect on tumour growth than radiotherapy alone. (orig./AK) [de

  6. Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material

    Science.gov (United States)

    Wang, Xiaohua; Liu, Youwen

    2015-02-01

    A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.

  7. A wave shaping approach of ferrite inductors exhibiting hysteresis using orthogonal field bias

    Science.gov (United States)

    Adly, A. A.; Abd-El-Hafiz, S. K.; Mahgoub, A. O.

    2018-05-01

    Advances in power electronic systems have considerably contributed to a wide spectrum of applications. In most power electronic circuits, inductors play crucial functions. Utilization of ferrite cores becomes a must when large inductances are required. Nevertheless, this results in an additional complexity due to their hysteresis nature. Recently, an efficient approach for modeling vector hysteresis using tri-node Hopfield neural networks (HNNs) has been introduced. This paper presents a wave shaping approach using hollow cylindrical ferrite core inductors having axial and toroidal windings. The approach investigates the possibility of tuning the inductor permeability to minimize circuit harmonics. Details of the approach are given in the paper.

  8. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  9. Crystallization of -type hexagonal ferrites from mechanically

    Indian Academy of Sciences (India)

    Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite ... Abstract. -type hexagonal ferrite precursor was prepared by a soft mechanochemical ... Bulletin of Materials Science | News.

  10. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  11. Effects of ICRF-187 and L-Carnitine on bleomycin-induced lung toxicity in rats

    International Nuclear Information System (INIS)

    Shouman, Samia A.; Abdel-Hamid, M.A.; Hassan, Zeinab A.; Mansour, Heba H.

    2002-01-01

    The possible modulatory effects of ICRF-187 and L-carnitine against bleomycin-induced pulmonary toxicity in male rats were investigated. Repeated administration of bleomycin (10 mg/kg, twice weekly for 6 consecutive weeks) produced significant lung toxicity. The toxicity was manifested by significant increase in normal contents of lipid peroxide (LPO, 91.7%) reduced glutathione (GSH, 73.2%) and oxidized glutathione (GSSG, 135.4%) as well as the activity of superoxide dismutase (SOD, 222.7%). Thirty minutes prior to bleomycin treatment, other groups of rats received either ICRF-187 (95 mg/kg) or L-carnitine (500 mg/kg) adopting the same schedule of treatment as in bleomycin-treated group. L-carnitine decreased bleomycin-induced elevations in SOD activity, GSH and GSSG contents, however, it failed to suppress the increase in LPO level. On the other hand, treatment with ICRF-187 returned back all the elevated biochemical parameters induced by bleomycin to nearly normal levels. In conclusion, the results of this study showed a potential capability of ICRF-187 to mitigate the bleomycin-induced lung injury. Moreover, despite the inability of L-carnitine to change the elevated LPO content, it was able however, to decrease the elevated endogenous antioxidant parameters. (author)

  12. Interaction of ICRF power and edge plasma in Tore Supra ergodic divertor configuration

    International Nuclear Information System (INIS)

    Nguyen, F.; Grosman, A.; Basiuk, V.; Fraboulet, D.; Beaumont, B.; Becoulet, A.; Ghendrih, Ph.; Ladurelle, L.; Meslin, B.

    2000-01-01

    The coupling of ICRF power to plasma is a crucial problem in Tore Supra for high power and long pulse operations and depends greatly on the edge parameters, in particular on the edge density. Conversely, the behaviour of the bulk plasma is related to the edge conditions and the injection of RF power also induces major modifications on the edge plasma. Moreover, the Ergodic Divertor (ED) of Tore Supra imposes a complex configuration at the edge due to the presence of the magnetic perturbation. Several diagnostics are available to study the interaction of ICRF power with the edge plasma: Langmuir probes on the ED modules, infra red (IR) cameras, charge exchange neutral analysers. In minority heating scheme, the edge density is very sensitive to any perturbation in the high recycling regime which is always found in the ED configuration for relevant plasma parameters. Partially detached regimes, with or without inhomogeneities of density and temperature induced by the flux tubes of the laminar layer, are obtained for high resistance coupling values. The coupling is then not very robust and feedback control or antenna automatic matching techniques are developed. In fast wave electron heating scheme with ED, various fast wave absorption mechanisms (minority heating, Mode Conversion, Alfven resonance) are present at the plasma edge due to the large size of the plasma. The ICRF coupling is difficult due to the low fast wave direct electron damping, even with high hydrogen minority scheme. An increase of the injected ICRF power could improve this situation

  13. ICRF [Ion Cyclotron Range of Frequencies] heating and antenna coupling in a high beta tokamak

    International Nuclear Information System (INIS)

    Elet, R.S.

    1988-01-01

    Maxwell's Equations are solved in two-dimensions for the electromagnetic fields in a toroidal cavity using the cold plasma fluid dielectric tensor in the Ion Cyclotron Range of Frequencies (ICRF). The Vector Wave Equation is transformed to a set of two, coupled second-order partial differential equations with inhomogeneous forcing functions which model a wave launcher. The resulting equations are finite differenced and solved numerically with a complex banded matrix algorithm on a Cray-2 computer using a code described in this report. This code is used to study power coupling characteristics of a wave launcher for low and high beta tokamaks. The low and high beta equilibrium tokamak magnetic fields applied in this model are determined from analytic solutions to the Grad-Shafranov equation. The code shows good correspondence with the results of low field side ICRF heating experiments performed on the Tokamak of Fontenay-Aux-Roses (TFR). Low field side and high field side antenna coupling properties for ICRF heating in the Columbia High Beta Tokamak (HBT) experiment are calculated with this code. Variations of antenna position in the tokamak, ionic concentration and plasma density, and volume-averaged beta have been analyzed for HBT. It is found that the location of the antenna with respect to the plasma has the dominant role in the design of an ICRF heating experiment in HBT. 10 refs., 52 figs., 13 tabs

  14. Hybrid code simulation on mode conversion in the second harmonic ICRF heating

    International Nuclear Information System (INIS)

    Sakai, K.; Takeuchi, S.; Matsumoto, M.; Sugihara, R.

    1985-01-01

    ICRF second harmonic heating of a single-species plasma is studied by using a 1-1/2 dimensional quasi-neutral hybrid code. Mode conversion, transmission and reflection of the magnetosonic waves are confirmed, both for the high- and low-field-side excitations. The ion heating by waves propagating perpendicularly to the static magnetic field is also observed

  15. A thermal transport coefficient for ohmic and ICRF plasmas in alcator C-mode

    International Nuclear Information System (INIS)

    Daughton, W.; Coppi, B.; Greenwald, M.

    1996-01-01

    The energy confinement in plasmas produced by Alcator C-Mod machine is markedly different from that observed by previous high field compact machines such as Alcator A and C, FT, and more recently FTU. For ohmic plasmas at low and moderate densities, the confinement times routinely exceed those expected from the so-called open-quotes neo-Alcatorclose quotes scaling by a factor as high as three. For both ohmic and ICRF heated plasmas, the energy confinement time increases with the current and is approximately independent of the density. The similarity in the confinement between the ohmic and ICRF regimes opens the possibility that the thermal transport in Alcator C-Mod may be described by one transport coefficient for both regimes. We introduce a modified form of a transport coefficient previously used to describe ohmic plasmas in Alcator C-Mod. The coefficient is inspired by the properties of the so-called open-quotes ubiquitousclose quotes mode that can be excited in the presence of a significant fraction of trapped electrons and also includes the constraint of profile consistency. A detailed series of transport simulations are used to show that the proposed coefficient can reproduce the observed temperature profiles, loop voltage and energy confinement time for both ohmic and ICRF discharges. A total of nearly two dozen ohmic and ICRF Alcator C-Mod discharges have been fit over the range of parameter space available using this transport coefficient

  16. Electromagnetic simulations of JET ICRF ITER-like antenna with TOPICA and SSWICH asymptotic codes

    Directory of Open Access Journals (Sweden)

    Křivská Alena

    2017-01-01

    Full Text Available Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF heating is routinely used in the JET tokamak. To increase the ICRF heating power available from the A2 antennas, the ICRF ITER-Like Antenna (ILA was reinstalled for the 2015 JET ITER-like wall experimental campaign. The application of high levels of ICRF power typically results in increased plasma wall interaction which leads to the observation of enhanced influx of metallic impurities in the plasma edge. It is assumed that the impurity production is mainly driven by the parallel component of the Radio-Frequency (RF antenna electric near-field, E// (parallel to the confinement magnetic field of the tokamak, that is rectified in a thin boundary layer (RF sheath. Torino Polytechnic Ion Cyclotron Antenna (TOPICA code was used to compute E// field maps in front of the ILA and between its poloidal limiters in the presence of plasma using measured density profiles and various antenna feedings. E// field maps calculated between the poloidal limiters were used to estimate the poloidal distribution of RF-sheath Direct Current (DC potential in this private region of the ILA and make relative comparison of various antenna electrical settings. For this purpose we used the asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating Slow-Wave (SSWICH-SW code. These estimations can help to study the formation of RF sheaths around the antenna and even at distant locations (∼3m away.

  17. Efficiencies of the ICRF minority heating in the CHS and LHD plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Nakajima, N.; Mutoh, T.

    1994-01-01

    ICRF minority heatings are investigated in the plasmas of the Compact Helical System (CHS) and the Large Helical Device (LHD) by means of the orbit following Monte Carlo simulation. It is found that the heating efficiency decreases with increase of the absorption power by minority ions and depends strongly on the magnetic field strength and the field configuration. (author)

  18. Expanding the operating space of ICRF on JET with a view to ITER

    DEFF Research Database (Denmark)

    Lamalle, P.U.; Mantsinen, M.J.; Noterdaeme, J.M.

    2006-01-01

    when the 3 He concentration increased above similar to 2%. In the latter regime the best heating performance (a maximum electron temperature of 8 keV with 5 MW of ICRF power) was achieved with dipole array phasing, i.e. a symmetric antenna power spectrum. Minority heating of deuterium in hydrogen...

  19. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  20. Plasma-surface interactions with ICRF antennas and lower hybrid grills in Tore Supra

    International Nuclear Information System (INIS)

    Harris, J.H.; Hutter, T.; Hogan, J.T.; Basiuk, V.; Beaumont, B.; Becoulet, A.; Bremond, S.; Carter, M.D.; Goniche, M.; Goulding, R.H.; Guilhem, D.; Haste, G.R.; Hoffman, D.J.; Litaudon, X.; Nguyen, F.

    1997-01-01

    The edge plasma interactions of the actively cooled radio-frequency heating launchers in Tore Supra ion-cyclotron range of frequencies (ICRF) antennas and lower-hybrid (LH) grills are studied using infrared video imaging. On the two-strap ICRF antennas, operated in fast-wave electron heating or current drive mode, hot spots with temperatures of 500-900 C are observed by the end of 2 s power pulses of 2 MW per antenna. The steady-state temperature distribution is determined principally by the relative phase of the two antenna straps: dipole (heating) phasing results in significantly less antenna heating than does 90 (current drive) phasing. Transient heat fluxes of 1-20 MW/m 2 are measured on the lateral protection bumpers at ICRF turn-on; these fluxes are primarily a function of plasma and radio frequency (rf) control. The remarkable feature of the lower hybrid edge interaction is the production of beams of heat flux in front of the grills; these beams propagate along the helical magnetic field lines and can deliver fluxes of 5-10 MW/m 2 over areas of several cm 2 to plasma-facing components. Both the ICRF and LH phenomena appear to result from the acceleration of particles by the near fields of the launchers. Modeling of the heat flux deposition on components and its relation to sputtering processes is presented. (orig.)

  1. Analytical models for predicting the ion velocity distributions in JET in the presence of ICRF heating

    International Nuclear Information System (INIS)

    Anderson, A.; Eriksson, L.G.; Lisak, M.

    1986-01-01

    The present report summarizes the work performed within the contract JT4/9008, the aim of which is to derive analytical models for ion velocity distributions resulting from ICRF heating on JET. The work has been performed over a two-year-period ending in August 1986 and has involved a total effort of 2.4 man years. (author)

  2. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  3. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  4. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  5. ICRF antenna modeling and simulation. Final report, March 1, 1993--May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-30

    SAIC has undergone a three year research and development program in support of the DOE Office of Fusion Energy`s (OFE) program in Ion Cyclotron Range of Frequencies (ICRF) heating of present, next generation, and future plasma fusion devices. The effort entailed advancing theoretical models and numerical simulation technology of ICRF physics and engineering issues associated predominately with, but not limited to, tokamak Ion Cyclotron Heating (ICH) and fast wave current drive (FWCD). Ion cyclotron heating and current drive is a central element in all current and planned large fusion experiments. In recent years, the variety of uses for ICRF systems has expanded, and includes the following: (1) Heating sufficient to drive plasma to ignition. (a) Second-harmonic T heating. (b) He{sup 3} minority heating. (2) Second-harmonic He{sup 4} heating in H plasma (for non-activated phase). (3) Detailed equilibrium profile control minority heating. (a) Ion minority (He{sup 3}) CD (for profile control on inside of plasma). (b) Ion minority (He{sup 3}) CD (for profile control on outside of plasma). (4) Ion-ion hybrid regime majority ion heating. (5) Electron current drive. (6) Mode conversion to drive current. (7) Deuterium minority heating. (8) Sawtooth instability stabilization. (9) Alpha particle parameter enhancement. (10) The generation of minority tails by ICRF to simulate D-T plasma particle physics in a deuterium plasma. Optimization of ICRF antenna performance for either heating or current drive depends critically on the complex balance and interplay between the plasma physics and the electromechanical system requirements. For example, ITER IC rf designs call for an IC. system frequency range from 20 MHz to 100 MHz. Additionally, antenna designs and operational modes that minimize impurity production and induced sheath formation may degrade current drive efficiency. Such effects have been observed in experiments involving it versus zero antenna phasing.

  6. ICRF antenna modeling and simulation. Final report, March 1, 1993--May 31, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    SAIC has undergone a three year research and development program in support of the DOE Office of Fusion Energy's (OFE) program in Ion Cyclotron Range of Frequencies (ICRF) heating of present, next generation, and future plasma fusion devices. The effort entailed advancing theoretical models and numerical simulation technology of ICRF physics and engineering issues associated predominately with, but not limited to, tokamak Ion Cyclotron Heating (ICH) and fast wave current drive (FWCD). Ion cyclotron heating and current drive is a central element in all current and planned large fusion experiments. In recent years, the variety of uses for ICRF systems has expanded, and includes the following: (1) Heating sufficient to drive plasma to ignition. (a) Second-harmonic T heating. (b) He 3 minority heating. (2) Second-harmonic He 4 heating in H plasma (for non-activated phase). (3) Detailed equilibrium profile control minority heating. (a) Ion minority (He 3 ) CD (for profile control on inside of plasma). (b) Ion minority (He 3 ) CD (for profile control on outside of plasma). (4) Ion-ion hybrid regime majority ion heating. (5) Electron current drive. (6) Mode conversion to drive current. (7) Deuterium minority heating. (8) Sawtooth instability stabilization. (9) Alpha particle parameter enhancement. (10) The generation of minority tails by ICRF to simulate D-T plasma particle physics in a deuterium plasma. Optimization of ICRF antenna performance for either heating or current drive depends critically on the complex balance and interplay between the plasma physics and the electromechanical system requirements. For example, ITER IC rf designs call for an IC. system frequency range from 20 MHz to 100 MHz. Additionally, antenna designs and operational modes that minimize impurity production and induced sheath formation may degrade current drive efficiency. Such effects have been observed in experiments involving it versus zero antenna phasing

  7. Possible effects of RF field near ICRF antenna on density control during long pulse discharge in LHD

    International Nuclear Information System (INIS)

    Saito, K.; Kumazawa, R.; Mutoh, T.; Seki, T.; Watari, T.; Nakamura, Y.; Sakamoto, M.; Noda, N.; Watanabe, T.; Shoji, M.; Masuzaki, S.; Morita, S.; Goto, M.; Torii, Y.; Takeuchi, N.; Shimpo, F.; Nomura, G.; Yokota, M.; Kato, A.; Zhao, Y.

    2005-01-01

    In the large helical device (LHD), the plasma duration time was extended up to 150 s by ion cyclotron range of frequencies (ICRF) heating. Time-integrated total input power reached 71 MJ. However, this discharge terminated due to radiation collapse accompanied by an increase of electron density. The temperature of the divertor plates and the intensity of H α were locally increased in the same toroidal section, near the ICRF antenna. One of the possible causes of the increase of radiation power is an outgassing from the divertor plates that were heated by particles accelerated in the cyclotron resonance layer near the antenna. Another possible cause is the outgassing from the ICRF antenna itself due to a temperature increase of the ICRF antenna owing to high-energy particles, or the formation of an RF (radio frequency) sheath

  8. Zeff measurements and low-Z impurity transport for NBI and ICRF heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Amano, T.; Kawahata, K.; Kaneko, O.

    1988-12-01

    A visible bremsstrahlung detector array system for Z eff measurements and a charge exchange recombination spectroscopy (CXRS) system for fully ionized impurity profile measurements were installed on JIPP TII-U to study impurity transport for NBI and ICRF heated plasma. More impurities are sputtered by ICRF heating than by NBI and/or ohmic heatings. The carbon contribution to Z eff is 80-90 % for NBI heated plasmas, and 60 % for NBI + ICRF heated plasmas. With a carbon coating of vacuum vessel, the Z eff value decreases 2.4 to 1.7 and the carbon contribution to Z eff increases up to 80-90 %. We obtain the diffusion coefficient D a = 1.0 m 2 /s and the convective velocity V a (a) = 13 m/s at the plasma edge for carbon impurity from the radial profile and time evolution of fully ionized carbon after the ICRF pulse is turned on. (author)

  9. Irradiation creep in ferritic steels

    International Nuclear Information System (INIS)

    Vandermeulen, W.; Bremaecker, A. de; Burbure, S. de; Huet, J.J.; Asbroeck, P. van

    Pressurized and non-pressurized capsules of several ferritic steels have been irradiated in Rapsodie between 400 and 500 0 C up to 3.7 x 10 22 n/cm 2 (E>0.1 MeV). Results of the diameter measurements are presented and show that the total in-pile deformation is lower than for austenitic steels

  10. Tunable inkjet-printed slotted waveguide antenna on a ferrite substrate

    KAUST Repository

    Nafe, Ahmed

    2015-04-13

    In this work an inkjet-printed frequency-tunable slotted waveguide antenna on a ferrite substrate is reported. Unlike the typical substrate integrated waveguide approach with via holes, a true 3D rectangular waveguide is realized by inkjet-printing of nano-particle based conductive ink on the broad faces as well as on sides of the substrate. The operating frequency of the antenna can be tuned by applying a variable static bias magnetic field that controls the permeability of the host ferrite substrate. The antenna operates about a center frequency of approximately 14 GHz with an instantaneous impedance bandwidth of 75 MHz. A fabricated prototype has demonstrated a tuning range of 10% (1.5 GHz) using an applied bias magnetic field of 3 kOe yielding it especially attractive for tunable and reconfigurable yet low cost microwave systems.

  11. Practical tuning for Oracle

    International Nuclear Information System (INIS)

    Kwon, Sun Yong

    2005-02-01

    This book deals with tuning for oracle application, which consists of twenty two chapters. These are the contents of this book : what is tuning?, procedure of tuning, collection of performance data using stats pack, collection of performance data in real time, disk IO dispersion, architecture on Index, partition and IOT, optimization of cluster Factor, optimizer, analysis on plan of operation, selection of Index, tuning of Index, parallel processing architecture, DML, analytic function join method, join type, analysis of application, Lock architecture, SGA architecture and wait event and segment tuning.

  12. ICRF experiments and potential formation on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Ichimura, M.; Cho, T.; Higaki, H.

    2005-01-01

    Target plasmas, on which the formation of the electrostatic potentials and the improvement of the confinement are studied, are produced with ICRF in the GAMMA 10 tandem mirror. The ion temperature of more than 10 keV has been achieved in relatively low density plasmas. When the strong ICRF heating is applied, it is observed that the high frequency and the low frequency fluctuations are excited and suppress the increase in the plasma parameters. Recently, a new high power gyrotron system has been constructed and the plug ECRH power extends up to 370 kW. The improvement of the confinement due to the formation of the potential in the axial direction and the strong radial electric field shear has been observed. (author)

  13. 3D electromagnetic theory of ICRF multi PORT multi loop antenna

    International Nuclear Information System (INIS)

    Vdovin, V.L.; Kamenskij, I.V.

    1997-01-01

    In this report the theory of three dimensional antenna in Ion Cyclotron Resonance Frequency (ICRF) is developed for a plasma with circular magnetic surfaces. The multi loop antenna is located in ITER several ports. Circular plasma and antenna geometry provides new important tools to account for: 1) right loading antenna impedance matrix calculation urgently needed for a matching of RF generator with an antenna; 2) right calculation of an antenna toroidal and poloidal excited spectra because the DIFFRACTION, refraction and REFLECTION effects for the Fast Waves (FW) are in FIRST time are included self consistently in 3D ICRF antenna - plasma treatment; 3) right calculation of RF power deposition profiles because self consistently found 3D antenna - plasma FW excited spectra in non slab plasma model are important ones in a weakly dissipated plasma for Fast Waves (even for ITER parameters). (J.P.N.)

  14. Coupling of an ICRF compact loop antenna to H-mode plasmas in DIII-D

    International Nuclear Information System (INIS)

    Mayberry, M.J.; Baity, F.W.; Hoffman, D.J.; Luxon, J.L.; Owens, T.L.; Prater, R.

    1987-01-01

    Low power coupling tests have been carried out with a prototype ICRF compact loop antenna on the DIII-D tokamak. During neutral-beam-heated L-mode discharges the antenna loading is typically R≅1-2Ω for an rf frequency of 32 MHz (B/sub T/ = 21 kG, ω = 2Ω/sub D/(0)). When a transition into the H-mode regime of improved confinement occurs, the loading drops to R≅0.5-1.0Ω. During ELMs, transient increases in loading up to several Ohms are observed. The apparent sensitivity of ICRF antenna coupling to changes in the edge plasma profiles associated with the H-mode regime could have important implications for the design of future high power systems

  15. The healthiness of JT-60 ICRF antenna and development of its temperature measurement device

    International Nuclear Information System (INIS)

    Hiranai, Shinichi; Yokokura, Kenji; Moriyama, Shinichi; Sato, Tomio; Ishii, Kazuhiro; Fujii, Tsuneyuki

    1998-03-01

    Ion Cyclotron Range of Frequency (ICRF) heating system in JT-60 employs two antennas to couple RF power in the range of 100 MHz to the plasma. The antennas are installed in the vacuum vessel of JT-60, facing to the high temperature plasma. Due to the severe heat load from the plasma, parts of the antenna surface are suffering from melt. It is important to investigate the mechanism of the heat load and the melting. 'Temperature measurement for ICRF antenna surface' employing an infrared thermographic camera has been developed, in order to investigate the heat load to the antenna and to maintain the antenna available. We have succeeded in minimizing the melting damage of the antenna surface using the temperature measurement device. (author)

  16. Theory and design of a tunable antenna on a partially magnetized ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2014-03-01

    For the first time, a theoretical model is presented to predict the frequency tuning of a patch antenna on a partially magnetized ferrite substrate. Both extraordinary (E) and ordinary (O) modes of the antenna are studied. The permeability tensor of the partially magnetized ferrite is calculated through the proposed theoretical model and is subsequently used to analyze the antenna\\'s performance in a microwave simulator. Prototype antennas were built, using two different bias windings, embedded in a multilayer ferrite LTCC substrate, to demonstrate E and O mode tuning. The use of embedded windings negates the requirement of bulky electromagnets, thus providing miniaturization. The concept also eliminates the demagnetization effect, thus reducing the typically required bias fields by 95%. The prototype measurements at 13 GHz demonstrate an E-mode tuning range of 10%. The proposed theoretical model has been validated by simulations and measurements. The design is highly suitable for compact, light-weight, tunable and reconfigurable microwave systems. © 1963-2012 IEEE.

  17. 3-D analysis on arbitrarily-shaped ICRF antennas and Faraday shields

    International Nuclear Information System (INIS)

    Chen, G.L.; Whealton, J.H.; Baity, F.W.; Hoffman, D.J.; Owens, T.L.

    1986-01-01

    Cavity antennas with Faraday shields are proposed to couple ion cyclotron radio frequency power for heating fusion plasmas. This application requires small, high-power, low-frequency antennas. The results are presented of a theoretical study of the ICRF antennas being developed for this purpose at the Radio Frequency Test Facility (RFTF). The objectives of this work are to optimize experimental designs and to confirm test results

  18. ICRF specific plasma wall interactions in JET with the ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, Vl., E-mail: bobkov@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Arnoux, G. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); Brezinsek, S.; Coenen, J.W. [Institute of Energy and Climate Research, Association EURATOM-FZJ (Germany); Colas, L. [CEA, IRFM, F-13108 St. Paul-lez-Durance (France); Clever, M. [Institute of Energy and Climate Research, Association EURATOM-FZJ (Germany); Czarnecka, A. [Association EURATOM-IPPLM, Hery 23, 01-497 Warsaw (Poland); Braun, F.; Dux, R. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Huber, A. [Institute of Energy and Climate Research, Association EURATOM-FZJ (Germany); Jacquet, P. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); Klepper, C. [CEA, IRFM, F-13108 St. Paul-lez-Durance (France); Lerche, E. [LPP-ERM/KMS, Association Euratom-Belgian State, TEC Partners, Brussels (Belgium); Maggi, C. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Marcotte, F. [CEA, IRFM, F-13108 St. Paul-lez-Durance (France); Maslov, M.; Matthews, G.; Mayoral, M.L. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); McCormick, K. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Meigs, A. [Culham Science Centre, Association EURATOM-CCFE, Abingdon, Oxon (United Kingdom); and others

    2013-07-15

    A variety of plasma wall interactions (PWIs) during operation of the so-called A2 ICRF antennas is observed in JET with the ITER-like wall. Amongst effects of the PWIs, the W content increase is the most significant, especially at low plasma densities. No increase of W source from the main divertor and entrance of the outer divertor during ICRF compared to NBI phases was found by means of spectroscopic and WI (400.9 nm) imaging diagnostics. In contrary, the W flux there is higher during NBI. Charge exchange neutrals of hydrogen isotopes could be excluded as considerable contributors to the W source. The high W content in ICRF heated limiter discharges suggests the possibility of other W sources than the divertor alone. Dependencies of PWIs to individual ICRF antennas during q{sub 95}-scans, and intensification of those for the −90° phasing, indicate a link between the PWIs and the antenna near-fields. The PWIs include heat loads and Be sputtering pattern on antenna limiters. Indications of some PWIs at the outer divertor entrance are observed which do not result in higher W flux compared to the NBI phases, but are characterized by small antenna-specific (up to 25% with respect to ohmic phases) bipolar variations of WI emission. The first TOPICA calculations show a particularity of the A2 antennas compared to the ITER antenna, due to the presence of long antenna limiters in the RF image current loop and thus high near-fields across the most part of the JET outer wall.

  19. Maximization of ICRF power by SOL density tailoring with local gas injection

    Czech Academy of Sciences Publication Activity Database

    Jacquet, P.; Goniche, M.; Bobkov, V.; Lerche, E.; Pinsker, R.I.; Pitts, R.A.; Zhang, W.; Colas, L.; Hosea, J.; Moriyama, S.; Wang, S.-J.; Wukitch, S.; Zhang, X.; Bilato, R.; Bufferand, H.; Guimarais, L.; Faugel, H.; Hanson, G.R.; Kocan, M.; Monakhov, I.; Noterdaeme, J.-M.; Petržílka, Václav; Shaw, A.; Stepanov, I.; Sips, A.C.C.; Van Eester, D.; Wauters, T.

    2016-01-01

    Roč. 56, č. 4 (2016), s. 046001 ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : ICRF power * antenna loading * gas injection * SOL density Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/4/046001

  20. High-power and steady-state operation of ICRF heating in the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Kumazawa, R.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ii, T.; Makino, R.; Nagaoka, K.; Nomura, G. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Shinya, T. [The University of Tokyo, Kashiwa 2777-8561 (Japan)

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAIT antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.

  1. Reversed magnetic shear operation with ICRF minority heating on Tore Supra

    International Nuclear Information System (INIS)

    Hoang, G.T.; Antar, G.; Aniel, T.

    1999-01-01

    This paper reports a scenario recently investigated in Tore Supra for high density and high plasma current (Ip) operation, which allows to use the ion cyclotron resonance frequency (ICRF) minority heating only for the internal transport barrier (ITB) formation. The main aim is to perform a hollow current density profile by minimizing the edge resistive skin depth during the rapid Ip ramp-up, i-e efficient freezing of the resistive current diffusion

  2. ICRF power deposition profile and determination of the electron thermal diffusivity by modulation experiments in JET

    International Nuclear Information System (INIS)

    Gambier, D.J.; Evrard, M.P.; Adam, J.

    1990-01-01

    The power deposition profile in the ion cyclotron range of frequencies (ICRF) has been investigated experimentally in JET by means of a square wave modulated RF perturbation. The study has been conducted in D(H) and D( 3 He) plasmas for two heating scenarios. In D( 3 He) plasmas and for central heating in a scenario where mode conversion to Bernstein waves is accessible, the direct power deposition profile on electrons has been derived. It accounts for 15% of the total coupled power and extends over 25% of the minor radius. Outside the RF power deposition zone, the electron thermal diffusivity χ e inside the inversion radius surface (r i ) can be estimated through observation of the diffusive electronic transport. In discharges without monster sawteeth and for a low central temperature gradient (∇T e (r ≤ r i ) ≤ ∇T e (r ≥ r i ) approx. = 5 keV·m -1 ) the value obtained is small (approx. =0.24 +- 0.05 m 2 · s -1 ), typically ten times lower than χ e values deduced from heat pulse propagation in similar discharges at radii larger than the inversion radius. For the D(H) minority heating scheme, a large fraction of the ICRF modulated power is absorbed by minority ions, and the minority tail is modulated with a characteristic ion-electron (i-e) slowing-down time. In this scheme, electron heating occurs only through collisions with the minority ion tail and no modulation of the electron temperature is observed in sawtoothing discharges. This is interpreted as a consequence of the long i-e equipartition time, acting as an integrator for the modulated ICRF signal. Finally, a correlation between the time of the sawtooth crash and the periodic turn-off of the ICRF power is found and its consequence for modulation experiments is reviewed. (author). 22 refs, 16 figs

  3. On the role of ion heating in ICRF-heated discharges in Tore Supra

    International Nuclear Information System (INIS)

    Eriksson, L.G.; Hoang, G.; Bergeaud, V.

    2000-09-01

    The effect of bulk ion heating in Tore Supra has been investigated by studying discharges with varying concentrations of minority ions during ICRF hydrogen minority heating in Deuterium/ 4 He plasmas. As expected, the level of bulk ion heating is found to increase with the minority concentration. Higher levels of ion heating are shown to be accompanied by two significant effects: an improved energy confinement and a strong influence on the plasma rotation. (author)

  4. Plasma-surface interactions with ICRF antennas and lower hybrid grills in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.H. [Oak Ridge National Lab., TN (United States); Hutter, T. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Hogan, J.T. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The edge plasma interactions of the actively cooled radio-frequency heating launchers in Tore Supra- ion-cyclotron range-of-frequencies (ICRF) antennas and lower-hybrid (LH) grills-are studied using infrared video imaging. On the two-strap ICRF antennas, operated in fast-wave electron heating or current drive mode, hot spots with temperatures of 500-900{degrees} C are observed by the end of 2-s power pulses of 2 MW per antenna. The distribution and maximum values of temperature are determined principally by the relative phase of the two antenna straps: dipole (heating) phasing results in significantly less antenna heating than does 90` (current drive) phasing. Transient heat fluxes of 1-20 MW/m{sup 2} are measured on the lateral protection bumpers at ICRF turn-on; these fluxes are primarily a function of plasma and radio frequency (rf) control, and are not simply correlated with the strap phasing or the final surface temperature distributions. The remarkable feature of the lower hybrid edge interaction is the production of beams of heat flux in front of the grills; these beams propagate along the helical magnetic field lines and can deliver fluxes of 5-10 MW/m{sup 2} over areas of several cm{sup 2} to plasma-facing components such as the grill or antenna lateral bumpers. Both the ICRF and LH phenomena appear to result from the acceleration of particles by the near fields of the launchers. Modeling of the heat flux deposition on components and its relation to sputtering processes is presented, and possibilities for controlling these interactions are discussed.

  5. Power absorption and confinement studies of ICRF-heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Ogawa, Y.; Toi, K.

    1988-08-01

    The energy confinement characteristics of ICRF-heated tokamak plasmas are studied at high input power density ∼ 2 MWm -3 volume averaged, on the JIPP T-IIU device(R = 0.91 m/a = 0.23 m). High electron and ion temperatures (T e ∼ 2.5 keV, T i ∼ 2.0 keV, at each maximum) have been achieved by the operation at a plasma current I P of 280 kA, plasma line-averaged electron density n-bar e of 7 x 10 13 cm -3 and input power of 2 MW, with a suppression of total radiation loss (30 to 40 % of the total input power) by a carbon coating on the vacuum vessel. The fraction of ICRF power absorbed by the plasma, α, is determined experimentally from the decay of the stored plasma energy just after the ICRF pulse is terminated. The value of α increases slightly with increasing electron density and decreases from 90 to 70 % as the ICRF power is increased from 1 MWm -3 to 2 MWm -3 volume averaged. The global energy confinement time τ E , defined by W P /(P OH + αP rf ), decreases by a factor of 2 ∼ 3 from that in ohmic plasmas as the heating power increases up to 2 MW. It is found that the energy confinement time has a strong line-averaged electron density dependence as τ E ∝n-bar e 0.6 , which is obtained by the use of the measured absorbed power, while the Kaye-Goldston scaling predicts τ E ∝n-bar e 0.26 . (author)

  6. The role of matching thickness on the wideband electromagnetic wave suppresser using single layer doped barium ferrite

    International Nuclear Information System (INIS)

    Shams Alam, Reza; Kavosh Tehrani, Masoud; Moradi, Mahmood; Hosseinpour, Ehsaneh; Sharbati, Ali

    2011-01-01

    The effect of Mg 2+ , Co 2+ and Ti 4+ substitution on microwave absorption has been studied for BaMg 0.5 Co 0.5 Ti 1.0 Fe 10 O 19 ferrite-acrylic resin composite in frequency range from 13 to 20 GHz. X-ray diffraction (XRD), scanning electron microscopy (SEM), vector network analysis and vibrating sample magnetometry (VSM) were employed to analyze structure, electromagnetic and microwave absorption properties of prepared ferrite. The obtained results of reflectivity demonstrate that by varying matching thickness along with weight percentage of ferrite to acrylic resin, the bandwidth coupled with reflection loss values of prepared composites can be easily tuned. Based on microwave measurement on reflectivity, it is found that BaMg 0.5 Co 0.5 Ti 1.0 Fe 10 O 19 is a good candidate for wideband electromagnetic compatibility and other practical applications at high frequency. - Research highlights: → In our previous paper, the microwave attenuation properties of doped ferrites were evaluated. → Here we deal with the new substitution in barium ferrite which can easily tune the bandwidth of the reflection loss properties. → To the best of knowledge, this is a so simple composition which can offer practical applications in the field.

  7. ICRF wave propagation and absorption in axisymmetric mirrors. Annual report, July 1, 1985-February 28, 1986

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Phillips, M.W.

    1986-04-01

    A numerical code called GARFIELD has been developed to calculate the structure of ICRF electric fields in axisymmetric mirrors. It is being used to investigate ICRF wave structure of central cells of tandem mirror experiments. Fields are solved on a 2-D grid in the axial and radial directions. This permits us to study the effect that axial as well as radial variations of the magnetic field and density have on ICRF wave propagation and absorption. Much of this time frame was spent writing the code and refining the numerics. Initial calculations have been completed for the Phaedrus tandem mirror. These show that there is an evanescent fast wave structure in the radial direction, a standing wave formation in the axial direction, and a small amount of propagating ion cyclotron wave towards a shallow magnetic beach in the center of the mirror. In general, the fields peak on the outside which would show that the resulting pondermotive force would tend to stabilize the plasma

  8. Operation of ICRF antennas in a full tungsten environment in ASDEX Upgrade

    Science.gov (United States)

    Bobkov, Vl.; Braun, F.; Dux, R.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.; ASDEX Upgrade Team

    2009-06-01

    In the 2007 and early part of 2008 experimental campaigns, ASDEX Upgrade operated with full tungsten (W) wall without boronization. Use of ICRF power results in a significant increase of W source. Low temperature conditions at the plasma facing components, achieved by a large clearance between the separatrix and the antenna (>6 cm) and by elevated gas puff rates (>5×1021 s) help to lower W sputtering yield during ICRF. Operation of neighboring ICRF antennas at the phase difference close to -90° can lead to a reduction in the W source. However, a reduction of parallel near-fields by antenna design is needed to further minimize the W source. A relation has been established between the HFSS code calculations predicting a dominant role of box currents in the formation of parallel antenna near-fields and the experiment. The shapes of the measured vertical profile of effective sputtering yields and the calculated sheath driving voltages show a qualitative agreement. This confirms that the existing tools are a good basis to design an improved antenna.

  9. Operation of ICRF antennas in a full tungsten environment in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Bobkov, Vl.; Braun, F.; Dux, R.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Mueller, H.W.; Neu, R.; Noterdaeme, J.-M.; Puetterich, Th.; Rohde, V.

    2009-01-01

    In the 2007 and early part of 2008 experimental campaigns, ASDEX Upgrade operated with full tungsten (W) wall without boronization. Use of ICRF power results in a significant increase of W source. Low temperature conditions at the plasma facing components, achieved by a large clearance between the separatrix and the antenna (>6 cm) and by elevated gas puff rates (>5x10 21 s -1 ) help to lower W sputtering yield during ICRF. Operation of neighboring ICRF antennas at the phase difference close to -90 deg. can lead to a reduction in the W source. However, a reduction of parallel near-fields by antenna design is needed to further minimize the W source. A relation has been established between the HFSS code calculations predicting a dominant role of box currents in the formation of parallel antenna near-fields and the experiment. The shapes of the measured vertical profile of effective sputtering yields and the calculated sheath driving voltages show a qualitative agreement. This confirms that the existing tools are a good basis to design an improved antenna.

  10. TRANSP modeling of minority ion sawtooth mixing in ICRF + NBI heated discharges in TFTR

    International Nuclear Information System (INIS)

    Goldfinger, R.C.; Batchelor, D.B.; Murakami, M.; Phillips, C.K.; Budny, R.; Hammett, G.W.; McCune, D.M.; Wilson, J.R.; Zarnstorff, M.C.

    1995-01-01

    Time independent code analysis indicates that the sawtooth relaxation phenomenon affects RF power deposition profiles through the mixing of fast ions. Predicted central electron heating rates are substantially above experimental values unless sawtooth relaxation is included. The PPPL time dependent transport analysis code, TRANSP, currently has a model to redistribute thermal electron and ion species, energy densities, plasma current density, and fast ions from neutral beam injection at each sawtooth event using the Kadomtsev (3) prescription. Results are presented here in which the set of models is extended to include sawtooth mixing effects on the hot ion population generated from ICRF heating. The ICRF generated hot ion distribution function, line-integral(ν parallel , ν perpendicular ), which is strongly peaked at the center before each sawtooth, is replaced throughout the sawtooth mixing volume by its volume averaged value at each sawtooth. The modified line-integral(ν parallel ,ν perpendicular ) is then used to recalculate the collisional transfer of power from the minority species to the background species. Results demonstrate that neglect of sawtooth mixing of ICRF-induced fast ions leads to prediction of faster central electron reheat rates than are measured experimentally

  11. Monte Carlo simulation study of the ICRF minority heating in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Nakajima, N.; Ohnishi, M.; Okada, H.

    1993-10-01

    A Monte Carlo simulation code is developed for the ICRF heating in helical systems, which takes into account finite beta effects, complicated orbits of high energetic particles, Coulomb collisions, and interactions between the particles and the applied waves. The code is used to investigate the ICRF minority heating in the Large Helical Device. The configuration of the magnetic fields changes significantly due to finite beta effects in the Large Helical Device. The resonance layer position is found to be crucial to the heating efficiency as the plasma beta increases. When the strength of the resonance magnetic field is set to the value at the magnetic axis, the higher heat efficiency is obtained and no clear difference of the heat efficiency due to the finite beta effects is found at the high ICRF wave power region. However the radial profile of the transferred power to majority ions and electrons from minority ions changes by the deformation of the trapped particle orbits due to the finite beta effects. The heat efficiency is improved if the radial electric field, E r , is positive (E r is directed radially outward) and it is also improved by supplying 3 He minority ions rather than proton minority ions. (author)

  12. Modeling and simulation support for ICRF heating of fusion plasmas. Annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-15

    Recent experimental, theoretical and computational results have shown the need and usefulness of a combined approach to the design, analysis and evaluation of ICH antenna configurations. The work at the University of Wisconsin (UW) in particular has shown that much needed information on the vacuum operation of ICH antennas can be obtained by a modest experimental and computational effort. These model experiments at UW and SAIC simulations have shown dramatically the potential for positive impact upon the ICRF program. Results of the UW-SAIC joint ICRF antenna analysis effort have been presented at several international meetings and numerous meetings in the United States. The PPPL bay M antenna has been modeled using the ARGUS code. The results of this effort are shown in Appendix C. SAIC has recently begun a collaboration with the ICRF antenna design and analysis group at ORNL. At present there are two separate projects underway. The first is associated with the simulation of and determination of the effect of adding slots in the antenna septum and side walls. The second project concerns the modeling and simulation of the ORNL folded waveguide (FWG) concept.

  13. Long-Pulse Operation and High-Energy Particle Confinement Study in ICRF Heating of LHD

    International Nuclear Information System (INIS)

    Mutoh, Takashi; Kumazawa, Ryuhei; Seki, Tetsuo

    2004-01-01

    Long-pulse operation and high-energy particle confinement properties were studied using ion cyclotron range of frequency (ICRF) heating for the Large Helical Device. For the minority-ion mode, ions with energies up to 500 keV were observed by concentrating the ICRF heating power near the plasma axis. The confinement of high-energy particles was studied using the power-modulation technique. This confirmed that the confinement of high-energy particles was better with the inward-shifted configuration than with the normal configuration. This behavior was the same for bulk plasma confinement. Long-pulse operation for more than 2 min was achieved during the experimental program in 2002. This was mainly due to better confinement of the helically trapped particles and accumulation of fewer impurities in the region of the plasma core, in conjunction with substantial hardware improvements. Currently, the plasma operation time is limited by an unexpected density rise due to outgassing from the chamber materials. The temperature of the local carbon plates of the divertor exceeded 400 deg, C, and a charge-coupled device camera observed the hot spots. The hot spot pattern was well explained by a calculation of the accelerated-particle orbits, and those accelerated particles came from outside the plasma near the ICRF antenna

  14. Monte Carlo simulation study of ICRF minority heating in the large helical device

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Ohnishi, M.; Okada, H.

    1994-01-01

    A Monte Carlo simulation code is developed for ion cyclotron range of frequencies (ICRF) heating in helical systems, which takes into account finite beta effects, complicated orbits of high energetic particles, Coulomb collisions and interactions between particles and the applied waves. The code is used to investigate ICRF minority heating in the Large Helical Device (LHD). The configuration of the magnetic fields changes significantly due to finite beta effects in the LHD. The resonance layer position is found to be crucial to the heating efficiency as the plasma beta increases. When the strength of the resonance magnetic field is set to the value at the magnetic axis, a higher heat efficiency is obtained and no clear difference of the heat efficiency due to finite beta effects is found in the high ICRF wave power region. However, the radial profile of the power transferred to majority ions and electrons from minority ions changes because of the deformation of the trapped particle due to the finite beta effects. The heat efficiency is improved if the radial electric field, E r , is positive (E r is directed radially outward) and it is also improved by supplying 3 He minority ions rather than proton minority ions. (author). 26 refs, 11 figs, 2 tabs

  15. Monte-Carlo study of ICRF-sustained mode operation in tandem mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1984-09-01

    A study, using a Monte-Carlo simulation code, of ICRF-sustained mode operation in tandem mirrors by way of ICRF end-cell fuelling and heating is described. Although the basic parameter space considered corresponds to the Phaedrus experiment, the central-cell density and temperatures are extended towards the reactor regime. It is found that significant end cell ion potential barriers can be generated with ICRF, but that, owing to choking of the central-cell ion source stream by the plugging potential, saturation occurs and power requirements rapidly increase, so that the potential rise is limited to about twice the central-cell ion temperature. Although performance is improved as the ion cyclotron resonance approaches the end-cell mid-plane, no significant difference is found between inboard, outboard or double resonance location. As the central-cell density and temperatures are increased, the RF power requirement is found to increase dramatically. Optimum performance for end cell fuelling results when the central-cell electron temperature is higher than the ion temperature, but the magnitude of this ratio is limited by an increase in threshold power level with electron temperature.

  16. Ferrite measurements for SNS accelerating cavities

    International Nuclear Information System (INIS)

    Bendall, R.G.; Church, R.A.

    1979-03-01

    The RF system for the SNS has six double accelerating cavities each containing seventy ferrite toroids. Difficulties experienced in obtaining toroids to the required specifications are discussed and the two toroid test cavity built to test those supplied is described. Ferrite measurements are reported which were undertaken to measure; (a) μQf as a function of frequency and RF field level and (b) bias current as a function of frequency for different ranges of ferrite permeability μ. (U.K.)

  17. PERI auto-tuning

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D H; Williams, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chame, J; Chen, C; Hall, M [USC/ISI, Marina del Rey, CA 90292 (United States); Dongarra, J; Moore, S; Seymour, K; You, H [University of Tennessee, Knoxville, TN 37996 (United States); Hollingsworth, J K; Tiwari, A [University of Maryland, College Park, MD 20742 (United States); Hovland, P; Shin, J [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: mhall@isi.edu

    2008-07-15

    The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications.

  18. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  19. Ferrite-guided cyclotron-resonance maser

    International Nuclear Information System (INIS)

    Jerby, Eli; Kesar, A.; Aharony, A.; Breitmeier, G.

    2002-01-01

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement

  20. Full-wave and Fokker Planck analysis of ICRF heating experiments in the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Golovato, S.; Porkolab, M.; Takase, Y.

    1996-01-01

    The Alcator C-Mod device is a high field, high density, shaped tokamak with parameters a = 0.22 m, R 0 = 0.67 m, B 0 ≤ 9.0 T, κ ≤ 1.8, δ ≤ 0.8, and 1.0 x 10 20 m -3 n e (0) ≤ 1.0 x 10 21 m -3 . Four megawatt of ICRF power is available at 80 MHz. The wide operating range in magnetic field makes several heating schemes possible: (i) Second harmonic heating of hydrogen (f 0 = 2f CH ) at 2.6 T in (D-H); (ii) Fundamental heating of (H) (f 0 = f CH ) at 5.3T in a D-(H) plasma; and (iii) Fundamental heating of ( 3 He) (f 0 = f C 3 He ) at 7.9 T in a D-( 3 He) plasma. The most successful heating regime to date has been (H)-minority heating at 5.3 T. Pellet enhanced performance (PEP) modes have also been achieved in C-Mod in D-(H) at 5.3 T and in D-( 3 He) at 7.9 T, with a combination of intense ICRF heating and Li-pellet injection. A variety of numerical models are used to analyze these heating schemes. A 1-D full-wave code (FELICE) is used to study open-quotes single passclose quotes damping of the ICRF wavefront and damping of mode-converted ion Bernstein waves. A toroidal full-wave code (FISIC) is used to study interference and focussing effects of the ICRF waves as well as damping of the ICRF power upon multiple passes of the ICRF wavefront. A combined bounce averaged Fokker Planck and toroidal full-wave code (FPPRF) is used to study the ion tail formation, orbit losses, and the power partition of the ICRF tail to the background electrons and ions. Full-wave and Fokker Planck analyses confirm the strong single pass absorption of the ICRF power in D-(H) at 5.3 T. Analysis of PEP-mode plasmas in D-( 3 He) indicates improved wave focussing and 3 He-cyclotron absorption of the ICRF waves relative to L-mode. A dramatic increase in the transfer of 3 He tail power to the background deuterium is also found for PEP-mode plasmas

  1. ICRF power-deposition profiles and heating in monster sawtooth and peaked-density profile discharges in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Taroni, A.; Ellis, J.J.; Jacquinot, J.; Stuart, D.F.

    1989-01-01

    In this paper, we compare experimental results of electron and ion-heating in discharges that feature monster sawtooth with those in pellet-produced peaked-density profile discharges which were heated with ICRF. Also we carry out a comprehensive analysis of ICRF-heated peaked-density profile discharges by a transport code to simulate the evolution of JET discharges and to provide an insight into the improved heating and confinement found in these discharges. In this analysis, the ICRF power-deposition profile in the minority-heating scenario is computed by the ray-tracing code BRAYCO that self-consistently takes the finite antenna geometry, its radiation spectrum and the hot-plasma damping into account. The power delivered to ions and electrons is calculated based on Stix model. (author) 10 refs., 5 figs

  2. The influence of ICRF-159 and levamisole on the incidence of metastases following local irradiation of a solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.; Constable, W.; Elkon, D.; Rinehart, L.

    1981-11-15

    Courses of irradiation consisting of 6000 rad in ten equal fractions over 12 days delivered to KHT sarcomas in mice controlled 55% of the local tumors but 83% of the mice died from metastases. Three strategies to reduce the risk of metastatic spread were tested. The fractionation scheme was changed to deliver the same total dose using a large initial fraction followed by seven equal portions with the same overall time. ICRF-159 was used with the intention of partially synchronizing the tumor growth fraction in a radiosensitive state of the growth cycle and of promoting normalization of the tumor vasculature. Levamisole was used to stimulate the immune system. The combination of ICRF-159 with the eight-fraction radiation course proved to be effective for both increasing local control and decreasing the incidence of metastases. The addition of levamisole did not improve the results obtained with a combination of ICRF-159 and irradiation.

  3. Influence of ICRF-159 and levamisole on the incidence of metastases following local irradiation of a solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.; Constable, W.; Elkon, D.; Rinehart, L.

    1981-11-15

    Courses of irradiation consisting of 6000 rad in ten equal fractions over 12 days delivered to KHT sarcomas in mice controlled 55% of the local tumors but 83% of the mice died from metastases. Three strategies to reduce the risk of metastatic spread were tested. The fractionation scheme was changed to deliver the same total dose using a large initial fraction followed by seven equal portions with the same overall time. ICRF-159 was used with the intention of partially synchronizing the tumor growth fraction in a radiosensitive state of the growth cycle and of promoting normalization of the tumor vasculature. Levamisole was used to stimulate the immune system. The combination of ICRF-159 with the eight-fraction radiation course proved to be effective for both increasing local control and decreasing the incidence of metastases. The addition of levamisole did not improve the results obtained with a combination of ICRF-159 and irradiation.

  4. TFTR Ion Cyclotron Range of Frequencies (ICRF) experimental data analysis collaboration. Annual progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    Sharer, J.E.; Bettenhausen, M.; Lam, N.; Sund, R.

    1994-08-01

    The research performed under this grant during the past year has concentrated on coupling, heating, and current drive issues for TFTR. The authors have developed a code and submitted for publication a open-quotes 3-Dclose quotes coupling analysis of the TFIR ICRF cavity-backed coil antennas to plasma edge profiles including the Faraday shield blade angle and fast wave coupling for heating and current drive. They have also carried out TFTR ICRF full-wave field solutions and heating analyses for the second harmonic tritium supershot, and the effects of fusion alpha particle and tritium ion tail populations on the ICRF absorption. They have also published a paper on the effects of alpha particle absorption on fundamental deuterium ion cyclotron absorption incorporating self-consistent deuterium tails and fusion reactivity. Research progress, publications, and conference presentations are summarized in this report

  5. Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns

    Directory of Open Access Journals (Sweden)

    Stefan J. Kelly

    2016-05-01

    Full Text Available Using DC electric fields, nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4 nanoparticles (Dh =16.6 ± 3.6 nm are electrophoretically deposited onto silicon substrates to form dense structures defined by photoresist molds. Parameters such as electric field, bath composition, and deposition time are tuned to produce films ranging in thickness from 177 to 805 nm. The deposited films exhibit soft magnetic properties with a saturation magnetization of 60 emu/g and a coercivity of 2.6 kA/m (33 Oe. Additionally, the influence of the photoresist mold on the deposit profile is studied, and patterned films with different shapes (lines, squares, circles, etc. are demonstrated with feature sizes down to 5 μm.

  6. Electromagnetic simulations of simple models of ferrite loaded kickers

    CERN Document Server

    Zannini, Carlo; Salvant, B; Metral, E; Rumolo, G

    2010-01-01

    The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of an intensity upgrade of the LHC. In this paper, CST Particle Studio time domain electromagnetic simulations are performed to obtain the longitudinal and transverse impedances/wake potentials of simplified models of ferrite loaded kickers. The simulation results have been successfully compared with some existing analytical expressions. In the transverse plane, the dipolar and quadrupolar contributions to the wake potentials have been estimated from the results of these simulations. For some cases, simulations have also been benchmarked against measurements on PS kickers. It turns out that the large simulated quadrupolar contributions of these kickers could explain both the negative total (dipolar+quadrupolar) horizontal impedance observed in bench measurements and the positive horizontal tune shift measured with the SPS beam.

  7. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  8. Java performance tuning

    CERN Document Server

    Shirazi, Jack

    2003-01-01

    Performance has been an important issue for Java developers ever since the first version hit the streets. Over the years, Java performance has improved dramatically, but tuning is essential to get the best results, especially for J2EE applications. You can never have code that runs too fast. Java Peformance Tuning, 2nd edition provides a comprehensive and indispensable guide to eliminating all types of performance problems. Using many real-life examples to work through the tuning process in detail, JPT shows how tricks such as minimizing object creation and replacing strings with arrays can

  9. iTunes music

    CERN Document Server

    Katz, Bob

    2013-01-01

    Apple's exciting new Mastered for iTunes (MFiT) initiative, introduced in early 2012, introduces new possibilities for delivering high-quality audio. For the first time, record labels and program producers are encouraged to deliver audio materials to iTunes in a high resolution format, which can produce better-sounding masters. In iTunes Music, author and world-class mastering engineer Bob Katz starts out with the basics, surveys the recent past, and brings you quickly up to the present-where the current state of digital audio is bleak. Katz explains the evolution of

  10. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay.......The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...

  11. Transverse betatron tune measurements

    International Nuclear Information System (INIS)

    Serio, M.

    1989-01-01

    In this paper the concept of the betatron tune and the techniques to measure it are discussed. The smooth approximation is introduced along with the terminology of betatron oscillations, phase advance and tune. Single particle and beam spectra in the presence of synchro-betatron oscillations are treated with emphasis on the consequences of sampling the beam position. After a general presentation of various kinds of beam position monitors and transverse kickers, the time domain and frequency domain analysis of the beam response to a transverse excitation are discussed and several methods and applications of the tune measurements are listed

  12. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  13. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    International Nuclear Information System (INIS)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of the thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system (ρ,ξ) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number α as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions

  14. A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna

    Science.gov (United States)

    Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne 18 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.

  15. 15-MeV proton emission from ICRF-heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Conroy, S W; Hone, M; Sadler, G J; Van Belle, P [Commission of the European Communities, Luxembourg (Luxembourg)

    1994-07-01

    {sup 3} He-d fusion reaction protons emitted from ICRF-heated discharges were recorded with a silicon diode detector installed in the JET tokamak. The detection rates demonstrated that sawtooth crashes eject fast particles from the inner region of the plasma. The energy spectra of the fusion product protons using H minority provided evidence for the second harmonic acceleration of deuterons at sub-MW levels of RF power and those with {sup 3} He minority did not possess the expected twin-lobed shape predicted by kinematics calculations. (authors). 5 refs., 6 figs.

  16. Observations of neutral beam and ICRF tail ion losses due to Alfven modes in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Zweben, S.J.; Chang, Z.

    1996-04-01

    Fast ion losses resulting from MHD modes at the Alfven frequency, such as the TAE, have been observed in TFTR. The modes have been driven both by neutral beam ions, at low B T , and by H-minority ICRF tail ions at higher B T . The measurements indicate that the loss rate varies linearly with the mode amplitude, and that the fast ion losses during the mode activity can be significant, e.g. up to 10% of the input power is lost in the worst case

  17. Modeling of EAST ICRF antenna performance using the full-wave code TORIC

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, E. M., E-mail: eedlund@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Bonoli, P. T.; Porkolab, M.; Wukitch, S. J. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States)

    2015-12-10

    Access to advanced operating regimes in the EAST tokamak will require a combination of electron-cyclotron resonance heating (ECRH), neutral beam injection (NBI) and ion cyclotron range frequency heating (ICRF), with the addition of lower-hybrid current drive (LHCD) for current profile control. Prior experiments at the EAST tokamak facility have shown relatively weak response of the plasma temperature to application of ICRF heating, with typical coupled power about 2 MW out of 12 MW source. The launched spectrum, at n{sub φ} = 34 for 0-π -0-π phasing and 27 MHz, is largely inaccessible at line-averaged densities of approximately 2 × 10{sup 19} m{sup −3}. However, with variable antenna phasing and frequency, this system has considerable latitude to explore different heating schemes. To develop an ICRF actuator control model, we have used the full-wave code TORIC to explore the physics of ICRF wave propagation in EAST. The results presented from this study use a spectrum analysis using a superposition of n{sub φ} spanning −50 to +50. The low density regime typical of EAST plasmas results in a perpendicular wavelength comparable to the minor radius which results in global cavity resonance effects and eigenmode formation when the single-pass absorption is low. This behavior indicates that improved performance can be attained by lowering the peak of the k{sub ||} spectrum by using π/3 phasing of the 4-strap antenna. Based on prior studies conducted at Alcator C-Mod, this phasing is also expected to have the advantage of nearly divergence-free box currents, which should result in reduced levels of impurity production. Significant enhancements of the loading resistance may be achieved by using low k{sub ||} phasing and a combination of magnetic field and frequency to vary the location of the resonance and mode conversion regions. TORIC calculations indicate that the significant power may be channeled to the electrons and deuterium majority. We expect that

  18. Electromagnetic analysis of the Faraday shield of the EAST ICRF antenna

    International Nuclear Information System (INIS)

    Yang Qingxi; Song Yuntao; Wu Songtao; Zhao Yanping

    2011-01-01

    Faraday shield is one of the important components of ICRF antenna for EAST. In view of the structural safety of the Faraday shield, the electromagnetic and structural analyses for the Faraday shield have been carried out by applying the finite element method and the formulas under the cases of plasma disruption and vertical displacement event (VDE). Results of the electromagnetic forces, the stresses distribution as well as the deformation in the Faraday shield have been obtained under the two cases. They meet the design requirements and provide the theoretical basis for the structural safety evaluation of the Faraday shield. (authors)

  19. Progress in ICRF heating technology and designs for future large tokamak heating systems

    International Nuclear Information System (INIS)

    Baity, F.W.; Swain, D.W.; Hoffman, D.J.; Becraft, W.R.; Bryan, W.E.; Mayberry, M.J.; Owens, T.L.; Yugo, J.J.

    1986-01-01

    The problem of advancing the technology of heating with the ion cyclotron range of frequencies (ICRF) for successful application to ignited plasmas is being addressed at Oak Ridge National Laboratory (ORNL) with the collaboration of several laboratories in the United States and Europe. The needs of experiments such as the Compact Ignition Tokamak (CIT) have been evaluated and conceptual approaches identified. These concepts and their components are examined in the laboratory and applied to present-day machines. The status of this program is presented

  20. ICRF Mode Conversion Current Drive for Plasma Stability Control in Tokamaks

    International Nuclear Information System (INIS)

    Grekov, D.; Kock, R.; Lyssoivan, A.; Noterdaeme, J. M.; Ongena, J.

    2007-01-01

    There is a substantial incentive for the International Thermonuclear Experimental Reactor (ITER) to operate at the highest attainable beta (plasma pressure normalized to magnetic pressure), a point emphasized by requirements of attractive economics in a reactor. Recent experiments aiming at stationary high beta discharges in tokamak plasmas have shown that maximum achievable beta value is often limited by the onset of instabilities at rational magnetic surfaces (neoclassical tearing modes). So, methods of effective control of these instabilities have to be developed. One possible way for neoclassical tearing modes control is an external current drive in the island to locally replace the missing bootstrap current and thus to suppress the instability. Also, a significant control of the sawtooth behaviour was demonstrated when the magnetic shear was modified by driven current at the magnetic surface where safety factor equals to 1. In the ion cyclotron range of frequencies (ICRF), the mode conversion regime can be used to drive the local external current near the position of the fast-to-slow wave conversion layer, thus providing an efficient means of plasma stability control. The slow wave energy is effectively absorbed in the vicinity of mode conversion layer by electrons with such parallel to confining magnetic field velocities that the Landau resonance condition is satisfied. For parameters of present day tokamaks and for ITER parameters the slow wave phase velocity is rather low, so the large ratio of momentum to energy content would yield high current drive efficiency. In order to achieve noticeable current drive effect, it is necessary to create asymmetry in the ICRF power absorption between top and bottom parts of the plasma minor cross-section. Such asymmetric electron heating may be realized using: - shifted from the torus midplane ICRF antenna in TEXTOR tokamak; - plasma displacement in vertical direction that is feasible in ASDEX-Upgrade; - the

  1. 15-MeV proton emission from ICRF-heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N.; Conroy, S.W.; Hone, M.; Sadler, G.J.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    {sup 3}He-d fusion reaction protons emitted from ICRF-heated discharges were recorded with a silicon diode detector installed in the Joint European Torus (JET). The detection rates demonstrated that sawtooth crashes eject fast particles from the inner region of the plasma. The energy spectra of the fusion product protons using H minority provided evidence for the second harmonic acceleration of deuterons at sub-MW levels of RF power and those with {sup 3}He minority did not possess the expected twin-lobed shape predicted by kinematics calculations. (author) 5 refs., 6 figs.

  2. Betatron tune measurement

    International Nuclear Information System (INIS)

    Dinev, D.

    2001-01-01

    On the basis of the comparative review of the methods for the betatron tune measurement in cyclic accelerators of synchrotrons type, the research of these methods is carried out from the point of view of their applicability to Nuclotron. Both methods using measurement of the statistical fluctuations of the beam current (Schottky noise) and methods using coherent beam excitation have been discussed. The emphasis is on the final results of importance for the tune measurement practice. Signal processing is briefly discussed too

  3. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels

    International Nuclear Information System (INIS)

    Li, D.Z.; Xiao, N.M.; Lan, Y.J.; Zheng, C.W.; Li, Y.Y.

    2007-01-01

    The mesoscale deterministic cellular automaton (CA) method and probabilistic Q-state Potts-based Monte Carlo (MC) model have been adopted to investigate independently the individual growth behavior of ferrite grain during the austenite (γ)-ferrite (α) transformation. In these models, the γ-α phase transformation and ferrite grain coarsening induced by α/α grain boundary migration could be simulated simultaneously. The simulations demonstrated that both the hard impingement (ferrite grain coarsening) and the soft impingement (overlapping carbon concentration field) have a great influence on the individual ferrite growth behavior. Generally, ferrite grains displayed six modes of growth behavior: parabolic growth, delayed nucleation and growth, temporary shrinkage, partial shrinkage, complete shrinkage and accelerated growth in the transformation. Some modes have been observed before by the synchrotron X-ray diffraction experiment. The mesoscopic simulation provides an alternative tool for investigating both the individual grain growth behavior and the overall transformation behavior simultaneously during transformation

  4. Design strategy for a tunable antenna on a partially magnetized ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2014-07-01

    Typical microwave simulators cannot accurately predict the behavior of an antenna on a partially magnetized substrate as they assume the substrate to be in fully saturate state. In this work, a new simulation strategy aided by theoretical analysis, is presented to model a tunable patch antenna on a partially magnetized ferrite substrate through a combination of magnetostatic and microwave simulators. An antenna prototype is fabricated in Ferrite LTCC medium to verify the partially magnetized state simulations. The measured results are in close agreement with the simulations, contrary to the case where the substrate is assumed to be in saturation. The prototype designed for 13 GHz exhibits a tuning range of 10 % making it highly suitable for tunable and reconfigurable wireless applications.

  5. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  6. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  7. Design strategy for a tunable antenna on a partially magnetized ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif; Bray, Joey R.

    2014-01-01

    Typical microwave simulators cannot accurately predict the behavior of an antenna on a partially magnetized substrate as they assume the substrate to be in fully saturate state. In this work, a new simulation strategy aided by theoretical analysis, is presented to model a tunable patch antenna on a partially magnetized ferrite substrate through a combination of magnetostatic and microwave simulators. An antenna prototype is fabricated in Ferrite LTCC medium to verify the partially magnetized state simulations. The measured results are in close agreement with the simulations, contrary to the case where the substrate is assumed to be in saturation. The prototype designed for 13 GHz exhibits a tuning range of 10 % making it highly suitable for tunable and reconfigurable wireless applications.

  8. Use of the TFTR prototype charge exchange neutral analyzer for fast He3++ diagnostics during ICRF heating on PLT

    International Nuclear Information System (INIS)

    Medley, S.S.

    1981-07-01

    The Charge Exchange Neutral Analyzer (CENA) for TFTR is designed to measure singly charged ion species of atomic mass A = 1, 2, and 3 simultaneously with up to 75 energy channels per mass and an energy range of 0.5 3 charge exchange neutrals makes the analyzer of particular interest for recently proposed fast He 3 ++ diagnostics during ICRF heating on PLT

  9. ICRF wave propagation and absorption in tokamak and mirror magnetic fields: a full-wave calculation

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.; Weitzner, H.; Whealton, J.H.

    1985-01-01

    Global solutions for the ion cyclotron resonant frequency (ICRF) wave fields in a straight tokamak with rotational transform and a poloidally symmetric mirror are calculated in the cold plasma limit. The component of the wave electric field parallel to vector Bis assumed zero. Symmetry in each problem allows Fourier decomposition in one ignorable coordinate, and the remaining set of two coupled, two-dimensional partial differential equations is solved by finite differencing. Energy absorption and antenna impedance are calculated using a simple collisional absorption model. When large gradients in vertical barBvertical bar along vectorB are present in either geometry, ICRF heating at the fundamental ion cyclotron resonance is observed. For the mirror, such gradients are always present. But for the tokamak, the rotational transform must be large enough that vectorB . delB greater than or equal to 0(1). For smaller transforms more typical of real tokamaks, only heating at the two-ion hybird resonance is observed. This suggests that direct resonant absorption at the fundamental ion cyclotron resonance may be possible in stellarators where vectorB . delB approx. 0(1) + 11

  10. Theoretical study for ICRF sustained LHD type p-11B reactor

    International Nuclear Information System (INIS)

    Watanabe, Tsuguhiro

    2003-04-01

    This is a summary of the workshop on 'Theoretical Study for ICRF Sustained LHD Type p- 11 B Reactor' held in National Institute for Fusion Science (NIFS) on July 25, 2002. In the workshop, study of LHD type D- 3 He reactor is also reported. A review concerning the advanced nuclear fusion fuels is also attached. This review was reported at the workshop of last year. The development of the p- 11 B reactor research which uses the LHD magnetic field configuration has been briefly summarized in section 1. In section 2, an integrated report on advanced nuclear fusion fuels is given. Ignition conditions in a D- 3 He helical reactor are summarized in section 3. 0-dimensional particle and power balance equations are solved numerically assuming the ISS95 confinement law including a confinement factor (γ HH ). It is shown that high average beta plasma confinement, a large confinement factor (γ HH > 3) and the hot ion mode (T i /T e > 1.4) are necessary to achieve the ignition of the D- 3 He helical reactor. Characteristics of ICRF sustained p- 11 B reactor are analyzed in section 4. The nuclear fusion reaction rate is derived assuming a quasilinear plateau distribution function (QPDF) for protons, and an ignition condition of p- 11 B reactor is shown to be possible. The 3 of the presented papers are indexed individually. (J.P.N.)

  11. ICRF wave propagation and absorption in tokamak and mirror magnetic fields: a full-wave calculation

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.; Weitzner, H.; Whealton, J.H.

    1986-01-01

    Global solutions for the ion cyclotron resonant frequency (ICRF) wave fields in a straight tokamak with rotational transform and in a poloidally symmetric mirror are calculated in the cold plasma limit. The component of the wave electric field parallel to B vector is assumed zero. Symmetry in each problem allows Fourier decomposition in one ignorable coordinate, and the remaining set of two coupled, two-dimensional partial differential equations is solved by finite differencing. Energy absorption and antenna impedance are calculated using a simple collisional absorption model. When large gradients in absolute value B along B vector are present in either geometry, ICRF heating at the fundamental ion cyclotron resonance is observed. For the mirror, such gradients are always present. But for the tokamak, the rotational transform must be large enough that B vector . delB greater than or equal to 0(1). For smaller transforms more typical of real tokamaks, only heating at the two-ion hybrid resonance is observed. This suggests that direct resonant absorption at the fundamental ion cyclotron resonance may be possible in stellarators where B vector . delB approx. 0(1) naturally. 13 refs., 23 figs

  12. Extending the ICRF to Higher Radio Frequencies: 24 and 43 GHz Astrometry

    Science.gov (United States)

    Jacobs, Christopher S.; Charlot, Patrick; Fomalont, Ed B.; Gordon, David; Lanyi, Gabor E.; Ma, Chopo; Naudet, Charles J.; Sovers, Ojars J.; Zhang, Liwei D.; Kq VLBI Survey Collaboration

    2004-06-01

    Celestial reference frames have been constructed at K-band (24 GHz) and Q-band (43 GHz) based on VLBI astrometric survey observations of active galactic nuclei. Five VLBA observing sessions covered the full 24 hours of right ascension and declinations down to -44°. K-band's 230 sources have median formal position uncertainties of 150 and 290 μas in α cos δ and δ, respectively; the corresponding uncertainties for 132 Q-band sources are 215 and 360 μas, respectively. K-band weighted RMS (WRMS) residuals were 33 ps and 48 fs/s in delay and rate, respectively. Comparison of the K-band frame to the S/X-band ICRF shows WRMS agreement of 330 and 590 μas in α cos δ and δ, respectively. The motivations for extending the ICRF to higher frequencies are to use more compact sources to construct a more stable frame, to provide phase calibrators, and to support spacecraft navigation at Ka-band.

  13. Modeling ambipolar potential formation due to ICRF heating effects on electrons

    International Nuclear Information System (INIS)

    Johnson, J.W.; Callen, J.D.; Hershkowitz, N.

    1985-08-01

    A mechanism for the potential bump observed near the region of ICRF heating in the endplugs of the Phaedrus tandem mirror experiment is investigated by numerical simulation of electron orbits in a simple mirror geometry. Given initial magnetic and ambipolar potential wells that trap the electrons, the ''near field'' parallel electric field E-tilde/sub z/e/sup -iωt/, which is localized near and due to the ICRF heating, tends to eject electrons from the region where E-tilde/sub z/ is nonzero. This depletion of the local electron population causes a local increase in the ambipolar potential. The rate at which the electrons are ejected, (dn/dt), is calculated from the electron orbit computation for a given potential well depth. The rate at which passing particles ''fill in'' the potential well can also be calculated. An estimate of how large the bump in the ambipolar potential becomes is obtained by finding the well depth at which (dn/dt) approximately equals the ''filling'' rate. For Phaedrus parameters (n 0 approx. = 4.0 x 10 12 cm -3 , T/sub e/ = 20 eV, E-tilde/sub z/ approx. = 1.0 V/cm) the electron pumping rate balances the ''filling'' rate at a potential well depth of approximately 40 V, consistent with experimental results

  14. Status of R&D activity for ITER ICRF power source system

    International Nuclear Information System (INIS)

    Mukherjee, Aparajita; Trivedi, Rajesh; Singh, Raghuraj; Rajnish, Kumar; Machchhar, Harsha; Ajesh, P.; Suthar, Gajendra; Soni, Dipal; Patel, Manoj; Mohan, Kartik; Hari, J.V.S.; Anand, Rohit; Verma, Sriprakash; Agarwal, Rohit; Jha, Akhil; Kazarian, Fabienne; Beaumont, Bertrand

    2015-01-01

    Highlights: • R&D program to establish high power RF technology for ITER ICRF source is described. • R&D RF source is being developed using Diacrode & Tetrode technologies. • Test rig (3 MW/3600 s/35–65 MHz) simulating plasma load is developed. - Abstract: India is in-charge for the procurement of ITER Ion Cyclotron Resonance Frequency (ICRF) sources (1 Prototype + 8 series units) along with auxiliary power supplies and Local Control Unit. As there is no unique amplifier chain able to meet the output power specifications as per ITER requirement (2.5 MW per source at 35–65 MHz/CW/VSWR 2.0), two parallel three-stage amplifier chains along with a combiner circuit on the output side is considered. This kind of RF source will be unique in terms of its stringent specifications and building a first of its kind is always a challenge. An R&D phase has been initiated for establishing the technology considering single amplifier chain experimentation (1.5 MW/35–65 MHz/3600 s/VSWR 2.0) prior to Prototype and series production. This paper presents the status of R&D activity to resolve technological challenges involved and various infrastructures developed at ITER-India lab to support such operation.

  15. 2-D mapping of ICRF-induced SOL perturbations in Tore Supra tokamak

    International Nuclear Information System (INIS)

    Colas, L.; Gunn, J.P.; Nanobashvili, I.; Petrzilka, V.; Goniche, M.; Ekedahl, A.; Heuraux, S.; Joffrin, E.; Saint-Laurent, F.; Balorin, C.; Lowry, C.; Basiuk, V.

    2007-01-01

    ICRF-induced SOL modifications are mapped for the first time in 2-D around Tore Supra ICRF antennas using reciprocating Langmuir probes. When probe heads are magnetically connected to powered antennas, radical modifications of floating potentials V float , effective temperatures T eff and ion saturation currents are observed. V float perturbations are located radially near antenna limiters, with a typical extension 2 cm. Poloidally they are locally minimal near the equatorial plane, and maximal near antenna box corners. Two possible interpretations for increased T eff are proposed: localised electron heating and RF loop voltage induced along probe circuit. Both interpretations rely on the generation of parallel RF fields by parallel RF currents on the antenna structure. The topology of such currents could explain the 2-D structure of T eff maps. Both interpretations also imply a positive DC biasing of the antenna environment. Differential biasing of nearby flux tubes drives DC E x B 0 convection that could explain 2-D density patterns

  16. Development of Tokamak experiment technology - Study of ICRF coupling in the KAIST tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Duk In; Chang, Hang Young; Lee, Soon Chil; Kwon, Gi Chung; Seo, Sung Hun; Jeon, Sang Jin; Heo, Sung Hee; Heo, Eun Gi; Lee, Dae Hang; Lee, Chan Hee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    Research objectives are to design and fabricate antenna, measure the property of absorption transmitted to the plasma, and research the physical phenomena about the ICRF coupling. Main heating method is ohmic heating at the KAIST tokamak. So, the plasma current produced is more than 30 kA and, the loop voltage of the plasma is 2 {approx} 3V. The power of the plasma by ohmic heating is about 100 kW. Because the toroidal field is 5 {approx} 8 kG, it is needed RF system with more than 100 kW in 7 {approx} 15 MHz. In the first year a RF amplifier with 1 kW in 300 khz {approx} 35 MHz was bought. The manufacture of ICRF system will start from next years. In the research on antenna, we study the method how to measure electric field emitted from antenna using piezo elements. Experimentally, we obtain the results that the signal of piezo element is proportional to the square of electric field. In the next year, we will research the type of antenna subsequently. 28 refs., 3 tabs., 18 figs. (author)

  17. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    International Nuclear Information System (INIS)

    Colas, L.; Heuraux, S.; Bremond, S.; Bosia, G.

    2005-01-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pecoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed

  18. Status of R&D activity for ITER ICRF power source system

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Aparajita, E-mail: aparajita.mukherjee@iter-india.org [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar–382428 (India); Trivedi, Rajesh; Singh, Raghuraj; Rajnish, Kumar; Machchhar, Harsha; Ajesh, P.; Suthar, Gajendra; Soni, Dipal; Patel, Manoj; Mohan, Kartik; Hari, J.V.S.; Anand, Rohit; Verma, Sriprakash; Agarwal, Rohit; Jha, Akhil [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar–382428 (India); Kazarian, Fabienne; Beaumont, Bertrand [ITER Organization, CS 90 046, 13067 Sain-Paul-Les-Durance (France)

    2015-10-15

    Highlights: • R&D program to establish high power RF technology for ITER ICRF source is described. • R&D RF source is being developed using Diacrode & Tetrode technologies. • Test rig (3 MW/3600 s/35–65 MHz) simulating plasma load is developed. - Abstract: India is in-charge for the procurement of ITER Ion Cyclotron Resonance Frequency (ICRF) sources (1 Prototype + 8 series units) along with auxiliary power supplies and Local Control Unit. As there is no unique amplifier chain able to meet the output power specifications as per ITER requirement (2.5 MW per source at 35–65 MHz/CW/VSWR 2.0), two parallel three-stage amplifier chains along with a combiner circuit on the output side is considered. This kind of RF source will be unique in terms of its stringent specifications and building a first of its kind is always a challenge. An R&D phase has been initiated for establishing the technology considering single amplifier chain experimentation (1.5 MW/35–65 MHz/3600 s/VSWR 2.0) prior to Prototype and series production. This paper presents the status of R&D activity to resolve technological challenges involved and various infrastructures developed at ITER-India lab to support such operation.

  19. Full-wave modeling of ICRF waves: global and quasi-local descriptions

    International Nuclear Information System (INIS)

    Dumont, R. J.

    2007-01-01

    Waves in the Ion Cyclotron Range of Frequencies (ICRF) undergo significant space dispersion as they propagate in magnetic fusion plasmas, making it necessary to incorporate non-local effects in their physical description. Full-wave codes are routinely employed to simulate ICRF heating experiments in tokamaks. The vast majority of these codes rely on a description of the plasma based on a 'quasi-local' derivation of the dielectric tensor, i.e. assuming that the range of space dispersion remains small compared to the system dimensions. However, non-local effects caused by wide particle orbits are expected to play a significant role in current and future experiments featuring wave-driven fast ions, fusion-born alpha particles... Global formalisms have thus been proposed to include these effects in a more comprehensive fashion. Based on a description of the particle dynamics in terms of action-angle variables, a full-wave code, named EVE, is currently under development. Its first version, presented here, incorporates quasi-local expressions valid to second order in Larmor radius, derived from the more general Hamiltonian formalism. The obtained tool has the advantage of being compatible with the current requirements of integrated modeling, and lends itself to direct comparisons with existing codes

  20. Modelling study on the three-dimensional neutron depolarisation response of the evolving ferrite particle size distribution during the austenite-ferrite phase transformation in steels

    Science.gov (United States)

    Fang, H.; van der Zwaag, S.; van Dijk, N. H.

    2018-07-01

    The magnetic configuration of a ferromagnetic system with mono-disperse and poly-disperse distribution of magnetic particles with inter-particle interactions has been computed. The analysis is general in nature and applies to all systems containing magnetically interacting particles in a non-magnetic matrix, but has been applied to steel microstructures, consisting of a paramagnetic austenite phase and a ferromagnetic ferrite phase, as formed during the austenite-to-ferrite phase transformation in low-alloyed steels. The characteristics of the computational microstructures are linked to the correlation function and determinant of depolarisation matrix, which can be experimentally obtained in three-dimensional neutron depolarisation (3DND). By tuning the parameters in the model used to generate the microstructure, we studied the effect of the (magnetic) particle size distribution on the 3DND parameters. It is found that the magnetic particle size derived from 3DND data matches the microstructural grain size over a wide range of volume fractions and grain size distributions. A relationship between the correlation function and the relative width of the particle size distribution was proposed to accurately account for the width of the size distribution. This evaluation shows that 3DND experiments can provide unique in situ information on the austenite-to-ferrite phase transformation in steels.

  1. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  2. Focused Application Software for Ferrite Patch Antennas

    National Research Council Canada - National Science Library

    Trott, Keith

    1999-01-01

    ... (brick and tetrahedral elements) are combined by MRC via a graphical user interface (GUI) into a user friendly code capable of modeling conformal antennas with ferrite sub and superstrates recessed in planar surfaces.

  3. Oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Asbroeck, P. van.

    1976-10-01

    The publication gives the available data on the DTO2 dispersion-strengthened ferritic alloy developed at C.E.N./S.C.K. Mol, Belgium. DTO2 is a Fe-Cr-Mo ferritic alloy, strengthened by addition of titanium oxide and of titanium leading to the formation of Chi phase. It was developed for use as canning material for fast breeder reactors. (author)

  4. Micromagnetic simulations of spinel ferrite particles

    International Nuclear Information System (INIS)

    Dantas, Christine C.; Gama, Adriana M.

    2010-01-01

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M 1 - n Zn n Fe 2 O 4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={Fe, Mn, Co, Ni, Mg, Cu }; (b) for n=0.1: M = {Fe, Mg} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {Mg, Cu} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe 3 O 4 (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe 3 O 4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  5. SC tuning fork

    CERN Document Server

    The tuning fork used to modulate the radiofrequency system of the synchro cyclotron (SC) from 1957 to 1973. This piece is an unused spare part. The SC was the 1st accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990. In the SC the magnetic field did not change with time, and the particles were accelerated in successive pulses by a radiofrequency voltage of some 20kV which varied in frequency as they spiraled outwards towards the extraction radius. The frequency varied from 30MHz to about 17Mz in each pulse. The tuning fork vibrated at 55MHz in vacuum in an enclosure which formed a variable capacitor in the tuning circuit of the RF system, allowing the RF to vary over the appropriate range to accelerate protons from the centre of the macine up to 600Mev at extraction radius. In operation the tips of the tuning fork blade had an amplitude of movement of over 1 cm. The SC accelerator underwent extensive improvements from 1973 to 1975, including the installation of a...

  6. Characterization of Austempered Ferritic Ductile Iron

    Science.gov (United States)

    Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.

    2018-04-01

    The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.

  7. The ICRF-3: Status, Plans, and Multi-wavelength Progress on the next generation Celestial Reference Frame.

    Science.gov (United States)

    Jacobs, Christopher

    2015-08-01

    ICRF-3 seeks to improve upon the highly successful ICRF-2. Our goals are to improve the precision, spatial and frequency coverage relative to the ICRF-2 by 2018. This date is driven by the desire to create radio frames that are ready for comparison with the Gaia optical frame.Several specific actions are underway. A collaboration to improve at S/X-band precision of the Very Long Baseline Array (VLBA) Calibrator Survey's ~2200 sources, which are typically 5 times less precise than the rest of the ICRF-2, is bearing fruit and is projected to yield a factor of 3 improvement in precision. S/X-band southern hemisphere precision improvements are underway with observations using southern antennas such as the AuScope, Warkworth, and HartRAO, South Africa.We also seek to improve radio frequency coverage with X/Ka-band and K-band work. An X/Ka frame of 660 sources now has full sky coverage from the addition of a 2nd southern station in Argentina which is strengthening the southern hemisphere in general. The X/Ka-band frame's precision is now comparable to the ICRF-2 for the 530 sources in common. A K-band collaboration has formed with similar coverage and southern precision goals. By the time of this meeting, we expect K-band to complete full sky coverage with south polar cap observations and to improve spatial density north of -30 deg declination with VLBA observations.On the analysis front, special attention is being given to combination techniques both of Very Long Baseline Interferometry (VLBI) frames and of multiple data types. Consistency of the Celestial Reference Frame (CRF) with the Terrestrial Reference Frame (TRF) and Earth Oreintation Parameters (EOP) is another area of concern. Comparison of celestial frame solutions from various groups is underway in order to identify and correct systematic errors. We will discuss evidence emerging for 100 µas zonal errors in the ICRF2 in the declination range from 0 to -30 deg.Finally, work is underway to identify and

  8. Fast-wave ICRF minority-regime heating experiments on the Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Agarici, G; Beaumont, B; Becoulet, A; Kuus, H; Saoutic, B; Martin, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (FR). Dept. de Recherches sur la Fusion Controlee; Shepard, T D; Haste, G R; Baity, F W [Oak Ridge National Lab., TN (US); Evans, T E [General Atomics, San Diego, CA (US)

    1992-12-31

    Up to 4 MW of rf power at 57 MHz has been coupled to Ohmic target plasmas during the first ICRF heating experiments on Tore Supra. A total of 12 MW of rf power will ultimately be available from six tetrode amplifiers and will be coupled to the plasmas using three ORNL/CEA-designed resonant double-loop antennas. During these first experiments, two antennas were used, with one or two energized at a time. The antenna loading with plasma was observed to be well over an order of magnitude greater than that without plasma. In addition, one kilo-electron-volt of electron heating, significant minority nonthermal ions, and significant increases in diamagnetic stored energy were observed. A comparison of in-phase and out-of-phase antenna operation showed the same increase in stored energy, less radiated power, and a larger drop in loop voltage for out-of-phase operation. Confinement scaling agrees with the ITER scaling law.

  9. Anti-alias filter in AORSA for modeling ICRF heating of DT plasmas in ITER

    Science.gov (United States)

    Berry, L. A.; Batchelor, D. B.; Jaeger, E. F.; RF SciDAC Team

    2011-10-01

    The spectral wave solver AORSA has been used extensively to model full-field, ICRF heating scenarios for DT plasmas in ITER. In these scenarios, the tritium (T) second harmonic cyclotron resonance is positioned near the magnetic axis, where fast magnetosonic waves are efficiently absorbed by tritium ions. In some cases, a fundamental deuterium (D) cyclotron layer can also be located within the plasma, but close to the high field boundary. In this case, the existence of multiple ion cyclotron resonances presents a serious challenge for numerical simulation because short-wavelength, mode-converted waves can be excited close to the plasma edge at the ion-ion hybrid layer. Although the left hand circularly polarized component of the wave field is partially shielded from the fundamental D resonance, some power penetrates, and a small fraction (typically LLC.

  10. Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas

    International Nuclear Information System (INIS)

    Ding Siye; Wan Baonian; Ti Ang; Zhang Xinjun; Liu Zixi; Qian Jinping; Zhong Guoqiang; Duan Yanmin; Wang Lu

    2014-01-01

    Inward energy transport (pinch phenomenon) in the electron channel is observed in HT-7 plasmas using off-axis ion cyclotron resonance frequency (ICRF) heating. Experimental results and power balance transport analysis by TRANSP code are presented in this article. With the aids of GLF23 and Chang-Hinton transport models, which predict energy diffusivity in experimental conditions, the estimated electron pinch velocity is obtained by experimental data and is found reasonably comparable to the results in the previous study, such as Song on Tore Supra. Density scanning shows that the energy convective velocity in the electron channel has a close relation to density scale length, which is qualitatively in agreement with Wang's theoretical prediction. The parametric dependence of electron energy convective velocity on plasma current is still ambiguous and is worthy of future research on EAST. (magnetically confined plasma)

  11. Enhanced performance on high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Cotrell, G.; Corti, S.; Christiansen, J.P.; Hellsten, T.; Jacquinot, J.; Lallia, P.; Lomas, P.; O'Rourke, J.; Taroni, A.; Tibone, F.; Start, D.F.H.

    1989-01-01

    The performance of high current discharges can be increased by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Sawtooth-free periods have been obtained resulting in the enhanced discharge performance. High T e (0) 9 - 10.5 keV with peaked profiles T e (0)/ e > = 3 - 4 were obtained giving values of n e (0)T e (0) up to 6x10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A 60 % enhancement in D-D reaction rate from 2nd harmonic deuterium (2ω CD ) heating appears to be present. In all current rise (CR) discharges radiation amounts to 25-50 % of total power. (author) 4 refs., 6 figs

  12. ICRF boronization. A new technique towards high efficiency wall coating for superconducting tokamak reactors

    International Nuclear Information System (INIS)

    Li Jiangang; Zhao Yan Ping; Gu Xue Mao

    1999-01-01

    A new technique for wall conditioning that will be especially useful for future larger superconducting tokamaks, such as ITER, has been successfully developed and encouraging results have been obtained. Solid carborane powder, which is non-toxic and non-explosive, was used. Pulsed RF plasma was produced by a non-Faraday shielding RF antenna with RF power of 10 kW. The ion temperature was about 2 keV with a toroidal magnetic field of 1.8 T and a pressure of 3x10 -1 Pa. Energetic ions broke up the carborane molecules, and the resulting boron ions struck and were deposited on the first wall. In comparison with glow discharge cleaning boronization, the B/C coating film shows higher adhesion, more uniformity and longer lifetime during plasma discharges. The plasma performance was improved after ICRF boronization. (author). Letter-to-the-editor

  13. A global simulation of ICRF heating in a 3D magnetic configuration

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Akutsu, T.

    2005-01-01

    A global simulation code for the ICRF heating analysis in a three-dimensional (3D) magnetic configuration is developed combining two global simulation codes; a drift kinetic equation solver, GNET, and a wave field solver, TASK/WM. Both codes take into account 3D geometry using the numerically obtained 3D MHD equilibrium. The developed simulation code is applied to the LHD configuration as an example. Characteristics of energetic ion distributions in the phase space are clarified in LHD. The simulation results are also compared with experimental results by evaluating the count number of the neutral particle analyzer using the obtained energetic ion distribution, and a relatively good agreement is obtained. (author)

  14. A portable data acquisition system on J.I.P.P. T-II ICRF experiment

    International Nuclear Information System (INIS)

    Hidekuma, S.

    1982-03-01

    This system has been developed for the data acquisition in the J.I.P.P. T-II ICRF experiment. It is composed of the LSI-11/2(56KB), a dual floppy disk drive, CAMAC modules, a graphic display and an interface module to the HITAC 10-II system. The operating system is RT-11. This system has functions of the data acquisition through A-D converters (max.32ch), the transfer of the data to the HITAC 10-II system and the preservation of them in its floppy disk. Furthermore, a user can easily develop his application programs with this system. The operating procedures of this system are described. (author)

  15. Antenna loading and electron heating experiments of ICRF wave in TNT-A tokamak

    International Nuclear Information System (INIS)

    Shinohara, Shunjiro; Asakura, Nobuyuki; Naito, Masahiro; Miyamoto, Kenro

    1984-01-01

    Antenna loading resistance and electron heating effects of ICRF wave were investigated in TNT-A tokamak. Lodaing resistance increased with the mean plasma density and decreased with the input power. The effect of the distance between the plasma and antenna surface on loading resistance was studied and had good agreements with the calculated results. The increase in the soft Xray emissivity was larger in the presence of ion-ion hybrid and/or ion cyclotron resonance layer in the plasma than that in the absence of them. With the absorbed power up to two times of the ohmic power, the central electron temperature increased by 20%, the soft Xray emissivity increased by 80% and the mean plasma density decreased by 10%, while the total radiation loss increased slightly (by 15%). (author)

  16. Measurements of the loading impedance and field scaling of a cavity ICRF launcher for Big D

    International Nuclear Information System (INIS)

    Rettig, C.; Ryan, P.M.; Hoffman, D.J.

    1985-01-01

    Recently, a new ICRF launcher in the form of a resonant coil cavity has been proposed and analyzed using a convenient two-dimensional model and a Poisson-solver computer code. Here, a physical model of the launcher has been fabricated to test the scaling characteristics of the impedance and relative fields as a function of the physical sizing of the structure. Variable parameters include the antenna-to-plasma distance, the cavity back wall-to-plasma distance, and the antenna cross-sectional shape. Each of these parameters is varied in the interest of optimizing the radiated power for given antenna voltage and current limits. Critical design criterial will be determined from the data. The report consists of 21 viewgraphs

  17. Materials tests and analyses of Faraday shield tubes for ICRF [ion cyclotron resonant frequency] antennas

    International Nuclear Information System (INIS)

    King, J.F.; Baity, F.W.; Hoffman, D.J.; Walls, J.C.; Taylor, D.J.

    1988-01-01

    The ion cyclotron resonant frequency (ICRF) antennas for heating fusion plasmas require careful analysis of the materials selected for the design and the successful fabrication of high integrity braze bonds. Graphite tiles are brazed to Inconel 625 Faraday shield tubes to protect the antenna from the plasma. The bond between the graphite and Inconel tube is difficult to achieve due to the different coefficients of thermal expansion. A 2-D stress analysis showed the graphite could be bonded to Inconel with a Ag-Cu-Ti braze alloy without cracking the graphite. Brazing procedures and nondestructive examination methods have been developed for these joints. This paper presents the results of our joining development and proof testing. 2 refs., 3 figs

  18. Joule loss on a Faraday shield of JT-60 ICRF test antenna

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki; Saigusa, Mikio; Ikeda, Yoshitaka; Kimura, Haruyuki; Hirashima, Teruhisa; Uehara, Munenori.

    1988-01-01

    Joule loss on a Faraday shield of JT-60 ICRF test antenna with a conductive casing is investigated at the frequency range of 120 MHz. The magnetic field radiated from the antenna is measured by three-dimensionally scanning an rf probe both inside and outside the antenna casing. The magnetic field perpendicular to the Faraday shield, B x , is found to be the largest component near the Faraday shield. It consequently gives the major part of the joule loss on the Faraday shield. The temperature distribution of the Faraday shield due to joule loss is measured directly with a thermocamera. It is confirmed that the area of the high temperature rise is consistent with the peak positions of the B x field. Faraday shield resistance which is estimated from power measurements agrees with the theoretical value. (author)

  19. Dielectric properties of Al-substituted Co ferrite nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    The particle size, D, decreases with increase in Al-content. The lattice parameter, a ... a significant saving in time and energy consumption over the traditional methods. ... electrical, and magnetic properties of spinel ferrites. Cobalt ferrite based ...

  20. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  1. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  2. SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers

    Science.gov (United States)

    Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier

    2015-12-01

    SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.

  3. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    International Nuclear Information System (INIS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2016-01-01

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m"2, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  4. Theoretical study for ICRF sustained LHD type p-{sup 11}B reactor

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tsuguhiro (ed.)

    2003-04-01

    This is a summary of the workshop on 'Theoretical Study for ICRF Sustained LHD Type p-{sup 11}B Reactor' held in National Institute for Fusion Science (NIFS) on July 25, 2002. In the workshop, study of LHD type D-{sup 3}He reactor is also reported. A review concerning the advanced nuclear fusion fuels is also attached. This review was reported at the workshop of last year. The development of the p-{sup 11}B reactor research which uses the LHD magnetic field configuration has been briefly summarized in section 1. In section 2, an integrated report on advanced nuclear fusion fuels is given. Ignition conditions in a D-{sup 3}He helical reactor are summarized in section 3. 0-dimensional particle and power balance equations are solved numerically assuming the ISS95 confinement law including a confinement factor ({gamma}{sub HH}). It is shown that high average beta plasma confinement, a large confinement factor ({gamma}{sub HH} > 3) and the hot ion mode (T{sub i}/T{sub e} > 1.4) are necessary to achieve the ignition of the D-{sup 3}He helical reactor. Characteristics of ICRF sustained p-{sup 11}B reactor are analyzed in section 4. The nuclear fusion reaction rate < {sigma}{upsilon} > is derived assuming a quasilinear plateau distribution function (QPDF) for protons, and an ignition condition of p-{sup 11}B reactor is shown to be possible. The 3 of the presented papers are indexed individually. (J.P.N.)

  5. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Polytechnic University of Catalonia (UPC), Barcelona (Spain); Department of Applied Physics, Ghent University, Ghent (Belgium); Noterdaeme, J.-M. [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Department of Applied Physics, Ghent University, Ghent (Belgium); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Dies, J. [Polytechnic University of Catalonia (UPC), Barcelona (Spain)

    2016-11-15

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m{sup 2}, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  6. Ferritic steels for French LMFBR steam generators

    International Nuclear Information System (INIS)

    Aubert, M.; Mathieu, B.; Petrequin, P.

    1983-06-01

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 530 0 C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  7. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  8. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  9. Study and optimization of magnetized ICRF discharges for tokamak wall conditioning and assessment of the applicability to ITER

    International Nuclear Information System (INIS)

    Wauters, T.

    2011-11-01

    This work is devoted to the study and optimization of the Ion Cyclotron Wall Conditioning (ICWC) technique. ICWC, operated in presence of the toroidal magnetic field, makes use of four main tokamak systems: the ICRF antennas to initiate and sustain the conditioning discharge, the gas injection valves to provide the discharge gas, the machine pumps to remove the wall desorbed particles, and the poloidal magnetic field system to optimize the discharge homogeneity. Additionally neutral gas and plasma diagnostics are required to monitor the discharge and the conditioning efficiency. In chapter 2 a general overview on ICWC is given. Chapter 3 treats the ICRF discharge homogeneity and the confinement properties of the employed magnetic field. In the first part we will discuss experimental facts on plasma homogeneity, and how experimental optimization led to its improvement. In the second part of the chapter the confinement properties of a partially ionized plasma in a toroidal magnetic field configuration with additional small vertical component are discussed. Chapter 4 gives an overview of experimental results on the efficiency of ICWC, obtained on TORE SUPRA, TEXTOR, JET and ASDEX Upgrade. In chapter 5 a 0D kinetic description of hydrogen-helium RF plasmas is outlined. The model, describing the evolution of ICRF plasmas from discharge initiation to the (quasi) steady state plasma stage, is developed to obtain insight on ICRF plasma parameters, particle fluxes to the walls and the main collisional processes. Chapter 6 presents a minimum structure for a 0D reservoir model of the wall to investigate in deeper detail the ICWC plasma wall interaction during isotopic exchange experiments. The hypothesis used to build up the wall model is that the same model structure should be able to describe the wall behavior during normal plasmas and conditioning procedures. Chapter 7 extrapolates the results to the envisaged application of ICWC on ITER

  10. Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy

    DEFF Research Database (Denmark)

    Martin, E.; Thougaard, A.V.; Grauslund, M.

    2009-01-01

    of topoisomerase II, resulting in the risk of additional myelosuppression in patients receiving ICRF-187 as a cardioprotectant in combination with doxorubicin. The development of a topoisomerase II-inactive iron chelating compound thus appeared attractive. In the present paper we evaluate the topoisomerase II...... chelation alone does not appear to be sufficient for protection against anthracycline-induced cardiomyopathy Udgivelsesdato: 2009/1/8...

  11. Ion heating up to 1 MeV range with higher harmonic ICRF wave on JT-60U

    International Nuclear Information System (INIS)

    Nemoto, M.; Kusama, Y.; Hamamatsu, K.; Kimura, H.; Fujii, T.; Moriyama, S.; Saigusa, M.; Afanassiev, V.I.

    1997-01-01

    The properties of protons under accleration by an ion cyclotron range of frequency (ICRF) waves with the second to fourth hydrogen harmonics have been investigated in the JT-60U tokamak at the Japan Atomic Energy Research Institute (JAERI). Protons have been accelerated up to 1 MeV in the presence of an ICRF wave of fixed frequency, neutral beams (NB), and a fixed toroidal magnetic field which is scanned through several plasma discharges. The tail temperature of the protons, which is evaluated in the range 0.32-0.86 MeV, has been observed to increase in the second to third harmonics, however increase of the tail temperature in the third to fourth harmonics has not been observed clearly. Furthermore, the dependence of tail temperature on the harmonic number has been found to be in qualitative agreement with results from a simulation code analysis based upon the one-dimensional Fokker-Planck equation coupled with the kinetic wave equation. Experimental values for the stored energy of the accelerated ions have shown, however, that the response of stored energy to changes in absorbed ICRF power is much stronger than the response to changes in harmonic number. Also, the incremental energy confinement times for heating discharges matching the third and fourth harmonics (3 ω CH) and 4 ω CH) of hydrogen have been observed to be less than half that for those matching the second harmonic. It has been found that suppression of the absorbed ICRF power accompanied with the occurence of cavity resonance in the 3ω CH and 4ω CH heating discharges reduces the stored energy of the accelerated ions and the incremental energy confinement time. (Author)

  12. Recrystallization induced plasticity in austenite and ferrite

    International Nuclear Information System (INIS)

    Huang Mingxin; Pineau, André; Bouaziz, Olivier; Vu, Trong-Dai

    2012-01-01

    Highlights: ► Plasticity can be induced by recrystallization in austenite and ferrite. ► Strain rate is proportional to recrystallization kinetics. ► Overall atomic flux selects a preferential direction may be the origin. - Abstract: New experimental evidences are provided to demonstrate that plastic strain can be induced by recrystallization in austenite and ferrite under an applied stress much smaller than their yield stresses. Such Recrystallization Induced Plasticity (RIP) phenomenon occurs because the overall atomic flux during recrystallization follows a preferential direction imposed by the applied stress.

  13. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  14. Measurements of plasma termination in ICRF heated long pulse discharges with fast framing cameras in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Kasahara, Hiroshi; Tanaka, Hirohiko

    2015-01-01

    The termination process of long pulse plasma discharges in the Large Helical Device (LHD) have been observed with fast framing cameras, which shows that the reason for the termination of the discharged has been changed with increased plasma heating power, improvements of plasma heating systems and change of the divertor configuration, etc. For long pulse discharges in FYs2010-2012, the main reason triggering the plasma termination was reduction of ICRF heating power with rise of iron ion emission due to electric breakdown in an ICRF antenna. In the experimental campaign in FY2013, the duration time of ICRF heated long pulse plasma discharges has been extended to about 48 minutes with a plasma heating power of ∼1.2 MW and a line-averaged electron density of ∼1.2 × 10"1"9 m"-"3. The termination of the discharges was triggered by release of large amounts of carbon dusts from closed divertor regions, indicating that the control of dust formation in the divertor regions is indispensable for extending the duration time of long pulse discharges. (author)

  15. EMC3-Eirene simulations of gas puff effects on edge density and ICRF coupling in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Garching (Germany); University of Ghent, Ghent (Belgium); Coster, David; Lunt, Tilmann; Bobkov, Volodymyr; Feng, Yuehe [Max Planck Institute for Plasma Physics, Garching (Germany); Collaboration: ASDEX Upgrade team

    2015-05-01

    Ion cyclotron range of frequency (ICRF) heating relies on the Fast Wave (FW) to transport the power from the edge (the antenna) to the plasma center. Since the FW is evanescent below a critical density (typically in the 10{sup 18} m{sup -3} range), the wave does not propagate in the region where the density is below this value in the very edge of the plasma. The coupling depends strongly on the width of this region. The distance between the ICRF antenna and the FW cut-off layer can be made smaller by increasing the edge density in front of the ICRF antenna. Previous experiments in many tokamaks and preliminary simulation results for AUG and JET with EDGE2D-EIRENE show that the edge density could indeed be increased with gas puffing at the top of the vessel or in the midplane. But the 2D code cannot quantitatively reproduce the experimental results, mainly due to the assumptions of toroidal axisymmetry. EMC3-EIRENE is a 3D Edge Monte Carlo plasma fluid transport code. By including the toroidal nonaxisymmetric plasma facing components and 3D positions of gas valves in the code, the simulations can be made more realistic. We will show first simulation results of the code and a comparison to experiments.

  16. Simulation of non-linear coaxial line using ferrite beads

    International Nuclear Information System (INIS)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J.

    2002-01-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  17. Magnetic properties of nanostructured spinel ferrites and ...

    Indian Academy of Sciences (India)

    exchange interaction strength because of an increase in the magnetic ion concentration in the A-site on milling, ... By using a copper wheel, rotating with the ... Zn ferrite with a small applied field of 4 mT for two different grain sizes. The Néel ... By varying the concentration of the oxidant (KNO3) or ferric ions, we could achieve.

  18. Synthesis and Characterization of Cobalt Ferrite Nanoparticles ...

    African Journals Online (AJOL)

    prepared material. It was observed that surface modification such as with silica coating on the cobalt ferrite will have significant effect on the structural and magnetic properties. It is also observed that, silica coated nanoparticles could be used in biomedical applications (Hong et al., 2013). In this work we have chosen sol-gel ...

  19. Structural properties of Cd–Co ferrites

    Indian Academy of Sciences (India)

    36, No. 5, October 2013, pp. 919–922. c Indian Academy of Sciences. Structural properties of Cd–Co ferrites. S P DALAWAIa,∗. , T J SHINDEb, A B GADKARIc and P N VASAMBEKARa. aDepartment of Electronics, Shivaji University, Kolhapur 416 004, India. bDepartment of Physics, KRP Kanya Mahavidyalaya, Islampur ...

  20. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  1. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    395–398. c Indian Academy of Sciences. Modeling of austenite to ferrite transformation. MOHSEN KAZEMINEZHAD. ∗. Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran. MS received 17 January 2011; revised 9 July 2011. Abstract. In this research, an algorithm ...

  2. Synthesis of lithium ferrites from polymetallic carboxylates

    Directory of Open Access Journals (Sweden)

    STEFANIA STOLERIU

    2008-10-01

    Full Text Available Lithium ferrite was prepared by the thermal decomposition of three polynuclear complex compounds containing as ligands the anions of malic, tartaric and gluconic acid: (NH42[Fe2.5Li0.5(C4H4O53(OH4(H2O2]×4H2O (I, (NH46[Fe2.5Li0.5(C4H4O63(OH8]×2H2O (II and (NH42[Fe2.5Li0.5(C6H11O73(OH7] (III. The polynuclear complex precursors were characterized by chemical analysis, IR and UV–Vis spectra, magnetic measurements and thermal analysis. The obtained lithium ferrites were characterized by XRD, scanning electron microscopy, IR spectra and magnetic measurements. The single α-Li0.5Fe2.5O4 phase was obtained by thermal decomposition of the tartarate complex annealed at 700 °C for 1 h. The magnetization value ≈ 50 emu g-1 is lower than that obtained for the bulk lithium ferrite due to the nanostructural character of the ferrite. The particle size was smaller than 100 nm.

  3. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  4. Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method

    International Nuclear Information System (INIS)

    Huang, Xiaogu; Zhang, Jing; Wang, Wei; Sang, Tianyi; Song, Bo; Zhu, Hongli; Rao, Weifeng; Wong, Chingping

    2016-01-01

    In this paper, the cobalt zinc ferrite was prepared by coprecipitation method at different pH conditions. The influence of pH values on the coprecipitation reaction was theoretically analyzed at first. The calculated results showed that the pH values should be controlled in the range of 9–11 to form the stable precipitation. The XRD investigation was used to further confirm the formation of the composite on specific pH values. In addition, the morphological study revealed that the average particle size of the composite decreased from 40 nm to 30 nm when the pH value increased from 9–11. The variation of microstructure plays a critical role in controlling the electromagnetic properties. From the electromagnetic analysis, the dielectric loss factor was 0.02–0.07 and magnetic loss factor was 0.2–0.5 for the composite synthesized at pH of 9, which presents dramatically improved dielectric loss and magnetic loss properties than the samples prepared at pH of 10 and 11. The as-prepared cobalt zinc ferrite are highly promising to be used as microwave absorption materials. - Highlights: • Co–Zn ferrite was prepared by coprecipitation method with different pH values. • To obtain pure Co–Zn ferrite, the theoretical pH values were 9–11. • Microstructure and electromagnetic properties can be tuned by varying pH values. • Co–Zn ferrite prepared with pH=9 performed well electromagnetic loss properties.

  5. Upgrades to the 4-strap ICRF Antenna in Alcator C-Mod

    International Nuclear Information System (INIS)

    G. Schilling; J.C. Hosea; J.R. Wilson; W. Beck; R.L. Boivin; P.T. Bonoli; D. Gwinn; W.D. Lee; E. Nelson-Melby; M. Porkolab; R. Vieira; S.J. Wukitch; J.A. Goetz

    2001-01-01

    A 4-strap ICRF antenna suitable for plasma heating and current drive has been designed and fabricated for the Alcator C-Mod tokamak. Initial operation in plasma was limited by high metallic impurity injection resulting from front surface arcing between protection tiles and from current straps to Faraday shields. Antenna modifications were made in February 2000, resulting in impurity reduction, but low-heating efficiency was observed when the antenna was operated in its 4-strap rather than a 2-strap configuration. Further modifications were made in July 2000, with the installation of BN plasma-facing tiles and radio- frequency bypassing of the antenna backplane edges and ends to reduce potential leakage coupling to plasma surface modes. Good heating efficiency was now observed in both heating configurations, but coupled power was limited to 2.5 MW in H-mode, 3 MW in L-mode, by plasma-wall interactions. Additional modifications were started in February 2001 and will be completed by this meeting. All the above upgrades and their effect on antenna performance will be presented

  6. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Colas, L.; Bremond, S.

    2003-01-01

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  7. Enhanced performance of high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Christiansen, J.P.

    1989-01-01

    The performance of high current discharges can be improved by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Long sawtooth-free periods have been obtained which result in a transiently-enhanced discharge performance. High T c (0) = 9-10.5 keV with peaked profile T e (0)/ e > = 3-4 were obtained giving values of N e (0)T e (0) up to 6 x 10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A best value of n Dd (0)T i (0)τ E = 1.65 x 10 20 (m -3 keV s) was achieved. Local transport simulation shows that the electron and ion thermal diffusivities do not differ substantially in the two cases of current-rise (CR) and flat-top (FT) heating, the performance of the central plasma region being enhanced, in the case of current-rise, entirely by the elimination of the sawtooth instability. The maximum D-D reaction rate is enhanced by a factor of 2 compared to the flat-top value. An appreciable part of the reaction rate is attributed to 2nd harmonic deuterium (2ω CD ) heating. In all current-rise discharges radiation amounts to 25-50% of total power and Ζ eff remains roughly constant. (author)

  8. Experimental investigation of ICRF effects: Annual technical progress report, January 1, 1988-October 15, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The Phaedrus Program now consists of two major devices, the Phaedrus-B Tandem mirror and the Phaedrus-T tokamak. Phaedrus-B has been modified to operate as an axisymmetric tandem mirror with no quadrupole end cell fields and only circular baffles. Phaedrus-T is now under construction. The Phaedrus-T vacuum chamber is nearing completion and new toroidal field coils have been ordered (with completion expected in early 1989). As originally proposed, when Phaedrus-T is operational, our initial plan is to continue operating both devices (on alternating schedules). We will utilize the same control room, power supplies, and staff for both devices, and graduate students will have thesis project physics issues that can be studied on both devices. Investigations are currently and, will continue to be, centered around five physics areas. All involve ICRF. These are: edge physics; ponderomotive effects; mode conversion; mode control; and tandem mirror specific. The first four will ultimately involve activities on both Phaedrus-T and Phaedrus-B. The fifth includes work that is specifically related to tandem mirror issues. 4 figs

  9. Analysis of 4-strap ICRF Antenna Performance in Alcator C-Mod

    International Nuclear Information System (INIS)

    Schilling, G.; Wukitch, S.J.; Boivin, R.L.; Goetz, J.A.; Hosea, J.C.; Irby, J.H.; Lin, Y.; Parisot, A.; Porkolab, M.; Wilson, J.R.

    2003-01-01

    A 4-strap ICRF antenna was designed and fabricated for plasma heating and current drive in the Alcator C-Mod tokamak. Initial upgrades were carried out in 2000 and 2001, which eliminated surface arcing between the metallic protection tiles and reduced plasma-wall interactions at the antenna front surface. A boron nitride septum was added at the antenna midplane to intersect electric fields resulting from radio-frequency sheath rectification, which eliminated antenna corner heating at high power levels. The current feeds to the radiating straps were reoriented from an E||B to E parallel B geometry, avoiding the empirically observed ∼15 kV/cm field limit and raising antenna voltage holding capability. Further modifications were carried out in 2002 and 2003. These included changes to the antenna current strap, the boron nitride tile mounting geometry, and shielding the BN-metal interface from the plasma. The antenna heating efficiency, power, and voltage characteristics under these various configurations will be presented

  10. Loading, absorption, and Fokker-Planck calculations for upcoming ICRF experiments on ATF

    International Nuclear Information System (INIS)

    Shepard, T.D.; Carter, M.D.; Goulding, R.H.; Kwon, M.

    1989-01-01

    ICRF experiments on ATF at the 100-kW level are planned for the current 1989 operating period. These plans include the 2ω/sub cH/ regime at f/sub RF/ = 28.88 MHz, D(H) at 14.44 MHz, and 4 He( 3 He) and D( 3 He) at 9.63 MHz. ECH target plasmas have n/sub eO/ /approxreverse arrowlt/ 0.15 /times/ 10 20 m/sup /minus/3/ and B = 0.95 T. The density and temperature profiles obtained are broader than those from 1988, owing to recent field error corrections. The values used for target-plasma parameters in the calculations were taken from initial 1989 ATF data. Loading and absorption calculations have been performed using the 3D RF heating code ORION with a helically symmetric equilibrium, and Fokker-Planck calculations were performed using the steady-state code RFTRANS with two velocity dimensions and one spatial dimension. 6 refs., 3 figs

  11. A study on the fusion reactor - Study of ICRF coupling in the KAIST tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Duk In; Chang, Hong Young; Lee, Sun Chil; Jun, Sang Jin; Kwon, Gi Chung; Seo, Sung Hun; Heo, Sung Hoi; You, Kwang Il; Song, Soo Bin; Lee, Sung Chul; Kim, Min Chul; Lee, Chan Hui [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-09-01

    Research objectives are to design and fabricate the antenna, measure t property of absorption transmitted to the plasma, and research the physical phenomena about the ICRF coupling, Main heating method is ohmic heating at the KAIST tokamak. The power of the plasma produced by ohmic heating is about 100 kW. Because the toroidal field is 5 {approx} 8 kG, the RF system`s output power is about 10 kW and frequency range is 7 {approx} 30 MHz. In the first year, a 1 kW RF preamplifier was bought. In this year, a CW 2 kW RF main amp. and RF power monitoring system was bought. In the research on antenna, we study the method how to measure electric field emitted from antenna using piezo elements. The matching network composed of two VVC (35 kV), 100 {approx} 1000 pF match firmly up to 50 kW power. We studied the measurement method of antenna impedance theoretically, and measured power efficiency and antenna impedance in the helicon plasma. 32 refs., 5 tabs., 29 figs. (author)

  12. An algorithm for the calculation of three-dimensional ICRF fields in tokamak geometry

    International Nuclear Information System (INIS)

    Smithe, D.N.; Kammash, T.

    1987-01-01

    A computational scheme is developed which permits tractable calculation of three-dimensional full-wave solutions to the Vlasov-Maxwell equations under typical ion cyclotron range of frequencies (ICRF) experimental conditions. The method is unique in that power deposition to the plasma is determined via the anti-Hermitian part of a truncated warm plasma dielectric operator, rather than as the result of an assumed phenomenological collision frequency. The resulting computer code allows arbitrary variation of density, temperature, magnetic field and minority concentration in the poloidal plane by performing a convolution of poloidal modes to produce a coupled system of differential equations in the radial variable. By assuming no inhomogeneity along the toroidal axis, an inverse transform over k parallel is performed, yielding the global three-dimensional fast wave field solutions. The application of the code to TFTR-like plasmas shows a mild resonance structure in antenna loading related to the changing number of wavelengths between the antenna and the resonance layer. (author)

  13. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    Science.gov (United States)

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  14. Construction of a resonant loop with the ICRF antenna for KSTAR

    International Nuclear Information System (INIS)

    Bae, Young Dug; Jeong, Sung Un; Yoon, Jae Sung; Hong, Bong Geon

    2003-01-01

    The antenna of the KSTAR ICRF heating system consists of four current straps, each of which is grounded at the center, and has two coaxial ports, one at each end. The top and bottom ports of each strap are fed by one transmitter. The two ports are connected at tee connector to form a resonant loop, and the coaxial feed line from the transmitter is connected to the tee. One resonant loop with the proto-type antenna is built at the RF test stand in KAERI. It is composed with one current strap, one tee connector and two arms connecting them. Each arm consists of a 6-inch vacuum transmission line, a vacuum feed through, a part of pressurized 9-inch coaxial line, and an adjustable phase shifter to cover wide frequency range of 25-60 MHz. Total electrical length is changeable from 45 to 51 m. Many voltage probes and directional couplers are installed to measure RF voltage of the standing wave, power flow and phase difference. Resonant and matching conditions are investigated for various frequencies

  15. Recycling behaviour during long pulse discharges after ICRF boronization in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Huang, J.; Wan, B.N.; Li, J.G.; Gong, X.Z.; Zhang, X.D.; Wu, Z.W.; Zhou, Q.

    2006-01-01

    The evolution of recycling behaviour has been investigated during long pulse discharges in the HT-7 tokamak after ICRF boronization (C 2 B 10 H 12 ) using the H/(H+D) ratio and the edge recycling coefficient R. After boronization, impurity reduction is observed, attributed to the fresh boron film, but the recycling coefficient can exceed unity due to a large amount of hydrogen absorbed in the film, leading to an uncontrollable density rise and discharge termination. When the H/(H+D) ratio was reduced to less than 25%, the electron density was easily controlled. The longest discharge, up to 240 s with central electron temperature T e (0) of about 1.0 keV and central electron density n e (0) of 0.8 x 10 19 m -3 , was achieved following boronization. After many discharges the effectiveness of boron film was weakened, and the density rise was correlated with an increase in both carbon and oxygen radiation which limited the duration of long pulse discharges

  16. Modelling of DC electric fields induced by RF sheath in front of ICRF antenna

    International Nuclear Information System (INIS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2003-01-01

    Reducing the ICRF (ion cyclotron range frequency) antenna-plasma interaction is one of the key points for reaching very long tokamak discharges. One problem which limits such discharges, is the appearance of hot spots on the surface of the antenna: Radio Frequency (RF) sheaths modify the properties of the edge plasma by rectifying the RF potential along open magnetic field lines and can induce hot spots. This paper investigates the corrections to sheath potentials introduced by the interactions between adjacent flux tubes. Our theoretical study started from an oscillating double Langmuir probe model, in which a transverse influx of current was included. This model was confronted with 1D PIC simulations along a magnetic field line, and demonstrated that current exchanges can decrease mean potentials. A 2D electrostatic fluid code was then developed, which couples adjacent flux tubes in a poloidal cross section with collisional conductivity or polarization currents. It showed that transverse currents are able to smooth structures smaller than a characteristic size in the sheath potential maps (results for Tore Supra). These computed rectified potentials can be used to obtain the DC electric fields in front of the antenna. And then, it gives an estimate of the particle drift and the energy flux on the antenna structure, which can explain hot spots. (author)

  17. VUV study of impurity generation during ICRF heating experiments on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Manning, H.L.

    1986-06-01

    A 2.2 meter grazing incidence VUV monochromator has been converted into a time-resolving spectrograph by the addition of a new detector system, based on a microchannel plate image intensifier linked to a 1024-element linear photodiode array. The system covers the wavelength range 15 to 1200 A (typically 40 A at a time) with resolution of up to .3 A FWHM. Time resolution is selectable down to 0.5 msec. The system sensitivity was absolutely calibrated below 150 A by a soft x-ray calibration facility. The spectrograph was installed on the Alcator C tokamak at MIT to monitor plasma impurity emission. There, cross-calibration with a calibrated EUV monochromator was performed above 400 A. Calibration results, system performance characteristics, and data from Alcator C are presented. Observations of impurity behavior are presented from a series of ICRF heating experiments (180 MHz, 50 to 400 kW) performed on the Alcator C tokamak, using graphite limiters and stainless steel antenna Faraday shields

  18. Performance of the JT-60 ICRF antenna with an open type Faraday shield

    International Nuclear Information System (INIS)

    Fujii, T.; Saigusa, M.; Kimura, H.; Moriyama, S.; Annoh, K.; Kawano, Y.; Kobayashi, N.; Kubo, H.; Nishitani, T.; Ogawa, Y.; Shinozaki, S.; Terakado, M.

    1992-01-01

    Performance of the JT-60 ICRF antenna in second and third harmonic heating schemes (f=120, 131 MHz) over past four years of operation is presented. The antenna is mainly composed of phased 2x2 loops, an open type Faraday shield and a metallic casing, forming a plug-in type. The antenna is operated for wide plasma parameters: anti n e =1-7x10 19 m -3 , I P =1-2.8 MA and B T =2.2-4.8 T. The open type Faraday shield shows no deterioration for impurity production and heating efficiency up to the maximum injected power of 3.1 MW (the power density of 16 MW/m 2 ) except the following particular condition. Only for (0, 0) phasing and less than 30 mm of the distance between the outermost magnetic surface and the antenna guard limiter, the radiation loss increases abruptly from ΔP rad /P IC ∝0.3 to ΔP rad /P IC ∝4 in carbon limiter discharges when the injected power exceeds a threshold value of ∝0.5 MW. Strong titanium impurity release from the Faraday shield is observed in coincidence with the increase in the radiation loss. This suggests that strong ion sputtering is induced on the Faraday shield by RF sheaths. (orig.)

  19. ICRF Mode Conversion Studies with Phase Contrast Imaging and Comparisons with Full-Wave Simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Porkolab, M.; Jaeger, E. F.; Harvey, R. W.

    2011-01-01

    Waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat toka-mak plasmas. In a multi-ion-species plasma, the FW converts to ion cyclotron waves (ICW) and ion Bernstein waves (IBW) around the ion-ion hybrid resonance (mode conversion). The mode converted wave is of interest as an actuator to optimise plasma performance through flow drive and current drive. Numerical simulations are essential to describe these processes accurately, and it is important that these simulation codes be validated. On Alcator C-Mod, direct measurements of the mode converted waves have been performed using Phase Contrast Imaging (PCI), which measures the line-integrated electron density fluctuations. The results were compared to full-wave simulations AORSA and TORIC. AORSA is coupled to a Fokker-Planck code CQL3D for self-consistent simulation of the wave electric field and the minority distribution function. The simulation results are compared to PCI measurements using synthetic diagnostic. The experiments were performed in D-H and D- 3 He plasmas over a wide range of ion species concentrations. The simulations agreed well with the measurements in the strong absorption regime. However, the measured fluctuation intensity was smaller by 1-2 orders of magnitudes in the weakly abosorbing regime, and a realistic description of the plasma edge including dissipation and antenna geometry may be required in these cases.

  20. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  1. Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajnish [Department of Physics, Indian Institute of Technology Patna, Bihta, Patna 801103 (India); Singh, Rakesh Kr. [Aryabhatta Center for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna 800001 (India); Zope, Mukesh Kumar [Indira Gandhi Institute of Medical Sciences, Sheikhpura, Patna 800014 (India); Kar, Manoranjan, E-mail: mano@iitp.ac.in [Department of Physics, Indian Institute of Technology Patna, Bihta, Patna 801103 (India)

    2017-06-15

    Highlights: • Increase of lattice parameter due to Pb substitution in CFO. • Magnetism due to lattice strain in nonmagnetic (Pb) substituted CFO. • Saturation magnetization increases up to 2% Pb concentration. • Magnetocrystalline anisotropy constant increases up to 2% Pb concentration. • Existence of non-collinear spin structure which can be explained by three sublattice model of Yafet and Kittel. - Abstract: Co{sub 1−x}Pb{sub x}Fe{sub 2}O{sub 4} (x = 00–0.15) have been synthesized using citric acid modified sol-gel method. Samples for x ≤ 0.02 have been ball milled to reduce the particle size. Hence, all the materials under the study are in almost equal crystallite size (∼15 nm). The phase purity and structural study have been carried out using X-ray powder diffraction (XRD) technique. The Rietveld refinement of XRD patterns reveals the increasing lattice parameter with the lead (Pb) concentration. Detailed analysis of the Raman spectroscopy data supports the XRD pattern analysis results. Magnetic hysteresis loop measurements have been performed using Vibrating Sample Magnetometer (VSM) at room temperature over field range of ±20 kOe. Magnetocrystalline anisotropy constant was calculated using Law of Approach (LA) to saturation, which shows increasing behavior till 2% Pb concentration. The large difference in experimental and theoretical saturation magnetic moment per formula unit shows existence of three sublattice model suggested by Yafet-Kittel.

  2. Theory and Design of Tunable and Reconfigurable Microwave Passive Components on Partially Magnetized Ferrite Substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-01

    Typical microwave components such as antennas are large in size and occupy considerable space. Since multiple standards are utilized in modern day systems and thus multiple antennas are required, it is best if a single component can be reconfigured or tuned to various bands. Similarly phase shifters to provide beam scanning and polarization reconfigurable antennas are important for modern day congested wireless systems. Tunability of antennas or phase shifting between antenna elements has been demonstrated using various techniques which include magnetically tunable components on ferrite based substrates. Although this method has shown promising results it also has several issues due to the use of large external electromagnets and operation in the magnetically saturated state. These issues include the device being bulky, inefficient, non-integrable and expensive. In this thesis, we have tried to resolve the above mentioned issues of large size and large power requirement by replacing the large electromagnets with embedded bias windings and also by operating the ferrites in the partially magnetized state. New theoretical models and simulation methodology have been used to evaluate the performance of the microwave passive components in the partially magnetized state. A multilayer ferrite Low Temperature Cofired Ceramic (LTCC) tape system has been used to verify the performance experimentally. There exists a good agreement between the theoretical, simulation and measurement results. Tunable antennas with tuning range of almost 10 % and phase shifter with an FoM of 83.2/dB have been demonstrated in this work, however the major contribution is that this has been achieved with bias fields that are 90 % less than the typically reported values in the literature. Finally, polarization reconfigurability has also been demonstrated for a circular patch antenna using a low cost additive manufacturing technique. The results are promising and indicate that highly integrated

  3. Enhancement of electrical conductivity in gamma irradiated cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Nawpute, Asha A.; Raut, A.V.; Babrekar, M.K.; Kale, C.M.; Jadhav, K.M.; Shinde, A.B.

    2014-01-01

    The cobalt ferrite nanoparticles were synthesized by sol-gel auto- combustion method, in which L-ascorbic acid was used as a fuel. The effect of gamma irradiation on the electrical resistivity of cobalt ferrite nanoparticles has been studied. The ferrite powder annealed at 550℃ was irradiated by gamma source 137 Cs. The synthesized nanoparticles were characterized by X-ray diffraction and DC resistivity. (author)

  4. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  5. Microwave firing of MnZn-ferrites

    International Nuclear Information System (INIS)

    Tsakaloudi, V.; Papazoglou, E.; Zaspalis, V.T.

    2004-01-01

    Microwave firing is evaluated in comparison to conventional firing for MnZn-ferrites. For otherwise identical conditions, microwave firing results to higher densities and coarser microstructures. Initial magnetic permeability values (25 kHz, 25 deg. C, <0.1 mT) after conventional firing are approximately 5000, but the corresponding values after microwave firing are approximately 6000. Unlike the conventional firing process, the final density after microwave firing is increased by increasing the prefiring temperature. As appears from the results of this study, microwave firing could be in principle a promising MnZn-ferrite firing technology for materials to be used in high magnetic permeability applications. No advantages of microwave firing are evident for materials intended to be used in high field power applications

  6. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  7. Titanium oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Hendrix, W.; Vandermeulen, W.

    1980-04-01

    The available data on the DT02 and DT3911 ferritic dispersion strengthened alloys, developed at SCK/CEN, Mol, Belgium, are presented. Both alloys consist of Fe - 13% Cr - 1.5% Mo to which 2% TiO 2 and about 3.5% Ti are added (wt.%). Their main use is for the fabrication of fast breeder reactor cladding tubes but their application as turbine blade material is also envisaged for cases where high damping is important. (auth.)

  8. Magnetocapacitance effects in MnZn ferrites

    Directory of Open Access Journals (Sweden)

    Y. M. Xu

    2015-11-01

    Full Text Available The magnetocapacitance effects of MnZn ferrites with different initial permeabilities have been studied systematically. Both intrinsic effect associated with magnetoelectric coupling and extrinsic effect, which means the combined contribution of magnetoresistance and the Maxwell-Wagner effect, have been observed simultaneously. Analysis shows that the relationship between the origins of both is in competitive equilibrium. Either of both mechanisms plays a dominant role in magnetocapacitance effects under different conditions, respectively, such as permeability and frequency of applied signals.

  9. CHARACTERIZING AND MODELING FERRITE-CORE PROBES

    International Nuclear Information System (INIS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.

    2010-01-01

    In this paper, we accurately and carefully characterize a ferrite-core probe that is widely used for aircraft inspections. The characterization starts with the development of a model that can be executed using the proprietary volume-integral code, VIC-3D(c), and then the model is fitted to measured multifrequency impedance data taken with the probe in freespace and over samples of a titanium alloy and aluminum. Excellent results are achieved, and will be discussed.

  10. Ferritic stainless steels: corrosion resistance + economy

    International Nuclear Information System (INIS)

    Remus, A.L.

    1976-01-01

    Ferritic stainless steels provide corrosion resistance at lower cost. They include Type 409, Type 439, 18SR, 20-Mo (1.6 Mo), 18-2 (2 Mo), 26-1S, E-Brite 26-1, 29 Cr-4 Mo, and 29 Cr-4 Mo-2 Ni. Their corrosion and mechanical properties are examined. Resistance to stress-corrosion cracking is an advantage compared to austenitic types

  11. Comparative study of fundamental and second-harmonic ICRF wave propagation and damping at high density in the Alcator tokamak

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.

    1981-09-01

    Due to the versatility of the high power apparatus, the fast magnetosonic branch is used with ω 0 = 1,2,3,4 ω/sub ci/, unlike most other ICRF experiments. Unusually high magnetic field (B 0 = 40 to 80 kG), plasma density (n/sub e/ = 10 13 - 5 x 10 14 /cm 3 ), generator frequency (f 0 = 90 to 200 MHz) and transmitter power, with shielded and unshielded antennas, are the key parameters of the experiment. This wide parameter range allows a direct comparison between fundamental and second harmonic regimes, and shielded and unshielded antennas, our prime goals. The real and imaginary parts of the parallel and perpendicular wave numbers are measured with extensive magnetic probe diagnostics for a spectrum of plasma parameters and compared with theory. Qualitative and quantitative evaluations of the wave structure and scaling laws are derived analytically in simple geometries and computed numerically for realistic plasma parameters and profiles. General figures of merit, such as radiation resistance and quality factor, are also derived and compared with the experiment. Secondary effects of the high power wave launching, such as changes in plasma current, density, Z/sub eff/, energetic neutral flux, soft x-rays, neutron flux, and impurities are also discussed. Most important, a general synthesis of the many engineering, physics, and experimental problems and conclusions of the Alcator A ICRF program are inspected in detail. Finally, the derived and experimentally determined scaling laws and engineering constraints are used to estimate the ICRF requrements, advantages, and potential pitfalls of the next generations of experiments on the Alcator tokamaks

  12. Removal of radioactive materials from waste solutions via magnetic ferrites

    International Nuclear Information System (INIS)

    Boyd, T.E.; Kochen, R.L.; Price, M.Y.

    1982-01-01

    Ferrite waste treatment was found to be effective in removing actinides from simulated Rocky Flats process waste solutions. With a one-stage ferrite treatment, plutonium concentrations were consistently reduced from 10 -4 g/l to less than 10 -8 g/l, and americium concentrations were lowered from 10 -7 g/l to below 10 -10 g/l. In addition, siginficantly less solid was produced as compared with the flocculant precipitation technique now employed at Rocky Flats. Aging of ferrite solids and elevated beryllium and phosphate concentrations were identified as interferences in the ferrite treatment of process waste, but neither appeeared serious enough to prevent implementation in plant operations

  13. Low-Loss Ferrite Components for NASA Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ferrite based isolators and circulators have been successfully demonstrated at microwave, millimeter-wave and submillimeter-wave frequencies. These components are...

  14. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  15. Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites

    International Nuclear Information System (INIS)

    Nathani, H.; Misra, R.D.K.

    2004-01-01

    The magnetization studies on nanocrystalline nickel ferrite as powder particles, and as diluted dispersion (10 wt.%) in polymer matrix (polymer nanocomposites) are presented. The two polymer-based nanocomposites were prepared via ball-milling and in situ polymerization, respectively. The magnetization measurements provide strong evidence of surface effects to magnetization, which explains the non-saturation of magnetization at high fields. The differences in the magnetization behavior of nickel ferrite as powder particles and in the ball-milled nanocomposite and the nanocomposite prepared via in situ polymerization are attributed to the different extent of interparticle interactions between the particles and the preparation route. The magnetization versus applied field behavior of the three ferrite systems show a similar jump in the initial part of the magnetization curve in all the cases which implies the existence of a core-shell like morphology of the particles over a large temperature range and its dominance over the interparticle interaction effects between the particles

  16. Spatial distribution of {gamma} emissivity and fast ions during ({sup 3}He)D ICRF heating experiments on JET

    Energy Technology Data Exchange (ETDEWEB)

    Start, D F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Righi, E [Imperial Coll. of Science and Technology, London (United Kingdom); Warrick, C [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    A model is presented that can simulate the {gamma} emissivity in the poloidal cross-section during ({sup 3}He)D ICRF heated discharges in JET plasmas, by merging information obtained from the fast ion distribution and from nuclear reactions producing the observed {gamma} emissivity (production of {gamma} photons during {sup 3}He-{sup 9}Be reactions). This technique can play an important role in the identification of plasma instabilities that affect the redistribution of the fast ions in the plasma, like the TAE modes and the ripple in the tokamak magnetic field. 9 refs., 4 figs., 1 tab.

  17. Control of Fermilab Booster tunes

    International Nuclear Information System (INIS)

    Johnson, R.P; Meisner, K.; Sandberg, B.

    1977-01-01

    Control of the radial and vertical tunes of the booster is implemented using ramped correction quadrupoles. Minor modifications to the power supply cards for the 48 (previously) dc correction quadrupoles allow ''the tunes'' to be continuously programmed or held constant throughout the 33 ms acceleration cycle. This capability is in addition to the usual use of these quadrupoles to be independently varied to correct for harmonic distortions in the lattice. An automatic computer program measures and displays the tunes vs. time in the cycle to monitor performance and to allow the ramps to be adjusted by the machine operator

  18. Contribution to the structural study of austeno-ferritic steels. Morphological and analytical definition of the ferritic phase

    International Nuclear Information System (INIS)

    Bathily, Alassane.

    1977-07-01

    Conditions of fast and selective austenite dissolution were defined by means of current-voltage curves using AISI 316-type materials (welding beads). The ferritic phase was isolated and identified with X-rays. The percentages of ferrite were compared gravimetrically with those obtained by traditional methods. The ferrite isolated was chemically analysed by atomic absorption, the only doubtful value being carbon. It is shown by this method that a morphological study of the solidification of the ferritic lattice is possible, even for percentages around 1% [fr

  19. Re-tuning tuned mass dampers using ambient vibration measurements

    International Nuclear Information System (INIS)

    Hazra, B; Sadhu, A; Narasimhan, S; Lourenco, R

    2010-01-01

    Deterioration, accidental changes in the operating conditions, or incorrect estimates of the structure modal properties lead to de-tuning in tuned mass dampers (TMDs). To restore optimal performance, it is necessary to estimate the modal properties of the system, and re-tune the TMD to its optimal state. The presence of closely spaced modes and a relatively large amount of damping in the dominant modes renders the process of identification difficult. Furthermore, the process of estimating the modal properties of the bare structure using ambient vibration measurements of the structure with the TMD is challenging. In order to overcome these challenges, a novel identification and re-tuning algorithm is proposed. The process of identification consists of empirical mode decomposition to separate the closely spaced modes, followed by the blind identification of the remaining modes. Algorithms for estimating the fundamental frequency and the mode shape of the primary structure necessary for re-tuning the TMD are proposed. Experimental results from the application of the proposed algorithms to identify and re-tune a laboratory structure TMD system are presented

  20. Development of supersonic plasma flows by use of a magnetic nozzle and an ICRF heating

    Energy Technology Data Exchange (ETDEWEB)

    Inutake, M.; Ando, A.; Hattori, K.; Tobari, H.; Hosokawa, Y.; Sato, R.; Hatanaka, M.; Harata, K. [Tohoku Univ., Dept. of Electrical Engineering, Sendai (Japan)

    2004-07-01

    A high-beta, supersonic plasma flow plays a crucial role in MHD phenomena in space and fusion plasmas. There are a few experimental researches on production and control of a fast flowing plasma in spite of a growing significance in the magnetized-plasma flow dynamics. A magneto-plasma-dynamic arc-jet (MPDA) is one of promising devices to produce a supersonic plasma flow and has been utilized as an electric propulsion device with a higher specific impulse and a relatively larger thrust. We have improved the performance of an MPDA to produce a quasi-steady plasma flow with a transonic and supersonic Mach number in a highly-ionized state. There are two methods in order to control an ion-acoustic Mach number of the plasma flow exhausted from an MPDA: one is to use a magnetic Laval nozzle to convert a thermal energy to a flow energy and the other is a combined system of an ion heating and a divergent magnetic nozzle. The former is an analogous method to a compressible air flow and the latter is the method proposed in an advanced thruster for a manned interplanetary space mission. We have clarified the plasma flow characteristics in various shapes of a magnetic field configuration. It was demonstrated that the Mach number of the plasma flow could increase up to almost 3 in a divergent magnetic nozzle field. This paper reports recent results on the flow field improvements: one is on a magnetic-Laval-nozzle effects observed at the muzzle region of the MPDA, and the other is on ICRF (ion-cyclotron-range of frequency) heating of a supersonic plasma by use of a helical antenna. (authors)

  1. Plasma enhanced RF power deposition on ICRF antennas in Tore Supra

    International Nuclear Information System (INIS)

    Goulding, R.H.; Harris, J.H.; Carter, M.D.; Hoffman, D.J.; Hogan, J.T.; Ryan, P.M.; Beaumont, B.; Bremond, S.; Hutter, T.

    1997-01-01

    The dual-strap Tore Supra ICRF antennas have been very successful in coupling high power fluxes > 16 MW/m2 to the plasma. In many cases it has been found that the power is limited not by the voltages and currents that can be sustained on antenna components, but rather by localized increases in antenna surface temperatures which are correlated with increased impurity levels. Hot spots have been observed using an IR imaging system with peak temperatures as high as 1,100 C after 2 s, and as little as 1.5 MW power coupled from a single launcher. The maximum temperature observed is highly dependent on antenna phasing, and is lowest with dipole (π) phasing of the relative antenna currents. Both toroidal and poloidal asymmetries in hot spot distribution have been observed, and interestingly, the toroidal asymmetry has been found to vary when the phase is changed from +π/2 to -π/2. Significant differences in the temperature profiles have been seen on the two types of Faraday shield in use, which appears to be related to the fact that one type has a recessed center septum between straps while the other does not. In some cases, the peak temperature has been observed to increase as the antenna/plasma gap is increased, while the peak remains in the same location. This behavior suggests that voltages generated by currents flowing in the Faraday shield structure itself may play a role in generating potentials responsible for the hot spots, in addition to rf fields in the plasma. In this paper data on antenna surface heating and loading data as a function of plasma density, antenna/plasma gap, and phasing will be presented. Calculations from the RANT3D electromagnetic code together with bench measurements of electric fields near the antenna surface will also be shown

  2. ICRF heating and transport of deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Schilling, G.; Stevens, J.E.; Taylor, G.; Wilson, J.R.; Bell, M.G.; Budny, R.V.; Bretz, N.L.; Darrow, D.; Fredrickson, E.

    1995-02-01

    This paper describes results of the first experiments utilizing high-power ion cyclotron range of frequency (ICRF) to heat deuterium-tritium (D-T) plasmas in reactor-relevant regimes on the Tokamak Fusion Test Reactor (TFTR). Results from these experiments have demonstrated efficient core, second harmonic, tritium beating of D-T supershot plasmas with tritium concentrations ranging from 6%-40%. Significant direct ion heating on the order of 60% of the input radio frequency (rf) power has been observed. The measured deposition profiles are in good agreement with two-dimensional modeling code predictions. Energy confinement in an rf-heated supershot is at least similar to that without rf, and possibly better in the electron channel. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves (IBW) has been demonstrated in ohmic, deuterium-deuterium and DT-neutral beam injection plasmas with high concentrations of minority 3 He (n 3He /n e = 15% - 30%). By changing the 3 He concentration or the toroidal field strength, the location of the mode-conversion radius was varied. The power deposition profile measured with rf power modulation indicated that up to 70% of the power can be deposited on electrons at an off-axis position. Preliminary results with up to 4 MW coupled into the plasma by 90-degree phased antennas showed directional propagation of the mode-converted IBW. Analysis of heat wave propagation showed no strong inward thermal pinch in off-axis heating of an ohmically-heated target plasma in TFTR

  3. ICRF heating and transport of deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Murakami, M.; Batchelor, D.B.; Bush, C.E.

    1994-01-01

    This paper describes results of the first experiments utilizing high-power ion cyclotron range of frequency (ICRF) to heat deuterium-tritium (D-T) plasmas in reactor-relevant regimes on the Tokamak Fusion Test Reactor (TFTR). Results from these experiments have demonstrated efficient core, second harmonic, tritium heating of D-T supershot plasmas with tritium concentrations ranging from 6%--40%. Significant direct ion heating on the order of 60% of the input radio frequency (rf) power has been observed. The measured deposition profiles are in good agreement with two-dimensional modeling code predictions. Confinement in an rf-heated supershot is at least similar to that without rf, and possibly better in the electron channel. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves (IBW) has been demonstrated in ohmic, deuterium-deuterium and DT-neutral beam injection plasmas with high concentrations of minority 3 He (n 3 He /n e > 10%). By changing the 3 He concentration or the toroidal field strength, the location of the mode-conversion radius was varied. The power deposition profile measured with rf power modulation showed that up to 70% of the power can be deposited on electrons at an off-axis position. Preliminary results with up to 4 MW coupled into the plasma by 90-degree phased antennas showed directional propagation of the mode-converted IBW. Heat wave propagation showed no strong inward thermal pinch in off-axis heating of an ohmically-heated (OH) target plasma in TFIR

  4. DAFS study of site-specific local structure of Mn in manganese ferrite films

    International Nuclear Information System (INIS)

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Zuo, X.; Harris, V.G.

    2006-01-01

    Manganese ferrite (MnFe 2 O 4 ) is a well-known magnetic material widely used in electronics for many years. It is well established that its magnetic behavior is strongly influenced by local structural properties of Mn ions, which are distributed between crystallographically inequivalent tetrahedral and octahedral sites in the unit cell. In order to understand and be able to tune properties of these structures, it is necessary to have detailed site-specific structural information on the system. Here we report on the application of diffraction-anomalous fine structure (DAFS) spectroscopy to resolve site-specific Mn local structures in manganese ferrite films. The DAFS measurements were done at undulator beamline 4-ID-D of the Advanced Photon Source at Argonne National Laboratory. The DAFS spectra (Fig. 1) were measured at several Bragg reflections in the vicinity of the Mn absorption K-edge, having probed separately contributions from tetrahedrally and octahedrally coordinated Mn sites. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around different inequivalent Mn sites in the unit cell. The reliability of the data treatment was checked carefully, and it was showed that the site-specific structural parameters obtained with DAFS allow us to describe fluorescence EXAFS spectrum measured independently. Fig. 2 shows individual site contributions to the imaginary part of the resonant scattering amplitude obtained from the treatment of the data of Fig. 1. The analysis of the refined site-specific absorption spectra was done using EXAFS methods based on theoretical standards. We provided direct evidence for the tetrahedral Mn-O bond distance being increased relative to the corresponding Fe-O distance in bulk manganese ferrites. The first coordination shell number was found to be reduced significantly for Mn atoms at these sites. This finding is consistent with the well-known tendency of Mn

  5. Oracle SQL Tuning pocket Reference

    CERN Document Server

    Gurry, Mark

    2002-01-01

    One of the most important challenges faced by Oracle database administrators and Oracle developers is the need to tune SQL statements so that they execute efficiently. Poorly tuned SQL statements are one of the leading causes of substandard database performance and poor response time. SQL statements that perform poorly result in frustration for users, and can even prevent a company from serving its customers in a timely manner

  6. Adaptive Self-Tuning Networks

    Science.gov (United States)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  7. Analysis of resonant fast ion distributions during combined ICRF and NBI heating with transients using neutron emission spectroscopy

    Science.gov (United States)

    Hellesen, C.; Mantsinen, M.; Conroy, S.; Ericsson, G.; Eriksson, J.; Kiptily, V. G.; Nabais, F.; Contributors, JET

    2018-05-01

    ICRF heating at the fundamental cyclotron frequency of a hydrogen minority ion species also gives rise to a partial power absorption by deuterium ions at their second harmonic resonance. This paper studies the deuterium distributions resulting from such 2nd harmonic heating at JET using neutron emission spectroscopy data from the time of flight spectrometer TOFOR. The fast deuterium distributions are obtained over the energy range 100 keV to 2 MeV. Specifically, we study how the fast deuterium distributions vary as ICRF heating is used alone as well as in combination with NBI heating. When comparing the different heating scenarios, we observed both a difference in the shapes of the distributions as well as in their absolute level. The differences are most pronounced below 0.5 MeV. Comparisons are made with corresponding distributions calculated with the code PION. We find a good agreement between the measured distributions and those calculated with PION, both in terms of their shapes as well as their amplitudes. However, we also identified a period with signs of an inverted fast ion distribution, which showed large disagreements between the modeled and measured results. Resonant interactions with tornado modes, i.e. core localized toroidal alfven eigenmodes (TAEs), are put forward as a possible explanation for the inverted distribution.

  8. Reduction in 14 MeV neutron generation rate by ICRF injection in D-3He burning plasmas

    International Nuclear Information System (INIS)

    Matsuura, Hideaki; Nakao, Yasuyuki

    2004-01-01

    The triton distribution function during ion cyclotron range of frequency (ICRF) waves injection in D- 3 He plasmas is examined by solving the 2-dimensional Fokker-Planck equation. Triton distribution function originally has a non-Maxwellian (tail) component around 1.01 MeV birth energy range due to D(d,p)T fusion reaction. Owing to the extension of the original tail by ICRF injection, the high-energy resonance tritons further increase, and the velocity-averaged T(d,n) 4 He fusion reaction rate coefficient, i.e. 14 MeV neutron generation rate, decreases from the values when triton is assumed to be Maxwellian. It is shown that when tritons absorb ∼1/200 of the fusion power from the waves in typical D- 3 He plasma, i.e. T=80 keV, n D =2x10 20 m -3 , τ E0 =3 sec and B=6T, the 14 MeV neutron generation rate is reduced by about ∼20% from the values for Maxwellian plasmas. (author)

  9. Ni-Zn Ferrite-graphene Nanohybrids: Synthesis and Characterization of Magnetic and Microwave Absorbing Properties

    Directory of Open Access Journals (Sweden)

    Thim Ng Yau

    2017-01-01

    Full Text Available An in-situ deposition technique was used in the synthesis of Ni-Zn ferrite-graphene (NZFG nanohybrids. The XRD patterns revealed the presence of cubic spinel structure of Ni-Zn ferrite (NZF nanoparticles with good crystallinity and small crystallite sizes. The SEM images showed NZF nanoparticles were uniformly deposited on graphene sheets. The effect of different loading amounts of NZF nanoparticles in the nanohybrids was also investigated by tuning the mass ratio of FeCl3 and expanded graphite (EG. The magnetic measurements showed ferromagnetic behaviour with low coercivity. Improvements in saturation magnetization of the nanohybrids can be seen with increasing mass ratio of FeCl3:EG. The microwave absorption properties were determined based on the measured relative complex permittivity and permeability. For the nanohybrids, the minimum reflection loss (RL obtained is -37.57 dB at 7.54 GHz and the absorbing bandwidth in which the RL is less than -10 dB is 7.30 GHz when the NZF content was 79 wt·% at 7 mm thickness. The enhancement in the minimum RL was due to the synergistic effect between NZF nanoparticles and graphene.

  10. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    microwave and satellite communication, bubble devices, audio-video, digital recording and as permanent magnets. (Viswanathan and Murthy 1990), ferrites have opened a new vista in the field of chemical physics of materials. Keeping in view these technological applications, ferrites have been regarded as an important ...

  11. on the magnetic properties of ultra-fine zinc ferrites

    NARCIS (Netherlands)

    Anantharaman, M.R.; Jagatheesan, S.; Malini, K.A.; Sindhu, S.; Narayanasamy, A.; Chinnasamy, C.N.; Jacobs, J.P.; Reijne, S.; Seshan, Kulathuiyer; Smits, R.H.H.; Smits, R.H.H.; Brongersma, H.H.

    1998-01-01

    Zinc ferrite belongs to the class of normal spinels where it is assumed to have a cation distribution of Zn2+(Fe3+)2(O2−)4, and it is purported to be showing zero net magnetisation. However, there have been recent reports suggesting that zinc ferrite exhibits anomaly in its magnetisation. Zinc

  12. A seeded ambient temperature ferrite process for treatment of AMD ...

    African Journals Online (AJOL)

    A seeded ambient temperature ferrite process for treatment of AMD waters: magnetite formation in the presence and absence of calcium ions under steady state operation. ... promising for AMD treatment. Keywords: Ferrite process, Magnetite seed, Calcium interference, Acid mine drainage (WaterSA: 2003 29(2): 117-124) ...

  13. Performance Variation of Ferrite Magnet PMBLDC Motor with Temperature

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    The price fluctuations of rare earth metals and the uncertainty in their availability has generated an increased interest in ferrite magnet machines. The influence of temperature on BH characteristics of the ferrite magnet differ considerably from that of the rare earth magnet and hence, requires...

  14. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly

  15. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  16. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  17. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  18. Magnetic behavior of nanocrystalline nickel ferrite

    International Nuclear Information System (INIS)

    Nathani, H.; Gubbala, S.; Misra, R.D.K.

    2005-01-01

    In the previous papers [R.D.K. Misra, A. Kale, R.S. Srivatsava, O. Senkov, Mater. Sci. Technol. 19 (2003) 826; R.D.K. Misra, A. Kale, B. Hooi, J.Th. DeHosson, Mater. Sci. Technol. 19 (2003) 1617; A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. Magn. Mater. 277 (2004) 350; S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Phys. B 348 (2004) 317; R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff, Mater. Sci. Eng. B. 111 (2004) 164], we reported the synthesis, structural characterization and magnetic behavior of nanocrystalline ferrites of inverse and mixed spinel structure made by reverse micelle technique that enabled a narrow particle size distribution to be obtained. In the present paper, the reverse micelle approach has been extended to synthesize nanocrystalline ferrites with varying surface roughness of 8-18 A (the surface roughness was measured by atomic force microscopy) and the magnetic behavior studied by SQUID magnetometer. Two different kinds of measurement were performed: (a) zero-field cooling (ZFC) and field cooling (FC) magnetization versus temperature measurements and (b) magnetization as a function of applied field. The analysis of magnetic measurement suggests significant influence of surface roughness of particles on the magnetic behavior. While the superparamagnetic behavior is retained by the nanocrystalline ferrites of different surface roughness at 300 K, the hysteresis loop at 2 K becomes non-squared and the coercivity increases with increase in surface roughness. This behavior is discussed in terms of broken bonds and degree of surface spin disorder

  19. Preferential spin canting in nanosize zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Brajesh, E-mail: bpandey@gmail.com [Department of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Pune 411112 (India); Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Institut für Physik der Kondensierten Materie,Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Baggio-Saitovitch, E.M. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil)

    2015-07-01

    Zinc ferrite nanoparticles powder with average size of 10.0±0.5 nm was synthesized by the citrate precursor route. We studied the structural and magnetic properties using X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. X-ray diffraction patterns show that the synthesized zinc ferrite possesses good spinel structure. Both Mössbauer and magnetization data indicate superparamagnetic ferrimagnetic particles at room temperature. The magnetic behavior is determined by a considerable degree of cation inversion with Fe{sup III} in tetrahedral A-sites. Mössbauer spectroscopy at low temperature and in high applied magnetic field reveals that A-site spins are aligned antiparallel to the applied field with some possible angular scatter whereas practically all octahedral B-site spins are canted contrasting some earlier reported partial B-site spin canting in nanosize zinc ferrite. Deviations from the antiferromagnetic arrangement of B-site spins are supposed to be caused by magnetic frustration effects. - Highlights: • Spinel structure ZnFe{sub 2}O{sub 4} nanoparticles in the uniform size range of 10.0±0.5 nm have been synthesized using the citrate precursor route. • Canting of the spins of A- and B-sublattice sites has been studied by low temperature and high magnetic field Mössbauer spectroscopy. • A-site spins are aligned antiparallel to the applied field with only small angular scatter. • B-site spins are strongly canted in contrast to earlier quoted only partial canting. • B site spin structure deviates significantly from a collinear antiferromagnetic arrangement.

  20. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  1. Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik; Ahn, Seungyoung

    2015-01-01

    and reduce magnetic emissions to the surroundings. Effect of adding extra ferrite above the base ferrite at different physical locations on the self-inductance, mutual inductance and coupling factor is under investigation in this paper. The addition can increase or decrease the mutual inductance depending...

  2. CASS Ferrite and Grain Structure Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Clayton O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-13

    This document summarizes the results of research conducted at Pacific Northwest National Laboratory (PNNL) to determine whether, based on experimental measurements, a correlation existed between grain structure in cast austenitic stainless steel (CASS) piping and ferrite content of the casting alloy. The motivation for this research lies in the fact that ultrasonic testing (UT) is strongly influenced by CASS grain structure; knowledge of this grain structure may help improve the ability to interpret UT responses, thereby improving the overall reliability of UT inspections of CASS components.

  3. Advances in ferrite microwave materials and devices

    International Nuclear Information System (INIS)

    Schloemann, Ernst

    2000-01-01

    The application of ferrites in non-reciprocal components is discussed, with the emphasis on broadband isolators and circulators. The performance of such devices may be characterized by the ratio f max /f min of the frequencies that define the edges of the frequency band, within which satisfactory performance has been achieved. For the best currently available devices this ratio is approx. 3 : 1, but larger values appear feasible according to a detailed analysis of the 'low-field, low-frequency loss' that limits the performance

  4. Plasticity of oxide dispersion strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Zakine, C.; Prioul, C.; Alamo, A.; Francois, D.

    1993-01-01

    Two 13%Cr oxide dispersion strengthened (ODS) ferritic alloys, DT and DY, exhibiting different oxide particle size distribution and a χ phase precipitation were studied. Their tensile properties have been tested from 20 to 700 C. Experimental observations during room temperature tensile tests performed in a scanning electronic microscope have shown that the main damage mechanism consists in microcracking of the χ phase precipitates on grain boundaries. These alloys are high tensile and creep resistant between 500 and 700 C. Their strongly stress-sensitive creep behaviour can be described by usual creep laws and incorporating a threshold stress below which the creep rate is negligible. (orig.)

  5. Structural and magnetic Properties of TbZn-substituted calcium barium M-type nano-structured hexa-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Department of Electronics, University of York, York YO10 5DD (United Kingdom); Islam, M.U., E-mail: dr.misbahulislam@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Xu, Yongbing [Department of Electronics, University of York, York YO10 5DD (United Kingdom); Nanjing–York International Centre of Spintronics and Nano-Engineering, Nanjing University, Nanjing 210093 (China); Asif Iqbal, M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); National University of Science and Technology, College of E and ME, Islamabad (Pakistan); Ali, Irshad [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2014-03-15

    Highlights: • Tb–Zn substituted Ca{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19} samples exhibit single magnetoplumbite phase. • Lattice parameters a and c have increasing values. • Coercivity can be tuned at lower substitution level • Crystallites size was found in the range 18–25 nm by TEM and by Scherrer formula. • These hexa-ferrites are suitable for microwave devices and magnetic recording media. -- Abstract: Effect of TbZn substitution on the structural and magnetic properties of Ca{sub 0.5}Ba{sub 0.5−x}Tb{sub x}Zn{sub y}Fe{sub 12−y}O{sub 19}, (x = 0.00–0.10; y = 0.00–1.00) ferrites prepared by sol–gel auto combustion is reported. The synthesized samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Vibrating Sample magnetometery. The X-ray diffraction analysis confirmed single phase M-type hexa-ferrite structure. The lattice parameters were found to increase as TbZn contents increases, which is attributed to the ionic sizes of the implicated cations. The TbZn seems to be completely soluble in the lattice. The results of scanning electron microscopy and transmission electron microscopy shows that the grain size decreases with increase of TbZn substitution. The coercivity values (1277–2025 Oe) of all samples lies in the range of M-type hexa-ferrite and indicate that an increase of anisotropy was achieved by substitution of TbZn, while the size of nanoparticles was drastically reduced between 18 and 25 nm. The increased anisotropy and fine particle size are useful for many applications, such as improving signal noise ratio of recording devices.

  6. Validation of a 3D/1D Simulation Tool for ICRF Antennas

    International Nuclear Information System (INIS)

    Maggiora, R.; Lancellotti, V.; Milanesio, D.; Vecchi, G.; Kyrytsya, V.; Parisot, A.; Wukitch, S. J.

    2005-01-01

    TOPICA is an innovative tool for the simulation of the Ion Cyclotron Radio Frequency (ICRF) antenna systems that incorporates commercial-grade graphic interfaces into a fully 3D self-consistent description of the antenna geometry and an accurate description of the plasma; it can be considered as a 'Virtual Prototyping Laboratory' to assist the detailed design phase of the antenna system. Recent theoretical and computational advances of the TOPICA code has allowed to incorporate a CAD drawing capability of the antenna geometry, with fully 3D geometrical modeling, and to combine it with a 1D accurate plasma description that takes into account density and temperature profiles, and FLR effects; the profiles are inserted directly from measured data (when available), or specified analytically by the user. The coaxial feeding line is modeled as such; computation and visualization of relevant parameters (input scattering parameters, current and field distributions, etc.) complete the suite. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked self-consistently by representing the field continuity in terms of equivalent (unknown) sources. In the vacuum region all the calculations are executed in the spatial (configuration) domain, and this allows triangular-facet description of the arbitrarily shaped conductors and associated currents; in the plasma region a spectral representation of the fields is used, which allows to enter the plasma effect via a surface impedance matrix; for this reason any plasma model can be used, and at present the FELICE code has been adopted; special techniques have been adopted to increase the numerical efficiency. The TOPICA suite has been previously tested against assessed codes and against measurements of mock-ups and

  7. Beam impedance of ferrite kicker magnets

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.

    1989-03-01

    We have measured the longitudinal beam impedance of a typical pulsed magnet that will be used in the Advanced Light Source. The magnets are of a ferrite window-frame design with a single plate conductor on each side. Two separate power supplies are used to drive current in opposite directions in the two conductors. The continuity of the ferrite yoke is interrupted by two copper plates 1 mm thick in the center of the top and bottom of the window frame. This increases the reluctance of the magnetic path, and thus decreases the flux which couples the beam. The measurements were made by exciting a 1/8'' rod along the beam path through the magnet. This makes a 185 ohm transmission line, and it was terminated in a resistive divider at the exit end. A 3 GHz network analyzer was used to measure S 21 through the magnet, and longitudinal beam impedance was calculated from this data. The impedance is dominated by two low frequency resonances in the magnet winding and drive current. 8 figs

  8. Integrated unaligned resonant modulator tuning

    Energy Technology Data Exchange (ETDEWEB)

    Zortman, William A.; Lentine, Anthony L.

    2017-10-03

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.

  9. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  10. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Narasimhan, S.V.; Gopalan, R.

    2004-01-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  11. Manufacturing of Mn-Zn ferrite transformer cores

    International Nuclear Information System (INIS)

    Waqas, H.; Qureshi, A.H.; Hussain, N.; Ahmed, N.

    2012-01-01

    The present work is related to the development of soft ferrite transformer cores, which are extensively used in electronic devices such as switch mode power supplies, electromagnetic devices, computers, amplifiers etc. Mn-Zn Ferrite (soft ferrite) powders were prepared by conventional mixed oxide and auto combustion routes. These powders were calcined and then pressed in toroid shapes. Sintering was done at different temperatures to develop desired magnetic phase. Impedance resistance of sintered toroid cores was measured at different frequencies. Results revealed that Mn-Zn Ferrite cores synthesized by auto combustion route worked more efficiently in a high frequency range i.e. > 2MHz than the cores developed by conventional mixed oxide method. It was noticed that compact size, light weight and high impedance resistance are the prime advantages of auto combustion process which supported the performance of core in MHz frequency range. Furthermore, these compact size cores were successfully tested in linear pulse amplifier circuit of Pakistan Atomic Research Reactor-I. The fabrication of soft ferrite (Mn-Zn Ferrite) cores by different processing routes is an encouraging step towards indigenization of ferrite technology. (Orig./A.B.)

  12. Distributed Tuning of Boundary Resources

    DEFF Research Database (Denmark)

    Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten

    2015-01-01

    in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...

  13. Tuned sources of submillimetre radiation

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.

    1981-01-01

    The main present directions of development of sources of frequency coherent tuned radiation of electromagnetic waves in the submillimeter range: nonlinear mixing of different frequencies; semiconductor lasers; molecular lasers with optical pumping; relativistic electron beams in a magnetic field as submillimeter radiation sources; submillimeter radiation sources on the basis of SHF classical electrovacuum devices - are considered. The designs of generator systems and their specifications are presented. The main parameters of electromagnetic radiation of different sources, such as: power, stability, frequency, tuning range - are presented. The methods of improving sources and electromagnetic radiation parameters are proposed. The examples of possible applications of submillimeter radiation in different spheres of science and technology are given [ru

  14. Ferrite Nanoparticles, Films, Single Crystals, and Metamaterials: High Frequency Applications

    International Nuclear Information System (INIS)

    Harris, V.

    2006-01-01

    Ferrite materials have long played an important role in power conditioning, conversion, and generation across a wide spectrum of frequencies (up to ten decades). They remain the preferred magnetic materials, having suitably low losses, for most applications above 1 MHz, and are the only viable materials for nonreciprocal magnetic microwave and millimeter-wave devices (including tunable filters, isolators, phase shifters, and circulators). Recently, novel processing techniques have led to a resurgence of research interest in the design and processing of ferrite materials as nanoparticles, films, single crystals, and metamaterials. These latest developments have set the stage for their use in emerging technologies that include cancer remediation therapies such as magnetohyperthermia, magnetic targeted drug delivery, and magneto-rheological fluids, as well as enhanced magnetic resonance imaging. With reduced dimensionality of nanoparticles and films, and the inherent nonequilibrium nature of many processing schemes, changes in local chemistry and structure have profound effects on the functional properties and performance of ferrites. In this lecture, we will explore these effects upon the fundamental magnetic and electronic properties of ferrites. Density functional theory will be applied to predict the properties of these ferrites, with synchrotron radiation techniques used to elucidate the chemical and structural short-range order. This approach will be extended to study the atomic design of ferrites by alternating target laser-ablation deposition. Recently, this approach has been shown to produce ferrites that offer attractive properties not found in conventionally grown ferrites. We will explore the latest research developments involving ferrites as related to microwave and millimeter-wave applications and the attempt to integrate these materials with semiconductor materials platforms

  15. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  16. The mechanism of nickel ferrite formation by glow discharge effect

    Science.gov (United States)

    Frolova, L. A.

    2018-04-01

    The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.

  17. RF cavity using liquid dielectric for tuning and cooling

    Science.gov (United States)

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  18. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. Copyright 2000 Academic Press.

  19. Moessbauer spectroscopic characterization of ferrite ceramics

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1999-01-01

    The principle of Moessbauer effect and the nature of hyperfine interactions were presented. The discovery of the Moessbauer effect was the basis of a new spectroscopic technique, called Moessbauer spectroscopy, which has already made important contribution to research in physics, chemistry, metallurgy, mineralogy and biochemistry. In the present work the selected ferrites such as spinel ferrite, NiFe 2 O 4 , and some rare earth orthoferrites and garnets were investigated using Moessbauer spectroscopy. X-ray powder diffraction and Fourier transform infrared spectroscopy were used as complementary techniques. The formation of NiFe 2 O 4 was monitored during the thermal decomposition of mixed salt (Ni(NO 3 ) 2 +2Fe(NO 3 ) 3 )nH 2 O. The ferritization of Ni 2+ ions was observed at 500 deg. C and after heating at 1300 deg. C the stoichiometric NiFe 2 O 4 was produced. The Moessbauer parameters obtained for NiFe 2 O 4 , d Fe = 0.36 mm s -1 and HMF = 528 kOe, can be ascribed to Fe 3+ ions in the octahedral sublattice, while parameters d Fe = 0.28 mm s -1 and HMF = 494 kOe can be ascribed to Fe 3+ ions in the tetrahedral lattice. The effect of ball-milling of NiFe 2 O 4 was monitored. The formation of oxide phases and their properties in the systems Nd 2 O 3 -Fe 2 O 3 , Sm 2 O 3 -Fe 2 O 3 , Gd 2 O 3 -Fe 2 O 3 , Eu 2 O 3 -Fe 2 O 3 and Er 2 O 3 -Fe 2 O 3 were also investigated. Quantitative distributions of oxide phases, a-Fe 2 O 3 , R 2 O 3 , R 3 Fe 5 O 12 and RFeO 3 , R = Gd or Eu, were determined for the systems xGd 2 O 3 +(1-x)Fe 2 O 3 and xEu 2 O 3 +(1-x)Fe 2 O 3 . The samples, prepared by chemical coprecipitation in the system xEu 2 O 3 +(1-x)Fe 2 O 3 , 0≤x≤1, were completely amorphous as observed by XRD, even at the relatively high temperature of the sample preparation (600 deg. C). Similar behavior was observed during the formation of Er 3 Fe 5 O 12 . Moessbauer spectroscopy indicated that this 'amorphous' phase is actually composed of very small and/or poor

  20. Tuning History in Latin America

    Science.gov (United States)

    Velázquez Albo, Marco

    2017-01-01

    This article analyses the development and achievements of the area of History in the Tuning-Latin America Project from its launch in 2004 to its completion in 2013. Through two phases and nine general meetings, academics from Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Guatemala, Mexico and Peru, along with academics from Spain, Portugal…

  1. Political Tunings of the Piano

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær; Riis, Morten S.

    According to Timothy Morton the creation of ambient art posses an inherent critical potential similar to the ambiguity of the dialectical image found in the writings of Walter Benjamin. Subscribing to an object-oriented ontological understanding of how objects are riven between essence and appear......) as unfolding the ambiguity of various political tunings of the piano....

  2. ICRF power-deposition profiles, heating and confinement of monster sawtooth and peaked-density profile discharges in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Taroni, A.; Ellis, J.J.; Jacquinot, J.; Start, D.F.H.

    1989-01-01

    The ion cyclotron resonance heating of monster sawtooth (period greater than the energy confinement time) and pellet-fueled peaked-density profiles in limiter discharges of JET Tokamak are studied. The monster sawtooth is a characteristic JET regime which is related to fast ions generated during the minority ion heating. In the ICRF heating of peaked-density profile discharges, we find typically the T i0 is higher roughly by a factor of 2 and T e0 roughly by 35% at a fixed P TOT /n e0 when compared to non-peaked profile cases. Here, T e0 and T i0 are central electron and ion temperatures, respectively, n e0 is the central electron density and P TOT is the total input power. The ion heating is improved in the pellet case, in part, due to a higher collisionality between the background ions and the energetic minority, but more significantly by a reduction of local ion energy transport in the central region. The transport-code simulation of these discharges reveals that there is a reduction of both χ e and χ i in the central region of the plasma in the ICRF heated peaked-profile discharges where χ e and χ i are the electron and ion heat conductivities, respectively. The improvement of confinement is not explained quantitatively by any of the existing η i -driven turbulence theories as the n i parameter (η i = d ln T i /d ln n i where T i is the ion temperature and n i is the ion density), instead of dropping below the critical value, remains above it for most of the duration of the improved confinement phase. The physical mechanism(s) that plays a role in this improvement is not yet clear. (author)

  3. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S

    2012-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes, as well as Pythia 6 shower tunes are presented, including a study of tunes for various PDFs.

  4. Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites

    Science.gov (United States)

    Rowley, S. E.; Vojta, T.; Jones, A. T.; Guo, W.; Oliveira, J.; Morrison, F. D.; Lindfield, N.; Baggio Saitovitch, E.; Watts, B. E.; Scott, J. F.

    2017-07-01

    Hexagonal ferrites not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultrahigh-density memories, credit-card stripes, magnetic bar codes, small motors, and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbF e12 -xG axO19 to zero by chemical substitution x . The phase transition boundary is found to vary as TN˜(1-x /xc ) 2 /3 with xc very close to the calculated spin percolation threshold, which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally tuned, insulating, ferrimagnetic quantum criticality. Close to the zero-temperature phase transition, we observe the emergence of an electric dipole glass induced by magnetoelectric coupling. The strong frequency behavior of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero-frequency limit, depending on composition x . These quantum-mechanical properties, along with the multiplicity of low-lying modes near the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.

  5. Creep lifetime assessements of ferritic pipeline welds

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Goodall, I.W.; Miller, D.A.

    1995-01-01

    The low alloy ferritic steam pipework in Advanced Gas Cooled reactor (AGR) power stations operates at temperatures in the creep range. An inspection strategy for continued operation of the pipework has been developed based on estimation of the creep rupture life of pipework weldments and fracture mechanics for demonstrating acceptance of defects. This strategy is described in outline. The estimation of creep rupture life is described in more detail. Validation for the approach is illustrated by comparison with pressure vessel tests and with metallographic examination of components removed from service. The fracture mechanics methods are also described. It is shown that the amount of creep crack growth is dependent on the life fraction at which the assessment is made; crack growth being rapid as the creep rupture life is approached. (author). 3 refs., 5 figs., 1 tab

  6. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  7. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Koenig, H [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  8. Positron annihilation characterization of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Glade, S.C.; Wirth, B.D.; Odette, G.R.; Toyama, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    Nanostructured ferritic alloys (NFAs) were produced by mechanically alloying Fe-14Cr-3W-0.4Ti and 0.25Y 2 O 3 (wt%) powders followed by hot isostatic pressing consolidation at 850, 1000 and 1150 deg. C. Positron annihilation lifetime and orbital momentum spectroscopy measurements are in qualitative agreement with small angle neutron scattering, transmission electron microscopy and atom probe tomography observations, indicating that up to 50% of the annihilations occur at high densities of Y-Ti-O enriched nm-scale features (NFs). Some annihilations may also occur in small cavities. In Y-free control alloys, that do not contain NFs, positrons primarily annihilate in the Fe-Cr matrix and at features such as dislocations, while a small fraction annihilate in large cavities or Ar bubbles.

  9. The role of cobalt ferrite magnetic nanoparticles in medical science

    International Nuclear Information System (INIS)

    Amiri, S.; Shokrollahi, H.

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. Highlights: ► Cobalt ferrite nanoparticles are one of the most important materials for nanomedicine. ► They have high coercivity and moderate saturation magnetization. ► Cobalt ferrite nanoparticles are synthesized easily. ► They are a good candidate for hyperthermia and magnetic resonance imaging.

  10. Behavior of ferritic steels irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Erler, Jean; Maillard, Arlette; Brun, Gilbert; Lehmann, Jeanne; Dupouy, J.-M.

    1979-01-01

    Ferritic steels were irradiated in Rapsodie and Phenix at varying doses. The swelling and irradiation creep characteristics are reported below as are the mechanical characteristics of these materials [fr

  11. The behaviour of ferritic steels under fast neutron irradiation

    International Nuclear Information System (INIS)

    Erler, J.; Maillard, A.; Brun, G.; Lehmann, J.; Dupouy, J.M.

    1979-07-01

    Ferritic steels have been irradiated in Rapsodie and Phenix to doses up to 150 dpa F. The swelling and irradiation creep characteristics and the mechanical properties of these materials are reported. (author)

  12. Antiresonance in (Ni,Zn) ferrite-carbon nanofibres nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Fernandez-Garcia, L.; Suarez, M.; Menéndez, J.L.; Pecharromán, C.; Torrecillas, R.; Peretyagin, P.Y.; Petzelt, Jan; Savinov, Maxim; Frait, Zdeněk

    2015-01-01

    Roč. 2, č. 5 (2015), 055003 ISSN 2053-1591 Institutional support: RVO:68378271 Keywords : ceramic composites * ferromagnetic resonance * ferrite devices Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.968, year: 2015

  13. Initial Ferritic Wall Mode studies on HBT-EP

    Science.gov (United States)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  14. Ferrite bead effect on Class-D amplifier audio quality

    OpenAIRE

    Haddad , Kevin El; Mrad , Roberto; Morel , Florent; Pillonnet , Gael; Vollaire , Christian; Nagari , Angelo

    2014-01-01

    International audience; This paper studies the effect of ferrite beads on the audio quality of Class-D audio amplifiers. This latter is a switch-ing circuit which creates high frequency harmonics. Generally, a filter is used at the amplifier output for the sake of electro-magnetic compatibility (EMC). So often, in integrated solutions, this filter contains ferrite beads which are magnetic components and present nonlinear behavior. Time domain measurements and their equivalence in frequency do...

  15. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    OpenAIRE

    Fauzi F. A.; Kurniawan T.; Salwani M. S.; Bin Y. S.; Harun W. S. W.

    2016-01-01

    The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on...

  16. DARHT-II Injector Transients and the Ferrite Damper

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  17. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Abstract. Synthesis of non-collinear (spin canted) ferrites having the formula, CoCdFe2−O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ ...

  18. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    Science.gov (United States)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  19. Intragranular ferrite morphologies in medium carbon vanadium-microalloyed steel

    Directory of Open Access Journals (Sweden)

    Fadel A.

    2013-01-01

    Full Text Available The aim of this work was to determine TTT diagram of medium carbon V-N micro-alloyed steel with emphasis on the development of intragranular ferrite morphologies. The isothermal treatment was carried out at 350, 400, 450, 500, 550 and 600°C. These treatments were interrupted at different times in order to analyze the evolution of the microstructure. Metallographic evaluation was done using optical and scanning electron microscopy (SEM. The results show that at high temperatures (≥ 500°C polygonal intragranulary nucleated ferrite idiomorphs, combined with grain boundary ferrite and pearlite were produced and followed by an incomplete transformation phenomenon. At intermediate temperatures (450, 500°C an interloced acicular ferrite (AF microstructure is produced, and at low temperatures (400, 350°C the sheave of parallel acicular ferrite plates, similar to bainitic sheaves but intragranularly nucleated were observed. In addition to sheaf type acicular ferrite, the grain boundary nucleated bainitic sheaves are observed. [Projekat Ministartsva nauke Republike Srbije, br. OI174004

  20. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    Science.gov (United States)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  1. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  2. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  3. Summary of ATLAS Pythia 8 tunes

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    We summarize the latest ATLAS Pythia 8 minimum bias and underlying event tunes. The Pythia 8 MPI tunes in this note have been constructed for nine different PDFs, making use of a new x-dependent hadronic matter distribution model.

  4. Data Driven Tuning of Inventory Controllers

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Santacoloma, Paloma Andrade; Poulsen, Niels Kjølstad

    2007-01-01

    A systematic method for criterion based tuning of inventory controllers based on data-driven iterative feedback tuning is presented. This tuning method circumvent problems with modeling bias. The process model used for the design of the inventory control is utilized in the tuning...... as an approximation to reduce time required on experiments. The method is illustrated in an application with a multivariable inventory control implementation on a four tank system....

  5. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr

    2005-05-15

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  6. Computation of undulator tuning curves

    International Nuclear Information System (INIS)

    Dejus, Roger J.

    1997-01-01

    Computer codes for fast computation of on-axis brilliance tuning curves and flux tuning curves have been developed. They are valid for an ideal device (regular planar device or a helical device) using the Bessel function formalism. The effects of the particle beam emittance and the beam energy spread on the spectrum are taken into account. The applicability of the codes and the importance of magnetic field errors of real insertion devices are addressed. The validity of the codes has been experimentally verified at the APS and observed discrepancies are in agreement with predicted reduction of intensities due to magnetic field errors. The codes are distributed as part of the graphical user interface XOP (X-ray OPtics utilities), which simplifies execution and viewing of the results

  7. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra Prasad

    2015-07-09

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  8. Shallow Water Tuned Liquid Dampers

    DEFF Research Database (Denmark)

    Krabbenhøft, Jørgen

    that for realistic roughness parameters the bottom friction has very limited effect on the liquid sloshing behavior and can be neglected. Herby the postulate is verified. Based on the mathematical model three dimensionless parameters are derived showing that the response of the damper depends solely on ratio......The use of sloshing liquid as a passive means of suppressing the rolling motion of ships was proposed already in the late 19th century. Some hundred years later the use of liquid sloshing devices, often termed Tuned Liquid Dampers (TLD), began to find use in the civil engineering community....... The TLDs studied in this thesis essentially consist of a rectangular container partially filled with liquid in the form of plain tap water. The frequency of the liquid sloshing motion, which is adjusted by varying the length of the tank and the depth of the wa- ter, is tuned to the structural frequency...

  9. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra Prasad; Bootharaju, Megalamane Siddaramappa; Bakr, Osman

    2015-01-01

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  10. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    Directory of Open Access Journals (Sweden)

    Mantsinen Mervi

    2017-01-01

    Full Text Available Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW. In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (∼1000 s thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  11. MOS voltage automatic tuning circuit

    OpenAIRE

    李, 田茂; 中田, 辰則; 松本, 寛樹

    2004-01-01

    Abstract ###Automatic tuning circuit adjusts frequency performance to compensate for the process variation. Phase locked ###loop (PLL) is a suitable oscillator for the integrated circuit. It is a feedback system that compares the input ###phase with the output phase. It can make the output frequency equal to the input frequency. In this paper, PLL ###fomed of MOSFET's is presented.The presented circuit consists of XOR circuit, Low-pass filter and Relaxation ###Oscillator. On PSPICE simulation...

  12. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    Science.gov (United States)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  13. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes are presented, including a study of tunes for various PDFs.

  14. Oracle SQL tuning with Oracle SQLTXPLAIN

    CERN Document Server

    Charalambides, Stelios

    2013-01-01

    Oracle SQL Tuning with SQLTXPLAIN is a practical guide to SQL tuning the way Oracle's own experts do it, using a freely downloadable tool called SQLTXPLAIN. Using this simple tool you'll learn how to tune even the most complex SQL, and you'll learn to do it quickly, without the huge learning curve usually associated with tuning as a whole.  Firmly based in real world problems, this book helps you reclaim system resources and avoid the most common bottleneck in overall performance, badly tuned SQL.  You'll learn how the optimizer works, how to take advantage of its latest features, and when it'

  15. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  16. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  17. Theory and design of a half-mode SIW Ferrite LTCC phase shifter

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2015-01-01

    A half mode SIW based Ferrite LTCC phase shifter is presented in this work. A theoretical model to predict the phase shift in the partially magnetized state has been derived. Contrary to the bulky external magnets employed by conventional ferrite

  18. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose new designs of plasmonic modulators, which can beused for dynamic signal switching in photonic integrated circuits. We studyperformance of a plasmonic waveguide modulator with bismuth ferrite as atunable material. The bismuth ferrite core is sandwiched between metalplates (metal...

  19. Effect of Ferrite Morphology on Sensitization of 316L Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Lee, Jun Ho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The sensitization behaviors of L-grade SSs having predominant austenitic structure with small amount of ferrite have not been well understood. In this regard, the effect of ferrite morphology on sensitization was investigated in this study. The sensitization behaviors of three heats of 316L and 316LN SSs were investigated, Stringer type of ferrite (316L - heat A and B) showed the early sensitization by chromium depletion at ferrite. austenite interface. And, later sensitization is due to GB sensitization. On the other hand, blocky type of ferrite (316L - heat C) showed lower DOS and higher resistance to GB sensitization. It could be due to sufficient supply of chromium from relatively large ferrite phase. As a consequence, the sensitization of 316L SSs could be affected by their ferrite morphology rather than ferrite content. The sensitized region was distinguishable from results of DL-EPR tests. It can be used as an effective method for evaluation of type of sensitization.

  20. A biosensor system using nickel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prachi, E-mail: prachi.singh@st.niituniversity.in; Rathore, Deepshikha, E-mail: deep.nano@gmail.com [NIIT University, Neemrana, NH-8, Alwar, Rajasthan, India, 301705 (India)

    2016-05-06

    NiFe{sub 2}O{sub 4} ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe{sub 2}O{sub 4} was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe{sub 2}O{sub 4} nanoparticle based biosensor was done in the form of a capacitor system, with NiFe{sub 2}O{sub 4} as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe{sub 2}O{sub 4}. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  1. Magnetostatic excitations in thin ferrite films

    International Nuclear Information System (INIS)

    Zil'berman, P.E.; Lugovskoi, A.V.

    1987-01-01

    The authors discuss the influence of the exchange interaction and dissipative processes in thin ferrite films on the eigenfrequency spectrum of magnetostatic standing waves and on the dispersion relation and attenuation of magnetostatic traveling waves. For the first time they obtain explicitly the dispersion relation for magnetostatic waves (MSWs) in a tangential saturating magnetic field H 0 to second order (inclusive) in the exchange interaction parameter λ. The authors obtain computer solutions for this equation in the complex frequency (ω) plane (for standing waves) or wave-number (q) plane (for traveling waves). The authors show that the dispersion relation constructed from the standing-wave spectrum is different from that of the traveling waves if λ≠0, even if dissipation is neglected. The traveling waves have auxiliary branches of the dispersion relation with weak damping near the spin-wave-resonance (SWR) frequencies. Dissipation has only a relatively weak effect on the frequency spectrum of the standing waves, shifting it upward. For the traveling waves, however, dissipation leads to qualitative changes in the structure of the dispersion relation, giving rise to new branches, forbidden bands, reentrant and anomalous-dispersion regions

  2. Neutron depolarization in compressed ferrite powders

    International Nuclear Information System (INIS)

    Rekveldt, M.Th.; Kraan, W.H.

    1976-01-01

    The polarization change of a polarized neutron beam after transmission through a partly magnetized ferromagnetic material can be described by a (3x3) depolarization matrix. This matrix can be expressed in terms of domain quantities such as the reduced mean magnetization M, the mean domain size delta and the mean square direction cosinus γsub(y) of the inner magnetization within the domain, and can be used for measuring magnetic properties of ferromagnetic materials. In the underlying depolarization theory it is assumed that no correlations exist between the direction of the spontaneous magnetization Bs in neighbouring domains, and between the direction of Bs and the individual domain sizes. In order to extend the measuring method for ferromagnetic materials, measurements have been made with different compressed ferrite powders assuming that the mean domain size is equal to the mean particle size. The neutron depolarization matrix is measured as a function of an alternative external magnetic field and interpreted in terms of m, γsub(y), and delta. The possibilities and limitations of the measuring method are discussed

  3. Longitudinal tune control in synchrotrons

    International Nuclear Information System (INIS)

    Colton, E.P.

    1984-01-01

    Dual rf systems that use fundamental and higher-harmonic cavities can be used to control the longitudinal tune in synchrotrons. The equations of motion and the Hamiltonian are defined for particle motion using dual rf systems. An example is considered using a second-harmonic system - it is shown, that as phi/sub s/ is increased, a substantial gain in bucket area over a single rf system can be realized by proper relative phasing of the first- and second-harmonic voltages

  4. Microwave left-handed composite material made of slim ferrite rods and metallic wires

    International Nuclear Information System (INIS)

    Fang, Xu; Yang, Bai; Li-Jie, Qiao; Hong-Jie, Zhao; Ji, Zhou

    2009-01-01

    This paper reports on experimental study of the microwave properties of a composite material consisting of ferrite and copper wires. It finds that the slim ferrite rods can modify the magnetic field distribution through their anisotropy, so that the ferrite's negative influence on the copper wires' plasma will be reduced. Left-handed properties are observed even in the specimen with close stuck ferrite rods and copper wires. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Plasma discharge in ferritic first wall vacuum vessel of the Hitachi Tokamak HT-2

    International Nuclear Information System (INIS)

    Abe, Mitsushi; Nakayama, Takeshi; Asano, Katsuhiko; Otsuka, Michio

    1997-01-01

    A tokamak discharge with ferritic material first wall was tried successfully. The Hitachi Tokamak HT-2 had a stainless steel SUS304 vacuum vessel and modified to have a ferritic plate first wall for experiments to investigate the possibility of ferritic material usage in magnetic fusion devices. The achieved vacuum pressure and times used for discharge cleaning was roughly identical with the stainless steel first wall or the original HT-2. We concluded that ferritic material vacuum vessel is possible for tokamaks. (author)

  6. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  7. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    Science.gov (United States)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  8. Effect of rare earth substitution in cobalt ferrite bulk materials

    International Nuclear Information System (INIS)

    Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O.F.

    2015-01-01

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm −3 decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe 2 O 4 sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples

  9. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  10. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  11. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... NUCLEAR REGULATORY COMMISSION [[NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in...

  12. Radiation induced phosphorus segregation in austenitic and ferritic alloys

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1984-01-01

    The radiation induced surface segregation (RIS) of phosphorus in stainless steel attained a maximum at a dose of 0.8 dpa then decreased continually with dose. This decrease in the surface segregation of phosphorus at high dose levels has been attributed to removal of the phosphorus layer by ion sputtering. Phosphorus is not replenished since essentially all of the phosphorus within the irradiation zone has been segregated to the surface. Sputter removal can explain the previously reported absence of phosphorus segregation in ferritic alloys irradiated at high dosessup(1,2) (>1 dpa) since irradiation of ferritic alloys to low doses has shown measurable RIS. This sputtering phenomenon places an inherent limitation to the heavy ion irradiation technique for the study of surface segregation of impurity elements. The magnitude of the segregation in ferritics is still much less than in stainless steel which can be related to the low damage accumulation in these alloys. (orig.)

  13. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-01-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y 2 O 3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained

  14. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  15. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    Science.gov (United States)

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  16. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    Science.gov (United States)

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Multifunctional metal ferrite nanoparticles for MR imaging applications

    International Nuclear Information System (INIS)

    Joshi, Hrushikesh M.

    2013-01-01

    Magnetic Resonance Imaging (MRI) is a very powerful non-invasive tool for in vivo imaging and clinical diagnosis. With rapid advancement in nanoscience and nanotechnology, there is rapid growth in nanoparticles-based contrast agents. Progress in synthetic protocols enable synthesis of multifunctional nanoparticles which facilitated efforts toward the development of multimodal contrast agents. In this review, recent developments in metal ferrite-based MR contrast agents have been described. Specifically, effect of size, shape, composition, assembly and surface modification of metal ferrite nanoparticles on their T 2 contrast have been discussed. The review further outlines the effect of leaching on MRI contrast and other various factors which affect the multimodal ability of the (T 1 –T 2 and T 2 -thermal activation) metal ferrite nanoparticles.

  18. The nature of temper brittleness of high-chromium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V. [Central Scientific-Research Institute for Ferrous Metallurgy, Moscow (Russian Federation)

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  19. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-10-25

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  20. ICRF full wave field solution and absorption for D-T and D-3He heating scenarios

    International Nuclear Information System (INIS)

    Scharer, J.; Sund, R.

    1989-01-01

    We consider a fundamental power conservation relation, full wave solutions for fields and power absorption in moderate and high density tokamaks to third order in the gyroradius expansion. The power absorption, conductivity tensor and kinetic flux associated with the conservation relation as well as the wave differential equation are obtained. Cases examined include D-T and D- 3 He scenarios for TFTR,JET and CIT at the Fundamental and Second harmonic. Optimum single pass absorption cases for D-T operation in JET and CIT are considered as a function of the K ≡ spectrum of the antenna with an without a minority He 3 resonance. It is found that at elevated temperatures >4 keV, minority (10%) fundamental deuterium absorption is very efficient for either fast wave low or high field incidence or high field Bernstein wave incidence. We consider the effects of a 10 keV bulk and 100 keV tail helium distribution on the second harmonic absorption in a deuterium plasma for Jet parameters. In addition, scenarios with ICRF operation without attendant substantial tritium concentrations are found the fundamental (15%) and second harmonic helium (33%) heating in a the deuterium plasma. For High field operation at high density in CIT, we find a higher part of the K parallel spectrum yields good single pass absorption with a 5% minority helium concentration in D-T

  1. Edge measurements during ICRF [ion cyclotron range of frequency] heating on the PLT [Princeton Large Torus] tokamak

    International Nuclear Information System (INIS)

    Lehrman, I.S.; Colestock, P.L.; McNeill, D.H.; Greene, G.J.; Bernabei, S.; Hosea, J.C.; Ono, M.; Shohet, J.L.; Wilson, J.R.

    1989-04-01

    Edge measurements have been conducted on the PLT tokamak under a variety of operating conditions in order to ascertain the relevant processes at work in coupling rf power to plasmas. The edge density is found to increase significantly with the application of ICRF, and electron heating occurs in the vicinity of the Faraday shield surrounding the antenna. Spectroscopic measurements indicate that the energized antenna is a significant particle source. The relative increase of metallic impurities was found to be /approximately/2.7 times larger than the corresponding increase in deuterium. In addition, the relative increase of deuterium and impurities was /approximately/3--4 times greater at the energized antenna than at other locations around the torus. Model calculations show that for deuterium released from the Faraday shield, the D/sub α/ emission is localized radially to a region within 4 cm of the antenna. A correlation was found between the edge density and the D/sub α/ intensity that justifies its use as a measure of the particle source rate. 26 refs., 14 figs

  2. Preparing ITER ICRF: development and analysis of the load resilient matching systems based on antenna mock-up measurements

    International Nuclear Information System (INIS)

    Messiaen, A.; Vervier, M.; Dumortier, P.; Grine, D.; Lamalle, P.U.; Durodie, F.; Koch, R.; Louche, F.; Weynants, R.

    2009-01-01

    The reference design for the ICRF antenna of ITER is constituted by a tight array of 24 straps grouped in eight triplets. The matching network must be load resilient for operation in ELMy discharges and must have antenna spectrum control for heating or current drive operation. The load resilience is based on the use of either hybrid couplers or conjugate-T circuits. However, the mutual coupling between the triplets at the low expected loading strongly counteracts the load resilience and the spectrum control. Using a mock-up of the ITER antenna array with adjustable water load matching solutions are designed. These solutions are derived from transmission line modelling based on the measured scattering matrix and are finally tested. We show that the array current spectrum can be controlled by the anti-node voltage distribution and that suitable decoupler circuits can not only neutralize the adverse mutual coupling effects but also monitor this anti-node voltage distribution. A matching solution using four 3 dB hybrids and the antenna current spectrum feedback control by the decouplers provides outstanding performance if each pair of poloidal triplets undergoes a same load variation. Finally, it is verified by modelling that this matching scenario has the same antenna spectrum and load resilience performances as the antenna array loaded by plasma as described by the TOPICA simulation. This is true for any phasing and frequency in the ITER frequency band. The conjugate-T solution is presently considered as a back-up option.

  3. An algorithm for the calculation of 3-D ICRF [Ion Cyclotron Range of Frequencies] fields in tokamak geometry

    International Nuclear Information System (INIS)

    Smithe, D.N.; Colestock, P.L.; Kashuba, R.J.; Kammash, T.

    1987-04-01

    A computational scheme is developed which permits tractable calculation of three-dimensional full-wave solutions to the Maxwell-Vlasov equations under typical Ion Cyclotron Range of Frequencies (ICRF) experimental conditions. The method is unique in that power deposition to the plasma is determined via the anti-Hermitian part of a truncated warm-plasma dielectric operator, rather than as the result of an assumed phenomenological collision frequency. The resulting computer code allows arbitrary variation of density, temperature, magnetic field, and minority concentration in the poloidal plane by performing a convolution of poloidal modes to produce a coupled system of differential equations in the radial variable. By assuming no inhomogeneity along the toroidal axis, an inverse transform over k/sub parallel/ is performed to yield the full three-dimensional field solutions. The application of the code to TFTR-like plasmas shows a mild resonance structure in antenna loading related to the changing number of wavelengths between antenna and the resonance layer. 48 figs

  4. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    Gendt, D.

    2001-01-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  5. Superparamagnetic response of zinc ferrite incrusted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Maldonado, K.L., E-mail: liliana.lopez.maldonado@gmail.com [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la, E-mail: pmpresa@ucm.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Betancourt, I., E-mail: israelb@unam.mx [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); Farias Mancilla, J.R., E-mail: rurik.farias@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Matutes Aquino, J.A., E-mail: jose.matutes@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Hernando, A., E-mail: antonio.hernando@externos.adif.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); and others

    2015-07-15

    Highlights: • Incrusted nanoparticles are found at the surface of ZnFe{sub 2}O{sub 4} microparticles. • Magnetic contribution of nano and microparticles are analyzed by different models. • Langevin model is used to calculate the nanoparticles-superparamagnetic diameter. • Susceptibility and Langevin analysis and calculations agree with experimental data. - Abstract: Zinc ferrite is synthesized via mechano-activation, followed by thermal treatment. Spinel ZnFe{sub 2}O{sub 4} single phase is confirmed by X-ray diffraction. SEM micrographs show large particles with average particle size 〈D{sub part}〉 = 1 μm, with particles in intimate contact. However, TEM micrographs show incrusted nanocrystallites at the particles surface, with average nanocrystallite size calculated as 〈D{sub inc}〉 ≈ 5 nm. The blocking temperature at 118 K in the ZFC–FC curves indicates the presence of a superparamagnetic response which is attributable to the incrusted nanocrystallites. Moreover, the hysteresis loops show the coexistence of superpara- and paramagnetic responses. The former is observable at the low field region; meanwhile, the second one is responsible of the lack of saturation at high field region. This last behavior is related to a paramagnetic contribution coming from well-ordered crystalline microdomains. The hysteresis loops are analyzed by means of two different models. The first one is the susceptibility model used to examine separately the para- and superparamagnetic contributions. The fittings with the theoretical model confirm the presence of the above mentioned magnetic contributions. Finally, using the Langevin-based model, the average superparamagnetic diameter 〈D{sub SPM}〉 is calculated. The obtained value 〈D{sub SPM}〉 = 4.7 nm (∼5 nm) is consistent with the average nanocrystallite size observed by TEM.

  6. Oxidation rate in ferritic superheater materials

    International Nuclear Information System (INIS)

    Falk, I.

    1992-05-01

    On the steam side of superheater tubes, compact oxide layers are formed which have a tendency to crack and flake off (exfoliate). Oxide particles then travel with the steam and can give rise to erosion damage in valves and on turbine blades. In an evaluation of conditions in superheater tubes from Swedish power boilers, it was found that the exfoliation frequency for one material quality (SS 2218) was greater than for other qualities. Against this background, a literature study has been carried out in order to determine which mechanisms govern the build-up of oxide and the exfoliation phenomenon. The study reveals that the oxide morphology is similar on all ferritic steels with Cr contents up to 5%. and that the oxide properties can therefore be expected to be similar. The reason why the exfoliation frequency is greater for tubes of SS 2218 is probably that the tubes have been exposed to higher temperatures. SS 2218 (2.25 Cr) is normally used in a higher temperature range which is accompanied by improved strength data as compared with SS 2216 (1 Cr). The principal cause of the exfoliation is said to be stresses which arise in the oxide during the cooling-down process associated with shutdowns. The stresses give rise to longitudinal cracks in the oxide, and are formed as a result of differences in thermal expansion between the oxide and the tube material. In addition, accounts are presented of oxidation constants and growth velocities, and thickness and running time. These data constitute a valuable basis for practical estimates of the operating temperature in routine checks and investigations into damage in superheater tubes. (au)

  7. Permanent magnetic ferrite based power-tunable metamaterials

    Science.gov (United States)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  8. Modeling ferrite electromagnetic response in the time domain

    International Nuclear Information System (INIS)

    Johnson, J.; DeFord, J.F.; Craig, G.D.

    1989-01-01

    The behavior of ferrite loads commonly found in induction accelertors has important consequences for the performance of these accelerators. Previous work by the authors on modeling the electromagnetic fields in induction cavities has focussed upon use of a simple, phenomenological model for the process of magnetization reversal in these ferrite loads. In this paper we consider a model for magnetization reversal which is more deeply rooted in theory, and present a simulation of the reversal process based upon this model for an idealized set of boundary conditions. 7 refs., 3 figs

  9. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  10. Microstructural examination of commercial ferritic alloys at 299 DPA

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-11-01

    Microstructures and density change measurements are reported for Martensitic commercial steels HT-9 and Modified 9Cr-lMo (T9) and oxide dispersion strengthened ferritic alloys MA956 and NU957 following irradiation in the FFTF/MOTA at 420 degrees C to 200 DPA. Swelling as determined by density change remains below 2% for all conditions. Microstructures are found to be stable except in recrystallized grains of MA957, which are fabrication artifacts, with only minor swelling in the Martensitic steels and α' precipitation in alloys with 12% or more chromium. These results further demonstrate the high swelling resistance and microstructural stability of the ferritic alloy class

  11. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  12. Evaluation of cost reduction method for manufacturing ODS ferritic claddings

    International Nuclear Information System (INIS)

    Fujiwara, Masayuki; Mizuta, Shunji; Ukai, Shigeharu

    2000-04-01

    For evaluating the fast reactor system technology, it is important to evaluate the practical feasibility of ODS ferritic claddings, which is the most promising materials to attain the goal of high coolant temperature and more than 150 GWd/t. Based on the results of their technology development, mass production process with highly economically benefit as well as manufacturing cost estimation of ODS ferritic claddings were preliminarily conducted. From the view point of future utility scale, the cost for manufacturing mother tubes has a dominant factor in the total manufacturing cost. The method to reduce the cost of mother tube manufacturing was also preliminarily investigated. (author)

  13. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  14. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  15. Evaluation of welds on a ferritic-austenitic stainless steel

    International Nuclear Information System (INIS)

    Pleva, J.; Johansson, B.

    1984-01-01

    Five different welding methods for the ferritic-austenitic steel 22Cr6Ni3MoN have been evaluated on mill welded heavy wall pipes. The corrosion resistance of the weld joints has been tested both in standard tests and in special environments, related to certain oil and gas wells. The tests were conclusive in that a welding procedure with the addition of sufficient amounts of filler metal should be employed. TIG welds without or with marginal filler addition showed poor resistance to pitting, and to boiling nitric acid. Contents of main alloying elements in ferrite and austenite phases have been measured and causes of corrosion attack in welds are discussed

  16. Study of some Mg-based ferrites as humidity sensors

    International Nuclear Information System (INIS)

    Rezlescu, N; Rezlescu, E; Doroftei, C; Popa, P D

    2005-01-01

    The micostructure and humidity sensitivity of MgFe 2 O 4 + CaO, Mg 0.5 Cu 0.5 Fe 1.8 Ga 0.2 O 4 , Mg 0.5 Zn 0.5 Fe 2 O 4 + KCl and MgMn 0.2 Fe 1.8 O 4 ferrites were investigated. We have found that the humidity sensitivity largely depends on composition, crystallite size, surface area and porosity. The best results concerning humidity sensitivity were obtained for MgMn 0.2 Fe 1.8 O 4 ferrite

  17. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  18. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    Various ferrites (Fe-, Li-, Ni/Zn/Cu-, Co-, Co/Ni, Ba- and Sr-ferrites) were investigated with respect to their application for hyperthermia. Temperature changes under an alternating magnetic field were observed. The area of hysteresis loop was much larger in the Ba- and Sr-ferrites than for that of the Fe-, Ni/Zn/Cu-, Li-, Co- and Co/Ni-ferrites. Co-ferrite exhibited the most applicable temperature change ΔT=19.25K (29.62W/gs), in distilled water when the field was 110A/m

  19. MnZn-ferrites: Targeted Material Design for New Emerging Application Products

    OpenAIRE

    Zaspalis V. T.; Tsakaloudi V.; Kogias G.

    2014-01-01

    In this article the main characteristics for emerging MnZn-ferrite applications are described on the basis of the new demands they possess on the ferrite material development. A number of recently developed MnZn-ferrite materials is presented together with the main scientific principles lying behind their development. These include: (i) high saturation flux density MnZn-ferrites (i.e. Bsat=550 mT at 10 kHz, 1200 A/m, 100°C), (ii) low power losses MnZn-ferrites (i.e. Pv~210 mW cm-3 at 100 kHz,...

  20. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced. For geo......Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced...... for vertical separation between the coils in range of 100-180 mm. It is observed that lower vertical separation results in higher overlapping of the zones and the coils behave as they are effectively placed close to center of air gap. The analysis in this work provides a better understanding of the space...... profile of magnetic field emissions (with and without ferrite) for wireless power transfer to vehicles....

  1. Resistance to pitting corrosion in ferritic and austenitic/ferritic steels

    International Nuclear Information System (INIS)

    De Bouvier, O.

    1995-01-01

    Stainless steel tubes carrying raw water are potentially vulnerable to pitting corrosion. With a view to minimizing the corrosion risk in the river-water-cooled condensers at PWR power plant, a study was conducted to determine initiation conditions and incubation durations for pitting corrosion in stagnant water. As a result, condenser tubes in Z2 CI 18 (439) or Z2 CT 18-10 (304L) steels were phased out in favour of Z2 CND 16-32 (316L) stainless steel. The same question can be yield for other applications and especially for all types of exchangers for use in electrical applications. This study sought to assess alternative methods for estimating pitting corrosion, and to check the results of these methods against the actual behaviour of studied steels. The study covered ferritic steels (439, 444, 290Mo), austenitic steel (316L) and austenitic/ferritic steels (Uranus 35N, 45N, 47N, 52N). Two approaches were adopted: laboratory tests to compare pitting corrosion risks on different materials, and tests for characterizing the behaviour of steels exposed to river water. The study begins with a laboratory tests that yield an arbitrary parameter for quantifying pitting corrosion resistance. One method involves measuring the pitting temperature in an aggressive ferric chloride solution. Other methods measure the pitting potential, either statistically (Multipit method) or deterministically (polarization curve). We then go on to discuss tests under simulated life-like conditions, involving repeated immersions in water from the Seine. (author). 9 refs., 13 figs, 9 tabs

  2. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    International Nuclear Information System (INIS)

    Saravanan, M.; Sabari Girisun, T.C.

    2017-01-01

    Highlights: • Nanospindle and nanosphere ZnFe_2O_4 were decorated upon GO by hydrothermal method. • All the samples show superparamagnetism with almost zero coercivity and remanence. • The observed nonlinearity arises due to effective two photon absorption process. • Tuning of NLO behavior with variation in amount of ZnFe_2O_4 upon GO were achieved. • ZnFe_2O_4-(15 wt%)GO show higher NLO coefficients and superior limiting actions. - Abstract: Nonlinear absorption and optical limiting properties of ZnFe_2O_4-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe_2O_4 decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe_2O_4. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10"−"1"0 m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe_2O_4-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp"3) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe_2O_4 upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe_2O_4 along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable properties which are exceedingly required in both optoelectronics and photothermal therapy

  3. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, M.; Sabari Girisun, T.C., E-mail: sabarigirisun@bdu.ac.in

    2017-01-15

    Highlights: • Nanospindle and nanosphere ZnFe{sub 2}O{sub 4} were decorated upon GO by hydrothermal method. • All the samples show superparamagnetism with almost zero coercivity and remanence. • The observed nonlinearity arises due to effective two photon absorption process. • Tuning of NLO behavior with variation in amount of ZnFe{sub 2}O{sub 4} upon GO were achieved. • ZnFe{sub 2}O{sub 4}-(15 wt%)GO show higher NLO coefficients and superior limiting actions. - Abstract: Nonlinear absorption and optical limiting properties of ZnFe{sub 2}O{sub 4}-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe{sub 2}O{sub 4} decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe{sub 2}O{sub 4}. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10{sup −10} m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe{sub 2}O{sub 4}-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp{sup 3}) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe{sub 2}O{sub 4} upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe{sub 2}O{sub 4} along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable

  4. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Yan Shifeng; Geng Jianxin; Chen Jianfeng; Yin Li; Zhou Yunchun; Liu Leijing; Zhou Enle

    2005-01-01

    Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of α-Fe 2 O 3 . The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%. The magnetic properties of the nanocomposites are closely related to the ferrite content. The saturation magnetization increases with the ferrite content, while the coercivity reaches a maximum when the ferrite is 80wt% in the silica matrix

  5. A ferrite LTCC based dual purpose helical antenna providing bias for tunability

    KAUST Repository

    Ghaffar, Farhan A.

    2015-03-30

    Typically, magnetically tunable antennas utilize large external magnets or coils to provide the magneto-static bias. In this work, we present a novel concept of combining the antenna and the bias coil in one structure. A helical antenna has been optimized to act as the bias coil in a ten layer ferrite LTCC package, thus performing two functions. This not only reduces the overall size of the system by getting rid of the external bias source but also eliminates demagnetization effect (fields lost at air-to-substrate interface), which reduces the required magneto-static field strength and makes the design efficient. RF choking inductor and DC blocking capacitor have been monolithically integrated as package elements to allow the magnetostatic and microwave excitation at the same time. The design has been optimized for its low frequency and high frequency performance in two different simulators. A measured tuning range of 10% is achieved at a center frequency of 13 GHz. The design is highly suitable for low cost, compact, light-weight and tunable microwave systems. © 2002-2011 IEEE.

  6. Defect engineering of mesoporous nickel ferrite and its application for highly enhanced water oxidation catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Qiudi; Liu, Cunming; Wan, Yangyang; Wu, Xiaojun; Zhang, Xiaoyi; Du, Pingwu

    2018-02-01

    Spinel nickel ferrite (NiFe2O4) emerges as a promising low-cost catalyst for water splitting but it usually shows low catalytic activity because of its limited number of active sites and poor conductivity. For the first time, herein we have successfully overcome its weaknesses using defect engineering approach by creating oxygen vacancies in NiFe2O4. The existence of oxygen vacancy not only shifts up the d-band center, strengthens the adsorption of H2O, and thus provides more active catalytic sites, but also tunes the electron configuration and creates massive number of defective donor states in the band gap to facilitate charge transfer processes. The optimal defective catalyst showed significantly enhanced catalytic OER performance with an OER overpotential as low as 0.35 V at 10 mA cm-2 and a Tafel slope of only ~40 mV dec-1. Moreover, the impressive specific mass and area current density of 17.5 A g-1 and 0.106 A m-2 at 1.58 V vs. RHE have been achieved, which are ~23 and ~36 times higher than that of defect-free counterpart, respectively.

  7. A ferrite LTCC based dual purpose helical antenna providing bias for tunability

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2015-01-01

    Typically, magnetically tunable antennas utilize large external magnets or coils to provide the magneto-static bias. In this work, we present a novel concept of combining the antenna and the bias coil in one structure. A helical antenna has been optimized to act as the bias coil in a ten layer ferrite LTCC package, thus performing two functions. This not only reduces the overall size of the system by getting rid of the external bias source but also eliminates demagnetization effect (fields lost at air-to-substrate interface), which reduces the required magneto-static field strength and makes the design efficient. RF choking inductor and DC blocking capacitor have been monolithically integrated as package elements to allow the magnetostatic and microwave excitation at the same time. The design has been optimized for its low frequency and high frequency performance in two different simulators. A measured tuning range of 10% is achieved at a center frequency of 13 GHz. The design is highly suitable for low cost, compact, light-weight and tunable microwave systems. © 2002-2011 IEEE.

  8. Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperatures

    Science.gov (United States)

    Goryachev, Maxim; Watt, Stuart; Bourhill, Jeremy; Kostylev, Mikhail; Tobar, Michael E.

    2018-04-01

    Single crystal lithium ferrite (LiFe) spheres of sub-mm dimension are examined at mK temperatures, microwave frequencies, and variable dc magnetic field, for use in hybrid quantum systems and condensed matter and fundamental physics experiments. Strong coupling regimes of the photon-magnon interaction (cavity magnon polariton quasiparticles) were observed with coupling strength of up to 250 MHz at 9.5 GHz (2.6%) with magnon linewidths of order 4 MHz (with potential improvement to sub-MHz values). We show that the photon-magnon coupling can be significantly improved and exceed that of the widely used yttrium iron garnet crystal, due to the small unit cell of LiFe, allowing twice the spins per unit volume. Magnon mode softening was observed at low dc fields and, combined with the normal Zeeman effect, creates magnon spin-wave modes that are insensitive to first-order magnetic-field fluctuations. This effect is observed in the Kittel mode at 5.5 GHz (and another higher order mode at 6.5 GHz) with a dc magnetic field close to 0.19 tesla. We show that if the cavity is tuned close to this frequency, the magnon polariton particles exhibit an enhanced range of strong coupling and insensitivity to magnetic field fluctuations with both first-order and second-order insensitivity to magnetic field as a function of frequency (double magic point clock transition), which could potentially be exploited in cavity QED experiments.

  9. Lithium ferrite: The study on magnetic and complex permittivity characteristics

    Directory of Open Access Journals (Sweden)

    Madhavaprasad Dasari

    2017-03-01

    Full Text Available Lithium ferrite (Li0.5Fe2.5O4 powder was prepared by solid state reaction method, which was finally pressed and sintered at 1150 °C. The spinel structure of the lithium ferrite was confirmed by X-ray diffraction and grain size estimation was obtained from scanning electron microscope (SEM. Fourier transform infrared spectroscopy (FTIR confirmed the presence of primary and secondary absorption bands characteristic for spinel structure. The force constants were estimated using absorption bands for the lithium ferrite. Magnetization and dielectric studies were carried out for the sintered sample. Saturation magnetization (Ms of 59.6 emu/g was achieved and variation of magnetization with temperature was used to identify the Curie temperature. The complex permittivity (ε∗ for the lithium ferrite sample was obtained for wide frequency range up to 3 GHz and discussed based on available models. The Curie temperature was estimated around 480 °C and verified from both magnetization versus temperature and dielectric constant versus temperature measurements.

  10. Analyse des structures planaires multicouches à ferrite par la ...

    African Journals Online (AJOL)

    Finite element analysis of multi-layer planar structures with Ferrite. Electromagnetic Analysis of microwave integrated circuits is an attractive subject do to the recent development and use of new materials such as magnetic anisotropic materials (hexaferrite, ...). These materials are used in many microwave components ...

  11. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  12. The role of cobalt ferrite magnetic nanoparticles in medical science

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, S.; Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. Highlights: Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles are one of the most important materials for nanomedicine. Black-Right-Pointing-Pointer They have high coercivity and moderate saturation magnetization. Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles are synthesized easily. Black-Right-Pointing-Pointer They are a good candidate for hyperthermia and magnetic resonance imaging.

  13. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Torres C.

    2013-01-01

    Full Text Available Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer’s formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  14. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to ...

  15. Determination of delta ferrite volumetric fraction in austenitic stainless steels

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray difraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Forster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  16. The evolution of ferrite grain size in structural steels

    International Nuclear Information System (INIS)

    Hodgson, P.D.

    1999-01-01

    The refinement of the ferrite grain size is the main aim of modern thermomechanical processes for hot rolled steels. The ferrite grain size is determined by the composition, the state of the austenite at the point of transformation and the cooling rate through transformation. By adding microalloying additions of Ti for grain refinement and Nb to retard recrystallisation, it is possible to reduce the ferrite grain size to less than 5μm at moderate to high cooling rates. However, it is not possible under even the most extreme traditional controlled rolling and accelerated cooling conditions to produce an equiaxed ferrite grain size of less than 3μm. More recent work, though, involving rolling with high undercooling and friction conditions that lead to high shear, suggests that it is possible to produce microstructures in a single rolling pass with an average grain size less than 1μm. This appears to involve a dynamic (ie strain induced) transformation process. The current understanding of static and dynamic transformation and the resultant grain size is reviewed and areas requiring further research are highlighted

  17. Mössbauer and magnetization studies of nanosize chromium ferrite ...

    African Journals Online (AJOL)

    Nanosize chromium ferrite (CrF) powder samples were synthesized by citrate precursor route in the size range of 6 to 35 nm. The structural and magnetic behaviour of these samples were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Synthesized ...

  18. Irradiation proposition of ferritic steels in a russian reactor

    International Nuclear Information System (INIS)

    Seran, J.L.; Decours, J.; Levy, L.

    1987-04-01

    Using the low temperatures of russian reactors, a sample irradiation is proposed to study mechanical properties and swelling of martensitic steels (EM10, T91, 1.4914, HT9), ferrito-martensitic (EM12) and ferritic (F17), at temperatures lower than 400 0 C [fr

  19. Domain structure in soft ferrites by the longitudinal Kerr effect

    International Nuclear Information System (INIS)

    Kaczmarek, R.; Dautain, M.; Barradi-Ismail, T.

    1992-01-01

    For the first time, the longitudinal Kerr effect has been used in order to observe magnetic domains and their development in power ferrites. Image subtraction and processing leads to a magnetic contrast being a quasi derivative of the domains. A kind of integration procedure applied to them permits a reconstruction of a local hysteresis which parameters closely approach the global hysteresis data. (orig.)

  20. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  1. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  2. Modified ferrite core-shell nanoparticles magneto-structural characterization

    Science.gov (United States)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  3. Carbon diffusion in carbon-supersaturated ferrite and austenite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 586, FEB (2014), s. 129-135 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * Carbon supersaturation * Carbon supersaturation * Ferrite * Austenite Subject RIV: BJ - Thermodynamics Impact factor: 2.999, year: 2014

  4. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ concentration is increased ...

  5. Apple iTunes music store

    OpenAIRE

    Lenzi, R.; Schmucker, M.; Spadoni, F.

    2003-01-01

    This technical report analyses the Apple iTunes Music Store and its success factors. Besides the technical aspects, user and customer aspects as well as content aspects are considered. Furthermore, iTunes Music Store's impact to online music distribution services is analysed and a short outlook to future music online distribution is given.

  6. Efficient tuning in supervised machine learning

    NARCIS (Netherlands)

    Koch, Patrick

    2013-01-01

    The tuning of learning algorithm parameters has become more and more important during the last years. With the fast growth of computational power and available memory databases have grown dramatically. This is very challenging for the tuning of parameters arising in machine learning, since the

  7. Tuning and History: A Personal Overview

    Science.gov (United States)

    Isaacs, Ann Katherine

    2017-01-01

    The text places Tuning History in the context of the rapidly developing international collaboration among historians which began in Europe in 1989, with the ECTS Pilot project, and continued, from 2000 on, with the European History Networks (for research and for curriculum development) working in parallel and in collaboration with Tuning, in…

  8. A frequency domain approach for MPC tuning

    NARCIS (Netherlands)

    Özkan, L.; Meijs, J.B.; Backx, A.C.P.M.; Karimi, I.A.; Srinivasan, R.

    2012-01-01

    This paper presents a frequency domain based approach to tune the penalty weights in the model predictive control (MPC) formulation. The two-step tuning method involves the design of a favourite controller taking into account the model-plant mismatch followed by the controller matching. We implement

  9. ATLAS Run 1 Pythia8 tunes

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    We present tunes of the Pythia8 Monte~Carlo event generator's parton shower and multiple parton interaction parameters to a range of data observables from ATLAS Run 1. Four new tunes have been constructed, corresponding to the four leading-order parton density functions, CTEQ6L1, MSTW2008LO, NNPDF23LO, and HERAPDF15LO, each simultaneously tuning ten generator parameters. A set of systematic variations is provided for the NNPDF tune, based on the eigentune method. These tunes improve the modeling of observables that can be described by leading-order + parton shower simulation, and are primarily intended for use in situations where next-to-leading-order and/or multileg parton-showered simulations are unavailable or impractical.

  10. Automatic tuning of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Ilya; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL, Schenefeld (Germany); Tomin, Sergey [European XFEL, Schenefeld (Germany); NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-04-07

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  11. Automatic tuning of free electron lasers

    International Nuclear Information System (INIS)

    Agapov, Ilya; Zagorodnov, Igor; Geloni, Gianluca; Tomin, Sergey

    2017-01-01

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  12. Development of a Ferrite-Based Electromagnetic Wave Detector

    Directory of Open Access Journals (Sweden)

    Muhammad Hanish Zakariah

    2017-11-01

    Full Text Available Direct detection of hydrocarbon by an active source using electromagnetic (EM wave termed Sea Bed Logging (SBL has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges including sensitivity and lapsed time. Our initial response to this issue is to develop a ferrite-based EM wave detector for Sea Bed Logging (SBL. Ferrite bar and copper rings in various diameters were used as detector 1 (D1. For Detector 2 (D2, toroid added with copper wires in different lengths at the centre of it were used. The first experiment is to determine the inductance and resistance for both detectors by using LCR meter. We obtained the highest inductance value of 0.02530 mH at the ferrite bar when it was paired with a 15 cm diameter copper ring and 0.00526 mH for D2 using a 100 cm copper wire placed at the centre of the toroid. The highest resistivity for D1 was measured at ferrite bar paired with a 15 cm diameter  copper ring and 1.099 Ω when using 20 cm length of copper wire. The second interest deals with voltage peak-to-peak (Vp-p value for both detectors by using oscilloscope. The highest voltage value at the ferrite bar of D1 was 25.30 mV. While at D2, the highest voltage measured was 27.70 mV when using a 100 cm copper wire. The third premise is the comparison of sensitivity and lapsed time for both detectors. It was found that D1 was 61% more sensitive than D2 but had higher lapsed time than D2.

  13. Substrate integrated ferrite phase shifters and active frequency selective surfaces

    International Nuclear Information System (INIS)

    Cahill, B.M.

    2002-01-01

    There are two distinct parts to this thesis; the first investigates the use of ferrite tiles in the construction of printed phase shifting transmission lines, culminating in the design of two compact electromagnetic controlled beam steered patch and slot antenna arrays. The second part investigates the use of active frequency selective surfaces (AFSS), which are later used to cover a uPVC constructed enclosure. Field intensity measurements are taken from within the enclosure to determine the dynamic screening effectiveness. Trans Tech G-350 Ferrite is investigated to determine its application in printed microstrip and stripline phase shifting transmission lines. 50-Ohm transmission lines are constructed using the ferrite tile and interfaced to Rogers RT Duroid 5870 substrate. Scattering parameter measurements are made under the application of variable magnetic fields to the ferrite. Later, two types of planar microwave beam steering antennas are constructed. The first uses the ferrites integrated into the Duroid as microstrip lines with 3 patch antennas as the radiating elements. The second uses stripline transmission lines, with slot antennas as the radiating sources etched into the ground plane of the triplate. Beam steering is achieved by the application of an external electromagnet. An AFSS is constructed by the interposition of PIN diodes into a dipole FSS array. Transmission response measurements are then made for various angles of electromagnetic wave incidence. Two states of operation exist: when a current is passed through the diodes and when the diodes are switched off. These two states form a high pass and band stop space filter respectively. An enclosure covered with the AFSS is constructed and externally illuminated in the range 2.0 - 2.8GHz. A probe antenna inside the enclosure positioned at various locations through out the volume is used to establish the effective screening action of the AFSS in 3 dimensional space. (author)

  14. Microstructural characterization of ODS ferritic steels at different processing stages

    Energy Technology Data Exchange (ETDEWEB)

    Gil, E., E-mail: egil@ceit.es; Ordás, N.; García-Rosales, C.; Iturriza, I., E-mail: iiturriza@ceit.es

    2015-10-15

    Highlights: • ODS ferritic stainless steel produced by new route without mechanical alloying. • Fully dense ferritic stainless steels containing Y and Ti were obtained by HIPping. • Y and Ti-rich precipitates prevent grain growth during heat treatment up to 1320 °C. • HIPping at 1220 °C dissolves the metastable oxides on PPBs. - Abstract: Nanostructured Oxide Dispersion Strengthened Reduced Activation Ferritic Stainless Steels (ODS RAF) are promising structural materials for fusion reactors, due to their ultrafine microstructure and the presence of a dispersion of Y–Ti–O nanoclusters that provide excellent creep strength at high temperatures (up to 750 °C). The traditional powder metallurgical route to produce these steels is based on Gas Atomization (GA) + Mechanical Alloying (MA) + HIP + ThermoMechanical Treatments (TMTs). Recently, alternative methods have arisen to avoid the MA step. In line with this new approach, ferritic stainless steel powders were produced by gas atomization and HIPped, after adjusting their oxygen, Y and Ti contents to form Y–Ti–O nanoclusters during subsequent heat treatments. The microstructure of as-HIPped steels mainly consists of ferrite grains, Y–Ti precipitates, carbides and oxides on Prior Particle Boundaries (PPBs). Post-HIP heat treatments performed at high temperatures (1270 and 1300 °C) evaluated the feasibility of achieving a complete dissolution of the oxides on PPBs and a precipitation of ultrafine Ti- and Y-rich oxides in the Fe14Cr2W matrix. FEG-SEM with extensive EDS analysis was used to characterize the microstructure of the atomized powders and the ODS-RAF specimens after HIP consolidation and post-HIP heat treatments. A deeper characterization of atomized powder was carried out by TEM.

  15. Progress towards RF heated steady-state plasma operations on LHD by employing ICRF heating methods and improved divertor plates

    International Nuclear Information System (INIS)

    Kumazawa, R.; Mutoh, T.; Saito, K.

    2008-10-01

    A long pulse plasma discharge experiment was carried out using RF heating power in the Large Helical Device (LHD), a currentless magnetic confining system. Progress in long pulse operation is summarized since the 10th experimental campaign (2006). A scaling relation of the plasma duration time to the applied RF power has been derived from the experimental data so far collected. It indicates that there exists a critical divertor temperature and consequently a critical RF heating power P RFcrit =0.65 MW. The area on the graph of the duration time versus the RF heating power was extended over the scaling relation by replacing divertor plates with new ones with better heat conductivity. The cause of the plasma collapse at the end of the long pulse operation was found to be the penetration of metal impurities. Many thin flakes consisting of heavy metals and graphite in stratified layers were found on the divertor plates and it was thought that they were the cause of impurity metals penetrating into the plasma. In a simulation involving injecting a graphite-coated Fe pellet to the plasma it was found that 230 Eμm in the diameter of the Fe pellet sphere was the critical size which led the plasma to collapse. A mode-conversion heating method was examined in place of the minority ICRF heating which has been employed in almost all the long-pulse plasma discharges. It was found that this method was much better from the viewpoint of achieving uniformity of the plasma heat load to the divertors. It is expected that P RFcrit will be increased by using the mode-conversion heating method. (author)

  16. Edge localized modes and edge pedestal in NBI and ICRF heated H, D and T-plasmas in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Lingertat, J.; Barnsley, R.

    1998-12-01

    Based on experiments carried out in JET in D:T mixtures varying from 100:0 to 5:95 and those carried out in hydrogen plasmas, the isotopic mass dependence of ELM parameters and the edge pedestal pressure in neutral beam (NBI) and ion cyclotron resonance (ICRF) heated H-mode plasmas is presented. The ELM frequency is found to decrease with the atomic mass number both in ICRH and NBI discharges. However, the frequency in the case of ICRH is about 8 - 10 times higher than in the NBI case. Assuming that ELMs occur at a critical edge pressure gradient, limited by the ballooning instability, the scaling of the maximum edge pressure is most consistent with the assumption that the width of the transport barrier scales as the ion poloidal Larmor radius governed by the average energy of fast ions at the edge. The critical edge pressure in NBI heated discharges increases with the isotopic mass which. is consistent with the higher deduced width of the edge transport, barrier in tritium than in deuterium and hydrogen. The critical edge pressure in ICRH discharges is smaller, presumably, due to the smaller fast-ion contribution to the edge region. As a consequence of the edge pressure scaling with isotopic mass, the edge operational space in the n e - T e diagram increases with operation in tritium. If the evidence that the edge pedestal width is governed by the average energy of fast ions in the edge prevails, the pedestal in ITER would be controlled by the slowing down energy spectrum of α-particles in the edge. (author)

  17. 2-Shock layered tuning campaign

    Science.gov (United States)

    Masse, Laurent; Dittrich, T.; Khan, S.; Kyrala, G.; Ma, T.; MacLaren, S.; Ralph, J.; Salmonson, J.; Tipton, R.; Los Alamos Natl Lab Team; Lawrence Livermore Natl Lab Team

    2016-10-01

    The 2-Shock platform has been developed to maintain shell sphericity throughout the compression phase of an indirect-drive target implosion and produce a stagnating hot spot in a quasi 1D-like manner. A sub-scale, 1700 _m outer diameter, and thick, 200 _m, uniformly Silicon doped, gas-filled plastic capsule is driven inside a nominal size 5750 _m diameter ignition hohlraum. The hohlraum fill is near vacuum to reduce back-scatter and improve laser/drive coupling. A two-shock pulse of about 1 MJ of laser energy drives the capsule. The thick capsule prevents ablation front feed-through to the imploded core. This platform has demonstrated its efficiency to tune a predictable and reproducible 1-D implosion with a nearly round shape. It has been shown that the high foot performance was dominated by the local defect growth due to the ablation front instability and by the hohlraum radiation asymmetries. The idea here is to take advantage of this 2-Shock platform to design a 1D-like layered implosion and eliminates the deleterious effects of radiation asymmetries and ablation front instability growth. We present the design work and our first experimental results of this near one-dimensional 2-Shock layered design. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  18. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  19. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions

    International Nuclear Information System (INIS)

    Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing; Richards, George

    2016-01-01

    Highlights: • BaFe 2 O 4 and CaFe 2 O 4 are excellent for chemical looping coal gasification. • BaFe 2 O 4 and CaFe 2 O 4 have minimal reactivity with synthesis gas. • Steam enhances the gasification process with these oxygen carriers. • Reaction rates of steam gasification of coal with CaFe 2 O 4 was better than with gaseous oxygen. • Coal gasification appears to be via solid–solid interaction with the oxygen carrier. - Abstract: Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe 2 O 4 ) and calcium ferrite (CaFe 2 O 4 ). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe 2 O 4 and CaFe 2 O 4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H 2 ) and carbon monoxide (CO), but carbon dioxide (CO 2 ) remained low because these oxygen carriers have minimal reactivity with H 2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H 2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  20. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 1 go-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  1. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel l0-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  2. Upgrades to PEP-II tune measurements

    International Nuclear Information System (INIS)

    Fisher, Alan S.; Petree, Mark; Wienands, Uli; Allison, Stephanie; Laznovsky, Michael; Seeman, Michael; Robin, Jolene

    2002-01-01

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement

  3. Selective enhancement of orientation tuning before saccades.

    Science.gov (United States)

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  4. Tuning Fractures With Dynamic Data

    Science.gov (United States)

    Yao, Mengbi; Chang, Haibin; Li, Xiang; Zhang, Dongxiao

    2018-02-01

    Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non-Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough-transform method is employed to parameterize non-Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is

  5. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    Science.gov (United States)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  6. Optimization of multiroute synthesis for polyaniline-barium ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ghzaiel, Tayssir, E-mail: tayssir.ben-ghzaiel@satie.ens-cachan.fr [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France); Dhaoui, Wadia [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); Pasko, Alexander; Mazaleyrat, Frédéric [SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France)

    2016-08-15

    A comparative study of physicochemical and magnetic properties of Polyaniline-BaFe{sub 12}O{sub 19} composites prepared by Solid-Based Polymerization (SBP) and by Aqueous-Based Polymerization (ABP) is carried out. The composites obtained by the latter method underwent a grinding to study the influence of shear stress. Thus, in a systematic approach, an investigation of stirring effect was done by synthesizing these composites using aqueous-based polymerization but without mechanical stirring. Different mass ratio of BaFe{sub 12}O{sub 19} was used to explore their impact on composites properties. X-ray diffraction, FTIR, SEM, TGA, conductivity and vibrating sample magnetometer measurements were performed. Structural and morphological investigations confirmed the presence of polyaniline and barium hexaferrite phase, which were in interaction in the composites regardless the polymerization route. The powder obtained by solid-based pathway revealed distinct particles with uniform distribution for various compositions (wt. %) of BaFe{sub 12}O{sub 19} in Pani, while the composites obtained by aqueous-based polymerization presented agglomerated nanostructures. Thermogravimetric analysis exhibited an improved thermal stability for Pani-BaFe{sub 12}O{sub 19} obtained by solid-based route. The electric conductivity has displayed decreasing trend of DC conductivity with the increase of BaFe{sub 12}O{sub 19} particles in the polymer matrix. Magnetic studies showed a ferromagnetic behaviour for all composites. The saturation magnetization monotonously increased with the increasing of BaFe{sub 12}O{sub 19} amount. The magnetic properties of the powders were mainly related to the hexaferrite loading which was determined using measured magnetic data. These results revealed that magnetization saturation was dependant of volume fraction of ferrite in the composites which was significantly affected by the reaction medium and mechanical stirring. The powders obtained by solid

  7. Dynamic Performance Tuning Supported by Program Specification

    Directory of Open Access Journals (Sweden)

    Eduardo César

    2002-01-01

    Full Text Available Performance analysis and tuning of parallel/distributed applications are very difficult tasks for non-expert programmers. It is necessary to provide tools that automatically carry out these tasks. These can be static tools that carry out the analysis on a post-mortem phase or can tune the application on the fly. Both kind of tools have their target applications. Static automatic analysis tools are suitable for stable application while dynamic tuning tools are more appropriate to applications with dynamic behaviour. In this paper, we describe KappaPi as an example of a static automatic performance analysis tool, and also a general environment based on parallel patterns for developing and dynamically tuning parallel/distributed applications.

  8. Betatron tune correction schemes in nuclotron

    International Nuclear Information System (INIS)

    Shchepunov, V.A.

    1992-01-01

    Algorithms of the betatron tune corrections in Nuclotron with sextupolar and octupolar magnets are considered. Second order effects caused by chromaticity correctors are taken into account and sextupolar compensation schemes are proposed to suppress them. 6 refs.; 1 tab

  9. Accurate guitar tuning by cochlear implant musicians.

    Directory of Open Access Journals (Sweden)

    Thomas Lu

    Full Text Available Modern cochlear implant (CI users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  10. Small-scale mechanical property characterization of ferrite formed during deformation of super-cooled austenite by nanoindentation

    International Nuclear Information System (INIS)

    Ahn, Tae-Hong; Um, Kyung-Keun; Choi, Jong-Kyo; Kim, Do Hyun; Oh, Kyu Hwan; Kim, Miyoung; Han, Heung Nam

    2009-01-01

    The mechanical properties of dynamically and statically transformed ferrites were analyzed using a nanoindentater-EBSD (Electron BackScattered Diffraction) correlation technique, which can distinguish indenting positions according to the grains in the specimen. The dilatometry and the band slope and contrast maps by EBSD were used to evaluate the volume fractions of two kinds of ferrite and pearlite. Fine ferrites induced by a dynamic transformation had higher nano-hardness than the statically transformed coarse ferrites. Transmission electron microscopy (TEM) showed the dynamic ferrites to have a higher dislocation density than the statically transformed ferrites.

  11. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  12. The influence of the heat treatment on delta ferrite transformation in austenitic stainless steel welds

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2012-04-01

    Full Text Available Shielded metal arc (SMAW welded specimens using austenitic consumable materials with different amount of delta-ferrite are annealed in range 650-750 °C through 2-10 hours. Factorial plan 33 with influenced factors regression analyze of measured delta-ferrite values is used. The transformation i.e. decomposition of delta ferrite during annealing was analyzed regarding on weld cracking resistance using metallographic examination and WRC-1992 diagram.

  13. Manganese substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications

    OpenAIRE

    Paulsen, J. A.; Ring, A. P.; Lo, C. C. H.; Snyder, John Evan; Jiles, David

    2005-01-01

    Metal bonded cobalt ferrite composites have been shown to be promising candidate materials for use in magnetoelastic stress sensors, due to their large magnetostriction and high sensitivity of magnetization to stress. However previous results have shown that below 60 °C the cobalt ferrite material exhibits substantial magnetomechanical hysteresis. In the current study, measurements indicate that substituting Mn for some of the Fe in the cobalt ferrite can lower the Curie temperature of the ma...

  14. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    Science.gov (United States)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  15. Diffusion Couple Alloying of Refractory Metals in Austenitic and Ferritic/Martensitic Steels

    Science.gov (United States)

    2012-03-01

    stainless steel and ferritic/ martensitic steel can vary from structural and support components in the reactor core to reactor fuel...of ferritic/ martensitic steels compared to type 316 stainless steel after irradiation in Experimental Breeder Reactor-II at 420 ºC to ~80dpa (From...ferritic martensitic steel at Sandia National Laboratories. The 316 stainless steel had a certified composition of:

  16. Friction Stir Welding of HT9 Ferritic-Martensitic Steel: An Assessment of Microstructure and Properties

    Science.gov (United States)

    2013-06-01

    report of FSW on a ferritic- martensitic stainless steel is the work of Chung, which applied this approach to a dissimilar weld between F82H (ferritic... martensitic ) and SUS304 (austenitic stainless ) [43]. 7 D. CORROSION OF FERRITIC/ MARTENSITIC STEELS IN HIGH TEMPERATURE MOLTEN SALT COOLANTS In...Philadelphia, PA, 1992, pp. 1267–1286, March 1990. [15] S. Rosenwasser, ―The application of martensitic stainless steels in a lifelong fusion first wall

  17. Design and screening of nanoprecipitates-strengthened advanced ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Tianyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States); He, Li [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-30

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, and thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.

  18. Synthesis, characterization and antistructure modeling of Ni nano ferrite

    Science.gov (United States)

    Kane, S. N.; Raghuvanshi, S.; Satalkar, M.; Reddy, V. R.; Deshpande, U. P.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    We report the role played by cation distribution in determining magnetic properties by comparing dry gel, thermally annealed Ni ferrite prepared by sol-gel auto-combustion technique. X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Mössbauer spectroscopy were used to characterize the samples. Both XRD and Mössbauer measurements validate the formation of spinel phase with grain diameter 39.13-45.53 nm. First time antistructural modeling for Ni ferrite is reported to get information on active surface centers. Decrease of Debye temperature θD in annealed sample shows enhancement of lattice vibrations. With thermal annealing experimental and Néel magnetic moment (nBe, nBN) increases, suggesting migration of Ni2+ from B to A site with concurrent migration of Fe3+ from A to B site (non-equilibrium cationic distribution), affecting magnetic properties.

  19. The nucleation of austenite in ferritic ductile cast iron

    International Nuclear Information System (INIS)

    Chou, J.M.; Hon, M.H.; Lee, J.L.

    1992-01-01

    Austempered ductile cast iron has recently been receiving increasing attention because of its excellent combination of strength and ductility. Since the austenitization process has a significant influence on the mechanical properties of austempered ductile cast iron, several investigations on the nucleation sites of austenite and diffusion paths of carbon from spheroidal graphite have been reported in ferritic ductile cast iron. However, agreement on this subject has not ben reached. The purpose of this paper is to study the preferential nucleation sites of austenite during austenitization at two austenitizing temperatures in ferritic ductile cast iron. An attempt was made to understand the reasons which give rise to preferential austenite nucleation sites. The carbon diffusion paths from spheroidal graphite were also investigated

  20. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    Directory of Open Access Journals (Sweden)

    Fauzi F. A.

    2016-01-01

    Full Text Available The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on the substrate of steel by pack cementation process for two hours at the temperature of 850ºC, 950ºC and 1050ºC, respectively. XRD analysis indicated that chromium was successfully deposited at all temperatures. Somehow, SEM cross sectional image showed that continuous layer of chromium was not continuously formed at 850oC. Therefore, this research clarify that chromium enrichment by pack cementation may be conducted at the temperature above 950°C.