WorldWideScience

Sample records for fermilab recycler present

  1. Fermilab Recycler Collimation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. C. [Fermilab; Adamson, P. [Fermilab; Ainsworth, R. [Fermilab; Capista, D. [Fermilab; Hazelwood, K. [Fermilab; Kourbanis, I. [Fermilab; Mokhov, N. V. [Fermilab; Morris, D. K. [Fermilab; Murphy, M. [Fermilab; Sidorov, V. [Fermilab; Stern, E. [Fermilab; Tropin, I. [Fermilab; Yang, M-J. [Fermilab

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  2. Simulations and Measurements of Stopbands in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Robert [Fermilab; Adamson, Philip [Fermilab; Hazelwood, Kyle [Fermilab; Kourbanis, Ioanis [Fermilab; Stern, Eric [Fermilab

    2016-06-01

    Fermilab has recently completed an upgrade to the complex with the goal of delivering 700 kW of beam power as 120 GeV protons to the NuMI target. A major part of boosting beam power is to use the Fermilab Recycler to stack protons. Simulations focusing on the betatron resonance stopbands are presented taking into account different effects such as intensity and chromaticity. Simulations are compared with measurements.

  3. Model of E-Cloud Instability in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-06-24

    Simple model of electron cloud is developed in the paper to explain e-cloud instability of bunched proton beam in the Fermilab Recycler. The cloud is presented as an immobile snake in strong vertical magnetic field. The instability is treated as an amplification of the bunch injection errors from the batch head to its tail. Nonlinearity of the e-cloud field is taken into account. Results of calculations are compared with experimental data demonstrating good correlation.

  4. Electron Cloud Measurements in Fermilab Main Injector and Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana U.; Backfish, M. [Fermilab; Tan, C. Y. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    This conference paper presents a series of electron cloud measurements in the Fermilab Main Injector and Recycler. A new instability was observed in the Recycler in July 2014 that generates a fast transverse excitation in the first high intensity batch to be injected. Microwave measurements of electron cloud in the Recycler show a corresponding depen- dence on the batch injection pattern. These electron cloud measurements are compared to those made with a retard- ing field analyzer (RFA) installed in a field-free region of the Recycler in November. RFAs are also used in the Main Injector to evaluate the performance of beampipe coatings for the mitigation of electron cloud. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. The diamond-like carbon coating, in contrast, reduced the electron cloud signal to 1% of that measured in uncoated stainless steel beampipe.

  5. Fermilab Recycler Ring: Technical design report. Revision 1.1

    International Nuclear Information System (INIS)

    Jackson, G.

    1996-07-01

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab's ongoing High Energy Physics program and the Main Injector construction project

  6. Estimating the Transverse Impedance in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Robert [Fermilab; Adamson, Philip [Fermilab; Burov, Alexey [Fermilab; Kourbanis, Ioanis [Fermilab; Yang, Ming-Jen [Fermilab

    2016-06-01

    Impedance could represent a limitation of running high intensity bunches in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this, studies have been performed measuring the tune shift as a function of bunch intensity allowing the transverse impedance to be derived.

  7. Survey and alignment of the Fermilab recycler antiproton storage ring

    International Nuclear Information System (INIS)

    Arics, Babatunde O.O.

    1999-01-01

    In June of 1999 Fermilab commissioned a newly constructed antiproton storage ring, the 'Recycler Ring', in the Main Injector tunnel directly above the Main Injector beamline. The Recycler Ring is a fixed 8 GeV kinetic energy storage ring and is constructed of strontium ferrite permanent magnets. The 3319.4-meter-circumference Recycler Ring consists of 344 gradient magnets and 100 quadrupoles all of which are permanent magnets. This paper discusses the methods employed to survey and align these permanent magnets within the Recycler Ring with the specified accuracy. The Laser Tracker was the major instrument used for the final magnet alignment. The magnets were aligned along the Recycler Ring with a relative accuracy of ±0.25 mm. (author)

  8. Impedances and beam stability issues of the Fermilab recycler ring

    Energy Technology Data Exchange (ETDEWEB)

    Ng, King-Yuen

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10{sup 12} anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole).

  9. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, R. [Fermilab; Adamson, P. [Fermilab; Burov, A. [Fermilab; Kourbanis, I. [Fermilab

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  10. Transverse Instabilities in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab

    2011-07-01

    Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.

  11. Fermilab Antiproton source, Recycler ring and Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, Sergei [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-22

    The antiproton source for a proton-antiproton collider at Fermilab was proposed in 1976 [1]. The proposal argued that the requisite luminosity (~1029 cm-2sec-1) could be achieved with a facility that would produce and cool approximately 1011 antiprotons per day. Funding for the Tevatron I project (to construct the Antiproton source) was initiated in 1981 and the Tevatron ring itself was completed, as a fixed target accelerator, in the summer of 1983 and the Antiproton Source was completed in 1985. At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, Accumulator and Recycler), 25 independent multi-GHz stochastic cooling systems, the world’s only relativistic electron cooling system and a team of technical experts equal to none. Sustained accumulation of antiprotons was possible at the rate of greater than 2.5×1011 per hour. Record-size stacks of antiprotons in excess of 3×1012 were accumulated in the Accumulator ring and 6×1012 in the Recycler. In some special cases, the antiprotons were stored in rings for more than 50 days. Note, that over the years, some 1016 antiprotons were produced and accumulated at Fermilab, which is about 17 nanograms and more than 90% of the world’s total man-made quantity of nuclear antimatter. The accelerator complex at Fermilab supported a broad physics program including the Tevatron Collider Run II [2], neutrino experiments using 8 GeV and 120 GeV proton beams, as well as a test beam facility and other fixed target experiments using 120 GeV primary proton beams. The following sections provide a brief description of Fermilab accelerators as they operated at the end of the Collider Run II (2011).

  12. Nonlinear Effects at the Fermilab Recycler e-Cloud Instability

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-06-10

    Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.

  13. MODEL OF ELECTRON CLOUD INSTABILITY IN FERMILAB RECYCLER

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A. [Chicago U.; Burov, A. [Fermilab; Nagaitsev, S. [Fermilab

    2016-10-04

    An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future intensity upgrades.

  14. Perpendicularly Biased YIG Tuners for the Fermilab Recycler 52.809 MHz Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, R.; Kashikhin, V.; Makarov, A.; Wildman, D.

    2013-09-13

    For NOvA and future experiments requiring high intensity proton beams, Fermilab is in the process of upgrading the existing accelerator complex for increased proton production. One such improvement is to reduce the Main Injector cycle time, by performing slip stacking, previously done in the Main Injector, in the now repurposed Recycler Ring. Recycler slip stacking requires new tuneable RF cavities, discussed separately in these proceedings. These are quarter wave cavities resonant at 52.809 MHz with a 10 kHz tuning range. The 10 kHz range is achieved by use of a tuner which has an electrical length of approximately one half wavelength at 52.809 MHz. The tuner is constructed from 31/8” diameter rigid coaxial line, with 5 inches of its length containing perpendicularly biased, Al doped Yttrium Iron Garnet (YIG). The tuner design, measurements, and high power test results are presented.

  15. Study on Coupling Issues in the Recycler at Fermilab

    CERN Document Server

    Xiao Mei Qin; Johnson, David E; Yang Ming Jen

    2005-01-01

    We have been working and trying to answer the following questions: where are the coupling sources in the Recycler and is the existing correcting system working fine? In this paper, we report the analysis on the sources from both modeling by code MAD based on nonlinear lattice and real machine. From the first turn flesh orbit, we fit the off-plane orbits by third order polynomial, then separate 1st, 2nd and 3rd order coefficients to see different effects. On the other hand, we present the analysis from turn by turn data, which is to verify the phase of two skew quads families are more or less orthogonal, and to make sure the minimum tune split is small enough, and is consistent with the measurement.

  16. Reuse Recycler: High Intensity Proton Stacking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermilab

    2016-07-17

    After a successful career as an antiproton storage and cooling ring, Recycler has been converted to a high intensity proton stacker for the Main Injector. We discuss the commissioning and operation of the Recycler in this new role, and the progress towards the 700 kW design goal.

  17. FERMILAB

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Neutrino experimentation at higher energies was among the justifications for the construction of Fermilab and the earliest studies utilized these new beams produced with 350-400 GeV protons. This pre-Tevatron period used both electronic counters and the new 15-foot cryogenic bubble chamber. The counter experimental programme was basically divided into two generations. The first covered the discovery of new phenomena and confirmation of the parton model using high rate wide-band and the first dichromatic narrow-band neutrino beams. The second concentrated on precision measurements with dichromatic beams. One flagship experiment, designated ''E1 A'', was originally a collaboration of Harvard, Pennsylvania and Wisconsin, and was the prototype of large neutrino calorimeters: a target/ calorimeter followed by a large set of iron toroidal magnets. E1A and its successor, E310 (which included Rutgers), ran for a total of 6,650 hours from 1972 through 1978. Contemporary with these experiments was another large counter experiment by CalTech and Fermilab, designated originally as E21 A. Along with its successors, E262, E320, and E356 (which collected data* over some 4,600h) it took part in the first generation programme, and subsequently spearheaded the second generation with precision measurements of both charged current structure functions and the weak mixing angle. Finally, this latter collaboration extended its participation into the early Tevatron era, and will continue through the 1990s

  18. Uniform longitudinal beam profiles in the Fermilab Recycler using adaptive rf correction

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Martin; Broemmelsiek, Daniel Robert; Chase, Brian; Crisp, James L.; Eddy, Nathan; Joireman, Paul W.; Ng, King Yuen; /Fermilab

    2007-06-01

    The Fermilab Recycler Ring is a permanent magnet based 8 GeV anti-proton storage ring. A wideband RF system, driven with ARB's (ARBitrary waveform generators), allows the system to produce programmable barrier waveforms. Beam current profile distortion was observed, its origin verified both experimentally and theoretically, and an FPGA-based correction system was designed, tested and implemented to level the bunch profile.

  19. Status of antiproton accumulation and cooling at Fermilab's Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Bhat, C.M.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Crisp, J.; Derwent, P.; Eddy, N.; Gattuso, C.; Hu, M.; Pruss, S.; /Fermilab

    2009-08-01

    The Recycler ring is an 8 GeV permanent magnet storage ring where antiprotons are accumulated and prepared for Fermilab's Tevatron Collider program. With the goal of maximizing the integrated luminosity delivered to the experiments, storing, cooling and extracting antiprotons with high efficiency has been pursued. Over the past two years, while the average accumulation rate doubled, the Recycler continued to operate at a constant level of performance thanks to changes made to the Recycler Electron Cooler (energy stability and regulation, electron beam optics), RF manipulations and operating procedures. In particular, we discuss the current accumulation cycle in which {approx} 400 x 10{sup 10} antiprotons are accumulated and extracted to the Tevatron every {approx}15 hours.

  20. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Ralph J. Pasquinelli

    2011-07-01

    Full Text Available A means for noninvasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gate. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron, Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  1. Transverse digital damper system for the Fermilab anti-proton recycler

    International Nuclear Information System (INIS)

    Eddy, N.; Crisp, J.; Fermilab

    2006-01-01

    A transverse damping system is used in the Recycler at Fermilab to damp beam instabilities which arise from large beam intensities with electron cooling. Initial tests of electron cooling demonstrated beam loss due to transverse beam motion when the beam was cooled past the beam density threshold. The transverse damper system consists of two horizontal and two vertical pickups whose signals are amplified and passed into an analog hybrid to generate a difference signal from each pickup. The difference signals are input to a custom digital damper board which digitizes the analog signals at 212mhz, performs digital processing of the signals inside a large Altera Stratix II FPGA, then provides analog output at 212mhz via digital to analog converters. The digital damper output is sent to amplifiers which drive one horizontal and one vertical kicker. An initial prototype digital damper board has been successfully used in the Recycler for over six months. Currently, work is underway to replace the prototype board with an upgraded VME version

  2. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  3. Stochastic cooling technology at Fermilab

    Science.gov (United States)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  4. Stochastic cooling technology at Fermilab

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    2004-01-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented

  5. Recycler Chromaticities and End Shims for NOvA at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M.; /Fermilab

    2012-05-01

    In era of NOvA operation, it is planned to slip-stack six on six Booster proton batches in the Recycler ring for a total intensity of 5 x 10{sup 13} protons/cycle. During the slip-stacking, the chromaticities are required to be jumped from (-2,-2) to (-20,-20). However, with the existing 2 families of powered sextupoles in the lattice, the chromaticities can only be adjusted to (-12,-12) from (-2,-2). On the other hand, the presently designed Recycler lattice for Nova replaces the 30 straight section with 8 'D-D half FODO cells'. With the limit of the feasible quad strength, 3 quads in a half-cell were used to obtain the working point under, and the maximum beta-functions in this section cannot be less than 80 m. In this paper, we re-designed the end shims of the permanent magnets in the ring lattice with appropriate quadrupole and sextupole components to meet both chromaticity and tune requirements. We are able to use 2 quads in a half cell in RR30 straight section within feasible quad strength. The maximum beta-functions are also lowered to around 55 m. The dynamic aperture tracking has been done using MAD to simulate the scenario of beam injection into the Recycler ring for Nova.

  6. MOX fuel recycling. Present status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Marc [AREVA Recycling Business Unit, BP93124, F-30203 Bagnols sur Ceze (France)

    2009-06-15

    of 1700 t/year) masters all the activities of treatment since the start up, in the seventies. La Hague and MELOX are now considered as technological reference for all the international projects of recycling (in the US with the MFFF plant, in Japan with JMOX plant and other countries). The return of experience of MOX in Europe (burn up and reliability) will also be presented. MELOX in addition to the European needs, is being fabricating the first MOX for Japan, contributing to the Pu thermal program expressing the recycling policy in Japan as a priority. For the mid term, the GEN3 AREVA reactors (EPR{sup TM}, ATMEA{sup TM}) are designed taking into account all the needs for recycling. Together with the UO{sub 2}, ERU, and MOX fuels, and GEN3 reactors able to recycle at the level wished by the utility, AREVA offers the utilities all the possibilities for recycling the energy without any worry about the fuel, either fresh or used. EPR is a trademark of AREVA Group. ATMEA is a trademark of AREVA (joint venture between AREVA and MHI). (authors)

  7. Recycling

    International Nuclear Information System (INIS)

    Binder, J.J.; Calpin, P.J.

    1990-01-01

    As the recycling ethic takes hold at the state and municipal level, municipal officials and private contractors are working together to formulate and implement recycling programs. The questions - What is to be recycled? How should recyclables be separated and collected? Is intermediate processing beneficial? How can recyclables best be marketed? Should the public or private sector perform the service? What are the true costs? - are being addressed. Answers, however, are often different for large and small municipalities and regional versus individual municipal programs. While no one approach will be suitable for all applications, one can learn from the experiences of operating programs. The paper to be presented will describe two operating, recycling programs that are public and private cooperative efforts: one regional (11 communities in Bucks County, Pennsylvania); and one municipal (Quincy, Massachusetts). Information will be presented describing the recycling programs, economics, and performance

  8. Fermilab Program and Plans

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab

    2014-01-01

    This article is a short summary of the talk presented at 2014 Instrumentation Conference in Novosibirsk about Fermilab's experimental program and future plans. It includes brief description of the P5 long term planning progressing in US as well as discussion of the future accelerators considered at Fermilab.

  9. Fermilab III

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding

  10. ASIC design at Fermilab

    International Nuclear Information System (INIS)

    Yarema, R.

    1991-06-01

    In the past few years, ASIC (Application Specific Integrated Circuit) design has become important at Fermilab. The purpose of this paper is to present an overview of the in-house ASIC design activity which has taken place. This design effort has added much value to the high energy physics program and physics capability at Fermilab. The two approaches to ASIC development being pursued at Fermilab are examined by looking at some of the types of projects where ASICs are being used or contemplated. To help estimate the cost of future designs, a cost comparison is given to show the relative development and production expenses for these two ASIC approaches. 5 refs., 14 figs., 7 tabs

  11. Fermilab Future

    CERN Multimedia

    Kathryn Grim

    2011-01-01

    The closure of Fermilab’s Tevatron this autumn will mark the end of an historic era in particle physics. But as physicists continue to comb through data from the Tevatron detectors, the laboratory will continue to pursue a greater understanding of the make-up of the Universe on multiple experimental frontiers.   In August 2010, construction crews began installing the roof over the enclosure that will house the NOvA detector. Photo by Dan Traska of Einarson Flying Service. “We plan to extract every bit of physics we can from this final Tevatron running period,” Fermilab Director Pier Oddone wrote in a column for Fermilab Today. “The Tevatron has already exceeded all expectations and, given the large data sets, we will continue to find new results and discoveries in the Tevatron data for years to come.” This spring, particle astrophysicists at Fermilab will ship to Chile components of a 570-megapixel camera scientists will install on the Blanco tele...

  12. Fermilab Steering Group Report

    Energy Technology Data Exchange (ETDEWEB)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the

  13. Feedstock recycling of plastics. Selected papers presented at the third International Symposium on Feedstock Recycling of Plastics, Karlsruhe, Sept. 25-29, 2005

    OpenAIRE

    Müller-Hagedorn, Matthias; Bockhorn, Henning [Hrsg.

    2005-01-01

    Feedstock Recycling of Plastics gives a survey of actual fundamental and applied research. It consists of selected contributions that were presented during the Third International Symposium on Feedstock Recycling of Plastics & other Innovative Plastics Recycling Techniques in Karlsruhe (Germany), 2005. The following fundamental issues of feedstock recycling are covered: - Pyrolysis or solvolysis - Pyrolysis: Processes - Strategies - Usages - Modelling - Py...

  14. The KAMI experiment at Fermilab

    International Nuclear Information System (INIS)

    Yamanaka, T.

    2001-01-01

    The KAMI experiment at Fermilab is planning to measure the CP violation parameter, η, by observing more than 100 K L → π 0 νν-bar events. Basic studies performed for the new experiment are presented

  15. Fermilab Library projects

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, P.; Ritchie, D.

    1990-05-03

    Preprint database management as done at various centers -- the subject of this workshop -- is hard to separate from the overall activities of the particular center. We therefore present the wider context at the Fermilab Library into which preprint database management fits. The day-to-day activities of the Library aside, the dominant activity at present is that of the ongoing Fermilab Library Automation. A less dominant but relatively time-consuming activity is that of doing more online searches in commercial databases on behalf of laboratory staff and visitors. A related activity is that of exploring the benefits of end-user searching of similar sources as opposed to library staff searching of the same. The Library Automation Project, which began about two years ago, is about to go fully online.'' The rationale behind this project is described in the documents developed during the December 1988--February 1989 planning phase.

  16. Fermilab research program workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1983-05-01

    The Fermilab Research Program Workbook has been produced annually for the past several years, with the original motivation of assisting the Physics Advisory Committee in its yearly program review conducted during its summer meeting. While this is still the primary goal, the Workbook is increasingly used by others needing information on the current status of Fermilab experiments, properties of beams, and short summaries of approved experiments. At the present time, considerable changes are taking place in the facilities at Fermilab. We have come to the end of the physics program using the 400 GeV Main Ring, which is now relegated to be just an injector for the soon-to-be commissioned Tevatron. In addition, the experimental areas are in the midst of a several-year program of upgrading to 1000 GeV capability. Several new beam lines will be built in the next few years; some indications can be given of their properties, although with the caveat that designs for some are by no means final. Already there is considerable activity leading to experiments studying anti p p collisions at √s = 2000 GeV

  17. Recycle

    DEFF Research Database (Denmark)

    Sparre-Petersen, Maria

    2017-01-01

    knowledge and insight. The contributions are manifest in a range of epistemic artifacts, i.e. outcomes of my own experiments with recycled glass as well as a series of creative outcomes of collaborative activities. Through the creation of these works, my collaborators and I have developed tacit as well...

  18. Fermilab turns 50! Congratulations!

    CERN Multimedia

    Staff Association

    2017-01-01

    This year Fermilab turns 50 and the celebrations are ongoing. The ties between CERN and Fermilab are numerous and have been ranging from competition between two labs at the forefront of their field, e.g. with the chase of the top quark, finally discovered by Fermilab, to outright collaboration, e.g. on LHC low-beta quadrupole magnet development and production and in the CMS collaboration. In June, in the name of the CERN staff and scientific community, the CERN Staff Association sent a message to the Fermilab staff and scientific community, through Dr. Nigel Lockyer, Fermilab Director. The letter, and the assurance from Nigel Lockyer that the message has been passed onto the Fermilab community can be found on our website. Congratulations to Fermilab on its fiftieth Anniversary, and to the staff and collaborators who made this laboratory through their hard work, dedication and vision!

  19. Investigation of impurities present in recycling and reusing of scrap lead for accumulator industry

    International Nuclear Information System (INIS)

    Farooq, A.; Irfan, N.; Chaudhry, M.M.; Nawab, S.

    2012-01-01

    Recycling and reusing are the basic strategies of reducing solid waste generated from industries. Millions of batteries containing toxic metals and poisonous wastes are discarded every year in Pakistan. Battery waste deposited in landfills increases the concentration of toxic metals in leachates obtained from landfill base. For this reason, recycling of locally available scrap lead has been focused. During reduction and refining stages, samples were obtained at various stages from a five ton lead smelting pot of an accumulator industry. Various impurities present were determined and removed in order to reuse in accumulators. X-ray fluorescence (XRF) and atomic absorption spectroscopy (AAS) techniques were used to analyze the samples obtained at various stages of recycling. This work has been carried out to reduce these impurities and the refining process has thus been optimized. The lead thus obtained is 99.98 % pure. (author)

  20. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  1. Fermilab back in business

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The implementation of the energy saver into the Fermilab accelerator is described by which protons can be accelerated to 500 GeV. Furthermore the new experimental areas and the extraction system are described. (HSI).

  2. Hadron physics at Fermilab

    International Nuclear Information System (INIS)

    Ferbel, T.

    1976-01-01

    Recent experimental results from studies of hadron interactions at Fermilab are surveyed. Elastic, total and charge-exchange cross section measurements, diffractive phenomena, and inclusive production, using nuclear as well as hydrogen targets, are discussed in these lectures

  3. FERMILAB: Bob Wilson 80

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    On March 4, an international symposium and tribute was held at Fermilab in honour of the Laboratory's founding director Robert Rathbun Wilson on the occasion of his 80th birthday. The symposium - 'Celebrating an Era of Courage and Creativity' - featured talks and reflections by many of Wilson's colleagues and friends including Fermilab Director John Peoples and Director Emeritus Leon Lederman

  4. Invariant Chain Modulates HLA Class II Protein Recycling and Peptide Presentation in Nonprofessional Antigen Presenting Cells

    OpenAIRE

    Haque, Azizul; Hajiaghamohseni, Laela M.; Li, Ping; Toomy, Katherine; Blum, Janice S.

    2007-01-01

    The expression of MHC class II molecules and the invariant chain (Ii) chaperone, is coordinately regulated in professional antigen presenting cells (APC). Ii facilitates class II subunit folding as well as transit and retention in mature endosomal compartments rich in antigenic peptides in these APC. Yet, in nonprofessional APC such as tumors, fibroblasts and endocrine tissues, the expression of class II subunits and Ii may be uncoupled. Studies of nonprofessional APC indicate class II molecu...

  5. Fermilab 1982. Annual report of the Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    The state of Fermilab is reviewed for 1982, and summaries are given in the following areas: fabricating energy saver superconducting magnets; present knowledge and future directions in particle physics; accomplishments of Fermilab in a decade of operation 1972 to 1982; a photo essay on the energy saver installation work in the Main Ring Tunnel; a listing of 1982 Fermilab experimental, general, and theoretical publications; and a listing of the 1982 workshop and seminar series

  6. Efficiency of the Fermilab Electron Cooler's Collector

    CERN Document Server

    Prost, L R

    2005-01-01

    The newly installed high-energy Recycler Electron Cooling system (REC) at Fermilab will work at an electron energy of 4.34 MeV and a DC beam current of 0.5 A in an energy recovery scheme. For reliable operation of the system, the relative beam current loss must be maintained to levels < 3.e-5. Experiments have shown that the loss is determined by the performance of the electron beam collector, which must retain secondary electrons generated by the primary beam hitting its walls. As a part of the Electron cooling project, the efficiency of the collector for the REC was optimized, both with dedicated test bench experiments and on two versions of the cooler prototype. We find that to achieve the required relative current loss, an axially-symmetric collector must be immersed in a transverse magnetic field with certain strength and gradient prescriptions. Collector efficiencies in various magnetic field configurations, including without a transverse field on the collector, are presented and discussed

  7. Fermilab and Latin America

    International Nuclear Information System (INIS)

    Lederman, Leon M.

    2006-01-01

    As Director of Fermilab, starting in 1979, I began a series of meetings with scientists in Latin America. The motivation was to stir collaboration in the field of high energy particle physics, the central focus of Fermilab. In the next 13 years, these Pan American Symposia stirred much discussion of the use of modern physics, created several groups to do collaborative research at Fermilab, and often centralized facilities and, today, still provides the possibility for much more productive North-South collaboration in research and education. In 1992, I handed these activities over to the AAAS, as President. This would, I hoped, broaden areas of collaboration. Such collaboration is unfortunately very sensitive to political events. In a rational world, it would be the rewards, cultural and economic, of collaboration that would modulate political relations. We are not there yet

  8. Fermilab at 50

    CERN Document Server

    Lykken, Joseph David

    2018-01-01

    Fermilab — originally called the National Accelerator Laboratory — began operations in Illinois on June 15, 1967. Operated and managed by The University of Chicago and Universities Research Association, LLC for the US Department of Energy, it has the distinction of being the only US national laboratory solely dedicated to the advancement of high-energy particle physics, astrophysics and cosmology. It has been the site of major discoveries and observations: the top and bottom quarks; the tau neutrino; direct CP violation in kaon decays; a quasar 27 billion light years away from us; origin of high-energy cosmic rays; and confirmation of the evidence of dark energy, among others. For 25 years it operated the world's highest energy particle collider, the Tevatron. Fermilab contributed collaboratively to the Tevatron's successor, the Large Hadron Collider, which discovered the Higgs boson in 2012. Fermilab's core competencies in accelerators, superconducting technologies, detectors and computing have positione...

  9. Message from Fermilab Director

    CERN Multimedia

    2009-01-01

    With this issue’s message, Fermilab Director Pier Oddone opens a new series of occasional exchanges between CERN and other laboratories world-wide. As part of this exchange, CERN Director-General Rolf Heuer, wrote a message in Tuesday’s edition of Fermilab TodayPerspectivesNothing is more important for our worldwide particle physics community than successfully turning on the LHC later this year. The promise for great discoveries is huge, and many of the plans for our future depend on LHC results. Those of us planning national programmes in anticipation of data from the LHC face formidable challenges to develop future facilities that are complementary to the LHC, whatever the physics discoveries may be. At Fermilab, this has led us to move forcefully with a programme at the intensity frontier, where experiments with neutrinos and rare decays open a complementary window into nature. Our ultimate goal for a unified picture of nat...

  10. ACTINET-I3 Summer School on Analytical Innovation in the field of actinide recycling - Slides of the presentations

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Nash, K.L.; Puget, P.; Szabo, Z.; Vallet, V.; Berthon, L.; Duhamet, J.; Wipff, G.; Dufreche, J.F.; Walter, P.; Thiebaut, D.; Toulhoat, P.; Aupiais, J.; Amatore, C.

    2011-01-01

    This conference dealt with 3 main topics: analytical innovation in separation processes (hyphenated techniques, analytical chips,...), actinide recycling (extraction, interfaces, processes,...) and chemistry and thermodynamics of actinides. This document is composed of the slides of the presentations

  11. Fermilab enters the Tevatron era

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The advent of the world's first superconducting accelerator/storage ring has transformed the physics programme at the Fermi National Accelerator Laboratory. The primary and secondary beam energies (and the coming colliding beam energies) are double those previously available at Fermilab and at the CERN SPS. There is heavy investment in the fixed target programme to use these beam energies and, at present, even more pressure is driving the preparations for proton-antiproton colliding beam operation at energies up to 1 TeV per beam. Since it is the revitalized machine which is making all this possible, we begin with news on machine performance and development. (orig.).

  12. LCLS-II Cryomodules Production at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Arkan, Tug [Fermilab; Grimm, Chuck [Fermilab; Kaluzny, Joshua [Fermilab; Orlov, Yuriy [Fermilab; Peterson, Thomas [Fermilab; Premo, Ken [Fermilab

    2017-05-01

    LCLS-II is an upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLS-II linac will consist of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab (JLab) will assemble in collaboration with SLAC. The LCLS-II 1.3 GHz cryomodule design is based on the European XFEL pulsed-mode cryomodule design with modifications needed for CW operation. Fermilab and JLab will each assemble and test a prototype 1.3 GHz cryomodule to assess the results of the CW modifications, in advance of 16 and 17 production 1.3 GHz cryomodules, respectively. Fermilab is solely responsible for the 3.9 GHz cryomodules. After the prototype cryomodule tests are complete and lessons learned incorporated, both laboratories will increase their cryomodule production rates to meet the challenging LCLS-II project requirement of approximately one cryomodule per month per laboratory. This paper presents the Fermilab Cryomodule Assembly Facility (CAF) infrastructure for LCLS-II cryomodule production, the Fermilab prototype 1.3 GHz CW cryomodule (pCM) assembly and readiness for production assembly.

  13. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  14. The Fermilab Central Computing Facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-05-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS Cluster interactive front end, an Amdahl VM computing engine, ACP farms, and (primarily) VMS workstations. This presentation will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. 2 figs

  15. Shielding design at Fermilab: Calculations and measurements

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1986-11-01

    The development of the Fermilab accelerator complex during the past two decades from its concept as the ''200 BeV accelerator'' to that of the present tevatron, designed to operate at energies as high as 1 TeV, has required a coincidental refinement and development in methods of shielding design. In this paper I describe these methods as used by the radiation protection staff of Fermilab. This description will review experimental measurements which substantiate these techniques in realistic situations. Along the way, observations will be stated which likely are applicable to other protron accelerators in the multi-hundred GeV energy region, including larger ones yet to be constructed

  16. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  17. Applications of barrier bucket RF systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2006-03-01

    In recent years, the barrier rf systems have become important tools in a variety of beam manipulation applications at synchrotrons. Four out of six proton synchrotrons at Fermilab are equipped with broad-band barrier rf systems. All of the beam manipulations pertaining to the longitudinal phase space in the Fermilab Recycler (synchrotron used for antiproton storage) are carried out using a barrier system. Recently, a number of new applications of barrier rf systems have been developed- the longitudinal momentum mining, longitudinal phase-space coating, antiproton stacking, fast bunch compression and more. Some of these techniques have been critical for the recent spectacular success of the collider performance at the Fermilab Tevatron. Barrier bunch coalescing to produce bright proton bunches has a high potential to increase proton antiproton luminosity significantly. In this paper, I will describe some of these techniques in detail. Finally, I make a few general remarks on issues related to barrier systems.

  18. Field measurements in the Fermilab electron cooling solenoid prototype

    CERN Document Server

    Crawford, A C

    2003-01-01

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10 sup - sup 4 rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R and D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated ...

  19. FERMILAB: Call for physics

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Several hundred physicists attended a special Fermilab 'All Experimenter's Meeting' on November 20 to hear Director John Peoples call for new Tevatron Collider proposals for the years 2000-2005, when the new Main Injector will be complete. At the Tevatron proton-antiproton collider, the CDF and DO experiments are currently completing improvements for Run II to use the Tevatron when the Main Injector is complete later in this decade. New proposals would be aimed at a Collider Run III to follow these CDF and DO efforts

  20. Present status of recycling waste mobile phones in China: a review.

    Science.gov (United States)

    Li, Jingying; Ge, Zhongying; Liang, Changjin; An, Ni

    2017-07-01

    A large number of waste mobile phones have already been generated and are being generated. Various countries around the world have all been positively exploring the way of recycling and reuse when facing such a large amount of waste mobile phones. In some countries, processing waste mobile phones has been forming a complete industrial chain, which can not only recycle waste mobile phones to reduce their negative influence on the environment but also turn waste into treasure to acquire economic benefits dramatically. However, the situation of recycling waste mobile phones in China is not going well. Waste mobile phones are not formally covered by existing regulations and policies for the waste electric and electronic equipment in China. In order to explore an appropriate system to recover waste mobile phones, the mobile phone production and the amount of waste mobile phones are introduced in this paper, and status of waste mobile phones recycling is described; then, the disposal technology of electronic waste that would be most likely to be used for processing of electronic waste in industrial applications in the near future is reviewed. Finally, rationalization proposals are put forward based on the current recovery status of waste mobile phones for the purpose of promoting the development of recycling waste mobile phones in developing countries with a special emphasis on China.

  1. Rare KL decays at Fermilab

    International Nuclear Information System (INIS)

    Schnetzer, St.

    1997-01-01

    Recent results and the future prospects for rare K L decay at Fermilab are described. A summary of all rare decay results from E799 Phase I (the 1991 run) are presented. Three new results: K L → e + e - μ + μ - , K L → π 0 μe, and π 0 → e + e - e + e - are discussed in detail. Improvements for KTeV (the 1996-1997 run) are discussed and the expected sensitivities listed. Finally, the KAMI program for rare decays with the Main Injector (2000 and beyond) is presented with emphasis on a search for the decay K L → π 0 νν-bar at O(10 -12 ) single-event-sensitivity. (author)

  2. Cloud services for the Fermilab scientific stakeholders

    International Nuclear Information System (INIS)

    Timm, S; Garzoglio, G; Mhashilkar, P

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. We present in detail the technological improvements that were used to make this work a reality. (paper)

  3. Supply and demand of some critical metals and present status of their recycling in WEEE.

    Science.gov (United States)

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Chang, Chein-Chi

    2017-07-01

    New development and technological innovations make electrical and electronic equipment (EEE) more functional by using an increasing number of metals, particularly the critical metals (e.g. rare and precious metals) with specialized properties. As millions of people in emerging economies adopt a modern lifestyle, the demand for critical metals is soaring. However, the increasing demand causes the crisis of their supply because of their simple deficiency in the Earth's crust or geopolitical constraints which might create political issues for their supply. This paper focuses on the sustainable supply of typical critical metals (indium, rare earth elements (REEs), lithium, cobalt and precious metals) through recycling waste electrical and electronic equipment (WEEE). To illuminate this issue, the production, consumption, expected future demand, current recycling situation of critical metals, WEEE management and their recycling have been reviewed. We find that the demand of indium, REEs, lithium and cobalt in EEE will continuously increasing, while precious metals are decreasing because of new substitutions with less or even without precious metals. Although the generation of WEEE in 2014 was about 41.9 million tons (Mt), just about 15% (6.5 Mt) was treated environmentally. The inefficient collection of WEEE is the main obstacle to relieving the supply risk of critical metals. Furthermore, due to the widespread use in low concentrations, such as indium, their recycling is not just technological problem, but economic feasibility is. Finally, relevant recommendations are point out to address these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Fermilab ACNET upgrade

    International Nuclear Information System (INIS)

    Briegel, C.; Johnson, G.; Winterowd, L.

    1990-01-01

    The Fermilab Accelerator Controls Network (ACNET) upgrade consists of a new physical medium (IEEE 802.5 token ring), additions to the calling sequence and added processor support. ACNET is the accelerator control backbone network for all data communication. A proprietary network was replaced by an IEEE standard enabling an open network with excellent characteristics for the control system. The calling sequence was enhanced for the added capabilities of the token-ring interface such as 'gather-read' and 'scatter-write'. In addition to prior support of DEC PDP11s under RS11M and VAXs under VMS, the ACNET calling sequence was implemented in the language C for the IBM PC with MS-DOS and Motorola 680x0 with MTOS using VME bus. Additional support is in progress for Intel 80x86 with MTOS using Multibus II. (orig.)

  5. The Fermilab ACNET upgrade

    Science.gov (United States)

    Briegel, Charlie; Johnson, Glenn; Winterowd, Lin

    1990-08-01

    The Fermilab Accelerator Controls Network (ACNET) upgrade consists of a new physical medium (IEEE 802.5 token ring), additions to the calling sequence and added processor support. ACNET is the accelerator control backbone network for all data communication. A proprietary network was replaced by an IEEE standard enabling an open network with excellent characteristics for the control system. The calling sequence was enhanced for the added capabilities of the token-ring interface such as "gather-read" and "scatter-write". In addition to prior support of DEC PDP11s under RS11M and VAXs under VMS, the ACNET calling sequence was implemented in the language C for the IBM PC with MS-DOS and Motorola 680 x0 with MTOS using VME bus. Additional support is in progress for Intel 80 x86 with MTOS using Multibus II.

  6. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling.

    Science.gov (United States)

    Hahladakis, John N; Velis, Costas A; Weber, Roland; Iacovidou, Eleni; Purnell, Phil

    2018-02-15

    Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. These characteristics have raised the demand for plastic materials that will continue to grow over the coming years. However, with increased plastic materials production, comes increased plastic material wastage creating a number of challenges, as well as opportunities to the waste management industry. The present overview highlights the waste management and pollution challenges, emphasising on the various chemical substances (known as "additives") contained in all plastic products for enhancing polymer properties and prolonging their life. Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented in literature and described herein. These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging. They can, also, be released from plastics during the various recycling and recovery processes and from the products produced from recyclates. Thus, sound recycling has to be performed in such a way as to ensure that emission of substances of high concern and contamination of recycled products is avoided, ensuring environmental and human health protection, at all times. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Charmed baryons photoproduced in FOCUS at Fermilab

    CERN Document Server

    Ratti, S P

    2001-01-01

    FOCUS collected over 7 * 10/sup 7/ triggers and more than 10/sup 6/ fully reconstructed charm particles in a photoproduction experiment at Fermilab. The experimental setup is an upgraded version of a multiparticle spectrometer used in the previous experiment E687. Data on charmed meson spectroscopy have been presented by F.L Fabbri in this Section. Here data on photoproduction of charmed baryons are presented.

  8. A review of the Fermilab fixed-target program

    Energy Technology Data Exchange (ETDEWEB)

    Rameika, R. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1994-12-01

    All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which use the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.

  9. Integrated FASTBUS, VME and CAMAC diagnostic software at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.; Forster, R.; Franzen, J.; Wilcer, N.

    1992-10-01

    A fully integrated system for the diagnosis and repair of data acquisition hardware in FASTBUS, VME and CAMAC is described. A short cost/benefit analysis of using a distributed network of personal computers for diagnosis is presented. The SPUDS (Single Platform Uniting Diagnostic Software) software package developed at Fermilab by the authors is introduced. Examples of how SPUDS is currently used in the Fermilab equipment repair facility, as an evaluation tool and for field diagnostics are given.

  10. Integrated FASTBUS, VME and CAMAC diagnostic software at Fermilab

    International Nuclear Information System (INIS)

    Anderson, J.; Forster, R.; Franzen, J.; Wilcer, N.

    1992-10-01

    A fully integrated system for the diagnosis and repair of data acquisition hardware in FASTBUS, VME and CAMAC is described. A short cost/benefit analysis of using a distributed network of personal computers for diagnosis is presented. The SPUDS (Single Platform Uniting Diagnostic Software) software package developed at Fermilab by the authors is introduced. Examples of how SPUDS is currently used in the Fermilab equipment repair facility, as an evaluation tool and for field diagnostics are given

  11. Neutrino results from the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Shaevitz, M.H.; Arroyo, C.; Bachmann, K.T.; Bazarko, A.O.; Blair, R.E.; Bolton, T.A.; Foudas, C.; King, B.J.; Lefmann, W.C.; Leung, W.C.; Mishra, S.R.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.; Seligman, W.G.; Merritt, F.S.; Oreglia, M.J.; Schumm, B.A.; Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.; Yovanovitch, D.D.; Bodek, A.; Budd, H.S.; De Barbaro, P.; Salcumoto, W.K.; Kinnel, T.S.; Sandler, P.H.; Smith, W.H.

    1995-01-01

    Results from the high-energy, high-statistics studies of neutrino nucleon interactions by the CCFR collaboration at the Fermilab Tevatron are described. Using a data sample of over 3.7million events with energies up to 600GeV, precision measurements are presented for the weak mixing angle, sin 2 θ w , the structure functions, F 2 (x,Q 2 ) and xF 3 (x,Q 2 ), aud the strange quark distribution, xs(x,Q 2 ). Comparisons of these measurements to those obtained in other processes are made in the context of global electroweak and QCD tests. Prospects for the next generation measurements by the NuTeV collaboration at Fermilab are also presented. ((orig.))

  12. Reliability of the Fermilab Antiproton Source

    International Nuclear Information System (INIS)

    Harms, E. Jr.

    1993-05-01

    This paper reports on the reliability of the Fermilab Antiproton source since it began operation in 1985. Reliability of the complex as a whole as well as subsystem performance is summarized. Also discussed is the trending done to determine causes of significant machine downtime and actions taken to reduce the incidence of failure. Finally, results of a study to detect previously unidentified reliability limitations are presented

  13. Recent results from Fermilab E769

    International Nuclear Information System (INIS)

    Gay, C.

    1990-01-01

    Fermilab Experiment E769 obtained a data sample of 400M events during the 1987-88 Fixed Target run using a 250 GeV hadron beam incident on a target consisting of thin foils of W, Cu, Al and Be. Preliminary results on the atomic number, Feynman x and p t 2 dependence of D + production based on 25% of the total data sample are presented

  14. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  15. Collider detector at Fermilab - CDF. Progress report

    International Nuclear Information System (INIS)

    Theriot, D.

    1985-06-01

    CDF, the Collider Detector at Fermilab, is a collaboration of almost 180 physicists from ten US universities (University of Chicago, Brandeis University, Harvard University, University of Illinois, University of Pennsylvania, Purdue University, Rockefeller University, Rutgers University, Texas A and M University, and University of Wisconsin), three US DOE supported national laboratories (Fermilab, Argonne National Laboratory, and Lawrence Berkeley Laboratory), Italy (Frascati National Laboratory and University of Pisa), and Japan (KEK National Laboratory and University of Tsukuba). The primary physics goal for CDF is to study the general features of proton-antiproton collisions at 2 TeV center-of-mass energy. On general grounds, we expect that parton subenergies in the range 50 to 500 GeV will provide the most interesting physics at this energy. Work at the present CERN Collider has already demonstrated the richness of the 100 GeV scale in parton subenergies. 7 refs., 14 figs

  16. The Muon g-2 experiment at Fermilab

    Directory of Open Access Journals (Sweden)

    Anastasi A.

    2015-01-01

    Full Text Available There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy between experiment and theory. Two new proposals – at Fermilab and J-PARC – plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.

  17. The new g-2 experiment at Fermilab

    Directory of Open Access Journals (Sweden)

    Anastasi A.

    2017-01-01

    Full Text Available There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with an uncertainty dominated by the theoretical error. Two new proposals – at Fermilab and J-PARC – plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.

  18. FERMILAB: More antiprotons

    International Nuclear Information System (INIS)

    Visnjic, Vladimir

    1993-01-01

    The excellent performance of the Fermilab antiproton complex during the recent Collider run and its future potential are the cumulative result of many improvements over the past few years, ranging from major projects like upgrading the stack-tail stochastic cooling system in the Accumulator to minor improvements like automating tuning procedures. The antiprotons are created when the 120 GeV proton beam from the Main Ring hits the target. A good target should have high yield of antiprotons, should not melt, and should not crack due to shock waves. The old copper target has been replaced by a new one made of nickel. The yield into the Debuncher is 2 x 10 -5 antiprotons/proton. While this is only marginally better than for copper, the nickel target has high melting point energy (1070 J/g) and a low rate of increase in pressure with deposited energy, making it the target of choice for the proton intensities expected in the Main Injector era (June, page 10). Of the broad spectrum of all kinds of secondaries, only a tiny fraction are 8 GeV antiprotons. The 8 GeV negative charge secondaries are bent through 3° by a new pulsed magnet. Instead of a 200-turn magnet with coils separated by epoxy as in the past, the new magnet has one turn carrying 45.5 kA of current. This single turn pulsed magnet uses radiation hard ceramic and is much more robust

  19. Grids, virtualization, and clouds at Fermilab

    International Nuclear Information System (INIS)

    Timm, S; Chadwick, K; Garzoglio, G; Noh, S

    2014-01-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  20. Grids, virtualization, and clouds at Fermilab

    Science.gov (United States)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  1. Toward a cold electron beam in the Fermilab's Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  2. The FIFE Project at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Box, D. [Fermilab; Boyd, J. [Fermilab; Di Benedetto, V. [Fermilab; Ding, P. [Fermilab; Dykstra, D. [Fermilab; Fattoruso, M. [Fermilab; Garzoglio, G. [Fermilab; Herner, K. [Fermilab; Levshina, T. [Fermilab; Kirby, M. [Fermilab; Kreymer, A. [Fermilab; Mazzacane, A. [Fermilab; Mengel, M. [Fermilab; Mhashilkar, P. [Fermilab; Podstavkov, V. [Fermilab; Retzke, K. [Fermilab; Sharma, N. [Fermilab

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  3. Fermilab-Latin America collaboration

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1994-01-01

    Fermilab's program of collaboration with Latin America was initiated by then-Director Leon Lederman about 1980. His goal was to aid Latin American physics, and particularly its particle physics; this latter aim is in keeping with the Laboratory's particle physics mission. The reasons for collaboration between institutions in the US and Latin America are many, including geographic and cultural, together with the existence of many talented scientists and many centers of excellence in the region. There are also broader reasons; for example, it has been stated frequently that physics is the basis of much technology, and advanced technology is a necessity for a country's development. There is nothing unique about Fermilab's program; other US institutions can carry out similar activities, and some have carried out individual items in the past. On the Latin American side, such collaboration enables institutions there to carry out forefront physics research, and also to have the advantages of particle physics spin-offs, both in expertise in related technologies and in scientist training. In addition to particle physics, collaboration is possible in many other related areas. Although particle physics is frequently viewed as open-quotes big scienceclose quotes, all of the large research groups in the field are composed of many small university groups, each of which contributes to the experiment, the analysis and the physics. Fermilab is an international laboratory, open to all users; a research proposal is accepted on scientific merit and technical competence, not on the country of origin of the scientists making the proposal. Currently, of Fermilab's approximately 1400 users, about 30% are from non-US institutions. It should be noted here that Fermilab's funds, which come from the US government, are for particle physics only; however, there is some flexibility in interpretation of this

  4. Gun and optics calculations for the Fermilab recirculation experiment

    International Nuclear Information System (INIS)

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes

  5. Dilepton Production at Fermilab and RHIC

    International Nuclear Information System (INIS)

    Peng, J.C.; McGaughey, P.L.; Moss, J.M.

    1999-01-01

    Some recent results from several fixed-target dimuon production experiments at Fermilab are presented. In particular, we discuss the use of Drell-Yan data to determine the flavor structure of the nucleon sea, as well as to deduce the energy-loss of partons traversing nuclear medium. Future dilepton experiments at RHIC could shed more light on the flavor asymmetry and possible charge-symmetry-violation of the nucleon sea. Clear evidence for scaling violation in the Drell-Yan process could also be revealed at RHIC

  6. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...

  7. Review of programmable systems associated with Fermilab experiments

    International Nuclear Information System (INIS)

    Nash, T.

    1981-05-01

    The design and application of programmable systems for Fermilab experiments are reviewed. The high luminosity fixed target environment at Fermilab has been a very fertile ground for the development of sophisticated, powerful triggering systems. A few of these are integrated systems designed to be flexible and to have broad application. Many are dedicated triggers taking advantage of large scale integrated circuits to focus on the specific needs of one experiment. In addition, the data acquisition requirements of large detectors, existing and planned, are being met with programmable systems to process the data. Offline reconstruction of data places a very heavy load on large general purpose computers. This offers a potentially very fruitful area for new developments involving programmable dedicated systems. Some of the present thinking at Fermilab regarding offline reconstruction processors will be described

  8. A review of programmable systems associated with Fermilab experiments

    International Nuclear Information System (INIS)

    Nash, T.

    1981-01-01

    In this paper we review the design and application of programmable systems for Fermilab experiments. The high luminosity fixed target environment at Fermilab has been a very fertile ground for the development of sophisticated, powerful triggering systems. A few of these are integrated systems designed to be flexible and to have broad application. Many are dedicated triggers taking advantage of large scale integrated circuits to focus on the specific needs of one experiment. In addition, the data acquisition requirements of large detectors, existing and planned, are being met with programmable systems to process the data. Offline reconstruction of data places a very heavy load on large general purpose computers. This offers a potentially very fruitful area for new developments involving programmable dedicated systems. Some of the present thinking at Fermilab regarding offline reconstruction processors will be described. (orig.)

  9. End-of-life vehicle recycling and international cooperation between Japan, China and Korea: Present and future scenario analysis.

    Science.gov (United States)

    Che, Jia; Yu, Jeong-Soo; Kevin, Roy Serrona

    2011-06-01

    In the area of end-of-life vehicle (ELV) recycling, Japan passed the Automobile Recycling Law in January 2005, the first in Asia. Korea followed suit with the passage of the resource circulation method in 2009. China is expected make a new recycling law in 2011. In contribution to these initiatives, Tohoku University made a comparative analysis of ELV recycling laws, advance dismantling experiments and scenario analysis to promote international cooperation. This is envisioned to introduce ELV recycling system in Japan, China and Korea and in developing countries as well. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Full discharges in Fermilab's electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Shemyakin, A.; /Fermilab

    2005-09-01

    Fermilab's 4.3 MeV electron cooler is based on an electrostatic accelerator, which generates a DC electron beam in an energy recovery mode. Effective cooling of the antiprotons in the Recycler requires that the beam remains stable for hours. While short beam interruptions do not deteriorate the performance of the Recycler ring, the beam may provoke full discharges in the accelerator, which significantly affect the duty factor of the machine as well as the reliability of various components. Although cooling of 8 GeV antiprotons has been successfully achieved, full discharges still occur in the current setup. The paper describes factors leading to full discharges and ways to prevent them.

  11. Quench performance of Fermilab/General Dynamics built full length SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Strait, J.; Orris, D.; Mazur, P.O.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Ozelis, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.

    1992-01-01

    In this paper we present results of quench testing of full length SSC dipole magnets at Fermilab. The data are from the first six of a series of thirteen 15 m long, 50 mm aperture SSC dipole magnets which are being built and tested at Fermilab. These magnets were designed jointly by Fermilab, Brookhaven Laboratory, Lawrence Berkeley Laboratory and the SSC Laboratory. Among the major goals for this series of magnets are to transfer magnet production technology to the lead vendor for the Collider Dipole Magnet, the General Dynamics Corporation, and to demonstrate industrial production by the vendor. The first magnet in the series, DCA311, was built by Fermilab technicians to establish assembly procedures. The second magnet, DCA312, was the technology transfer magnet and was built jointly by Fermilab and General Dynamics technicians. The next seven, DCA313-319 are being built by General Dynamics personnel using Fermilab facilities and procedures. However, Fermilab personnel still operate the major tooling, provide the welders, perform assembly of items that would not be part of production magnets (e.g. voltage taps), and oversee the QA program. Five of these 7 GD-built magnets will be used in the Accelerator Systems String Test (ASST) to be carried out in Dallas later this year. The last four magnets, DCA320-323, are being built by Fermilab alone

  12. Report of the Fermilab ILC Citizens' Task Force

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-01

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  13. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  14. Dedication of Fermilab's LHC Remote Operations Center

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    Fermilab's Remote Operations Center will be dedicated simultaneously at Fermilab in the U.S. and from CMS (Point 5) in Cessy, France. Speakers will include: from the U.S. DOE Undersecretary for Science Raymond Orbach and Fermilab Director Pier Oddone (U.S.); and from CERN Director General Robert Aymar, CMS Spokesperson Jim Virdee, LHC Project Leader Lyn Evans and US CMS Project Manager Joel Butler.

  15. Analysis of present water usage and management practice in nuclear recycle plants and potential ways to minimize environmental burden

    International Nuclear Information System (INIS)

    Shah, B.V.

    2008-01-01

    Water input and output balance along with its composition around Nuclear Recycle Plants (NRP) will give the environmental burden, however including intermediate steps required for its treatment or usage or to qualify for discharge to environment will give more holistic and real environmental burden. Major water uses in order of their consumption in one part of NRP called reprocessing plant are: 1. Production of steam mainly for evaporation and which is used in open loop. 2. For making process solution mainly 0.01N strip 1-2N scrub. 3. Wash and cleaning usage. To reduce the environmental burden of chemical and activity discharge through water, a large amount of water, fuel, chemical and capital investment in form of various system are used in general and at present NRP is no exception. Better processes and management practice could be evolved around proven method of recover and reuse near the source. Root cause of present large usage of water is in general and specifically NRP is extra safe approach in reuse. Recover quality can never meet fresh quality criteria and hence reuse is not permitted or avoided taking cover of some hypothetical scenario conditions. Thus a major contribution can come from more practical, realistic and objectively evolved management policy on reuse criteria or guidelines. In this situation, development effort and investment can be prioritized for development of recovery processes or proven or developed system get application in plant scale and benefit can start accruing in the form of reduced environmental burden

  16. CPS and the Fermilab farms

    Energy Technology Data Exchange (ETDEWEB)

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described.

  17. CPS and the Fermilab farms

    International Nuclear Information System (INIS)

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described

  18. Control system for Fermilab`s low temperature upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  19. Standard beam PWC for Fermilab

    International Nuclear Information System (INIS)

    Fenker, H.

    1983-02-01

    As one of its projects the Fermilab Experimental Areas Department has been designed and tested a relatively small proportional wire chamber for use in the secondary beam lines. It is intended to supplement the variety of detectors known in the vernacular as SWICS that are used to obtain profiles for beam tuning. The new detector, described in this report, operates in the limited proportional mode and allows experimenters to use a standard, lab supported device for associating trajectories of individual beam particles with events triggering their own experiment's apparatus. A completed triple plane module is shown

  20. Next generation farms at Fermilab

    International Nuclear Information System (INIS)

    Cudzewicz, R., Giacchetti, L., Leininger, M., Levshina, T., Pasetes, R., Schweitzer, M., Wolbers, S.

    1997-01-01

    The current generation of UNIX farms at Fermilab are rapidly approaching the end of their useful life. The workstations were purchased during the years 1991-1992 and represented the most cost-effective computing available at that time. Acquisition of new workstations is being made to upgrade the UNIX farms for the purpose of providing large amounts of computing for reconstruction of data being collected at the 1996-1997 fixed-target run, as well as to provide simulation computing for CMS, the Auger project, accelerator calculations and other projects that require massive amounts of CPU. 4 refs., 1 fig., 2 tabs

  1. Electron cooling experiments at Fermilab

    International Nuclear Information System (INIS)

    Forster, R.; Hardek, T.; Johnson, D.E.; Kells, W.; Kerner, V.; Lai, H.; Lennox, A.J.; Mills, F.; Miyahara, Y.; Oleksiuk, L.; Peters, R.; Rhoades, T.; Young, D.; McIntyre, P.M.

    1981-01-01

    A 115 Mev proton beam has been successfully cooled in the Electron Cooling Ring at Fermilab. Initial experiments have measured the longitudinal drag force, transverse damping rate, and equilibrium beam size. The proton beam was cooled by a factor of aproximately 50 in momentum spread in 5 sec, and by a factor of 3 in transverse size in 15 sec. Long term losses were consistent with single scattering from residual gas, with lifetime approximately 1000 sec. Using the measured electron beam temperature T/sub e/.0.8(2) ev, the observed cooling agrees well with expectations from cooling theory. 13 refs

  2. Physics at an upgraded Fermilab proton driver

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  3. Tunneling beyond the Fermilab site

    International Nuclear Information System (INIS)

    Baker, S.; Elwyn, A.; Lach, J.; Read, A.

    1983-01-01

    An accelerator that crosses the Fermilab site boundary must have a minimum effect on the surrounding environment and the people residing in the area. Unobstructed public access should be allowed above the ring except in relatively few areas such as the injection, dump, and experimental regions. The accelerator should be a benign and unobtrusive neighbor not only when it is completed but also in the construction period. For these reasons underground tunneling for all or most of the ring seems attractive. In this note we look into some questions raised by tunneling beyond the Fermilab site. Most of our discussion is of general applicability. However, we will use as examples two specific ring configurations. The examples have not been optimized from the point of view of physics output or accelerator technology but are just specific examples which allow us to study questions of tunneling. One is a ring of 5 km radius (5 TeV) tangent to the Tevatron and entirely east of the Fox River and fed by a beam from the Tevatron which crosses under the river. We assume that each of these machines will have 100 beam fills per year and we scale the maximum intensities with the accelerator radii. Thus we assume that there will be 1.0 E14 protons in each beam of the 20 TeV machine and 2.5 E13 for the 5 TeV machine

  4. Rebuild of Capture Cavity 1 at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Harms, E. [Fermilab; Arkan, T. [Fermilab; Borissov, E. [Fermilab; Dhanaraj, N. [Fermilab; Hocker, A. [Fermilab; Orlov, Y. [Fermilab; Peterson, T. [Fermilab; Premo, K. [Fermilab

    2014-01-01

    The front end of the proposed Advanced Superconducting Test Accelerator at Fermilab employs two single cavity cryomodules, known as 'Capture Cavity 1' and 'Capture Cavity 2', for the first stage of acceleration. Capture Cavity 1 was previously used as the accelerating structure for the A0 Photoinjector to a peak energy of ~14 MeV. In its new location a gradient of ~25 MV/m is required. This has necessitated a major rebuild of the cryomodule including replacement of the cavity with a higher gradient one. Retrofitting the cavity and making upgrades to the module required significant redesign. The design choices and their rationale, summary of the rebuild, and early test results are presented.

  5. Commissioning of Fermilab's Electron Cooling System for 8-GeV Antiprotons

    CERN Document Server

    Nagaitsev, Sergei; Burov, Alexey; Carlson, Kermit; Gai, Wei; Gattuso, Consolato; Hu, Martin; Kazakevich, Grigory; Kramper, Brian J; Kroc, Thomas K; Leibfritz, Jerry; Prost, Lionel; Pruss, Stanley M; Saewert, Greg W; Schmidt, Chuck; Seletsky, Sergey; Shemyakin, Alexander V; Sutherland, Mary; Tupikov, Vitali; Warner, Arden

    2005-01-01

    A 4.3-MeV electron cooling system has been installed at Fermilab in the Recycler antiproton storage ring and is being currently commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper will report on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  6. Magnetic field measurements of Fermilab/General Dynamics built full scale SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Delchamps, S.; Bleadon, M.; Bossert, R.; Carson, J.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Strait, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Ogitsu, T.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.

    1992-01-01

    This paper presents preliminary results of magnetic field measurements made on a series of 50 mm aperture 15 m long SSC collider dipole magnets designed and manufactured at Fermi National Accelerator Laboratory (Fermilab) for use in the Superconducting Super Collider Laboratory (SSCL) Accelerator System String Test. The magnets were assembled by Fermilab and General Dynamics personnel, and were tested at the Magnet Test Facility (MTF) at Fermilab. Measurements of the dipole field angle, dipole field strength, and field shape parameters at various stages in magnet construction and testing are described

  7. Two decades of Mexican particle physics at Fermilab

    International Nuclear Information System (INIS)

    Roy Rubinstein

    2002-01-01

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At the time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s

  8. Technology of producing reliable superconducting dipoles at Fermilab

    International Nuclear Information System (INIS)

    Fowler, W.B.; Livdahl, P.V.; Tollestrup, A.V.

    1976-01-01

    During the last few months, several full size prototype dipole magnets for the Fermilab Energy Doubler were successfully tested. This was the result of several concurrent programs in conductor development as well as magnet construction, production, and testing. The present magnets have achieved their design goal. Progress to this point has solved many pitfalls. A description is given of the present technology as well as some of the decisions that led to the present design

  9. Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, Tim [Kentucky U.

    2017-12-22

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment $a_{\\mu}$ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of $a_{\\mu}$ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5$\\sigma$ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring $a_{\\mu}$, and the current status and the future work for the project.

  10. The Fermilab physics class library

    International Nuclear Information System (INIS)

    Fischler, M.; Brown, W.; Gaines, I.; Kennedy, R.D.; Marraffino, J.; Michelotti, L.; Sexton-Kennedy, E.; Yoh, J.; Adams, D.; Paterno, M.

    1997-02-01

    The Fermilab Physics Class Library Task Force has been formed to supply classes and utilities, primarily in support of efforts by CDF and D0 toward using C++. A collection of libraries and tools will be assembled via development by the task force, collaboration with other HEP developers, and acquisition of existing modules. The main emphasis is on a kit of resources which physics coders can incorporate into their programs, with confidence in robustness and correct behavior. The task force is drawn from CDF, DO and the FNAL Computing and Beams Divisions. Modules-containers, linear algebra, histograms, etc.-have been assigned priority, based on immediate Run II coding activity, and will be available at times ranging from now to late May

  11. The Muon g-2 experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Chapelain, Antoine [Cornell U., Phys. Dept.

    2017-01-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  12. Supporting multiple control systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  13. Injection Bucket Jitter Compensation Using Phase Lock System at Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K. [Fermilab; Drennan, C. [Fermilab; Pellico, W. [Fermilab; Chaurize, S. [Fermilab

    2017-05-12

    The extraction bucket position in the Fermilab Booster is controlled with a cogging process that involves the comparison of the Booster rf count and the Recycler Ring revolution marker. A one rf bucket jitter in the ex-traction bucket position results from the variability of the process that phase matches the Booster to the Recycler. However, the new slow phase lock process used to lock the frequency and phase of the Booster rf to the Recycler rf has been made digital and programmable and has been modified to correct the extraction notch position. The beam loss at the Recycler injection has been reduced by 20%. Beam studies and the phase lock system will be discussed in this paper.

  14. Beam Profile Diagnostics for the Fermilab Medium Energy Electron Cooler

    Science.gov (United States)

    Warner, A.; Kazakevich, G.; Nagaitsev, S.; Tassotto, G.; Gai, W.; Konecny, R.

    2005-10-01

    The Fermilab Recycler ring will employ an electron cooler to store and cool 8.9 GeV antiprotons. The cooler will be based on a Pelletron electrostatic accelerator working in an energy-recovery regime. Several techniques for determining the characteristics of the beam dynamics are being investigated. Beam profiles have been measured as a function of the beam line optics at the energy of 3.5 MeV in the current range of 10/sup -4/-1 A, with a pulse duration of 2 /spl mu/s. The profiles were measured using optical transition radiation produced at the interface of a 250-/spl mu/m aluminum foil and also from YAG crystal luminescence. In addition, beam profiles measured using multiwire detectors were investigated. These three diagnostics will be used together to determine the profile dynamics of the beam. In this paper we report the results so far obtained using these techniques.

  15. Biomedical user facility at the 400-MeV Linac at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.

    1993-12-01

    In this paper, general requirements are discussed on a biomedical user facility at the Fermilab`s 400-MeV Linac, which meets the needs of biology and biophysics experiments, and a conceptual design and typical operations requirements of the facility is presented. It is assumed that no human patient treatment will take place in this facility. If human patients were treated, much greater attention would have to be paid to safeguarding the patients.

  16. A HIGH-LEVEL PYTHON INTERFACE TO THE FERMILAB ACNET CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P. [Fermilab; Halavanau, A. [Fermilab

    2016-10-19

    This paper discusses the implementation of a python- based high-level interface to the Fermilab acnet control system. The interface has been successfully employed during the commissioning of the Fermilab Accelerator Science & Technology (FAST) facility. Specifically, we present examples of applications at FAST which include the interfacing of the elegant program to assist lattice matching, an automated emittance measurement via the quadrupole-scan method and tranverse transport matrix measurement of a superconducting RF cavity.

  17. Physics History Books in the Fermilab Library

    Energy Technology Data Exchange (ETDEWEB)

    Sara Tompson.

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  18. City shows gratitude for Fermilab relationship

    CERN Multimedia

    Pierce, Gala

    2006-01-01

    "Part of last week Batavia Chamber of Commerce celebration wasn't just to salute one of Batavia's heroes - Carla Hill - but to commemorate a 40-year relationship between the city and Fermilab" (1 page)

  19. Wanted: Fermilab director who can build consensus

    CERN Multimedia

    Pierce, G M

    2004-01-01

    "With current Fermilab Director Michael Witherell stepping down in July 2005, an appointed committee has vowed to find a new leader who will keep the Batavia lab at the forefront of the high-energy physics field" (1 page).

  20. Physics History Books in the Fermilab Library

    International Nuclear Information System (INIS)

    Tompson, Sara

    1999-01-01

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification

  1. Magnetic performance of new Fermilab high gradient quadrupoles

    International Nuclear Information System (INIS)

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2θ coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs

  2. Beauty and charm production from Fermilab experiment 789

    International Nuclear Information System (INIS)

    Jansen, D.M.; Boissevain, J.; Carey, T.A.; Jeppesen, R.G.; Kapustinsky, J.S.; Lane, D.W.; Leitch, M.J.; Lillberg, J.W.; McGaughey, P.L.; Moss, J.M.; Peng, J.C.; Brown, G.; Isenhower, L.D.; Keyser, J.; Sadler, M.E.; Schnathorst, R.; Schwindt, R.; Gidal, G.; Ho, P.M.; Kowitt, M.S.I.; Luk, K.B.; Pripstein, D.; Lederman, L.M.; Schub, M.H.; Brown, C.N.; Cooper, W.E.; Glass, H.D.; Gounder, K.N.; Mishra, C.S.; Kaplan, D.M.; Luebke, W.R.; Martin, V.M.; Preston, R.S.; Sa, J.; Tanikella, V.; Childers, R.; Darden, C.W.; Snodgrass, D.; Wilson, J.R.; Chen, Y.C.; National Cheng Kung Univ., Tainan; Kiang, G.C.; Teng, P.K.

    1993-01-01

    Experiment 789 is a fixed-target experiment at Fermilab designed to study low-multiplicity decays of charm and beauty. During the 1991 run. E789 collected ∼ 10 9 events using an 800 GeV proton beam incident upon gold and beryllium targets. Analyses of these data include searches for b → J/ψ+Χ decays and Α- dependence measurements of neutral D meson production. Preliminary results from the 1991 run are presented in this paper

  3. Physics prospects of the KTeV experiment at Fermilab

    International Nuclear Information System (INIS)

    Whitmore, J.

    1996-10-01

    KTeV is a new Fermilab fixed target experiment which will search for direct CP violation in the neutral kaon system. In addition, we will make precision measurements of other CP and CPT violating parameters and make high sensitivity studies of rare kaon decays. The detector has been commissioned and is currently taking data. The physics goals and detector performance are presented. 12 refs., 1 fig

  4. Energy Doubler/Saver at Fermilab: a status report

    International Nuclear Information System (INIS)

    Fowler, W.B.

    1977-01-01

    Guided, as in the past, by close attention to the developing theoretical and experimental evidence for new phenomena (for example, the discoveries of weak neutral currents, charm, J/psi and the Upsilon) Fermilab has devoted considerable effort to pushing on to higher energies. This seems particularly appropriate since other phenomena is suggested, such as intermediate vector bosons (W + and Z 0 ) etc. The TeV Project at Fermilab pursues both increases in the available energy via doubling the energy of the present accelerator as a fixed target, high intensity proton synchrotron and via colliding beams. These ways are complementary to one another. High energy physics with fixed targets cannot match the energy available in the center of mass system that can be achieved in colliding beams, whereas physics with colliding beams cannot match the intensities or the variety of bombarding particles that can be achieved with fixed targets. Some of the aspects of each technique are given

  5. Mechanical behavior of Fermilab/General Dynamics built 15M SSC collider dipoles

    International Nuclear Information System (INIS)

    Wake, M.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.; Mazur, P.; Orris, D.; Strait, J.; Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Thompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H.

    1992-04-01

    A series of full-scale demonstration SSC collider dipole magnets were built for the ASST. These magnets, DCA311 through DCA319, have 50 mm aperture and 15 m magnetic length with 6.6 Tesla uniform field. For the support structure of the W6733B cross section, the Fermilab design uses a vertical split in the yoke. The end sections of the magnet have solid spacers and are supported by collet clamps. The splices between inner and outer coils are made in preforms which lie outside of the high field region. The magnets were produced in pipeline fashion with no intentional major changes between magnets. As a part of the technology transfer program, the last 7 magnets were built by General Dynamics personnel using the magnet construction facilities of Fermilab, while the first two magnets were built entirely by Fermilab personnel. At present, the magnets up to DCA316 have been tested at Fermilab. The general characteristics of the magnets have been quite satisfactory. Both of the Fermilab built magnets have reached the conductor limited field strength with no significant training. Two of the General Dynamics built magnets each required a single training quench. However, all of the magnets tested up to date meet the ASST specifications. This report describes the mechanical properties of the ASST magnets at Fermilab based on the currently available test results

  6. Mechanical behavior of Fermilab/General Dynamics built 15M SSC collider dipoles

    International Nuclear Information System (INIS)

    Wake, M.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Orris, D.; Strait, J.; Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.

    1992-01-01

    A series of full-scale demonstration SSC collider dipole magnets were built for the ASST (Accelerator System String Test). These magnets, DCA311 through DCA319, have 50 mm aperture and 15 m magnetic length with 6.6 Tesla uniform field. For the support structure of the W6733B cross section, the Fermilab design uses a vertical split in the yoke. The end sections of the magnet have solid spacers and are supported by collet clamps. The splices between inner and outer coils are made in preforms which lie outside of the high field region. The magnets were produced in pipeline fashion with no intentional major changes between magnets. As a part of the technology transfer program, the last 7 magnets were built by General Dynamics personnel using the magnet construction facilities of Fermilab, while the first two magnets were built entirely by Fermilab personnel. At present, the magnets up to DCA316 have been tested at Fermilab. The general characteristics of the magnets have been quite satisfactory. Both of the Fermilab built magnets have reached the conductor limited field strength with no significant training. Two of the General Dynamics built magnets (DCA313 and DCA314) each required a single training quench. However, all of the magnets tested up to date meet the ASST specifications. This report describes the mechanical properties of the ASST magnets at Fermilab based on the currently available test results

  7. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  8. Dual recycling for GEO 600

    International Nuclear Information System (INIS)

    Grote, H; Freise, A; Malec, M; Heinzel, G; Willke, B; Lueck, H; Strain, K A; Hough, J; Danzmann, K

    2004-01-01

    Dual recycling is the combination of signal recycling and power recycling; both optical techniques improve the shot-noise-limited sensitivity of interferometric gravitational-wave detectors. In addition, signal recycling can reduce the loss of light power due to imperfect interference and allows us, in principle, to beat the standard quantum limit. The interferometric gravitational-wave detector GEO 600 is the first of the kilometre-scale detectors to use signal recycling. We have recently equipped the detector with a signal-recycling mirror with a transmittance of 1%. In this paper, we present details of the detector commissioning and the first locks of the dual-recycled interferometer

  9. Tests of cold helium compressors at Fermilab

    International Nuclear Information System (INIS)

    Peterson, T.J.; Fuerst, J.D.

    1987-10-01

    Fermilab has tested two cold helium compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Operating conditions required to obtain an overall Tevatron energy upgrade from 900 to 1000 GeV are (for each of 24 machines): 52 g/s mass flow rate, 0.7 atm inlet pressure, 1.4 atm exhaust pressure. Acceptable efficiency is in the 60% range. Both Creare, Inc., and Cryogenic Consultants, Inc. (CCI), have supplied units for evaluation. The Creare machine is a high speed centrifugal pump/compressor which yielded 60% adiabatic efficiency (including an approximately 20 watt heat leak) with a 1.0 atm inlet pressure and 55 g/s flow rate. Certain mechanical difficulties were present, chiefly the device's inability to withstand two-phase flow. CCI supplied a reciprocating unit which, after initial testing and modification, achieved 59% efficiency with an approximate 35 watt heat leak at a 0.7 atm inlet pressure and 48 g/s flow rate. Although the device lacks the smooth, quiet operating characteristics of a turbomachine, it has endured mechanically throughout testing and is entirely insensitive to two-phase flow

  10. Sonic helium detectors in the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bossert, R.J.; /Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  11. 2015 CERN-Fermilab HCP Summer School

    CERN Multimedia

    2015-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the tenth edition, from 24 June to 3 July 2015. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Lecture Topics include: Statistics in HEP, Heavy Flavour, Heavy Ion, Standard Model, Higgs searches and measurements, BSM theory, BSM searches, Top physics, QCD and Monte Carlos, Accelerators, Detectors for the future, Trigger and DAQ, Dark Matter Astroparticle, and two special lectures on Future Colliders, and 20 years after the top discovery. Calendar and Details: Mark your calendar for  24 June - 3 July 2015, when CERN will welcome students to t...

  12. The Fermilab central computing facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-01-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front-end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS cluster interactive front-end, an Amdahl VM Computing engine, ACP farms, and (primarily) VMS workstations. This paper will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. (orig.)

  13. Optimization of electron cooling in the Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Burov, A.; Carlson, K.; Prost, L.R.; Sutherland, M.; Warner, A.; /Fermilab

    2009-04-01

    Antiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1A DC electron beam (as well as by a stochastic cooling system). The paper describes electron cooling improvements recently implemented: adjustments of electron beam line quadrupoles to decrease the electron angles in the cooling section and better stabilization and control of the electron energy.

  14. Correction of unevenness in recycler beam profile

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.; Hu, M.; Ng, K.Y.; /Fermilab

    2006-05-01

    A beam confined between two rf barriers in the Fermilab Recycler Ring exhibits very uneven longitudinal profile. This leads to the consequence that the momentum-mined antiproton bunches will have an intolerable variation in bunch intensity. The observed profile unevenness is the result of a tiny amount of rf imperfection and rf beam-loading. The profile unevenness can be flattened by feeding back the uneven rf fan-back gap voltage to the low-level rf.

  15. The Fermilab Main Injector Technical Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1994-08-01

    This report contains a description of the design, cost estimate, and construction schedule of the Fermilab Main Injector (FMI) Project. The technical, cost, and schedule baselines for the FMI Project have already been established and may be found in the Fermilab Main Injector Title I Design Report, issued in August 1992. This report updates and expands upon the design and schedule for construction of all subsystem components and associated civil construction described in the Title I Design Report. The facilities described have been designed in conformance with DOE 6430.1A, "United States Department of Energy General Design Criteria."

  16. The 1994 Fermilab Fixed Target Program

    International Nuclear Information System (INIS)

    Conrad, J.

    1994-11-01

    This paper highlights the results of the Fermilab Fixed Target Program that were announced between October, 1993 and October, 1994. These results are drawn from 18 experiments that took data in the 1985, 1987 and 1990/91 fixed target running periods. For this discussion, the Fermilab Fixed Target Program is divided into 5 major topics: hadron structure, precision electroweak measurements, heavy quark production, polarization and magnetic moments, and searches for new phenomena. However, it should be noted that most experiments span several subtopics. Also, measurements within each subtopic often affect the results in other subtopics. For example, parton distributions from hadron structure measurements are used in the studies of heavy quark production

  17. Charm and beauty measurements at Fermilab fixed target

    International Nuclear Information System (INIS)

    Mishra, C.S.

    1993-01-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper the author reviews recent results from charm and beauty fixed target experiments at Fermilab

  18. Charm and beauty measurements at Fermilab fixed target

    International Nuclear Information System (INIS)

    Mishra, C.S.

    1993-10-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper we review recent results from charm and beauty fixed target experiments at Fermilab

  19. Emittances Studies at the Fermilab/NICADD Photoinjector Laboratory

    CERN Document Server

    Tikhoplav, Rodion; Melissinos, A C; Regis-Guy Piot, Philippe

    2005-01-01

    The Fermilab/NICADD photoinjector incorporates an L-band rf-gun capable of generating 1-10 nC bunches. The bunches are then accelerated to 16 MeV with a TESLA superconducting cavity. In the present paper we present parametric studies of transverse emittances and energy spread for a various operating points of the electron source (RF-gun E-field, laser length and spot size, and solenoid settings). We especially study the impact, on transverse emittance, of Gaussian and Plateau temporal distribution of the photocathode drive-laser.

  20. Fermilab ACP multi-microprocessor project

    International Nuclear Information System (INIS)

    Gaines, I.; Areti, H.; Biel, J.; Bracker, S.; Case, G.; Fischler, M.; Husby, D.; Nash, T.

    1984-08-01

    We report on the status of the Fermilab Advanced Computer Program's project to provide more cost-effective computing engines for the high energy physics community. The project will exploit the cheap, but powerful, commercial microprocessors now available by constructing modular multi-microprocessor systems. A working test bed system as well as plans for the next stages of the project are described

  1. Results on Fermilab main injector dipole measurements

    International Nuclear Information System (INIS)

    Brown, B.C.; Baiod, R.; DiMarco, J.; Glass, H.D.; Harding, D.J.; Martin, P.S.; Mishra, S.; Mokhtarani, A.; Orris, D.F.; russell, O.A.; Tompkins, J.C.; Walbridge, D.G.C.

    1995-06-01

    Measurements of the Productions run of Fermilab Main Injector Dipole magnets is underway. Redundant strength measurements provide a set of data which one can fit to mechanical and magnetic properties of the assembly. Plots of the field contribution from the steel supplement the usual plots of transfer function (B/I) vs. I in providing insight into the measured results

  2. Strategic directions of computing at Fermilab

    International Nuclear Information System (INIS)

    Wolbers, S.

    1997-04-01

    Fermilab computing has changed a great deal over the years, driven by the demands of the Fermilab experimental community to record and analyze larger and larger datasets, by the desire to take advantage of advances in computing hardware and software, and by the advances coming from the R ampersand D efforts of the Fermilab Computing Division. The strategic directions of Fermilab Computing continue to be driven by the needs of the experimental program. The current fixed-target run will produce over 100 TBytes of raw data and systems must be in place to allow the timely analysis of the data. The collider run II, beginning in 1999, is projected to produce of order 1 PByte of data per year. There will be a major change in methodology and software language as the experiments move away from FORTRAN and into object- oriented languages. Increased use of automation and the reduction of operator-assisted tape mounts will be required to meet the needs of the large experiments and large data sets. Work will continue on higher-rate data acquisition systems for future experiments and project. R ampersand D projects will be pursued as necessary to provide software, tools, or systems which cannot be purchased or acquired elsewhere. A closer working relation with other high energy laboratories will be pursued to reduce duplication of effort and to allow effective collaboration on many aspects of HEP computing

  3. Proposed Fermilab upgrade main injector project

    International Nuclear Information System (INIS)

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a ''Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider

  4. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  5. Study of Timing Properties of SiPMs at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ronzhin, A. [Fermilab; Los, S. [Fermilab; Martens, M. [Fermilab; Murat, P. [Fermilab; Ramberg, E. [Fermilab; Kim, H. [Chicago U.; Chen, C.-T. [Chicago U.; Kao, C.-M. [Chicago U.; Niesen, K. [SUNY, Stony Brook; Zatserklyaniy, A. [UC, Santa Cruz; Mazzilo, M. [STMIcroelectronics, Catania; Caborne, B. [STMIcroelectronics, Catania; Condorelli, G. [STMIcroelectronics, Catania; Fallica, G. [STMIcroelectronics, Catania; Piana, A. [STMIcroelectronics, Catania; Sanfilippo, D. [STMIcroelectronics, Catania; Valvo, G. [STMIcroelectronics, Catania; Ritt, S. [PSI, Villigen

    2012-01-01

    We continue our timing measurements of Silicon Photomultipliers (SiPM) at the picosecond level at Fermilab .. We using SiPMs readout based on Ortec system, also as on fast waveform digitizer DRS4 [1]. SiPM's signal pulse shape was investigated. The single photoelectron time resolution (SPTR) was measured for the signals coming from the SiPM's. Dependence of the SPTR on the SiPms size was measured. Results of the last test beam test with SiPMs are presented.

  6. Increasing the energy of the Fermilab Tevatron accelerator

    International Nuclear Information System (INIS)

    Fuerst, J.D.; Theilacker, J.C.

    1994-07-01

    The superconducting Tevatron accelerator at Fermilab has reached its eleventh year of operation since being commissioned in 1983. Last summer, four significant upgrades to the cryogenic system became operational which allow Tevatron operation at higher energy. This came after many years of R ampersand D, power testing in sectors (one sixth) of the Tevatron, and final system installation. The improvements include the addition of cold helium vapor compressors, supporting hardware for subatmospheric operation, a new satellite refrigerator control system, and a higher capacity central helium liquefier. A description of each cryogenic upgrade, commissioning experience, and attempts to increase the energy of the Tevatron are presented

  7. Initial results from 50mm short SSC dipoles at Fermilab

    International Nuclear Information System (INIS)

    Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Coulter, K.; Delchamps, S.; Ewald, K.D.; Fulton, H.; Gonczy, I.; Gourlay, S.A.; Jaffery, T.S.; Kinney, W.; Koska, W.; Lamm, M.J.; Strait, J.B.; Wake, M.; Gordon, M.; Hassan, N.; Sims, R.; Winters, M.

    1991-03-01

    Several short model SSC 50 mm bore dipoles are being built and tested at Fermilab. Mechanical design of these magnets has been determined from experience involved in the construction and testing of 40 mm dipoles. Construction experience includes coil winding, curing and measuring, coil end part design and fabrication, ground insulation, instrumentation, collaring and yoke assembly. Fabrication techniques are explained and construction problems are discussed. Similarities and differences from the 40 mm dipole tooling and management components are outlined. Test results from the first models are presented. 19 refs., 12 figs

  8. The New Muon g-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph [Argonne

    2015-01-13

    Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and modern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.

  9. An overview of plastic optical fiber end finishers at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mishina, M.; Lindenmeyer, C.; Korienek, J.

    1993-11-01

    Several years ago the need for equipment to precisely finish the ends of plastic optical fibers was recognized. Many high energy physics experiments use thousands of these fibers which must be polished on one or both ends. A fast, easy-to-operate machine yielding repeatable finishes was needed. Three types of machines were designed and constructed that are in daily use at Fermilab, all finish the fiber ends by flycutting with a diamond tool. Althrough diamond flycutting of plastic is not new, the size and fragility of plastic optical fibers present several challenges.

  10. Spin Tracking of Polarized Protons in the Main Injector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Lorenzon, W. [Michigan U.; Aldred, C. [Michigan U.

    2016-07-01

    The Main Injector (MI) at Fermilab currently produces high-intensity beams of protons at energies of 120 GeV for a variety of physics experiments. Acceleration of polarized protons in the MI would provide opportunities for a rich spin physics program at Fermilab. To achieve polarized proton beams in the Fermilab accelerator complex, shown in Fig.1.1, detailed spin tracking simulations with realistic parameters based on the existing facility are required. This report presents studies at the MI using a single 4-twist Si-berian snake to determine the depolarizing spin resonances for the relevant synchrotrons. Results will be presented first for a perfect MI lattice, followed by a lattice that includes the real MI imperfections, such as the measured magnet field errors and quadrupole misalignments. The tolerances of each of these factors in maintaining polariza-tion in the Main Injector will be discussed.

  11. Test of Fermilab built, post-ASST, 50-mm-aperture, full length SSC dipole magnets

    International Nuclear Information System (INIS)

    Kuzminski, J.; Akhmetov, A.; Bossert, R.

    1993-05-01

    During 1992 at Fermilab, a series of nine 50-mm-aperture, 15-m-long, SSC superconducting dipole magnets, designed jointly by Fermilab, Brookhaven National Laboratory, and the SSC Laboratory, have been built and successfully cold tested. Seven of these dipole magnets, designate for the Accelerator System String Test (ASST) carried out at SSCL in Dallas, were assembled Fermilab by General Dynamics personnel, and have achieved the nominal operating current level without significant training. In addition, a series of four R ampersand D magnets (DCA320 323) we manufactured at Fermilab to test an alternative insulation schemes. In this paper we present th quench performance of these four R ampersand D magnets, which were cold tested at the Fermilab Magnet Test Facility at nominal temperatures of 4.35 K, 3.85 K, and 3.50 K. An extended characterization test was performed on one of these magnets (DCA322). During this test the magnet was successfully cooled down to superfluid He temperature (1.8 K) and reached a field B ≥ 9.5 T

  12. Etude Experimentale du Photo-Injecteur de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Jean-Paul [Orsay

    2001-01-01

    TESLA (TeV Superconducting Linear Accelerator) is an international collaboration which is studying the feasibility of an $e^+e^-$ collider of energy 0.8 TeV in the center of mass. One of the first goals of this collaboration was to construct a prototype linear accelerator at the DESY Laboratory in Hamburg, the TESLA Test Facility (TTF), in order to establish the technical basis for the collider. Two injectors were developed for TTF: a thermionic injector (developed by LAL-Orsay, IPN-Orsay, and CEA-Saclay) and a photo-injector (developed by Fermilab). The thermionic injector was used from February 1997 to October 1998, and then it was replaced by the photo-injector, which was first operated in December 1998. Another photo-injector, identical to the one delivered to TTF, was installed at Fermilab in the $A{\\emptyset}$ Building. The first beam from the latter was produced on 3 March 1999. The photo-injector consists of an RF gun, followed by a superconducting cavity. The RF gun is a 1.625-cell copper cavity with a resonant frequency of 1.3 GHz. The gun contains a cesium telluride ($C_{s_2}$Te) photo-cathode, which is illuminated by UV pulses from a Nd:YLF laser. The system can produce trains of 800 bunches of photo-electrons of charge 8 nC per bunch with spacing between bunches of 1$\\mu$s and 10 Hz repetition rate. Upon emerging from the RF gun, the beam energy is 4 to 5 MeV; the beam is then rapidly accelerated by the superconducting cavity to an energy of 17 to 20 MeV. Finally, a magnetic chicane, consisting of 4 dipoles, produces longitudinal compression of the electron bunches. This thesis describes the installation of the photo-injector at Fermilab and presents the experimentally-measured characteristics of the injector. The principal measurements were quantum eciency, dark current, transverse emittance, and bunch length. The conclusion from these studies is that the quality of the photo-injector beam fullls the design goals. The photo-injector at Fermilab is

  13. Big Data Over a 100G Network at Fermilab

    Science.gov (United States)

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; Dykstra, Dave; Slyz, Marko

    2014-06-01

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out of the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. This work presents the new R&D facility and the continuation of the evaluation program.

  14. Big Data over a 100 G network at Fermilab

    International Nuclear Information System (INIS)

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; Dykstra, Dave; Slyz, Marko

    2014-01-01

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out of the laboratory of about 30 Gbit/s and on the Local area network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research and Development facility connected to the ESnet 100 G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. This work presents the new R and D facility and the continuation of the evaluation program.

  15. Concrete produced with recycled aggregates

    OpenAIRE

    Tenório, J. J. L.; Gomes, P. C. C.; Rodrigues, C. C.; Alencar, T. F. F. de

    2012-01-01

    This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC) for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW), which were d...

  16. FERMILAB Annual Users' Meeting

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In an atmosphere full of promise a record 370 users met at Fermilab in April for the 15th annual Users' Meeting. The gathering took place in the midst of activities to bring beam through one-third of the Energy Saver. Laboratory Director Leon Lederman and his staff reported that the ring was nearing completion and that circulating beam could follow soon

  17. Fixed-target physics at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1985-03-01

    The Fermilab Energy Saver is now successfully commissioned and fixed-target experimentation at high energy (800 GeV) has begun. In addition, a number of new experiments designed to exploit the unique features of the Tevatron are yet to come on-line. In this talk, we will review recent accomplishments in the fixed-target program and describe experiments in progress and others yet to come.

  18. Status of the Fermilab lattice supercomputer project

    International Nuclear Information System (INIS)

    Mackenzie, P.; Eichten, E.; Hockney, G.

    1988-10-01

    Fermilab has completed construction of a sixteen node (320 megaflop peak speed) parallel computer for lattice gauge theory calculations. The architecture was designed to provide the highest possible cost effectiveness while maintaining a high level of programmability and constraining as little as possible the types of lattice problems which can be done on it. The machine is programmed in C. It is a prototype for a 256 node (5 gigaflop peak speed) computer which will be assembled this winter. 6 refs

  19. Upgrading the Fermilab Linac local control system

    International Nuclear Information System (INIS)

    McCrory, E.S.; Goodwin, R.W.; Shea, M.F.

    1991-02-01

    A new control system for the Fermilab Linac is being designed, built and implemented. First, the nine-year-old linac control system is being replaced. Second, a control system for the new 805 MHz part of the linac is being built. The two systems are essentially identical, so that when the installations are complete, we will still have a single Linac Control System. 8 refs., 5 figs

  20. Dedicating Fermilab's Collider

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions

  1. Analyzing terabytes of data at Fermilab

    International Nuclear Information System (INIS)

    Wolbers, S.

    1994-05-01

    Computing demands of High Energy Physics are increasing steadily due to the demands of larger datasets and increasingly sophisticated detector systems and analysis techniques. Fermilab has been meeting these demands by the use of many different computing techniques. Most of these techniques attempt to utilized the most cost-effective computing resources while providing effective solutions to the problems that are created by multi-Terabyte data samples and large collaborations. New strategies are being developed to allow improved access to the data

  2. Physics at a New Fermilab Proton Driver

    OpenAIRE

    Geer, S.

    2006-01-01

    In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ``Study on the Physics of Neutrinos'' concluded that the future U.S. neutrino program should have, as one of its components, ``A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing CP viol...

  3. Stability of electron energy in the Fermilab electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  4. Stability of electron energy in the Fermilab electron cooler

    International Nuclear Information System (INIS)

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.

    2009-01-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience

  5. Beam-Based Calibration of the Electron Energy in the Fermilab Electron Cooler

    CERN Document Server

    Seletsky, Sergey

    2005-01-01

    Electron cooling of 8.9 GeV antiprotons in the Fermilab's Recycler ring requires precise matching of electron and antiproton velocities. While the final match can be done by optimization of the cooling process, for the very first cooling one should rely on the knowledge of absolute values of electron and antiproton energies. The upper limit for the energy uncertainty of both beams is determined by the Recycler's momentum aperture and is equal to 0.3%. The paper discusses a method of the electron energy calibration that is based on the measurement of the electron's Larmor wavelength in the field of the cooling section solenoid. The method was tested in an 18 m long cooling section prototype with 3.5 MeV electrons. An accuracy of 0.3% was demonstrated.

  6. The design and implementation of the machine protection system for the Fermilab electron cooling facility

    Energy Technology Data Exchange (ETDEWEB)

    Warner, A.; Carmichael, L.; Carlson, K.; Crisp, J.; Goodwin, R.; Prost, L.; Saewert, G.; Shemyakin, A.; /Fermilab

    2009-05-01

    The Fermilab Recycler ring employs an electron cooler to store and cool 8.9-GeV antiprotons. The cooler is based on a 4.3-MV, 0.1-A, DC electrostatic accelerator for which current losses have to remain low ({approx}10{sup -5}) in order to operate reliably. The Machine Protection System (MPS) has been designed to interrupt the beam in a matter of 1-2 {micro}s when losses higher than a safe limit are detected, either in the accelerator itself or in the beam lines. This paper highlights the various diagnostics, electronics and logic that the MPS relies upon to successfully ensure that no damage be sustained to the cooler or the Recycler ring.

  7. Design Considerations for Proposed Fermilab Integrable RCS

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander

    2017-03-02

    Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.

  8. Unconventional recycling

    Energy Technology Data Exchange (ETDEWEB)

    White, K.M.

    1996-05-01

    Despite advances made in recycling technology and markets for materials over the past few years, recycling at convention centers, particularly on the show floor itself, can be a vexing problem. Part of the problem lies in the fact that recycling at convention centers has more to do with logistics than it does with these industry trends. However, given the varied nature of convention centers, and the shows they book, a rigid approach to recycling at convention centers is not always feasible. Like the numerous different curbside programs serving communities across the country, what works for one convention center--and one show--many not work for another. These difficulties notwithstanding, more convention centers are offering recycling programs today, and more groups booking conventions these days have begun requesting recycling services.

  9. Wide area network monitoring system for HEP experiments at Fermilab

    International Nuclear Information System (INIS)

    Grigoriev, Maxim; Fermilab; Cottrell, Les; Logg, Connie; SLAC

    2004-01-01

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system

  10. Wide Area Network Monitoring System for HEP Experiments at Fermilab

    International Nuclear Information System (INIS)

    Grigoriev, M.

    2004-01-01

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system

  11. Wide Area Network Monitoring System for HEP Experiments at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, M.

    2004-11-23

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  12. Preliminary report on the utilization of the Fermilab site for a future accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Site Utilization Working Group

    1996-10-01

    This report is a preliminary assessment of the utility of the Fermilab site for future accelerator projects. It responds to a request from the Director to evaluate how the Fermilab site and infrastructure may be relevant to future accelerator projects in the U.S. The SSC experience suggests that any major new project will have to be based on the existing infrastructure at one of the National Laboratories. This work presents only the technical issues and the benefits of the Fermilab site and infrastructure. The projects treated are: (1) A really large hadron collider based on the ``Pipetron`` vision of low-field (2 Tesla) magnets in a small diameter tunnel. Another option, not treated in detail, is a hadron collider using high field magnets. (2) Muon Colliders with 250 GeV and 2 TeV per beam. (3) A linear electron collider with 250 to 500 GeV per beam. The infrastructure of the state of Illinois - geology, hydrology, power and surface water- seems remarkably well suited to any of these projects. The geology of most of Illinois, including Fermilab, contains a dolomite layer that: has low seismic activity, is at an appropriate depth to provide radiation protection, is essentially impervious to water movement and thus satisfies hydrology requirements. There is adequate electrical power - both locally and statewide. We first give brief overviews of the Fermilab and Illinois infrastructure - geology, hydrology, power, and water - and then a summary of each project. On the basis of what we have learned, we feel that Fermilab must be considered seriously as a site for any of these projects. Beyond this point, however site-specific plans will need to be developed for each of the projects.

  13. Preliminary report on the utilization of the Fermilab site for a future accelerator

    International Nuclear Information System (INIS)

    1996-10-01

    This report is a preliminary assessment of the utility of the Fermilab site for future accelerator projects. It responds to a request from the Director to evaluate how the Fermilab site and infrastructure may be relevant to future accelerator projects in the U.S. The SSC experience suggests that any major new project will have to be based on the existing infrastructure at one of the National Laboratories. This work presents only the technical issues and the benefits of the Fermilab site and infrastructure. The projects treated are: (1) A really large hadron collider based on the ''Pipetron'' vision of low-field (2 Tesla) magnets in a small diameter tunnel. Another option, not treated in detail, is a hadron collider using high field magnets. (2) Muon Colliders with 250 GeV and 2 TeV per beam. (3) A linear electron collider with 250 to 500 GeV per beam. The infrastructure of the state of Illinois - geology, hydrology, power and surface water- seems remarkably well suited to any of these projects. The geology of most of Illinois, including Fermilab, contains a dolomite layer that: has low seismic activity, is at an appropriate depth to provide radiation protection, is essentially impervious to water movement and thus satisfies hydrology requirements. There is adequate electrical power - both locally and statewide. We first give brief overviews of the Fermilab and Illinois infrastructure - geology, hydrology, power, and water - and then a summary of each project. On the basis of what we have learned, we feel that Fermilab must be considered seriously as a site for any of these projects. Beyond this point, however site-specific plans will need to be developed for each of the projects

  14. The Science Training Program for Young Italian Physicists and Engineers at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, Emanuela [Fermilab; Bellettini, Giorgio [INFN, Pisa; Donati, Simone [INFN, Pisa

    2015-03-12

    Since 1984 Fermilab has been hosting a two-month summer training program for selected undergraduate and graduate Italian students in physics and engineering. Building on the traditional close collaboration between the Italian National Institute of Nuclear Physics (INFN) and Fermilab, the program is supported by INFN, by the DOE and by the Scuola Superiore di Sant`Anna of Pisa (SSSA), and is run by the Cultural Association of Italians at Fermilab (CAIF). This year the University of Pisa has qualified it as a “University of Pisa Summer School”, and will grant successful students with European Supplementary Credits. Physics students join the Fermilab HEP research groups, while engineers join the Particle Physics, Accelerator, Technical, and Computing Divisions. Some students have also been sent to other U.S. laboratories and universities for special trainings. The programs cover topics of great interest for science and for social applications in general, like advanced computing, distributed data analysis, nanoelectronics, particle detectors for earth and space experiments, high precision mechanics, applied superconductivity. In the years, over 350 students have been trained and are now employed in the most diverse fields in Italy, Europe, and the U.S. In addition, the existing Laurea Program in Fermilab Technical Division was extended to the whole laboratory, with presently two students in Master’s thesis programs on neutrino physics and detectors in the Neutrino Division. And finally, a joint venture with the Italian Scientists and Scholars North-America Foundation (ISSNAF) provided this year 4 professional engineers free of charge for Fermilab. More details on all of the above can be found below.

  15. Optics of Electron Beam in the Recycler

    International Nuclear Information System (INIS)

    Burov, A.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Warner, A.; Kazakevich, G.; Tiunov, M.

    2006-01-01

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼ 0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analysed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  16. Physics potential and the status of DOE upgrade at Fermilab

    CERN Document Server

    Jaehoon, Yu

    2001-01-01

    The DOE experiment is one of the two collider experiments at Fermilab. The DOE detector is a multipurpose detector and took its data during Fermilab TeVatron collider run in 1992-1996. Both the DO detector and the Tevatron accelerator at Fermilab are currently undergoing significant upgrade to extend the reach to new physics and to further probe Standard Model. In this paper, physics potential of the upgraded DOE detector and the upgrade status are discussed.

  17. Report of the Fermilab Committee for Site Studies

    Energy Technology Data Exchange (ETDEWEB)

    Steve Holmes, Vic Kuchler et. al.

    2001-09-10

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions.

  18. A precise measurement of the $W$-boson mass with the Collider Detector at Fermilab

    CERN Document Server

    Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barreiro Guimaraes da Costa, Joao; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Beecher, Daniel Paul; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bizjak, Ilija; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cavalli-Sforza, Matteo; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Deninno, Maria Maddalena; D'Errico, Maria; Devoto, Francesco; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; Donati, Simone; D'Onofrio, Monica; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Elagin, Andrey L; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Eusebi, Ricardo; Farrington, Sinead Marie; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Giurgiu, Gavril A; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grinstein, Sebastian; Grosso-Pilcher, Carla; Group, Robert Craig; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Shin-Hong; Kim, Soo Bong; Kim, Young-Jin; Kim, Young-Kee; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Hao; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucchesi, Donatella; Lucà, Alessandra; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Marchese, Luigi; Margaroli, Fabrizio; Marino, Christopher Phillip; Martínez-Perez, Mario; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Neu, Christopher Carl; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Nurse, Emily L; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Oksuzian, Iuri Artur; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Pranko, Aliaksandr Pavlovich; Prokoshin, Fedor; Ptohos, Fotios K; Punzi, Giovanni; Ranjan, Niharika; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Riddick, Thomas C; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shekhar, Ravi; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Song, Hao; Sorin, Maria Veronica; St Denis, Richard Dante; Stancari, Michelle Dawn; Stelzer-Chilton, Oliver; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Sun, Siyuan; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Tecker-Shreyber, Irina; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Vázquez-Valencia, Elsa Fabiola; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2014-04-03

    We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $\\sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126 $W\\to e\

  19. Low-Energy Run of Fermilab Electron Cooler's Beam Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Shemyakin, A.; /Fermilab; Fedotov, A.; Kewisch, J.; /Brookhaven

    2011-03-14

    In the context of the evaluation of possibly using the Fermilab Electron Cooler for the proposed low-energy RHIC run at BNL, operating the cooler at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main conclusion of this feasibility study is that the cooler's beam generation system is suitable for BNL needs. The beam recirculation was stable for all tested parameters. In particular, a beam current of 0.38 A was achieved with the cathode magnetic field up to the maximum value presently available of 250 G. The energy ripple was measured to be 40 eV. A striking difference with running the 4.3 MeV beam (nominal for operation at FNAL) is that no unprovoked beam recirculation interruptions were observed. Electron cooling proposed to increase the luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon [1] needs a good quality, 0.9-5 MeV electron beam. Preliminary design studies indicate that the scheme of the Recycler's electron cooler at FNAL is suitable for low-energy RHIC cooling and most parts of the cooler can be re-used after the end of the Tevatron Run II. To analyze issues related to the generation of the electron beam in the energy recovery mode and to gain experience with the beam transport at lower beam energy, a dedicated study was performed at FNAL with a beam run through a short beam line (so called U-bend). This report summarizes our findings and observations in the course of the measurements.

  20. The importance of recycling - Responsible recycling

    International Nuclear Information System (INIS)

    Svensson, Joens Petter

    2014-01-01

    . Environmental issues and their potential solutions are often presented in a very complex way. But the benefits from recycling are very clear, with more recycling we stand to gain economic and environmental benefits that's easy to measure. (author)

  1. Future computing needs for Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    The following recommendations are made: (1) Significant additional computing capacity and capability beyond the present procurement should be provided by 1986. A working group with representation from the principal computer user community should be formed to begin immediately to develop the technical specifications. High priority should be assigned to providing a large user memory, software portability and a productive computing environment. (2) A networked system of VAX-equivalent super-mini computers should be established with at least one such computer dedicated to each reasonably large experiment for both online and offline analysis. The laboratory staff responsible for mini computers should be augmented in order to handle the additional work of establishing, maintaining and coordinating this system. (3) The laboratory should move decisively to a more fully interactive environment. (4) A plan for networking both inside and outside the laboratory should be developed over the next year. (5) The laboratory resources devoted to computing, including manpower, should be increased over the next two to five years. A reasonable increase would be 50% over the next two years increasing thereafter to a level of about twice the present one. (6) A standing computer coordinating group, with membership of experts from all the principal computer user constituents of the laboratory, should

  2. Future computing needs for Fermilab

    International Nuclear Information System (INIS)

    1983-12-01

    The following recommendations are made: (1) Significant additional computing capacity and capability beyond the present procurement should be provided by 1986. A working group with representation from the principal computer user community should be formed to begin immediately to develop the technical specifications. High priority should be assigned to providing a large user memory, software portability and a productive computing environment. (2) A networked system of VAX-equivalent super-mini computers should be established with at least one such computer dedicated to each reasonably large experiment for both online and offline analysis. The laboratory staff responsible for mini computers should be augmented in order to handle the additional work of establishing, maintaining and coordinating this system. (3) The laboratory should move decisively to a more fully interactive environment. (4) A plan for networking both inside and outside the laboratory should be developed over the next year. (5) The laboratory resources devoted to computing, including manpower, should be increased over the next two to five years. A reasonable increase would be 50% over the next two years increasing thereafter to a level of about twice the present one. (6) A standing computer coordinating group, with membership of experts from all the principal computer user constituents of the laboratory, should be appointed by and report to the director. This group should meet on a regularly scheduled basis and be charged with continually reviewing all aspects of the laboratory computing environment

  3. Groundwater migration of radionuclides at Fermilab

    International Nuclear Information System (INIS)

    Malensek, A.J.; Wehmann, A.A.; Elwyn, A.J.; Moss, K.J.; Kesich, P.M.

    1993-01-01

    The simple Single Resident Well (SRW) Model has been used to calculate groundwater movement since Fermilab's inception. A new Concentration Model is proposed which is more realistic and takes advantage of computer modeling that has been developed for the siting of landfills. Site geologic and hydrologic data were given to a consultant who made the migration calculations from an initial concentration that was based upon the existing knowledge of the radioactivity leached out of the soil. The various components of the new Model are discussed, and numerical examples are given and compared with DOE/EPA limits

  4. The VAXONLINE software system at Fermilab

    International Nuclear Information System (INIS)

    White, V.; Heinicke, P.; Berman, E.

    1987-06-01

    The VAXONLINE software system, started in late 1984, is now in use at 12 experiments at Fermilab, with at least one VAX or MicroVax. Data acquisition features now provide for the collection and combination of data from one or more sources, via a list-driven Event Builder program. Supported sources include CAMAC, FASTBUS, Front-end PDP-11's, Disk, Tape, DECnet, and other processors running VAXONLINE. This paper describes the functionality provided by the VAXONLINE system, gives performance figures, and discusses the ongoing program of enhancements

  5. Fermilab a laboratory at the frontier of research

    CERN Document Server

    Gillies, James D

    2002-01-01

    Since its foundation in 1967, creeping urbanization has taken away some of Fermilab's remoteness, but the famous buffalo still roam, and farm buildings evocative of frontier America dot the landscape - appropriately for a laboratory at the high-energy frontier of modern research. Topics discussed are the Tevatron, detector upgrades, the neutrino programme, Fermilab and the LHC and the non-accelerator programme.

  6. Simulation Needs and Priorities of the Fermilab Intensity Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Elvira, V. D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Genser, K. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hatcher, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Perdue, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wenzel, H. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarba, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-06-11

    Over a two-year period, the Physics and Detector Simulations (PDS) group of the Fermilab Scientific Computing Division (SCD), collected information from Fermilab Intensity Frontier experiments on their simulation needs and concerns. The process and results of these activities are documented here.

  7. P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M. [Carleton Univ., Ottawa, ON (Canada); Phillips, Thomas J. [Duke Univ., Durham, NC (United States); Apollinari, Giorgio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Broemmelsiek, Daniel R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Brown, Charles N. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Christian, David C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Derwent, Paul [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, Keith [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hahn, Alan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stefanski, Ray [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Werkema, Steven [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); White, Herman B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Baldini, Wander [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Stancari, Giulio [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Stancari, Michelle [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Jackson, Gerald P. [Hbar Technologies, Chicago, IL (United States); Kaplan, Daniel M. [Illinois Inst. of Technology, Chicago, IL (United States); Torun, Yagmur [Illinois Inst. of Technology, Chicago, IL (United States); White, Christopher G. [Illinois Inst. of Technology, Chicago, IL (United States); Park, HyangKyu [HyungPook National Univ., DaeGu (Korea, Republic of); Pedlar, Todd K. [Luther College, Decorah, IA (United States); Gustafson, H. Richard [Univ. of Michigan, Ann Arbor, MI (United States); Rosen, Jerome [Northwestern Univ., Evanston, IL (United States); Wayne, Mitchell [Univ. of Notre Dame, IN (United States); Chakravorty, Alak [St. Xavier Univ., Chicago, IL (United States); Dukes, E. Craig [Univ. of Virginia, Charlottesville, VA (United States)

    2009-02-05

    Fermilab has long had the world's most intense antiproton source. Despite this, the opportunities for medium-energy antiproton physics at Fermilab have been limited in the past and - with the antiproton source now exclusively dedicated to serving the needs of the Tevatron Collider - are currently nonexistent. The anticipated shutdown of the Tevatron in 2010 presents the opportunity for a world-leading medium-energy antiproton program. We summarize the current status of the Fermilab antiproton facility and review some physics topics for which the experiment we propose could make the world's best measurements. Among these, the ones with the clearest potential for high impact and visibility are in the area of charm mixing and CP violation. Continued running of the Antiproton Source following the shutdown of the Tevatron is thus one of the simplest ways that Fermilab can restore a degree of breadth to its future research program. The impact on the rest of the program will be minor. We request a small amount of effort over the coming months in order to assess these issues in more detail.

  8. Metropolitan area network support at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

    2007-09-01

    Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

  9. Control system for Fermilab's low temperature upgrade

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel's 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down

  10. A data handling system for modern and future Fermilab experiments

    Science.gov (United States)

    Illingworth, R. A.

    2014-06-01

    Current and future Fermilab experiments such as Minerva, NOνA, and MicroBoone are now using an improved version of the Fermilab SAM data handling system. SAM was originally used by the CDF and D0 experiments for Run II of the Fermilab Tevatron to provide file metadata and location cataloguing, uploading of new files to tape storage, dataset management, file transfers between global processing sites, and processing history tracking. However SAM was heavily tailored to the Run II environment and required complex and hard to deploy client software, which made it hard to adapt to new experiments. The Fermilab Computing Sector has progressively updated SAM to use modern, standardized, technologies in order to more easily deploy it for current and upcoming Fermilab experiments, and to support the data preservation efforts of the Run II experiments.

  11. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  12. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    Energy Technology Data Exchange (ETDEWEB)

    Prebys, Eric [Fermilab; Antipov, Sergey [Chicago U.; Piekarz, Henryk [Fermilab; Valishev, A. [Fermilab

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  13. Resonant Control for Fermilab's PXIE RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Bowring, Daniel [Fermilab; Biedron, Sandra [Colorado State U., Fort Collins; Chase, Brian [Fermilab; Czajkowski, Jerzy [Fermilab; Edelen, Auralee [Colorado State U., Fort Collins; Edelen, Jonathan [Fermilab; Milton, Stephen [Colorado State U., Fort Collins; Nicklaus, Dennis [Fermilab; Steimel, Jim [Fermilab; Zuchnik, Thomas [Fermilab

    2016-06-01

    The RFQ for Fermilab's PXIE test program is designed to accelerate a < 10 mA H⁻ CW beam to 2.1 MeV. The RFQ has a four-vane design, with four modules brazed together for a total of 4.45 m in length. The RF power required is < 130 kW at 162.5 MHz. A 3 kHz limit on the maximum allowable frequency error is imposed by the RF amplifiers. This frequency constraint must be managed entirely through differential cooling of the RFQ's vanes and outer body and associated material expansion. Simulations indicate that the body and vane coolant temperature should be controlled to within 0.1 degrees C. We present the design of the cooling network and the resonant control algorithm for this structure, as well as results from initial operation.

  14. Computing and data handling recent experiences at Fermilab and SLAC

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1990-01-01

    Computing has become evermore central to the doing of high energy physics. There are now major second and third generation experiments for which the largest single cost is computing. At the same time the availability of ''cheap'' computing has made possible experiments which were previously considered infeasible. The result of this trend has been an explosion of computing and computing needs. I will review here the magnitude of the problem, as seen at Fermilab and SLAC, and the present methods for dealing with it. I will then undertake the dangerous assignment of projecting the needs and solutions forthcoming in the next few years at both laboratories. I will concentrate on the ''offline'' problem; the process of turning terabytes of data tapes into pages of physics journals. 5 refs., 4 figs., 4 tabs

  15. A facility to test short superconducting accelerator magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J.; Butteris, J.; McInturff, A.D.; Coulter, K.J.

    1992-10-01

    During the past four years the Superconducting Magnet R ampersand D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-β Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented

  16. Recent results on charm from Fermilab experiment E-687

    International Nuclear Information System (INIS)

    Buchholz, D.; Gourlay, S.; Moroni, L.; Ratti, S.P.; Shephard, W.D.

    1990-12-01

    About 10 4 charm decays have been reconstructed from first-run data of Fermilab experiment E687 using the Fermilab Wide-Band Photon Spectrometer with the world's highest energy photon beam. The success of techniques for isolating and reconstructing charm event samples based on two complementary vertexing strategies is illustrated. Preliminary results are presented. These include lifetime value of (0.50 ± 0.06 ± 0.03)ps for the D s + , and (0.20 ± 0.03 ± 0.03)ps for the Λ c + . Preliminary values for the D + and D 0 lifetimes are consistent with currently accepted world averages. Signals for the Cabibbo-suppressed decays D 0 → π + π - π + π - , D + → K + K - π + , and D + → φπ + are shown; for B(D 0 → π + π - π + π - )/B(D 0 → K - π + π + π - ) our preliminary value is 0.10 ± 0.02 ± 0.02. Preliminary values for ratios B(D 0 → Kstring 0 K + K - )/B(D 0 → Kstring 0 π + π - ) and B(D 0 → Kstring 0 φ)/B(D 0 → Kstring 0 π + π - ) are 0.20 ± 0.06 and 0.16 ± 0.06. Preliminary results are given for cross sections of D* ± and D ± photoproduction on a Be target for the p 2 τ dependence of D minus-plus photoproduction and for the ratios D double-prime/D* + and D* - /D minus-plus . The energy dependence of the total open charm photoproduction cross section is compared with model predictions for photon energies up to 350 GeV. 18 refs., 5 figs

  17. The SeaQuest Spectrometer at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Aidala, C.A.; et al.

    2017-06-29

    The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution tracking device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.

  18. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  19. Siberian snakes for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Anferov, V.A.; Baiod, R.; Courant, E.D.

    1993-01-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near ±45 degrees are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field

  20. A novel recycling mechanism of native IgE-antigen complexes in human B cells facilitates transfer of antigen to dendritic cells for antigen presentation.

    Science.gov (United States)

    Engeroff, Paul; Fellmann, Marc; Yerly, Daniel; Bachmann, Martin F; Vogel, Monique

    2017-10-23

    IgE-immune complexes (IgE-ICs) have been shown to enhance antibody and T-cell responses in mice by targeting CD23 (FcεRII), the low-affinity receptor for IgE on B cells. In humans, the mechanism by which CD23-expressing cells take up IgE-ICs and process them is not well understood. To investigate this question, we compared the fate of IgE-ICs in human B cells and in CD23-expressing monocyte-derived dendritic cells (moDCs) that represent classical antigen-presenting cells and we aimed at studying IgE-dependent antigen presentation in both cell types. B cells and monocytes were isolated from peripheral blood, and monocytes were differentiated into moDCs. Both cell types were stimulated with IgE-ICs consisting of 4-hydroxy-3-iodo-5-nitrophenylacetyl (NIP)-specific IgE JW8 and NIP-BSA to assess binding, uptake, and degradation dynamics. To assess CD23-dependent T-cell proliferation, B cells and moDCs were pulsed with IgE-NIP-tetanus toxoid complexes and cocultured with autologous T cells. IgE-IC binding was CD23-dependent in B cells, and moDCs and CD23 aggregation, as well as IgE-IC internalization, occurred in both cell types. Although IgE-ICs were degraded in moDCs, B cells did not degrade the complexes but recycled them in native form to the cell surface, enabling IgE-IC uptake by moDCs in cocultures. The resulting proliferation of specific T cells was dependent on cell-cell contact between B cells and moDCs, which was explained by increased upregulation of costimulatory molecules CD86 and MHC class II on moDCs induced by B cells. Our findings argue for a novel model in which human B cells promote specific T-cell proliferation on IgE-IC encounter. On one hand, B cells act as carriers transferring antigen to more efficient antigen-presenting cells such as DCs. On the other hand, B cells can directly promote DC maturation and thereby enhance T-cell stimulation. Copyright © 2017. Published by Elsevier Inc.

  1. Tire Recycling

    Science.gov (United States)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  2. Presentations

    International Nuclear Information System (INIS)

    2007-01-01

    The presented materials consist of presentations of international workshop which held in Warsaw from 4 to 5 October 2007. Main subject of the meeting was progress in manufacturing as well as research program development for neutron detector which is planned to be placed at GANIL laboratory and will be used in nuclear spectroscopy research

  3. Preparing for 1000 GeV physics at Fermilab

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The superconducting proton beams and the neutrino beams at Fermilab prepared for the research with 1000 GeV colliding proton and antiproton beams are described. Especially a new developed helium transfer line is described. (HSI).

  4. Improvement Plans of Fermilab's Proton Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  5. Status of the KTeV experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ben-David, R.; KTeV Collaboration

    1997-10-01

    The KTeV experiment is a fixed target experiment at Fermilab. Its primary goal is the search for direct CP violation in the decay of neutral kaons. Its current status and some preliminary results will be discussed.

  6. The Fermilab ISDN pilot project: experiences and future plans

    International Nuclear Information System (INIS)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1996-01-01

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. each home was equipped with a basic rate ISDN (BRI) Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking. (author)

  7. The Fermilab ISDN Pilot Project: Experiences and future plans

    International Nuclear Information System (INIS)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1995-01-01

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking

  8. Material recycling; Recycling von Werkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Eyerer, P. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)]|[Stuttgart Univ. (Germany). Inst. fuer Kunststoffpruefung und Kunststoffkunde (IKP)

    1996-12-01

    Lasting economizing is the only peaceful possibility for ensuring human life on Earth. Recycling of materials only contributes to lasting economizing if less resources and energy are required than for primary materials. Materials which have been collected and sorted after products have been disassembled result in secondary, tertiary etc. products with virtually the same properties as the primary materials. Non-specific material cycles connected with large scale processes e.g. shredders, hydrogenation, mixed waste recycling result in recycled goods of interior quality and costs which are greater than those of the primary materials. In contrast to metals, paper and glass, synthetic materials from products (e.g. televisions, surfboards, cars, washing machines etc.) especially require and permit differentiated recycling paths. Production waste: For decades now the sorted production waste generated during production, has been reintroduced to the production process of new products at the production location itself if financially interesting. Production waste made of steel, aluminium, glass and paper must be returned to the balst furnace, melting house or slurry. Specific synthetic material cycles: E.g. SMC, PVC window frames and floors, PET bottles, polystyrene, PE and PP disposable syringes, HDPE fuel tanks, PA66 car suction pipes etc. Specific recycling processes: E.g. supercritical hydrooxidation for electronics waste and shredder light fraction alcoholysis for polyurethane. Non-specific recycling processes for organic raw materials: E.g. hydrogenation, high temperature gas generation, thermoselect process etc. Non-specific disposal procedures: E.g. shredders for synthetic materials (light fraction) lead to incineration or to the disposal site, because the costs for separating and sorting the mass synthetic materials are greater than the kilogram prices of the new materials. (orig./HW) [Deutsch] Nachhaltiges Wirtschaften ist die einzige friedliche Moeglichkeit

  9. Commissioning and First Results from the Fermilab Cryomodule Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Elvin; et al.

    2017-05-01

    A new test stand dedicated to SRF cryomodule testing, CMTS1, has been commissioned and is now in operation at Fermilab. The first device to be cooled down and powered in this facility is the prototype 1.3 GHz cryomodule assembled at Fermilab for LCLS-II. We describe the demonstrated capabilities of CMTS1, report on steps taken during commissioning, provide an overview of first test results, and survey future plans.

  10. Presentations

    International Nuclear Information System (INIS)

    2007-01-01

    The PARIS meeting held in Cracow, Poland from 14 to 15 May 2007. The main subjects discussed during this meeting were the status of international project dedicated to gamma spectroscopy research. The scientific research program includes investigations of giant dipole resonance, probe of hot nuclei induced in heavy reactions, Jacobi shape transitions, isospin mixing and nuclear multifragmentation. The mentioned programme needs Rand D development such as new scintillations materials as lanthanum chlorides and bromides as well as new photo detection sensors as avalanche photodiodes - such subjects are also subjects of discussion. Additionally results of computerized simulations of scintillation detectors properties by means of GEANT- 4 code are presented

  11. A study of tau decays of the W boson at CDF [Collider Detector at Fermilab

    International Nuclear Information System (INIS)

    Gladney, L.D.

    1990-01-01

    A report is given of a search for tau decays of the W boson in p bar p collisions at √s = 1.8 TeV using the Collider Detector at Fermilab (CDF). A description of a hardware trigger specifically designed to enhance the number of events with tau decays is presented along with the results of a preliminary analysis of data taken during the 1988--89 run of CDF. 10 refs., 4 figs

  12. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  13. High-pT W and Z production at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Arnold, P.; Ellis, R.K.; Reno, M.H.

    1989-01-01

    In previous work, we and others have put together a full computation of dσ/dq T for the inclusive production of high-transverse-momentum W's and Z's to second order in QCD. Here, we present the results in graphs from which relevant cross sections may be extracted at a glance. Specifically, we plot dσ/dq T and ∫ q T dq T (dσ/dq T ) for the Fermilab Tevatron

  14. Mechanical behavior of Fermilab-built 1.5 m model SSC collider dipoles

    International Nuclear Information System (INIS)

    Strait, J.; Bossert, R.; Carson, J.; Coulter, K.J.; Delchamps, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Gourlay, S.; Lamm, M.J.; Wake, M.; Sims, R.; Winters, M.

    1991-09-01

    Several model SSC collider dipole magnets (50 mm aperture, 1.5 m magnetic length) have been built and tested at Fermilab. These magnets are instrumented with strain gauges to measure stresses in the coil, the cold mass shell, and the coil end clamp assembly. Measurements are made of these quantities during assembly, cooldown, excitation, and warmup. Additional mechanical measurements are made on magnet sub-assemblies during manufacturing. Data from these measurements are presented and compared with expectations from the design calculations

  15. A nuclear physicist in high energies: 3.5 years in Fermilab

    International Nuclear Information System (INIS)

    Gouffon, P.

    1990-01-01

    An experimental carried in Fermi National Accelerator Laboratory-Fermilab-United States, is related. The radioative decay of hyperons in Σ sup(+) → pγ and Ξ sup(-) → Σ sup(-) γ reactions is studied. The selection criteria and experiment realizations in the laboratory are described, presenting some preliminary results. The techniques and equipments aiming to be used in nuclear physics are discussed. (M.C.K.)

  16. Biomedical user facility at the 400-MeV Linac at Fermilab

    International Nuclear Information System (INIS)

    Chu, W.T.

    1993-12-01

    In this paper, general requirements are discussed on a biomedical user facility at the Fermilab's 400-MeV Linac, which meets the needs of biology and biophysics experiments, and a conceptual design and typical operations requirements of the facility is presented. It is assumed that no human patient treatment will take place in this facility. If human patients were treated, much greater attention would have to be paid to safeguarding the patients

  17. Presentation

    Directory of Open Access Journals (Sweden)

    Eduardo Vicente

    2013-06-01

    Full Text Available In the present edition of Significação – Scientific Journal for Audiovisual Culture and in the others to follow something new is brought: the presence of thematic dossiers which are to be organized by invited scholars. The appointed subject for the very first one of them was Radio and the invited scholar, Eduardo Vicente, professor at the Graduate Course in Audiovisual and at the Postgraduate Program in Audiovisual Media and Processes of the School of Communication and Arts of the University of São Paulo (ECA-USP. Entitled Radio Beyond Borders the dossier gathers six articles and the intention of reuniting works on the perspectives of usage of such media as much as on the new possibilities of aesthetical experimenting being build up for it, especially considering the new digital technologies and technological convergences. It also intends to present works with original theoretical approach and original reflections able to reset the way we look at what is today already a centennial media. Having broadened the meaning of “beyond borders”, four foreign authors were invited to join the dossier. This is the first time they are being published in this country and so, in all cases, the articles where either written or translated into Portuguese.The dossier begins with “Radio is dead…Long live to the sound”, which is the transcription of a thought provoking lecture given by Armand Balsebre (Autonomous University of Barcelona – one of the most influential authors in the world on the Radio study field. It addresses the challenges such media is to face so that it can become “a new sound media, in the context of a new soundscape or sound-sphere, for the new listeners”. Andrew Dubber (Birmingham City University regarding the challenges posed by a Digital Era argues for a theoretical approach in radio studies which can consider a Media Ecology. The author understands the form and discourse of radio as a negotiation of affordances and

  18. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  19. The Fermilab program for the next decade a response to the Gilman HEPAP subpanel

    International Nuclear Information System (INIS)

    Pordes, S.

    1997-10-01

    We have divided this description of our plans for the Laboratory program into seven parts. The first five sections describe the ongoing technical work and the broad range of physics opportunities available at Fermilab. These are organized into: our plans for the accelerator complex; our plans for facilities for performing experiments; the program of experiments we presently foresee; our plans for involvement with the LHC; and our plans for R ampersand D towards a future facility which recaptures the energy frontier. The final sections summarize: our priorities and our planning strategy for making choices for the future, and our budget request to support the Fermilab program as we approach the fundamental challenges of elementary particle physics over the next ten years

  20. The discovery of the b quark at Fermilab in 1977: The experiment coordinator's story

    International Nuclear Information System (INIS)

    Yoh, J.

    1997-12-01

    I present the history of the discovery of the Upsilon (Υ) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the Υ in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288 the μμII phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of μμII and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgement list end this brief historical note

  1. The discovery of the b quark at Fermilab in 1977: The experiment coordinator`s story

    Energy Technology Data Exchange (ETDEWEB)

    Yoh, J.

    1997-12-01

    I present the history of the discovery of the Upsilon ({Upsilon}) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the {Upsilon} in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288 the {mu}{mu}II phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of {mu}{mu}II and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgement list end this brief historical note.

  2. Brief summary of staffing levels at Fermilab during initial construction years

    International Nuclear Information System (INIS)

    Livdahl, P.V.

    1983-11-01

    This paper very briefly summarizes the work of the various groups that were involved from the beginning through the end of the initial construction phase of the Fermilab project (defined here to be July 1, 1972) and the final construction or completion phase which is here defined as December 31, 1973. The numbers in this report have been gathered by examining the personnel records of Fermilab with the research being done by Chuck Marofske, the Head of Laboratory Services and his staff and by assembling information from the memories of people still with the laboratory in 1983. Since there was much mobility within the laboratory during the construction years and frequent reorganizations were the norm, the numbers presented herein can not be considered to be more accurate than about +- 5%

  3. The Discovery of the b Quark at Fermilab in 1977: The Experiment Coordinator's Story

    Science.gov (United States)

    Yoh, J.

    1997-12-01

    I present the history of the discovery of the Upsilon ({Upsilon}) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the {Upsilon} in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288 the {mu}{mu}II phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of {mu}{mu}II and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgement list end this brief historical note.

  4. Test of Fermilab built 40 mm aperture full length SSC dipole magnets

    International Nuclear Information System (INIS)

    Koska, W.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Kuchnir, M.; Lamm, M.J.; Mantsch, P.

    1992-01-01

    Several 40 mm aperture, 17 m long dipoles have been built by Fermilab as developmental prototypes for the Superconducting Super Collider. These magnets differ from those manufactured at Brookhaven National Laboratory in that they have an external inner-outer coil splice design, a collet style end clamp assembly, a new, analytically designed minimum stress coil end design, and a new insulation system which does not employ shims or shoes. In addition, the magnets were built using production-style tooling. The magnets were tested at the Fermilab Magnet Testing Facility. In this paper quench testing and mechanical measurement results are presented and analyzed with emphasis on the design and fabrication features of these magnets

  5. Tests of Fermilab built 40 mm aperture full length SSC dipole magnets

    International Nuclear Information System (INIS)

    Koska, W.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Kuchnir, M.; Lamm, M.J.; Mantsch, P.; Mazur, P.O.; Orris, D.; Strait, J.; Wake, M.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Puglisi, M.; Radusewicz, P.; Schermer, R.; Tompkins, J.C.; Wolf, Z.; Yu, Y.; Zheng, H.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Kahn, S.; Herrera, J.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Royet, J.; Scanlan, R.; Taylor, C.

    1991-09-01

    Several 40 mm aperture, 17 m long dipoles have been built by Fermilab as developmental prototypes for the Superconducting Super Collider. These magnets differ from those manufactured at Brookhaven National Laboratory in that they have an external inner-outer coil splice design, a collet style end clamp assembly, a new, analytically designed minimum stress coil end design, and a new insulation system which does not employ shims or ''shoes''. In addition, the magnets were built using production-style tooling. The magnets were tested at the Fermilab Magnet Testing Facility. Quench testing and mechanical measurement results are presented and analyzed with emphasis on the new design and fabrication features of these magnets. 13 refs., 5 figs

  6. Commissioning and First Results of the Electron Beam Profiler in the Main Injector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R. [Fermilab; Alvarez, M. [Fermilab; Fitzgerald, J. [Fermilab; Lundberg, C. [Fermilab; Prieto, P. [Fermilab; Zagel, J. [Fermilab; Blokland, W. [Oak Ridge

    2017-08-01

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and a similar device has been installed in the Main Injector at Fermilab. Commissioning of the device is in progress with the goal of having it operational by the end of the year. The status of the commissioning and initial results will be presented

  7. Flavor gauge bosons at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Chivukula, R. Sekhar; Evans, Nick

    2000-01-01

    We investigate collider signals for gauged flavor symmetries that have been proposed in models of dynamical electroweak symmetry breaking and fermion mass generation. We consider the limits on the masses of the gauge bosons in these models which can be extracted from Fermilab Tevatron run I data in dijet production. Estimates of the run II search potential are provided. We show that the models also give rise to significant signals in single top quark production which may be visible at run II. In particular we study chiral quark family symmetry and SU(9) chiral flavor symmetry. The run I limits on the gauge bosons in these models lie between 1.5 and 2 TeV and should increase to about 3 TeV in run II. Finally, we show that an SU(12) enlargement of the SU(9) model, including leptonic interactions, is constrained by low energy atomic parity violation experiments to lie outside the reach of the Tevatron. (c) 2000 The American Physical Society

  8. Channeling Radiation Experiment at Fermilab ASTA

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D. [NIU, DeKalb; Edstrom, D. R. [Fermilab; Piot, P. [NIU, Dekalb; Rush, W. [Kansas U.; Sen, T. [Fermilab

    2015-06-01

    Electron beams with moderate energy ranging from 4 to 50 MeV can be used to produce x-rays through the Channeling Radiation (CR) mechanism. Typically, the xray spectrum from these sources extends up to 140 keV and this range covers the demand for most practical applications. The parameters of the electron beam determine the spectral brilliance of the x-ray source. The electron beam produced at the Fermilab new facility Advanced Superconducting Test Accelerator (ASTA) meets the requirements to assemble an experimental high brilliance CR xray source. In the first stage of the experiment the energy of the beam is 20 MeV and due to the very low emittance ($\\approx 100$ nm ) at low bunch charge (20 pC) the expected average brilliance of the x-ray source is about $10^9$ photons/[s- $(mm-mrad)^2$-0.1% BW]. In the second stage of the experiment the beam energy will be increased to 50 MeV and consequently the average brilliance will increase by a factor of five. Also, the x-ray spectrum will extend from about 30 keV to 140 keV

  9. [Analysis of residual volatiles in recycled polyethylene terephthalate].

    Science.gov (United States)

    Ohkado, Yuka; Kawamura, Yoko; Mutsuga, Motoh; Tamura, Hiro-omi; Tanamoto, Kenichi

    2005-02-01

    The residual volatiles in recycled polyethylene terephthalate (PET) were analyzed using headspace/GC/MS. Recycled PET samples were made from PET bottles used for beverages, alcohol and soy sauce, and they were recycled in physical recycling plants, chemical recycling plants and superclean-like recycling trials. The physically recycled PET flakes contained small amounts of volatiles such as ethanol, limonene, 2-methyl-1,3-dioxolane, acetone, octanal and nonanal. Most of them originated from foods packed in bottles, and only 2-methyl-1,3-dioxolane was derived from polymer impurities. In contrast, the superclean-like or chemically recycled PET contained no detectable volatiles, like new PET pellets. The PET sheets shaped from physically recycled PET had no detectable volatiles. Not only the chemically and superclean-like recycled PET, but also the physically recycled PET contained no hazardous volatiles. It was concluded that there is no safety concern about volatiles in recycled PET, for the present use.

  10. Recycling Technology: Can It Be Taught?

    Science.gov (United States)

    Clum, James A.; Loper, Carl R., Jr.

    This paper describes the content of a seminar-type engineering course dealing with materials reutilization (recycling). The course, consisting of lecture and discussion by various faculty and outside experts as well as student presentations of research papers on recycling topics, is intended to investigate current areas in which recycling of…

  11. Proceedings of the waste recycling workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  12. Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Bhat, S. [Fermilab

    2017-10-19

    Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Therefore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.

  13. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    Science.gov (United States)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  14. Design analysis: Understanding e-waste recycling by generation Y

    OpenAIRE

    Zhang, Xiao; Wakkary, Ron

    2011-01-01

    This paper aims to understand e-waste recycling behavior of Generation Y. It presents a pilot study that explores this generation’s e-waste recycling practices, their attitudes towards ewaste recycling, and the barriers to e-waste recycling. The findings reveal the complexity of the actual e-waste recycling behavior, many participants in this study hold a positive attitude towards e-waste recycling, yet there is a shortage of convenient recycling options and e-waste recycling information. Bas...

  15. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  16. Prognostic Implications of Prostate Specific Antigen in Patients Following Fast Neutron Beam Therapy at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, James D. [Fermilab; Hatcher, Madeline A. [Fermilab; Gagnon, Patrick J. [Fermilab; Lennox, Arlene J. [Fermilab; Tanner, Andrew S. [Fermilab; Shafer, Jeffrey P. [Fermilab; Smoron, Geoffrey L. [Fermilab

    1996-01-01

    Preliminary results regarding prognostic implications of PSA in prostate cancer patients treated with the neutron beam at Fermilab have been published by Saroja et. al. (1) Seventy patients were included, in three groups. Group I included patients whose PSA decreased to the reference range of 0-4 ng/mL following therapy and stayed there. Group II included patients whose PSA dropped below 4 ng/mL and then increased. Group III included patients whose PSA remained elevated. This presentation updates that paper, now looking at 186 patients who had pretreatment PSA values available. The most significant result from analyzing Fermilab data appears to be the effect of neutron irradiation on local control, irrespective in some cases of subsequent changes in PSA value. The determination of local control is clinical rather than pathological, and only time and re-biopsy studies will allow us to know the efficacy of neutron therapy in locally controlling prostate cancer, independent of eventual outcome and PSA values. Fermilab data to date are very promising (2).

  17. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beam of about1.8 μs. The current waveform is required to rise to 90% of I /SUB max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I for the 21 μs needed to ensure all the beam has /SUP max/ left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of about20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  18. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-06-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beams of approx.1.8 μs. The current waveform is required to rise to 90% of I/sub max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I/sub max/ for the 21 μs needed to ensure all the beam has left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of approx.20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention is given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades are given for the two operational systems. 2 refs., 4 figs., 1 tab

  19. Recycling Lesson Plan

    Science.gov (United States)

    Okaz, Abeer Ali

    2013-01-01

    This lesson plan designed for grade 2 students has the goal of teaching students about the environmental practice of recycling. Children will learn language words related to recycling such as: "we can recycle"/"we can't recycle" and how to avoid littering with such words as: "recycle paper" and/or "don't throw…

  20. Fermilab: The Ring of the Frontier, 1967-1989

    Science.gov (United States)

    Kolb, Adrienne W.

    2009-05-01

    Fermilab, the home of the highest energy hadron accelerator in the world, has been at the frontier of high energy physics for almost forty years. Between 1967, when the Lab was founded in a suburb of Chicago by Robert R. Wilson, Edwin L. Goldwasser, and Norman F. Ramsey, and 1989, the final year of Leon M. Lederman's administration, Fermilab was the premiere proton facility for experimental particle physics in the US. Wilson's era saw the construction and achievement of the 200-500 billion electron volts (BeV) Main Ring. Lederman led Fermilab into the next frontier with the superconducting Energy Doubler/Saver, renamed the Tevatron for its design energy of one trillion electron volts (TeV). In the 1980s-1990s, as construction of facilities became more complex and experiments grew larger and took a generation to complete, how could the costs be met without even more careful long-term planning and budgeting? Why did Fermilab's accelerator complex advance while others did not? What role, if any, did politics play? What can be learned from Fermilab's experience about maintaining US involvement at the forefront of 21st century particle physics research?

  1. Electron cloud experiments at Fermilab: Formation and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  2. Performance Analysis for the New g-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Fermilab; Convery, Mary [Fermilab; Crmkovic, J. [RIKEN BNL; Froemming, Nathan [CENPA, Seattle; Johnstone, Carol [Fermilab; Johnstone, John [Fermilab; Korostelev, Maxim [Lancaster U.; Morgan, James [Fermilab; Morse, William [RIKEN BNL; Syphers, Michael [Fermilab; Tishchenko, Vladimir [RIKEN BNL

    2016-06-01

    The new g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment to a precision of ±0.14 ppm - a fourfold improvement over the 0.54 ppm precision obtained in the g-2 BNL E821experiment. Achieving this goal requires the delivery of highly polarized 3.094 GeV/c muons with a narrow ±0.5% Δp/p acceptance to the g-2 storage ring. In this study, we describe a muon capture and transport scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we describe its basic features. Then, we detail its performance numerically by simulating the pion production in the (g-2) production target, the muon collection by the downstream beamline optics as well as the beam polarization and spin-momentum correlation up to the storage ring. The sensitivity in performance of our proposed channel against key parameters such as magnet apertures and magnet positioning errors is analyzed

  3. Diagnostics of the Fermilab Tevatron using an AC dipole

    Science.gov (United States)

    Miyamoto, Ryoichi

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f˜20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  4. Searching for a light top squark at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Mahlon, G.; Kane, G.L.

    1997-01-01

    We describe a method to help the search for a light top squark (M t +M LSP t ) at the Fermilab Tevatron. Traditional search methods rely upon a series of stringent background-reducing cuts which, unfortunately, leave very few signal events given the present data set. To avoid this difficulty, we instead suggest using a milder set of cuts, combined with a open-quotes superweight,close-quote close-quote whose purpose is to discriminate between signal and background events. The superweight consists of a sum of terms, each of which are either zero or one. The terms are assigned event-by-event depending upon the values of various observables. We suggest a method for choosing the observables as well as the criteria used to assign the values such that the superweight is open-quotes large close-quote close-quote for the supersymmetric signal and open-quotes small close-quote close-quote for the standard model background. For illustration, we mainly consider the detection of tops squarks coming from top quark decay, making our analysis especially relevant to the W+2 jets top quark sample. copyright 1997 The American Physical Society

  5. QA [quality assurance] at Fermilab; the hermeneutics of NQA-1

    International Nuclear Information System (INIS)

    Bodnarczuk, M.

    1988-06-01

    This paper opens with a brief overview of the purpose of Fermilab and a historical synopsis of the development and current status of quality assurance (QA) at the Laboratory. The paper subsequently addresses some of the more important aspects of interpreting the national standard ANSI/ASME NQA-1 in pure research environments like Fermilab. Highlights of this discussion include, what is hermeneutics and why are hermeneutical considerations relevant for QA, a critical analysis of NQA-1 focussing on teleological aspects of the standard, a description of the hermeneutical approach to NQA-1 used at Fermilab which attempts to capture the true intents of the document without violating the deeply ingrained traditions of quality standards and peer review that have been foundational to the overall success of the paradigms of high-energy physics

  6. QA (quality assurance) at Fermilab; the hermeneutics of NQA-1

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1988-06-01

    This paper opens with a brief overview of the purpose of Fermilab and a historical synopsis of the development and current status of quality assurance (QA) at the Laboratory. The paper subsequently addresses some of the more important aspects of interpreting the national standard ANSI/ASME NQA-1 in pure research environments like Fermilab. Highlights of this discussion include, what is hermeneutics and why are hermeneutical considerations relevant for QA, a critical analysis of NQA-1 focussing on teleological aspects of the standard, a description of the hermeneutical approach to NQA-1 used at Fermilab which attempts to capture the true intents of the document without violating the deeply ingrained traditions of quality standards and peer review that have been foundational to the overall success of the paradigms of high-energy physics.

  7. Bid for Fermilab an effort to keep U.S. a leader in particle physics

    CERN Multimedia

    Van, Jon

    2006-01-01

    During 20 years, the world's most powerful accelerator, the Tevatron, was in Fermilab, Batavia, Ill.; but next year, Fermilab will lose that title, as in CERN, a new machine will be brought into service. (1,5 pages)

  8. U. of C. to bid for Fermilab School hopes to bring new accelerator to site

    CERN Multimedia

    Van, Jon

    2006-01-01

    For more than 20 years, Fermilab in Batavia is home to the world's most powerful atomic particle accelerator, the Tevatron, but Fermilab will lose that title next year when a new machine in Switzerland and France fires up. (2 pages)

  9. Error-Induced Beam Degradation in Fermilab's Accelerators

    International Nuclear Information System (INIS)

    Yoon, Phil S.

    2007-01-01

    In Part I, three independent models of Fermilab's Booster synchrotron are presented. All three models are constructed to investigate and explore the effects of unavoidable machine errors on a proton beam under the influence of space-charge effects. The first is a stochastic noise model. Electric current fluctuations arising from power supplies are ubiquitous and unavoidable and are a source of instabilities in accelerators of all types. A new noise module for generating the Ornstein-Uhlenbeck (O-U) stochastic noise is first created and incorporated into the existing Object-oriented Ring Beam Injection and Tracking (ORBIT-FNAL) package. After being convinced with a preliminary model that the noise, particularly non-white noise, does matter to beam quality, we proceeded to measure directly current ripples and common-mode voltages from all four Gradient Magnet Power Supplies (GMPS). Then, the current signals are Fourier-analyzed. Based upon the power spectra of current signals, we tune up the Ornstein-Uhlnbeck noise model. As a result, we are able to closely match the frequency spectra between current measurements and the modeled O-U stochastic noise. The stochastic noise modeled upon measurements is applied to the Booster beam in the presence of the full space-charge effects. This noise model, accompanied by a suite of beam diagnostic calculations, manifests that the stochastic noise, impinging upon the beam and coupled to the space-charge effects, can substantially enhance the beam degradation process throughout the injection period. The second model is a magnet misalignment model. It is the first time to utilize the latest beamline survey data for building a magnet-by-magnet misalignment model. Given as-found survey fiducial coordinates, we calculate all types of magnet alignment errors (station error, pitch, yaw, roll, twists, etc.) are implemented in the model. We then follow up with statistical analysis to understand how each type of alignment errors are

  10. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  11. FASTBUS Standard Routines implementation for Fermilab embedded processor boards

    International Nuclear Information System (INIS)

    Pangburn, J.; Patrick, J.; Kent, S.; Oleynik, G.; Pordes, R.; Votava, M.; Heyes, G.; Watson, W.A. III

    1992-10-01

    In collaboration with CEBAF, Fermilab's Online Support Department and the CDF experiment have produced a new implementation of the IEEE FASTBUS Standard Routines for two embedded processor FASTBUS boards: the Fermilab Smart Crate Controller (FSCC) and the FASTBUS Readout Controller (FRC). Features of this implementation include: portability (to other embedded processor boards), remote source-level debugging, high speed, optional generation of very high-speed code for readout applications, and built-in Sun RPC support for execution of FASTBUS transactions and lists over the network

  12. PC Farms for Offline Event Reconstruction at Fermilab

    International Nuclear Information System (INIS)

    Beretvas, A.

    1997-03-01

    Fermilab is investigating the use of PC's for HEP computing. As a first step we have built a full offline environment under Linux on a set of Pentium (P5) and Pentium Pro (P6) machines (the ''PC Farm''). The Pythia simulation has been ported to run serially and in parallel (using CPS) on the PC Farm. Fermilab software products and CDF offline packages have also been ported to Linux. Run 1 CDF data has been analyzed on both Linux and SGI (Irix) with essentially identical results. The performance of the system is compared to results with commercial UNIX systems

  13. Continuous multiple injections at the Fermilab Main Injector

    Directory of Open Access Journals (Sweden)

    K. Y. Ng

    2002-06-01

    Full Text Available Instead of slip stacking, an alternate method of doubling the linear intensity of the Fermilab Main Injector is discussed. This method makes use of rf barriers to transfer 12 booster batches from the Fermilab Booster to the Main Injector in 12 consecutive booster cycles, totaling 800 ms. After that, adiabatic capture of the beam into 53 MHz buckets can be accomplished in about 10 ms. Because the beam is debunched during the injection process and no rf voltage is required, the beam loading voltages in the rf cavities are small and can be eliminated by a combination of counterphasing and mechanical shorts.

  14. Towards Commissioning the Fermilab Muon G-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, D. [Fermilab; Convery, M. E. [Fermilab; Morgan, J. P. [Fermilab; Syphers, M. J. [Northern Illinois U.; Korostelev, M. [Cockcroft Inst. Accel. Sci. Tech.; Fiedler, A. [Northern Illinois U.; Kim, S. [Cornell U.; Crnkovic, J. D. [Brookhaven; Morse, W. M. [Brookhaven

    2017-01-01

    Starting this summer, Fermilab will host a key experiment dedicated to the search for signals of new physics: The Fermilab Muon g-2 Experiment. Its aim is to precisely measure the anomalous magnetic moment of the muon. In full operation, in order to avoid contamination, the newly born secondary beam is injected into a 505 m long Delivery Ring (DR) wherein it makes several revolutions before being sent to the experiment. Part of the commissioning scenario will execute a running mode wherein the passage from the DR will be skipped. With the aid of numerical simulations, we provide estimates of the expected performance.

  15. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  16. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  17. Integrable RCS as a Proposed Replacement for Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander [Fermilab

    2017-03-07

    Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.

  18. Advances in Grid Computing for the Fabric for Frontier Experiments Project at Fermilab

    Science.gov (United States)

    Herner, K.; Alba Hernandez, A. F.; Bhat, S.; Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Kirby, M.; Kreymer, A.; Levshina, T.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.; Teheran, J.

    2017-10-01

    The Fabric for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientific Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of differing size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certificate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have significantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the efforts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production workflows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular workflows, and support troubleshooting and triage in case of problems. Recently a new certificate management infrastructure called

  19. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  20. The D0 detector at Fermilab: Recent results and future plans

    International Nuclear Information System (INIS)

    Hoftun, J.S.

    1995-01-01

    The D0 Collaboration at Fermilab consists of about 400 physicists from institutions in 8 countries. The detector built by this collaboration has three main parts, a Central Detector, a liquid Argon - Uranium calorimeter and an outer muon detector. A very successful run was completed in May of 1993; analyses of this data are nearing completion and several physics results have already been presented. Another run started in January of 1994 and is still continuing. Some of the results from the first run, prospects for forthcoming physics results and plans for detector upgrades will be presented in this paper

  1. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    Science.gov (United States)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  2. Cost effectiveness of recycling: A systems model

    Energy Technology Data Exchange (ETDEWEB)

    Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)

    2013-11-15

    Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

  3. Cost effectiveness of recycling: A systems model

    International Nuclear Information System (INIS)

    Tonjes, David J.; Mallikarjun, Sreekanth

    2013-01-01

    Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets

  4. First events and prospects at the Fermilab collider

    International Nuclear Information System (INIS)

    Binkley, M.

    1986-03-01

    A brief description of the Collider Detector at Fermilab (CDF) is given including the detector components and the data acquisition system. The first test run, the first events, and the performance of the detector are discussed. Finally the prospects for future running are reviewed

  5. CERN-Fermilab summer school is smash hit

    CERN Document Server

    2006-01-01

    A new joint CERN-Fermilab summer school is proving more popular than the organizers ever imagined. Interest in the first CERN-Fermilab Hadron Collider Physics Summer School, to be held at Fermilab on 9-18 August, has proved far greater than anyone anticipated, with 300 applications for the planned 100 places. In response, the Organizing Committee, led by Fermilab's Jeffrey Appel and Bogdan Dobrescu, has had to increase the class size to nearly 150 participants. 'The success of this initiative, with an unexpectedly large number of applications, shows both the great anticipation that exists in the world for the start up of the LHC, and the need for greater educational support to enable the hundreds of young researchers to get ready for a full and prompt exploitation of the LHC data,' explains CERN's Michelangelo Mangano, who is a member of the International Advisory Committee (IAC) for the school. 'Fulfilling the expectations of the students will be a great challenge, which we are all eager to tackle.' Fabiol...

  6. 12th CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2017-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the twelfth edition, from 28th August to 6th September 2017. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Other schools, such as the CERN European School of High Energy Physics, may provide more appropriate training for students in experimental HEP who are still working towards their PhDs. Mark your calendar for 28 August - 6 September 2017, when CERN will welcome students to the twelfth CERN-Fermilab Hadron Collider Physics Summer School. The School will include nine days of lectures and discussions, and one free day in the middle of the period. Limited scholarship ...

  7. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  8. Fermilab Testbeam Facility Annual Report – FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2016-11-01

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF, which are tabulated. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  9. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    Gian Giudice; Ellis, Nick; Jakobs, Karl; Mage, Patricia; Seymour, Michael H; Spiropulu, Maria; Wilkinson, Guy; CERN-FNAL Summer School; Hadron Collider Physics Summer School

    2007-01-01

    For the past few years, experiments at the Fermilab Tevatron Collider have once again been exploring uncharted territory at the current energy frontier of particle physics. With CERN's LHC operations to start in 2007, a new era in the exploration of the fundamental laws of nature will begin. In anticipation of this era of discovery, Fermilab and CERN are jointly organizing a series of "Hadron Collider Physics Summer Schools", whose main goal is to offer a complete picture of both the theoretical and experimental aspects of hadron collider physics. Preparing young researchers to tackle the current and anticipated challenges at hadron colliders, and spreading the global knowledge required for a timely and competent exploitation of the LHC physics potential, are concerns equally shared by CERN, the LHC host laboratory, and by Fermilab, the home of the Tevatron and host of CMS's LHC Physics Center in the U.S. The CERN-Fermilab Hadron Collider Physics Summer School is targeted particularly at young postdocs in exp...

  10. Magnetic field calculation for Fermilab-style magnet coil end

    International Nuclear Information System (INIS)

    Ishibashi, K.; McInturff, A.D.

    1982-09-01

    A simple end field calculation is described, which utilizes a reciprocal theorem of mutual inductance between actual windings and a virtual coil. The calculation method is applied to a Fermilab-style magnet, and the computation results are compared with those obtained by GFUN

  11. Fermilab Test Beam Facility Annual Report. FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  12. Recycling Lesson Plans.

    Science.gov (United States)

    Pennsylvania State Dept. of Environmental Resources, Harrisburg.

    This document contains lesson plans about recycling for teachers in grades K-12. Titles include: (1) "Waste--Where Does It Come From? Where Does It Go?" (2) "Litter Detectives," (3) "Classroom Paper Recycling," (4) "Recycling Survey," (5) "Disposal and Recycling Costs," (6) "Composting…

  13. Green Science: Revisiting Recycling

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  14. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  15. The Calibration System of the E989 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, Antonio [Univ. of Messina (Italy)

    2017-01-01

    The muon anomaly aµ is one of the most precise quantity known in physics experimentally and theoretically. The high level of accuracy permits to use the measurement of aµ as a test of the Standard Model comparing with the theoretical calculation. After the impressive result obtained at Brookhaven National Laboratory in 2001 with a total accuracy of 0.54 ppm, a new experiment E989 is under construction at Fermilab, motivated by the diff of aexp SM µ - aµ ~ 3σ. The purpose of the E989 experiment is a fourfold reduction of the error, with a goal of 0.14 ppm, improving both the systematic and statistical uncertainty. With the use of the Fermilab beam complex a statistic of × 21 with respect to BNL will be reached in almost 2 years of data taking improving the statistical uncertainty to 0.1 ppm. Improvement on the systematic error involves the measurement technique of ωa and ωp, the anomalous precession frequency of the muon and the Larmor precession frequency of the proton respectively. The measurement of ωp involves the magnetic field measurement and improvements on this sector related to the uniformity of the field should reduce the systematic uncertainty with respect to BNL from 170 ppb to 70 ppb. A reduction from 180 ppb to 70 ppb is also required for the measurement of ωa; new DAQ, a faster electronics and new detectors and calibration system will be implemented with respect to E821 to reach this goal. In particular the laser calibration system will reduce the systematic error due to gain fl of the photodetectors from 0.12 to 0.02 ppm. The 0.02 ppm limit on systematic requires a system with a stability of 10-4 on short time scale (700 µs) while on longer time scale the stability is at the percent level. The 10-4 stability level required is almost an order of magnitude better than the existing laser calibration system in particle physics, making the calibration system a very challenging item. In addition to the high level

  16. Actinide recycle

    International Nuclear Information System (INIS)

    Till, C.; Chang, Y.

    1990-01-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  17. The Fermilab recycler ring technical design report. Revision 1.2

    International Nuclear Information System (INIS)

    Jackson, Gerry

    1996-01-01

    Using a multi-channel analysis of W L W L scattering signals, I study the LHC's ability to distinguish among various models of strongly interacting electroweak symmetry breaking sectors. 9 refs., 1 fig., 3 tabs

  18. Transverse instability of the antiproton beam in the Recycler Ring

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Bhat, C.M.; Burov, A.; Crisp, J.; Eddy, N.; Hu, M.; Shemyakin, A.; /Fermilab

    2011-03-01

    The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.

  19. Measurement of B(t→ b)/B(t→Wq) at the collider detector at Fermilab

    International Nuclear Information System (INIS)

    Acosta, D.

    2005-01-01

    We present a measurement of the ratio of top-quark branching fractions R = Β(t → Wb)/Β(t → Wq) using lepton-plus-jets and dilepton data sets with integrated luminosity of ∼162 pb -1 collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of t(bar t) events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level

  20. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  1. Simulation of space charge effects and transition crossing in the Fermilab Booster

    International Nuclear Information System (INIS)

    Lucas, P.; MacLachlan, J.

    1987-03-01

    The longitudinal phase space program ESME, modified for space charge and wall impedance effects, has been used to simulate transition crossing in the Fermilab Booster. The simulations yield results in reasonable quantitative agreement with measured parameters. They further indicate that a transition jump scheme currently under construction will significantly reduce emittance growth, while attempts to alter machine impedance are less obviously beneficial. In addition to presenting results, this paper points out a serious difficulty, related to statistical fluctuations, in the space charge calculation. False indications of emittance growth can appear if care is not taken to minimize this problem

  2. Measurement of B(t --> Wb)/B(t--> Wq) at the collider detector at fermilab.

    Science.gov (United States)

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; de Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nelson, T; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stadie, H; Stanitzki, M; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yamaoka, J; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zucchelli, S

    2005-09-02

    We present a measurement of the ratio of top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where q can be a b, s, or a d quark, using lepton-plus-jets and dilepton data sets with an integrated luminosity of approximately 162 pb(-1) collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of tt events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.

  3. Recycling the spent nuclear fuel actinides: a major contribution to the sustainability of the 4. generation nuclear energy systems; Le recyclage des actinides presents dans les combustibles nucleaires uses: une contribution significative pour un nucleaire du 4. generation durable

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch.; Warin, D. [CEA Valrho (DEN/MAR/DRCP/DIR), 30 - Marcoule (France)

    2009-08-15

    In line with the emerging objective of sustainable development, renaissance of nuclear energy requires optimizing current nuclear fuel cycles to recycle all the potentially energetic elements which are still present within the spent nuclear fuel after their first use in reactor. That concerns basically the actinides, first of all uranium and plutonium, but also the minor actinides, which represent the most significant part of the long term radiotoxicity of the nuclear waste to be disposed off deep underground. Current R and D aims to develop chemical processes based on liquid/liquid extraction using organic molecules presenting specific affinity for actinides. This paper aims to give an overview of the recent French results and the current developments which are performed within the framework of the French Waste Management Act from 28 June 2006. (authors)

  4. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  5. CERN stop-over for KEK and Fermilab Directors

    CERN Multimedia

    2001-01-01

    En route for a meeting of the International Committee for Future Accelerators, ICFA, held at Germany's DESY laboratory, the Directors of Japan's KEK laboratory and Fermilab in the United States had a stop-over at CERN last Wednesday 7 February. Dr Hirotaka Sugawara, Director General of Japan's high energy physics laboratory, KEK, visited the Antiproton Decelerator, AD. From left to right, Masaki Hori, member of the ASACUSA collaboration, John Eades, contact person for ASACUSA, Dr Hirotaka Sugawara, Werner Pirkl, the PS Division engineer responsible for the Radio Frequency Quadrupole decelerator in the foreground, and Kurt Hübner, CERN's Director of Accelerators. Dr Michael S. Witherell, Director of the Fermi National Accelerator Laboratory, Fermilab, visited construction sites for the LHC, ATLAS, and CMS. He is seen here with a module of the CMS hadronic calorimeter in building 186.

  6. Remote manipulator experience in target train maintenance at Fermilab

    International Nuclear Information System (INIS)

    Butala, S.W.

    1984-01-01

    When Fermilab was designed in the late 1960's and early 1970's, it was anticipated that Neutrino target train servicing could be costly in terms of personnel radiation exposure. This was based in part on the expectation that target intensities of at least 1E13 protons/pulse would be required to produce several neutrino interactions in a large bubble chamber detector. This was indeed later proven to be the case and historically the Neutrino beamline has been targeted with about one half of the protons available from the Main Ring. It was believed that much of the occupational radiation dose from the Neutrino Area could be spared by utilization of a remote manipulator system, which was eventually installed. It is the purpose of this report to examine the use of the Fermilab remote manipulator system and evaluate its cost effectiveness and success as an ALARA (As Low As Reasonably Achievable) tool. 16 references, 11 figures

  7. Overview of the next generation of Fermilab collider software

    International Nuclear Information System (INIS)

    Hendricks, B.; Joshel, R.

    1992-01-01

    Fermilab is entering an era of operating a more complex collider facility. In addition, new operator workstations are available that have increased capabilities. The task of providing updated software in this new environment precipitated a project called Colliding Beam Software (CBS). It was soon evident that a new approach was needed for developing console software. Hence CBS, although a common acronym, is too narrow a description. A new generation of the application program subroutine library has been created to enhance the existing programming environment with a set of value added tools. Several key Collider applications were written that exploit CBS tools. This paper will discuss the new tools and the underlying change in methodology in application program development for accelerator control at Fermilab. (author)

  8. Database usage and performance for the Fermilab Run II experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bonham, D.; Box, D.; Gallas, E.; Guo, Y.; Jetton, R.; Kovich, S.; Kowalkowski, J.; Kumar, A.; Litvintsev, D.; Lueking, L.; Stanfield, N.; Trumbo, J.; Vittone-Wiersma, M.; White, S.P.; Wicklund, E.; Yasuda, T.; /Fermilab; Maksimovic, P.; /Johns Hopkins U.

    2004-12-01

    The Run II experiments at Fermilab, CDF and D0, have extensive database needs covering many areas of their online and offline operations. Delivering data to users and processing farms worldwide has represented major challenges to both experiments. The range of applications employing databases includes, calibration (conditions), trigger information, run configuration, run quality, luminosity, data management, and others. Oracle is the primary database product being used for these applications at Fermilab and some of its advanced features have been employed, such as table partitioning and replication. There is also experience with open source database products such as MySQL for secondary databases used, for example, in monitoring. Tools employed for monitoring the operation and diagnosing problems are also described.

  9. FERMILAB SWITCHYARD RESONANT BEAM POSITION MONITOR ELECTRONICS UPGRADE RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, T. [Fermilab; Diamond, J. [Fermilab; Liu, N. [Fermilab; Prieto, P. S. [Fermilab; Slimmer, D. [Fermilab; Watts, A. [Fermilab

    2016-10-12

    The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an estimated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have variable gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuning of the SY beamline as well as enabling operators to monitor beam position through the spill.

  10. Status of the Fermilab Energy Doubler/Saver project

    International Nuclear Information System (INIS)

    1977-01-01

    The possibility of building a ring of superconducting magnets was considered very early in the design of the Fermilab main accelerator. It was concluded that the technology of superconducting magnets was not at that time, sufficiently advanced. Therefore, the main ring was designed and built with conventional magnets. However, space was left in the main-ring tunnel for a future ring of superconducting magnets. The Energy Doubler/Saver (ED/S) was initiated in 1972 as a project to build a ring of superconducting magnets with the objective of dramatically increasing the research potential of the Fermilab accelerators. This was to be accomplished at a moderate cost and in such a manner as to make possible a significant saving of electrical energy. A description is given of the evolution of this program as well as give a status report of the Ed/S research and development program

  11. Status of the Fermilab Energy Doubler/Saver project

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The possibility of building a ring of superconducting magnets was considered very early in the design of the Fermilab main accelerator. It was concluded that the technology of superconducting magnets was not at that time, sufficiently advanced. Therefore, the main ring was designed and built with conventional magnets. However, space was left in the main-ring tunnel for a future ring of superconducting magnets. The Energy Doubler/Saver (ED/S) was initiated in 1972 as a project to build a ring of superconducting magnets with the objective of dramatically increasing the research potential of the Fermilab accelerators. This was to be accomplished at a moderate cost and in such a manner as to make possible a significant saving of electrical energy. A description is given of the evolution of this program as well as give a status report of the Ed/S research and development program.

  12. Operating experience with the Fermilab 500-GeV accelerator

    International Nuclear Information System (INIS)

    Urban, G.S.; Gannon, J.C.

    1977-01-01

    The Fermilab accelerator has been operating for more than four years. It has been improved so that it is now capable of operating at an energy of 500 GeV and an intensity in excess of 2.0 x 10 13 protons per pulse. The accelerator is manned on a 24 hour a day basis by an operating team of five persons. This is possible in part, because almost all of the hardware systems have status monitoring and control through an advanced computer control system. A discussion is given of the operation of the accelerator with emphasis on person to machine interface, operator training techniques used at Fermilab, and the keeping of records and reliability information

  13. FPGA-Based Instrumentation for the Fermilab Antiproton Source

    CERN Document Server

    Ashmanskas, Bill; Kiper, Terry; Peterson, David

    2005-01-01

    We have designed and built low-cost, low-power, ethernet-based circuit boards to apply DSP techniques to several instrumentation upgrades in the Fermilab Antiproton Source. Commodity integrated circuits such as direct digital synthesizers, D/A and A/D converters, and quadrature demodulators enable digital manipulation of RF waveforms. A low cost FPGA implements a variety of signal processing algorithms in a manner that is easily adapted to new applications. An embedded microcontroller provides FPGA configuration, control of data acquisition, and command-line interface. A small commercial daughter board provides an ethernet-based TCP/IP interface between the microcontroller and the Fermilab accelerator control network. The board is packaged as a standard NIM module. Applications include Low Level RF control for the Debuncher, readout of transfer-line Beam Position Monitors, and narrow-band spectral analysis of diagnostic signals from Schottky pickups.

  14. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Crawford, Anthony [Fermilab; Harms, Elvin [Fermilab; Leibfritz, Jerry [Fermilab; Wu, Genfa [Fermilab

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and to keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.

  15. Database usage and performance for the Fermilab Run II experiments

    International Nuclear Information System (INIS)

    Bonham, D.; Box, D.; Gallas, E.; Guo, Y.; Jetton, R.; Kovich, S.; Kowalkowski, J.; Kumar, A.; Litvintsev, D.; Lueking, L.; Stanfield, N.; Trumbo, J.; Vittone-Wiersma, M.; White, S.P.; Wicklund, E.; Yasuda, T.; Maksimovic, P.

    2004-01-01

    The Run II experiments at Fermilab, CDF and D0, have extensive database needs covering many areas of their online and offline operations. Delivering data to users and processing farms worldwide has represented major challenges to both experiments. The range of applications employing databases includes, calibration (conditions), trigger information, run configuration, run quality, luminosity, data management, and others. Oracle is the primary database product being used for these applications at Fermilab and some of its advanced features have been employed, such as table partitioning and replication. There is also experience with open source database products such as MySQL for secondary databases used, for example, in monitoring. Tools employed for monitoring the operation and diagnosing problems are also described

  16. Top-squark mixing effects in the supersymmetric electroweak corrections to top-quark production at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Yang, J.M.; Li, C.S.

    1996-01-01

    Taking into account the mixing effects between left- and right-handed top squarks, we calculate the genuine supersymmetric electroweak correction to top-quark production at the Fermilab Tevatron in the minimal supersymmetric model. The analytic expressions of the corrections to both the parton level cross section and the total hadronic cross section are presented. Some numerical examples are also given to show the size of the corrections. copyright 1996 The American Physical Society

  17. Fermilab Test Beam Facility Annual Report FY17

    Energy Technology Data Exchange (ETDEWEB)

    Rominsky, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmidt, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rivera, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Uplegger, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Asaadi, J. [Univ. of Texas, Arlington, TX (United States); Raaf, J. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Freeman, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Price, J. [Univ. of Liverpool (United Kingdom); Casey, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ehrlich, R. [Univ. of Virginia, Charlottesville, VA (United States); Belmont, R. [Univ. of Colorado, Boulder, CO (United States); Boose, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Conners, M. [Georgia State Univ., Atlanta, GA (United States); Haggerty, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, K. [Univ. of Colorado, Boulder, CO (United States); Hodges, A. [Georgia State Univ., Atlanta, GA (United States); Huang, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kistenev, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lajoie, J. [Iowa State Univ., Ames, IA (United States); Mannel, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Osborn, J. [Univ. of Michigan, Ann Arbor, MI (United States); Pontieri, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Purschke, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sarsour, M. [Georgia State Univ., Atlanta, GA (United States); Sen, A. [Iowa State Univ., Ames, IA (United States); Skoby, M. [Univ. of Michigan, Ann Arbor, MI (United States); Stoll, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Toldo, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ujvari, B. [Debrecen Univ., Debrecen (Hungary); Woody, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ronzhin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hanagaki, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Apresyan, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bose, T. [Boston Univ., MA (United States); Canepa, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Demina, R. [Univ. of Rochester, NY (United States); Gershtein, Y. [Rutgers Univ., Piscataway, NJ (United States); Halkiadakis, E. [Rutgers Univ., Piscataway, NJ (United States); Haytmyradov, M. [Univ. of Iowa, Iowa City, IA (United States); Hazen, E. [Boston Univ., MA (United States); Hindrichs, O. [Univ. of Rochester, NY (United States); Korjenevski, S. [Univ. of Rochester, NY (United States); Nachtman, J. [Univ. of Iowa, Iowa City, IA (United States); Narain, M. [Brown Univ., Providence, RI (United States); Nash, K. [Rutgers Univ., Piscataway, NJ (United States); Onel, Y. [Univ. of Iowa, Iowa City, IA (United States); Osherson, M. [Rutgers Univ., Piscataway, NJ (United States); Rankin, D. [Boston Univ., MA (United States); Schneider, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stone, B. [Rutgers Univ., Piscataway, NJ (United States); Metcalfe, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Benoit, M. [Univ. of Geneva (Switzerland); Vicente, M. [Univ. of Geneva (Switzerland); di Bello, F. [Univ. of Geneva (Switzerland); Cavallaro, E. [Univ. Autonoma de Barcelona (Spain); Chakanov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Frizzell, D. [Univ. of Oklahoma, Norman, OK (United States); Kiehn, M. [Univ. of Geneva (Switzerland); Meng, L. [Univ. of Geneva (Switzerland); Miucci, A. [Univ. of Bern, Bern (Switzerland); Nodulman, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Terzo, S. [Univ. Autonoma de Barcelona (Spain); Wang, Rui [Argonne National Lab. (ANL), Argonne, IL (United States); Weston, T. [Univ. of Oklahoma, Norman, OK (United States); Xie, Junqie [Argonne National Lab. (ANL), Argonne, IL (United States); Xu, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaffaroni, E. [Univ. of Geneva (Switzerland); Zhang, M. [Univ. of Illinois, Urbana, IL (United States); Argelles, C. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Axani, S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Katori, T. [Queen Mary Univ. of London (United Kingdom); Noulai, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mandalia, S. [Queen Mary Univ. of London (United Kingdom); Sandstrom, P. [Univ. of Wisconsin, Madison, WI (United States); Kryemadhi, A. [Messiah College, Mechanicsburg, PA (United States); Barner, L. [Messiah College, Mechanicsburg, PA (United States); Grove, A. [Messiah College, Mechanicsburg, PA (United States); Mohler, J. [Messiah College, Mechanicsburg, PA (United States); Roth, A. [Messiah College, Mechanicsburg, PA (United States); Beuzekom, M. van [Nikhef National Inst. for Subatomic Physics, Amsterdam (Netherlands); Dall' Occo, E. [Nikhef National Inst. for Subatomic Physics, Amsterdam (Netherlands); Schindler, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Paley, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Badgett, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Denisov, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lukic, S. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia); Ujic, P. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia); Lebrun, P. L.G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Fields, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Christian, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zaki, R. [Radboud Univ., Nijmegen (Netherlands)

    2018-01-23

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY2017. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table 1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  18. Aspects of scientific visualization for HEP analysis at Fermilab

    International Nuclear Information System (INIS)

    Kallenbach, Jeff; Lebrun, Paul

    1996-01-01

    Based on the workshop on scientific visualization held on Aug 7-9, 1995 at Fermilab, and practical experience with IRIS Explorer, we comment on the use of Open GL based for Event Displays and related HEP data analysis. WE wish to compare the pros and cons of such systems on technical grounds, case of use, and most of all, application interfaces, as the programmer and the user are often the same person. Costs and educational considerations will also be briefly discussed. (author)

  19. A new architecture for Fermilab's cryogenic control system

    International Nuclear Information System (INIS)

    Smolucha, J.; Frank, A.; Seino, K.; Lackey, S.

    1992-01-01

    In order to achieve design energy in the Tevatron, the magnet system will be operated at lower temperatures. The increased requirements of operating the Tevatron at lower temperatures necessitated a major upgrade to the both the hardware and software components of the cryogenic control system. The new architecture is based on a distributed topology which couples Fermilab designed I/O subsystems to high performance, 80386 execution processors via a variety of networks including: Arcnet, iPSB, and token ring. (author)

  20. GammeV: results and future plans at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wester, William; /Fermilab

    2010-05-01

    GammeV is an axion-like particle photo regeneration experiment that employs the light shining through a wall technique. We obtain limits on the coupling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar particles in the milli-eV mass range. We have reconfigured our apparatus to search for chameleon particles. We describe the current results and future plans for similar activities at Fermilab.

  1. Fermilab Testbeam Facility Annual Report – FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-11-01

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table TB-1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  2. CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    Applications are now open for the 2nd CERN-Fermilab Hadron Collider Physics Summer School, which will take place at CERN from 6 to 15 June 2007. The school web site is http://cern.ch/hcpss with links to the academic program and application procedure. The application deadline is 9 March 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be given on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be  supported by in-depth discussion sess...

  3. Check Mate! The CERN vs Fermilab Chess Competition

    CERN Multimedia

    2001-01-01

    7,000 kilometers and a 7 hour time difference had no impact upon the enthusiasm that pervaded the chess competition between CERN and Fermilab. In spite of the computer era, one game was played over a real wooden board.  Tomas Davidek and Irwin Gaines took advantage of Irwin's momentary presence at CERN. Several chess servers span the world and they are used by all sorts of people from many walks of life. However in mid-November on freechess.org there was a sudden influx of physicists as CERN and Fermilab faced off in their first online chess match. While technically a competition, the aim of the match was above all a 'friendly' contest between the two sister labs.  Usually, in serious chess competitions, each team plays in its strongest available constellation at the moment of the match.  But both CERN and Fermilab did quite the opposite and made getting all interested players involved the top priority. 'This was all put together for the purpose of having good fun' said Tibor Sim...

  4. Fermilab in 2012: Upgrades shift focus to the intensity frontier

    CERN Multimedia

    Kurt Riesselmann and Amy Dusto, Fermilab Office of Communication

    2012-01-01

    The upcoming year will be busy at Fermilab, and the largest projects are already beginning. Friday 16 December marks the ground-breaking for the Illinois Accelerator Research Center, a 3,900-square-metre building for accelerator research and development, industrialisation and training of the future generation of accelerator scientists. The centre is expected to open in about two years.   The NOvA project will generate and send a beam of neutrinos to a 15,000-ton detector in Ash River, Minnesota. The neutrinos will complete the 800-kilometre trip in less than three milliseconds. Image source: NoVA Experiment. At the high-energy frontier of particle physics, Fermilab scientists will continue analysing the dataset from the recently retired Tevatron particle accelerator’s two experiments, CDF and DZero, and will continue their strong participation in the CMS experiment at the LHC. Neutrino physics at Fermilab will take a big step forward. In February, crews will begin assembling the ...

  5. Fermilab in 2012: Upgrades shift focus to the intensity frontier

    CERN Multimedia

    Kurt Riesselmann and Amy Dusto, Fermilab Office of Communication

    2011-01-01

    The upcoming year will be busy at Fermilab, and the largest projects are already beginning. Friday 16 December marks the ground-breaking for the Illinois Accelerator Research Center, a 3,900-square-metre building for accelerator research and development, industrialisation and training of the future generation of accelerator scientists. The centre is expected to open in about two years.   The NOvA project will generate and send a beam of neutrinos to a 15,000-ton detector in Ash River, Minnesota. The neutrinos will complete the 800-kilometre trip in less than three milliseconds. Image source: NoVA Experiment. At the high-energy frontier of particle physics, Fermilab scientists will continue analysing the dataset from the recently retired Tevatron particle accelerator’s two experiments, CDF and DZero, and will continue their strong participation in the CMS experiment at the LHC. Neutrino physics at Fermilab will take a big step forward. In February, crews will begin assembling the ...

  6. Certified Electronics Recyclers

    Science.gov (United States)

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  7. EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS

    Science.gov (United States)

    This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). This evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory...

  8. A Fundamental Metric for Metal Recycling Applied to Coated Magnesium

    NARCIS (Netherlands)

    Meskers, C.E.M.; Reuter, M.A.; Boin, U.; Kvithyld, A.

    2008-01-01

    A fundamental metric for the assessment of the recyclability and, hence, the sustainability of coated magnesium scrap is presented; this metric combines kinetics and thermodynamics. The recycling process, consisting of thermal decoating and remelting, was studied by thermogravimetry and differential

  9. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    % for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...

  10. The recycling is moving

    CERN Multimedia

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  11. Chemical Recycle of Plastics

    OpenAIRE

    Sara Fatima

    2014-01-01

    Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  12. Recycling of used aluminum beverage cans in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Itou, Tatsuo [Mitsubishi Materials Corp., Tokyo (Japan)

    1995-12-31

    Both sales volume of aluminum cans and the recycling rate are remarkably increasing in Japan. In 1993, recycled can volume was 11.78 billion cans (116,258 metric tons) and its recycling rate 57.8 percent. Mitsubishi Materials Corporation, the leading manufacturer of aluminum cans in Japan, and their affiliated companies are very deeply involved in recycling used beverage cans (U.B.C) and recycling them back to can stock. In this paper, the author presents the following: (1) recent trends of beverage can consumption in Japan; (2) trend of aluminum cans and recycling rate in Japan; and (3) future of the aluminum can business in Japan.

  13. Plutonium recycle concept for RCC - type PWRs

    International Nuclear Information System (INIS)

    Bonet, H.; Charlier, A.; Deramaix, P.; Vanderberg, C.

    1975-01-01

    Self-generated Pu recycling schemes in RCC-type PWRs have been defined. The main results of survey studies performed to compare the relative merits of various Pu recycle strategies and the merits of alternative solutions of the assembly design such as the Pu-island assembly or the all-Pu assembly are presented [fr

  14. Recycling from endosomes to the plasma membrane

    NARCIS (Netherlands)

    Dam, E.M. van

    2001-01-01

    Summary V Chapter?Summary Many membrane proteins are, after endocytic uptake, efficiently recycled back to the plasma membrane. The aim of the studies presented in this thesis was to determine pathways and molecular mechanisms that are involved in recycling. Plasma membrane-derived clathrin-coated

  15. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    , consumption and waste management stages within a product’s lifecycle (Figure 1). Hence, waste materials contain potentially hazardous chemicals that are unwanted in the new products made of the recycled raw materials. So far, the presence of such chemicals in materials for recycling has not been...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern......, chemical analyses for quantification of a range of potential contaminants in paper (mineral oils, phenols, phthalates, polychlorinated biphenyls and toxic metals) and plastics (phthalates and brominated flame retardants) were done. The results indicated large variations in presence of chemical contaminants...

  16. Implementation of a low energy proton line from the Fermilab Linac

    International Nuclear Information System (INIS)

    Johnstone, C.

    1992-07-01

    Two beamlines presently transport the H - beam from the Fermilab Linac. Implementing extraction of some portion of the beam from either line is complicated by the close confines of the enclosure area and the presence of the elements in the existing lines. A new technique has been devised which employs laser stripping of H - to H 0 in order to extract a third beam using the existing beamline components in their current configuration. The laser approach has the additional advantages that it provides extreme flexibility in manipulating both the extracted beam pulse intensity and duration through control of the laser's power and pulse length. With the intensity control provided by the laser, a low energy proton line coming out of the Linac, the first of its kind at Fermilab, could be implemented. The line could be multipurpose; it could be used for proton therapy research, detector engineering runs, nuclear physics, accelerator studies, etc. In addition, beam would be available whenever the Linac is running and not be subject to the particular program in effect (collider vs. fixed-target, for example)

  17. Report on Workshop on Future Directions for Accelerator R&D at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Church, M.; Spentzouris, P.; Chou, W.; /Fermilab

    2009-09-01

    Accelerator R&D has played a crucial role in enabling scientific discovery in the past century and will continue to play this role in the years to come. In the U.S., the Office of High Energy Physics of DOE's Office of Science is developing a plan for national accelerator R&D stewardship. Fermilab undertakes accelerator research, design, and development focused on superconducting radio-frequency (RF), superconducting magnet, beam cooling, and high intensity proton technologies. In addition, the Lab pursues comprehensive integrated theoretical concepts and simulations of complete future facilities on both the energy and intensity frontiers. At present, Fermilab (1) supplies integrated design concept and technology development for a multi-MW proton source (Project X) to support world-leading programs in long baseline neutrino and rare processes experiments; (2) plays a leading role in the development of ionization cooling technologies required for muon storage ring facilities at the energy (multi-TeV Muon Collider) and intensity (Neutrino Factory) frontiers, and supplies integrated design concepts for these facilities; and (3) carries out a program of advanced accelerator R&D (AARD) in the field of high quality beam sources, and novel beam manipulation techniques.

  18. Implementation of a low energy proton line from the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, C.

    1992-07-01

    Two beamlines presently transport the H{sup {minus}} beam from the Fermilab Linac. Implementing extraction of some portion of the beam from either line is complicated by the close confines of the enclosure area and the presence of the elements in the existing lines. A new technique has been devised which employs laser stripping of H{sup {minus}} to H{sup 0} in order to extract a third beam using the existing beamline components in their current configuration. The laser approach has the additional advantages that it provides extreme flexibility in manipulating both the extracted beam pulse intensity and duration through control of the laser's power and pulse length. With the intensity control provided by the laser, a low energy proton line coming out of the Linac, the first of its kind at Fermilab, could be implemented. The line could be multipurpose; it could be used for proton therapy research, detector engineering runs, nuclear physics, accelerator studies, etc. In addition, beam would be available whenever the Linac is running and not be subject to the particular program in effect (collider vs. fixed-target, for example).

  19. Implementation of a low energy proton line from the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, C.

    1992-07-01

    Two beamlines presently transport the H{sup {minus}} beam from the Fermilab Linac. Implementing extraction of some portion of the beam from either line is complicated by the close confines of the enclosure area and the presence of the elements in the existing lines. A new technique has been devised which employs laser stripping of H{sup {minus}} to H{sup 0} in order to extract a third beam using the existing beamline components in their current configuration. The laser approach has the additional advantages that it provides extreme flexibility in manipulating both the extracted beam pulse intensity and duration through control of the laser`s power and pulse length. With the intensity control provided by the laser, a low energy proton line coming out of the Linac, the first of its kind at Fermilab, could be implemented. The line could be multipurpose; it could be used for proton therapy research, detector engineering runs, nuclear physics, accelerator studies, etc. In addition, beam would be available whenever the Linac is running and not be subject to the particular program in effect (collider vs. fixed-target, for example).

  20. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-10-28

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end of its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.

  1. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  2. Logistics Mode and Network Planning for Recycle of Crop Straw Resources

    OpenAIRE

    Zhou, Lingyun; Gu, Weidong; Zhang, Qing

    2013-01-01

    To realize the straw biomass industrialized development, it should speed up building crop straw resource recycle logistics network, increasing straw recycle efficiency, and reducing straw utilization cost. On the basis of studying straw recycle process, this paper presents innovative concept and property of straw recycle logistics network, analyses design thinking of straw recycle logistics network, and works out straw recycle logistics mode and network topological structure. Finally, it come...

  3. The Importance of Specific Recycling Information in Designing a Waste Management Scheme

    OpenAIRE

    Oke, Adekunle; Kruijsen, Joanneke

    2016-01-01

    Recycling information can be complex and often confusing which may subsequently reduce the participations in any waste recycling schemes. As a result, this research explored the roles as well as the importance of a holistic approach in designing recycling information using 15 expert-based (in-depth) interviews. The rationale was to offer a better understanding of what constitutes waste, recycling, and how recycling information should be designed and presented to make recycling more attractive...

  4. Recycling and by-products in the steel industry; Le recyclage et les co-produits dans la siderurgie

    Energy Technology Data Exchange (ETDEWEB)

    Birat, J.P. [Institut de Recherches de la Siderurgie Francaise (IRSID), Arcelor, 78 - Saint-Germain-en-Laye (France)

    2003-04-01

    The different activities described by the generic word 'recycling' ar presented along with an evaluation of the benefits of recycling in terms of natural resources or energy savings and reduction of Green House Gas emissions. The detailed analysis is presented of steel recycling, by-product recycling and end of life consumer good recycling. (author)

  5. Recycling of plastics in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, K. [Clean Japan Center, Tokyo (Japan). PET Bottle Recycling Project Dept.

    1998-10-01

    The Clean Japan Center is an NGO concerned with recycling. This article presents an overview of methods for recyling products made of various types of plastic. A number of such methods are in use or being studied. Emphasis is given to the state of plastics recycling in Japan. The uses of waste plastics as materials in other industrials is outlined - these include waste plastics as a reducer in blast furnaces, replacing coke and pulverized coal; waste plastics as a source of heat in cement kilns as an alternative to pulverized coal; and waste plastics being incinerated to generate power. 3 figs.

  6. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  7. DWPF Recycle Evaporator Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted

  8. Aspects Concerning the Use of Recycled Concrete Aggregates

    Science.gov (United States)

    Robu, I.; Mazilu, C.; Deju, R.

    2016-11-01

    Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. Using recycled concrete aggregates (RCA) is a matter of high priority in the construction industry worldwide. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates.

  9. A Guide to Recycled Papers: Problems, Sources, and Samples.

    Science.gov (United States)

    Carroll, Katherine

    This guide explains what is involved in recycling paper. Some background history is presented on the use of recycled paper. Sources of use for this product are pointed out, especially instances where business and industry have found that recycled paper could be used in place of the virgin product. The major part of the guide consists of samples of…

  10. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    Abstract. In a thermal neutron reactor, multiple recycle of U–Pu fuel is not possible due to degradation of fissile content of Pu in just one recycle. In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving ...

  11. Textiles and clothing sustainability recycled and upcycled textiles and fashion

    CERN Document Server

    2017-01-01

    This book discusses in detail the concepts of recycling and upcycling and their implications for the textiles and fashion sector. In addition to the theoretical concepts, the book also presents various options for recycling and upcycling in textiles and fashion. Although recycling is a much-developed and widely used concept, upcycling is also gaining popularity in the sector.

  12. A Study on Home Appliance Recycling Law of Japan

    OpenAIRE

    許, 楊; Yang, XU

    2011-01-01

    The establishment of the recycling based society which reconciles the economy and the environment has received significant attention.The study focuses on the home appliance recycling law. Some used home appliances are treated legally, others are exported illegally. Therefore this paper clarifies the results of the application of the home appliance recycling law and tries to present elemental conditions to create the global recycling system of used home appliances.

  13. The ACP (Advanced Computer Program) multiprocessor system at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Case, G.; Cook, A.; Fischler, M.; Gaines, I.; Hance, R.; Husby, D.

    1986-09-01

    The Advanced Computer Program at Fermilab has developed a multiprocessor system which is easy to use and uniquely cost effective for many high energy physics problems. The system is based on single board computers which cost under $2000 each to build including 2 Mbytes of on board memory. These standard VME modules each run experiment reconstruction code in Fortran at speeds approaching that of a VAX 11/780. Two versions have been developed: one uses Motorola's 68020 32 bit microprocessor, the other runs with AT and T's 32100. both include the corresponding floating point coprocessor chip. The first system, when fully configured, uses 70 each of the two types of processors. A 53 processor system has been operated for several months with essentially no down time by computer operators in the Fermilab Computer Center, performing at nearly the capacity of 6 CDC Cyber 175 mainframe computers. The VME crates in which the processing ''nodes'' sit are connected via a high speed ''Branch Bus'' to one or more MicroVAX computers which act as hosts handling system resource management and all I/O in offline applications. An interface from Fastbus to the Branch Bus has been developed for online use which has been tested error free at 20 Mbytes/sec for 48 hours. ACP hardware modules are now available commercially. A major package of software, including a simulator that runs on any VAX, has been developed. It allows easy migration of existing programs to this multiprocessor environment. This paper describes the ACP Multiprocessor System and early experience with it at Fermilab and elsewhere.

  14. The ACP [Advanced Computer Program] multiprocessor system at Fermilab

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Atac, R.

    1986-09-01

    The Advanced Computer Program at Fermilab has developed a multiprocessor system which is easy to use and uniquely cost effective for many high energy physics problems. The system is based on single board computers which cost under $2000 each to build including 2 Mbytes of on board memory. These standard VME modules each run experiment reconstruction code in Fortran at speeds approaching that of a VAX 11/780. Two versions have been developed: one uses Motorola's 68020 32 bit microprocessor, the other runs with AT and T's 32100. both include the corresponding floating point coprocessor chip. The first system, when fully configured, uses 70 each of the two types of processors. A 53 processor system has been operated for several months with essentially no down time by computer operators in the Fermilab Computer Center, performing at nearly the capacity of 6 CDC Cyber 175 mainframe computers. The VME crates in which the processing ''nodes'' sit are connected via a high speed ''Branch Bus'' to one or more MicroVAX computers which act as hosts handling system resource management and all I/O in offline applications. An interface from Fastbus to the Branch Bus has been developed for online use which has been tested error free at 20 Mbytes/sec for 48 hours. ACP hardware modules are now available commercially. A major package of software, including a simulator that runs on any VAX, has been developed. It allows easy migration of existing programs to this multiprocessor environment. This paper describes the ACP Multiprocessor System and early experience with it at Fermilab and elsewhere

  15. Resources, recycle, and substitution

    International Nuclear Information System (INIS)

    Wymer, R.G.

    A two-fold strategy appears necessary to ensure that the resource needs of the developed and developing nations are met. First, recycle and substitution must be encouraged in those instances where they do find application. Although these measures have limited applicability, they may be of vital importance in those instances where they do apply; in any event, they buy time. Second, practical and economical technologies must be developed to exploit the lower-grade and marginal ores and the oftentimes abundant but highly refractory ores, as well as to greatly increase the recovery of secondary elements present in the ores - elements whose form and amounts in the ores make them economically unrecoverable by themselves, but which are economically recoverable as by-products. It is often the case that if these elements are not recovered during the initial mining and milling operations, they are rendered unrecoverable, in a practical sense, forever. Furthermore, they may even become environmental pollutants. Specific examples of recovery from refractory ores, by-product recovery, and recycle are given. Also, some suggestions of substitutes for important resources are tabulated

  16. Fermilab Tevatron and Pbar source status report

    International Nuclear Information System (INIS)

    Edwards, H.

    1986-08-01

    The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently under evaluation to accomplish these goals: luminosity increase to 5 x 10 31 cm -2 sec -1 , production rates up to 4 x 10 11 antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade

  17. The RF experimental program in the Fermilab mucool test area

    International Nuclear Information System (INIS)

    Norem, J.; Sandstrom, R.; Bross, A.; Moretti, A.; Qian, Z.; Torun, Y.; Rimmer, R.; Li, D.; Zisman, M.S.; Johnson, R.

    2005-01-01

    The rf RandD program for high-gradient, low frequency cavities to be used in muon cooling systems is underway in the Fermilab MUCOOL Test Area. Cavities at 805 and 201 MHz are used for tests of conditioning techniques, surface modification and breakdown studies. This work has the Muon Ionization Cooling Experiment (MICE) as its immediate goal and efficient muon cooling systems for neutrino sources and muon colliders as the long term goal. We study breakdown and dark current production under a variety of conditions

  18. Cryogenic System for the Cryomodule Test Stand at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    White, Michael J. [Fermilab; Hansen, Benjamin [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-10-09

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description of the heat load measurement plan.

  19. The RF Experimental Program in the Fermilab MUCOOL Test Area

    CERN Document Server

    Norem, Jim; Johnson, Rolland P; Li, Derun; Moretti, Alfred; Qian, Zubao; Rimmer, Robert; Sandstrom, Rikard; Torun, Yagmur; Zisman, Michael

    2005-01-01

    The rf R&D program for high gradient, low frequency cavities to be used in muon cooling systems is underway in the Fermilab Muon Test Area. Cavities at 805 and 201 MHz are used for tests of conditioning techniques, surface modification and breakdown studies. This work has the Muon Ionization Cooling Experiment (MICE) as its immediate goal and efficient muon cooling systems for neutrino sources and muon colliders as the long term goal. We study breakdown, and dark current productions under a variety of conditions.

  20. Optics Corrections with LOCO in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Cheng-Yang [Fermilab; Prost, Lionel [Fermilab; Seiya, Kiyomi [Fermilab; Triplett, A. Kent [Fermilab

    2016-06-01

    The optics of the Fermilab Booster has been corrected with LOCO (Linear Optics from Closed Orbits). However, the first corrections did not show any improvement in capture efficiency at injection. A detailed analysis of the results showed that the problem lay in the MADX optics file. Both the quadrupole and chromatic strengths were originally set as constants independent of beam energy. However, careful comparison between the measured and calculated tunes and chromatcity show that these strengths are energy dependent. After the MADX model was modified with these new energy dependent strengths, the LOCO corrected lattice has been applied to Booster. The effect of the corrected lattice will be discussed here.

  1. Successful Electron Beam Recirculation Test for Fermilab Electron Cooling

    Science.gov (United States)

    Nagaitsev, Sergei; Crawford, A. Curtis; Sharapa, Anatoly; Shemyakin, Alexander

    1998-04-01

    In this paper we describe the successful operation of a dc recirculation electron beam system at energies 1 -- 1.5 MeV and currents in excess of 200 mA. This system employs an electrostatic HV supply like a Van de Graaff generator with maximum charging current of a few hundred microamps. Electron beam line consits of a 10 m long channel with discrete focusing elements flanked by high-gradient (10 kV/cm), small aperture (2.54 cm ID) acceleraton and deceleration tubes. This work is performed as part of the Fermilab R&D program to develop electron cooling for 8 GeV antiprotons.

  2. Charm production physics from Fermilab fixed-target experiments

    International Nuclear Information System (INIS)

    Recent analyses of charm quark production mechanisms from Fermilab fixed-target experiments are summarized. Measurements of single inclusive differential cross sections for hadroproduced and photoproduced D mesons are compared to next-to-leading order QCD calculations. New data from hadroproduction and previous photoproduction measurements of charm meson pair correlations are compared to NLO calculations and also to parton shower Monte Carlo models. Nonperturbative effects, such as intrinsic k t and fragmentation, are seen to play an important role in most of these comparisons. Results on charm production asymmetries in both hadroproduction and photoproduction are summarized

  3. Opportunities for high-sensitivity charm physics at Fermilab

    International Nuclear Information System (INIS)

    Kaplan, D.M.; Burnstein, R.A.; Lederman, L.M.; Rubin, H.A.; Brown, C.N.; Christian, D.C.; Gelfand, N.M.; Kwan, S.W.; Chen, T.Y.; He, M.; Koetke, D.D.; Napier, A.; Papavassiliou, V.; Yu, X.Q.

    1996-07-01

    The CO initiative under consideration at Fermilab makes feasible a charm experiment reconstructing >10 9 charm decays, four orders - of magnitude beyond the largest extant sample. The experiment might commence data-taking as early as 1999. In addition to programmatic charm physics such as spectroscopy, lifetimes, and QCD tests, it will have significant new-physics reach in the areas of CP violation, flavor-changing neutral-current and lepton-number-violating decays, and D o bar D bar o mixing, and should observe direct CP violation in Cabibbo-suppressed D decays if it occurs at the level predicted by the Standard Model

  4. Logic and control module for the Fermilab booster beam damper

    International Nuclear Information System (INIS)

    Sandberg, B.R.

    1977-01-01

    A logic and control module is included in the electronic system of the booster superdamper. This module produces a 9-bit digital word that controls the delay of beam bunch position information in the Fermilab booster synchrotron so that it arrives at the damping electrodes at the same time as the bunch of beam to be corrected. This delay word generator also has an output feature that only allows delay time decreases as the booster synchrotron frequency program increases monotonically. Such a feature guards against low-index incidental FM from affecting the delay computations

  5. Improvement of the voltage properties of the Fermilab electrostatic septa

    International Nuclear Information System (INIS)

    Trbojevic, D.; Crawford, C.; Childress, S.; Tinsely, D.

    1985-01-01

    In the Fermilab Tevatron Switchyard proton beam splits are initiated by a wire array electrostatic septum. At 1 TeV energy, and with fields limited to 50 kV/cm, and electrostatic septum more than 20 meters in length is required to produce the required angular separation between the beams for the Proton and Neutrino/Meson lines. New techniques have been investigated that will allow reliable operation at fields above 75 kV/cm with resultant beam line economy. Changes in construction and conditioning procedures have been studied using a short sample of an electrostatic septum

  6. Review of calorimetry in Fermilab fixed-target experiments

    International Nuclear Information System (INIS)

    Crisler, M.B.

    1995-04-01

    The fixed-target program at Fermilab comprises as many as thirteen simultaneous experiments in ten separate beamlines using beams of primary protons, pions, kaons, electrons, neutrinos, and muons. The fixed target beamlines were last in operation in the latter half of 1991, shutting down in 1992. The next fixed target run is scheduled for early 1996. This article describes some of the wide variety of calorimetric devices that were in use in the past run or to be used in the coming run. Special attention is devoted to the new devices currently under construction

  7. Beam Monitor Development for Fermilab E1039

    Science.gov (United States)

    Towell, Cecily; SeaQuest Collaboration

    2017-09-01

    Experiment 1039 at Fermi National Accelerator Laboratory is the approved follow-up experiment to SeaQuest/E906 that had the goal of determining the quark and antiquark distribution within nucleons. The SeaQuest detector was optimized to detect Drell-Yan muon pairs produced by quark-antiquark annihilations that occur when the 120 GeV proton beam impacts a series of targets. E1039 will utilize the same beamline and hardware as SeaQuest, but replaces the unpolarized targets with polarized deuterium and hydrogen targets in order to study the spin contribution of the sea quarks to the collective spin of a nucleon. This measurement is extremely sensitive to asymmetries in the beam profile. Therefore, a new beam luminosity detector is desired to reduce error in the experiment's primary measurements by providing details of the beam distribution. To test prototypes of this detector, a cosmic test stand was designed and is being built at Abilene Christian University. This stand uses the coincidence of double ended hodoscopes to trigger on the prototype detector. Such a test stand allows us to determine the rates and measure the efficiency of the beam monitor prototype. The development and testing of the beam monitor will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.

  8. Production of Transverse Controllable Laser Density Distribution in Fermilab/NICADD Photoinjector

    CERN Document Server

    Li, Jianliang; Tikhoplav, Rodion

    2005-01-01

    The Fermilab/NICADD photoinjector laboratory consist of a photoemission electron source based on an L band rf-gun. The CsTe photocathode is illuminated by an ultrashort UV laser. The transport line from the laser to the photocathode was recently upgraded to allow imaging of an object plane located ~20 m from the photocathode. This upgrade allows the generation of transverse laser distributions with controlled nonuniformity, yielding the production of an electron beam with various transverse densities patterns. Measuring the evolution of the artificial pattern on the electron bunch provides information that can be used to benchmark numerical simulations and investigate the impact of space charge. Preliminary data on these investigations are presented in the present paper.

  9. Recycling of automotive aluminum

    OpenAIRE

    Cui, Jirang; Roven, Hans Jørgen

    2010-01-01

    With the global warming of concern, the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits. In this work, recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling, use of aluminum alloys in automotive applications, automotive recycling process, and new technologies in aluminum scrap process. Literature survey shows that newly developed t...

  10. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  11. Challenges in plastics recycling

    OpenAIRE

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann; Damgaard, Anders; Astrup, Thomas Fruergaard

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamin...

  12. Benchmarking survey for recycling.

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  13. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  14. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Geynisman, M. [Fermilab; Bremer, J. [CERN; Chalifour, M. [CERN; Delaney, M. [Fermilab; Dinnon, M. [Fermilab; Doubnik, R. [Fermilab; Hentschel, S. [Fermilab; Kim, M. J. [Fermilab; Montanari, C. [INFN, Pavia; Monatanari, D. [Fermilab; Nichols, T. [Fermilab; Norris, B. [Fermilab; Sarychev, M. [Fermilab; Schwartz, F. [Fermilab; Tillman, J. [Fermilab; Zuckerbrot, M. [Fermilab

    2017-08-31

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.

  15. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    Science.gov (United States)

    Geynisman, M.; Bremer, J.; Chalifour, M.; Delaney, M.; Dinnon, M.; Doubnik, R.; Hentschel, S.; Kim, M. J.; Montanari, C.; Montanari, D.; Nichols, T.; Norris, B.; Sarychev, M.; Schwartz, F.; Tillman, J.; Zuckerbrot, M.

    2017-12-01

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ∼260 tons) and SBN’s Far Detector (SBN-FD, ∼760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.

  16. 3rd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at ...

  17. Fermilab Plan with a High Intensity Proton Source

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Fermilab, the US’s primary laboratory for particle physics, proposes a plan to maintain leadership for the laboratory and U.S. particle physics in the quest to discover the fundamental nature of the physical universe in the decades ahead. Discoveries of the physics of the Quantum Universe would come from powerful next generation particle accelerators. Fermilab’s Tevatron, currently the world’s most powerful particle accelerator, will shut down by the end of this decade after the LHC at CERN begins operations. At the LHC, U.S. physicists will join scientists from around the world in the exploration of the physics of the Terascale. To follow the LHC, physicists propose the International Linear Collider, a globally funded and operated accelerator to build on LHC results and illuminate Terascale science. Fermilab will work to host the proposed ILC in the U.S. as soon as possible, maintaining the nation’s historic leadership of frontier particle physics. Should events postpone the start of the ILC, Ferm...

  18. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    June 6-15, 2007, CERN The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007 The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, extensively covered the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis t...

  19. Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Barry [Fermilab; Bremer, Johan [CERN; Chalifour, Michel [Fermilab; Delaney, Mike [Fermilab; Dinnon, Mike [Fermilab; Doubnik, Roza [Fermilab; Geynisman, Michael [Fermilab; Hentschel, Steve [Fermilab; Kim, Min Jeong [Fermilab; Stefanik, Andy [Fermilab; Tillman, Justin [Fermilab; Zuckerbrot, Mike [Fermilab

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260 ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and

  20. Structural recycled concrete: utilization of recycled aggregate from construction and demolition wastes

    International Nuclear Information System (INIS)

    Alaejos Gutierrez, P.; Sanchez de Juan, M.

    2015-01-01

    This paper aims to present the main results of CEDEX research works concerning the use of recycled aggregates for structural concretes. By way of conclusion, recommendations on the requirements of the recycled aggregates have been established, providing information about the influence of these aggregates on the properties of structural concrete. (Author)

  1. ORKA: Measurement of the K+ → π+ ν(bar ν) decay at Fermilab

    International Nuclear Information System (INIS)

    Comfort, Joseph; Bryman, Douglas; Doria, Luca; Numao, Toshio; Sher, Aleksey; Vavilov, Dimitry; Jaffe, David; Kettell, Steve; Littenberg, Laurence; Worcester, Elizabeth; Bellantoni, Leo

    2011-01-01

    A high precision measurement of the ultra-rare K + → π + ν(bar ν) decay at Fermilab would be one of the most incisive probes of quark flavor physics this decade. Its dramatic reach for uncovering new physics is due to several important factors: (1) The branching ratio is sensitive to most new physics models which extend the Standard Model to solve its considerable problems. (2) The Standard Model predictions for the K + → π + ν(bar ν) and K L 0 → π 0 ν(bar ν) branching fractions are broadly recognized to be theoretically robust at the 5-10% level. Only a precious few accessible loop-dominated quark processes can be predicted with this level of certainty. (3) The K + → π + ν(bar ν) branching fraction is highly suppressed in the Standard Model to the level -10 ( + → π + ν(bar ν) can be predicted will permit a 5σ discovery potential for new physics even for enhancements of the branching fraction as small as 35%. This sensitivity is unique in quark flavor physics and allows probing of essentially all models of new physics that couple to quarks within the reach of the LHC. Furthermore, a high precision measurement of K + → π + ν(bar ν) is sensitive to many models of new physics with mass scales well beyond the direct reach of the LHC. The experimental challenge of suppressing backgrounds to enable measurement of K + → π + ν(bar ν) at the 1 in 10-billion Standard Model rate has been met successfully. Several events of K + → π + ν(bar ν) decay have been clearly observed at BNL by using a carefully refined technique involving stopped low-energy kaons. Recently, it has become evident that the Fermilab Main Injector (MI) accelerator, running at about 95 GeV with a moderate duty factor to produce kaons, presents an opportunity to extend this approach by two orders of magnitude in sensitivity. The first order of magnitude improvement comes from the substantially brighter source of low energy kaons, and the second arises from incremental

  2. Search for Resonant Second Generation Slepton Production at the Fermilab Tevatron

    Science.gov (United States)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, S.; Andrieu, B.; Anzelc, M. S.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Jesus, A. C. S. Assis; Atramentov, O.; Autermann, C.; Avila, C.; Ay, C.; Badaud, F.; Baden, A.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Bellavance, A.; Benitez, J. A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Berntzon, L.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Bloom, K.; Blumenschein, U.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Brandt, A.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, J. M.; Calfayan, P.; Calvet, S.; Cammin, J.; Caron, S.; Carvalho, W.; Casey, B. C. K.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevallier, F.; Cho, D. K.; Choi, S.; Choudhary, B.; Christofek, L.; Claes, D.; Clément, B.; Clément, C.; Coadou, Y.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cutts, D.; Ćwiok, M.; da Motta, H.; Das, A.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; de, K.; de Jong, P.; de Jong, S. J.; de La Cruz-Burelo, E.; de Oliveira Martins, C.; Degenhardt, J. D.; Déliot, F.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doidge, M.; Dominguez, A.; Dong, H.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Elvira, V. D.; Eno, S.; Ermolov, P.; Estrada, J.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fatakia, S. N.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Ford, M.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Ginther, G.; Gollub, N.; Gómez, B.; Gounder, K.; Goussiou, A.; Grannis, P. D.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grünendahl, S.; Grünewald, M. W.; Guo, F.; Guo, J.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haefner, P.; Hagopian, S.; Haley, J.; Hall, I.; Hall, R. E.; Han, L.; Hanagaki, K.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, J.; Hebbeker, T.; Hedin, D.; Hegeman, J. G.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoeth, H.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Houben, P.; Hu, Y.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jakobs, K.; Jarvis, C.; Jenkins, A.; Jesik, R.; Johns, K.; Johnson, C.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Juste, A.; Käfer, D.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Kalk, J. M.; Kalk, J. R.; Kappler, S.; Karmanov, D.; Kasper, J.; Kasper, P.; Katsanos, I.; Kau, D.; Kaur, R.; Kehoe, R.; Kermiche, S.; Kesisoglou, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Khatidze, D.; Kim, H.; Kim, T. J.; Kirby, M. H.; Klima, B.; Kohli, J. M.; Konrath, J.-P.; Kopal, M.; Korablev, V. M.; Kotcher, J.; Kothari, B.; Koubarovsky, A.; Kozelov, A. V.; Kozminski, J.; Kryemadhi, A.; Krzywdzinski, S.; Kuhl, T.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Lager, S.; Lammers, S.; Landsberg, G.; Lazoflores, J.; Bihan, A.-C. Le; Lebrun, P.; Lee, W. M.; Leflat, A.; Lehner, F.; Lesne, V.; Leveque, J.; Lewis, P.; Li, J.; Li, Q. Z.; Lima, J. G. R.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Z.; Lobo, L.; Lobodenko, A.; Lokajicek, M.; Lounis, A.; Love, P.; Lubatti, H. J.; Lynker, M.; Lyon, A. L.; Maciel, A. K. A.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Magnan, A.-M.; Makovec, N.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Mao, H. S.; Maravin, Y.; Martens, M.; Mattingly, S. E. K.; McCarthy, R.; McCroskey, R.; Meder, D.; Melnitchouk, A.; Mendes, A.; Mendoza, L.; Merkin, M.; Merritt, K. W.

    2006-09-01

    We present a search for supersymmetry in the R-parity violating resonant production and decay of smuons and muon sneutrinos in the channels μ˜→χ˜10μ, μ˜→χ˜2,3,40μ, and ν˜μ→χ˜1,2±μ. We analyzed 0.38fb-1 of integrated luminosity collected between April 2002 and August 2004 with the D0 detector at the Fermilab Tevatron Collider. The observed number of events is in agreement with the standard model expectation, and we calculate 95% C.L. limits on the slepton production cross section times branching fraction to gaugino plus muon, as a function of slepton and gaugino masses. In the framework of minimal supergravity, we set limits on the coupling parameter λ211', extending significantly previous results obtained in Run I of the Tevatron and at the CERN LEP collider.

  3. High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

    Energy Technology Data Exchange (ETDEWEB)

    Apanasevich, Leonard [Michigan State Univ., East Lansing, MI (United States)

    2005-01-01

    This thesis describes a study of the production of high transverse momentum direct photons and π0 mesons by proton beams at 530 and 800 GeV/c and π- beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments.

  4. Lost Muon Study for the Muon G-2 Experiment at Fermilab*

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Crnkovic, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morse, W. M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-19

    The Fermilab Muon g-2 Experiment has a goal of measuring the muon anomalous magnetic moment to a precision of 140 ppb - a fourfold improvement over the 540 ppb precision obtained by the BNL Muon g-2 Experiment. Some muons in the storage ring will interact with material and undergo bremsstrahlung, emitting radiation and loosing energy. These so called lost muons will curl in towards the center of the ring and be lost, but some of them will be detected by the calorimeters. A systematic error will arise if the lost muons have a different average spin phase than the stored muons. Algorithms are being developed to estimate the relative number of lost muons, so as to optimize the stored muon beam. This study presents initial testing of algorithms that can be used to estimate the lost muons by using either double or triple detection coincidences in the calorimeters.

  5. Putting a New Spin on an Existing Machine: Prospects for Polarizing the Fermilab Main Injector

    Science.gov (United States)

    Aidala, Christine

    2012-10-01

    As we continue to explore quantum chromodynamics (QCD) as the theory of the strong force, with gluon interactions in hadrons responsible for more than 98% of the visible mass in the universe, spin remains an important degree of freedom to be able to manipulate in order to advance the field. In particular, spin-momentum correlations in QCD, broadly analogous to quantum electrodynamical spin-orbit couplings in the hydrogen atom, have risen to the forefront of QCD research over the past decade. The current status of a proposal to polarize the proton beam at the Fermilab Main Injector will be presented, and the physics that could be accomplished with a hadronic fixed-target program at such a facility will be discussed.

  6. An Optical and Terahertz Instrumentation System at the FAST LINAC at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R. [Fermilab; Lumpkin, A. H. [Fermilab; Thangaraj, J. [Fermilab

    2017-08-01

    FAST is a facility at Fermilab that consists of a photoinjector, two superconducting capture cavities, one superconducting ILC-style cryomodule, and a small ring for studying non-linear, integrable beam optics called IOTA. This paper discusses the layout for the optical transport system that provides optical radiation to an externally located streak camera for bunch length measurements, and THz radiation to a Martin-Puplett interferometer, also for bunch length measurements. It accepts radiation from two synchrotron radiation ports in a chicane bunch compressor and a diffraction/transition radiation screen downstream of the compressor. It also has the potential to access signal from a transition radiation screen or YAG screen after the spectrometer magnet for measurements of energy-time correlations. Initial results from both the streak camera and Martin-Puplett will be presented.

  7. End-to-End Beam Simulations for the New Muon G-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Korostelev, Maxim [Cockcroft Inst. Accel. Sci. Tech.; Bailey, Ian [Lancaster U.; Herrod, Alexander [Liverpool U.; Morgan, James [Fermilab; Morse, William [RIKEN BNL; Stratakis, Diktys [RIKEN BNL; Tishchenko, Vladimir [RIKEN BNL; Wolski, Andrzej [Cockcroft Inst. Accel. Sci. Tech.

    2016-06-01

    The aim of the new muon g-2 experiment at Fermilab is to measure the anomalous magnetic moment of the muon with an unprecedented uncertainty of 140 ppb. A beam of positive muons required for the experiment is created by pion decay. Detailed studies of the beam dynamics and spin polarization of the muons are important to predict systematic uncertainties in the experiment. In this paper, we present the results of beam simulations and spin tracking from the pion production target to the muon storage ring. The end-to-end beam simulations are developed in Bmad and include the processes of particle decay, collimation (with accurate representation of all apertures) and spin tracking.

  8. Three-dimensional field map of the Fermilab D0 detector

    International Nuclear Information System (INIS)

    Ostiguy, J.; Yamada, R.

    1991-08-01

    The D0 detector is a general purpose hadron collider detector presently under construction at Fermilab and scheduled to be put in operation in the fall of 1991. The D0 muon detection system is composed of three major toroids referred to respectively as the Central Field (CF) toroid and the End Field (EF) toroids. The complete detector weighs in excess of 4000 metric tons and rests on a steel platform. The muon detection system was designed using standard 2D codes and flux maps inside were obtained for each of the toroids taken separately. Various magnetic field measurements were performed; discrepancies with the design calculations have been observed and attributed to three dimensional effects. In this paper, we compare the predictions of the 2D computations to 3D calculations for a fully assembled detector. We also estimate the electromagnetic forces between the toroids and discuss other 3D effects, in particular, the effect of the supporting platform. 4 refs., 3 figs

  9. Secondary resources and recycling in developing economies.

    Science.gov (United States)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-09-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH&S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for "green economy". Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Carbon dioxide recycling

    Science.gov (United States)

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  11. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  12. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  13. A kaon physics program at the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Cooper, Peter

    1997-11-01

    In this paper we describe a triad of kaon experiments which will form the foundation of a kaon physics program at Fermilab in the Main Injector era. These three experiments; KAMI, CKM and CPT, span the range of experiment types discussed above. KAMI will use the existing neutral kaon beam and the KTeV detector as the basis of a search for the Standard Model ultra rare decay K L → π 0 ν anti ν decay mode is by far the theoretically cleanest measurement of the Standard Model parameter responsible for CP violation. CKM will measure the analogous charged kaon decay mode. Together these two experiments will determine the Standard Model contribution to CP violation independent of the B meson sector. The Standard Model parameters controlling CP violation must be observed to be the same in the K and B meson sectors in order to confirm the Standard Model as the sole source of CP violation in nature. CPT is a hybrid beam experiment using a high purity K + beam to produce a pure K 0 beam in order to search for violation of CPT symmetry at a mass scale up to the Planck mass. CPT also will measure new CP violation parameters to test the Standard Model and search for rare K S decays. The Fermilab infrastructure for such a physics program largely already exists. The Main Injector will be an existing accelerator by late 1998 with beam properties comparable to any of the previous ''kaon factory'' proposals. The KTeV detector and neutral kaon beamline are unsurpassed in the world and were originally designed to also operate with the 120 GeV Main Injector beam as KAMI. The Fermilab Meson laboratory was originally designed as an area for fixed target experiments using 200 GeV proton beams. The charged kaon beam experiments will naturally find a home there. Both charged kaon experiments, CKM and CPT, will share a new high purity RF separated charged kaon beam based on superconducting RF technology which will provide the highest intensity and purity charged kaon beam in the world

  14. Design of the Advanced LIGO recycling cavities.

    Science.gov (United States)

    Arain, Muzammil A; Mueller, Guido

    2008-07-07

    The current LIGO detectors will undergo an upgrade which is expected to improve their sensitivity and bandwidth significantly. These advanced gravitational-wave detectors will employ stable recycling cavities to better confine their spatial eigenmodes instead of the currently installed marginally stable power recycling cavity. In this letter we describe the general layout of the recycling cavities and give specific values for a first possible design. We also address the issue of mode mismatch due to manufacturing tolerance of optical elements and present a passive compensation scheme based upon optimizing the distances between optical elements.

  15. Planning logistics network for recyclables collection

    Directory of Open Access Journals (Sweden)

    Ratković Branislava

    2014-01-01

    Full Text Available Rapid urbanization, intensified industrialization, rise of income, and a more sophisticated form of consumerism are leading to an increase in the amount and toxicity of waste all over the world. Whether reused, recycled, incinerated or put into landfill sites, the management of household and industrial waste yield financial and environmental costs. This paper presents a modeling approach that can be used for designing one part of recycling logistics network through defining optimal locations of collection points, and possible optimal scheduling of vehicles for collecting recyclables. [Projekat Ministarstva nauke Republike Srbije, br. TR36005

  16. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  17. Degradation studies of Fermilab low beta quadrupole cable

    International Nuclear Information System (INIS)

    Gourlay, S.A.; Garber, M.; Royet, J.; Scanlon, R.M.

    1990-10-01

    The production of high gradient superconducting quadrupoles for the Tevatron D0/B0 Low Beta insertion is currently underway at Fermilab. The two-shell design utilizes a 36-strand Rutherford style cable produced by Lawrence Berkeley Laboratory. A measure of cable quality is usually given by a comparison of the critical current of the cable with the sum of the critical currents of the strand. A recent study involving variations in the cabling conditions and dimensional parameters has resulted in a significant decrease in degradation. Over the period of cable production degradation has been reduced from an average of 12% to less than 4%. Some cable samples measured by Brookhaven National Laboratory exhibit Jc's in excess of 3100 A/mm 2 at sign 5T. The adjustments to the cabling procedure which are believed to be responsible for the reduction in Jc degradation will be discussed. 14 refs., 3 figs

  18. 400-MeV upgrade for the Fermilab linac

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.E.; Noble, R.J.

    1989-09-01

    Fermilab plans to upgrade the Tevatron to expand the physics research program in both the fixed target and the collider operating modes. The first phase of this program is to increase the energy of the H{sup -} linac from 200 to 400 MeV in order to reduce the incoherent space change tuneshift at injection into the Booster which can limit either the brightness or the total intensity of the beam. The linac upgrade will be achieved by replacing the last four 201 MeV, with seven 805 MHz side-coupled cavity modules operating at an average axial field of about 8 MV/m. This will allow acceleration to 400 MeV in the existing Linac enclosure. 4 refs., 3 figs., 1 tab.

  19. Fermilab main accelerator quadrupole transistorized regulators for improved tune stability

    International Nuclear Information System (INIS)

    Yarema, R.J.; Pfeffer, H.

    1977-01-01

    During early operation of the Fermilab Main Accelerator, tune fluctuations, caused by the SCR-controlled power supplies in the quad bus, limited the beam aperature at low energies. To correct this problem, two transistorized power supplies were built in 1975 to regulate and filter the main ring quad magnet current during injection and beam acceleration through the rf transistion region. There is one power supply in series with each quad bus. Each supply uses 320 parallel power transistors and is rated at 300A, 120V. Since the voltage and current capabilities of the transistorized supplies are limited, the supplies are turned-off at about 25GeV. A real-time computer system initiates turn-on of the SCR-controlled power supplies and regulation takeover by the SCR-controlled supplies, at the appropriate times

  20. Microdosimetric investigations at the fast neutron therapy facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Langen, K.M.

    1997-12-01

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e., oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 {+-} 0.04 was determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e{sup *} and R, with field size and depth in tissue. Maximal variation in e{sup *} and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated.

  1. The Fermilab Short-Baseline Program: MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-01-01

    The MicroBooNE experiment is the first of three detectors of the Fermilab short-baseline neutrino program that started operation in the Booster Neutrino Beamline in October 2015 [1]. When completed, the three-detector lineup will explore short-baseline neutrino oscillations and will be sensitive to sterile neutrino scenarios. MicroBooNE in itself is now starting its own physics program, with the measurement of neutrino-argon cross sections in the ~1GeV range being one of its main physics goals. These proceedings describe the status of the detector, the start of operation, and the automated reconstruction of the first neutrino events observed with MicroBooNE. Prospects for upcoming cross section measurements are also given.

  2. Microdosimetric investigations at the fast neutron therapy facility at Fermilab

    International Nuclear Information System (INIS)

    Langen, K.M.

    1997-01-01

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e., oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 ± 0.04 was determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e * and R, with field size and depth in tissue. Maximal variation in e * and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated

  3. Beam position measurement system at the Fermilab main accelerator

    International Nuclear Information System (INIS)

    Kerns, Q.A.

    1975-01-01

    The beam position system of the Fermilab Main Ring contains one horizontal and one vertical Electrostatic Beam Pickup in each of the 96 cells of the machine. A pair of 75 ohm cables transmits the induced signal from the machine tunnel to the nearest service building. In each of the 24 service buildings, there is a solid-state multiplexer and a beam position detector which processes the A-B signal pairs to produce an intensity-normalized voltage proportional to beam displacement. This voltage is digitized, read into buffer of the Lockheed MAC A, and in turn transferred to the Xerox 530. Horizontal or vertical orbits can be obtained in 50 millisec. Orbits are obtained at injection and at a Main Ring Sample time, if requested, anywhere on the acceleration cycle. Injection orbits can be flattened automatically by a program that sets dipole trim magnets. (auth)

  4. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Andrews, Richard [Fermilab; Carlson, Kermit [Fermilab; Leibfritz, Jerry [Fermilab; Nobrega, Lucy [Fermilab; Valishev, Alexander [Fermilab

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  5. Two decades of prairie restoration at Fermilab, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Betz, R.F. [Northeastern Illinois Univ., Chicago, IL (United States); Lootens, R.J.; Becker, M.K. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1996-12-31

    Successional Restoration is the method being used to restore the prairie at Fermilab on the former agricultural fields. This involves an initial planting, using aggressive species that have wide ecological tolerances which will grow well on abandoned agricultural fields. Collectively, these species are designated as the prairie matrix. The species used for this prairie matrix compete with and eventually eliminate most weedy species. They also provide an adequate fuel load capable of sustaining a fire within a few years after a site has been initially planted. Associated changes in the biological and physical structure of the soil help prepare the way for the successful introduction of plants of the later successional species. Only after the species of the prairie matrix are well established, is the species diversity increased by introducing species with narrower ecological tolerances. These species are thus characteristic of the later successional stages.

  6. Application of independent component analysis to Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.B.; Lee, S.Y.; Prebys, E.; Tomlin, R.; /Indiana U. /Fermilab

    2005-01-01

    Autocorrelation is applied to analyze sets of finite-sampling data such as the turn-by-turn beam position monitor (BPM) data in an accelerator. This method of data analysis, called the independent component analysis (ICA), is shown to be a powerful beam diagnosis tool for being able to decompose sampled signals into its underlying source signals. They find that the ICA has an advantage over the principle component analysis (PCA) used in the model-independent analysis (MIA) in isolating independent modes. The tolerance of the ICA method to noise in the BPM system is systematically studied. The ICA is applied to analyze the complicated beam motion in a rapid-cycling booster synchrotron at the Fermilab. Difficulties and limitations of the ICA method are also discussed.

  7. Fermilab advanced computer program multi-microprocessor project

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Biel, J.

    1985-06-01

    Fermilab's Advanced Computer Program is constructing a powerful 128 node multi-microprocessor system for data analysis in high-energy physics. The system will use commercial 32-bit microprocessors programmed in Fortran-77. Extensive software supports easy migration of user applications from a uniprocessor environment to the multiprocessor and provides sophisticated program development, debugging, and error handling and recovery tools. This system is designed to be readily copied, providing computing cost effectiveness of below $2200 per VAX 11/780 equivalent. The low cost, commercial availability, compatibility with off-line analysis programs, and high data bandwidths (up to 160 MByte/sec) make the system an ideal choice for applications to on-line triggers as well as an offline data processor

  8. The Fermilab Collider D/Phi/ low Β system

    International Nuclear Information System (INIS)

    McInturff, A.D.; Carson, J.; Collins, T.; Koepke, K.; Malamud, E.; Mantsch, P.; Niemann, R.; Riddiford, A.

    1988-06-01

    A new low Β system has been designed to serve the detector facility under construction at the D/Phi/ location of the Fermilab Superconducting Collider. The low Β system consists of 18 special cold iron quadrupoles powered as 11 independent circuits that can adjust the Β value at the intersection point down to 25 cm. Low beta is achieved with a set of 1.4 T/cm, two shell, high current quadrupoles. Smaller 0.7 T/cm, single shell trim quadrupoles are used to match the low beta insertion to the rest of the accelerator lattice. Gaps have been left in the lattice for electrostatic separators to separate the proton and antiproton beams everywhere except at the desired collision points. 6 refs., 6 figs., 3 tabs

  9. The Fermilab Collider D/Phi/ low BETA system

    Energy Technology Data Exchange (ETDEWEB)

    McInturff, A.D.; Carson, J.; Collins, T.; Koepke, K.; Malamud, E.; Mantsch, P.; Niemann, R.; Riddiford, A.

    1988-06-01

    A new low BETA system has been designed to serve the detector facility under construction at the D/Phi/ location of the Fermilab Superconducting Collider. The low BETA system consists of 18 special cold iron quadrupoles powered as 11 independent circuits that can adjust the BETA value at the intersection point down to 25 cm. Low beta is achieved with a set of 1.4 T/cm, two shell, high current quadrupoles. Smaller 0.7 T/cm, single shell trim quadrupoles are used to match the low beta insertion to the rest of the accelerator lattice. Gaps have been left in the lattice for electrostatic separators to separate the proton and antiproton beams everywhere except at the desired collision points. 6 refs., 6 figs., 3 tabs.

  10. Search for quirks at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Augustana Coll., Sioux Falls /Michigan U.; Alverson, G.; /Northeastern U.; Alves, G.A.; /Rio de Janeiro, CBPF /NIKHEF, Amsterdam

    2010-08-01

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4 fb{sup -1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron p{bar p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 GeV for the mass of a charged quirk with strong dynamics scale {Lambda} in the range from 10 keV to 1 MeV.

  11. Report on the Fermilab pilot N ampersand S closure process

    International Nuclear Information System (INIS)

    Coulson, L.

    1995-01-01

    This document outlines the plans and protocols for conducting a pilot of the Department of Energy's Necessary ampersand Sufficient Closure Process (Attachment A) at Fermilab National Accelerator Laboratory (FNAL) in Batavia, Illinois. The result of this pilot will be a set of standards which will serve as the agreed upon basis for providing FNAL with adequate Environment, Safety and Health Protection at the lowest possible cost. This pilot will seek out and emulate compatible industry practices which have been proven successful both in terms of safety performance and cost-effectiveness. This charter has been developed as a partnership effort by the parties to this agreement (see ''Responsibilities'' below), and is considered to be a living document

  12. Pulsed septum magnet for the Fermilab antiproton source

    International Nuclear Information System (INIS)

    Satti, J.A.; Holmes, S.D.

    1985-06-01

    A 2 meter curved pulsed septum magnet for use in the Fermilab Antiproton Source is described. The magnet produces a peak field of 6 kGauss at a current of 20,000 Amperes within a 0.4 msec long pulse. The field uniformity obtained is ΔB/B<0.2% out to 3.8 cm from the copper septum. Power enters the magnet from the center resulting in very simple ends and the magnet incorporates at 0.5 cm steel guard which reduces the field to <1.4 Gauss in the zero-field region. The total septum thickness is 1.3 cm. The vacuum enclosure doubles as the stacking fixture for the magnet laminations allowing easy assembly of a magnet with a 50 m radius of curvature

  13. Cost effectiveness of recycling: a systems model.

    Science.gov (United States)

    Tonjes, David J; Mallikarjun, Sreekanth

    2013-11-01

    Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Addressing Criticality in Rare Earth Elements via Permanent Magnets Recycling

    Science.gov (United States)

    Nlebedim, I. C.; King, A. H.

    2018-02-01

    Rare earth elements (REEs) are critical for many advanced technologies and are faced with potential supply disruptions. Recycling of permanent magnets (PMs) can be good sources for REEs which can help minimize global dependence on freshly mined REEs, but PMs are rarely recycled. Recycling of PMs has been discussed with respect to improving REEs resource sustainability. Some challenges to be addressed in order to establish industrially deployable technologies for PMs recycling have also been discussed, including profitability, energy efficiency and environmental impacts. Key considerations for promoting circular economy via PMs recycling is proposed with the focus on deciding the target points in the supply chain at which the recycled products will be inserted. Important technical considerations for recycling different forms of waste PMs, including swarfs, slags, shredded and intact hard disk drives magnets, have been presented. The aspects of circular economy considered include reusing magnets, remanufacturing magnets and recovering of REEs from waste PMs.

  15. Recycling behaviour in healthcare: waste handling at work.

    Science.gov (United States)

    Vogt, Joachim; Nunes, Katia R A

    2014-01-01

    This article reviews the motivational factors for environmental behaviour in general, presenting a case study on recycling disposable plastics in hospitals. Results show that 90% of over 600 employees from six analysed hospitals in Germany reported that the recycling of disposable plastics on the wards makes sense from an environmental and economic point of view. The case study reports an assessment of recycling attitudes and problems of hospital staff, mainly nurses. Employees in eco-certified hospitals were much more satisfied and reported fewer problems with the recycling system. The gender effect was significant only for saving energy, while age correlated with nearly all reported pro-environmental behaviour at home. At work, the mere introduction of a recycling system was insufficient to achieve good recycling results. Based on the study findings, recommendations are given aimed at improving the safety and sustainability of the recycling system.

  16. Case studies in rural recycling. Public service report series

    Energy Technology Data Exchange (ETDEWEB)

    Cosper, S.D.; Hallenbeck, W.H.; Brenniman, G.R.

    1994-02-01

    Due to state planning requirements and federal landfill regulations, solid waste management in rural areas (particularly recycling) has received much attention in recent years. The growth of recycling during the 1980s occurred mainly in urban and suburban areas. Therefore, rural recycling is still a relatively new enterprise. This report presents several rural recycling case studies from Colorado, Illinois, Indiana, Iowa, Minnesota, Tennessee, and Ontario, Canada to provide examples of successes and problems. This report also discusses the current issues of cooperative marketing of recyclables and municipal solid waste flow control. With respect to recycling, a rural region does not have ready access to markets for collected materials and has difficulty in generating easily marketable quantities of recyclables. (Copyright (c) 1994 The Board of Trustees of the University of Illinois.)

  17. Extending DART to meet the data acquisition needs of future experiments at Fermilab

    International Nuclear Information System (INIS)

    Oleynik, G.; Pordes, R.; Barsotti, E.

    1995-10-01

    The DART project at Fermilab is a major collaboration to develop a data acquisition system for multiple experiments. The initial implementation of DART has concentrated on providing working data acquisition systems for the (now eight) collaborating experiments in the next Fixed Target Run. In this paper we discuss aspects of the architecture of DART and how these will allow it to be extended to meet the expected needs of future experiments at Fermilab. We also discuss some ongoing developments within the Fermilab Computing Division towards these new implementations

  18. Plutonium recycle. In-core fuel management

    International Nuclear Information System (INIS)

    Vincent, F.; Berthet, A.; Le Bars, M.

    1985-01-01

    Plutonium recycle in France will concern a dozen of PWR 900 MWe controlled in gray mode till 1995. This paper presents the main characteristics of fuel management with plutonium recycle. The organization of management studies will be copied from this developed for classical management studies. Up these studies, a ''feasibility report'' aims at establishing at each stage of the fuel cycle, the impact of the utilization of fuel containing plutonium [fr

  19. Solvent recycle/recovery

    Energy Technology Data Exchange (ETDEWEB)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  20. The Compressor Recycle System

    OpenAIRE

    Barstad, Bjørn Ove

    2010-01-01

    The compressor recycle system is the main focus of this thesis. When the mass flow through a compressor becomes too low, the compressor can plunge into surge. Surge is a term that is used for axisymmetric oscillation through a compressor and is highly unwanted. The recycle system feeds compressed gas back to the intake when the mass flow becomes too low, and thereby act as a safety system.A mathematical model of the recycle system is extended and simulated in SIMULINK. The mathematical model ...

  1. Mechanical and chemical recycling of solid plastic waste.

    Science.gov (United States)

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-11-01

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    Science.gov (United States)

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Search for Muon Neutrino Disappearance in the Booster Neutrino Beam of Fermilab; Busqueda de Desaparicion de Neutrinos del Muon en el Haz de Neutrinos del Booster de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Mendez, Diana Patricia [Univ. Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico)

    2015-01-01

    In this work we carried out the disappearance analysis of muon neutrinos produced in the Fermilab Booster Neutrino Beam, using the data released to the public by the collaborations of the MiniBooNE and SciBooNE experiments. The calculations were made with programs in C and C++, implementing the ROOT libraries. From the analysis, using both the classical Pearson method and the Feldman and Cousins frequentist corrections, we obtained the 90\\% C.L. limit for the oscillation parameters sin22θ and Δm2 in the region 0.1 ≤ Δm2 ≤ 10 eV2 using a two neutrino model. The result presented in this work is consistent with the official one, with small deviations ascribed to round-off errors in the format of the used data, as well as statistical fluctuations in the generation of fake experiments used in the Feldman and Cousins method. As the official one, our result is consistent with the null oscillation hypothesis. This work was carried out independently to the MiniBooNE and SciBooNE collaborations and its results are not official.

  4. Reduce, reuse and recycle

    CSIR Research Space (South Africa)

    Afrika, M

    2010-10-01

    Full Text Available The adoption of the internationally accepted waste management hierarchy (Sakai et al, 1996) into South African policy has changed the focus from “end of pipe” waste management towards waste minimisation (reuse, recycling and cleaner production...

  5. Recycling of used oil

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Ghurye, G.

    1992-01-01

    This paper reports on used oil which is a valuable resource that should be recycled. Recycling used oil saves energy and natural resources. Used oil can be reprocessed and used as fuel in industrial burners and boilers. Unfortunately, more than 400 million gallons/year of used oil is lost through widespread dumping, partly due to lack of effective recycling procedures. Although used oil is not currently a federally listed hazardous waste, the U.S. EPA has proposed to list it as a hazardous waste, which will make recycling of used oil even more attractive. Laboratory samples, representing used oil, were used for detailed parametric studies and to determine the limitation of extending some of the current physical separation techniques such as sedimentation and centrifuging developed for oil-water and solid-liquid separation

  6. Recycle or pollute?

    NARCIS (Netherlands)

    Guiking, F.C.T.

    1994-01-01

    When growing oil palms, quantities of crop residues are high, which means that recycling is laborious and options to absorb these byproducts are easily saturated. Burning or composting may have harmful environmental effects

  7. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  8. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  9. Benchmarking in municipal solid waste recycling.

    Science.gov (United States)

    Lavee, Doron; Khatib, Mahmood

    2010-11-01

    The paper presents an analysis of the factors influencing the recycling potential of municipalities in Israel, including population size and density, geographic location, current waste levels, and current waste management system. We employ a standard regression analysis in order to develop an econometric model to predict where potential for economically efficient recycling is highest. By applying this model to readily available data, it is possible to predict with close to 90% accuracy whether or not recycling will be economically efficient in any given municipality. Government agencies working to promote advanced waste management solutions have at their disposal only limited resources and budget, and so must concentrate their efforts where they will be most effective. The paper thus provides policy-makers with a powerful tool to help direct their efforts to promote recycling at those municipalities where it is indeed optimal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. 10th joint CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2015-01-01

    The CERN-Fermilab Hadron Collider Physics Summer Schools are targeted particularly at young postdocs and senior PhD students working towards the completion of ther thesis project, in both experimental High Energy Physics (HEP) and phenomenology.

  11. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  12. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull 2007; 6(4.000: 307-312

  13. Recycling of nonmetallics

    Science.gov (United States)

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  14. Paper recycling framework, the "Wheel of Fiber".

    Science.gov (United States)

    Ervasti, Ilpo; Miranda, Ruben; Kauranen, Ilkka

    2016-06-01

    At present, there is no reliable method in use that unequivocally describes paper industry material flows and makes it possible to compare geographical regions with each other. A functioning paper industry Material Flow Account (MFA) that uses uniform terminology and standard definitions for terms and structures is necessary. Many of the presently used general level MFAs, which are called frameworks in this article, stress the importance of input and output flows but do not provide a uniform picture of material recycling. Paper industry is an example of a field in which recycling plays a key role. Additionally, terms related to paper industry recycling, such as collection rate, recycling rate, and utilization rate, are not defined uniformly across regions and time. Thus, reliably comparing material recycling activity between geographical regions or calculating any regional summaries is difficult or even impossible. The objective of this study is to give a partial solution to the problem of not having a reliable method in use that unequivocally describes paper industry material flows. This is done by introducing a new material flow framework for paper industry in which the flow and stage structure supports the use of uniform definitions for terms related to paper recycling. This new framework is termed the Detailed Wheel of Fiber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Magnetic field measurements of full length 50 mm aperture SSC dipole magnets at Fermilab

    International Nuclear Information System (INIS)

    Strait, J.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Ozelis, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.; Ogitsu, T.

    1992-09-01

    Thirteen 16 m long, 50 mm aperture SSC dipole magnets, designed jointly by Fermilab, Brookhaven National Laboratory, Lawrence Berkeley Laboratory and the SSC Laboratory, have been built at Fermilab. The first nine magnets have been fully tested to date. The allowed harmonics are systematically shifted from zero by amounts larger than the specification. The unallowed harmonics, with the exception of the skew sextupole, are consistent with zero. The magnet-to-magnet RMS variation of all harmonics is much smaller than the specification

  16. Commissioning and early operating experience with the Fermilab horizontal test facility

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Chase, B.; Harms, E.; Hocker, A.; Prieto, P.; Reid, J.; Rowe, A.; Theilacker, J.; Votava, M.; /Fermilab

    2007-10-01

    Fermilab has constructed a facility for testing dressed superconducting radiofrequency (RF) cavities at 1.8 K with high-power pulsed RF. This test stand was designed to test both 9-cell 1.3 GHz TESLA-style cavities and 9-cell 3.9 GHz cavities being built by Fermilab for DESY's TTF-FLASH facility. An overview of the test stand and a description of its initial commissioning is described here.

  17. Printability of papers recycled from toner and inkjet-printed papers after deinking and recycling processes.

    Science.gov (United States)

    Karademir, Arif; Aydemir, Cem; Tutak, Dogan; Aravamuthan, Raja

    2017-11-11

    In our contemporary world, while part of the fibers used in the paper industry is obtained from primary fibers such as wood and agricultural plants, the rest is obtained from secondary fibers from waste papers. To manufacture paper with high optical quality from fibers of recycled waste papers, these papers require deinking and bleaching of fibers at desired levels. High efficiency in removal of ink from paper mass during recycling, and hence deinkability, are especially crucial for the optical and printability quality of the ultimate manufactured paper. In the present study, deinkability and printability performance of digitally printed paper with toner or inkjet ink were compared for the postrecycling product. To that end, opaque 80 g/m2 office paper was digitally printed under standard printing conditions with laser toner or inkjet ink; then these sheets of paper were deinked by a deinking process based on the INGEDE method 11 p. After the deinking operation, the optical properties of the obtained recycled handsheets were compared with unprinted (reference) paper. Then the recycled paper was printed on once again under the same conditions as before with inkjet and laser printers, to monitor and measure printing color change before and after recycling, and differences in color universe. Recycling and printing performances of water-based inkjet and toner-based laser printed paper were obtained. The outcomes for laser-printed recycled paper were better than those for inkjet-printed recycled paper. Compared for luminosity Y, brightness, CIE a* and CIE b* values, paper recycled from laser-printed paper exhibited higher value than paper recycled from inkjet-printed paper.

  18. Recycling of americium

    International Nuclear Information System (INIS)

    Hagstroem, Ingela

    1999-12-01

    Separation of actinides from spent nuclear fuel is a part of the process of recycling fissile material. Extracting agents for partitioning the high level liquid waste (HLLW) from conventional PUREX reprocessing is studied. The CTH-process is based on three consecutive extraction cycles. In the first cycle protactinium, uranium, neptunium and plutonium are removed by extraction with di-2-ethylhexyl-phosphoric acid (HDEHP) from a 6 M nitric acid HLLW solution. Distribution ratios for actinides, fission products and corrosion products between HLLW and 1 M HDEHP in an aliphatic diluent have been investigated. To avoid addition of chemicals the acidity is reduced by a tributylphosphate (TBP) extraction cycle. The distribution ratios of elements present in HLLW have been measured between 50 % TBP in an aliphatic diluent and synthetic HLLW in range 0.1-6 M nitric acid. In the third extraction cycle americium and curium are extracted. To separate trivalent actinides from lanthanides a method based on selective stripping of the actinides from 1 M HDEHP is proposed. The aqueous phase containing ammonia, diethylenetriaminepentaacetic acid (DTPA) and lactic acid is recycled in a closed loop after reextraction of the actinides into a second organic phase also containing 1 M HDEHP. Distribution ratios for americium and neodymium have been measured at varying DTPA and lactic acid concentrations and at varying pH. Nitrogen-donor reagents have been shown to have a potential to separate trivalent actinides from lanthanides. 2,2':6,2''-terpyridine as extractant follows the CHON-principle and can in synergy with 2-bromodecanoic acid separate americium from europium. Distribution ratios for americium and europium, in the range of 0.02-0.12 M nitric acid, between nitric acid and 0.02 M terpyridine with 1 M 2-bromodecanoic acid in tert-butylbenzene (TBB) was investigated. Comparison with other nitrogen-donor reagents show that increasing lipophilicity of the molecule, by substitution of

  19. Survey of metallurgical recycling processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pemsler, J.P.

    1979-03-01

    In the year 2000, the US will consume about 3.2 x 10/sup 15/ Btu to produce the seven major nonferrous metals Al, Cu, Zn, Pb, Ni, Mg, and Ti. Of this amount, 82% will be used in the production of Al. It is projected that 0.6 x 10/sup 15/ Btu will be saved by the recycle of secondary metals. Major opportunities for increasing the extent of recycle and thereby increasing the energy savings are discussed. An inherent feature in the energistics of recycle is that physical processes such as magnetic separation, density separations, melting, and in some instances vaporization are far less energy intensive than are chemical processes associated with dissolution and electrowinning. It is in the domain of scrap of complex composition and physical form, difficult to handle by existing technology, that opportunities exist for new chemical recycle technology. Recycle of scrap metal of adequate grade is currently achieved through pyrometallurgical processes which, in many cases, are not very energy intensive as compared with hydrometallurgical processes. Preliminary flowsheets are presented for the recovery of value metals from batteries considered for use in vehicular propulsion and load leveling applications. The battery types examined are lead/acid, nickel/zinc, nickel/iron, zinc/chlorine, lithium-aluminum/iron sulfide, and sodium/sulfur. A flow sheet has been outlined for an integrated hydrometallurgical process to treat low-grade copper scrap. A fully integrated hydrometallurgical process is outlined, and costs and energy consumption are derived, for recovering zinc metal from electric furnace flue dusts. Costs and energy are high and the process does not appear to warrant development at this time. Improvement in the recycle of magnesium is associated primarily with improved recycle in the Al industry where Mg is an important alloy additive. Ni and Ti recycle are associated with improved collection and sorting of stainless steel and specialty alloys.

  20. Concrete recycling as a step towards environmental protection - an overview and evaluation of concrete recycling methods

    Directory of Open Access Journals (Sweden)

    Katarzyna Kalinowska-Wichrowska

    2018-04-01

    Full Text Available The article contains the data on the state of natural aggregate resources and attention has been paid to the enormous scale of the production of concrete and produced rubble-concrete waste in the world. The methods of recycling concrete debris used in the world along with their subjective assessment are presented in the paper. The legal regulations on concrete recycling defined by the European Union and Polish law are briefly characterized. The use of an appropriately effective method of recycling concrete debris allows obtaining a high quality secondary aggregate, which can be reused for the production of new concrete and reduces the consumption of natural aggregates.

  1. A Disoriented Chiral Condensate Search at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Convery, Mary Elizabeth [Case Western Reserve U.

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC's) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on a pseudorapidity of about 4. The use of standard Monte Carlo simulations (PYTHIA, GEANT) is described, along with the simulation created by the MiniMax Collaboration to generate DCC domains. A description of the data analysis software is given, including detailed studies of its performance on data from the simulations. A set of robust observables is derived. These are insensitive to many efficiencies and to the details of the modeling of the parent pion production mechanisms, yet have distinguishable values for DCC and generic charged-neutral distributions. Simulations show that the robust observables are insensitive to detector efficiencies and to systematic errors in the data analysis software. The resulting values for robust observables for approximately 1.5 million events are shown to be consistent with production by only generic mechanisms. Results from samples of diffractive-tagged events and of high-multiplicity events also show no evidence for DCC.

  2. Geodetic determinations for the NuMI project at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1999-07-01

    As a part of the Neutrinos at the Main Injector (NuMI) project, the MINOS (Main Injector Neutrino Oscillation Search) experiment will search for neutrino mass by looking for neutrino oscillations. The project plans to direct a beam of muon neutrinos from the Main Injector towards both nearby and far-off detectors capable of counting all three types of neutrinos. The beam will travel 735 km through the Earth towards a remote iron mine in northern Minnesota where, 710 m below surface, a massive 5400 metric tons detector will be built. For the neutrino energy spectrum physics test to work properly, the primary proton beam must be within {+-} 12 m from its ideal position at Soudan, MN, corresponding to {+-} 1.63 x 10-5 radians, i.e. 3.4 arc-seconds. Achieving this tolerance requires a rather exact knowledge of the geometry of the beam, expressed in terms of the azimuth and the slope of the vector joining the two sites. This paper summarizes the concepts, the methodology, the implementation, and the results of the geodetic surveying efforts made up to date for determining the absolute positions of the Fermilab and the Soudan underground mine sites, from which the beam orientation parameters are computed. (author)

  3. Bunch-by-bunch intensity monitor for Fermilab main ring

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    1983-01-01

    A bunch-by-bunch intensity monitor has been developed for the Fermilab Main Ring with future intended use in the Energy Doubler/Saver. The input signal is a beam doublet from a quarter wave stripline pickup that varies from 2 to 8 nanoseconds FWHM. The faithful integration of this pulse will produce an intensity signal proportional to the number of protons per bunch. The technique used is a fast integrate, hold, and damp. The intensity output is then made available for digitizing in the Snapshot Digitizer System. Beam losses at various points of the accelerating cycle may then be monitored on a bunch-by-bunch basis. The intensity monitor requires, in addition to the beam doublet, the input of a synchronized VCO. It is important that the group delay of both the VCO and beam input lines be identical so as not to change the phase relationship between the two as the RF is frequency modulated during acceleration. The doublet input dynamic range adjustment is a switched bank of coaxial attenuators. Their selection is based on predicted beam intensity for each accelerator cycle. A block diagram of the intensity monitor is provided

  4. A disoriented chiral condensate search at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Convery, M.E.

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of open-quotes disoriented vacuumclose quotes might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC's) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity η ∼ 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events

  5. Geodetic determinations for the NuMI project at Fermilab

    International Nuclear Information System (INIS)

    Bocean, V.

    1999-01-01

    As a part of the Neutrinos at the Main Injector (NuMI) project, the MINOS (Main Injector Neutrino Oscillation Search) experiment will search for neutrino mass by looking for neutrino oscillations. The project plans to direct a beam of muon neutrinos from the Main Injector towards both nearby and far-off detectors capable of counting all three types of neutrinos. The beam will travel 735 km through the Earth towards a remote iron mine in northern Minnesota where, 710 m below surface, a massive 5400 metric tons detector will be built. For the neutrino energy spectrum physics test to work properly, the primary proton beam must be within ± 12 m from its ideal position at Soudan, MN, corresponding to ± 1.63 x 10-5 radians, i.e. 3.4 arc-seconds. Achieving this tolerance requires a rather exact knowledge of the geometry of the beam, expressed in terms of the azimuth and the slope of the vector joining the two sites. This paper summarizes the concepts, the methodology, the implementation, and the results of the geodetic surveying efforts made up to date for determining the absolute positions of the Fermilab and the Soudan underground mine sites, from which the beam orientation parameters are computed. (author)

  6. Recycled Concrete as Aggregate for Structural Concrete Production

    OpenAIRE

    Mirjana Malešev; Vlastimir Radonjanin; Snežana Marinković

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycle...

  7. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  9. Japan's fuel recycling policy

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Atomic Energy Commission (AEC) has formulated Japanese nuclear fuel recycling plan for the next 20 years, based on the idea that the supply and demand of plutonium should be balanced mainly through the utilization of plutonium for LWRs. The plan was approved by AEC, and is to be incorporated in the 'Long term program for development and utilization of nuclear energy' up for revision next year. The report on 'Nuclear fuel recycling in Japan' by the committee is characterized by Japanese nuclear fuel recycling plan and the supply-demand situation for plutonium, the principle of the possession of plutonium not more than the demand in conformity with nuclear nonproliferation attitude, and the establishment of a domestic fabrication system of uranium-plutonium mixed oxide fuel. The total plutonium supply up to 2010 is estimated to be about 85 t, on the other hand, the demand will be 80-90 t. The treatment of plutonium is the key to the recycling and utilization of nuclear fuel. By around 2000, the private sector will commercialize the fabrication of the MOX fuel for LWRs at the annual rate of about 100 t. Commitment to nuclear nonproliferation, future nuclear fuel recycling program in Japan, MOX fuel fabrication system in Japan and so on are reported. (K.I.)

  10. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  11. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  12. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  13. Aspects of operation of the Fermilab Booster RF System at very high intensity

    International Nuclear Information System (INIS)

    Griffin, J.E.

    1996-04-01

    The purpose of this note is to examine the likelihood and problems associated with operation of the Fermilab Booster rf systems as it presently exists, or with only minor modifications, at beam intensity approaching 5x10 13 protons per pulse. Beam loading of the rf system at such an intensity will be one order of magnitude larger than at the present operation level. It is assumed that the injection energy will be raised to 1 GeV with no major increase in the injected energy spread (longitudinal emittance). The beam will be bunched by adiabatic capture as is presently done although it may be necessary to remove one or two bunches prior to acceleration to allow clean extraction at 8 GeV. At very high intensity the charge in each bunch will interact with the vacuum chamber impedance (and with itself) in such a way as to reduce in some cases the bucket area generated by the rf voltage. Because this decrement must be made up by changes in the rf ring voltage if the required bucket area is to be maintained, these effects must be taken into consideration in any analysis of the capability of the rf system to accelerate very large intensity

  14. Conceptual Design Report: Fermilab Main Injector - Technical Components and Civil Construction, April 1992 (Rev. 3.1)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-04-01

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Fermilab Main Injector (FMI). The construction of this accelerator will simultaneously result in significant enhancements to both the Fermilab collider and fixed target programs. The FMI is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The FMI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the FMI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the FMI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two-tothree. In addition the FMI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  15. Comparative analysis of old, recycled and new PV modules

    Directory of Open Access Journals (Sweden)

    Haroon Ashfaq

    2017-01-01

    Full Text Available This paper presents comparative analysis of old, recycled and new PV modules. It is possible to recycle even very old products by modern standard processes in a value-conserving manner. About 90% of the materials recovered from solar panels can be recycled into useful products. Carbon emission and energy cost are low in manufacturing recycled SPV. Modules can be manufactured with recycled materials and reinstalled in systems as a full quality product with today’s technology good for another 25–30 years. Analysis of all the models of PV module is done with the help of MATLAB. This helps in comparison and proves the effectiveness of the recycled PV module based systems.

  16. Constrained recycling: a framework to reduce landfilling in developing countries.

    Science.gov (United States)

    Diaz, Ricardo; Otoma, Suehiro

    2013-01-01

    This article presents a model that integrates three branches of research: (i) economics of solid waste that assesses consumer's willingness to recycle and to pay for disposal; (ii) economics of solid waste that compares private and social costs of final disposal and recycling; and (iii) theories on personal attitudes and social influence. The model identifies two arenas where decisions are made: upstream arena, where residents are decision-makers, and downstream arena, where municipal authorities are decision-makers, and graphically proposes interactions between disposal and recycling, as well as the concept of 'constrained recycling' (an alternative to optimal recycling) to guide policy design. It finally concludes that formative instruments, such as environmental education and benchmarks, should be combined with economic instruments, such as subsidies, to move constraints on source separation and recycling in the context of developing countries.

  17. Recycling as moral behaviour

    DEFF Research Database (Denmark)

    Thøgersen, John

    of Reasoned Action (TRA) with regard to understanding recycling behaviour. Further, examples of misleading policy conclusions are discussed suggested that within the framework of cognitive psychology, Schwartz's model of altruistic behaviour offers a more satisfying starting point for understanding recycling...... of the balance of costs and benefits. Rather, they are a function of the person's moral beliefs, i.e., beliefs in what is the right or wrong thing to do. The paper gives a brief review of the literature with the intention of uncovering problems and shortcomings in the framework of the SEU-model and the Theory...

  18. What do we know about metal recycling rates?

    Science.gov (United States)

    Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hageluken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.

    2011-01-01

    The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end-of-life recycling rates (EOL-RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in-use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low-cost (which thereby keeps down the price of scrap), many EOL-RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL-RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors. ?? 2011 by Yale University.

  19. Business Plan: Paper Recycling Plant

    OpenAIRE

    Ali, Muhammad; Askari, Sana; Salman, Muhammad; Askari, Sheba

    2008-01-01

    This Business Plan was written for Business Plan competition organized by Ministry of Youth Affairs Government of Pakistan. It explains the paper recycling business, its pros and cons, cost of paper recycling, plant options and feasibility.

  20. A 96 channel receiver for the ILCTA LLRF system at Fermilab

    International Nuclear Information System (INIS)

    Mavric, Uros; Chase, Brian; Branlard, Julien; Cullerton, Ed; Klepec, Dan; Fermilab

    2007-01-01

    The present configuration of an ILC main LINAC RF station has 26 nine cell cavities driven from one klystron. With the addition of waveguide power coupler monitors, 96 RF signals will be down-converted and processed. A down-converter chassis is being developed that contains 12 eight channel analog modules and a single upconverter module. This chassis will first be deployed for testing a cryomodule composed of eight cavities located at New Muon Laboratory (NML) - Fermilab. Critical parts of the design for LLRF applications are identified and a detailed description of the circuit with various characteristic measurements is presented. The board is composed of an input band-pass filter centered at 1.3GHz, followed by a mixer, which down-converts the cavity probe signal to a proposed 13 MHz intermediate frequency. Cables with 8 channels per connector and good isolation between channels are being used to interconnect each down-converter module with a digital board. As mixers, amplifiers and power splitters are the most sensitive parts for noise, nonlinearities and crosstalk issues, special attention is given to these parts in the design of the LO port multiplication and distribution

  1. Forward-Backward Asymmetry of Top Quark Pair Productionn at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ziqing [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    This dissertation presents the final measurements of the forward-backward asymmetry (AFB) of top quark-antiquark pair events (t t-) at the Collider Detector at Fermilab (CDF) experiment. The t t- events are produced in proton{anti-proton collisions with a center of mass energy of 1:96 TeV during the Run II of the Fermilab Tevatron. The measurements are performed with the full CDF Run II data (9.1 fb-1) in the final state that contain two charged leptons (electrons or muons, the dilepton final state), and are designed to con rm or deny the evidence-level excess in the AFB measurements in the final state with a single lepton and hadronic jets (lepton+jets final state) as well as the excess in the preliminary measurements in the dilepton final state with the first half of the CDF Run II data. New measurements include the leptonic AFB (AlFB), the lepton-pair AFB (All FB) and the reconstructed top AFB (At t FB). Each are combined with the previous results from the lepton+jets final state measured at the CDF experiment. The inclusive Al FB, All FB, and At t FB measured in the dilepton final state are 0.072 ± 0.060, 0.076 ± 0.081, and 0.12 ± 0.13, to be compared with the Standard Model (SM) predictions of 0.038 ± 0.003, 0.048 ± 0.004, and 0.010 ± 0.006, respectively. The CDF combination of AlFB and At t FB are 0.090+0:028 -0.026, and 0.160 ± 0.045, respectively. The overall results are consistent with the SM predictions.

  2. Beam Diagnosis and Lattice Modeling of the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao [Indiana Univ., Bloomington, IN (United States)

    2005-09-01

    A realistic lattice model is a fundamental basis for the operation of a synchrotron. In this study various beam-based measurements, including orbit response matrix (ORM) and BPM turn-by-turn data are used to verify and calibrate the lattice model of the Fermilab Booster. In the ORM study, despite the strong correlation between the gradient parameters of adjacent magnets which prevents a full determination of the model parameters, an equivalent lattice model is obtained by imposing appropriate constraints. The fitted gradient errors of the focusing magnets are within the design tolerance and the results point to the orbit offsets in the sextupole field as the source of gradient errors. A new method, the independent component analysis (ICA) is introduced to analyze multiple BPM turn-by-turn data taken simultaneously around a synchrotron. This method makes use of the redundancy of the data and the time correlation of the source signals to isolate various components, such as betatron motion and synchrotron motion, from raw BPM data. By extracting clean coherent betatron motion from noisy data and separates out the betatron normal modes when there is linear coupling, the ICA method provides a convenient means to measure the beta functions and betatron phase advances. It also separates synchrotron motion from the BPM samples for dispersion function measurement. The ICA method has the capability to separate other perturbation signals and is robust over the contamination of bad BPMs. The application of the ICA method to the Booster has enabled the measurement of the linear lattice functions which are used to verify the existing lattice model. The transverse impedance and chromaticity are measured from turn-by-turn data using high precision tune measurements. Synchrotron motion is also observed in the BPM data. The emittance growth of the Booster is also studied by data taken with ion profile monitor (IPM). Sources of emittance growth are examined and an approach to cure

  3. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  4. Recycling of the #5 polymer.

    Science.gov (United States)

    Xanthos, Marino

    2012-08-10

    Polypropylene (PP) is a widely used plastic with consumer applications ranging from food packaging to automotive parts, including car battery casings. To differentiate it from other recyclable plastics, it is designated as #5. Here, the factors contributing to PP recycling rates are briefly reviewed. Considerations include collection and separation efficiency, processing chemistry, and market dynamics for the products derived from recyclates.

  5. The Recycle Team.

    Science.gov (United States)

    Scott, Roger; And Others

    This guide provides lessons that enable students to learn how important it is for each of us to take care of the environment by minimizing the problems caused by too much trash. In the 10 lessons included here, students and their families learn how they can be part of the solution by practicing source reduction and by reusing, recycling, and…

  6. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study wa...

  7. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  8. Current and future priorities for mass and material in silicon PV module recycling

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.L.; Geerligs, L.J.; Goris, M.J.A.A.; Bennett, I.J. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Clyncke, J. [PV CYCLE, Rue Montoyer 23, 1000 Brussels (Belgium)

    2013-10-15

    A full description of the state-of-the-art PV recycling methods and their rationale is presented, which discusses the quality of the recycled materials and the fate of the substances which end up in the landfill. The aim is to flag the PV module components currently not recycled, which may have a priority in terms of their embedded energy, chemical nature or scarcity, for the next evolution of recycling. The sustainability of different recycling options, emerging in the literature on electronic waste recycling, and the possible improvement of the environmental footprint of silicon PV modules, will be discussed.

  9. The Cms Forward Calorimeter Prototype Design Studies And Omega(c)o Search At E781 Experiment At Fermilab

    CERN Document Server

    Ayan, A S

    2004-01-01

    In the first part, the Compact Muon Solenoid (CMS) forward calorimeter design studies are presented. The forward calorimeter consists of quartz fibers embedded in a steel absorber. Radiation damage studies of the quartz fiber and the absorber as well as the results of the first pre-production prototype PPP-I are presented. In the second part, the W0c search studies at the SELEX (E781) experiment at FermiLab are presented. 107 ± 22 W0c events are observed in three decay modes. The relative branching ratio &parl0;W0c→W- p- p+p+&parr0; /B&parl0;W0c→ W- p+&parr0; is measured as 2.00 ± 0.45(stat) ± 0.32(sys).

  10. Practitioners Recycling Attitude and Behaviour in the Australian Construction Industry

    Directory of Open Access Journals (Sweden)

    Vivian W. Y. Tam

    2018-04-01

    Full Text Available Construction waste management and recycling is widely discussed. However, at present there is still a significant amount of waste generated during the construction process. Considering this fact, this research aims to analyse the recycling attitudes and behaviours in the Australian construction industry. This paper investigates attitudes and behaviour towards recycling habits in construction; understands how recycling is viewed and carried out by practitioners in the industry; explains the causes of these states of mind; and formulates techniques that could be utilized to improve waste management and recycling acceptance within the industry and improve its effectiveness. Initially, the required data was collected through a questionnaire survey. Afterwards, a statistical analysis was carried out using SPSS software. It was found that the practitioners’ attitude towards recycling habits are positive; however, their behaviour is not as strong as it should be. This means that the industry is aware and concerned about recycling in construction and willing to improve the environment by developing recycling habits. Recommendations to improve attitudes and behaviour towards recycling habits are also suggested, such as legislation and market driven developments, improvements of waste management methods, provisions in work method statements, sharing research and applications in sub-industries and developing communication.

  11. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  12. Frontiers and prospects for recycling Waste Electrical and Electronic ...

    African Journals Online (AJOL)

    This paper reviews the frontlines and projections for the recycling of waste electrical and electronic equipment (WEEE) in Nigeria. The paper identified the sources of WEEE, showed chemical characterization of some WEEE components and presented measures to minimize these wastes through recycling opportunities.

  13. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder ...

  14. Recycling of wastes as a strategy for environmental conservation in ...

    African Journals Online (AJOL)

    AGHOGHO A

    groups were analyzed. The findings indicate that recycling of polythene papers and water hyacinth plants contribute to environmental conservation, as well presenting opportunities for the creation of wealth among women in the groups. Key words: Environmental conservation, recycling, women groups, roles, opportunities.

  15. Length and time scales of atmospheric moisture recycling

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.

    2011-01-01

    It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to

  16. Operational history of Fermilab's 1500 W refrigerator used for energy saver magnet production testing

    International Nuclear Information System (INIS)

    Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.W.; Cooper, W.E.

    1985-09-01

    The 1500 W helium refrigerator system utilizes two oil-injected screw compressors staged to feed a liquid nitrogen pre-cooled cold box. Refrigeration is provided by two Sulzer TGL-22 magnetic/gas bearing turbines. The refrigerator feeds six magnet test stands via a 10,000 L dewar and subcooler equipped distribution box. The design of the controls has permitted the system to be routinely operated 24 hours/day, seven days/week with only five operators. It has operated approximately 90% of the 4-1/2 years prior to shutting down in 1984 for a period of one year to move the compressor skid. Scheduled maintenance, failures, repairs and holidays are about equal to the 10% off time. The equipment described was used to test approximately 1200 superconducting magnets for the Fermilab accelerator ring. The seven year operating experience is presented as an equipment and technique review. Compressor hours currently exceed 42,000 and turbine hours exceed 39,000 each. Failure rates, causes, preventive maintenance, monitoring practices and equipment, and modifications are examined along with notes on some of the more successful applications of technique and equipment. 4 refs

  17. Measurement of Quark Energy Loss in Cold Nuclear Matter at Fermilab E906/SeaQuest

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Po-Ju [Univ. of Colorado, Boulder, CO (United States)

    2017-01-01

    Parton energy loss is a process within QCD that draws considerable interest. The measurement of parton energy loss can provide valuable information for other hard-scattering processes in nuclei, and also serves as an important tool for exploring the properties of the quark-gluon plasma (QGP). Quantifying the energy loss in cold nuclear matter will help to set a baseline relative to energy loss in the QGP. With the Drell-Yan process, the energy loss of incoming quarks in cold nuclear matter can be ideally investigated since the final state interaction is expected to be minimal. E906/SeaQuest is a fixed-target experiment using the 120 GeV proton beam from the Fermilab Main Injector and has been collecting data from p+p, p+d, p+C, p+Fe, and p+W collisions. Within the E906 kinematic coverage of Drell-Yan production via the dimuon channel, the quark energy loss can be measured in a regime where other nuclear effects are expected to be small. In this thesis, the study of quark ener gy loss from different cold nuclear targets is presented.

  18. FPGA-based trigger system for the Fermilab SeaQuest experimentz

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Shiuan-Hal, E-mail: shshiu@phys.sinica.edu.tw [Institute of Physics, Academia Sinica,128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan (China); Department of Physics, National Central University, No. 300, Jhongda Rd., Jhongli District, Taoyuan City 32001, Taiwan (China); Wu, Jinyuan [Fermi National Accelerator Laboratory, Kirk and Pine Streets, Batavia, IL 60510-5011 (United States); McClellan, Randall Evan [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801-3080 (United States); Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu [Institute of Physics, Academia Sinica,128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan (China); Gilman, Ron [Rutgers, The State University of New Jersey, 136 Frelinghuysen Rd., Piscataway, NJ 08854 (United States); Nakano, Kenichi [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Peng, Jen-Chieh [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801-3080 (United States); Wang, Su-Yin [Institute of Physics, Academia Sinica,128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan (China); Fermi National Accelerator Laboratory, Kirk and Pine Streets, Batavia, IL 60510-5011 (United States); Department of Physics, National Kaohsiung Normal University, No. 62, Shenjhong Rd.,Yanchao Township, Kaohsiung County 824, Taiwan (China)

    2015-12-01

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ{sup +} and μ{sup −} produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.

  19. Initial beam-profiling tests with the NML prototype station at the Fermilab A0 Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.; Flora, R.; Johnson, A.S.; Ruan, J.; Santucci, J.; Scarpine, V.; Sun, Y.-E.; Thurman-Keup, R.; Church, M.; Wendt, M.; /Fermilab

    2011-03-01

    The beam-profile diagnostics station prototype for the superconducting rf electron linac being constructed at Fermilab at the New Muon Lab has been tested. The station uses intercepting radiation converter screens for the low-power beam mode: either a 100-{micro}m thick YAG:Ce single crystal scintillator or a 1-{micro}m thin Al optical transition radiation (OTR) foil. The screens are oriented with the surface perpendicular to the beam direction. A downstream mirror with its surface at 45 degrees to the beam direction is used to direct the radiation into the optical transport. The optical system has better than 20 (10) {micro}m rms spatial resolution when covering a vertical field of view of 18 (5) mm. The initial tests were performed at the A0 Photoinjector at a beam energy of {approx}15 MeV and with micropulse charges from 25 to 500 pC for beam sizes of 45 to 250 microns. Example results will be presented.

  20. The laser control of the muon g‑2 experiment at Fermilab

    Science.gov (United States)

    Anastasi, A.; Anastasio, A.; Avino, S.; Basti, A.; Bedeschi, F.; Boiano, A.; Cantatore, G.; Cauz, D.; Ceravolo, S.; Corradi, G.; Dabagov, S.; Di Meo, P.; Driutti, A.; Di Sciascio, G.; Di Stefano, R.; Escalante, O.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Gabbanini, C.; Gagliardi, G.; Gioiosa, A.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Incagli, M.; Karuza, M.; Kaspar, J.; Lusiani, A.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Nath, A.; Pauletta, G.; Piacentino, G. M.; Raha, N.; Santi, L.; Smith, M. W.; Venanzoni, G.

    2018-02-01

    The Muon g‑2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, aμ=(gμ‑2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state-of-art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale. The calibration system is composed of six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons. A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance. Here we present and discuss the main features of the Laser Control board.

  1. Test results from Fermilab 1.5 m model SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Koska, W.; Bossert, R.; Carson, J.; Coulter, K.J.; Delchamps, S.; Gourlay, S.; Jaffery, T.S.; Kinney, W.; Lamm, M.J.; Ozelis, J.P.; Strait, J.; Wake, M.

    1991-09-01

    We will present results from tests of 1.5 m model SSC collider dipole magnets. These R ampersand D magnets are identical to the 15 m full length dipoles currently being assembled at Fermilab in all important aspects except length. Because of their small size they can be built faster and tested more extensively than the long magnets. The model magnets are used to optimize design parameters for, and to indicate the performance which can be expected from, the 15 m magnets. The are instrumented with voltage taps over the first two current blocks for quench localization and with several arrays of strain gauge transducers for the study of mechanical behavior. The stress at the poles of the inner and outer coils is monitored during construction and, along with end force and shell strain, during excitation. Magnetic measurements are made several times during each magnet's lifetime, including at operating temperature and field. We will report on studies of the quench performance, mechanical behavior and magnetic field of these magnets

  2. A Panel Prototype for the Mu2e Straw Tube Tracker at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Lucà, Alessandra [Fermilab

    2017-10-10

    The Mu2e experiment will search for coherent, neutrino-less conversion of muons into electrons in the Coulomb field of an aluminum nucleus with a sensitivity of four orders of magnitude better than previous experiments. The signature of this process is an electron with energy nearly equal to the muon mass. Mu2e relies on a precision (0.1%) measurement of the outgoing electron momentum to separate signal from background. In order to achieve this goal, Mu2e has chosen a very low-mass straw tracker, made of 20,736 5 mm diameter thin-walled (15 $\\mu$m) Mylar straws, held under tension to avoid the need for supports within the active volume, and arranged in an approximately 3 m long by 0.7 m radius cylinder, operated in vacuum and a 1 T magnetic field. Groups of 96 straws are assembled into modules, called panels. We present the prototype and the assembly procedure for a Mu2e tracker panel built at Fermilab

  3. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    International Nuclear Information System (INIS)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  4. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; /Fermilab; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2011-01-01

    We present results from a precision simulation of the electron cloud (EC) in the Fermilab Main Injector using the code VORPAL. This is a fully 3d and self consistent treatment of the EC. Both distributions of electrons in 6D phase-space and E.M. field maps have been generated. This has been done for various configurations of the magnetic fields found around the machine have been studied. Plasma waves associated to the fluctuation density of the cloud have been analyzed. Our results are compared with those obtained with the POSINST code. The response of a Retarding Field Analyzer (RFA) to the EC has been simulated, as well as the more challenging microwave absorption experiment. Definite predictions of their exact response are difficult to obtain,mostly because of the uncertainties in the secondary emission yield and, in the case of the RFA, because of the sensitivity of the electron collection efficiency to unknown stray magnetic fields. Nonetheless, our simulations do provide guidance to the experimental program.

  5. The Fernald Waste Recycling Program

    International Nuclear Information System (INIS)

    Motl, G.P.

    1993-01-01

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such as off-site disposal or on-site storage. Recognizing the strategic implications of recycling, this paper outlines the criteria used at Fernald to make recycle decisions and highlights several of Fernald's current recycling initiatives

  6. The unrivalled expertise for Pu recycling

    International Nuclear Information System (INIS)

    Fournier, W.; Pouilloux, M.

    1997-01-01

    Relying on the outstanding performances of the reprocessing facilities and the growing fabrication facilities, the in-reactor Pu recycling program in France and in other European countries is steadily implemented and has reached full-scale industrial operation. The RCR strategy -Reprocessing, Conditioning and Recycling- developed by COGEMA is now a well proven industrial reality. In 1997, plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA is the main actor, on operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and DESSEL plant (in Belgium). Present MOX production capacity available to COGEMA fits 175 tHM per year and will be extended to reach about 325 tHM in the year 2000, that will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX production assured by high technology processes confers COGEMA an unrivalled expertise for Pu recycling. This allows COGEMA to be a major actor in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. The paper depicts the steps of the progressive advance of COGEMA to reach the Pu recycling expertise. (author)

  7. From the CERN web: Collide@CERN, Fermilab neutrinos and more

    CERN Multimedia

    2015-01-01

    This new section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   Ruth Jarman and Joe Gerhardt. (Photo: Matthias H. Risse). Collide@CERN Ars Electronica Award goes to “Semiconductor” 10 August – Collide@CERN Ruth Jarman and Joe Gerhardt, two English artists collaborating under the name Semiconductor, are this year’s recipients of the Collide@CERN Ars Electronica Award. In the coming months, they will begin a two-month residency at CERN.  Continue to read…     Illustration: Fermilab/Sandbox Studio.   Fermilab experiment sees neutrinos change over 500 miles 7 August - Fermilab press release Scientists on the NOvA experiment saw their first evidence of oscillating neutrinos, confirming that the extraordinary detector built for the project not only functions as planned but is also making great p...

  8. The coming revolution in particle physics: Report of the Fermilab Long Range Planning Committee

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Appel et al.

    2004-06-22

    In early 2003, the Fermilab Director formed a committee (Appendix A) to examine options for the long-range future of Fermilab. Specifically, the committee was asked to respond to a charge (Appendix B), which laid out the assumptions, which were to underlie our discussions. The committee met a few times during the spring of 2003 and formulated a plan of action. It identified a number of issues that deserved attention, and a subcommittee was formed to focus on each. We agreed that in addressing these key issues, a broader participation was appropriate. The manner in which that was achieved varied from subcommittee to subcommittee to group. In some cases the expanded membership participated in all the discussions, in others, particular presentations were solicited and heard. Some subgroups met regularly over several months, others convened only for a small number of discussions. We have attempted to list participants in Appendix C. General presentations indicating the purpose of the work were given, for example at the Fermilab Users Annual Meeting. Towards the end of the summer some sense of direction developed and a series of open meetings was organized by the different subgroups. These meetings of two and more hour's duration gave the broader laboratory and user community a further chance to react to perceived directions and to make their opinions known. They were extremely well attended. In all, nearly 100 people have participated in the process including the development of initial drafts and proto-recommendations. A larger number attended the various open sessions. It is therefore likely, even expected, that the general thrusts of this report are no surprise. Nevertheless, the committee met in a number of plenary closed sessions including a two-day retreat in which all the issues were discussed and a common view was developed. The Director and Deputy Director heard and interacted with the discussions in most of these meetings. In attempting to converge, we

  9. Recycling of steelmaking dusts: The Radust concept

    Directory of Open Access Journals (Sweden)

    Jalkanen H.

    2005-01-01

    Full Text Available Recycling of dusts and other wastes of steelmaking is becoming to a necessity of two reasons: due to high contents of iron oxides dusts are valuable raw material for steelmaking and tightening environmental legislation makes the landfill disposal of wastes more expensive. Fine dust fractions from various stages of steelmaking route contain besides iron and carbon heavy metals especially zinc and lead and heavy hydrocarbons that are acceptable neither for landfill disposal nor for recycling back to processes without any spe4cial treatments. Some theoretical and practical aspects concerning high temperature treatments of steelmaking dusts for removal of hazardous components and production of clean high iron raw material for recycling is discussed in this paper. The Radust technology developed at Koverhar steelwork in Finland for treatment of the most problematic fine fractions of blast furnace and oxygen converter dusts is shortly presented and discussed.

  10. A utility analysis of MOX recycling policy

    International Nuclear Information System (INIS)

    Pfaeffli, J.L.

    1990-01-01

    The author presents the advantages of recycling of plutonium and uranium from spent reactor fuel assemblies as follows: natural uranium and enrichment savings, mixed oxide fuel (MOX) fuel assembly cost, MOX compatibility with plant operation, high burnups, spent MOX reprocessing, and non-proliferation aspects.Disadvantages of the recycling effort are noted as well: plutonium degradation with time, plutonium availability, in-core fuel management, administrative authorizations by the licensings authorities, US prior consent, and MOX fuel fabrication capacity. Putting the advantages and disadvantages in perspective, it is concluded that the recycling of MOX in light water reactors represents, under the current circumstances, the most appropriate way of making use of the available plutonium

  11. Comments on recycling and hydrogen inventory

    International Nuclear Information System (INIS)

    Philipps, V.

    1987-01-01

    Recycling behavior in tokamaks with metals walls can be understood based on material parameters of diffusion constants, recombination rates, solubilities, etc. of hydrogen in metals. The expected recycling in fusion devices with carbon walls is believed to be determined by the saturation of graphite due to hydrogen impact. This would result in R 1 after a transient pumping with R < 1 and further change in the recycling would be only caused by temperature excursions of the walls. In contrast, present observations in tokamaks (JET, TFTR, TEXTOR) can not be explained by this simple picture. The final clarification of the observed phenomena is still open. The answer to this behavior will also drastically influence the expected tritium inventory in fusion machines

  12. Conceptual Design Report: Fermilab Main Injector - Technical Components and Civil Construction, April 1992 (Rev. 3.1)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1992-04-01

    This report contains a description of the design and cost estimation of a new 150 GeV accelerator, designated the Fermilab Main Injector (FMI). The construction of this accelerator will simulataneously result in significant enhancements to both the Fermilab collider and fixed target programs.

  13. Environmental decision making for recycling options

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    1997-01-01

    A general method for finding new recycling alternatives in the metals producing industry is presented and tested on two printed wire board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where...... the scrap constitutes the least enviromental problem and where resource recovery is largest. It is clearly shown with the two printed wire board scrap cases that the currently used copper recycling scenario is environmentally inferior to the tin and lead primary production scenarios....

  14. Progress on the Design of a Perpendicularly Biased 2nd Harmonic Cavity for the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, R. L. [Fermilab; Dey, J. E. [Fermilab; Duel, K. L. [Fermilab; Kuharik, J. C. [Fermilab; Pellico, W. A. [Fermilab; Reid, J. S. [Fermilab; Romanov, G. [Fermilab; Slabough, M. [Fermilab; Sun, D. [Fermilab; Tan, C. Y. [Fermilab; Terechkine, I. [Fermilab

    2016-10-01

    perpendicularly biased 2nd harmonic cavity is being designed and built for the Fermilab Booster. Its purpose is to flatten the bucket at injection and thus change the longitudinal beam distribution to decrease space charge effects. It can also help at extraction. The cavity frequency range is 76 – 106 MHz. The power amplifier will be built using the Y567B tetrode, which is also used for the fundamental mode cavities in the Fermilab Booster. We discuss recent progress on the cavity, the biasing solenoid design and plans for testing the tuner's garnet material

  15. Experiment and simulations of sub-ps electron bunch train generation at Fermilab photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.-E; Church, M.; /Fermilab; Piot, P.; Prokop, C.R.; /Fermilab /Northern Illinois U.

    2011-10-01

    Recently the generation of electron bunch trains with sub-picosecond time structure has been experimentally demonstrated at the A0 photoinjector of Fermilab using a transverse-longitudinal phase-space exchange beamline. The temporal profile of the bunch train can be easily tuned to meet the requirements of the applications of modern accelerator beams. In this paper we report the A0 bunch-train experiment and explore numerically the possible extension of this technique to shorter time scales at the Fermilab SRF Accelerator Test Facility, a superconducting linear electron accelerator currently under construction in the NML building.

  16. UNIX trademark in high energy physics: What we can learn from the initial experiences at Fermilab

    International Nuclear Information System (INIS)

    Butler, J.N.

    1991-03-01

    The reasons why Fermilab decided to support the UNIX operating system are reviewed and placed in the content of an overall model for high energy physics data analysis. The strengths and deficiencies of the UNIX environment for high energy physics are discussed. Fermilab's early experience in dealing with a an ''open'' multivendor environment, both for computers and for peripherals, is described. The human resources required to fully exploit the opportunities are clearly growing. The possibility of keeping the development and support efforts within reasonable bounds may depend on our ability to collaborate or at least to share information even more effectively than we have in the past. 7 refs., 4 figs., 5 tabs

  17. Production of radionuclides and their migration in groundwater: a Fermilab case history model

    International Nuclear Information System (INIS)

    Malensek, A.J.

    1997-08-01

    Particle accelerators that are buried underground like those at Fermilab create a condition where soil can be activated. Naturally percolating groundwater becomes contaminated by leaching out some of the radioactivity as it migrates through the soil to the underlying aquifer. The Fermilab Concentration Model was formulated to account for and combine the fundamental processes of production, leaching, and migration. Its general features are described, then site-specific data from one of the target stations are used to make calculations and compare them to regulatory limits and DOE guidelines

  18. The Fermilab main injector dipole construction techniques and prototype magnet measurements

    International Nuclear Information System (INIS)

    Bleadon, M.; Brown, B.; Chester, N.; Desavouret, E.; Garvey, J.; Glass, H.; Harding, D.; Harfoush, F.; Holmes, S.; Humbert, J.; Kerby, J.; Knauf, A.; Kobliska, G.; Lipski, A.; Martin, P.; Mazur, P.; Orris, D.; Ostiguy, J.; Peggs, S.; Pachnik, J.; Pewitt, E.; Satti, J.; Schmidt, E.; Sim, J.; Snowdon, S.; Walbridge, D.

    1991-09-01

    The Fermilab Main Injector Project will provide 120--150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. The design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T. 6 refs., 5 figs., 3 tabs

  19. Recycling phosphorus from wastewater

    DEFF Research Database (Denmark)

    Lemming, Camilla Kjærulff

    Phosphorus (P) is an essential plant nutrient and a non-renewable resource of which the future supply to agriculture is challenged by limited and geopolitical unevenly distributed mineral P reserves. Recycling of P from waste is an important mean to minimise the dependence on the limited mineral P...... recycling options. The work of this PhD focused on the plant P availability of sewage sludge, a P-rich residue from wastewater treatment which is commonly applied to agricultural soil in Denmark. The overall objective of the PhD work was to evaluate the plant availability of P in sewage sludge and other...... wastewater-derived products, and to relate this to the availability from other P-containing waste products and mineral P fertiliser. This included aspects of development over time and soil accumulation, as well as effects of soil pH and the spatial distribution in soil. The P sources applied in this PhD work...

  20. MIMO with Energy Recycling

    OpenAIRE

    Basciftci, Y. Ozan; Abdelaziz, Amr; Koksal, C. Emre

    2018-01-01

    We consider a Multiple Input Single Output (MISO) point-to-point communication system in which the transmitter is designed such that, each antenna can transmit information or harvest energy at any given point in time. We evaluate the achievable rate by such an energy-recycling MISO system under an average transmission power constraint. Our achievable scheme carefully switches the mode of the antennas between transmission and wireless harvesting, where most of the harvesting happens from the n...

  1. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  2. Usage of Recycled Pet

    OpenAIRE

    Tayyar, A. Ebru; Üstün, Sevcan

    2010-01-01

    The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PE...

  3. Usage of Recycled Pet

    OpenAIRE

    A. Ebru Tayyar; Sevcan Üstün

    2010-01-01

    The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bot...

  4. Aircraft Disposal and Recycle Cost Estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curran, Ricky; Borsato, M.; Wognum, N.; Peruzzini, M.; Stjepandić, J.; Verhagen, W.J.C.

    2016-01-01

    The present study develops a method for the sake of evaluating Disposal and Recycle (D&R) cost in view of the increasing demand in aircraft retirement. Firstly, a process model is extracted. The subordinated cost elements are also identified. Next, the cost aggregations based on the D&R

  5. Successful approaches to recycling urban wood waste

    Science.gov (United States)

    Solid Waste Association of North America

    2002-01-01

    This report presents eight case studies of successful urban wood waste recycling projects and businesses. These studies document the success of recovered products such as lumber and lumber products, mulch, boiler fuel, and alternative cover for landfills. Overall, wood waste accounts for about 17% of the total waste received at municipal solid waste landfills in the...

  6. Environmental decision making for recycling options

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    1997-01-01

    A general method for finding new recycling alternatives in the metals producing industry is presented and tested on two printed wire board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where ...

  7. Recycled Coarse Aggregate Produced by Pulsed Discharge in Water

    Science.gov (United States)

    Namihira, Takao; Shigeishi, Mitsuhiro; Nakashima, Kazuyuki; Murakami, Akira; Kuroki, Kaori; Kiyan, Tsuyoshi; Tomoda, Yuichi; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Ohtsu, Masayasu

    In Japan, the recycling ratio of concrete scraps has been kept over 98 % after the Law for the Recycling of Construction Materials was enforced in 2000. In the present, most of concrete scraps were recycled as the Lower Subbase Course Material. On the other hand, it is predicted to be difficult to keep this higher recycling ratio in the near future because concrete scraps increase rapidly and would reach to over 3 times of present situation in 2010. In addition, the demand of concrete scraps as the Lower Subbase Course Material has been decreased. Therefore, new way to reuse concrete scraps must be developed. Concrete scraps normally consist of 70 % of coarse aggregate, 19 % of water and 11 % of cement. To obtain the higher recycling ratio, the higher recycling ratio of coarse aggregate is desired. In this paper, a new method for recycling coarse aggregate from concrete scraps has been developed and demonstrated. The system includes a Marx generator and a point to hemisphere mesh electrode immersed in water. In the demonstration, the test piece of concrete scrap was located between the electrodes and was treated by the pulsed discharge. After discharge treatment of test piece, the recycling coarse aggregates were evaluated under JIS and TS and had enough quality for utilization as the coarse aggregate.

  8. Recycling retention functions

    International Nuclear Information System (INIS)

    Skrable, K.W.; Chabot, G.E.; Johnson, M.H.

    1981-01-01

    Beginning with the concept of any number of physiologically meaningful compartments that recycle material with a central extracellular fluid compartment and considering various excretion pathways, we solve the differential equations describing the kinetics by the method of Laplace to obtain concise algebraic expressions for the retentions. These expressions contain both fundamental and eigenvalue rate constants; the eigenvalue rate constants are obtained from the solution of a polynomial incorporating the fundamental rate constants. Mathematically exact expressions that predict the biodistribution resulting from continuous uptakes are used to obtain very simple mathematically exact steady state expressions as well as approximate expressions applicable to any time. These steady state and approximate expressions contain only the fundamental rate constants; also, they include a recycling factor that describes the increase in the biodistributions because of recycling. To obtain the values of the fundamental rate constants, short term kinetics studies along with data on the long term distributions are suggested. Retention functions obtained in this way predict both the short term and long term distributions; they therefore are useful in the interpretation of bioassay data and in the estimation of internal doses

  9. Hash sorter - firmware implementation and an application for the Fermilab BTeV level 1 trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Jinyuan Wu et al.

    2003-11-05

    A hardware hash sorter for the Fermilab BTeV Level 1 trigger system will be presented. The has sorter examines track-segment data before the data are sent to a system comprised of 2500 Level 1 processors, and rearranges the data into bins based on the slope of track segments. They have found that by using the rearranged data, processing time is significantly reduced allowing the total number of processors required for the Level 1 trigger system to be reduced. The hash sorter can be implemented in an FPGA that is already included as part of the design of the trigger system. Hash sorting has potential applications in a broad area in trigger and DAQ systems. It is a simple O(n) process and is suitable for FPGA implementation. Several implementation strategies will also be discussed in this document.

  10. Fabrication of a 3 m diameter x 5 m superconducting solenoid for the Fermilab collider detector facility

    International Nuclear Information System (INIS)

    Minemura, H.; Mori, S.; Yoshizaki, R.; Kondo, K.; Fast, R.; Kephart, R.; Wands, R.; Yamada, R.

    1984-01-01

    The 3m diameter x 5m (1.5 Tesla) superconducting solenoid for the Fermilab Collider Detector Facility (CDF) is under construction in Japan. The coil consists of a single layer aluminum-stabilized monolithic NbTi/Cu superconductor fabricated with the EFT (extrusion with front tension) method. The forced flow cooling method of two-phase helium is used. In order to minimize the material thickness of the solenoid the coil is built without a permanent inner bobbin. The radial electromagnetic forces are supported by an aluminium cylinder placed radially outside the coil. The completed coil wounded on the removable mandrel is shrink-fitted with the support cylinder. Results of development work are presented

  11. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, G. [Fermilab; Carlson, K. [Fermilab; McGee, M. W. [Fermilab; Nobrega, L. E. [Fermilab; Romanov, A. L. [Fermilab; Ruan, J. [Fermilab; Valishev, A. [Fermilab; Noll, D. [Frankfurt U.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  12. Why recycle? A comparison of recycling motivations in four communities

    Science.gov (United States)

    Vining, Joanne; Linn, Nancy; Burdge, Rabel J.

    1992-11-01

    Four Illinois communities with different sociode-mographic compositions and at various stages of planning for solid waste management were surveyed to determine the influence of sociodemographic variables and planning stages on the factors that motivate recycling behavior. A factor analysis of importance ratings of reasons for recycling and for not recycling yielded five factors interpreted as altruism, personal inconvenience, social influences, economic incentives, and household storage. The four communities were shown to be significantly different in multivariate analyses of the five motivational factors. However, attempts to explain these community differences with regression analyses, which predicted the motivational factors with dummy codes for planning stages, a measure of self-reported recycling behavior, and sociodemographic measures were unsatisfactory. Contrary to expectation, the solid waste management planning stages of the cities (curbside pickup, recycling dropoff center, and planning in progress) contributed only very slightly to the prediction of motivational factors for recycling. Community differences were better explained by different underlying motivational structures among the four communities. Altruistic reasons for recycling (e.g., conserving resources) composed the only factor which was similar across the four communities. This factor was also perceived to be the most important reason for recycling by respondents from all four communities. The results of the study supported the notion that convenient, voluntary recycling programs that rely on environmental concern and conscience for motivation are useful approaches to reducing waste.

  13. Strength of masonry blocks made with recycled concrete aggregates

    Science.gov (United States)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  14. Recycled aggregates in concrete production: engineering properties and environmental impact

    Directory of Open Access Journals (Sweden)

    Seddik Meddah Mohammed

    2017-01-01

    Full Text Available Recycled concrete aggregate is considered as the most abundant and used secondary aggregate in concrete production, other types of solid waste are also being used in concrete for specific purposes and to achieve some desired properties. Recycled aggregates and particularly, recycled concrete aggregate substantially affect the properties and mix design of concrete both at fresh and hardened states since it is known by high porosity due to the adhered layer of old mortar on the aggregate which results in a high water absorption of the recycled secondary aggregate. This leads to lower density and strength, and other durability related properties. The use of most recycled aggregate in concrete structures is still limited to low strength and non-structural applications due to important drop in strength and durability performances generated. Embedding recycled aggregates in concrete is now a current practice in many countries to enhance sustainability of concrete industry and reduce its environmental impacts. The present paper discusses the various possible recycled aggregates used in concrete production, their effect on both fresh and hardened properties as well as durability performances. The economic and environmental impacts of partially or fully substituting natural aggregates by secondary recycled aggregates are also discussed.

  15. Solid waste characterization and recycling potential for a university campus

    International Nuclear Information System (INIS)

    Armijo de Vega, Carolina; Ojeda Benitez, Sara; Ramirez Barreto, Ma. Elizabeth

    2008-01-01

    Integrated waste management systems are one of the greatest challenges for sustainable development. For these systems to be successful, the first step is to carry out waste characterization studies. In this paper are reported the results of a waste characterization study performed in the Campus Mexicali I of the Autonomous University of Baja California (UABC). The aim of this study was to set the basis for implementation of a recovery, reduction and recycling waste management program at the campus. It was found that the campus Mexicali I produces 1 ton of solid wastes per day; more than 65% of these wastes are recyclable or potentially recyclable. These results showed that a program for segregation and recycling is feasible on a University Campus. The study also showed that the local market for recyclable waste, under present conditions - number of recycling companies and amounts of recyclables accepted - can absorb all of these wastes. Some alternatives for the potentially recyclables wastes are discussed. Finally some strategies that could be used to reduce waste at the source are discussed as well

  16. Attitudes toward text recycling in academic writing across disciplines.

    Science.gov (United States)

    Hall, Susanne; Moskovitz, Cary; Pemberton, Michael A

    2018-01-01

    Text recycling, the reuse of material from one's own previously published writing in a new text without attribution, is a common academic writing practice that is not yet well understood. While some studies of text recycling in academic writing have been published, no previous study has focused on scholars' attitudes toward text recycling. This article presents results from a survey of over 300 journal editors and editorial board members from 86 top English-language journals in 16 different academic fields regarding text recycling in scholarly articles. Responses indicate that a large majority of academic gatekeepers believe text recycling is allowable in some circumstances; however, there is a lack of clear consensus about when text recycling is or is not appropriate. Opinions varied according to the source of the recycled material, its structural location and rhetorical purpose, and conditions of authorship conditions-as well as by the level of experience as a journal editor. Our study suggests the need for further research on text recycling utilizing focus groups and interviews.

  17. Fermilab E687 results and future high statistics charm experiment FOCUS/E831

    International Nuclear Information System (INIS)

    Cheung, W.K.

    1995-12-01

    Results from the Fermilab charm photoproduction experiment E687 are reviewed. The physics goals and the improvements being made for the next experiment (FOCUS/E831) are described. We expect to accumulate a million fully reconstructed charm decays which represent an order of magnitude improvement over E687

  18. Fermilab digs 4,000-foot tunnel for neutrino study near Batavia

    CERN Multimedia

    Grady, W

    2002-01-01

    As part of a construction project that began more than two years ago, workers have carved out 4,000 feet of tunnel and two huge caverns under a portion of Fermilab's site near Batavia. The $171 million project will provide research facilities for an experiment designed to study neutrinos (1 page).

  19. CERN-Fermilab Hadron Collider Physics Summer School 2013 open for applications

    CERN Multimedia

    2013-01-01

    Mark your calendar for 28 August - 6 September 2013, when CERN will welcome students to the eighth CERN-Fermilab Hadron Collider Physics Summer School.   Experiments at hadron colliders will continue to provide our best tools for exploring physics at the TeV scale for some time. With the completion of the 7-8 TeV runs of the LHC, and the final results from the full Tevatron data sample becoming available, a new era in particle physics is beginning, heralded by the Higgs-like particle recently discovered at 125 GeV. To realize the full potential of these developments, CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the eighth edition, from 28 August to 6 September 2013. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school which particularly targets young postdocs in exper...

  20. Construction experience with Fermilab-built full length 50mm SSC dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Blessing, M.J.; Hoffman, D.E.; Packer, M.D. (General Dynamics Corp., San Diego, CA (United States). Space Systems Div.); Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Delchamps, S.; Ewald, K.D.; Fulton, H.J.; Haggard, J.E.; Jensen, R.H.; Koska, W.; Rihel, R.K.; Robotham, W.F.; Smith, B.E.; Smith, D.J.; Strait, J.B.; Tassotto, G.; Tinsley, D.A.; Wake, M.; Winters, M.; Zimmerman, W.F. (Fermi National Accelerator Lab., Ba

    1992-03-01

    Fourteen full length SSC dipole magnets are being built and tested at Fermilab. Their purpose is to verify the magnet design as well as transfer the construction technology to industry. Magnet design is summarized. Construction problems and their solutions are discussed. Topics include coil winding, curing and measuring, collaring, instrumentation, end clamp installation, yoking and electrical and mechanical interconnection.