WorldWideScience

Sample records for fermilab antiproton accumulator

  1. Searching for antiproton decay at the Fermilab Antiproton Accumulator

    International Nuclear Information System (INIS)

    Geer, S.

    1995-09-01

    This paper describes an experimental search for antiproton decay at the Fermilab Antiproton Accumulator. The E868 (APEX) experimental setup is described. The APEX data is expected to be sensitive to antiproton decay if the antiproton lifetimes is less than a few times 100,000 years

  2. Search for antiproton decay at the Fermilab antiproton accumulator

    International Nuclear Information System (INIS)

    Geer, S.; Marriner, J.; Ray, R.; Streets, J.; Lindgren, M.; Muller, T.; Quackenbush, J.; Armstrong, T.

    1994-01-01

    A search for antiproton decay has been made at the Fermilab antiproton accumulator. Limits are placed on five antiproton decay modes. At the 95% C.L. we find that τ bar p /B(bar p→e - γ)>1848 yr, τ bar p /B(bar p→e 0 π 0 )>554 yr, τ bar p /B(bar p→e - η)>171 yr,τ bar p /B(bar p→e - K S 0 )>29 yr, and τ bar p /B(bar p→e - K L 0 )>9 yr

  3. Light quark spectroscopy at the Fermilab antiproton accumulator

    International Nuclear Information System (INIS)

    Armstrong, T.; Bettoni, D.; Bharadwaj, V.; Biino, C.; Borreani, G.; Broemmelsiek, D.; Buzzo, A.; Calabrese, R.; Ceccucci, A.; Cester, R.; Church, M.; Dalpiaz, P.F.; Dibenedetto, R.; Dimitroyannis, D.; Fabbri, M.G.; Fast, J.; Gianoli, A.; Ginsburg, C.; Gollwitzer, K.; Hahn, A.; Hasan, M.A.; Hsueh, S.; Lewis, R.; Luppi, E.; Macri, M.; Majewska, A.; Mandelkern, M.; Marchetto, F.; Marinelli, M.; Marques, J.; Marsh, W.; Martini, M.; Masuzawa, M.; Menichetti, E.; Migliori, A.; Mussa, R.; Pallavicini, M.; Palestini, S.; Pastrone, N.; Patrignani, C.; Peoples, J. Jr.; Pesando, L.; Petrucci, F.; Pia, M.G.; Pordes, S.; Rapidis, P.; Ray, R.; Reid, J.; Rinaudo, G.; Roccuzzo, B.; Rosen, J.L.; Santroni, A.; Sarmiento, M.; Savrie, M.; Scalisi, A.; Schultz, J.; Seth, K.K.; Smith, A.; Smith, G.A.; Sozzi, M.; Trokenheim, S.; Weber, M.; Werkema, S.; Zhang, Y.; Zhao, J.L.; Zioulas, G.

    1993-01-01

    Fermilab-experiment E-760 has confirmed the f 2 (1520) state in the 3π 0 final state in antiproton-proton annihilations in-flight (∼3.0 to 3.6 GeV c.m. energy), seen previously by Crystal Barrel and other groups at CERN at rest. The f 2 (1520) is also seen in its 2π 0 decay mode in the 2π 0 η channel and 2η decay mode in the π 0 2η channel. There are indications of this state in the 3η decay channel. The invariant mass spectrum is rich in states near 2 GeV, and amplitude and spin/parity analysis of the Dalitz plot is in progress in this mass region. (orig.)

  4. FERMILAB: More antiprotons

    International Nuclear Information System (INIS)

    Visnjic, Vladimir

    1993-01-01

    The excellent performance of the Fermilab antiproton complex during the recent Collider run and its future potential are the cumulative result of many improvements over the past few years, ranging from major projects like upgrading the stack-tail stochastic cooling system in the Accumulator to minor improvements like automating tuning procedures. The antiprotons are created when the 120 GeV proton beam from the Main Ring hits the target. A good target should have high yield of antiprotons, should not melt, and should not crack due to shock waves. The old copper target has been replaced by a new one made of nickel. The yield into the Debuncher is 2 x 10 -5 antiprotons/proton. While this is only marginally better than for copper, the nickel target has high melting point energy (1070 J/g) and a low rate of increase in pressure with deposited energy, making it the target of choice for the proton intensities expected in the Main Injector era (June, page 10). Of the broad spectrum of all kinds of secondaries, only a tiny fraction are 8 GeV antiprotons. The 8 GeV negative charge secondaries are bent through 3° by a new pulsed magnet. Instead of a 200-turn magnet with coils separated by epoxy as in the past, the new magnet has one turn carrying 45.5 kA of current. This single turn pulsed magnet uses radiation hard ceramic and is much more robust

  5. Using the circulating beam in the Fermilab antiproton accumulator for experiments

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1988-01-01

    The Fermilab Accumulator is a storage ring optimized for stacking and stochastic cooling 8 GeV antiprotons for the Tevatron collider. Minor modifications have been made to provide for beam in the energy range 8.0-2.9 GeV of luminosity /approximately/10 31 cm -2 s/sup - 1/ with a hydrogen jet internal target. Experience to date consists of machine studies and detector engineering run with protons. 7 refs

  6. Fermilab Antiproton source, Recycler ring and Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, Sergei [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-22

    The antiproton source for a proton-antiproton collider at Fermilab was proposed in 1976 [1]. The proposal argued that the requisite luminosity (~1029 cm-2sec-1) could be achieved with a facility that would produce and cool approximately 1011 antiprotons per day. Funding for the Tevatron I project (to construct the Antiproton source) was initiated in 1981 and the Tevatron ring itself was completed, as a fixed target accelerator, in the summer of 1983 and the Antiproton Source was completed in 1985. At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, Accumulator and Recycler), 25 independent multi-GHz stochastic cooling systems, the world’s only relativistic electron cooling system and a team of technical experts equal to none. Sustained accumulation of antiprotons was possible at the rate of greater than 2.5×1011 per hour. Record-size stacks of antiprotons in excess of 3×1012 were accumulated in the Accumulator ring and 6×1012 in the Recycler. In some special cases, the antiprotons were stored in rings for more than 50 days. Note, that over the years, some 1016 antiprotons were produced and accumulated at Fermilab, which is about 17 nanograms and more than 90% of the world’s total man-made quantity of nuclear antimatter. The accelerator complex at Fermilab supported a broad physics program including the Tevatron Collider Run II [2], neutrino experiments using 8 GeV and 120 GeV proton beams, as well as a test beam facility and other fixed target experiments using 120 GeV primary proton beams. The following sections provide a brief description of Fermilab accelerators as they operated at the end of the Collider Run II (2011).

  7. Antiproton Accumulator (AA)

    CERN Multimedia

    Photographic Service

    1980-01-01

    The AA in its final stage of construction, before it disappeared from view under concrete shielding. Antiprotons were first injected, stochastically cooled and accumulated in July 1980. From 1981 on, the AA provided antiprotons for collisions with protons, first in the ISR, then in the SPS Collider. From 1983 on, it also sent antiprotons, via the PS, to the Low-Energy Antiproton Ring (LEAR). The AA was dismantled in 1997 and shipped to Japan.

  8. The Antiproton Accumulator becomes Antiproton Decelerator

    CERN Multimedia

    1980-01-01

    The photos show the Antiproton Accumulator (AA) transformed into Antiproton Decelerator. The AA was used at CERN between 1981 and 1999 before being replaced by the Antiproton Decelerator (AD). The AA was used to collect and stochastically cool antiprotons used in proton-antiproton collisions in the SPS collider. This lead to the discovery of the W and Z bosons in 1983 and the Nobel Prize for Carlo Rubbia and Simon van der Meer in 1984.

  9. Prospects for antiproton experiments at Fermilab

    International Nuclear Information System (INIS)

    Kaplan, Daniel M.

    2012-01-01

    Fermilab operates the world’s most intense antiproton source. Newly proposed experiments can use those antiprotons either parasitically during Tevatron Collider running or after the end of the Tevatron Collider program. For example, the annihilation of 5 to 8 GeV antiprotons is expected to yield world-leading sensitivities to hyperon rare decays and CP violation. It could also provide the world’s most intense source of tagged D 0 mesons, and thus the best near-term opportunity to study charm mixing and, via CP violation, to search for new physics. Other measurements that could be made include properties of the X(3872) and the charmonium system. An experiment using a Penning trap and an atom interferometer could make the world’s most precise measurement of the gravitational force on antimatter. These and other potential measurements using antiprotons offer a great opportunity for a broad and exciting physics program at Fermilab in the post-Tevatron era.

  10. Reliability of the Fermilab Antiproton Source

    International Nuclear Information System (INIS)

    Harms, E. Jr.

    1993-05-01

    This paper reports on the reliability of the Fermilab Antiproton source since it began operation in 1985. Reliability of the complex as a whole as well as subsystem performance is summarized. Also discussed is the trending done to determine causes of significant machine downtime and actions taken to reduce the incidence of failure. Finally, results of a study to detect previously unidentified reliability limitations are presented

  11. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio; /Fermilab; Asner, David M.; /PNL, Richland; Baldini, Wander; /INFN, Ferrara; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; /Fermilab; Chakravorty, Alak; /St. Xavier U., Chicago; Colas, Paul; /Saclay; Derwent, Paul; /Fermilab; Drutskoy, Alexey; /Moscow, ITEP; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  12. Commissioning of Fermilab's Electron Cooling System for 8-GeV Antiprotons

    CERN Document Server

    Nagaitsev, Sergei; Burov, Alexey; Carlson, Kermit; Gai, Wei; Gattuso, Consolato; Hu, Martin; Kazakevich, Grigory; Kramper, Brian J; Kroc, Thomas K; Leibfritz, Jerry; Prost, Lionel; Pruss, Stanley M; Saewert, Greg W; Schmidt, Chuck; Seletsky, Sergey; Shemyakin, Alexander V; Sutherland, Mary; Tupikov, Vitali; Warner, Arden

    2005-01-01

    A 4.3-MeV electron cooling system has been installed at Fermilab in the Recycler antiproton storage ring and is being currently commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper will report on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  13. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    Section 06 - 08*) of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A vacuum-tank, two bending magnets (BST06 and BST07 in blue) with a quadrupole (QDN07, in red) in between, another vacuum-tank, a wide quadrupole (QFW08) and a further tank . The tanks are covered with heating tape for bake-out. The tank left of BST06 contained the stack core pickup for stochastic cooling (see 7906193, 7906190, 8005051), the two other tanks served mainly as vacuum chambers in the region where the beam was large. Peter Zettwoch works on BST06. *) see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984)

  14. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    A section of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A large vacuum-tank, a quadrupole (QDN09*), a bending magnet (BST08), another vacuum-tank, a wide quadrupole (QFW08) and (in the background) a further bending magnet (BST08). The tanks are covered with heating tape for bake-out. The tank left of QDN09 contained the kickers for stochastic pre-cooling (see 790621, 8002234, 8002637X), the other one served mainly as vacuum chamber in the region where the beam was large. Peter Zettwoch works on QFW08. * see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984) See under 7911303, 7911597X, 8004261 and 8202324. For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  15. Antiproton acceleration in the Fermilab Main Ring and Tevatron

    International Nuclear Information System (INIS)

    Martin, P.; Dinkel, J.; Ducar, R.

    1987-01-01

    The operation of the Fermilab Main Ring and Tevatron rf systems for colliding beams physics is discussed. The changes in the rf feedback system required for acceleration of antiprotons, and the methods for achieving proper transfer of both protons and antiprotons are described. Data on acceleration and transfer efficiencies are presented

  16. Operational experience with bunch rotation momentum reduction in the Fermilab antiproton source

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Griffin, J.E.; MacLachlan, J.A.; Martin, P.S.; Meisner, K.G.; Wildman, D.

    1987-01-01

    In the Fermilab antiproton accumulation system antiprotons are produced by the delivery of trains of 120 GeV proton bunches to a production target from which antiprotons are collected with mean energy 8 GeV (kinetic) and momentum spread Δrho/rho > 3%. The antiproton beam has the time structure of the incident protons. The proton bunch spacing-to-length ratio is made as large as possible (> 20:1) so that the resulting antiproton momentum spread may be reduced by ''bunch rotation'' in a ''debunching'' ring where time spread is exchanged for momentum spread. Details of these procedures are described elsewhere; in this paper the authors report on the efficacy of these procedures during routine operation

  17. The Fermilab proton-antiproton collider upgrades

    International Nuclear Information System (INIS)

    Marriner, J.P.

    1996-10-01

    The plans for increases in the Tevatron proton-antiproton collider luminosity in the near future (Run II) and the more distant future (TeV33) are described. While there are many important issues, the fundamental requirement is to produce more antiprotons and to use them more efficiently

  18. Commissioning of polarized-proton and antiproton beams at Fermilab

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1988-01-01

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US)

  19. Physics at the Fermilab Tevatron Proton-Antiproton Collider

    International Nuclear Information System (INIS)

    Geer, S.

    1994-08-01

    These lectures discuss a selection of QCD and Electroweak results from the CDF and D0 experiments at the Fermilab Tevatron Proton-Antiproton Collider. Results are presently based on data samples of about 20 pb -1 at a center-of-mass energy of 1.8 TeV. Results discussed include jet production, direct photon production, W mass and width measurements, the triboson coupling, and most exciting of all, evidence for top quark production

  20. The future of the antiproton accumulator

    International Nuclear Information System (INIS)

    Autin, B.

    1983-01-01

    When the Antiproton Accumulator was designed in 1977, it was considered as an element of the high energy proton-antiproton collision experiments in the CERN Super Proton Synchrotron. Since that time, antiproton physics has become more and more popular: a second experimental area was built in the SPS, the Intersecting Storage Rings started a special antiproton programme and a considerable interest has bloomed in the energy range of nuclear physics with the LEAR machine. Moreover, any projection on hadron physics in the coming years shows an insatiable appetite of experimentalists for more antiprotons. Therefore, basic studies have been pursued since the beginning of last year to transform the accumulator into an abundant source of antiprotons

  1. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    International Nuclear Information System (INIS)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10 -10 torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs

  2. Energy and energy width measurement in the FNAL antiproton accumulator

    International Nuclear Information System (INIS)

    Church, M.; Hsueh, S.; Rapidis, P.; Werkema, S.

    1991-10-01

    The Fermilab Antiproton Accumulator has recently been used to produce Charmonium resonances (charm quark, anti-charm quark bound states) in proton-antiproton annihilations using an internal H 2 gas jet target. A measurement of the resonance mass and width may be obtained from a precise knowledge of the antiproton beam energy and energy spread. The beam energy is measured to an accuracy of 1 part in 10 4 in the range 6.3 Gev to 4.1 Gev by measuring the orbit length and revolution frequency of the beam. The beam momentum spread is measured to an accuracy of 10% by measuring the beam frequency spread and the parameter η = (P beam /F rev )·(dF rev /dP beam ). These two measurement techniques are described in this report

  3. Energy and energy width measurement in the FNAL antiproton accumulator

    Energy Technology Data Exchange (ETDEWEB)

    Church, M.; Hsueh, S.; Rapidis, P.; Werkema, S.

    1991-10-01

    The Fermilab Antiproton Accumulator has recently been used to produce Charmonium resonances (charm quark, anti-charm quark bound states) in proton-antiproton annihilations using an internal H{sub 2} gas jet target. A measurement of the resonance mass and width may be obtained from a precise knowledge of the antiproton beam energy and energy spread. The beam energy is measured to an accuracy of 1 part in 10{sup 4} in the range 6.3 Gev to 4.1 Gev by measuring the orbit length and revolution frequency of the beam. The beam momentum spread is measured to an accuracy of 10% by measuring the beam frequency spread and the parameter {eta} = (P{sub beam}/F{sub rev}){center_dot}(dF{sub rev}/dP{sub beam}). These two measurement techniques are described in this report.

  4. Survey and alignment of the Fermilab recycler antiproton storage ring

    International Nuclear Information System (INIS)

    Arics, Babatunde O.O.

    1999-01-01

    In June of 1999 Fermilab commissioned a newly constructed antiproton storage ring, the 'Recycler Ring', in the Main Injector tunnel directly above the Main Injector beamline. The Recycler Ring is a fixed 8 GeV kinetic energy storage ring and is constructed of strontium ferrite permanent magnets. The 3319.4-meter-circumference Recycler Ring consists of 344 gradient magnets and 100 quadrupoles all of which are permanent magnets. This paper discusses the methods employed to survey and align these permanent magnets within the Recycler Ring with the specified accuracy. The Laser Tracker was the major instrument used for the final magnet alignment. The magnets were aligned along the Recycler Ring with a relative accuracy of ±0.25 mm. (author)

  5. Design study of an Antiproton Collector for the Antiproton Accumulator (ACOL)

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1983-01-01

    The Report gives a full description of an Antiproton Collector Ring which, placed around the existing Antiproton Accumulator at CERN, would enhance the antiproton flux available to both the SPS and LEAR by a factor of ten. The new ring and the focusing devices which precede it are designed to accept a much larger fraction of the antiproton production cone from the target. Each pulse of particles will be pre-cooled before being fed to the Antiproton Accumulator, where improved stochastic cooling systems will build up the stack. A full list of parameters is included. (orig.)

  6. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  7. A beam sweeping system for the Fermilab antiproton production target

    International Nuclear Information System (INIS)

    Bieniosek, F.M.

    1993-08-01

    In the Main Injector era beam intensities high enough to damage the antiproton production target will be available. In order to continue to operate with a tightly-focused primary beam spot on the target, and thus maintain yield, it will be necessary to spread the hot spot on the target by use of a beam sweeping system. This report summarizes the requirements for such a system, and addresses the issues involved in the design of a sweeping system

  8. Magnetic horn of the Antiproton Accumulator (AA)

    CERN Multimedia

    Photographic Service

    1988-01-01

    In the 1960s, the invention of this "current sheet lens" has helped to greatly improve the flux of neutrino beams. It was used again at the AA, collecting antiprotons from the production target at angles too large to fit into the acceptance of the AA. It was machined from aluminium to a thickness of 1.4 mm and pulsed at 400 kA for 15 microseconds (half-sine).

  9. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  10. An analytical simulation of the ion-antiproton instabilities in the CERN Antiproton Accumulator

    International Nuclear Information System (INIS)

    Dainelli, A.; Pusterla, M.

    1988-01-01

    A direct map method with a Mathieu approach to tune modulation is proposed and used to simulate nonlinear effects on particle motion that are generated by a beam-beam-like interaction of antiprotons with ions of the residual gas in the CERN Antiproton Accumulator. Two different Gaussian ion distributions are used, and the effects of the simulated beam-beam force on the particle motion is studied in phase space, with a particular attention to high-order nonlinear resonances. (author) 16 refs., 4 figs

  11. Measuring and manipulating an accumulated stack of antiprotons in the CERN antiproton accumulator

    International Nuclear Information System (INIS)

    Johson, R.; van der Meer, S.; Pederson, F.

    1983-01-01

    The antiproton stack is observed through Schottky scans, both longitudinal and transverse. A particular feature is the wide dynamic range needed for observing both the dense core and the freshly-deposited tail. Separating batches of antiprotons from the stack (unstacking) is a highly automated process including the measurement of the momentum distribution and the generation of a suitable RF function to remove a slice of the desired density. Multiple slices may be removed successively and a process for locally flattening the distribution to obtain equal batch intensities is used. When successive batches are unstacked and ejected, the process may have to be aborted if the particles do not arrive correctly at the user. A ''restack'' facility is provided to return any antiprotons to the stack that have been unstacked but not ejected. A missing-bucket scheme for unstacking low-intensity batches for LEAR is also described

  12. Further properties of high-mass multijet events at the Fermilab proton-antiproton collider

    International Nuclear Information System (INIS)

    Abe, F.; Akimoto, H.; Akopian, A.; Albrow, M.G.; Amendolia, S.R.; Amidei, D.; Antos, J.; Anway-Wiese, C.; Aota, S.; Apollinari, G.; Asakawa, T.; Ashmanskas, W.; Atac, M.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Badgett, W.; Bagdasarov, S.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barzi, E.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Berryhill, J.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bokhari, W.; Bolognesi, V.; Bortoletto, D.; Boudreau, J.; Breccia, L.; Bromberg, C.; Bruner, N.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Cammerata, J.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cauz, D.; Cen, Y.; Cervelli, F.; Chang, P.S.; Chang, P.T.; Chao, H.Y.; Chapman, J.; Cheng, M.; Chiarelli, G.; Chikamatsu, T.; Chiou, C.N.; Christofek, L.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Conway, J.; Cooper, J.; Cordelli, M.; Couyoumtzelis, C.; Crane, D.; Cronin-Hennessy, D.; Culbertson, R.; Cunningham, J.D.; Daniels, T.; DeJongh, F.; Delchamps, S.; DellAgnello, S.; DellOrso, M.; Demina, R.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P.F.; Devlin, T.; Dittmann, J.R.; Donati, S.; Done, J.; Dorigo, T.; Dunn, A.; Eddy, N.; Einsweiler, K.; Elias, J.E.; Ely, R.; Engels, E. Jr.; Errede, D.; Errede, S.; Fan, Q.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Frisch, H.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Gagliardi, G.; Galeotti, S.; Gallinaro, M.; Garcia-Sciveres, M.; Garfinkel, A.F.; Gay, C.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Groer, L.

    1996-01-01

    The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD matrix element calculations, and QCD parton shower Monte Carlo predictions suggests that 2→2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state. copyright 1996 The American Physical Society

  13. The CERN Antiproton Collider Programme Accelerators and Accumulation Rings

    CERN Document Server

    Koziol, Heribert

    2004-01-01

    One of CERN's most daring and successful undertakings was the quest for the intermediate bosons, W and Z. In this paper, we describe the accelerator part of the venture which relied on a number of innovations: an extension of the budding method of stochastic cooling by many orders of magnitude; the construction of the Antiproton Accumulator, depending on several novel accelerator methods and technologies; major modifications to the 26 GeV PS Complex; and the radical conversion of the 300 GeV SPS, which just had started up as an accelerator, to a protonâ€"antiproton collider. The SPS Collider had to master the beamâ€"beam effect far beyond limits reached ever before and had to function in a tight symbiosis with the huge detectors UA1 and UA2.

  14. The Antiproton Accumulator and Collector and the discovery of the W & Z intermediate vector bosons

    CERN Document Server

    Chohan, Vinod

    2016-01-01

    The following sections are included: Preface ; Brief outline of the overall scheme for antiprotons of the SPS as a collider ; Antiproton production and accumulation ; The AA and AC storage rings ; Stochastic cooling and stacking ; Post-acceleration of antiprotons and beams for SPS Collider ; Proton test beams for the AA and AC from the PS ; The W and Z discoveries and the Nobel Prize ; Accumulator performance ; Acknowledgements and conclusions ; References

  15. Antiproton Target

    CERN Multimedia

    1980-01-01

    Antiproton target used for the AA (antiproton accumulator). The first type of antiproton production target used from 1980 to 1982 comprised a rod of copper 3mm diameter and 120mm long embedded in a graphite cylinder that was itself pressed into a finned aluminium container. This assembly was air-cooled and it was used in conjunction with the Van der Meer magnetic horn. In 1983 Fermilab provided us with lithium lenses to replace the horn with a view to increasing the antiproton yield by about 30%. These lenses needed a much shorter target made of heavy metal - iridium was chosen for this purpose. The 50 mm iridium rod was housed in an extension to the original finned target container so that it could be brought very close to the entrance to the lithium lens. Picture 1 shows this target assembly and Picture 2 shows it mounted together with the lithium lens. These target containers had a short lifetime due to a combination of beam heating and radiation damage. This led to the design of the water-cooled target in...

  16. The Fermilab antihydrogen program

    CERN Document Server

    Mandelkern, M A

    1999-01-01

    The antihydrogen atom, the bound state of an antiproton and a positron, is the antiparticle of the hydrogen stem. Until very recently no antimatter atoms had been observed. Experiments at CERN and Fermilab have reported observations of small amounts of antihydrogen but are in sharp disagreement. At Fermilab we have produced a background-free sample of 66 atoms. CPT invariance predicts that the spectrum and the lifetimes of antihydrogen states are identical to those of hydrogen. This fundamental symmetry has not been tested in atoms. Experiments for the further study of antihydrogen are planned for both laboratories. At CERN a new antiproton accumulator is expected to facilitate the trapping of cold antihydrogen, followed by high precision spectroscopic measurements. At Fermilab an interferometric technique analogous to measurement of the K/sub S/K/sub L/ mass difference will be used to determine the n =2 antihydrogen spectrum using a beam of high momentum antihydrogen atoms. (11 refs).

  17. Polarized proton and antiproton experiments at Fermilab E-581/704

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1988-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π 0 production at large x, and experiments with polarized beams during the next fixed-target period. 8 refs., 9 figs

  18. Angular Distributions of Three Jet Events in Proton - Anti-Proton Collisions at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Robert Matthew [Harvard U.

    1989-07-01

    A measurement of three jet angular distributions is made at $\\sqrt{s}$ = 1.8 TeV in protonantiproton collisions at the F'ermilab Tevatron using the Collider Detector _at Ferm.ilab (CDF). Results are presented for three different center of mass variables, cos $\\theta$, $\\psi$, and $\\xi$ and are compared to QCD predictions.

  19. Transverse digital damper system for the Fermilab anti-proton recycler

    International Nuclear Information System (INIS)

    Eddy, N.; Crisp, J.; Fermilab

    2006-01-01

    A transverse damping system is used in the Recycler at Fermilab to damp beam instabilities which arise from large beam intensities with electron cooling. Initial tests of electron cooling demonstrated beam loss due to transverse beam motion when the beam was cooled past the beam density threshold. The transverse damper system consists of two horizontal and two vertical pickups whose signals are amplified and passed into an analog hybrid to generate a difference signal from each pickup. The difference signals are input to a custom digital damper board which digitizes the analog signals at 212mhz, performs digital processing of the signals inside a large Altera Stratix II FPGA, then provides analog output at 212mhz via digital to analog converters. The digital damper output is sent to amplifiers which drive one horizontal and one vertical kicker. An initial prototype digital damper board has been successfully used in the Recycler for over six months. Currently, work is underway to replace the prototype board with an upgraded VME version

  20. FERMILAB

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Neutrino experimentation at higher energies was among the justifications for the construction of Fermilab and the earliest studies utilized these new beams produced with 350-400 GeV protons. This pre-Tevatron period used both electronic counters and the new 15-foot cryogenic bubble chamber. The counter experimental programme was basically divided into two generations. The first covered the discovery of new phenomena and confirmation of the parton model using high rate wide-band and the first dichromatic narrow-band neutrino beams. The second concentrated on precision measurements with dichromatic beams. One flagship experiment, designated ''E1 A'', was originally a collaboration of Harvard, Pennsylvania and Wisconsin, and was the prototype of large neutrino calorimeters: a target/ calorimeter followed by a large set of iron toroidal magnets. E1A and its successor, E310 (which included Rutgers), ran for a total of 6,650 hours from 1972 through 1978. Contemporary with these experiments was another large counter experiment by CalTech and Fermilab, designated originally as E21 A. Along with its successors, E262, E320, and E356 (which collected data* over some 4,600h) it took part in the first generation programme, and subsequently spearheaded the second generation with precision measurements of both charged current structure functions and the weak mixing angle. Finally, this latter collaboration extended its participation into the early Tevatron era, and will continue through the 1990s

  1. FERMILAB: Preparing to collide

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Against the background of stringent Environment, Safety and Health (ES&H) regulations mandated by the US Department of Energy for all national Labs, Fermilab prepared to mount the next major Tevatron proton-antiproton collider run

  2. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  3. Antiproton production

    International Nuclear Information System (INIS)

    Lazarus, D.M.

    1987-01-01

    The results for the antiproton momentum spectrum produced in proton reactions on lead at the CERN Antiproton Accumulator is scaled to AGS operating conditions using the Sanford-Wang formula with no correction for target material. Yield predictions as a function of momentum are shown for 28.3 GeV protons on beryllium and results are converted to antiproton beam flux. The AGS Medium Energy Separated Beam has a flux which is a factor of 2 lower than Sanford-Wang predictions. This may be due to factors affecting beam acceptance

  4. Preparations for Muon Experiments at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; Popovic, M.; Prebys, E.; /Fermilab; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  5. New Experiments with Antiprotons

    Science.gov (United States)

    Kaplan, D. M.

    2011-12-01

    Fermilab operates the world's most intense antiproton source. Recently proposed experiments can use those antiprotons either parasitically during Teva-tron Collider running or after the Tevatron Collider finishes in about 2011. For example, the annihilation of 8 GeV antiprotons might make the world's most intense source of tagged D0 mesons, and thus the best near-term opportunity to study charm mixing and search for new physics via its CP-violation signature. Other possible precision measurements include properties of the X(3872) and the charmonium system. An experiment using a Penning trap and an atom interferometer could make the world's first measurement of the gravitational force on antimatter. These and other potential measurements using antiprotons could yield a broad physics program at Fermilab in the post-Tevatron era.

  6. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    Science.gov (United States)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  7. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros Tuativa, Sandra Jimena [Univ. of Mississippi, Oxford, MS (United States)

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10$^{\\,34}$ cm$^{-2}$ s$^{-1}$ luminosity 100 TeV proton-antiproton collider is explored with 7$\\times$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $p\\bar{p}$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $\\beta^{*}$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  8. Search for (W/Z → jets) + γ Events in Proton-Antiproton Collisions at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bocci, Andrea [Rockefeller Univ., New York, NY (United States)

    2005-01-01

    We present a study of the p¯p → W(Z)γ → γq¯q process at the center-of-mass energy √s = 1.96 TeV using data collected by the Collider Detector at Fermilab. The analysis is based on the selection of low transverse momentum photons produced in association with at least two jets. A modification of an existing photon trigger was studied and implemented in the data acquisition system to enhance the sensitivity of this analysis. The data presented are from approximately 184 pb-1 of integrated luminosity collected by this new trigger. A preliminary event sample is obtained requiring a central photon with ET > 12 GeV and two jets with ET > 15 GeV. The corresponding efficiency is studied using a Monte Carlo simulation of the W(Z)γ → γq¯q based on Standard Model predictions. Monte Carlo estimation of the background is not necessary as it is measured from the data. A more advanced selection based on a Neural Network method improves the signal-to-noise ratio from 1/333 to 1/71, and further optimization of the dijet mass search region increases the ratio to its final value of 1/41. No evidence of a W/Z → q¯q peak in the dijet mass distribution is visible when the background contribution is subtracted. Using a fully Bayesian approach, the 95% confidence level upper limit on σ(p¯p → Wγ) x Β(W → q¯q) + σ(p¯p → Zγ) x Β(Z → q¯q) is calculated to be 54 pb, which is consistent with the Standard Model prediction of 20.5 pb.

  9. Antiproton production

    International Nuclear Information System (INIS)

    Allaby, J.V.

    1984-01-01

    The basic definitions used in the physics literature on particle production are reviewed. The data on anti p production are interpreted in order to provide an estimate of the yield of anti p's from typical target at the antiproton accumulator, including the effects of re-absorption in the target. (orig.)

  10. Fermilab timeline generation system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Knopf, W.R.; Thomas, A.D.

    1985-06-01

    In this paper the technique used to control the relative timing and synchronization of the major accelerator systems at Fermilab is described. The various operating modes of the injector accelerators include fixed target and colliding beam operation in conjunction with simultaneous machine studies. For example, in a 60 second interval the conventional main Ring may be called upon to: (a) load the Tevatron with 12 high intensity Booster batches each containing 82 rf bunches at 150 GeV, (b) transfer a Booster batch at 8 GeV with 8 rf bunches to the Debuncher or Accumulator, (c) accelerate high intensity beam several times to 120 GeV for antiproton production, and (d) accelerate beam to 150 GeV for Main Ring studies. In the case of colliding beam operation, the different tasks can be even more varied. All this requires a simple, flexible means of coordination

  11. The CERN antiproton collector

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    The Antiproton Collector is a new ring of much larger acceptance than the present accumulator. It is designed to receive 10 8 antiprotons per PS cycle. In order to be compatible with the Antiproton Accumulator, the momentum spread and the emittances are reduced from 6% to 0.2% and from 200 π mm mrad to 25 π mm mrad respectively. In addition to the ring itself, the new target area and the modifications to the stochastic systems of the Antiproton Accumulator are described. (orig.)

  12. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    Energy Technology Data Exchange (ETDEWEB)

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  13. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  14. Stochastic cooling technology at Fermilab

    Science.gov (United States)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  15. Stochastic cooling technology at Fermilab

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    2004-01-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented

  16. Impedances and beam stability issues of the Fermilab recycler ring

    International Nuclear Information System (INIS)

    Ng, King-Yuen.

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10 12 anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole)

  17. Accelerator Preparations for Muon Physics Experiments at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  18. Fermilab Main Injector plan

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-07-15

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10{sup 31} per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research.

  19. Fermilab Main Injector plan

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10 31 per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research

  20. Lattices for antiproton rings

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)

  1. Recent results from E-735 at the Fermilab tevatron proton-antiproton collider at √s=1.8 TeV

    International Nuclear Information System (INIS)

    Morgan, N.K.; Allen, C.; Bujak, A.; Carmony, D.D.; Cole, P.; Choi, Y.; Gutay, L.J.; Hirsch, A.S.; Koltick, D.; Lindsey, C.S.; McMahon, T.; Porile, N.T.; Scharenberg, R.P.; Stringfellow, B.C.; Banerjee, S.; Bishop, J.; Biswas, N.N.; Debonte, R.; Kenney, V.P.; Losecco, J.M.; McManus, A.P.; Piekarz, J.; Stampke, S.R.; Zuong, H.; Bhat, P.; Carter, T.; Goshaw, A.T.; Loomis, C.; Oh, S.H.; Robertson, W.R.; Walker, W.D.; Wesson, D.K.; Alexopoulos, T.; Erwin, A.; Findeisen, C.; Nelson, K.; Thompson, M.

    1990-01-01

    E-735 is designed to study charged particle production in the central region of rapidity in proton-antiproton collisions at √s = 1.8 TeV. Variations in transverse momentum and particle production ratios versus particle density are measured as a possible signature for a quark-gluon-plasma (QGP) phase transition. Preliminary results from the 1987 run are presented. (orig.)

  2. Recent results from E-735 at the Fermilab tevatron proton-antiproton collider with √s=1.8 TeV

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.; Findeisen, C.; Nelson, K.; Thompson, M.; Banerjee, S.; Beery, P.D.; Biswas, N.N.; DeBonte, R.; Kenney, V.P.; LoSecco, J.M.; McManus, A.P.; Piekarz, J.; Stampke, S.R.; Carter, T.; Goshaw, A.T.; Oh, S.A.; Walker, W.D.; Wesson, D.K.

    1989-01-01

    E-735 is searching for signs of the quark-gluon-plasma phase transition in minimum bias proton-antiproton events. Results from the 1987 run at the Tevatron Collider at √s=1.8 TeV are presented. Included are distributions of the average p t versus multiplicity dependence for charged particles, and preliminary particle identification analysis using time of flight. (orig.)

  3. Effect of the sextupole distribution on the momentum aperture in the small cooling ring lattice at Fermilab

    International Nuclear Information System (INIS)

    Month, M.; Wiedemann, H.

    1978-01-01

    In the process of cooling and accumulating antiprotons for use in p-anti p collisions, rings must be designed with a large usable momentum aperture, on the order of 3% or larger. Since long straight sections and dispersionless regions are generally required, the sextupole field correction system for ''chromatic aberration'' is an important aspect of the overall lattice design. The Fermilab small cooling ring, whose purpose is to demonstrate the feasibility of cooling and accumulating protons (and antiprotons) with electrons, is a particularly simple system. This lattice is used to show the sensitivity of the momentum aperture to the sextupole correction system distribution

  4. Antiproton complex at the FAIR project

    International Nuclear Information System (INIS)

    Dolinskii, A.; Knie, K.; Dimopoulou, C.; Gostishchev, V.; Litvinov, S.; Nolden, F.; Steck, M.

    2011-01-01

    This report summarizes a set of calculations for the antiproton production in a complex composed of target area, collector, separator, beam line and collector ring for the antiproton source of the future FAIR facility (Facility for Antiproton and Ion Research) at GSI, Darmstadt, Germany. The emphasis is on the optimization of the accumulation rate of antiprotons in order to maximize the luminosity of experiments with cooled antiproton beams in the High Energy Storage Ring (HESR). Results of simulations for each component of the antiproton production complex are presented in order to identify the present limitations of the antiproton production rate.

  5. Dedicating Fermilab's Collider

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions.

  6. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  7. Fermilab | Contact Fermilab

    Science.gov (United States)

    Education Safety Sustainability and Environment Contact Related Links DOE FRA UChicago URA Newsroom -840-3000 Fax: 630-840-4343 Shipping address Fermilab Receiving Wilson Street and Kirk Road Batavia IL 60510-5011 Phone: 630-840-3000 Visiting address Fermilab entrance Kirk Road and Pine Street Batavia IL

  8. Shielding experiments by the JASMIN collaboration at Fermilab (II) - Radioactivity measurement induced by secondary particles from the anti-proton production target

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, Hiroshi; /Kyoto U., KURRI; Matsuda, Norihiro; Kasugai, Yoshimi; /JAEA, Ibaraki; Matsumura, Hiroshi; Iwase, Hiroshi; /KEK, Tsukuba; Kinoshita, Norikazu; /KEK, Tsukuba /Tsukuba U.; Boehnlein, David; Lauten, Gary; Leveling, Anthony; Mokhov, Nikolai; Vaziri, Kamran; /Fermilab /Shimizu, Tokyo /JAEA, Ibaraki

    2011-01-01

    The JASMIN Collaboration has performed an experiment to conduct measurements of nuclear reaction rates around the anti-proton production (Pbar) target at the Fermi National Accelerator Laboratory (FNAL). At the Pbar target station, the target, consisting an Inconel 600 cylinder, was irradiated by a 120 GeV/c proton beam from the FNAL Main Injector. The beam intensity was 3.6 x 10{sub 12} protons per second. Samples of Al, Nb, Cu, and Au were placed near the target to investigate the spatial and energy distribution of secondary particles emitted from it. After irradiation, the induced activities of the samples were measured by studying their gamma ray spectra using HPGe detectors. The production rates of 30 nuclides induced in Al, Nb, Cu, Au samples were obtained. These rates increase for samples placed in a forward (small angle) position relative to the target. The angular dependence of these reaction rates becomes larger for increasing threshold energy. These experimental results are compared with Monte Carlo calculations. The calculated results generally agree with the experimental results to within a factor of 2 to 3.

  9. Antiproton radiotherapy

    CERN Document Server

    Bassler, Niels; Beyer, Gerd; DeMarco, John J.; Doser, Michael; Hajdukovic, Dragan; Hartley, Oliver; Iwamoto, Keisuke S.; Jakel, Oliver; Knudsen, Helge V.; Kovacevic, Sandra; Møller, Søren Pape; Overgaard, Jens; Petersen, Jørgen B.à; Solberg, Timothy D.; Sørensen, Brita S.; Vranjes, Sanja; Wouters, Bradly G.; Holzscheiter, Michael H.

    2008-01-01

    Antiprotons are interesting as a possible future modality in radiation therapy for the following reasons: When fast antiprotons penetrate matter, protons and antiprotons have near identical stopping powers and exhibit equal radiobiology well before the Bragg-peak. But when the antiprotons come to rest at the Bragg-peak, they annihilate, releasing almost 2 GeV per antiproton–proton annihilation. Most of this energy is carried away by energetic pions, but the Bragg-peak of the antiprotons is still locally augmented with ∼20–30 MeV per antiproton. Apart from the gain in physical dose, an increased relative biological effect also has been observed, which can be explained by the fact that some of the secondary particles from the antiproton annihilation exhibit high-LET properties. Finally, the weakly interacting energetic pions, which are leaving the target volume, may provide a real time feedback on the exact location of the annihilation peak. We have performed dosimetry experiments and investigated the rad...

  10. Preparing for 1000 GeV physics at Fermilab

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The superconducting proton beams and the neutrino beams at Fermilab prepared for the research with 1000 GeV colliding proton and antiproton beams are described. Especially a new developed helium transfer line is described. (HSI).

  11. Fermilab | About Fermilab

    Science.gov (United States)

    2015. thumb Vanessa Peoples, Chief Financial Officer Vanessa Peoples is Fermilab's chief financial oversees the research program of the laboratory as the chief research officer and works with the Department and an advisor to the laboratory director. thumb Sergey Belomestnykh, Chief Technology Officer As CTO

  12. FERMILAB: Call for physics

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Several hundred physicists attended a special Fermilab 'All Experimenter's Meeting' on November 20 to hear Director John Peoples call for new Tevatron Collider proposals for the years 2000-2005, when the new Main Injector will be complete. At the Tevatron proton-antiproton collider, the CDF and DO experiments are currently completing improvements for Run II to use the Tevatron when the Main Injector is complete later in this decade. New proposals would be aimed at a Collider Run III to follow these CDF and DO efforts

  13. Recent results from proton-antiproton colliders

    International Nuclear Information System (INIS)

    Geer, S.

    1990-03-01

    New results from the CERN and Fermilab proton-antiproton colliders are summarised. The areas covered are jet physics, direct photon production, W and Z production and decay, heavy flavor production, the search for the top quark, and the search for more exotic phenomena. 46 refs., 20 figs., 4 tabs

  14. Conceptual Design Report. Antiproton - Proton Collider Upgrade 20 GeV Rings. Technical Components and Civil Construction May, 1988

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-05-01

    This report contains a description of the design and cost estimate of two new 20 GeV rings which will be required to support the upgrade of the Fermilab Collider with a luminosity goal of 5x10 31 cm-2s-1. The new rings include an antiproton post-accumulator, denoted the Antiproton Super Booster (ASB), and a proton post-booster, denoted the Proton Super Booster (PSB). The siting of the rings is shown in Figure I-1. Both rings are capable of operation at 20 GeV, eliminating the need for ever again injecting beam into the Main Ring below transition, and significantly enhancing Main Ring performance. The Antiproton Super Booster is designed to accept and accumulate up to 4x1012 antiprotons from the existing Antiproton Accumulator, and deliver them to the Main Ring at 20 GeV for acceleration and injection into the Collider. It is also designed to accept diluted antiprotons from the Main Ring at 20 GeV for recooling. The PSB accepts 8.9 GeV protons from the existing Booster and accelerates them to 20 GeV for injection into the Main Ring. The PSB is designed to operate at 5 Hz. The siting shown in Figure I-1 has the attractive feature that it removes all Main Ring injection hardware from the AO straight section, opening the possibility of installing a third proton-antiproton interaction region in the Tevatron Collider.

  15. Fermilab Today

    Science.gov (United States)

    Argentine Tango thru April 28 - Student Discount Available Calling all softball players Fermilab Management Management class offered May 5, 12, & 19 Performance Review class offered May 26 Fermilab Functions class

  16. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  17. Fermilab | About | Organization | Fermilab Organization

    Science.gov (United States)

    Industry Students and teachers Media Organization Fermilab Organization Organization Fermilab Org Chart Accelerator Division Accelerator Physics Center CMS Center Core Computing Division ESH&Q FESS Finance Section LBNF Project Line Organization LBNF Project Director LCLS-II

  18. Suppression of propagating TE modes in the FNAL antiproton source stochastic beam cooling system

    International Nuclear Information System (INIS)

    Barry, W.C.

    1985-05-01

    A method of attenuating the propagation of waveguide modes in the stochastic cooling array beam pipes to be utilized in the accumulator and debuncher rings of the Fermilab antiproton source is described. The attenuation method treated involves lining the vertical walls of the beam pipes with a ferrimagnetic material. The general solution for propagation in a nonhomogeneously loaded waveguide is presented along with numerical results specific to the antiproton source beam cooling system. Also described is a broadband, automated technique for the simultaneous measurement of complex μ and epsilon developed to aid in the characterization of different ferrite materials. Permittivity and permeability data for a typical ferrite are presented along with a discussion of the effects of these parameters on waveguide mode attenuation in the ferrite lined beam pipes

  19. Radiation studies in the antiproton source

    International Nuclear Information System (INIS)

    Church, M.

    1990-01-01

    Experiment E760 has a lead glass (Pb-G) calorimeter situated in the antiproton source tunnel in the accumulator ring at location A50. This location is exposed to radiation from several sources during antiproton stacking operations. A series of radiation studies has been performed over the last two years to determine the sources of this radiation and as a result, some shielding has been installed in the antiproton source in order to protect the lead glass from radiation damage

  20. FERMILAB: Main Injector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10 31 cm -2 s -1 in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction

  1. FERMILAB: Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10{sup 31} cm{sup -2} s{sup -1} in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction.

  2. Fermilab III

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding

  3. Fermilab III

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding.

  4. Fermilab enters the Tevatron era

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The advent of the world's first superconducting accelerator/storage ring has transformed the physics programme at the Fermi National Accelerator Laboratory. The primary and secondary beam energies (and the coming colliding beam energies) are double those previously available at Fermilab and at the CERN SPS. There is heavy investment in the fixed target programme to use these beam energies and, at present, even more pressure is driving the preparations for proton-antiproton colliding beam operation at energies up to 1 TeV per beam. Since it is the revitalized machine which is making all this possible, we begin with news on machine performance and development. (orig.).

  5. Practical Uses of Antiprotons

    International Nuclear Information System (INIS)

    Jackson, Gerald P.

    2003-01-01

    The production of commercial quantities of antiprotons has been a reality for many years now. The deceleration and trapping of antiprotons is a relatively new activity, but has been sufficiently proven to be translated into a business enterprise. Now that NASA has a portable Penning trap for transporting antiprotons, all the elements are in place to begin the commercial distribution of antiprotons. The list of potential customers for antiprotons is continuously growing, with detailed market analyses already performed on some medical and propulsion applications. In this paper these applications are reviewed, along with their appetite for antiprotons and the steps needed to bring them to market.

  6. Practical Uses of Antiprotons

    Science.gov (United States)

    Jackson, Gerald P.

    The production of commercial quantities of antiprotons has been a reality for many years now. The deceleration and trapping of antiprotons is a relatively new activity, but has been sufficiently proven to be translated into a business enterprise. Now that NASA has a portable Penning trap for transporting antiprotons, all the elements are in place to begin the commercial distribution of antiprotons. The list of potential customers for antiprotons is continuously growing, with detailed market analyses already performed on some medical and propulsion applications. In this paper these applications are reviewed, along with their appetite for antiprotons and the steps needed to bring them to market.

  7. Physics using cold antiprotons

    CERN Document Server

    Hayano, R S

    2004-01-01

    Recent progress of low-energy antiproton physics by atomic spectroscopy and collisions using slow antiprotons collaboration at CERN AD is presented. High-precision spectroscopy of antiprotonic helium - a neutral three-body system pe**-He**2**+(=pHe**+) produced when antiprotons (p) are stopped in various phases of helium - has tested 3-body QED theories as well as proton-vs-antiproton CPT to within similar to 10**-**8. This was achieved by using a newly- developed radiofrequency quadrupole decelerator. Other ongoing and future experiments using low-energy antiprotons are discussed.

  8. Operations aspects of the Fermilab Central Helium Liquefier facility

    International Nuclear Information System (INIS)

    Geynisman, M.G.; Makara, J.N.

    1996-09-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6 K and LN 2 for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed

  9. Operations aspects of the Fermilab Central Helium Liquefier Facility

    International Nuclear Information System (INIS)

    Geynisman, M.G.; Makara, J.N.

    1995-03-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6 degrees K and LN 2 for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed

  10. Beam Profile Measurement with Flying Wires at the Fermilab Recycler Ring

    CERN Document Server

    Hu, Martin; Krider, John; Lorman, Eugene; Marchionni, Alberto; Pishchalnikov, Yu M; Pordes, Stephen; Slimmer, David; Wilson, Peter R; Zagel, James

    2005-01-01

    The Fermilab Recycler Ring is a high vacuum fixed energy antiproton storage ring with stochastic and electron cooling systems. Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement. The following note describes the system configuration, calibration and resolution of the flying wire system, as well as analysis of the transverse beam profile in the presence of both cooling systems.

  11. Dedicating Fermilab's Collider

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions

  12. Conceptual Design of an Antiproton Generation and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peggs, Stephen

    2006-10-24

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The first step in the generation and storage process is to accelerate an intense proton beam down the Main Linac for injection into the Main Ring, which is a Rapid Cycling Synchrotron that accelerates the protons to high energy. The beam is then extracted from the ring into a transfer line and into a Proton Target. Immediately downstream of the target is an Antiproton Collector that captures some of the antiprotons and focuses them into a beam that is transported sequentially into two antiproton rings. The Precooler ring rapidly manipulates antiproton bunches from short and broad (in momentum) to long and thin. It then performs some preliminary beam cooling, in the fraction of a second before the next proton bunch is extracted from the Main Ring. Pre-cooled antiprotons are passed on to the Accumulator ring before the next antiprotons arrive from the target. The Accumulator ring cools the antiprotons, compressing them into a dense state that is convenient for mass storage over many hours. Occasionally the Accumulator ring decelerates a large number of antiprotons, injecting them into a Deceleration Linac that passes them into a waiting Penning trap.

  13. Conceptual Design of an Antiproton Generation and Storage Facility

    International Nuclear Information System (INIS)

    Peggs, Stephen

    2006-01-01

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The first step in the generation and storage process is to accelerate an intense proton beam down the Main Linac for injection into the Main Ring, which is a Rapid Cycling Synchrotron that accelerates the protons to high energy. The beam is then extracted from the ring into a transfer line and into a Proton Target. Immediately downstream of the target is an Antiproton Collector that captures some of the antiprotons and focuses them into a beam that is transported sequentially into two antiproton rings. The Precooler ring rapidly manipulates antiproton bunches from short and broad (in momentum) to long and thin. It then performs some preliminary beam cooling, in the fraction of a second before the next proton bunch is extracted from the Main Ring. Pre-cooled antiprotons are passed on to the Accumulator ring before the next antiprotons arrive from the target. The Accumulator ring cools the antiprotons, compressing them into a dense state that is convenient for mass storage over many hours. Occasionally the Accumulator ring decelerates a large number of antiprotons, injecting them into a Deceleration Linac that passes them into a waiting Penning trap

  14. Fermilab | Home

    Science.gov (United States)

    Industry Students and teachers Media ... Five (more) fascinating facts about DUNE Engineering the Mathematics in Music June 2 10 a.m. Get to Know the Lederman Science Center June 3 1 p.m. Ask a Scientist Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry

  15. Two-body neutral final states produced in antiproton-proton annihilations at 2.911≤√(s)≤3.686 GeV

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Church, M.; Hahn, A.; Hsueh, S.; Marsh, W.; Peoples, J. Jr.; Pordes, S.; Rapidis, P.; Ray, R.; Werkema, S.; Bettoni, D.; Calabrese, R.; Dalpiaz, P.; Dalpiaz, P.F.; Gianoli, A.; Luppi, E.; Martini, M.; Petrucci, F.; Savrie, M.; Buzzo, A.; Macri, M.; Marinelli, M.; Pallavicini, M.; Passaggio, S.; Patrignani, C.; Pia, M.G.; Santroni, A.; Blanford, G.; Broemmelsiek, D.; Fast, J.; Gollwitzer, K.; Mandelkern, M.; Marques, J.; Schultz, J.; Smith, A.; Van Drunen, E.; Weber, M.F.; Zioulas, G.; Dimitroyannis, D.; Ginsburg, C.M.; Masuzawa, M.; Peoples, J. Jr.; Ray, R.; Rosen, J.; Sarmiento, M.; Seth, K.K.; Trokenheim, S.; Zhao, J.; Armstrong, T.A.; Hasan, M.; Lewis, R.; Majewska, A.M.; Reid, J.; Smith, G.A.; Zhang, Y.; Biino, C.; Borreani, G.; Ceccucci, A.; Cester, R.; Govi, G.; Marchetto, F.; Menichetti, E.; Migliori, A.; Mussa, R.; Palestini, S.; Pastrone, N.; Rinaudo, G.; Roccuzzo, B.; Sozzi, M.

    1997-01-01

    We have performed an experiment in the Antiproton Accumulator at Fermilab to study two-body neutral final states formed in bar pp annihilations. Differential cross sections are determined in the center-of-mass energy range 2.911 0 π 0 , ηπ 0 , ηη, π 0 γ, and γγ. The energy dependence of differential cross sections at 90 degree in the center of mass is studied to test the predictions of phenomenological QCD scaling hypotheses which predict power-law dependence. copyright 1997 The American Physical Society

  16. Bunch coalescing and bunch rotation in the Fermilab Main Ring: Operational experience and comparison with simulations

    International Nuclear Information System (INIS)

    Martin, P.S.; Wildman, D.W.

    1988-01-01

    The Fermilab Tevatron I proton-antiproton collider project requires that the Fermilab Main Ring produce intense bunches of protons and antiprotons for injection into the Tevatron. The process of coalescing a small number of harmonic number h=1113 bunches into a single bunch by bunch-rotating in a lower harmonic rf system is described.The Main Ring is also required to extract onto the antiproton production target bunches with as narrow a time spread as possible. This operation is also discussed. The operation of the bunch coalescing and bunch rotation are compared with simulations using the computer program ESME. 2 refs., 8 figs

  17. Antiproton physics at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, D.M. (Brookhaven National Lab., Upton, NY (United States))

    1993-06-07

    A review of antiproton physics at the Brookhaven AGS in past decade is given as well as a description of the present high energy physics program. Existing and potential facilities for antiproton physics at the AGS are discussed and are found to provide useful antiproton intensities over the momentum range proposed for SUPERLEAR in a multiple user environment. (orig.)

  18. The antiproton decelerator: AD

    International Nuclear Information System (INIS)

    Baird, S.; Berlin, D.; Boillot, J.; Bosser, J.; Brouet, M.; Buttkus, J.; Caspers, F.; Chohan, V.; Dekkers, D.; Eriksson, T.; Garoby, R.; Giannini, R.; Grobner, O.; Gruber, J.; Hemery, J.Y.; Koziol, H.; Maccaferri, R.; Maury, S.; Metzger, C.; Metzmacher, K.; Moehl, D.; Mulder, H.; Paoluzzi, M.; Pedersen, F.; Riunaud, J.P.; Serre, C.; Simon, D.J.; Tranquille, G.; Tuyn, J.; Williams, B.

    1997-01-01

    In view of a possible future programme of physics with low-energy antiprotons, a simplified scheme for the provision of antiprotons at 100 MeV/c has been studied. It uses the present target area and the modified antiproton collector (AC) in its present location. In this report the modifications and the operation are discussed. (orig.)

  19. Antiprotons get biological

    CERN Multimedia

    2003-01-01

    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  20. Nuclear Excitations by Antiprotons and Antiprotonic Atoms

    CERN Multimedia

    2002-01-01

    The proposal aims at the investigation of nuclear excitations following the absorption and annihilation of stopped antiprotons in heavier nuclei and at the same time at the study of the properties of antiprotonic atoms. The experimental arrangement will consist of a scintillation counter telescope for the low momentum antiproton beam from LEAR, a beam degrader, a pion multiplicity counter, a monoisotopic target and Ge detectors for radiation and charged particles. The data are stored by an on-line computer.\\\\ \\\\ The Ge detectors register antiprotonic x-rays and nuclear @g-rays which are used to identify the residual nucleus and its excitation and spin state. Coincidences between the two detectors will indicate from which quantum state the antiprotons are absorbed and to which nuclear states the various reactions are leading. The measured pion multiplicity characterizes the annihilation process. Ge&hyphn. and Si-telescopes identify charged particles and determine their energies.\\\\ \\\\ The experiment will gi...

  1. CERN accelerator school: Antiprotons for colliding beam facilities

    International Nuclear Information System (INIS)

    Bryant, P.; Newman, S.

    1984-01-01

    This is a specialized course which addresses a wide spectrum of theoretical and technological problems confronting the designer of an antiproton facility for high-energy-physics research. A broad and profound basis is provided by the lecturers' substantial experience gained over many years with CERN's unique equipment. Topics include beam optics, special lattices for antiproton accumulation and storage rings, antiproton production, stochastic cooling, acceleration and storage, r.f. noise, r.f. beam manipulations, beam-beam interaction, beam stability due to ion accumulation, and diagnostics. The SPS (Super Proton Synchrotron) panti p collider, LEAR (the Low Energy Antiproton Ring at CERN), antiprotons in the ISR (Intersecting Storage Rings), the new antiproton collector (ACOL) and gas jet targets are also discussed. A table is included listing the parameters of all CERN's accelerators and storage rings. See hints under the relevant topics. (orig./HSI)

  2. Antiproton source beam position system

    International Nuclear Information System (INIS)

    Bagwell, T.; Holmes, S.; McCarthy, J.; Webber, R.

    1984-05-01

    The TeV I Beam Position Monitor (BPM) system is designed to provide a useful diagnostic tool during the commissioning and operational phases of the antiproton source. Simply stated the design goal is to provide single turn position information for intensities of > 1x10 9 particles, and multi-turn (clocked orbit) information for beam intensities of > 1x10 7 particles, both with sub-millimeter resolution. It is anticipated that the system will be used during commissioning for establishing the first turn through the Debuncher and Accumulator, for aligning injection orbits, for providing information necessary to correct closed orbits, and for measuring various machine parameters (e.g. tunes, dispersion, aperture, chromaticity). During normal antiproton operation the system will be used to monitor the beam position throughout the accumulation process

  3. Proposed Fermilab upgrade main injector project

    International Nuclear Information System (INIS)

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a ''Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider

  4. Weighing the antiproton

    Energy Technology Data Exchange (ETDEWEB)

    Hayano, Ryugo S., E-mail: hayano@phys.s.u-tokyo.ac.jp [University of Tokyo, Department of Physics (Japan)

    2013-03-15

    Antiprotonic helium is a metastable three-body neutral atom consisting of an antiproton, a helium nucleus and an electron, which we serendipitously discovered some 20 years ago. The antiproton, which normally annihilates within a few picoseconds when injected into matter, can be 'stored' in this system for up to several microseconds, and laser spectroscopy is possible within this time window. From the laser transition frequency, the antiproton-to-electron mass ratio can be deduced to high precision. Recent progress at CERN's antiproton decelerator (AD) will be discussed.

  5. Fermilab Future

    CERN Multimedia

    Kathryn Grim

    2011-01-01

    The closure of Fermilab’s Tevatron this autumn will mark the end of an historic era in particle physics. But as physicists continue to comb through data from the Tevatron detectors, the laboratory will continue to pursue a greater understanding of the make-up of the Universe on multiple experimental frontiers.   In August 2010, construction crews began installing the roof over the enclosure that will house the NOvA detector. Photo by Dan Traska of Einarson Flying Service. “We plan to extract every bit of physics we can from this final Tevatron running period,” Fermilab Director Pier Oddone wrote in a column for Fermilab Today. “The Tevatron has already exceeded all expectations and, given the large data sets, we will continue to find new results and discoveries in the Tevatron data for years to come.” This spring, particle astrophysicists at Fermilab will ship to Chile components of a 570-megapixel camera scientists will install on the Blanco tele...

  6. Fermilab turns up the heat on electron cooling

    CERN Document Server

    Riesselmann, K

    2002-01-01

    A technique that was first proposed by Gersh Budker in 1966 is being injected with new life by a team of physicists at Fermilab in the US. Working on an ambitious electron-cooling project, the team set a new world record for DC beam power, they maintained a continuous 3.5 MeV electron beam with a current of more than 500 mA for up to 8 h with only short interruptions. They use an electron beam to cool antiprotons inside Fermilab's 3 km Recycler antiproton storage ring and boost the luminosity of the laboratory's Tevatron collider. When the electron-cooling system is complete, electrons and antiprotons will travel side by side in the Recycler.

  7. Antiproton chain of the FAIR storage rings

    International Nuclear Information System (INIS)

    Katayama, T; Kamerdzhiev, V; Lehrach, A; Maier, R; Prasuhn, D; Stassen, R; Stockhorst, H; Herfurth, F; Lestinsky, M; Litvinov, Yu A; Steck, M; Stöhlker, T

    2015-01-01

    In the Modularized Start Version of the Facility of Antiproton and Ion Research (FAIR) at Darmstadt Germany, the 3 GeV antiprotons are precooled in the collector ring and accumulated in the high energy storage ring (HESR). They are further accelerated to 14 GeV or decelerated to 1 GeV for the experiments with a high-density internal target. The powerful beam cooling devices, stochastic cooling and electron cooling will support the provision of a high-resolution antiproton beam. The other option of FAIR is to prepare the low energy, 300 keV antiproton beam connecting the existing storage rings ESR and CRYRING with HESR. Beam physics issues related with these concepts are described. (paper)

  8. Assessment of neutron skyshine near unmodified Accumulator Debuncher storage rings under Mu2e operational conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cossairt, J.Donald; /Fermilab

    2010-12-01

    Preliminary plans for providing the proton beam needed by the proposed Mu2e experiment at Fermilab will require the transport of 8 GeV protons to the Accumulator/Debuncher where they be processed into an intensity and time structure useful for the experiment. The intensities involved are far greater that those encountered with antiprotons of the same kinetic energy in the same beam enclosures under Tevatron Collider operational conditions, the operating parameters for which the physical facilities of the Antiproton Source were designed. This note explores some important ramifications of the proposed operation for radiation safety and demonstrates the need for extensive modifications of significant portions of the shielding of the Accumulator Debuncher storage rings; notably that underneath the AP Service Buildings AP10, AP30, and AP50. While existing shielding is adequate for the current operating mode of the Accumulator/Debuncher as part of the Antiproton Source used in the Tevatron Collider program, without significant modifications of the shielding configuration in the Accumulator/Debuncher region and/or beam loss control systems far more effective than seen in most applications at Fermilab, the proposed operational mode for Mu2e is not viable for the following reasons: 1. Due to skyshine alone, under normal operational conditions large areas of the Fermilab site would be exposed to unacceptable levels of radiation where most of the Laboratory workforce and some members of the general public who regularly visit Fermilab would receive measurable doses annually, contrary to workforce, public, and DOE expectations concerning the As Low as Reasonably Achievable (ALARA) principle. 2. Under normal operational conditions, a sizeable region of the Fermilab site would also require fencing due to skyshine. The size of the areas involved would likely invite public inquiry about the significant and visible enlargement of Fermilab's posted radiological areas. 3. There

  9. The issue of mass generation: the search for the Higgs boson in the D0 experiment at the proton-antiproton collider of Fermilab and the measurement of neutrino oscillation with OPERA

    International Nuclear Information System (INIS)

    Lucotte, A.

    2004-09-01

    The first part is dedicated to the theoretical aspects of the mechanism of mass generation in the standard model. The implications of this mechanism in the experimental field concerning the Higgs boson search and neutrinos are detailed. The second part presents the D0 experiment at the Tevatron (Fermilab) and describes in a detailed way the forward pre-shower (FPS) that is a sub-detector of D0 whose aim is to identify the electrons. FPS has required a specific triggering system linked to a data acquisition line. The third part is devoted to the Opera experiment that is planned to operate in 2006. The purpose of this experiment is to confirm the oscillations of muon neutrinos and tau neutrinos through the direct detection of a tau lepton in the pure beam of muon neutrinos produced in CERN. The author describes his contribution to the design and testing of the front-end read electronics of the Opera scintillator tracker. (A.C.)

  10. ASACUSA hits antiproton jackpot

    CERN Multimedia

    2001-01-01

    The Japanese-European ASACUSA collaboration, which takes its name from the oldest district of Tokyo, approaches the antimatter enigma in a different way from the other two AD experiments, by inserting antiprotons into ordinary atoms. Last month the collaboration succeeded in trapping about a million antiprotons. The ASACUSA antiproton trap (lower cylinder), surmounted by its liquid helium reservoir. Looking on are Ken Yoshiki-Franzen, Zhigang Wang, Takahito Tasaki, Suzanne Reed, John Eades, Masaki Hori, Yasunori Yamazaki, Naofumi Kuroda, Jun Sakaguchi, Berti Juhasz, Eberhard Widmann and Ryu Hayano. A key element of the ASACUSA apparatus is its decelerating Radiofrequency Quadrupole magnet, RFQD. After tests with protons in Aarhus, this was installed in ASACUSA's antiproton beam last October (Bulletin 41/2000, 9 October 2000). Constructed by Werner Pirkl's group in PS Division, the RFQD works by applying an electric field to the AD antiproton pulse the opposite direction to its motion. As the antiprotons slo...

  11. Antiproton Cancer Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels

    . The stopping power of high-energetic antiprotons in tissue, is similar to that of protons. Most energy is lost per unit distance as the particle comes to rest, but when the antiprotons stops, each one will annihilate on a nuclei, releasing 1.9 GeV of energy. Most of this energy is carried away by pions, gamma...... rays and neutrons, but a part of the annihilation energy is still deposited locally as recoiling nuclear fragments with limited range. These fragments will also increase the relative biological effect at the annihilation vertex. We have masured the biological effect of an antiproton beam for the first...... to handle antiprotons. This will enable us to do treatment planning with antiprotons, and thereby bring us closer to answer the question of the potential clinical benefit of antiprotons....

  12. Fermilab | Science | Particle Accelerators

    Science.gov (United States)

    perhaps most widely felt in the development of the World Wide Web and in the superconducting wire and Fermilab Search Toggle Fermilab Navbar Toggle Search Search Home About Science Jobs Contact Phone public events Fermilab Public Events Lederman Science Center Fermilab Natural Areas Folk and Barn Dancing

  13. CERN: Antiprotons resist annihilation

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Ask any particle physicist what is the eventual fate of an antiproton in matter and he will likely tell you that It annihilates'. True as this answer is, it hides a number of fascinating questions about the actual 'route' followed by the antiproton into the nucleus where it finally stops before annihilating with a nuclear particle

  14. LEAR: antiproton extraction lines

    CERN Multimedia

    Photographic Service

    1992-01-01

    Antiprotons, decelerated in LEAR to a momentum of 100 MeV/c (kinetic energy of 5.3 MeV), were delivered to the experiments in an "Ultra-Slow Extraction", dispensing some 1E9 antiprotons over times counted in hours. Beam-splitters and a multitude of beam-lines allowed several users to be supplied simultaneously.

  15. Analyzing-power measurements of Coulomb-nuclear interference with the polarized-proton and -antiproton beams at 185 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, N; Onel, Y [Iowa Univ., Iowa City, IA (USA). Dept. of Physics; Carey, D; Coleman, R; Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (USA); Corcoran, M D; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Phillips, G C; Roberts, J B; White, J L [Rice Univ., Houston, TX (USA). Bonner Nuclear Labs.; Derevschikov, A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Gazzaly, M M [Minnesota Univ., Minneapolis (USA). Dept. of Physics; Grosnick, D P; Hill, D; Laghai, M; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (USA); Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Takeutchi, F; Tamura, N; Yoshida, T [Kyoto Univ. (Japan); Kuroda, K; Michalowicz, A [Institut National de Physique Nucleaire et de Physique des Particules, 74 - Annecy-le-Vieux (France). Lab. de P; E-581/704 Collaboration

    1989-10-12

    The analyzing power A{sub N} of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon scattering in the Coulomb-nuclear interference region has been measured using the 185 GeV/c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties. (orig.).

  16. Bunch coalescing in the Fermilab Main Ring

    International Nuclear Information System (INIS)

    Wildman, D.; Martin, P.; Meisner, K.; Miller, H.W.

    1987-01-01

    A new RF system has been installed in the Fermilab Main Ring to coalesce up to 13 individual bunches of protons or antiprotons into a single high-intensity bunch. The coalescing process consists of adiabatically reducing the h=1113 Main Ring RF voltage from 1 MV to less than 1 kV, capturing the debunched beam in a linearized h=53 and h=106 bucket, rotating for a quarter of a synchrotron oscillation period, and then recapturing the beam in a single h=1113 bucket. The new system is described and the results of recent coalescing experiments are compared with computer-generated particle tracking simulations

  17. Collider Detector (CDF) at FERMILAB: an overview

    International Nuclear Information System (INIS)

    Theriot, D.

    1984-07-01

    CDF, the Collider Detector at Fermilab, is a collaboration of almost 150 physicists from ten US universities (University of Chicago, Brandeis University, Harvard University, University of Illinois, University of Pennsylvania, Purdue University, Rockefeller University, Rutgers University, Texas A and M University, and University of Wisconsin), three US DOE supported national laboratories (Fermilab, Argonne National Laboratory, and Lawrence Berkeley Laboratory), Italy (Frascati Laboratory and University of Pisa), and Japan (KEK National Laboratory and Unversity of Tsukuba). The primary physics goal for CDF is to study the general features of proton-antiproton collisions at 2 TeV center-of-mass energy. On general grounds, we expect that parton subenergies in the range 50 to 500 GeV will provide the most interesting physics at this energy. Work at the present CERN Collider has already demonstrated the richness of the 100 GeV scale in parton subenergies

  18. Collider detector at Fermilab - CDF. Progress report

    International Nuclear Information System (INIS)

    Theriot, D.

    1985-06-01

    CDF, the Collider Detector at Fermilab, is a collaboration of almost 180 physicists from ten US universities (University of Chicago, Brandeis University, Harvard University, University of Illinois, University of Pennsylvania, Purdue University, Rockefeller University, Rutgers University, Texas A and M University, and University of Wisconsin), three US DOE supported national laboratories (Fermilab, Argonne National Laboratory, and Lawrence Berkeley Laboratory), Italy (Frascati National Laboratory and University of Pisa), and Japan (KEK National Laboratory and University of Tsukuba). The primary physics goal for CDF is to study the general features of proton-antiproton collisions at 2 TeV center-of-mass energy. On general grounds, we expect that parton subenergies in the range 50 to 500 GeV will provide the most interesting physics at this energy. Work at the present CERN Collider has already demonstrated the richness of the 100 GeV scale in parton subenergies. 7 refs., 14 figs

  19. Perspectives for polarized antiprotons

    International Nuclear Information System (INIS)

    Lenisa, Paolo

    2012-01-01

    Polarized antiprotons would open a new window in hadron physics providing access to a wealth of single and double spin observables in proton-antiproton interactions. The PAX Collaboration aims to perform the first ever measurement of the spin-dependence of the proton-antiproton cross section at the AD ring at CERN. The spin-dependence of the cross section could in principle be exploited by the spin-filtering technique for the production of a polarized antiproton beam. As a preparatory phase to the experimentation at AD, the PAX Collaboration has initiated a series of dedicated studies with protons at the COSY-ring in Juelich (Germany), aimed at the commissioning of the experimental apparatus and confirmation of the predictions for spin-filtering with protons.

  20. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  1. Fermilab Education Office - Physicists

    Science.gov (United States)

    on Education Server, but to take full advantage of all of this site's features, you should turn Custom Search Connect with the Fermilab Education Office! Facebook Fermilab Education Office Join these groups: Science Adventures Group Teacher Resource Center Group Twitter Fermilab Education Office For more

  2. Fermilab turns 50! Congratulations!

    CERN Multimedia

    Staff Association

    2017-01-01

    This year Fermilab turns 50 and the celebrations are ongoing. The ties between CERN and Fermilab are numerous and have been ranging from competition between two labs at the forefront of their field, e.g. with the chase of the top quark, finally discovered by Fermilab, to outright collaboration, e.g. on LHC low-beta quadrupole magnet development and production and in the CMS collaboration. In June, in the name of the CERN staff and scientific community, the CERN Staff Association sent a message to the Fermilab staff and scientific community, through Dr. Nigel Lockyer, Fermilab Director. The letter, and the assurance from Nigel Lockyer that the message has been passed onto the Fermilab community can be found on our website. Congratulations to Fermilab on its fiftieth Anniversary, and to the staff and collaborators who made this laboratory through their hard work, dedication and vision!

  3. Biological Effectiveness of Antiproton Annihilation

    DEFF Research Database (Denmark)

    Maggiore, C.; Agazaryan, N.; Bassler, N.

    2004-01-01

    from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The background, description, and status...

  4. Interaction of antiprotons with nuclei

    Czech Academy of Sciences Publication Activity Database

    Hrtánková, Jaroslava; Mareš, Jiří

    2016-01-01

    Roč. 945, JAN (2016), s. 197-215 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : antiproton-nucleus interaction * antiproton annihilation * antiproton nuclear bound states Subject RIV: BE - Theoretical Physics Impact factor: 1.916, year: 2016

  5. The CERN antiproton programme

    International Nuclear Information System (INIS)

    Herr, H.

    1979-01-01

    A diagram and basic parameters of the ICE (Initial Cooling Experiment) storage ring constructed in CERN are examined. The experimental results of stochastic and electron cooling and the results of measuring of the antiproton lifetime are discussed. The main parameters of the antiproton storage are listed. Comparison between stochastic and electron cooling has shown that the latter is characterized by shorter cooling time independent of the particle number in a beam. Advantage of stochastic cooling lies in its possible usage at higher energies [ru

  6. Beam profile measurement with flying wires at the Fermilab Recycler Ring

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Pishchalnikov, Yu.; Krider, J.; Hu, M.; Lorman, E.; Marchionni, A.; Pordes, S.; Wilson, P.; Zagel, J.; /Fermilab

    2005-05-01

    Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement for both proton and antiproton beams. The following note describes the system configuration, calibration and resolution of the flying wire system, interactions between the wires and the beam, as well as analysis of the transverse beam profile in the presence of a stochastic cooling system.

  7. Beam profile measurement with flying wires at the Fermilab Recycler Ring

    International Nuclear Information System (INIS)

    Carcagno, R.; Pishchalnikov, Yu.; Krider, J.; Hu, M.; Lorman, E.; Marchionni, A.; Pordes, S.; Wilson, P.; Zagel, J.

    2005-01-01

    Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement for both proton and antiproton beams. The following note describes the system configuration, calibration and resolution of the flying wire system, interactions between the wires and the beam, as well as analysis of the transverse beam profile in the presence of a stochastic cooling system

  8. Biological effectiveness of antiproton annihilation

    DEFF Research Database (Denmark)

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...... measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current...

  9. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  10. Coincidence studies with antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2010-02-01

    We present a short overview of a new method for calculating fully differential cross sections that is able to describe any aspect of coincidence measurements involving heavy projectiles. The method is based upon impact parameter close coupling with pseudostates. Examples from antiproton impact ionization are shown.

  11. Progress in antiproton physics

    International Nuclear Information System (INIS)

    Miettinen, H.I.

    1976-09-01

    Some recent results on proton-antiproton collisions are reviewed. The duality structure of processes where baryon number or strangeness may be annihilated receives particular attention. Attempts to obtain experimental information on the impact parameter space structure of multiparticle processes are discussed. Suggestions for future research are made

  12. Antiprotons are another matter

    International Nuclear Information System (INIS)

    Hynes, M.V.

    1987-01-01

    Theories of gravity abound, whereas experiments in gravity are few in number. An important experiment in gravity that has not been performed is the measurement of the gravitational acceleration of antimatter. Although there have been attempts to infer these properties from those of normal matter, none of these theoretical arguments are compelling. Modern theories of gravity that attempt to unify gravity with the other forces of nature predict that in principle antimatter can fall differently than normal matter in the Earth's field. Some of these supergravity theories predict that antimatter will fall faster, and that normal matter will fall with a small Baryon-number dependance in the earth's field. All of these predictions violate the Weak Equivalence Principle, a cornerstone of General Relativity, but are consistent with CPT conservation. In our approved experiment at LEAR (PS-200) we will test the Weak Equivalence Principle for antimatter by measuring the gravitational acceleration of the antiproton. Through a series of deceleration stages, antiprotons from LEAR will be lowered in energy to ∼4 Kelvin at which energy the gravitational effect will be measureable. The measurement will employ the time-of-flight technique wherein the antiprotons are released vertically in a drift tube. The spectrum of time-of-flight measurements can be used to extract the gravitational acceleration experienced by the particles. The system will be calibrated using H - ions which simulates the electromagnetic behavior of the antiproton, yet is a baryon to ∼0.1%. To extract the gravitational acceleration of the antiproton relative to the H - ion with a statistical precision of 1% will require the release of ∼10 6 to 10 7 particles

  13. Antiprotons are another matter

    International Nuclear Information System (INIS)

    Hynes, M.V.

    1988-01-01

    Theories of gravity abound whereas experiments in gravity are few in number. An important experiment in gravity that has not been performed is the measurement of the gravitational acceleration of antimatter. Although there have been attempts to infer this property from those of normal matter, none of these theoretical arguments are compelling. Modern theories of gravity that attempt to unify gravity with the other forces of nature predict that in principle antimatter can fall differently than normal matter in the Earth's field. Some of these supergravity theories predict that antimatter will fall faster and that normal matter will fall with a small Baryon-number dependence in the Earth's field. All of these predictions violate the Weak Equivalence Principle, a cornerstone of General Relativity, but are consistent with CPT conservation. In our approved experiment at LEAR (PS-200) we will test the Weak Equivalence Principle for antimatter by measuring the gravitational acceleration of the antiproton. Through a series of deceleration stages, antiprotons from LEAR will be lowered in energy to ≅ 4 Kelvin at which energy the gravitational effect will be measureable. The measurement will employ the time-of-flight technique wherein the antiprotons are released vertically in a drift tube. The spectrum of time-of-flight measurements can be used to extract the gravitational acceleration experienced by the particles. The system will be calibrated using H - ions which simulate the electromagnetic behavior of the antiproton yet are baryons to ≅ 0.1%. To extract the gravitational acceleration of the antiproton relative to the H - ion with a statistical precision of 1% will require the release of ≅ 10 6 -10 7 particles. (orig.)

  14. Fermilab Education Office - Volunteer

    Science.gov (United States)

    Search Opportunities for Education and Outreach for Employees and Users Fermilab employees, users, and contribute and let us know. If you have ideas for education and outreach that are not listed here, email presents the Director's Award for exceptional support to Fermilab's K–12 Education programs. Visit schools

  15. FERMILAB: Bob Wilson 80

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-06-15

    On March 4, an international symposium and tribute was held at Fermilab in honour of the Laboratory's founding director Robert Rathbun Wilson on the occasion of his 80th birthday. The symposium - 'Celebrating an Era of Courage and Creativity' - featured talks and reflections by many of Wilson's colleagues and friends including Fermilab Director John Peoples and Director Emeritus Leon Lederman.

  16. CDF [Collider Detector at Fermilab] detector simulation

    International Nuclear Information System (INIS)

    Freeman, J.

    1987-12-01

    The Collider Detector at Fermilab (CDF) uses several different simulation programs, each tuned for specific applications. The programs rely heavily on the extensive test beam data that CDF has accumulated. Sophisticated shower parameterizations are used, yielding enormous gains in speed over full cascade programs. 3 refs., 5 figs

  17. Top Production at the Tevatron: The Antiproton Awakens

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Kenneth [Nebraska U.

    2017-07-01

    A long time ago, at a laboratory far, far away, the Fermilab Tevatron collided protons and antiprotons at $\\sqrt{s} = 1.96$ TeV. The CDF and D0 experiments each recorded datasets of about 10 fb$^{-1}$. As such experiments may never be repeated, these are unique datasets that allow for unique measurements. This presentation describes recent results from the two experiments on top-quark production rates, spin orientations, and production asymmetries, which are all probes of the $p\\bar{p}$ initial state.

  18. Observation of Ultra-Slow Antiprotons using Micro-channel Plate

    Science.gov (United States)

    Imao, H.; Torii, H. A.; Nagata, Y.; Toyoda, H.; Shimoyama, T.; Enomoto, Y.; Higaki, H.; Kanai, Y.; Mohri, A.; Yamazaki, Y.

    2008-08-01

    Our group ASACUSA-MUSASHI has succeeded in accumulating several million antiprotons and extracting them as monochromatic ultra-slow antiproton beams (10 eV-1 keV) at CERN AD. We have observed ultra-slow antiprotons using micro-channel plates (MCP). The integrated pulse area of the output signals generated when the MCP was irradiated by ultra-slow antiprotons was 6 times higher than that by electrons. As a long-term effect, we also observed an increase in the background rate presumably due to the radioactivation of the MCP surface. Irradiating the antiproton beams on the MCP induces antiproton-nuclear annihilations only on the first layer of the surface. Low-energy and short-range secondary particles like charged nuclear fragments caused by the "surface nuclear reactions" would be the origin of our observed phenomena.

  19. Laser spectroscopy of antiprotonic helium

    CERN Document Server

    Hori, M

    2005-01-01

    When antiprotons (i.e. the antimatter counterpart of protons) are stopped in helium gas, 97% of them annihilate within picoseconds by reacting with the helium nuclei; a 3% fraction, however, survive with an anomalously long lifetime of several microseconds. This longevity is due to the formation of antiprotonic helium, which is a three-body Rydberg atom composed of an antiproton, electron, and helium nucleus. The ASACUSA experimental collaboration has recently synthesized large numbers of these atoms using CERN's Antiproton Decelerator facility, and measured the atom's transition frequencies to 60 parts per billion by laser spectroscopy. By comparing the experimental results with recent three-body QED calculations and the known antiproton cyclotron frequency, we were able to show that the antiproton mass and charge are the same as the corresponding proton values to a precision of 10 parts per billion. Ongoing and future series of experiments will further improve the experimental precision by using chirp-compe...

  20. Antiproton Radiation Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael H.; Petersen, Jørgen B.B.

    2007-01-01

    the radiobiological properties using antiprotons at 50 and 125 MeV from the Antiproton Decelerator (AD) at CERN. Dosimetry experiments were carried out with ionization chambers, alanine pellets and radiochromic film. Radiobiological experiments were done with Chinese V79 WNRE hamster cells. Monte Carlo particle...... transport codes were investigated and compared with results obtained from the ionization chambers and alanine pellets. A track structure model have been applied on the calculated particle spectrum, and been used to predict the LET-dependent response of the alanine pellets. The particle transport program...... FLUKA produced data which were in excellent agreement with our ionization chamber measurements, and in good agreement with our alanine measurements. FLUKA is now being used to generate a wide range of depth dose data at several energies, including secondary particle–energy spectra, which will be used...

  1. On the antiproton discovery

    International Nuclear Information System (INIS)

    Piccioni, O.

    1989-01-01

    The author of this article describes his own role in the discovery of the antiproton. Although Segre and Chamberlain received the Nobel Prize in 1959 for its discovery, the author claims that their experimental method was his idea which he communicated to them informally in December 1954. He describes how his application for citizenship (he was Italian), and other scientists' manipulation, prevented him from being at Berkeley to work on the experiment himself. (UK)

  2. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  3. ALPHA freezes antiprotons

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Laboratories like CERN can routinely produce many different types of antiparticles. In 1995, the PS210 experiment formed the first antihydrogen atoms and a few years later, in 2002, ATRAP and ATHENA were already able to produce several thousand of them. However, no experiment in the world has succeeded in ‘trapping’ these anti-atoms in order to study them. This is the goal of the ALPHA experiment, which has recently managed to cool down the antiprotons to just a few Kelvin. This represents a major step towards trapping the anti-atom, thus opening a new avenue into the investigation of antimatter properties.   Members of the ALPHA collaboration working on the apparatus in the Antiproton Decelerator experimental hall at CERN. Just like the atom, the anti-atom is neutral. Unlike the atom, the anti-atom is made up of antiprotons (as opposed to protons in the atom) and positrons (as opposed to electrons). In order to thoroughly study the properties of the anti-atoms, scien...

  4. Extra Low ENergy Antiproton

    CERN Multimedia

    To produce dense antiproton beams at very low energies (110 keV), it has been proposed to install a small decelerator ring between the existing AD ring and the experimental area. Phase-space blowup during deceleration is compensated by electron cooling such that the final emittances are comparable to the 5MeV beam presently delivered by the AD. An immediate consequence is a significant increase in the number of trapped antiprotons at the experiments as outlined in the proposal CERN/SPSC-2009-026; SPCS-P-338. This report describes the machine parameters and layout of the proposal ELENA (Extra Low ENergy Antiproton)ring also gives an approximate estimate of cost and manpower needs. Since the initial estimate, published in 2007 (CERN-AB-2007-079), the ELENA design has evolved considerably. This is due to a new location in the AD hall to acommodate for the possibility of another experimental zone, as suggested by the SPCS, and also due to improvements in the ring optics and layout. The cost estimate that is prese...

  5. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  6. Overview of the Antiproton Accumulator (AA)

    CERN Multimedia

    1982-01-01

    See photo 8202324. For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  7. Two Photon Decays of Charmonium States Produced in Proton - Anti-proton Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James Elliot [UC, Irvine

    1992-01-01

    The two photon decays of the $\\eta_c$ and $\\chi_2$ charmonium states have been measured in $p\\bar{p}$ annihilation using the E760 apparatus at Fermilab during the 1990-1991 fixed target run. A search for the $\\eta^\\prime_c$ resonance decaying into two photons has also been conducted. The processes $p\\bar{p} \\to R \\to \\gamma \\gamma$ have been measured using a cooled beam of antiprotons circulating in the Fermilab accumulator ring intersecting an internal hydrogen gas-jet target. The final state photons were measured with a high granularity, high resolution lead glass calorimeter. From a scan of the $\\eta_c$ resonance region, the mass, the total width, and the branching ratio to two photons have been measured. The results are $M_{\\eta_c}$ = 2989.9 ± 2.2 ±0.4 MeV/$c^2$, $\\Gamma_{\\eta_c}$ = 15.6±6.9±6.4 MeV, and $BR({\\eta_c} \\to \\gamma \\gamma)$ = (2.77 ± 1.19 ± 0.43) x $10^{-4}$. Data were taken at the peak of the $X_2$ resonance, and the two photon branching ratio was determined to be $BR(X_2 \\to \\gamma \\gamma)$ = (1.54 ± 0.40 ± 0.24) x $10^{-4}$. Data were collected at several energies around the expected mass of the $\\eta^\\prime_c$. Upper limits have been placed on the product of branching ratios, $BR(\\eta^\\prime_c \\to p\\bar{p})BR(\\eta^\\prime_c \\to \\gamma \\gamma)$, as function of the $\\eta^\\prime_c$ mass and total width.

  8. Fermilab back in business

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The implementation of the energy saver into the Fermilab accelerator is described by which protons can be accelerated to 500 GeV. Furthermore the new experimental areas and the extraction system are described. (HSI).

  9. Hadron physics at Fermilab

    International Nuclear Information System (INIS)

    Ferbel, T.

    1976-01-01

    Recent experimental results from studies of hadron interactions at Fermilab are surveyed. Elastic, total and charge-exchange cross section measurements, diffractive phenomena, and inclusive production, using nuclear as well as hydrogen targets, are discussed in these lectures

  10. Experimental program at Fermilab

    International Nuclear Information System (INIS)

    Jovanovic, D.

    1974-01-01

    The experimental program at Fermilab is briefly surveyed: accelerators and experimental areas, current experiments such as elastic scattering of π +- , K +- , p +- , on proton and deuteron total cross sections, neutrino physics, high transverse momentum [fr

  11. FERMILAB: Bob Wilson 80

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    On March 4, an international symposium and tribute was held at Fermilab in honour of the Laboratory's founding director Robert Rathbun Wilson on the occasion of his 80th birthday. The symposium - 'Celebrating an Era of Courage and Creativity' - featured talks and reflections by many of Wilson's colleagues and friends including Fermilab Director John Peoples and Director Emeritus Leon Lederman

  12. Fermilab Research Program Workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1984-05-01

    The Fermilab Research Program Workbook has been published annually for the past several years to assist the Physics Advisory Committee in the yearly program review conducted during its summer meeting. While this is still a major aim, it is hoped that the Workbook will also prove useful to others seeking information on the current status of Fermilab experiments and the properties of beams at the Laboratory. In addition, short summaries of approved experiments are also included

  13. Two Photon Decay Widths of Charmonium Resonances Formed in Proton Antiproton Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Michelle Dawn [UC, Irvine

    1999-01-01

    E835 is an experiment dedicated to the precision study of charmonium formed in $\\bar{p}p$ annihilations at the Fermilab Antiproton Accumulator. E835 has measured the resonance parameters of the $\\eta_c$ resonance: $M(\\eta_c$) = 2985.4 $\\pm$ 2.1 MeV, ,($\\eta_c$) = 21.1 $\\pm$ $^{7.5}_{6.2}$ MeV, and, ($\\eta_c \\to \\gamma\\gamma$ ) = 3.9 $^{1.5}_{ 1.3}$ $\\pm$ $^{1.8}_ {1.1}$. Also reported is the two photon width of the $X_2$,,($X_2 \\to \\gamma\\gamma$) = 0.29 $\\pm$ 0.06 $\\pm$ 0:04. A search for the $\\eta^{\\prime}_c$ resonance has resulted in an upper limit for the product of the branching ratios $B(\\eta^{\\prime}_c \\to \\bar{p}p$) x $B(\\eta^{\\prime}_c \\to \\gamma\\gamma$ ) < 12 x $10^{-8}$. An upper limit, ($\\chi_0 \\to \\gamma\\gamma$) < 2.7 keV is set.

  14. AA antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing of stainless steel. At the entrance to the target assembly was a scintillator screen, imprinted with circles every 5 mm in radius, which allowed to precisely aim the 26 GeV high-intensity proton beam from the PS onto the centre of the target rod. The scintillator screen was a 1 mm thick plate of Cr-doped alumina. See also 7903034 and 7905091.

  15. AA antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long (actually a row of 11 rods, each 1 cm long) and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing made of stainless steel. The casing had fins for forced-air cooling. In this picture, the 26 GeV high-intensity beam from the PS enters from the right, where a scintillator screen, with circles every 5 mm in radius, permits precise aim at the target centre. See also 7903034 and 7905094.

  16. The Fermilab Accelerator control system

    Science.gov (United States)

    Bogert, Dixon

    1986-06-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100 000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A "Host" computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration, and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded "events" in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of "exception conditions" and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the "Host" processors.

  17. The Fermilab accelerator control system

    International Nuclear Information System (INIS)

    Bogert, D.

    1986-01-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A ''Host'' computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded ''events'' in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of 'exception conditions' and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the ''Host'' processors. (orig.)

  18. Gun and optics calculations for the Fermilab recirculation experiment

    International Nuclear Information System (INIS)

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes

  19. CERN stop-over for KEK and Fermilab Directors

    CERN Multimedia

    2001-01-01

    En route for a meeting of the International Committee for Future Accelerators, ICFA, held at Germany's DESY laboratory, the Directors of Japan's KEK laboratory and Fermilab in the United States had a stop-over at CERN last Wednesday 7 February. Dr Hirotaka Sugawara, Director General of Japan's high energy physics laboratory, KEK, visited the Antiproton Decelerator, AD. From left to right, Masaki Hori, member of the ASACUSA collaboration, John Eades, contact person for ASACUSA, Dr Hirotaka Sugawara, Werner Pirkl, the PS Division engineer responsible for the Radio Frequency Quadrupole decelerator in the foreground, and Kurt Hübner, CERN's Director of Accelerators. Dr Michael S. Witherell, Director of the Fermi National Accelerator Laboratory, Fermilab, visited construction sites for the LHC, ATLAS, and CMS. He is seen here with a module of the CMS hadronic calorimeter in building 186.

  20. The Fermilab main injector dipole construction techniques and prototype magnet measurements

    International Nuclear Information System (INIS)

    Bleadon, M.; Brown, B.; Chester, N.; Desavouret, E.; Garvey, J.; Glass, H.; Harding, D.; Harfoush, F.; Holmes, S.; Humbert, J.; Kerby, J.; Knauf, A.; Kobliska, G.; Lipski, A.; Martin, P.; Mazur, P.; Orris, D.; Ostiguy, J.; Peggs, S.; Pachnik, J.; Pewitt, E.; Satti, J.; Schmidt, E.; Sim, J.; Snowdon, S.; Walbridge, D.

    1991-09-01

    The Fermilab Main Injector Project will provide 120--150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. The design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T. 6 refs., 5 figs., 3 tabs

  1. Fermilab's quest to keep power

    CERN Multimedia

    Kunz, Tona

    2005-01-01

    Fermilab wants to build a new collider, but first it must secure federal funding. Fermilab officials have set an ambitious goal of research and development paired with politicking for the next few years (3 pages)

  2. Analog measurement of delayed antiproton annihilation time spectra in a high intensity pulsed antiproton beam

    International Nuclear Information System (INIS)

    Niestroj, A.; Hayano, R.S.; Ishikawa, T.; Tamura, H.; Torii, H.A.; Morita, N.; Yamazaki, T.; Sugai, I.; Nakayoshi, K.; Horvath, D.; Eades, J.; Widmann, E.

    1996-01-01

    An analog detection system has been developed to measure delayed antiproton annihilation time spectra for laser resonance spectroscopy of metastable antiprotonic helium atoms using the high-intensity pulsed beam of antiprotons from LEAR at CERN. (orig.)

  3. Fermilab at 50

    CERN Document Server

    Lykken, Joseph David

    2018-01-01

    Fermilab — originally called the National Accelerator Laboratory — began operations in Illinois on June 15, 1967. Operated and managed by The University of Chicago and Universities Research Association, LLC for the US Department of Energy, it has the distinction of being the only US national laboratory solely dedicated to the advancement of high-energy particle physics, astrophysics and cosmology. It has been the site of major discoveries and observations: the top and bottom quarks; the tau neutrino; direct CP violation in kaon decays; a quasar 27 billion light years away from us; origin of high-energy cosmic rays; and confirmation of the evidence of dark energy, among others. For 25 years it operated the world's highest energy particle collider, the Tevatron. Fermilab contributed collaboratively to the Tevatron's successor, the Large Hadron Collider, which discovered the Higgs boson in 2012. Fermilab's core competencies in accelerators, superconducting technologies, detectors and computing have positione...

  4. Message from Fermilab Director

    CERN Multimedia

    2009-01-01

    With this issue’s message, Fermilab Director Pier Oddone opens a new series of occasional exchanges between CERN and other laboratories world-wide. As part of this exchange, CERN Director-General Rolf Heuer, wrote a message in Tuesday’s edition of Fermilab TodayPerspectivesNothing is more important for our worldwide particle physics community than successfully turning on the LHC later this year. The promise for great discoveries is huge, and many of the plans for our future depend on LHC results. Those of us planning national programmes in anticipation of data from the LHC face formidable challenges to develop future facilities that are complementary to the LHC, whatever the physics discoveries may be. At Fermilab, this has led us to move forcefully with a programme at the intensity frontier, where experiments with neutrinos and rare decays open a complementary window into nature. Our ultimate goal for a unified picture of nat...

  5. ASIC design at Fermilab

    International Nuclear Information System (INIS)

    Yarema, R.

    1991-06-01

    In the past few years, ASIC (Application Specific Integrated Circuit) design has become important at Fermilab. The purpose of this paper is to present an overview of the in-house ASIC design activity which has taken place. This design effort has added much value to the high energy physics program and physics capability at Fermilab. The two approaches to ASIC development being pursued at Fermilab are examined by looking at some of the types of projects where ASICs are being used or contemplated. To help estimate the cost of future designs, a cost comparison is given to show the relative development and production expenses for these two ASIC approaches. 5 refs., 14 figs., 7 tabs

  6. Fermilab and Latin America

    International Nuclear Information System (INIS)

    Lederman, Leon M.

    2006-01-01

    As Director of Fermilab, starting in 1979, I began a series of meetings with scientists in Latin America. The motivation was to stir collaboration in the field of high energy particle physics, the central focus of Fermilab. In the next 13 years, these Pan American Symposia stirred much discussion of the use of modern physics, created several groups to do collaborative research at Fermilab, and often centralized facilities and, today, still provides the possibility for much more productive North-South collaboration in research and education. In 1992, I handed these activities over to the AAAS, as President. This would, I hoped, broaden areas of collaboration. Such collaboration is unfortunately very sensitive to political events. In a rational world, it would be the rewards, cultural and economic, of collaboration that would modulate political relations. We are not there yet

  7. QA at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1988-01-01

    This paper opens with a brief overview of the purpose of Fermilab and historical synopsis of the development and current status of quality assurance (QA) at the Laboratory. The paper subsequently addresses some of the more important aspects of interpreting the national standard ANSI/ASME NQA-1 in pure research environments like Fermilab. Highlights of this discussion include, (1) what is hermeneutics and why are hermeneutical considerations relevant for QA, (2) a critical analysis of NQA-1 focussing on teleological aspects of the standard, (3) a description of the hermeneutical approach to NQA-1 used at Fermilab which attempts to capture the true intents of the document without violating the deeply ingrained traditions of quality standards and peer review that have been foundational to the overall success of the paradigms of high-energy physics.

  8. Autoresonant Excitation of Antiproton Plasmas

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Carpenter, P T; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hurt, J L; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  9. Proton-antiproton collider physics

    CERN Document Server

    Altarelli, Guido

    1989-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. The first article describes the proton-antiproton collider facility itself, including the antiproton source and its principle of operation based on stochastic cooling. The subsequent six articles deal with the various physics subjects studied at the collider. Each article descr

  10. Fermilab's DART DA system

    International Nuclear Information System (INIS)

    Pordes, R.; Anderson, J.; Berg, D.; Black, D.; Forster, R.; Franzen, J.; Kent, S.; Kwarciany, R.; Meadows, J.; Moore, C.

    1994-04-01

    DART is the new data acquisition system designed and implemented for six Fermilab experiments by the Fermilab Computing Division and the experiments themselves. The complexity of the experiments varies greatly. Their data taking throughput and event filtering requirements range from a few (2-5) to tens (80) of CAMAC, FASTBUS and home built front end crates; from a few 100 KByte/sec to 160 MByte/sec front end data collection rates; and from 0-3000 Mips of level 3 processing. The authors report on the architecture and implementation of DART to this date, and the hardware and software components that are being developed and supported

  11. Fermilab Education Office - Director's Award

    Science.gov (United States)

    Search The Director's Award Exceptional Service To Fermilab's K-12 Education Programs The many successes of Fermilab's K-12 education programs depend on the talents of the over 200 employees, users, and $1,000, made possible by an anonymous donor to Fermilab Friends for Science Education, recognizes one

  12. The discovery of the antiproton

    International Nuclear Information System (INIS)

    Chamberlain, Owen

    1989-01-01

    A number of groups of particle physicists competed to provide track evidence of the existence of Dirac's postulated antiproton in the mid-1950s. The work of the several teams is described briefly. The author describes the work of his own group on the Bevatron in more detail, and how they finally observed the antiproton. The article finishes with an assessment of the importance of this discovery. (UK)

  13. Fermilab: Linac upgrade

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab linear accelerator (Linac) was conceived 20 years ago, produced its first 200 MeV proton beam on 30 November 1970 and has run without major interruption ever since. Demands have steadily increased through the added complexity of the downstream chain of accelerators and by the increased patient load of the Neutron Therapy Facility

  14. Scintillator manufacture at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  15. Production Farms at Fermilab

    International Nuclear Information System (INIS)

    Fischler, M.; Rinaldo, F.; Wolbers, S.

    1994-05-01

    UNIX Farms at Fermilab have been used for more than than three years to solve the problem of providing massive amounts of CPU processing power for event reconstruction. System configurations, parallel processing software, administration and allocation issues, production issues and other experiences and plans are discussed

  16. Fermilab | Publications and Videos

    Science.gov (United States)

    collection of particle physics books and journals. The Library also offers a range of services including Benefits Milestones Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle

  17. Fermilab Education Office - Contacts

    Science.gov (United States)

    Search The Office of Education and Public Outreach: Contacts All telephone numbers require area code Presentations for Presenters 840-3094 Office of Education and Public Outreach Spencer Pasero spasero@fnal.gov Education Office 840-3076 Fermilab Friends for Science Education General Questions Susan Dahl sdahl@fnal.gov

  18. Fermilab Education: Physicists

    Science.gov (United States)

    Search Education and Outreach: Resources and Opportunties for Fermilab employees and Users A variety of resources and opportunities are available for physicists interested in education and outreach (For general Data (6–12) Physical Science/Physics Instructional Resources (K–12) US Particle Physics Education and

  19. Fermilab | Science | Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  20. Measurement of interaction between antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Klein, S.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Z. M.; Li, Y.; Li, W.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, Y.; Wang, F.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, H.; Xu, N.; Xu, Z.; Yang, Y.; Yang, C.; Yang, S.; Yang, Y.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I. -K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, X. P.; Zhang, J.; Zhang, Y.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.

    2015-11-04

    © 2015 Macmillan Publishers Limited. All rights reserved. One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton-antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton-proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and the ir properties.

  1. Measurement of interaction between antiprotons

    Science.gov (United States)

    The Star Collaboration; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de La Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Klein, S.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Z. M.; Li, Y.; Li, W.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, Y.; Wang, F.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, H.; Xu, N.; Xu, Z.; Yang, Y.; Yang, C.; Yang, S.; Yang, Y.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, X. P.; Zhang, J.; Zhang, Y.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.

    2015-11-01

    One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton-antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton-proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and their properties.

  2. Fermilab Steering Group Report

    Energy Technology Data Exchange (ETDEWEB)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the

  3. Antiprotonic helium atomcules

    Directory of Open Access Journals (Sweden)

    Sauge Sébastien

    2012-10-01

    Full Text Available About 3% of antiprotons ( stopped in helium are long-lived with microsecond lifetimes, against picoseconds in all other materials. This unusual longevity has been ascribed to the trapping of on metastable bound states in He+ helium atom-molecules thus named atomcules. Apart from their unique dual structure investigated by laser spectroscopy – a near-circular quasi-classical Rydberg atom with l ~ n – 1 ~ 37 or a special diatomic molecule with a negatively charged nucleus in high rotational state with J = l – the chemical physics aspects of their interaction with other atoms or molecules constitute an interesting topic for molecular physics. While atomcules may resist to million collisions in helium, molecular contaminants such as H2 are likely to destroy them in a single one, down to very low temperatures. In the Born-Oppenheimer framework, we interpret the molecular interaction obtained by ab initio quantum chemical calculations in terms of classical reactive channels, with activation barriers accounting for the experiments carried out in He and H2. From classical trajectory Monte Carlo simulations, we show that the thermalization stage strongly quenches initial populations, thus reduced to a recovered 3 % trapping fraction. This work illustrates the pertinence of chemical physics concepts to the study of exotic processes involving antimatter. New insights into the physico-chemistry of cold interstellar radicals are anticipated.

  4. In the steps of the antiproton

    CERN Multimedia

    Amsler, Claude

    2015-01-01

    Sixty years after the discovery of the antiproton at Berkeley, a look at some of the ways that studies with antiprotons at CERN have cast light on basic physics and, in particular, on fundamental symmetries.

  5. Spectroscopy of antiproton helium atoms

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2005-01-01

    Antiproton helium atom is three-body system consisting of an antiproton, electrons and a helium nucleus (denoted by the chemical symbol, p-bar H + ). The authors produced abundant atoms of p-bar 4 He + , and p-bar 3 He + in a cooled He gas target chamber stopping the p-bar beam decelerated to approximately 100 keV in the Antiproton Decelerator at CERN. A precision laser spectroscopy on the atomic transitions in the p-bar 4 He + , and in p-bar 3 He + was performed. Principle of laser spectroscopy and various modifications of the system to eliminate factors affecting the accuracy of the experiment were described. Deduced mass ratio of antiproton and proton, (|m p -bar - m p |)/m p reached to the accuracy of 10 ppb (10 -8 ) as of 2002, as adopted in the recent article of the Particle Data Group by P.J. Mohr and B.N. Taylor. This value is the highest precise data for the CPT invariance in baryon. In future, antihydrogen atoms will be produced in the same facility, and will provide far accurate value of antiproton mass thus enabling a better confirmation of CPT theorem in baryon. (T. Tamura)

  6. Fermilab research program workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1983-05-01

    The Fermilab Research Program Workbook has been produced annually for the past several years, with the original motivation of assisting the Physics Advisory Committee in its yearly program review conducted during its summer meeting. While this is still the primary goal, the Workbook is increasingly used by others needing information on the current status of Fermilab experiments, properties of beams, and short summaries of approved experiments. At the present time, considerable changes are taking place in the facilities at Fermilab. We have come to the end of the physics program using the 400 GeV Main Ring, which is now relegated to be just an injector for the soon-to-be commissioned Tevatron. In addition, the experimental areas are in the midst of a several-year program of upgrading to 1000 GeV capability. Several new beam lines will be built in the next few years; some indications can be given of their properties, although with the caveat that designs for some are by no means final. Already there is considerable activity leading to experiments studying anti p p collisions at √s = 2000 GeV

  7. Compression of Antiproton Clouds for Antihydrogen Trapping

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  8. Antiproton collisions with molecular hydrogen

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Theoretical antiproton and proton cross sections for ionization and excitation of hydrogen molecules as well as energy spectra of the ionized electrons were calculated in the impact-energy range from 8  to  4000  keV. The cross sections were computed with the close-coupling formulation of the sem......Theoretical antiproton and proton cross sections for ionization and excitation of hydrogen molecules as well as energy spectra of the ionized electrons were calculated in the impact-energy range from 8  to  4000  keV. The cross sections were computed with the close-coupling formulation...

  9. The CERN SPS proton–antiproton collider

    CERN Document Server

    Schmidt, Rudiger

    2016-01-01

    One of CERN's most ambitious and successful projects was the search for the intermediate bosons, W and Z [1]. The accelerator part of the project relied on a number of innovations in accelerator physics and technology. The invention of the method of stochastic cooling and the extension by many orders of magnitude beyond the initial proof of principle demonstration allowed the construction of the Antiproton Accumulator. Major modifications to the 26 GeV PS complex and the conversion of the 300 GeV SPS, which had just started up as an accelerator, to a collider were required. The SPS collider had to master the beam–beam effect far beyond limits reached before and had to function in a tight symbiosis with the UA1 and UA2 experiments.

  10. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1996-01-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the control and monitoring of the data acquisition systems. The authors discuss the unique and interesting concepts of the run control and some of the experiences in developing it. They also give a brief update and status of the whole DART system

  11. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-05-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the, control and monitoring of the data acquisition systems. We discuss the unique and interesting concepts of the run control and some of our experiences in developing it. We also give a brief update and status of the whole DART system

  12. Measurement of interaction between antiprotons

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Bielčík, J.; Bielčíková, Jana; Federič, Pavol; Chaloupka, P.; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Tlustý, David; Trzeciak, B. A.; Vértési, Robert

    2015-01-01

    Roč. 527, č. 7578 (2015), s. 345-348 ISSN 0028-0836 R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR collaboration * antiprotons * protons Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 38.138, year: 2015

  13. Physics at CERN's Antiproton Decelerator

    CERN Document Server

    Hori, M

    2013-01-01

    The Antiproton Decelerator of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen ($\\bar{\\rm H}$) and antiprotonic helium ($\\bar{p}{\\rm He}^+$). The first 12 years of operation saw cold $\\bar{\\rm H}$ synthesized by overlapping clouds of positrons ($e^+$) and antiprotons ($\\bar{p}$) confined in magnetic Penning traps. Cold $\\bar{\\rm H}$ was also produced in collisions between Rydberg positronium atoms and $\\bar{p}$. Ground-state $\\bar{\\rm H}$ was later trapped for up to $\\sim 1000$ s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the $\\bar{p}{\\rm He}^+$ atom, UV transitions were measured to a precision of (2.3-5) $\\times$ $10^{-9}$ by sub-Doppler two-photon laser spectroscopy. From this the antiproton-to-electron mass ratio was determined as $M_{\\bar{p}}/m_e=$1836.1526736(23), which agrees with the p value. Microwave spectroscopy of $\\bar{p}{\\rm He}^+$ yielded a measurement o...

  14. 132 ns Bunch Spacing in the Tevatron Proton-Antiproton Collider

    International Nuclear Information System (INIS)

    Holmes, S.D.; Holt, J.; Johnstone, J.A.; Marriner, J.; Martens, M.; McGinnis, D.

    1994-12-01

    Following completion of the Fermilab Main Injector it is expected that the Tevatron proton-antiproton collider will be operating at a luminosity in excess of 5x10 3l cm -2 with 36 proton and antiproton bunches spaced at 396 nsec. At this luminosity, each of the experimental detectors will see approximately 1.3 interactions per crossing. Potential improvements to the collider low beta and rf systems could push the luminosity beyond 10x10 3l cm -2 sec -1 , resulting in more than three interactions per crossing if the bunch separation is left unchanged. This paper discusses issues related to moving to ∼100 bunch operation, with bunch spacings of 132 nsec, in the Tevatron. Specific scenarios and associated hardware requirements are described

  15. Measurement of the Transverse Momentum of Dielectron Pairs in Proton - Anti-Proton Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Dylan Patrick [Univ. of Rochester, NY (United States)

    1997-01-01

    We present a measurement of the transverse momentum distribution of dielectron pairs with invariant mass near the mass of the Z boson. The data were obtained using the DO detector during the 1994-1995 run of the Tevatron Co!lider at Fermilab. The data used in the measurement corresponds to an integrated luminosity of 108.5 $pb^{-1}$ The measurement is compared to current phenomenology for vector boson production in proton-antiproton interactions, and the results are found to be consistent with expectation from Quantum Chromodynamics (QCD).

  16. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  17. The Fermilab ACNET upgrade

    International Nuclear Information System (INIS)

    Briegel, C.; Johnson, G.; Winterowd, L.

    1990-01-01

    The Fermilab Accelerator Controls Network (ACNET) upgrade consists of a new physical medium (IEEE 802.5 token ring), additions to the calling sequence and added processor support. ACNET is the accelerator control backbone network for all data communication. A proprietary network was replaced by an IEEE standard enabling an open network with excellent characteristics for the control system. The calling sequence was enhanced for the added capabilities of the token-ring interface such as 'gather-read' and 'scatter-write'. In addition to prior support of DEC PDP11s under RS11M and VAXs under VMS, the ACNET calling sequence was implemented in the language C for the IBM PC with MS-DOS and Motorola 680x0 with MTOS using VME bus. Additional support is in progress for Intel 80x86 with MTOS using Multibus II. (orig.)

  18. Anitproton-matter interactions in antiproton applications

    Science.gov (United States)

    Morgan, David L., Jr.

    1990-01-01

    By virtue of the highly energetic particles released when they annihilate in matter, antiprotons have a variety of potentially important applications. Among others, these include remote 3-D density and composition imaging of the human body and also of thick, dense materials, cancer therapy, and spacecraft propulsion. Except for spacecraft propulsion, the required numbers of low energy antiprotons can be produced, stored, and transported through reliance on current or near term technology. Paramount to these applications and to fundamental research involving antiprotons is knowledge of how antiprotons interact with matter. The basic annihilation process is fairly well understood, but the antiproton annihilation and energy loss rates in matter depend in complex ways on a number of atomic processes. The rates, and the corresponding cross sections, were measured or are accurately predictable only for limited combinations of antiproton kinetic energy and material species.

  19. FERMILAB: Tevatron upgrade; Magnetic precession in bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-01-15

    The Fermilab accelerator complex is in the middle of a major upgrade to increase the luminosity beyond the original design goal. During Phase I of this upgrade, there have been major modifications to the Tevatron. These modifications were commissioned at the start of the latest collider run and include the installation of electrostatic separators to separate the orbits of the stored beams and new low beta insertions to squeeze the colliding proton and antiproton beams at both experiment interaction regions. These modifications have already enabled the Tevatron to achieve a record peak luminosity of 6.93 x 10{sup 30} per sq cm per s and a record weekly integrated luminosity of 10{sup 60} inverse nanobarns. The peak goal for the present run of 5.0 x 10{sup 30} has already been exceeded.

  20. FERMILAB: Tevatron upgrade; Magnetic precession in bent crystals

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab accelerator complex is in the middle of a major upgrade to increase the luminosity beyond the original design goal. During Phase I of this upgrade, there have been major modifications to the Tevatron. These modifications were commissioned at the start of the latest collider run and include the installation of electrostatic separators to separate the orbits of the stored beams and new low beta insertions to squeeze the colliding proton and antiproton beams at both experiment interaction regions. These modifications have already enabled the Tevatron to achieve a record peak luminosity of 6.93 x 10 30 per sq cm per s and a record weekly integrated luminosity of 10 60 inverse nanobarns. The peak goal for the present run of 5.0 x 10 30 has already been exceeded

  1. The Fermilab Collider D/Phi/ low Β system

    International Nuclear Information System (INIS)

    McInturff, A.D.; Carson, J.; Collins, T.; Koepke, K.; Malamud, E.; Mantsch, P.; Niemann, R.; Riddiford, A.

    1988-06-01

    A new low Β system has been designed to serve the detector facility under construction at the D/Phi/ location of the Fermilab Superconducting Collider. The low Β system consists of 18 special cold iron quadrupoles powered as 11 independent circuits that can adjust the Β value at the intersection point down to 25 cm. Low beta is achieved with a set of 1.4 T/cm, two shell, high current quadrupoles. Smaller 0.7 T/cm, single shell trim quadrupoles are used to match the low beta insertion to the rest of the accelerator lattice. Gaps have been left in the lattice for electrostatic separators to separate the proton and antiproton beams everywhere except at the desired collision points. 6 refs., 6 figs., 3 tabs

  2. The Fermilab Collider D/Phi/ low BETA system

    Energy Technology Data Exchange (ETDEWEB)

    McInturff, A.D.; Carson, J.; Collins, T.; Koepke, K.; Malamud, E.; Mantsch, P.; Niemann, R.; Riddiford, A.

    1988-06-01

    A new low BETA system has been designed to serve the detector facility under construction at the D/Phi/ location of the Fermilab Superconducting Collider. The low BETA system consists of 18 special cold iron quadrupoles powered as 11 independent circuits that can adjust the BETA value at the intersection point down to 25 cm. Low beta is achieved with a set of 1.4 T/cm, two shell, high current quadrupoles. Smaller 0.7 T/cm, single shell trim quadrupoles are used to match the low beta insertion to the rest of the accelerator lattice. Gaps have been left in the lattice for electrostatic separators to separate the proton and antiproton beams everywhere except at the desired collision points. 6 refs., 6 figs., 3 tabs.

  3. Status of Fermilab E-710

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1993-08-01

    This report give the current status of E-710, an experiment at the Fermilab bar pp Tevatron Collider to measure elastic scattering, total cross sections and diffraction dissociation up to √s = 1.8 TeV

  4. The KAMI experiment at Fermilab

    International Nuclear Information System (INIS)

    Yamanaka, T.

    2001-01-01

    The KAMI experiment at Fermilab is planning to measure the CP violation parameter, η, by observing more than 100 K L → π 0 νν-bar events. Basic studies performed for the new experiment are presented

  5. Vertically Integrated Circuits at Fermilab

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  6. Medium energy electron cooling R and D at Fermilab -- Context and status

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1996-05-01

    Electron cooling at the proposed Recycler 8 GeV storage ring has been identified as a key element in exploiting the capacity of the Fermilab Main Injector for an additional factor of ten in Tevatron luminosity above the goal for the next collider run, ultimately to > 10 33 cm -2 s -1 . The most basic requirement for increased luminosity is a large stack of antiprotons cooled to emittance comparable to that of the proton beam. Although electron cooling is inferior to the stochastic technique for cooling large emittance beams, its rate is practically independent of the antiproton intensity. For cooling intense beams of low or moderate emittance, electron cooling excels. The realization of electron cooling for 8 GeV antiprotons requires major extension of existing practice in electron energy and length of the cooling interaction region. It will require 4.3 MeV dc electron beam maintaining high quality and precise collinearity with the antiprotons over a 66 m straight section. The initial goal of the R and D project is 200 mA electron current in about three years; the plan is to reach 2 A over the following three years

  7. Review of the Fermilab main ring accelerator study program as directed to the pp program

    International Nuclear Information System (INIS)

    Griffin, J.E.; MacLachlan, J.A.; Bridges, J.F.

    1981-01-01

    Recently the colliding beam goals at Fermilab have been redirected toward 2 TeV c.m. pp physics to be done in the Tevatron. The booster-main ring complex will be the proton injector and the source of protons for anti-proton production. Consequently, the emphasis of recent studies in the main ring has been directed at those problems which arise from the beam manipulation necessary for the pp scenario. These studies are divided into three categories: 1) true storage studies directed toward revealing problems and techniques likely to apply to storage in the Tevatron, 2) beam manipulations necessary for the production of anti-protons, and 3) beam manipulations necessary for producing single proton bunches containing 10/sup 11/ protons each. 16 refs

  8. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    International Nuclear Information System (INIS)

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab's new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long

  9. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-06-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beams of approx.1.8 μs. The current waveform is required to rise to 90% of I/sub max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I/sub max/ for the 21 μs needed to ensure all the beam has left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of approx.20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention is given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades are given for the two operational systems. 2 refs., 4 figs., 1 tab

  10. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beam of about1.8 μs. The current waveform is required to rise to 90% of I /SUB max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I for the 21 μs needed to ensure all the beam has /SUP max/ left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of about20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  11. PANDA : Strong Interaction Studies with Antiprotons

    NARCIS (Netherlands)

    Peters, Klaus; Schmitt, Lars; Stockmanns, Tobias; Messchendorp, Johan

    2017-01-01

    The Antiproton Anihilation in Darmstadt (PANDA) collaboration at the Facility for Antiproton and Ion Research (FAIR) is a cooperation of more than 400 scientists from 19 countries. FAIR will be an accelerator facility leading the European research in nuclear and hadron physics in the coming decade.

  12. The biological effectiveness of antiproton irradiation

    International Nuclear Information System (INIS)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde; Beyer, Gerd; Blackmore, Ewart; DeMarco, John J.; Doser, Michael; Durand, Ralph E.; Hartley, Oliver; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Moller, Soren Pape; Petersen, Jorgen; Skarsgard, Lloyd D.; Smathers, James B.; Solberg, Timothy D.; Uggerhoj, Ulrik I.; Vranjes, Sanja; Withers, H. Rodney; Wong, Michelle; Wouters, Bradly G.

    2006-01-01

    Background and purpose: Antiprotons travel through tissue in a manner similar to that for protons until they reach the end of their range where they annihilate and deposit additional energy. This makes them potentially interesting for radiotherapy. The aim of this study was to conduct the first ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 6 Co γ-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which compares the response in a minimally spread out Bragg peak (SOBP) to that in the plateau as a function of particle fluence. This value was ∼3.75 times larger for antiprotons than for protons. This increase arises due to the increased dose deposited in the Bragg peak by annihilation and because this dose has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest antiprotons warrant further investigation

  13. Antiproton radiation found effective in cancer research

    CERN Multimedia

    2003-01-01

    "An international collaboration of scientists has completed the first ever antiproton beam experiments designed to reveal the biological effectiveness of antiproton radiation in terminating cells used for cancer research...PBar Labs assembled the collaboration at CERN (European Organization for Nuclear Research in Geneva) to perform the measurements" (1 page).

  14. Beam-Based Alignment of Magnetic Field in the Fermilab Electron Cooler Cooling Section

    International Nuclear Information System (INIS)

    Seletskiy, S. M.; Tupikov, V.

    2006-01-01

    The Fermilab Electron Cooling Project requires low effective anglular spread of electrons in the cooling section. One of the main components of the effective electron angles is an angle of electron beam centroid with respect to antiproton beam. This angle is caused by the poor quality of magnetic field in the 20 m long cooling section solenoid and by the mismatch of the beam centroid to the entrance of the cooling section. This paper focuses on the beam-based procedure of the alignment of the cooling section field and beam centroid matching. The discussed procedure allows to suppress the beam centroid angles below the critical value of 0.1 mrad

  15. The biological effectiveness of antiproton irradiation

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde

    2006-01-01

    ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 60Co c-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose...... and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which...... has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest...

  16. The relative biological effectiveness of antiprotons

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Alsner, Jan; Bassler, Niels

    2016-01-01

    Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase of the re......Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase...... of the relative biological effectiveness (RBE) of antiprotons near the end of range. We have performed the first-ever direct measurement of the RBE of antiprotons both at rest and in flight. Materials and methods: Experimental data were generated on the RBE of an antiproton beam entering a tissue-like target...

  17. Laser-driven ultrafast antiproton beam

    Science.gov (United States)

    Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang

    2018-02-01

    Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.

  18. Physics with antiprotons at LEAR

    International Nuclear Information System (INIS)

    Kilian, K.

    1984-01-01

    The low energy antiproton ring LEAR started to work at CERN in 1983. It provides clean anti p beams of much higher intensity and much better quality than available so far in the range from 0.1 to 2 GeV/c momentum. 16 of the 17 accepted experiments are installed and 14 of them took first data in 1983. After approx.= 240 hours of LEAR operation very first results are available. One can expect that exciting physics results be produced in many different domains provided LEAR gets enough anti p in the future. (orig.)

  19. The proton-antiproton collider

    International Nuclear Information System (INIS)

    Evans, L.

    1988-01-01

    The subject of this lecture is the CERN Proton-Antiproton (panti p) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first panti p collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. (orig.)

  20. Radiation skyshine calculation with MARS15 for the Mu2e Experiment at Fermilab

    International Nuclear Information System (INIS)

    Leveling, A.F.

    2015-01-01

    The Fermilab Antiproton source is to be re-purposed to provide an 8 kW proton beam to the Mu2e experiment by 1/3 integer, slow resonant extraction. Shielding provided by the existing facility must be supplemented with in-tunnel shielding to limit the radiation effective dose rate above the shield in the AP30 service building. In addition to the nominal radiation shield calculations, radiation skyshine calculations were required to ensure compliance with Fermilab Radiological Controls Manual. A complete model of the slow resonant extraction system including magnets, electrostatic septa, magnetic fields, tunnel enclosure with shield, and a nearby exit stairway are included in the model. The skyshine model extends above the beam enclosure surface to 10 km vertically and 5 km radially. (authors)

  1. Mechanical and electrical design of the Fermilab lithium lens and transformer system

    International Nuclear Information System (INIS)

    Dugan, G.; Hojvat, C.; Lennox, A.J.; Biallas, G.; Cilyo, F.; Leininger, M.; McCarthy, J.; Sax, W.; Snowdon, S.

    1983-03-01

    A lithium-lens focusing device will be used for the collection of 8-GeV antiprotons in the Fermilab Tevatron I Project. The details of the mechanical and electrical design of the Fermilab lens and its associated toroidal transformer are discussed. The lens, with a radium of 1 cm and length 15 cm, is expected to achieve gradients of 1000 T/m for a focal distance of 0.225 m. The gradient requires a current on the order of 5 x 10 5 A, resulting in large electromagnetic and thermal stresses. The power-supply discharge current and the effect of the inductance of the power leads and connections are minimized by the use of a toroidal matching transformer surrounding the lens itself

  2. Th W boson transverse momentum spectrum in proton-antiproton collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Winer, B.L.

    1991-02-01

    The Collider Detector at Fermilab (CDF) was used to measure the transverse momentum distribution of W boson produced in proton-antiproton collisions at the Tevatron collider. The W bosons were identified by the decay W → eν. The results are in good agreement with a next-to-leading order calculation. The cross section for W production with P T > 50 GeV/c is 423 ± 58 (stat.) ± 108 (sys.) pb. 58 refs., 53 figs., 16 tabs

  3. Fermilab History and Archives Project | Home

    Science.gov (United States)

    Special Events Early Users Meetings (1979 - 1989) The Tevatron Natural History Discoveries Technology Site Fermilab History and Archives Project Fermilab History and Archives Project Fermi National Accelerator Laboratory Home About the Archives History & Archives Online Request Contact Us Site Index

  4. Fermilab Physics Program for the 1990's

    International Nuclear Information System (INIS)

    Stanfield, K.C.

    1990-01-01

    Following a brief introduction to Fermilab facilities and a review of the accelerator status and plans, the physics potential for the Fermilab III upgrade program is discussed for both the fixed target and collider modes

  5. Fermilab's SC Accelerator Magnet Program for Future U.S. HEP Facilities

    International Nuclear Information System (INIS)

    Lamm, Michael; Zlobin, Alexander

    2010-01-01

    The invention of SC accelerator magnets in the 1970s opened wide the possibilities for advancing the energy frontier of particle accelerators, while limiting the machine circumference and reducing their energy consumption. The successful development of SC accelerator magnets based on NbTi superconductor have made possible a proton-antiproton collider (Tevatron) at Fermilab, an electron-proton collider (HERA) at DESY, a relativistic heavy ion collider (RHIC) at BNL and recently a proton-proton collider (LHC) at CERN. Further technological innovations and inventions are required as the US HEP looks forward towards the post-LHC energy or/and intensity frontiers. A strong, goal oriented national SC accelerator magnet program must take on this challenge to provide a strong base for the future of HEP in the U.S. The results and experience obtained by Fermilab during the past 30 years will allow us to play a leadership role in the SC accelerator magnet development in the U.S., in particular, focusing on magnets for a Muon Collider/Neutrino Factory (1)-(2). In this paper, we summarize the required Muon Collider magnet needs and challenges, summarize the technology advances in the Fermilab accelerator magnet development over the past few years, and present and discuss our vision and long-term plans for these Fermilab-supported accelerator initiatives.

  6. Exploration of a High Luminosity 100 TeV Proton Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros, Sandra J. [Univ. of Mississippi, Oxford, MS (United States); Summers, Don [Univ. of Mississippi, Oxford, MS (United States); Cremaldi, Lucien [Univ. of Mississippi, Oxford, MS (United States); Acosta, John [Univ. of Mississippi, Oxford, MS (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-04-12

    New physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. We explore a 10$^{\\,34}$ cm$^{-2}$ s$^{-1}$ luminosity, 100 TeV $p\\bar{p}$ collider with 7$\\times$ the energy of the LHC but only 2$\\times$ as much NbTi superconductor, motivating the choice of 4.5 T single bore dipoles. The cross section for many high mass states is 10 times higher in $p\\bar{p}$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per beam crossing, because lower beam currents can produce the same rare event rates. Events are more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $\\beta^{*}$ for higher luminosity. A Fermilab-like $\\bar p$ source would disperse the beam into 12 momentum channels to capture more antiprotons. Because stochastic cooling time scales as the number of particles, 12 cooling ring sets would be used. Each set would include phase rotation to lower momentum spreads, equalize all momentum channels, and stochastically cool. One electron cooling ring would follow the stochastic cooling rings. Finally antiprotons would be recycled during runs without leaving the collider ring by joining them to new bunches with synchrotron damping.

  7. The Fermilab data storage infrastructure

    International Nuclear Information System (INIS)

    Jon A Bakken et al.

    2003-01-01

    Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework

  8. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  9. Fermilab Security Site Access Request Database

    Science.gov (United States)

    Fermilab Security Site Access Request Database Use of the online version of the Fermilab Security Site Access Request Database requires that you login into the ESH&Q Web Site. Note: Only Fermilab generated from the ESH&Q Section's Oracle database on May 27, 2018 05:48 AM. If you have a question

  10. Antiproton fast ignition for inertial confinement fusion

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1999-01-01

    With 180 MJ/microg, antiprotons offer the highest stored energy per unit mass of any known entity. The use of antiprotons to promote fast ignition in an inertial confinement fusion (ICF) capsule and produce high target gains with only modest compression of the main fuel is investigated. Unlike standard fast ignition where the ignition energy is supplied by energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. This can be considered in-situ fast ignition as it obviates the need for the external injection of the ignition energy. In the first of two candidate schemes, the antiproton package is delivered by a low-energy ion beam. In the second, autocatalytic scheme, the antiprotons are preemplaced at the center of the capsule prior to compression. In both schemes, the author estimates that ∼10 12 antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition within the ignitor zone. In addition to eliminating the need for a second, energetic fast laser and vulnerable final optics, this scheme would achieve central ignition without reliance on laser channeling through halo plasma or Hohlraum debris. However, in addition to the practical difficulties of storage and manipulation of antiprotons at low energy, the other large uncertainty for the practicality of such a speculative scheme is the ultimate efficiency of antiproton production in an external, optimized facility. Estimates suggest that the electrical wall plug energy per pulse required for the separate production of the antiprotons is of the same order as that required for the conventional slow compression driver

  11. Antiprotonic Radioactive Atom for Nuclear Structure Studies

    International Nuclear Information System (INIS)

    Wada, M.; Yamazaki, Y.

    2005-01-01

    A future experiment to synthesize antiprotonic radioactive nuclear ions is proposed for nuclear structure studies. Antiprotonic radioactive nuclear atom can be synthesized in a nested Penning trap where a cloud of antiprotons is prestored and slow radioactive nuclear ions are bunch-injected into the trap. By observing of the ratio of π+ and π- produced in the annihilation process, we can deduce the different abundance of protons and neutrons at the surface of the nuclei. The proposed method would provide a unique probe for investigating the nuclear structure of unstable nuclei

  12. Testing Quantum Chromodynamics with Antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-10-21

    The antiproton storage ring HESR to be constructed at GSI will open up a new range of perturbative and nonperturbative tests of QCD in exclusive and inclusive reactions. I discuss 21 tests of QCD using antiproton beams which can illuminate novel features of QCD. The proposed experiments include the formation of exotic hadrons, measurements of timelike generalized parton distributions, the production of charm at threshold, transversity measurements in Drell-Yan reactions, and searches for single-spin asymmetries. The interactions of antiprotons in nuclear targets will allow tests of exotic nuclear phenomena such as color transparency, hidden color, reduced nuclear amplitudes, and the non-universality of nuclear antishadowing. The central tool used in these lectures are light-front Fock state wavefunctions which encode the bound-state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions. QCD becomes scale free and conformally symmetric in the analytic limit of zero quark mass and zero {beta} function. This ''conformal correspondence principle'' determines the form of the expansion polynomials for distribution amplitudes and the behavior of non-perturbative wavefunctions which control hard exclusive processes at leading twist. The conformal template also can be used to derive commensurate scale relations which connect observables in QCD without scale or scheme ambiguity. The AdS/CFT correspondence of large N{sub C} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has important implications for hadron phenomenology in the conformal limit, including the nonperturbative derivation of counting rules for exclusive processes and

  13. The FIFE Project at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Box, D. [Fermilab; Boyd, J. [Fermilab; Di Benedetto, V. [Fermilab; Ding, P. [Fermilab; Dykstra, D. [Fermilab; Fattoruso, M. [Fermilab; Garzoglio, G. [Fermilab; Herner, K. [Fermilab; Levshina, T. [Fermilab; Kirby, M. [Fermilab; Kreymer, A. [Fermilab; Mazzacane, A. [Fermilab; Mengel, M. [Fermilab; Mhashilkar, P. [Fermilab; Podstavkov, V. [Fermilab; Retzke, K. [Fermilab; Sharma, N. [Fermilab

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  14. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  15. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  16. ASACUSA measures microwave transition in antiprotonic helium

    CERN Document Server

    Eades, John

    2003-01-01

    The ASACUSA collaboration has reinforced its status as a paragon of precision physics by following up its impressive six parts in 10/sup 8/ measurement of the antiproton's charge and mass with new measurements of its magnetism. (4 refs).

  17. Fermilab-Latin America collaboration

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1994-01-01

    Fermilab's program of collaboration with Latin America was initiated by then-Director Leon Lederman about 1980. His goal was to aid Latin American physics, and particularly its particle physics; this latter aim is in keeping with the Laboratory's particle physics mission. The reasons for collaboration between institutions in the US and Latin America are many, including geographic and cultural, together with the existence of many talented scientists and many centers of excellence in the region. There are also broader reasons; for example, it has been stated frequently that physics is the basis of much technology, and advanced technology is a necessity for a country's development. There is nothing unique about Fermilab's program; other US institutions can carry out similar activities, and some have carried out individual items in the past. On the Latin American side, such collaboration enables institutions there to carry out forefront physics research, and also to have the advantages of particle physics spin-offs, both in expertise in related technologies and in scientist training. In addition to particle physics, collaboration is possible in many other related areas. Although particle physics is frequently viewed as open-quotes big scienceclose quotes, all of the large research groups in the field are composed of many small university groups, each of which contributes to the experiment, the analysis and the physics. Fermilab is an international laboratory, open to all users; a research proposal is accepted on scientific merit and technical competence, not on the country of origin of the scientists making the proposal. Currently, of Fermilab's approximately 1400 users, about 30% are from non-US institutions. It should be noted here that Fermilab's funds, which come from the US government, are for particle physics only; however, there is some flexibility in interpretation of this

  18. CERN: Antiprotons probe the nuclear stratosphere

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The outer periphery of heavy stable nuclei is notoriously difficult to study experimentally. While the well understood electromagnetic interaction between electrons (or muons) and protons has given the nuclear charge (or proton) distribution with high precision for almost all stable nuclei, neutron distribution studies are much less precise. This is especially true for large nuclear distances, where the nuclear density is small. A few previous experiments probing the nuclear ''stratosphere'' suggested that far from the centre of the nucleus (of the order of 2 nuclear radii) this stratosphere may be composed predominantly of neutrons. At the end of the sixties the term ''neutron halo'' was introduced to describe this phenomenon, but experimental evidence was scarce or even controversial, and remained so for almost a quarter of a century. Recently, the Warsaw/Munich/Berlin collaboration working within the PS203 experiment at CERN's LEAR low energy antiproton ring, proposed a new method to study the nuclear periphery using stopped antiprotons. The halo now looks firmer. A 200 MeV/c beam of antiprotons was slowed down by interactions with atomic electrons. When antiproton kinetic energy drops well below 1 keV, the particles are captured in the outermost orbits of ''exotic atoms'', where the antiprotons take the place of the usual orbital electrons. With the lower orbits in this antiprotonic atom empty, the antiproton drops toward the nuclear surface, first emitting Auger electrons and later predominantly antiprotonic X-rays. Due to the strong interaction between antiprotons and nucleons, the antiproton succumbs to annihilation with a nucleon in the rarified nuclear stratosphere, far above the innermost Bohr orbit of the atom. The annihilation probability in heavy nuclei is maximal where the nuclear density is about 3% of its central value and extends to densities many orders of magnitude smaller

  19. CERN: Antiprotons probe the nuclear stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-06-15

    The outer periphery of heavy stable nuclei is notoriously difficult to study experimentally. While the well understood electromagnetic interaction between electrons (or muons) and protons has given the nuclear charge (or proton) distribution with high precision for almost all stable nuclei, neutron distribution studies are much less precise. This is especially true for large nuclear distances, where the nuclear density is small. A few previous experiments probing the nuclear ''stratosphere'' suggested that far from the centre of the nucleus (of the order of 2 nuclear radii) this stratosphere may be composed predominantly of neutrons. At the end of the sixties the term ''neutron halo'' was introduced to describe this phenomenon, but experimental evidence was scarce or even controversial, and remained so for almost a quarter of a century. Recently, the Warsaw/Munich/Berlin collaboration working within the PS203 experiment at CERN's LEAR low energy antiproton ring, proposed a new method to study the nuclear periphery using stopped antiprotons. The halo now looks firmer. A 200 MeV/c beam of antiprotons was slowed down by interactions with atomic electrons. When antiproton kinetic energy drops well below 1 keV, the particles are captured in the outermost orbits of ''exotic atoms'', where the antiprotons take the place of the usual orbital electrons. With the lower orbits in this antiprotonic atom empty, the antiproton drops toward the nuclear surface, first emitting Auger electrons and later predominantly antiprotonic X-rays. Due to the strong interaction between antiprotons and nucleons, the antiproton succumbs to annihilation with a nucleon in the rarified nuclear stratosphere, far above the innermost Bohr orbit of the atom. The annihilation probability in heavy nuclei is maximal where the nuclear density is about 3% of its central value and extends to densities many orders of magnitude smaller. Antiproton annihilation on a proton or on a neutron at the nuclear

  20. Physics with ultra-low energy antiprotons

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Holzscheiter, M.H.; Hughes, R.J.

    1989-01-01

    The experimental observation that all forms of matter experience the same gravitational acceleration is embodied in the weak equivalence principle of gravitational physics. However no experiment has tested this principle for particles of antimatter such as the antiproton or the antihydrogen atom. Clearly the question of whether antimatter is in compliance with weak equivalence is a fundamental experimental issue, which can best be addressed at an ultra-low energy antiproton facility. This paper addresses the issue. 20 refs

  1. Fragmentation properties of jets produced in proton-antiproton collisions at √S = 1.8 TeV

    International Nuclear Information System (INIS)

    Hubbard, B.

    1989-11-01

    Jet fragmentation properties have been studied in collisions of protons and antiprotons at a center-of-mass energy of 1.8 TeV, using the Collider Detector at Fermilab (CDF). The fractional momentum distribution of charged particles within jets is presented and compared with Monte-Carlo predictions. With increasing di-jet invariant mass from 60 to 200 GeV/c 2 the fragmentation is observed to soften as predicted by scale breaking effects in Quantum Chromodynamics (QCD). The charged multiplicity in the jet core is observed to rise with di-jet invariant mass. 57 refs

  2. Mass-identified particle yields in antiproton-proton collisions at √s=1.8 TeV

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Allen, C.; Anderson, E.W.; Areti, H.; Banerjee, S.; Beery, P.D.; Biswas, N.N.; Bujak, A.; Carmony, D.D.; Carter, T.; Cole, P.; Choi, Y.; De Bonte, R.J.; Erwin, A.R.; Findeisen, C.; Goshaw, A.T.; Gutay, L.J.; Hirsch, A.S.; Hojvat, C.; Kenney, V.P.; Lindsey, C.S.; LoSecco, J.M.; McMahon, T.; McManus, A.P.; Morgan, N.; Nelson, K.S.; Oh, S.H.; Piekarz, J.; Porile, N.T.; Reeves, D.; Scharenberg, R.P.; Stampke, S.R.; Stringfellow, B.C.; Thompson, M.A.; Turkot, F.; Walker, W.D.; Wang, C.H.; Wesson, D.K.

    1990-01-01

    The yields and the transverse-momentum distributions of pions, kaons, and antiprotons produced in the central region of bar pp collisions at √s =1.8 TeV at the Fermilab Tevatron collider have been measured up to a charged-particle pseudorapidity density of approximately 20. The average transverse momentum left-angle p t right-angle as a function of left-angle dN c /dη right-angle for all three types of particles is presented

  3. Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum

    CERN Document Server

    Zurlo, N.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C.L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R.S.; Jorgensen, L.V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi Rizzini, E.; Macri, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L.G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; der Werf, D.P.Van; Variola, A.; Venturelli, L.; Yamazaki, Y.

    2006-01-01

    We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.

  4. The antiproton depth–dose curve in water

    CERN Document Server

    Bassler, N; Jäkel, O; Knudsen, H V; Kovacevic, S

    2008-01-01

    We have measured the depth–dose curve of 126 MeV antiprotons in a water phantom using ionization chambers. Since the antiproton beam provided by CERN has a pulsed structure and possibly carries a high-LET component from the antiproton annihilation, it is necessary to correct the acquired charge for ion recombination effects. The results are compared with Monte Carlo calculations and were found to be in good agreement. Based on this agreement we calculate the antiproton depth–dose curve for antiprotons and compare it with that for protons and find a doubling of the physical dose in the peak region for antiprotons.

  5. Antiproton-nucleus potentials from global fits to antiprotonic X-rays and radiochemical data

    Czech Academy of Sciences Publication Activity Database

    Friedman, E.; Gal, A.; Mareš, Jiří

    2005-01-01

    Roč. 761, 3/4 (2005), s. 283-295 ISSN 0375-9474 R&D Projects: GA AV ČR IAA1048305 Institutional research plan: CEZ:AV0Z10480505 Keywords : antiproton-nuclear interaction * RMF calculations * antiproton X-rays Subject RIV: BE - Theoretical Physics Impact factor: 1.950, year: 2005

  6. Antiproton Radiotherapy Peripheral Dose from Secondary Neutrons produced in the Annihilation of Antiprotons in the Target

    CERN Document Server

    Fahimian, Benjamin P; Keyes, Roy; Bassler, Niels; Iwamoto, Keisuke S; Zankl, Maria; Holzscheiter, Michael H

    2009-01-01

    The AD-4/ACE collaboration studies the biological effects of antiprotons with respect to a possible use of antiprotons in cancer therapy. In vitro experiments performed by the collaboration have shown an enhanced biological effectiveness for antiprotons relative to protons. One concern is the normal tissue dose resulting from secondary neutrons produced in the annihilation of antiprotons on the nucleons of the target atoms. Here we present the first organ specific Monte Carlo calculations of normal tissue equivalent neutron dose in antiproton therapy through the use of a segmented CT-based human phantom. The MCNPX Monte Carlo code was employed to quantify the peripheral dose for a cylindrical spread out Bragg peak representing a treatment volume of 1 cm diameter and 1 cm length in the frontal lobe of a segmented whole-body phantom of a 38 year old male. The secondary neutron organ dose was tallied as a function of energy and organ.

  7. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  8. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  9. Antiprotons four times more effective than protons for cell irradiation

    CERN Multimedia

    2006-01-01

    "A pioneering experiment at CERN with potential future application in cancer therapy has produced its first results. Started in 2003, ACE (Antiproton Cell Experiment) is the first investigation of the biological effects of antiprotons." (1,5 page)

  10. Antiprotons four times more effective than protons for cell irradiation

    CERN Multimedia

    2007-01-01

    "A pioneering experiment at CERN with potential future application in cancer therapy has produced its first results. Started in 2003, ACE (Antiproton Cell Experiment) is the first investigation of the biological effects of antiprotons." (1,5 page)

  11. Inside Hall 193 for the Antiproton Accumulator (AA) ring

    CERN Multimedia

    1979-01-01

    Installation work is in full swing. A model quadrupole on the left shows where the magnet ring will be. The cables wound on drums are part of the pulse-forming network for the injection kicker. See Annual Report 1979 p. 103, Fig. 9 and photo 7911303. For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  12. Dedication of Fermilab's LHC Remote Operations Center

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    Fermilab's Remote Operations Center will be dedicated simultaneously at Fermilab in the U.S. and from CMS (Point 5) in Cessy, France. Speakers will include: from the U.S. DOE Undersecretary for Science Raymond Orbach and Fermilab Director Pier Oddone (U.S.); and from CERN Director General Robert Aymar, CMS Spokesperson Jim Virdee, LHC Project Leader Lyn Evans and US CMS Project Manager Joel Butler.

  13. The PANDA experiment: Antiproton physics at FAIR

    International Nuclear Information System (INIS)

    Montagna, P.

    2011-01-01

    The new Facility for Antiproton and Ion Research (FAIR), under construction at the GSI laboratory at Darmstadt, in a few years will make available, among different types of beams, even antiproton beams with unique features. Through a High Energy Storage Ring (HESR) for antiprotons, an antiproton beam will be available in a momentum range from 1.5 to 15 GeV/c, which will interact on a hydrogen target. The products of the interaction, including hadronic systems with strangeness and/or charm, will be detected with the PANDA magnetic spectrometer (antiProton ANnihilation at DArmstadt), and the spectroscopic analysis will allow a detailed investigation on a number of open problems of the hadronic physics, as the quark confinement, the existence of non-conventional meson states (so-called glueballs and hybrids), the structure of hadrons and of the strong interaction, with particular attention to charmonium spectroscopy. An overview of the scientific program of PANDA and the current status of the project will be presented.

  14. The Antiproton Depth-Dose Curve in Water

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Jäkel, Oliver

    2008-01-01

    We have measured the depth-dose curve of 126 MeV antiprotons in a water phantom using ionization chambers. Since the antiproton beam provided by CERN has a pulsed structure and possibly carries a high-LET component from the antiproton annihilation, it is necessary to correct the acquired charge...

  15. Antiproton Production beam and Reverse Injection System

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, G.

    1981-08-16

    The objectives of this project are two fold: (1) To extract high energy protons from the Main Ring (MR) and target them to produce antiprotons which are subsequently captured in the existing Booster accelerator; and (2) to provide a channel for injecting either protons or antiprotons into the MR from the booster in a direction opposite to that of the normal proton acceleration as colliding beams can be created. The present design, therefore, is in support of two separate larger projects, viz., the collisions of protons in the Tevatron (normal circulation direction) with 'reverse injected' protons in the MR, and the collision of normal direction protons with reverse injected antiprotons either in the MR or in the Tevatron. Figure 1 shows the layout of the project area. It spans the shortest distance between possible injection/ejection points in the existing accelerator structures, hence minimizing costs. The tunnel will lie underground at the level of the MR and booster.

  16. The Antiproton and How It Was Discovered

    International Nuclear Information System (INIS)

    Eades, John

    2005-01-01

    The antiproton celebrates its 50th birthday this year. Although its existence had been suspected since the discovery of the positron in 1932, there was still doubt in some quarters that such a companion particle to the proton could exist. I will try to trace the scientific history of the antiproton from that time to the publication of the definitive paper by Chamberlain, Segre, Wiegand and Ypsilantis in November 1955, with a brief look at what happened next. The narrative will be supplemented with thoughts and opinions of some of the main actors, both at the time and in retrospect

  17. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-01-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  18. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  19. Collisions involving antiprotons and antihydrogen: an overview

    Science.gov (United States)

    Jonsell, S.

    2018-03-01

    I give an overview of experimental and theoretical results for antiproton and antihydrogen scattering with atoms and molecules (in particular H, He). At low energies (>1 keV) there are practically no experimental data available. Instead I compare the results from different theoretical calculations, of various degrees of sophistication. At energies up to a few tens of eV, I focus on simple approximations that give reasonably accurate results, as these allow quick estimates of collision rates without embarking on a research project. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  20. A disoriented chiral condensate search at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Convery, M.E.

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of open-quotes disoriented vacuumclose quotes might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC's) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity η ∼ 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events

  1. Diagnostics of the Fermilab Tevatron using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Ryoichi [Univ. of Texas, Austin, TX (United States)

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  2. 400 MeV upgrade for the Fermilab linac

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1989-01-01

    Fermilab has plans for a comprehensive accelerator upgrade to open new possibilities for both the fixed target and collider experimental programs. An early step in this program is to increase the energy of the linac from 200 to 400 MeV by replacing the last four of its nine 201 MHz Alvarez tanks with twenty-eight 805 MHz side-coupled cavity chains operating at about 8 MV/m average axial field. The principal purpose is to reduce the incoherent spacecharge tuneshift at injection into the Booster which currently limits both the brightness of the beam, an important determinant of collider luminosity, and total intensity to produce both the antiprotons for the collider and the beams to fixed target experimental areas. Other consequences of higher Booster injection energy expected to contribute to some degree of higher intensity limits and improved operational characteristics include improved quality of the guide field at injection, reduced frequency swing for the rf systems, and smaller emittance for the injected beam. The linac upgrade project has moved from a 1986 study through a development project including structure models and numerical studies to a full-feature module prototyping starting this year

  3. CPS and the Fermilab farms

    International Nuclear Information System (INIS)

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described

  4. CPS and the Fermilab farms

    Energy Technology Data Exchange (ETDEWEB)

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described.

  5. Control system for Fermilab`s low temperature upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  6. Next generation farms at Fermilab

    International Nuclear Information System (INIS)

    Cudzewicz, R., Giacchetti, L., Leininger, M., Levshina, T., Pasetes, R., Schweitzer, M., Wolbers, S.

    1997-01-01

    The current generation of UNIX farms at Fermilab are rapidly approaching the end of their useful life. The workstations were purchased during the years 1991-1992 and represented the most cost-effective computing available at that time. Acquisition of new workstations is being made to upgrade the UNIX farms for the purpose of providing large amounts of computing for reconstruction of data being collected at the 1996-1997 fixed-target run, as well as to provide simulation computing for CMS, the Auger project, accelerator calculations and other projects that require massive amounts of CPU. 4 refs., 1 fig., 2 tabs

  7. Standard beam PWC for Fermilab

    International Nuclear Information System (INIS)

    Fenker, H.

    1983-02-01

    As one of its projects the Fermilab Experimental Areas Department has been designed and tested a relatively small proportional wire chamber for use in the secondary beam lines. It is intended to supplement the variety of detectors known in the vernacular as SWICS that are used to obtain profiles for beam tuning. The new detector, described in this report, operates in the limited proportional mode and allows experimenters to use a standard, lab supported device for associating trajectories of individual beam particles with events triggering their own experiment's apparatus. A completed triple plane module is shown

  8. The Fermilab Farms in 1996

    International Nuclear Information System (INIS)

    1997-05-01

    The farms in 1996 began a period of transition. The old farms continue to be used but do not provide sufficient CPU power, memory, or network bandwidth for all of the tasks which are required. Therefore we have purchased and installed a substantial increment of new farms and are working on adding another increment during 1997. The purpose of all this activity is to provide computing for the fixed target run and for the other large computing users who cannot be accommodated on the other systems that are available at Fermilab

  9. The ASACUSA experiment at CERN's AD antiproton decelerator catches antiprotons in helium, where the antiprotons replace electrons, giving exotics atoms.

    CERN Multimedia

    Loïez, P

    2000-01-01

    Photo 03: Laser beams are prepared for shooting at antiprotonic helium atoms. Left to right: Masaki Hori (Tokyo University) and John Eades (CERN). Photo 01: Dye laser triggered by "YAG" laser. Photo 02: Masaki Hori adjusting optical system of laser beams.

  10. Some preliminary considerations on antiproton-nucleus experiments

    International Nuclear Information System (INIS)

    Yavin, A.I.

    1981-05-01

    The antiproton as a probe of the atomic nucleus is discussed in the expectation that fairly intense beams of high quality will be available in 1983 at the Low Energy Antiproton Ring (LEAR) facility at CERN and possibly also in some other laboratories at a later date. Several antiproton-nucleus experiments are proposed, and the possibility of observing antiprotonic nuclei as well as antineutronic nuclei is discussed. It is demonstrated that even for the study of the elementary nucleon-antinucleon systems it could be advantageous to use nuclei rather than protons as target. The possibility of investigating several antiprotonic atomic systems is also briefly discussed [fr

  11. Physics at an upgraded Fermilab proton driver

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  12. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  13. Neutrino SuperBeams at Fermilab

    International Nuclear Information System (INIS)

    Parke, Stephen J.

    2011-01-01

    In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

  14. Fermilab Tevatron and Pbar source status report

    International Nuclear Information System (INIS)

    Edwards, H.

    1986-08-01

    The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently under evaluation to accomplish these goals: luminosity increase to 5 x 10 31 cm -2 sec -1 , production rates up to 4 x 10 11 antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade

  15. Recent progress of laser spectroscopy experiments on antiprotonic helium

    Science.gov (United States)

    Hori, Masaki

    2018-03-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration is currently carrying out laser spectroscopy experiments on antiprotonic helium ? atoms at CERN's Antiproton Decelerator facility. Two-photon spectroscopic techniques have been employed to reduce the Doppler width of the measured ? resonance lines, and determine the atomic transition frequencies to a fractional precision of 2.3-5 parts in 109. More recently, single-photon spectroscopy of buffer-gas cooled ? has reached a similar precision. By comparing the results with three-body quantum electrodynamics calculations, the antiproton-to-electron mass ratio was determined as ?, which agrees with the known proton-to-electron mass ratio with a precision of 8×10-10. The high-quality antiproton beam provided by the future Extra Low Energy Antiproton Ring (ELENA) facility should enable further improvements in the experimental precision. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  16. Tunneling beyond the Fermilab site

    International Nuclear Information System (INIS)

    Baker, S.; Elwyn, A.; Lach, J.; Read, A.

    1983-01-01

    An accelerator that crosses the Fermilab site boundary must have a minimum effect on the surrounding environment and the people residing in the area. Unobstructed public access should be allowed above the ring except in relatively few areas such as the injection, dump, and experimental regions. The accelerator should be a benign and unobtrusive neighbor not only when it is completed but also in the construction period. For these reasons underground tunneling for all or most of the ring seems attractive. In this note we look into some questions raised by tunneling beyond the Fermilab site. Most of our discussion is of general applicability. However, we will use as examples two specific ring configurations. The examples have not been optimized from the point of view of physics output or accelerator technology but are just specific examples which allow us to study questions of tunneling. One is a ring of 5 km radius (5 TeV) tangent to the Tevatron and entirely east of the Fox River and fed by a beam from the Tevatron which crosses under the river. We assume that each of these machines will have 100 beam fills per year and we scale the maximum intensities with the accelerator radii. Thus we assume that there will be 1.0 E14 protons in each beam of the 20 TeV machine and 2.5 E13 for the 5 TeV machine

  17. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  18. The Antiproton-Ion-Collider at FAIR

    International Nuclear Information System (INIS)

    Kruecken, R.; Fabbietti, L.; Faestemann, T.; Homolka, J.; Kienle, P.; Ring, P.; Suzuki, K.; Bosch, F.; Franzke, B.; Kozhuharov, Ch.; Litvinov, Y.; Nolden, F.; Cargnelli, M.; Fuhrmann, H.; Hirtl, A.; Marton, J.; Widmann, E.; Zmeskal, J.; Hayano, R. S.; Lenske, H.

    2006-01-01

    An antiproton-ion collider (AIC) has been proposed for the FAIR Project at Darmstadt to independently determine rms radii for protons and neutrons in stable and short lived nuclei by means of antiproton annihilation at medium energies. The AIC makes use of the ELISe electron ion collider complex to store, cool and collide antiprotons of 30 MeV energy with short lived radioactive ions in the NESR. The exotic nuclei are produced by projectile fragmentation or projectile fission and separated in the Super FRS. By detecting the loss of stored ions using the Schottky method the total absorption cross-section for antiprotons on the stored ions with mass A will be measured. Cross sections for the absorption on protons and neutrons, respectively, will be measured by the detection of residual nuclei with A-1 either by the Schottky method or by detecting them in recoil detectors after the first dipole stage of the NESR following the interaction zone. The absorption cross sections are in first order directly proportional to the mean square radii

  19. Low energy antiproton experiments - A review

    NARCIS (Netherlands)

    Jungmann, KP; Yamazaki, Y; Wada, M

    2005-01-01

    Low energy antiprotons offer excellent opportunities to study properties of fundamental forces and symmetries in nature. Experiments with them can contribute substantially to deepen our fundamental knowledge in atomic, nuclear and particle physics. Searches for new interactions can be carried out by

  20. Antiprotons in the CERN intersecting storage rings

    International Nuclear Information System (INIS)

    Bryant, P.J.

    1984-01-01

    High-sensitivity electronics for TTl and ring 2 had been developed and installed, the original experimental stochastic cooling systems in the ISR were rebuilt and considerably improved, the split-field magnet (SFM) vacuum chamber was modified, some steering dipoles were designed, made and installed, and finally innumerable interlocks and computer programs were revised for antiproton operation. (orig./HSI)

  1. Collisions of antiprotons with hydrogen molecular ions

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2009-01-01

    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter...

  2. A naturally occurring trap for antiprotons

    International Nuclear Information System (INIS)

    Eades, J.; Morita, N.; Ito, T.M.

    1993-05-01

    The phenomenon of delayed annihilation of antiprotons in helium is the first instance of a naturally occurring trap for antimatter in ordinary matter. Recent studies of this effect at CERN are summarized, and plans are described for laser excitation experiments to test its interpretation in terms of metastable exotic helium atom formation. (author)

  3. Calculated LET-Spectrum of Antiprotons

    DEFF Research Database (Denmark)

    Bassler, Niels

    -LET components resulting from the annihilation. Though, the calculations of dose-averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could significantly differ from unity. Materials and Methods Monte Carlo simulations using FLUKA were performed for calculating...

  4. FERMILAB: First D0 physics results

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: The excitement of observing the first collision in the DO detector at Fermilab's Tevatron protonantiproton collider on May 12 1992 was the payoff for more than eight years of hard work by a large and dedicated group of physicists, students, engineers, technicians and other support staff. The DO detector - an international collaboration of about 370 physicists (including some 65 graduate students) from 36 institutions - had completed the journey from design (1983-1984) to final construction and subsequent rolling in to the collision hall in February 1992. Commissioning the detector with beam lasted from May-July 1992 and went very well. The collaboration showed that the detector was well on the way to achieving design goals including precision measurements of electrons, muons and photons, together with quark and gluon jets, and to be sensitive to missing transverse energy indicative of noninteracting particles such as neutrinos. With the start of the physics run in August 1992, the collaboration turned its attention to extracting the first results in time for the major (DPF) meeting at Fermilab last November (January, page 12). By the mid- January break in the run, DO had accumulated about 7 inverse picobarns of physics data. Large samples of Ws and Zs have been logged in both electron and muon channels. This will allow sensitive studies of the W mass and of the triple WWZ gauge boson coupling. The strengths of the detector will provide a powerful tool to search for the elusive top quark. With the top expected to decay solely to a W boson and a b quark, sensitivity is needed to leptons, jets and missing transverse energy, or combinations of them. The search is underway. The full coverage of the detector, and the ability to trigger on jets at small angles makes it well suited for studies of quark field (QCD) dynamics. In addition, fine segmentation and good energy resolution allow good measurement of direct photons, revealing the gluon content of

  5. Comparison of spin asymmetries and cross sections in. pi. sup 0 production by 200 GeV polarized antiprotons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Corcoran, M D; Cranshaw, J; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Roberts, J B; Skeens, J; White, J L [Rice Univ., Houston, TX (USA). Bonner Nuclear Labs.; Akchurin, N; Onel, Y [Iowa Univ., Iowa City (USA). Dept. of Physics and Astronomy; Belikov, N I; Derevschikov, A A; Grachov, O A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Patalakha, D I; Rykov, V L; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Bystricky, J; Lehar, F; Lesquen, A de [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (USA); En' yo, H; Funahashi, H; Goto, Y; Imai, K; Itow, Y; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Saito, N; Yamashita, S [Kyoto Univ. (Japan). Dept. of Physics; Grosnick, D P; Hill, D A; Laghai, M; Lopiano, D; Ohashi, Y; Spinka, H; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (USA); FNAL E581/704 Collaboration

    1991-05-23

    The single-spin asymmetry A{sub N}(anti pp) for inclusive {pi}{sup 0} production at 0.5 < p{sub t} < 2GeV/c by 200 GeV transversely-polarized antiprotons on protons has been measured at Fermilab over a wide range of x{sub F}. We observe that A{sub N}(anti pp) has the same sign, a similar x{sub F} dependence, and about half the magnitude as A{sub N}(pp) for {pi}{sup 0} production by protons. We also present the ratio of the spin-averaged sections for {pi}{sup 0} production by antiproton and by protons. (orig.).

  6. First results for the two-spin parameter A sub LL in. pi. sup 0 production by 200 GeV polarized protons and antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Corcoran, M D; Cranshaw, J; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Roberts, J B; Skeens, J; White, J L [Rice Univ., Houston, TX (USA). Bonner Nuclear Labs.; Akchurin, N; Onel, Y [Iowa Univ., Iowa City (USA). Dept. of Physics and Astronomy; Belikov, N I; Derevschikov, A A; Grachov, O A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Patalakha, D I; Rykov, V L; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Bystricky, J; Chaumette, P; Deregel, J; Durand, G; Fabre, J; Lehar, F; Lesquen, A de [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (USA); En' yo, H; Funahashi, H; Goto, Y; Imai, K; Itow, Y; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Saito, N; Yamashita, S [Kyoto Univ. (Japan). Dept. of Physics; Fukuda, K [Meiji Coll. of Oriental Medicine, Kyoto (Japan); Grosnick, D P; Hill, D A; FNAL E581/704 Collaboration

    1991-05-23

    The two-spin parameter A{sub LL} in inclusive {pi}{sup 0} production by longitudinally-polarized protons and antiprotons on a longitudinally-polarized proton target has been measured at the 200 GeV Fermilab spin physics facility, for {pi}{sup 0}'s at x{sub F} = 0 with 1 {le} p{sub t} {le} 3 GeV/c. The results exclude, at the 95% confidence level, values of A{sub LL} (pp) > 0.1 and < -0.1, for {pi}{sup 0}'s produced by protons, and values of A{sub LL} (anti pp) > 0.1 and < -0.2 for incident antiprotons. The relevance of A{sub LL}(pp) for the gluon spin density is discussed. The data are in good agreement with 'conventional' small or zero, gluon polarization. (orig.).

  7. Deceleration of Antiprotons in Support of Antiproton Storage/Utilization Research

    International Nuclear Information System (INIS)

    Howe, Steven D.; Jackson, Gerald P.; Pearson, J. Boise; Lewis, Raymond A.

    2005-01-01

    Antimatter has the highest energy density known to mankind. Many concepts have been studied that use antimatter for propulsion. All of these concepts require the development of high density storage. H-bar Technologies, under contract with the NASA Marshall Space Flight Center, has undertaken the first step toward development of high density storage. Demonstration of the ability to store antiprotons in a Penning Trap provides the technology to pursue research in alternative storage methods that may lead to eventually to high density concepts. H-bar Technologies has undertaken research activity on the detailed design and operations required to decelerate and redirect the Fermi National Accelerator Laboratory (FNAL) antiproton beam to lay the groundwork for a source of low energy antiprotons. We have performed a detailed assessment of an antiproton deceleration scheme using the FNAL Main Injector, outlining the requirements to significantly and efficiently lower the energy of antiprotons. This task shall require a combination of: theoretical/computation simulations, development of specialized accelerator controls programming, modification of specific Main Injector hardware, and experimental testing of the modified system. Testing shall be performed to characterize the system with a goal of reducing the beam momentum from 8.9 GeV/c to a level of 1 GeV/c or less. We have designed an antiproton degrader system that will integrate with the FNAL decelerated/transferred beam. The degrader shall be designed to maximize the number of low energy antiprotons with a beam spot sized for acceptance by the Mark I test hardware

  8. The Fermilab physics class library

    International Nuclear Information System (INIS)

    Fischler, M.; Brown, W.; Gaines, I.; Kennedy, R.D.; Marraffino, J.; Michelotti, L.; Sexton-Kennedy, E.; Yoh, J.; Adams, D.; Paterno, M.

    1997-02-01

    The Fermilab Physics Class Library Task Force has been formed to supply classes and utilities, primarily in support of efforts by CDF and D0 toward using C++. A collection of libraries and tools will be assembled via development by the task force, collaboration with other HEP developers, and acquisition of existing modules. The main emphasis is on a kit of resources which physics coders can incorporate into their programs, with confidence in robustness and correct behavior. The task force is drawn from CDF, DO and the FNAL Computing and Beams Divisions. Modules-containers, linear algebra, histograms, etc.-have been assigned priority, based on immediate Run II coding activity, and will be available at times ranging from now to late May

  9. Rare KL decays at Fermilab

    International Nuclear Information System (INIS)

    Schnetzer, St.

    1997-01-01

    Recent results and the future prospects for rare K L decay at Fermilab are described. A summary of all rare decay results from E799 Phase I (the 1991 run) are presented. Three new results: K L → e + e - μ + μ - , K L → π 0 μe, and π 0 → e + e - e + e - are discussed in detail. Improvements for KTeV (the 1996-1997 run) are discussed and the expected sensitivities listed. Finally, the KAMI program for rare decays with the Main Injector (2000 and beyond) is presented with emphasis on a search for the decay K L → π 0 νν-bar at O(10 -12 ) single-event-sensitivity. (author)

  10. Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, Tim [Kentucky U.

    2017-12-22

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment $a_{\\mu}$ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of $a_{\\mu}$ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5$\\sigma$ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring $a_{\\mu}$, and the current status and the future work for the project.

  11. Fermilab muon g-2 experiment

    Science.gov (United States)

    Gorringe, Tim

    2018-05-01

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment aμ to 140 ppb - a four-fold improvement over the earlier Brookhaven experiment. The measurement of aμ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5σ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring aμ, and the current status and the future work for the project.

  12. Supporting multiple control systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  13. The Muon g-2 experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Chapelain, Antoine [Cornell U., Phys. Dept.

    2017-01-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  14. Physics at a New Fermilab Proton Driver

    International Nuclear Information System (INIS)

    Geer, Steve

    2005-01-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. The Fermilab Director has requested further development of the physics case for a new Fermilab Proton Driver, exploring both its ability to support a World class neutrino program, and the other physics opportunities it would provide. A physics study has been ongoing for the last 6 months. The emerging physics case will be presented.

  15. Deconfinement signature, mass dependence of transverse flow and time evolution in antiproton-proton collisions at √s=1.8 TeV

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.; Findeisen, C.; Nelson, K.; Thompson, M.; Banerjee, S.; Beery, P.D.; Biswas, N.N.; Kenney, V.P.; LoSecco, J.M.; McManus, A.P.; Piekarz, J.; Stampke, S.R.; Carter, T.; Goshaw, A.T.; Oh, S.H.; Walker, W.D.; Wesson, D.K.

    1990-01-01

    The yields and the transverse momentum distributions of pions, kaons, and antiprotons produced in the central region of anti pp collisions at √s=1.8 TeV at the Fermilab Tevatron collider have been measured up to a charged particle pseudo-rapidity density of approximately 20. The average transverse momentum t > as a function of c /dη> for all three types of particles is presented. We find that transverse flow does not explain the t > separation. The most plausible interpretation is that the t > vs. N c spectra represent in isobar in the two phase region. (orig.)

  16. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio

    CERN Document Server

    Hori, Masaki; Barna, Daniel; Andreas Dax,; Hayano, Ryugo; Friedreich, Susanne; Juhász, Bertalan; Pask, Thomas; Widmann, Eberhard; Horváth, Dezső; Venturelli, Luca; Zurlo, Nicola; 10.1038/nature10260

    2013-01-01

    Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium ($\\bar{p}He^+$) is a three-body atom2 consisting of a normal helium nucleus, an electron in its ground state and an antiproton ($\\bar{p}$) occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and l, such that n ≈ l + 1 ≈ 38. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which $\\bar{p}^{3}He^{+}$ and $\\bar{p}^{4}He^{+}$ isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-phot...

  17. Beam position pickup for antiprotons to the ISR

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The Antiproton Project, launched for proton-antiproton collisions in the SPS (SPS collider), had a side-line for p-pbar collisions in the ISR. A new transfer line, TT6, was constructed to transport antiprotons from the 26 GeV PS to the injection line TT1 of ISR ring 2. Antiprotons were a scarce commodity. For setting up the lines, beam diagnostic devices in the antiproton path had to work reliably and precisely with just a few low-intensity pilot pules: single bunches of about 2x10**9 antiprotons every few hours. Electrostatic pickup electrodes were used to measure beam position. They could be mounted for measurement in the horizontal plane, as in this picture, or at 90 deg, for the vertical plane.

  18. Antiproton rate estimates for the 1996 E866 experiment

    International Nuclear Information System (INIS)

    Shea, J.Y.; Garcia-Solis, E.J.; Stanskas, P.J.

    1996-01-01

    There has always been a strong interest to study antiprotons produced in relativistic heavy ion collisions. A specific point has been a puzzle for years in that both ARC and RQMD predict the correct antiproton yield for Au+Au collisions at the AGS, but with two entirely different physical explanations. The RQMD is able to describe available data by relying on the enhanced production of antiprotons, followed by the annihilation of a large fraction of the produced antiprotons. Conversely, ARC describes the data by producing less antiprotons initially, but the annihilation of the antiprotons is open-quotes screenedclose quotes in the high density environment of the collision on account of collisions with mesons. It is then particularly interesting to studying the shadowing effect in the Au-Au collisions at the AGS to shine a light in the theoretical debate in heavy-ion collisions

  19. Physics History Books in the Fermilab Library

    Energy Technology Data Exchange (ETDEWEB)

    Sara Tompson.

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  20. Physics History Books in the Fermilab Library

    International Nuclear Information System (INIS)

    Tompson, Sara

    1999-01-01

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification

  1. Wanted: Fermilab director who can build consensus

    CERN Multimedia

    Pierce, G M

    2004-01-01

    "With current Fermilab Director Michael Witherell stepping down in July 2005, an appointed committee has vowed to find a new leader who will keep the Batavia lab at the forefront of the high-energy physics field" (1 page).

  2. City shows gratitude for Fermilab relationship

    CERN Multimedia

    Pierce, Gala

    2006-01-01

    "Part of last week Batavia Chamber of Commerce celebration wasn't just to salute one of Batavia's heroes - Carla Hill - but to commemorate a 40-year relationship between the city and Fermilab" (1 page)

  3. Antiproton Powered Gas Core Fission Rocket

    International Nuclear Information System (INIS)

    Kammash, Terry

    2005-01-01

    Extensive research in recent years has demonstrated that 'at rest' annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas - inserted into the chamber just prior to the release of the antiproton - to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it

  4. Looking for new gravitational forces with antiprotons

    International Nuclear Information System (INIS)

    Nieto, M.M.; Bonner, B.E.

    1987-01-01

    Quite general arguments based on the principle of equivalence and modern field theory show that it is possible for the gravitational acceleration of antimatter to be different than that for matter. Further, there is no experimental evidence to rule out the possibility. In fact, some evidence indicates there may be unexpected effects. Thus, the planned experiment to measure the gravitational acceleration of antiprotons is of fundamental importance. 20 refs., 3 figs

  5. Potential kaon and antiproton beams at BNL

    International Nuclear Information System (INIS)

    Lazarus, D.M.

    1991-01-01

    The AGS at Brookhaven is the worlds most prolific producer of kaons and low energy antiprotons during operations. With the imminent operation of the AGS Booster which will increase intensities by an anticipated factor of six in the next few years, it will become possible to have purified beams of particles containing strange quarks and anti-quarks with intensities comparable to the pion beams which have so successfully dominated precision hadron spectroscopy in the past. 10 refs., 3 figs

  6. A new approach to experiments with non-relativistic antiprotons

    International Nuclear Information System (INIS)

    Poth, H.

    1990-05-01

    Is low-energy antiproton physics phasing out with the present round of experiments or are there good reasons to continue at an improved slow antiproton facility which could be located at a high intensity hadron accelerator? We point out, that there are four frontiers where substantial advances could be made. In particular, we discuss the low-energy frontier and emphasize that experiments with no-relativistic antiprotons would increase drastically the sensitivity and would reveal new effects. (orig.)

  7. Fermilab Recycler Collimation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. C. [Fermilab; Adamson, P. [Fermilab; Ainsworth, R. [Fermilab; Capista, D. [Fermilab; Hazelwood, K. [Fermilab; Kourbanis, I. [Fermilab; Mokhov, N. V. [Fermilab; Morris, D. K. [Fermilab; Murphy, M. [Fermilab; Sidorov, V. [Fermilab; Stern, E. [Fermilab; Tropin, I. [Fermilab; Yang, M-J. [Fermilab

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  8. Data acquisition systems at Fermilab

    International Nuclear Information System (INIS)

    Votava, M.

    1999-01-01

    Experiments at Fermilab require an ongoing program of development for high speed, distributed data acquisition systems. The physics program at the lab has recently started the operation of a Fixed Target run in which experiments are running the DART[1] data acquisition system. The CDF and D experiments are preparing for the start of the next Collider run in mid 2000. Each will read out on the order of 1 million detector channels. In parallel, future experiments such as BTeV R ampersand D and Minos have already started prototype and test beam work. BTeV in particular has challenging data acquisition system requirements with an input rate of 1500 Gbytes/sec into Level 1 buffers and a logging rate of 200 Mbytes/sec. This paper will present a general overview of these data acquisition systems on three fronts those currently in use, those to be deployed for the Collider Run in 2000, and those proposed for future experiments. It will primarily focus on the CDF and D architectures and tools

  9. CP violation experiment at Fermilab

    International Nuclear Information System (INIS)

    Hsiung, Yee B.

    1990-07-01

    The E731 experiment at Fermilab has searched for ''direct'' CP violation in K 0 → ππ, which is parametrized by var-epsilon '/var-epsilon. For the first time, in 20% of the data set, all four modes of the K L,S → π + π - (π 0 π 0 ) were collected simultaneously, providing a great check on the systematic uncertainty. The result is Re(var-epsilon '/var-epsilon) = -0.0004 ± 0.0014 (stat) ± 0.0006(syst), which provides no evidence for ''direct'' CP violation. The CPT symmetry has also been tested by measuring the phase difference Δφ = φ 00 - φ ± between the two CP violating parameters η 00 and η ± . We fine Δφ = -0.3 degrees ± 2.4 degree(stat) ± 1.2 degree(syst). Using this together with the world average φ ± , we fine that the phase of the K 0 -bar K 0 mixing parameter var-epsilon is 44.5 degree ± 1.5 degree. Both of these results agree well with the predictions of CPT symmetry. 17 refs., 10 figs

  10. Physics with antiprotons: from antihydrogen to the top-quark

    International Nuclear Information System (INIS)

    Koch, H.

    2001-01-01

    The talk gives a survey on experiments performed with antiprotons of different energies. The emphasis will be on results obtained at LEAR/CERN, but the exciting investigations with higher energy antiprotons, leading to the discovery of the intermediate bosons W + , W - , Z 0 and the top quark t, will also be discussed. (orig.)

  11. Serach for polarization effects in the antiproton production process

    CERN Multimedia

    It is proposed to study polarization effects in the production of antiprotons at the PS test beam line T11 at 3.5 GeV/c momentum. A polarization in the production process has never been studied but if existing it would allow for a rather simple and cheap way to generate a polarized antiproton beam with the existing facilities at CERN.

  12. Antiproton impact ionization of atomic hydrogen and helium

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 INN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2009-11-01

    We shall present results for antiproton ionization of H and He ranging from fully differential cross sections to total ionization. The calculations have been made in a coupled pseudostate impact parameter approximation. It will be shown that the interaction between the antiproton and the target nucleus is very important at low energies.

  13. Antiproton-nucleus experiments at LEAR and KAON

    International Nuclear Information System (INIS)

    Yavin, A.I.

    1989-12-01

    Antimatter and matter-antimatter systems are briefly discussed. Results of the antiproton-nucleus scattering experiments at LEAR are described, with the emphasis on unfinished experiments and on proposed experiments yet untouched. A few remarks on antiproton and antideuteron experiments at KAON are then presented

  14. Experiment to measure the gravitational force on the antiproton

    International Nuclear Information System (INIS)

    Brown, R.E.

    1985-01-01

    A collaboration has been formed to measure the acceleration of antiprotons in the earth's gravitational field. The technique is to produce, decelerate, and trap quantities of antiprotons, to cool them to untralow energy, and to measure their acceleration in a time-of-flight experiment. Present plans and the results of initial efforts toward this end are presented

  15. Low-energy antiprotons physics and the FLAIR facility

    International Nuclear Information System (INIS)

    Widmann, E

    2015-01-01

    FLAIR, the Facility for low-energy antiproton and ion research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the modularized start version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR. (paper)

  16. Measurement of strong interaction effects in antiprotonic helium atoms

    International Nuclear Information System (INIS)

    Davies, J.D.; Gorringe, T.P.; Lowe, J.; Nelson, J.M.; Playfer, S.M.; Pyle, G.J.; Squier, G.T.A.

    1984-01-01

    The strong interaction shift and width for the 2 p level and the width for the 3d level have been measured for antiprotonic helium atoms. The results are compared with optical model calculations. The possible existence of strongly bound antiproton states in nuclei is discussed. (orig.)

  17. Measurement of strong interaction parameters in antiprotonic hydrogen and deuterium

    CERN Document Server

    Augsburger, M A; Borchert, G L; Chatellard, D; Egger, J P; El-Khoury, P; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Siems, T; Simons, L M

    1999-01-01

    In the PS207 experiment at CERN, X-rays from antiprotonic hydrogen and deuterium have been measured at low pressure. The strong interaction shift and the broadening of the K/sub alpha / transition in antiprotonic hydrogen were $9 determined. Evidence was found for the individual hyperfine components of the protonium ground state. (7 refs).

  18. LCLS-II Cryomodules Production at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Arkan, Tug [Fermilab; Grimm, Chuck [Fermilab; Kaluzny, Joshua [Fermilab; Orlov, Yuriy [Fermilab; Peterson, Thomas [Fermilab; Premo, Ken [Fermilab

    2017-05-01

    LCLS-II is an upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLS-II linac will consist of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab (JLab) will assemble in collaboration with SLAC. The LCLS-II 1.3 GHz cryomodule design is based on the European XFEL pulsed-mode cryomodule design with modifications needed for CW operation. Fermilab and JLab will each assemble and test a prototype 1.3 GHz cryomodule to assess the results of the CW modifications, in advance of 16 and 17 production 1.3 GHz cryomodules, respectively. Fermilab is solely responsible for the 3.9 GHz cryomodules. After the prototype cryomodule tests are complete and lessons learned incorporated, both laboratories will increase their cryomodule production rates to meet the challenging LCLS-II project requirement of approximately one cryomodule per month per laboratory. This paper presents the Fermilab Cryomodule Assembly Facility (CAF) infrastructure for LCLS-II cryomodule production, the Fermilab prototype 1.3 GHz CW cryomodule (pCM) assembly and readiness for production assembly.

  19. Properties of W + jet events in proton-antiproton collisions at 1.8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, Robert Brian [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1993-11-22

    W boson + QCD Jet events, produced in 1.8 TeV proton-antiproton collisions and measured by the Collider Detector at Fermilab (CDF), were used to measure the center-of-mass production angle of the W + jet system, and were also used to place limits on the production of excited quark states. The center-of-mass production angular distribution agrees well with leading order and next-to-leading order QCD predictions. Excited quark states were searched for in the reaction q + g → q* → q + W. Upper limits on the q* cross section, as a function of the q* mass, are shown. Comparison with a theoretical prediction for q* production excludes excited quark states with a mass in the range 150--530 GeV/c2, at 95% confidence.

  20. Studies of Lear antiproton deceleration: radiofrequency quadripole or synchrotron

    International Nuclear Information System (INIS)

    Iazzourene, F.

    1987-06-01

    The aim of this work is to study a radiofrequency quadrupole (RFQ) and a synchrotron as decelerating systems for antiprotons extracted from the Low Energy Antiproton Ring (LEAR) at CERN. Antiprotons at energies lower than those available from LEAR are need by some experiments, eg. the measurement of the mass difference between protons and antiprotons with 10 -9 accuracy, using a Smith and Princeton spectrometer, and the measurement of gravitation on the antiprotons, using a trap. Depending on the LEAR performances, one can conclude that the RFQ is suitable for the experiment on the gravitation, and the synchrotron, owing to its electron cooling system, is a better solution for the experiment on the mass difference measurement, because of the very small acceptance of the spectrometer [fr

  1. A dumbed-down approach to unite Fermilab, its neighbors

    CERN Multimedia

    Constable, B

    2004-01-01

    "...Fermilab is reaching out to its suburban neighbors...With the nation on orange alert, Fermilab scientists no longer can sit on the front porch and invite neighbors in for coffee and quasars" (1 page).

  2. The Fermilab central computing facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-01-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front-end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS cluster interactive front-end, an Amdahl VM Computing engine, ACP farms, and (primarily) VMS workstations. This paper will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. (orig.)

  3. The Fermilab Central Computing Facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-05-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS Cluster interactive front end, an Amdahl VM computing engine, ACP farms, and (primarily) VMS workstations. This presentation will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. 2 figs

  4. 2015 CERN-Fermilab HCP Summer School

    CERN Multimedia

    2015-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the tenth edition, from 24 June to 3 July 2015. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Lecture Topics include: Statistics in HEP, Heavy Flavour, Heavy Ion, Standard Model, Higgs searches and measurements, BSM theory, BSM searches, Top physics, QCD and Monte Carlos, Accelerators, Detectors for the future, Trigger and DAQ, Dark Matter Astroparticle, and two special lectures on Future Colliders, and 20 years after the top discovery. Calendar and Details: Mark your calendar for  24 June - 3 July 2015, when CERN will welcome students to t...

  5. Status of accelerator development at Fermilab

    International Nuclear Information System (INIS)

    Owen, C.W.

    1976-01-01

    The Fermilab accelerator is comprised of four major systems: the high-energy beam-extraction and switching system, the main accelerator (main ring), the booster, and the linear accelerator. The Fermilab accelerator produces accelerated beams for a vigorous international high-energy physics program. The basic design features and operation for high-energy physics have been described a number of times in the past. A report is given which, for the most part, discusses in detail only those features that are particularly significant in increasing the usefulness of the accelerator as a tool for high-energy physics

  6. The Fermilab Main Injector Technical Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1994-08-01

    This report contains a description of the design, cost estimate, and construction schedule of the Fermilab Main Injector (FMI) Project. The technical, cost, and schedule baselines for the FMI Project have already been established and may be found in the Fermilab Main Injector Title I Design Report, issued in August 1992. This report updates and expands upon the design and schedule for construction of all subsystem components and associated civil construction described in the Title I Design Report. The facilities described have been designed in conformance with DOE 6430.1A, "United States Department of Energy General Design Criteria."

  7. The 1994 Fermilab Fixed Target Program

    International Nuclear Information System (INIS)

    Conrad, J.

    1994-11-01

    This paper highlights the results of the Fermilab Fixed Target Program that were announced between October, 1993 and October, 1994. These results are drawn from 18 experiments that took data in the 1985, 1987 and 1990/91 fixed target running periods. For this discussion, the Fermilab Fixed Target Program is divided into 5 major topics: hadron structure, precision electroweak measurements, heavy quark production, polarization and magnetic moments, and searches for new phenomena. However, it should be noted that most experiments span several subtopics. Also, measurements within each subtopic often affect the results in other subtopics. For example, parton distributions from hadron structure measurements are used in the studies of heavy quark production

  8. Shielding design at Fermilab: Calculations and measurements

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1986-11-01

    The development of the Fermilab accelerator complex during the past two decades from its concept as the ''200 BeV accelerator'' to that of the present tevatron, designed to operate at energies as high as 1 TeV, has required a coincidental refinement and development in methods of shielding design. In this paper I describe these methods as used by the radiation protection staff of Fermilab. This description will review experimental measurements which substantiate these techniques in realistic situations. Along the way, observations will be stated which likely are applicable to other protron accelerators in the multi-hundred GeV energy region, including larger ones yet to be constructed

  9. What can an antiproton and a nucleus learn from each other

    International Nuclear Information System (INIS)

    Garreta, D.

    1982-05-01

    Simple features which make a low-energy antiproton an interesting probe of the nucleus, and a nucleus an interesting target for an antiproton are presented. Then antiproton-nucleus inelastic and elastic scattering, proton knock-out reactions on nuclei, annihilation of the antiproton in nuclei are reviewed. The aims of the experiment PS184 at LEAR are given

  10. Charm and beauty measurements at Fermilab fixed target

    International Nuclear Information System (INIS)

    Mishra, C.S.

    1993-10-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper we review recent results from charm and beauty fixed target experiments at Fermilab

  11. Charm and beauty measurements at Fermilab fixed target

    International Nuclear Information System (INIS)

    Mishra, C.S.

    1993-01-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper the author reviews recent results from charm and beauty fixed target experiments at Fermilab

  12. LEAP [Low-Energy Antiproton]: A balloon-borne search for low-energy cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Moats, A.R.M.

    1989-01-01

    The LEAP (Low-Energy Antiproton) experiment is a search for cosmic-ray antiprotons in the 120 MeV to 1.2 GeV kinetic energy range. The motivation for this project was the result announced by Buffington et. al. (1981) that indicated an anomalously high antiproton flux below 300 MeV; this result has compelled theorists to propose sources of primary antiprotons above the small secondary antiproton flux produced by high energy cosmic-ray collisions with nuclei in the interstellar medium. LEAP consisted of the NMSU magnetic spectrometer, a time-of-flight system designed at Goddard Space Flight Center, two scintillation detectors, and a Cherenkov counter designed and built at the University of Arizona. Analysis of flight data performed by the high-energy astrophysics group at Goddard Space Flight Center revealed no antiproton candidates found in the 120 MeV to 360 MeV range; 3 possible antiproton candidate events were found in the 500 MeV to 1.2 GeV range in an analysis done here at the University of Arizona. However, since it will be necessary to sharpen the calibration on all of the LEAP systems in order to positively identify these events as antiprotons, only an upper limit has been determined at present. Thus, combining the analyses performed at the University of Arizona and Goddard Space Flight Center, 90% confidence upper limits of 3.5 x 10 -5 in the 120 MeV to 360 MeV range and 2.3 x 10 -4 in the 500 MeV to 1.2 GeV range for the antiproton/proton ratio is indicated by the LEAP results. LEAP disagrees sharply with the results of the Buffington group, indicating a low antiproton flux at these energies

  13. Stochastic Cooling at the CERN Antiproton Decelerator

    CERN Document Server

    Carli, Christian

    2000-01-01

    When transforming the CERN Antiproton Collector (AC) into the Antiproton Decelerator (AD), the stochastic cooling systems were rebuilt to cope with the new requirements. Instead of using the original three frequency bands, (0.9-1.6 GHz, 1.6-2.45 GHz and 2.4-3.2 GHz) only the first of these was used due to lattice limitations and other constraints. The same pick-ups and kickers are in use at two different energies. As in the AC, simultaneous cooling in all three phase planes is required. Switching between two transmission paths (at 3.5 GeV/c and 2.0 GeV/c) became necessary, including separate notch filters and delay compensation for the kicker sections. The tanks has to be rendered bakeable (150 C) to make the vacuum properties (<10-10 Torr) compatible with deceleration to low energies. Further improvements included programmable, phase-invariant electronic attenuators and amplitude-invariant delays. Experience during commissioning showed that careful optimization (depth and periodicity) of the notch filters...

  14. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  15. The antiproton ion collider at FAIR

    International Nuclear Information System (INIS)

    Fabbietti, L.; Faestermann, T.; Homolka, J.; Kienle, P.; Kruecken, R.; Ring, P.; Suziki, K.; Beller, P.; Bosch, F.; Frankze, B.; Kozhuharov, C.; Nolden, F.; Cargnelli, M.; Fuhrmann, H.; Hirtl, A.; Marton, J.; Widmann, E.; Zmeskal, J.; Hayano, R.S.; Yamaguchi, T.; Lenske, H.; Litvinov, Y.; Shatunov, Y.; Skrinsky, A.N.; Vostrikov, V.A.; Wycech, S.

    2005-01-01

    A novel method is proposed to determine the charge and the matter radii instable and short lived nuclei using an pBar-A collider. The experiment makes use of the appropriately modified electron-ion collider Elise, to collide 30 MeV anti-protons with 740 AMeV ions. The anti-protons are first collected in the CR ring with 3 GeV energy and then cooled in the RESR ring to 30 MeV. The heavy ions produced in the SFRS are precooled in the CR ring, cooled in the RESR ring to 740 AMeV and fed to the NESR ring. The total pBar-nucleon annihilation cross-section is measured detecting the loss of stored ions and the pBar-n, pBar-p cross-sections detecting the A - 1 (Z - 1 or N - 1) nuclei left over after the annihilation, using the Schottcky method. Theoretical predictions show that the annihilation cross-section is proportional to the mean squared radius. (author)

  16. Atomic physics of the antimatter explored with slow antiprotons

    International Nuclear Information System (INIS)

    Torii, Hiroyuki A.

    2010-01-01

    Frontiers of antimatter physics are reviewed, with a focus on our ASACUSA collaboration, doing research on 'Atomic Spectroscopy And Collisions Using Slow Antiprotons' at the 'Antiproton Decelerator' facility at CERN. Antiprotonic helium atoms give a unique test ground for testing CPT invariance between particles and antiparticles. Laser spectroscopy of this exotic atom has reached a precision of a few parts per billion in determation of the antiproton mass. We also have developed techniques to decelerate antiprotons and cool them to sub-eV energies in an electromagnetic trap at ultra-high vacuum and extract them as an ultra-slow beam at typically 250 eV. This unique low-energy beam opens up the possibility to study ionization and formation of antiprotonic atoms. The antihydrogen has been synthesized at low temperature in nested Penning traps by ATRAP and ATHENA(presently ALPHA) collaborations. Confinement of this neutral anti-atoms in a trap with magnetic field gradient is being studied, with an aim of 1S-2S laser spectroscopy in the future. ASACUSA has prepared a cusp trap for production of antihydrogen atoms, and aims at microwave spectroscopy between the hyperfine states of spin-polarized antihydrogen. A wide variety of low-energy antiproton physics also includes measurement of nuclear scattering, radiational biological effects, and gravity test of antimatter. (author)

  17. Correction magnets for the Fermilab Recycler Ring

    International Nuclear Information System (INIS)

    James T Volk et al.

    2003-01-01

    In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements

  18. Exabyte helical scan devices at Fermilab

    International Nuclear Information System (INIS)

    Constanta-Fanourakis, P.; Kaczar, K.; Oleynik, G.; Petravick, D.; Votava, M.; White, V.; Hockney, G.; Bracker, S.; de Miranda, J.M.

    1989-05-01

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs

  19. Strategic directions of computing at Fermilab

    Science.gov (United States)

    Wolbers, Stephen

    1998-05-01

    Fermilab computing has changed a great deal over the years, driven by the demands of the Fermilab experimental community to record and analyze larger and larger datasets, by the desire to take advantage of advances in computing hardware and software, and by the advances coming from the R&D efforts of the Fermilab Computing Division. The strategic directions of Fermilab Computing continue to be driven by the needs of the experimental program. The current fixed-target run will produce over 100 TBytes of raw data and systems must be in place to allow the timely analysis of the data. The collider run II, beginning in 1999, is projected to produce of order 1 PByte of data per year. There will be a major change in methodology and software language as the experiments move away from FORTRAN and into object-oriented languages. Increased use of automation and the reduction of operator-assisted tape mounts will be required to meet the needs of the large experiments and large data sets. Work will continue on higher-rate data acquisition systems for future experiments and projects. R&D projects will be pursued as necessary to provide software, tools, or systems which cannot be purchased or acquired elsewhere. A closer working relation with other high energy laboratories will be pursued to reduce duplication of effort and to allow effective collaboration on many aspects of HEP computing.

  20. Fermilab "Dumbfounded" by fiasco that broke magnet

    CERN Multimedia

    2007-01-01

    "In what is being described as a "pratfall on the world stage", the quadrupole magnet that Fermilab built for the Large Hadron Collider (LHC) particle accelerator failed high-pressure testing dramatically last week, resulting in a loud "bang" and a cloud of dust in the LHC tunnel." (1,5 page)

  1. Fermilab Friends for Science Education | Board Tools

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Board Tools Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education FFSE Scholarship Tools Google Drive Join Us/Renew Membership Forms: Online - Print Support Us Donation

  2. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  3. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  4. Fermilab Friends for Science Education | Calendar

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Calendar Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  5. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  6. Fermilab Friends for Science Education | Mission

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Mission Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  7. Fermilab ACP multi-microprocessor project

    International Nuclear Information System (INIS)

    Gaines, I.; Areti, H.; Biel, J.; Bracker, S.; Case, G.; Fischler, M.; Husby, D.; Nash, T.

    1984-08-01

    We report on the status of the Fermilab Advanced Computer Program's project to provide more cost-effective computing engines for the high energy physics community. The project will exploit the cheap, but powerful, commercial microprocessors now available by constructing modular multi-microprocessor systems. A working test bed system as well as plans for the next stages of the project are described

  8. FERMILAB: Physics in the 1990s

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-12-15

    Brainstorming workshops are a regular feature of the high energy physics scene, but a recent Workshop on Physics at Fermilab in the 1990s was one of the most important in the Laboratory's 20-year history, charting the aims of a research centre which will retain the distinction of having the highest energy accelerator in the world well into the next decade.

  9. Strategic directions of computing at Fermilab

    International Nuclear Information System (INIS)

    Wolbers, S.

    1997-04-01

    Fermilab computing has changed a great deal over the years, driven by the demands of the Fermilab experimental community to record and analyze larger and larger datasets, by the desire to take advantage of advances in computing hardware and software, and by the advances coming from the R ampersand D efforts of the Fermilab Computing Division. The strategic directions of Fermilab Computing continue to be driven by the needs of the experimental program. The current fixed-target run will produce over 100 TBytes of raw data and systems must be in place to allow the timely analysis of the data. The collider run II, beginning in 1999, is projected to produce of order 1 PByte of data per year. There will be a major change in methodology and software language as the experiments move away from FORTRAN and into object- oriented languages. Increased use of automation and the reduction of operator-assisted tape mounts will be required to meet the needs of the large experiments and large data sets. Work will continue on higher-rate data acquisition systems for future experiments and project. R ampersand D projects will be pursued as necessary to provide software, tools, or systems which cannot be purchased or acquired elsewhere. A closer working relation with other high energy laboratories will be pursued to reduce duplication of effort and to allow effective collaboration on many aspects of HEP computing

  10. Cloud services for the Fermilab scientific stakeholders

    International Nuclear Information System (INIS)

    Timm, S; Garzoglio, G; Mhashilkar, P

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. We present in detail the technological improvements that were used to make this work a reality. (paper)

  11. Results on Fermilab main injector dipole measurements

    International Nuclear Information System (INIS)

    Brown, B.C.; Baiod, R.; DiMarco, J.; Glass, H.D.; Harding, D.J.; Martin, P.S.; Mishra, S.; Mokhtarani, A.; Orris, D.F.; russell, O.A.; Tompkins, J.C.; Walbridge, D.G.C.

    1995-06-01

    Measurements of the Productions run of Fermilab Main Injector Dipole magnets is underway. Redundant strength measurements provide a set of data which one can fit to mechanical and magnetic properties of the assembly. Plots of the field contribution from the steel supplement the usual plots of transfer function (B/I) vs. I in providing insight into the measured results

  12. Fermilab | Science | Inquiring Minds | Questions About Physics

    Science.gov (United States)

    Benefits Milestones Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  13. Fermilab | Physics for Everyone | Lecture Series

    Science.gov (United States)

    Industry Students and teachers Media Physics for Everyone Navbar Toggle About Leadership and Organization Benefits Milestones Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle

  14. Muon, positron and antiproton interactions with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Armour, Edward A G, E-mail: edward.armour@nottingham.ac.u [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2010-04-01

    In this paper, a description is given of some interesting processes involving the interaction of a muon, a positron, or an antiproton with atoms and molecules. The process involving a muon is the resonant formation of the muonic molecular ion, dt{mu}, in the muon catalyzed fusion cycle. In the case of a positron, the process considered is positron annihilation in low-energy positron scattering by the hydrogen molecule. The antiproton is considered as the nucleus of an antihydrogen atom interacting with simple atoms. Attention is given to antiproton annihilation through the strong interaction. An outline is given of proposed tests of fundamental physics to be carried out using antihydrogen.

  15. Prospects for antiproton physics, my perspective

    International Nuclear Information System (INIS)

    Oelert, Walter

    2012-01-01

    These closing remarks are not supposed to be a summary talk, for this please have a look to the individual contributions to be published in the proceedings, but rather some considerations on future prospects for antiproton physics. However, first I would like to appreciate the organizers idea for giving me the opportunity to thank them for a well balanced, exciting and interesting conference LEAP-2011 in this marvelous city of Vancouver. I am sure we all loved to be here and enjoyed the hospitality and the bond of friendship we could experience during these days. We appreciate the patience and help of all the local organizers where I especially would like to mention Jana Thomson for her endless and helpful assignment. Thank you all—the participants, the speakers, the conference chair, the sponsors—for making this conference a success and we are looking forward to the next occasion in this series of meetings which will be celebrated in Uppsala.

  16. Prospects for antiproton physics, my perspective

    Energy Technology Data Exchange (ETDEWEB)

    Oelert, Walter, E-mail: w.oelert@fz-juelich.de [Forschungszentrum Juelich (Germany)

    2012-12-15

    These closing remarks are not supposed to be a summary talk, for this please have a look to the individual contributions to be published in the proceedings, but rather some considerations on future prospects for antiproton physics. However, first I would like to appreciate the organizers idea for giving me the opportunity to thank them for a well balanced, exciting and interesting conference LEAP-2011 in this marvelous city of Vancouver. I am sure we all loved to be here and enjoyed the hospitality and the bond of friendship we could experience during these days. We appreciate the patience and help of all the local organizers where I especially would like to mention Jana Thomson for her endless and helpful assignment. Thank you all-the participants, the speakers, the conference chair, the sponsors-for making this conference a success and we are looking forward to the next occasion in this series of meetings which will be celebrated in Uppsala.

  17. Antiproton-nucleon physics at LEAR

    International Nuclear Information System (INIS)

    Duclos, J.

    1985-02-01

    Antiproton beams from LEAR have been supplied in 1984 to 16 experiments about 10 12 particules at 200, 300, 600 and 1500 MeV/c have been delivered during 60 days of machine time. In nuclear physics, anti p-nuclei scattering and atomic X rays have been measured. In hydrogen, atomic L and K transitions have been detected. Searches have been made for baryonia with rather negative results. The p anti p annihilation at rest in various meson channels, selecting the initial anti p-wave, has been observed. The annihilation in electron-positron pair at rest and in flight has been measured and a value of the proton form factor is derived [fr

  18. Measurement of antiproton production in $p$–He collisions at LHCb to constrain the secondary cosmic antiproton flux

    CERN Document Server

    Graziani, Giacomo

    2018-01-01

    The flux of cosmic ray antiprotons is a powerful tool for indirect detection of dark matter. The sensitivity is limited by the uncertainty on the predicted antiproton flux from scattering of primary rays on the interstellar medium. This is, in turn, limited by the knowledge of production cross-sections, notably in p–He scattering. Thanks to its internal gas target, the LHCb experiment performed the first measurement of antiproton production from collisions of LHC proton beams on He nuclei at rest. The results and prospects are presented.

  19. Do positrons and antiprotons respect the weak equivalence principle?

    International Nuclear Information System (INIS)

    Hughes, R.J.

    1990-01-01

    We resolve the difficulties which Morrison identified with energy conservation and the gravitational red-shift when particles of antimatter, such as the positron and antiproton, do not respect the weak equivalence principle. 13 refs

  20. Antiproton cell experiment: antimatter is a better killer

    CERN Multimedia

    2006-01-01

    "European Organization for Nuclear Research is reporting that results from a three year study of antiprotons for neoplasm irrdiation showed a better cellular killer with a smaller lethal dose." (1,5 page)

  1. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  2. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  3. A measurement of the gravitational acceleration of the antiproton

    International Nuclear Information System (INIS)

    Holzscheiter, M.H.

    1990-01-01

    A fundamental experiment in gravity proposed by us, is the measurement of the gravitational force on antimatter. This measurement would constitute the first direct test of the Weak Equivalence Principle (WEP) for antimatter. The availability of low-energy antiprotons at CERN has made such an experiment feasible, and a proposal to carry out such a measurement has been accepted by the CERN Program Committee. We plan to use a time-of-flight technique similar to that pioneered by Fairbank and Witteborn in their measurement of the gravitational force on an electron. Very slow particles are launched into a vertical drift tube and the time-of-flight spectrum of these particles is recorded. This spectrum will exhibit a cut-off point directly related to the gravitational acceleration of the particles. Obtaining very slow antiprotons involves several stages of deceleration. Antiprotons from LEAR will be initially decelerated from 2 MeV to tens of kilovolts by passing them through a thin foil. After capture and cooling in a series of ion traps, the antiprotons will be in a thermal distribution with a temperature of a few degrees Kelvin. These ultra-cold antiprotons will then be released a few at a time into the drift tube. A detector will measure the arrival time of the particles at the exit of the drift tube. H - -ion, which have almost identical electromagnetic properties to the antiprotons, will be used for comparison and as a calibration standard. 7 refs., 1 fig

  4. Neutrino results from the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Shaevitz, M.H.; Arroyo, C.; Bachmann, K.T.; Bazarko, A.O.; Blair, R.E.; Bolton, T.A.; Foudas, C.; King, B.J.; Lefmann, W.C.; Leung, W.C.; Mishra, S.R.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.; Seligman, W.G.; Merritt, F.S.; Oreglia, M.J.; Schumm, B.A.; Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.; Yovanovitch, D.D.; Bodek, A.; Budd, H.S.; De Barbaro, P.; Salcumoto, W.K.; Kinnel, T.S.; Sandler, P.H.; Smith, W.H.

    1995-01-01

    Results from the high-energy, high-statistics studies of neutrino nucleon interactions by the CCFR collaboration at the Fermilab Tevatron are described. Using a data sample of over 3.7million events with energies up to 600GeV, precision measurements are presented for the weak mixing angle, sin 2 θ w , the structure functions, F 2 (x,Q 2 ) and xF 3 (x,Q 2 ), aud the strange quark distribution, xs(x,Q 2 ). Comparisons of these measurements to those obtained in other processes are made in the context of global electroweak and QCD tests. Prospects for the next generation measurements by the NuTeV collaboration at Fermilab are also presented. ((orig.))

  5. Seismic studies for Fermilab future collider projects

    International Nuclear Information System (INIS)

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators

  6. Online modeling of the Fermilab accelerators

    International Nuclear Information System (INIS)

    McCrory, Elliott S.; Michelotti, Leo; Ostiguy, Jean-Francois

    2001-01-01

    We have implemented access to beam physics models of the Fermilab accelerators and beamlines through the Fermilab control system. The models run on Unix workstations, communicating with legacy controls software through a front end redirection mechanism (the open access server), a relational database and a simple text-based protocol over TCP/IP. The clients and the server are implemented in object-oriented C++. We discuss limitations of our approach and the difficulties that arise from it. Some of the obstacles may be overcome by introducing a new layer of abstraction. To maintain compatibility with the next generation of accelerator control software currently under development at the laboratory, this layer would be implemented in Java. We discuss the implications of that choice

  7. Charm production asymmetries at the Fermilab experiments

    International Nuclear Information System (INIS)

    Carter, T.

    1997-01-01

    I present asymmetries between the production of charm particles and anti-particles from Fermilab experiments, E687, E769 and E791. The results are shown as a function of x F and p t 2 for D ± and D s ± mesons and for pion, kaon and photon beams and compared against current models. Results are also shown for a recent analysis of correlations between production of charm mesons and an associated pion. 14 refs., 5 figs., 3 tabs

  8. Status of the Fermilab lattice supercomputer project

    International Nuclear Information System (INIS)

    Mackenzie, P.; Eichten, E.; Hockney, G.

    1988-10-01

    Fermilab has completed construction of a sixteen node (320 megaflop peak speed) parallel computer for lattice gauge theory calculations. The architecture was designed to provide the highest possible cost effectiveness while maintaining a high level of programmability and constraining as little as possible the types of lattice problems which can be done on it. The machine is programmed in C. It is a prototype for a 256 node (5 gigaflop peak speed) computer which will be assembled this winter. 6 refs

  9. Upgrading the Fermilab Linac local control system

    International Nuclear Information System (INIS)

    McCrory, E.S.; Goodwin, R.W.; Shea, M.F.

    1991-02-01

    A new control system for the Fermilab Linac is being designed, built and implemented. First, the nine-year-old linac control system is being replaced. Second, a control system for the new 805 MHz part of the linac is being built. The two systems are essentially identical, so that when the installations are complete, we will still have a single Linac Control System. 8 refs., 5 figs

  10. Estimates of Fermilab Tevatron collider performance

    International Nuclear Information System (INIS)

    Dugan, G.

    1991-09-01

    This paper describes a model which has been used to estimate the average luminosity performance of the Tevatron collider. In the model, the average luminosity is related quantitatively to various performance parameters of the Fermilab Tevatron collider complex. The model is useful in allowing estimates to be developed for the improvements in average collider luminosity to be expected from changes in the fundamental performance parameters as a result of upgrades to various parts of the accelerator complex

  11. FERMILAB Annual Users' Meeting

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In an atmosphere full of promise a record 370 users met at Fermilab in April for the 15th annual Users' Meeting. The gathering took place in the midst of activities to bring beam through one-third of the Energy Saver. Laboratory Director Leon Lederman and his staff reported that the ring was nearing completion and that circulating beam could follow soon

  12. FERMILAB: Physics in the 1990s

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Brainstorming workshops are a regular feature of the high energy physics scene, but a recent Workshop on Physics at Fermilab in the 1990s was one of the most important in the Laboratory's 20-year history, charting the aims of a research centre which will retain the distinction of having the highest energy accelerator in the world well into the next decade

  13. Analyzing terabytes of data at Fermilab

    International Nuclear Information System (INIS)

    Wolbers, S.

    1994-05-01

    Computing demands of High Energy Physics are increasing steadily due to the demands of larger datasets and increasingly sophisticated detector systems and analysis techniques. Fermilab has been meeting these demands by the use of many different computing techniques. Most of these techniques attempt to utilized the most cost-effective computing resources while providing effective solutions to the problems that are created by multi-Terabyte data samples and large collaborations. New strategies are being developed to allow improved access to the data

  14. Recent results from Fermilab E769

    International Nuclear Information System (INIS)

    Gay, C.

    1990-01-01

    Fermilab Experiment E769 obtained a data sample of 400M events during the 1987-88 Fixed Target run using a 250 GeV hadron beam incident on a target consisting of thin foils of W, Cu, Al and Be. Preliminary results on the atomic number, Feynman x and p t 2 dependence of D + production based on 25% of the total data sample are presented

  15. Charmed baryons photoproduced in FOCUS at Fermilab

    CERN Document Server

    Ratti, S P

    2001-01-01

    FOCUS collected over 7 * 10/sup 7/ triggers and more than 10/sup 6/ fully reconstructed charm particles in a photoproduction experiment at Fermilab. The experimental setup is an upgraded version of a multiparticle spectrometer used in the previous experiment E687. Data on charmed meson spectroscopy have been presented by F.L Fabbri in this Section. Here data on photoproduction of charmed baryons are presented.

  16. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  17. The evolution of cryogenic safety at Fermilab

    International Nuclear Information System (INIS)

    Stanek, R.; Kilmer, J.

    1992-12-01

    Over the past twenty-five years, Fermilab has been involved in cryogenic technology as it relates to pursuing experimentation in high energy physics. The Laboratory has instituted a strong cryogenic safety program and has maintained a very positive safety record. The solid commitment of management and the cryogenic community to incorporating safety into the system life cycle has led to policies that set requirements and help establish consistency for the purchase and installation of equipment and the safety analysis and documentation

  18. Hadroproduction of charm at Fermilab E769

    International Nuclear Information System (INIS)

    Alves, G.A.; Anjos, J.C.; de Mello Neto, J.R.T.; de Miranda, J.M.; da Motta, H.; dos Reis, A.C.; Santoro, A.F.S.; Souza, M.H.G.; Appel, J.A.; Dixon, R.L.; Fenker, H.C.; Green, D.R.; Kwan, S.; Lueking, L.H.; Mantsch, P.M.; Spalding, W.J.; Stoughton, C.; Streetman, M.E.; Bracker, S.B.; Gay, C.; Jedicke, R.; Luste, G.J.; Cremaldi, L.M.; Summers, D.J.; Errede, D.; Sheaff, M.; Kaplan, D.; Leedom, I.; Reucroft, S.; Karchin, P.E.; Ross, W.R.; Wu, Z.; Metheny, J.; Milburn, R.H.; Napier, A.; de Oliveira, A.B.

    1990-01-01

    Experiment E769 at Fermilab obtained charm hadroproduction data during the 1987-88 Fixed Target running period with a 250 GeV hadron beam incident on thin target foils of Be, Al, Cu, and W. From an analysis of 25% of the recorded 400M trigger sample we have explored the Feynman x, p t 2 and the atomic number dependence of charm quark production using samples of D + and D 0 mesons. 7 refs., 4 figs

  19. Grids, virtualization, and clouds at Fermilab

    International Nuclear Information System (INIS)

    Timm, S; Chadwick, K; Garzoglio, G; Noh, S

    2014-01-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  20. Design Considerations for Proposed Fermilab Integrable RCS

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander

    2017-03-02

    Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.

  1. Software inspections at Fermilab -- Use and experience

    International Nuclear Information System (INIS)

    Berman, E.F.

    1998-01-01

    Because of the critical nature of DA/Online software it is important to commission software which is correct, usable, reliable, and maintainable, i.e., has the highest quality possible. In order to help meet these goals Fermi National Accelerator Laboratory (Fermilab) has begun implementing a formal software inspection process. Formal Inspections are used to reduce the number of defects in software at as early a stage as possible. These Inspections, in use at a wide variety of institutions (e.g., NASA, Motorola), implement a well-defined procedure that can be used to improve the quality of many different types of deliverables. The inspection process, initially designed by Michael Fagan, will be described as it was developed and as it is currently implemented at Fermilab where it has been used to improve the quality of a variety of different experiment DA/Online software. Benefits of applying inspections at many points in the software life-cycle and benefits to the people involved will be investigated. Experience with many different types of Inspections and the lessons learned about the inspection process itself will be detailed. Finally, the future of Inspections at Fermilab will be given

  2. Grids, virtualization, and clouds at Fermilab

    Science.gov (United States)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  3. Fermilab 1982. Annual report of the Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    The state of Fermilab is reviewed for 1982, and summaries are given in the following areas: fabricating energy saver superconducting magnets; present knowledge and future directions in particle physics; accomplishments of Fermilab in a decade of operation 1972 to 1982; a photo essay on the energy saver installation work in the Main Ring Tunnel; a listing of 1982 Fermilab experimental, general, and theoretical publications; and a listing of the 1982 workshop and seminar series

  4. Report of the Fermilab Committee for Site Studies

    Energy Technology Data Exchange (ETDEWEB)

    Steve Holmes, Vic Kuchler et. al.

    2001-09-10

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions.

  5. Report of the Fermilab Committee for Site Studies

    International Nuclear Information System (INIS)

    Steve, Holmes; Vic, Kuchler

    2001-01-01

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions

  6. The Floor's the Limit (Antiproton energies to hit new low)

    CERN Multimedia

    2000-01-01

    Celebrating the success of the RFQ in Aarhus. Left to right: Alessanda Lombardi (CERN), Iouri Bylinskii (CERN), Alex Csete (Aarhus), Ulrik Uggerhøj (Aarhus), Ryu Hayano (Tokyo, spokesman ASACUSA), Helge Knudsen (Aarhus), Werner Pirkl (CERN), Ryan Thompson (Aarhus), Søren P. Møller (Aarhus). Although in particle physics we are accustomed to strive for higher and higher energies, this is not always the most interesting thing to do with antiprotons. Indeed, as recent issues of the Bulletin have suggested, the signpost on the road to a closer look at the antiproton points towards ever-lower energies. The CERN Antiproton Decelerator decelerates antipro-tons emerging from a target placed in the path of a 26 GeV/c proton beam from 90 % of to about 10 % of the speed of light. However, even this is far too fast for many of the most interesting experiments on antiprotons planned by Danish and Japanese members of the ASACUSA collaboration. Tokyo University has therefore financed the con...

  7. Large amounts of antiproton production by heavy ion collision

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10 41 m/cm 2 , a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values

  8. A low-energy antiproton detector prototype for AFIS

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lingxin; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Losekamm, Martin; Paul, Stephan; Poeschl, Thomas; Renker, Dieter [Technische Universitaet Muenchen (Germany)

    2014-07-01

    Antiprotons are produced in interactions of primary cosmic rays with earth's exosphere, where a fraction of them will be confined in the geomagnetic field in the inner van Allen Belt. The antiproton-to-proton flux ratio predicted by theory is in good agreement with recent results from the South Atlantic Anomaly (SAA) published by the PAMELA collaboration. We have designed the AFIS (Antiproton Flux in Space) project in order to extend the measurable range of antiprotons towards the low-energy region. In scope of this project a small antiproton detector consisting of scintillating fibers and silicon photomultipliers is being developed as payload for a CubeSat traversing the SAA in Low Earth Orbit. For the proof of concept we have built a prototype called ''CubeZero'' which completed its first test using pion and proton beams at PSI, Switzerland. Our primary goal was to investigate on the performance of tracking and Bragg peak identification in hardware and software. Analysis of detector performance based on data taken during this beam test is presented in this talk.

  9. Antiproton tagging and vertex fitting in a Timepix3 detector

    CERN Document Server

    Aghion, S.; The AEGIS collaboration; Antonello, M.; Belov, A.; Bonomi, G.; Brusah, R. S.; Caccia, M.; Camper, A.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Evans, C.; Fanì, M.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Hackstock, P.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Khalidova, O.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Marton, J.; Matveev, V.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Prelz, F.; Prevedelli, M.; Rienaecker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sandaker, H.; Santoro, R.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2018-01-01

    Studies of antimatter are important for understanding our universe at a fundamental level. There are still unsolved problems, such as the matter-antimatter asymmetry in the universe. The AEgIS experiment at CERN aims at measuring the gravitational fall of antihydrogen in order to determine the gravitational force on antimatter. The proposed method will make use of a position-sensitive detector to measure the annihilation point of antihydrogen. Such a detector must be able to tag the antiproton, measure its time of arrival and reconstruct its annihilation point with high precision in the vertical direction. This work explores a new method for tagging antiprotons and reconstructing their annihilation point. Antiprotons from the Antiproton Decelerator at CERN was used to obtain data on direct annihilations on the surface of a silicon pixel sensor with Timepix3 readout. These data were used to develop and verify a detector response model for annihilation of antiprotons in this detector. Using this model and the a...

  10. Calculated LET spectrum from antiproton beams stopping in water

    CERN Document Server

    Bassler, Niels

    2009-01-01

    Antiprotons have been proposed as a potential modality for radiotherapy because the annihilation at the end of range leads to roughly a doubling of physical dose in the Bragg peak region. So far it has been anticipated that the radiobiology of antiproton beams is similar to that of protons in the entry region of the beam, but very different in the annihilation region, due to the expected high-LET components resulting from the annihilation. On closer inspection we find that calculations of dose averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could significantly differ from unity, which seems to warrant closer inspection of the radiobiology in this region. Materials and Methods. Monte Carlo simulations using FLUKA were performed for calculating the entire particle spectrum of a beam of 126 MeV antiprotons hitting a water phantom. Results and Discussion. In the plateau region of the simulated antiproton beam we observe a dose-averaged unrestrict...

  11. Atomic Spectroscopy and Collisions Using Slow Antiprotons \\\\ ASACUSA Collaboration

    CERN Multimedia

    Matsuda, Y; Lodi-rizzini, E; Kuroda, N; Schettino, G; Hori, M; Pirkl, W; Mascagna, V; Leali, M; Malbrunot, C L S; Yamazaki, Y; Eades, J; Simon, M; Massiczek, O; Sauerzopf, C; Nagata, Y; Knudsen, H; Uggerhoj, U I; Mc cullough, R W; Toekesi, K M; Venturelli, L; Widmann, E; Zmeskal, J; Kanai, Y; Kristiansen, H; Todoroki, K; Bartel, M A; Moller, S P; Charlton, M; Diermaier, M; Kolbinger, B

    2002-01-01

    ASACUSA (\\underline{A}tomic \\underline{S}pectroscopy \\underline{A}nd \\underline{C}ollisions \\underline{U}sing \\underline{S}low \\underline{A}ntiprotons) is a collaboration between a number of Japanese and European research institutions, with the goal of studying bound and continuum states of antiprotons with simple atoms.\\\\ Three phases of experimentation are planned for ASACUSA. In the first phase, we use the direct $\\overline{p}$ beam from AD at 5.3 MeV and concentrate on the laser and microwave spectroscopy of the metastable antiprotonic helium atom, $\\overline{p}$He$^+$, consisting of an electron and antiproton bound by the Coulomb force to the helium nucleus. Samples of these are readily created by bringing AD antiproton beam bunches to rest in helium gas. With the help of techniques developed at LEAR for resonating high precision laser beams with antiproton transitions in these atoms, ASACUSA achieved several of these first-phase objectives during a few short months of AD operation in 2000. Six atomic tr...

  12. Large amounts of antiproton production by heavy ion collision

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10/sup 41/ m/cm/sup 2/, a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values.

  13. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    CERN Document Server

    Hayano, R S

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants.

  14. Metastable states in antiprotonic helium atoms an island stability in a sea of continuum

    CERN Document Server

    Korobov, V I

    2002-01-01

    In this contribution we consider a phenomenon of metastable states in antiprotonic helium atoms, precise spectroscopy of these states and a present-day study of the electromagnetic properties of antiprotons. Calculation of nonrelativistic energies, relativistic and QED corrections as well as the fine and hyperfine structure and the magnetic moment of an antiproton are the main parts of this study. Refs. 22 (nevyjel)

  15. Improved Study of the Antiprotonic Helium Hyperfine Structure

    CERN Document Server

    Pask, T.; Dax, A.; Hayano, R.S.; Hori, M.; Horvath, D.; Juhasz, B.; Malbrunot, C.; Marton, J.; Ono, N.; Suzuki, K.; Zmeskal, J.; Widmann, E.

    2008-01-01

    We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n,l) = (37,~35) carried out at the Antiproton Decelerator (AD) at CERN. We performed a laser-microwave-laser resonance spectroscopy using a continuous wave (cw) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of five and reduced the line width by a factor of three compared to our previous results. A comparison of the experimentally measured transition frequencies with three body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.

  16. Groundwater migration of radionuclides at Fermilab

    International Nuclear Information System (INIS)

    Malensek, A.J.; Wehmann, A.A.; Elwyn, A.J.; Moss, K.J.; Kesich, P.M.

    1993-01-01

    The simple Single Resident Well (SRW) Model has been used to calculate groundwater movement since Fermilab's inception. A new Concentration Model is proposed which is more realistic and takes advantage of computer modeling that has been developed for the siting of landfills. Site geologic and hydrologic data were given to a consultant who made the migration calculations from an initial concentration that was based upon the existing knowledge of the radioactivity leached out of the soil. The various components of the new Model are discussed, and numerical examples are given and compared with DOE/EPA limits

  17. Fermilab accelerator control system: Analog monitoring facilities

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system

  18. Fermilab linac upgrade. Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-01-01

    The 805 MHz side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and discusses the near-on-line commissioning plans for this accelerator. (Author) ref., 4 figs

  19. Fermilab Linac Upgrade: Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-12-01

    The 805 MHz Side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side-cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and disc the near-online commissioning plans for this accelerator

  20. Dilepton Production at Fermilab and RHIC

    International Nuclear Information System (INIS)

    Peng, J.C.; McGaughey, P.L.; Moss, J.M.

    1999-01-01

    Some recent results from several fixed-target dimuon production experiments at Fermilab are presented. In particular, we discuss the use of Drell-Yan data to determine the flavor structure of the nucleon sea, as well as to deduce the energy-loss of partons traversing nuclear medium. Future dilepton experiments at RHIC could shed more light on the flavor asymmetry and possible charge-symmetry-violation of the nucleon sea. Clear evidence for scaling violation in the Drell-Yan process could also be revealed at RHIC

  1. The VAXONLINE software system at Fermilab

    International Nuclear Information System (INIS)

    White, V.; Heinicke, P.; Berman, E.

    1987-06-01

    The VAXONLINE software system, started in late 1984, is now in use at 12 experiments at Fermilab, with at least one VAX or MicroVax. Data acquisition features now provide for the collection and combination of data from one or more sources, via a list-driven Event Builder program. Supported sources include CAMAC, FASTBUS, Front-end PDP-11's, Disk, Tape, DECnet, and other processors running VAXONLINE. This paper describes the functionality provided by the VAXONLINE system, gives performance figures, and discusses the ongoing program of enhancements

  2. Superconducting radiofrequency linac development at Fermilab

    International Nuclear Information System (INIS)

    Holmes, Stephen D.

    2009-01-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  3. Tests of cold helium compressors at Fermilab

    International Nuclear Information System (INIS)

    Peterson, T.J.; Fuerst, J.D.

    1988-01-01

    Fermilab has tested two compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Both Creare Inc. and Cryogenic Consultants Inc. have supplied units for evaluation. The Creare machine, a high speed centrifugal pump/compressor, yielded 60% adiabatic efficiency but had difficulty withstanding two-phase flow. Cryogenic Consultants provided a reciprocating unit which achieved 59% efficiency and, although lacking the operating characteristics of the turbomachine, endured throughout testing and was insensitive to two-phase flow. Test results are discussed

  4. First results for the two-spin parameter ALL in π0 production by 200 GeV polarized protons and antiprotons

    International Nuclear Information System (INIS)

    Adams, D.L.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bystricky, J.; Chaumette, P.; Deregel, J.; Durand, G.; Fabre, J.; Lehar, F.; Lesquen, A. de; Cossairt, J.D.; Read, A.L.; En'yo, H.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Grosnick, D.P.; Hill, D.A.; Kasprzyk, T.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shepard, J.; Spinka, H.; Underwood, D.G.; Yokosawa, A.; Iwatani, K.; Krueger, K.W.; Kuroda, K.; Michalowicz, A.; Pauletta, G.; Penzo, A.; Schiavon, P.; Zanetti, A.; Salvato, G.; Villari, A.; Takeutchi, F.; Tamura, N.; Tanaka, N.; Yoshida, T.

    1991-01-01

    The two-spin parameter A LL in inclusive π 0 production by longitudinally-polarized protons and antiprotons on a longitudinally-polarized proton target has been measured at the 200 GeV Fermilab spin physics facility, for π 0 's at x F = 0 with 1 ≤ p t ≤ 3 GeV/c. The results exclude, at the 95% confidence level, values of A LL (pp) > 0.1 and 0 's produced by protons, and values of A LL (anti pp) > 0.1 and LL (pp) for the gluon spin density is discussed. The data are in good agreement with 'conventional' small or zero, gluon polarization. (orig.)

  5. A study of events with large total transverse energy produced in proton-antiproton collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Piekarz, H.

    1994-09-01

    Properties of events originating from proton-antiproton interactions in which the total transverse energy, Σ|E T |, of the event exceeded 400 GeV are presented. These events were produced at the Fermilab Tevatron Collider operating at a center-of-mass energy of 1.8 TeV and recorded in the D0 detector. The authors describe their analysis method which minimizes the effect of multiple interactions in the data sample. Based on a data sample of 5.45 ± 0.65 pb -1 , the topology of these hard scattering events as well as preliminary results for the cross-section, dσ/dΣ|E T |, are presented and discussed

  6. Mass-identified particle production in proton-antiproton collisions at √s =300, 540, 1000, and 1800 GeV

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Allen, C.; Anderson, E.W.; Balamurali, V.; Banerjee, S.; Beery, P.D.; Bhat, P.; Bishop, J.M.; Biswas, N.N.; Bujak, A.; Carmony, D.D.; Carter, T.; Choi, Y.; Cole, P.; DeBonte, R.; DeCarlo, V.; Erwin, A.R.; Findeisen, C.; Goshaw, A.T.; Gutay, L.J.; Hirsch, A.S.; Hojvat, C.; Jennings, J.R.; Kenney, V.P.; Lindsey, C.S.; Loomis, C.; LoSecco, J.M.; McMahon, T.; McManus, A.P.; Morgan, N.; Nelson, K.; Oh, S.H.; Porile, N.T.; Reeves, D.; Rimai, A.; Robertson, W.J.; Scharenberg, R.P.; Stampke, S.R.; Stringfellow, B.C.; Thompson, M.; Turkot, F.; Walker, W.D.; Wang, C.H.; Warchol, J.; Wesson, D.K.; Zhan, Y.

    1993-01-01

    The yields and average transverse momenta of pions, kaons, and antiprotons produced at the Fermilab bar pp collider at √s =300, 540, 1000, and 1800 GeV are presented and compared with data from the energies reached at the CERN collider. We also present data on the dependence of average transverse momentum left-angle p t right-angle and particle ratios as a function of charged particle density dN c /dη; data for particle densities as high as six times the average value, corresponding to a Bjorken energy density 6 GeV/fm 3 , are reported. These data are relevant to the search for quark-gluon phase of QCD

  7. Fermilab a laboratory at the frontier of research

    CERN Document Server

    Gillies, James D

    2002-01-01

    Since its foundation in 1967, creeping urbanization has taken away some of Fermilab's remoteness, but the famous buffalo still roam, and farm buildings evocative of frontier America dot the landscape - appropriately for a laboratory at the high-energy frontier of modern research. Topics discussed are the Tevatron, detector upgrades, the neutrino programme, Fermilab and the LHC and the non-accelerator programme.

  8. Relativistic hydrodynamics, heavy ion reactions and antiproton annihilation

    International Nuclear Information System (INIS)

    Strottman, D.

    1985-01-01

    The application of relativistic hydrodynamics to relativistic heavy ions and antiproton annihilation is summarized. Conditions for validity of hydrodynamics are presented. Theoretical results for inclusive particle spectra, pion production and flow analysis are given for medium energy heavy ions. The two-fluid model is introduced and results presented for reactions from 800 MeV per nucleon to 15 GeV on 15 GeV per nucleon. Temperatures and densities attained in antiproton annihilation are given. Finally, signals which might indicate the presence of a quark-gluon plasma are briefly surveyed

  9. Antiproton-decelerating Radio-Frequency Quadrupole (RFQD), inner structure.

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The inner structure of the RFQD, withdrawn from its tank. In picture _06, the upstream end is in the back and the view is on the downstream exit. The RFQD has a length of 3.5 m and operates at a frequency of 202.4 MHz. It further decelerates antiprotons from the Antiproton Decelerator (3.5 MeV/c to 100 MeV/c, or 5.3 MeV) to very low energies around 50 keV.

  10. Antiprotons from spallation of cosmic rays on ISM

    CERN Document Server

    Donato, F

    2002-01-01

    We provide the first evaluation of the secondary interstellar cosmic antiproton flux that is fully consistent with cosmic ray nuclei in the framework of a two-zone diffusion model. We also study and conservatively quantify all possible sources of uncertainty that may affect that antiproton flux. Uncertainties related to propagation are shown to range between 10% and 25%, depending on which part of the spectrum is considered, while the ones related to nuclear physics stand around 22-25 % over all the energy spectrum.

  11. 1-4 Strangeness Production in Antiproton Induced Nuclear Reactions.

    Institute of Scientific and Technical Information of China (English)

    Feng; Zhaoqing[1

    2014-01-01

    More localized energy deposition is able to be produced in antiproton-nucleus collisions in comparison withheavy-ion collisions due to annihilation reactions. Searching for the cold quark-gluon plasma (QGP) with antiprotonbeamshas been considered as a hot topic both in experiments and in theretical calculations over the past severaldecades. Strangeness production and hypernucleus formation in antiproton-induced nuclear reactions are importancein exploring the hyperon (antihyperon)-nucleon (HN) potential and the antinucleon-nucleon interaction, whichhave been hot topics in the forthcoming experiments at PANDA in Germany.

  12. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  13. Control system for Fermilab's low temperature upgrade

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel's 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down

  14. Introduction to colliding beams at Fermilab

    International Nuclear Information System (INIS)

    Thompson, J.

    1994-10-01

    The Fermi National Accelerator Laboratory is currently the site of the world's highest center-of-mass energy proton-antiproton colliding beam accelerator, the Tevatron. The CDF and D OE detectors each envelop one of two luminous regions in the collider, and are thus wholly dependent on the accelerator for their success. The Tevatron's high operating energy, reliability, and record setting integrated luminosity have allowed both experiments to make world-class measurements and defined the region of physics that each can explore. The following sections are an overview of the highlights of the accelerator operation and are compiled from many sources. The major sources for each section are listed at the beginning of that section

  15. Annihilation of antiprotons stopped in liquid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Dalkarov, O.D.; Kerbikov, B.O.; Markushin, V.E.

    1976-01-01

    Detailed analysis is given of stopping antiproton annihilation in liquid hydrogen and deuterium. Connection between capture schedule and properties of bound states in nucleon-antinucleon system is established. The theoretical predictions are compared with experimental data which appeared in 1971-75

  16. Outer casing of the AA antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long (actually a row of 11 rods, each 1 cm long) and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing made of stainless steel. The casing had fins for forced-air cooling.

  17. Galactic diffusion and the antiproton signal of supersymmetric dark matter

    CERN Document Server

    Chardonnet, P; Salati, Pierre; Taillet, R

    1996-01-01

    The leaky box model is now ruled out by measurements of a cosmic ray gradient throughout the galactic disk. It needs to be replaced by a more refined treatment which takes into account the diffusion of cosmic rays in the magnetic fields of the Galaxy. We have estimated the flux of antiprotons on the Earth in the framework of a two-zone diffusion model. Those species are created by the spallation reactions of high-energy nuclei with the interstellar gas. Another potential source of antiprotons is the annihilation of supersymmetric particles in the dark halo that surrounds our Galaxy. In this letter, we investigate both processes. Special emphasis is given to the antiproton signature of supersymmetric dark matter. The corresponding signal exceeds the conventional spallation flux below 300 MeV, a domain that will be thoroughly explored by the Antimatter Spectrometer experiment. The propagation of the antiprotons produced in the remote regions of the halo back to the Earth plays a crucial role. Depending on the e...

  18. Enhancing trappable antiproton populations through deceleration and frictional cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zolotorev, M.; Sessler, A.; Penn, G.; Wurtele, J. S.; Charman, A. E.

    2012-03-01

    CERN currently delivers antiprotons for trapping experiments with the Antiproton Decelerator (AD), which slows the antiprotons down to about 5 MeV.This energy is currently too high for direct trapping, and thick foils are used to slow down the beam to energies which can be trapped.To allow further deceleration to $\\sim 100 \\;\\mbox{keV}$, CERN is initiating the construction of ELENA,consisting of a ring which will combine RF deceleration and electron cooling capabilities. We describe a simple frictionalcooling scheme that can serve to provide significantly improved trapping efficiency, either directly from the AD or first usinga standard deceleration mechanism (induction linac or RFQ). This scheme could be implemented in a short time.The device itself is short in length, uses accessible voltages, and at reasonable cost could serve in the interim beforeELENA becomes operational, or possibly in lieu of ELENA for some experiments. Simple theory and simulations provide a preliminary assessment of theconcept and its strengths and limitations, and highlight important areas for experimental studies, in particular to pin down the level of multiplescattering for low-energy antiprotons. We show that the frictional cooling scheme can provide a similar energy spectrum to that of ELENA,but with higher transverse emittances.

  19. Hyperfine Structure Measurements of Antiprotonic $^3$He using Microwave Spectroscopy

    CERN Document Server

    Friedreich, Susanne

    The goal of this project was to measure the hyperfine structure of $\\overline{\\text{p}}^3$He$^+$ using the technique of laser-microwave-laser spectroscopy. Antiprotonic helium ($\\overline{\\text{p}}$He$^+$) is a neutral exotic atom, consisting of a helium nucleus, an electron and an antiproton. The interactions of the angular momenta of its constituents cause a hyperfine splitting ({HFS}) within the energy states of this new atom. The 3\\% of formed antiprotonic helium atoms which remain in a metastable, radiative decay-dominated state have a lifetime of about 1-3~$\\mu$s. This time window is used to do spectroscopic studies. The hyperfine structure of $\\overline{\\text{p}}^4$He$^+$ was already extensively investigated before. From these measurements the spin magnetic moment of the antiproton can be determined. A comparison of the result to the proton magnetic moment provides a test of {CPT} invariance. Due to its higher complexity the new exotic three-body system of $\\overline{\\text{p}}^3$He$^+$ is a cross-check...

  20. Calculated LET Spectrum from Antiproton Beams Stopping in Water

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael

    2009-01-01

    significantly differ from unity, which seems to warrant closer inspection of the radiobiology in this region. Monte Carlo simulations using FLUKA were performed for calculating the entire particle spectrum of a beam of 126 MeV antiprotons hitting a water phantom. In the plateau region of the simulated...

  1. Relative Biological Effectiveness and Peripheral Damage of Antiproton Annihilation

    CERN Multimedia

    Kavanagh, J N; Kaiser, F; Tegami, S; Schettino, G; Kovacevic, S; Hajdukovic, D; Knudsen, H; Currell, F J; Toelli, H T; Doser, M; Holzscheiter, M; Herrmann, R; Timson, D J; Alsner, J; Landua, R; Comor, J; Moller, S P; Beyer, G

    2002-01-01

    The use of ions to deliver radiation to a body for therapeutic purposes has the potential to be significant improvement over the use of low linear energy transfer (LET) radiation because of the improved energy deposition profile and the enhanced biological effects of ions relative to photons. Proton therapy centers exist and are being used to treat patients. In addition, the initial use of heavy ions such as carbon is promising to the point that new treatment facilities are planned. Just as with protons or heavy ions, antiprotons can be used to deliver radiation to the body in a controlled way; however antiprotons will exhibit additional energy deposition due to annihilation of the antiprotons within the body. The slowing down of antiprotons in matter is similar to that of protons except at the very end of the range beyond the Bragg peak. Gray and Kalogeropoulos estimated the additional energy deposited by heavy nuclear fragments within a few millimeters of the annihilation vertex to be approximately 30 MeV (...

  2. Constraints on particle dark matter from cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Fornengo, N.; Vittino, A.; Maccione, L.

    2014-01-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints

  3. Siberian snakes for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Anferov, V.A.; Baiod, R.; Courant, E.D.

    1993-01-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near ±45 degrees are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field

  4. Studies of neutron dissociation at Fermilab energies

    International Nuclear Information System (INIS)

    Ferbel, T.

    1975-01-01

    The latest results obtained in a continuing investigation of neutron dissociation in (pπ - ) systems in neutron--nucleus collisions between 50 and 300 GeV/c are summarized. The nuclear coherent dissociation data are discussed first; then new measurements of total cross sections of neutrons on nuclei in the Fermilab momentum range are presented; finally, neutron dissociation using a hydrogen target is considered, and the hydrogen data are compared with expectations from simple Deck models. A substantial correlation was observed between the mass and the t of the system produced. The spin structure of the pπ - amplitudes at low mass was described surprisingly well by the simple Deck mechanism. The t-channel helicity amplitudes contained comparable contributions from flip and nonflip terms, and the states produced were not restricted to those expected on the basis of the Morrison rule. (19 figures, 2 tables) (U.S.)

  5. Operational experience with the Fermilab Linac

    International Nuclear Information System (INIS)

    Allen, L.J.; Lennox, A.J.; Schmidt, C.W.

    1992-01-01

    The Fermilab 200-MeV Linac has been in operation for nearly 22 years as a proton injector to the Booster synchrotron. It presently accelerates H - ions to 200 MeV for charge-exchange injection into the Booster and to 66 MeV for the production of neutrons at the Neutron Therapy Facility (NTF). The beam intensity is typically 35 mA with pulse widths of 30 μsec for the Booster for high energy physics and 57 μsec for NTF at a maximum of 15 pulses per sec. During a typical physics run of nine to twelve months, beam is available for greater than 98% of the scheduled time. The Linac history, operation, tuning, stability and reliability will be discussed. (Author) 15 refs., 2 tabs

  6. The SeaQuest Spectrometer at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Aidala, C.A.; et al.

    2017-06-29

    The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution tracking device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.

  7. The Fermilab computing farms in 2000

    International Nuclear Information System (INIS)

    Troy Dawson

    2001-01-01

    The year 2000 was a year of evolutionary change for the Fermilab computer farms. Additional compute capacity was acquired by the addition of PCs for the CDF, D0 and CMS farms. This was done in preparation for Run 2 production and for CMS Monte Carlo production. Additional I/O capacity was added for all the farms. This continues the trend to standardize the I/O systems on the SGI O2x00 architecture. Strong authentication was installed on the CDF and D0 farms. The farms continue to provide large CPU resources for experiments and those users whose calculations benefit from large CPU/low IO resources. The user community will change in 2001 now that the 1999 fixed-target experiments have almost finished processing and Run 2, SDSS, miniBooNE, MINOS, BTeV, and other future experiments and projects will be the major users in the future

  8. Some recent experimental results from Fermilab

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1994-02-01

    The aim of this talk was to give an impression of the tremendous range and depth of the data being produced by experiments at Fermilab, both fixed target and collider. Despite the generous allotment of time it was not possible to do more than scratch the surface of some subjects. The collider experiments, using the measurements of the W mass and with top search and mass limits, are approaching the situation where a statement about the Higgs mass, or a sensitive test of the consistency of the standard model become a possibility. Subjects discussed were: (1) cross-sections, QCD measurements; (2) decay physics; (3) W/Z physics; (4) searches for new physics; and (5) search for top quark

  9. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  10. Numerically controlled oscillator for the Fermilab Booster

    International Nuclear Information System (INIS)

    Crisp, J.L.; Ducar, R.J.

    1989-01-01

    In order to improve the stability of the Fermilab Booster low level rf system, a numerically controlled oscillator system is being constructed. Although the system has not been implemented to date, the design is outlined in this paper. The heart of the new system consists of a numerically synthesized frequency generator manufactured by the Sciteq Company. The 3 GHz/sec rate and 30 to 53 MHz range of the Booster frequency program required the design of a CAMAC based, fast-cycling (1 MHz), 65K x 32 bit, digital function generator. A 1 MHz digital adder and 12 bit analog to digital converter will be used to correct small program errors by phase locking the oscillator to the beam. 6 refs., 1 fig

  11. A review of the Fermilab fixed-target program

    Energy Technology Data Exchange (ETDEWEB)

    Rameika, R. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1994-12-01

    All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which use the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.

  12. Fermilab's new management looks to land linear collider

    CERN Multimedia

    Feder, Toni

    2007-01-01

    "As of 1 January, the Universities Research Association (URA), which has managed Fermilab since the lab's inception 40 years ago, is sharing the responsibility with the University of Chicago." (1,5 page)

  13. The Fermilab ISDN Pilot Project: Experiences and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1995-12-31

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking.

  14. The Fermilab ISDN Pilot Project: Experiences and future plans

    International Nuclear Information System (INIS)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1995-01-01

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking

  15. The Fermilab ISDN pilot project: experiences and future plans

    International Nuclear Information System (INIS)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1996-01-01

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. each home was equipped with a basic rate ISDN (BRI) Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking. (author)

  16. Commissioning and First Results from the Fermilab Cryomodule Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Elvin; et al.

    2017-05-01

    A new test stand dedicated to SRF cryomodule testing, CMTS1, has been commissioned and is now in operation at Fermilab. The first device to be cooled down and powered in this facility is the prototype 1.3 GHz cryomodule assembled at Fermilab for LCLS-II. We describe the demonstrated capabilities of CMTS1, report on steps taken during commissioning, provide an overview of first test results, and survey future plans.

  17. 3D design activities at Fermilab-Opportunities for physics

    International Nuclear Information System (INIS)

    Yarema, Raymond; Deptuch, Grezgorz; Hoff, Jim; Shenai, Alpana; Trimpl, Marcel; Zimmerman, Tom; Demarteau, Marcel; Lipton, Ron; Christian, Dave

    2010-01-01

    Fermilab began exploring the technologies for vertically integrated circuits (also commonly known as 3D circuits) in 2006. These technologies include through silicon vias (TSV), circuit thinning, and bonding techniques to replace conventional bump bonds. Since then, the interest within the High Energy Physics community has grown considerably. This paper will present an overview of the activities at Fermilab over the last 3 years which have helped spark this interest.

  18. 3D design activities at Fermilab-Opportunities for physics

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Raymond, E-mail: yarema@fnal.go [Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); Deptuch, Grezgorz; Hoff, Jim; Shenai, Alpana; Trimpl, Marcel; Zimmerman, Tom; Demarteau, Marcel; Lipton, Ron; Christian, Dave [Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    2010-05-21

    Fermilab began exploring the technologies for vertically integrated circuits (also commonly known as 3D circuits) in 2006. These technologies include through silicon vias (TSV), circuit thinning, and bonding techniques to replace conventional bump bonds. Since then, the interest within the High Energy Physics community has grown considerably. This paper will present an overview of the activities at Fermilab over the last 3 years which have helped spark this interest.

  19. Integrated FASTBUS, VME and CAMAC diagnostic software at Fermilab

    International Nuclear Information System (INIS)

    Anderson, J.; Forster, R.; Franzen, J.; Wilcer, N.

    1992-10-01

    A fully integrated system for the diagnosis and repair of data acquisition hardware in FASTBUS, VME and CAMAC is described. A short cost/benefit analysis of using a distributed network of personal computers for diagnosis is presented. The SPUDS (Single Platform Uniting Diagnostic Software) software package developed at Fermilab by the authors is introduced. Examples of how SPUDS is currently used in the Fermilab equipment repair facility, as an evaluation tool and for field diagnostics are given

  20. Dark matter for excess of AMS-02 positrons and antiprotons

    Directory of Open Access Journals (Sweden)

    Chuan-Hung Chen

    2015-07-01

    Full Text Available We propose a dark matter explanation to simultaneously account for the excess of antiproton-to-proton and positron power spectra observed in the AMS-02 experiment while having the right dark matter relic abundance and satisfying the current direct search bounds. We extend the Higgs triplet model with a hidden gauge symmetry of SU(2X that is broken to Z3 by a quadruplet scalar field, rendering the associated gauge bosons stable weakly-interacting massive particle dark matter candidates. By coupling the complex Higgs triplet and the SU(2X quadruplet, the dark matter candidates can annihilate into triplet Higgs bosons each of which in turn decays into lepton or gauge boson final states. Such a mechanism gives rise to correct excess of positrons and antiprotons with an appropriate choice of the triplet vacuum expectation value. Besides, the model provides a link between neutrino mass and dark matter phenomenology.

  1. Pionic annihilation of antiprotons stopped on sup 3 He

    Energy Technology Data Exchange (ETDEWEB)

    Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Venaglioni, A. (Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica Istituto Nazionale di Fisica Nucleare, Pavia (Italy)); Bossolasco, S.; Bussa, M.P.; Busso, L.; Fava, L.; Ferrero, L.; Maggiora, A.; Panzieri, D.; Piragino, G.; Piragino, R.; Tosello, F. (Turin Univ. (Italy). Ist. di Fisica Generale Istituto Nazionale di Fisica Nucleare, Turin (Italy)); Batusov, Yu.A.; Falomkin, I.V.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I. (Joint Inst. for Nuclear Research, Dubna (USSR)); Guaraldo, C. (Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati); Lodi Rizzini, E. (Brescia Univ. (Italy). Dipt. di Automazione Industriale Istituto Nazionale di Fisica Nucleare, Turin (Italy)); Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M. (Bergen Univ. (Norway). Dept. of Physics); Breivik, F.O.; Jacobsen, T.; Soerensen, S.O. (Oslo Univ. (Norway). Physics Dept.); Balestra

    1990-11-26

    The pionic annihilation of antiprotons stopped on {sup 3}He nuclei in a self-shunted streamer chamber exposed to the antiproton beam of LEAR is studied. The data concern charged-particle multiplicity distributions, branching ratios for different final states, the probability of final-state interaction, {pi}{sup -}, {pi}{sup +}, p and d momentum spectra, like and unlike pion angular correlations, {pi} and other charged-particle angular correlations. The comparison of the {sup 3}He data with those obtained on {sup 1}H, {sup 2}H and {sup 4}He does not reveal relevant effects due to the increase of the nucleon number; the small differences can be seen as due to a weak final-state interaction. (orig.).

  2. Pionic annihilation of antiprotons stopped on 3He

    International Nuclear Information System (INIS)

    Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Venaglioni, A.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Fava, L.; Ferrero, L.; Maggiora, A.; Panzieri, D.; Piragino, G.; Piragino, R.; Tosello, F.; Batusov, Yu.A.; Falomkin, I.V.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I.; Guaraldo, C.; Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M.; Zenoni, A.

    1990-01-01

    The pionic annihilation of antiprotons stopped on 3 He nuclei in a self-shunted streamer chamber exposed to the antiproton beam of LEAR is studied. The data concern charged-particle multiplicity distributions, branching ratios for different final states, the probability of final-state interaction, π - , π + , p and d momentum spectra, like and unlike pion angular correlations, π and other charged-particle angular correlations. The comparison of the 3 He data with those obtained on 1 H, 2 H and 4 He does not reveal relevant effects due to the increase of the nucleon number; the small differences can be seen as due to a weak final-state interaction. (orig.)

  3. Constraining heavy dark matter with cosmic-ray antiprotons

    Science.gov (United States)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael; Krämer, Michael

    2018-04-01

    Cosmic-ray observations provide a powerful probe of dark matter annihilation in the Galaxy. In this paper we derive constraints on heavy dark matter from the recent precise AMS-02 antiproton data. We consider all possible annihilation channels into pairs of standard model particles. Furthermore, we interpret our results in the context of minimal dark matter, including higgsino, wino and quintuplet dark matter. We compare the cosmic-ray antiproton limits to limits from γ-ray observations of dwarf spheroidal galaxies and to limits from γ-ray and γ-line observations towards the Galactic center. While the latter limits are highly dependent on the dark matter density distribution and only exclude a thermal wino for cuspy profiles, the cosmic-ray limits are more robust, strongly disfavoring the thermal wino dark matter scenario even for a conservative estimate of systematic uncertainties.

  4. Precocious scaling in antiproton-proton scattering at low energies

    International Nuclear Information System (INIS)

    Ion, D.B.; Petrascu, C.; Topor Pop, V.; Popa, V.

    1993-08-01

    The scaling of the diffraction peak in antiproton-proton scattering has been investigated from nera threshold up to 3 GeV/c laboratory momenta. It was shown that the scaling of the differential cross sections are evidentiated with a surprising accuracy not only at high energies, but also at very low ones (e.g. p LAB = 0.1 - 0.5 GeV/c), beyond the resonance and exotic resonance regions. This precocious scaling strongly suggests that the s-channel helicity conservation (SCHC) can be a peculiar property that should be tested in antiproton-proton interaction not only at high energies but also at low energy even below p LAB = 1 GeV/c. (author). 36 refs, 9 figs

  5. Testing quantum chromodynamics in anti-proton reactions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1987-10-01

    An experimental program with anti-protons at intermediate energy can serve as an important testing ground for QCD. Detailed predictions for exclusive cross sections at large momentum transfer based on perturbative QCD and the QCD sum rule form of the proton distribution amplitude are available for anti p p → γγ for both real and virtual photons. Meson-pair and lepton-pair final states also give sensitive tests of the theory. The production of charmed hadrons in exclusive anti p p channels may have a non-negligible cross section. Anti-proton interactions in a nucleus, particularly J/psi production, can play an important role in clarifying fundamental QCD issues, such as color transparency, critical length phenomena, and the validity of the reduced nuclear amplitude phenomenology

  6. Antiprotons from dark matter annihilation in the Galaxy. Astrophysical uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, Carmelo [Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Cholis, Ilias; Ullio, Piero [SISSA, Sezione di Trieste (Italy); INFN, Sezione di Trieste (Italy); Grasso, Dario [INFN, Sezione di Pisa (Italy); Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-08-15

    The latest years have seen steady progresses in WIMP dark matter (DM) searches, with hints of possible signals suggested by both direct and indirect detection experiments. Antiprotons can play a key role validating those interpretations since they are copiously produced by WIMP annihilations in the Galactic halo, and the secondary antiproton background produced by Cosmic Ray (CR) interactions is predicted with fair accuracy and matches the observed spectrum very well. Using the publicly available numerical DRAGON code, we reconsider antiprotons as a tool to constrain DM models discussing its power and limitations. We provide updated constraints on a wide class of annihilating DM models by comparing our predictions against the most up-to-date anti p measurements, taking also into account the latest spectral information on the p, He and other CR nuclei fluxes. Doing that, we probe carefully the uncertainties associated to both secondary and DM originated antiprotons, by using a variety of distinctively different assumptions for the propagation of CRs and for the DM distribution in the Galaxy. We find that the impact of the astrophysical uncertainties on constraining the DM properties can be much stronger, up to a factor of {proportional_to}50, than the one due to uncertainties on the DM distribution ({proportional_to}2-6). Remarkably, even reducing the uncertainties on the propagation parameters derived by local observables, non-local effects can still change DM model constraints even by 50%. Nevertheless, current anti p data place tight constraints on DM models, excluding some of those suggested in connection with indirect and direct searches. Finally we discuss the power of upcoming CR spectral data from the AMS-02 observatory to drastically reduce the uncertainties discussed in this paper and estimate the expected sensitivity of this instrument to some sets of DM models. (orig.)

  7. Antiproton-helium annihilation around 45 MeV/c

    International Nuclear Information System (INIS)

    Balestra, F.; Bassolasco, S.; Bussa, M.P.; Busso, L.; Ferrero, L.; Panzieri, D.; Piragino, G.; Tosello, F.; Barbieri, R.; Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Zenoni, A.; Batusov, Yu.A.; Falomkin, I.V.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I.; Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1989-01-01

    The anti p 4 He annihilation cross section averaged over the interval 40-50 MeV/c has been measured using a streamer chamber in a magnetic field. The measured value is 1342±250 mb. It agrees with a behaviour like 1/p of the annihilation cross section. Our result has been obtained at the lowest momentum achieved till now in measurements of antiproton annihilation in flight. (orig.)

  8. Antiproton-helium annihilation around 45 MeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Balestra, F.; Bassolasco, S.; Bussa, M.P.; Busso, L.; Ferrero, L.; Panzieri, D.; Piragino, G.; Tosello, F. (Turin Univ. (Italy). Ist. di Fisica Generale; Istituto Nazionale di Fisica Nucleare, Turin (Italy)); Barbieri, R.; Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Zenoni, A. (Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; Istituto Nazionale di Fisica Nucleare, Pavia (Italy)); Batusov, Yu.A.; Falomkin, I.V.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I. (Joint Inst. for Nuclear Research, Dubna (USSR)); Breivik, F.O.; Jacobsen, T.; Soerensen, S.O. (Oslo Univ. (Norway). Fysisk Inst.); Guaraldo, C.; Maggiora, A. (Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati); Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M. (Bergen Univ. (Norway). Dept. of Physics); Lodi Rizzini, E. (Brescia Univ. (Italy). Dipt. di Automazione Industriale); Masala, M. (Brescia Univ. (Italy). Dipt. di Automazione Ind

    1989-10-26

    The anti p{sup 4}He annihilation cross section averaged over the interval 40-50 MeV/c has been measured using a streamer chamber in a magnetic field. The measured value is 1342+-250 mb. It agrees with a behaviour like 1/p of the annihilation cross section. Our result has been obtained at the lowest momentum achieved till now in measurements of antiproton annihilation in flight. (orig.).

  9. Evidence of isospin effects in antiproton-nucleus annihilation

    International Nuclear Information System (INIS)

    Balestra, F.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Ferrero, L.; Panzieri, D.; Piragino, G.; Tosello, F.; Barbieri, R.; Bendiscioli, G.; Rotondi, A.; Salvini, P.; Venaglioni, A.; Zenoni, A.; Batusov, Yu.A.; Falomkin, I.V.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I.; Guaraldo, C.; Maggiora, A.; Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M.; Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1989-01-01

    Antiproton- 3 He annihilation events at rest have been detected using a self-shunted streamer chamber. The ratio of the cross section for annihilation on neutrons and on protons has been measured (0.467±0.035). It is compared with other results from annihilation on free nucleons, deuterium, 3 He and 4 He. The low value of the ratio seems to indicate a strong isospin dependence of the antinucleon-nucleon P-wave amplitude. (orig.)

  10. Superconducting beam charge monitors for antiproton storage rings

    OpenAIRE

    Tympel, Volker; Neubert, Ralf; Seidel, Paul; Geithner, René; Golm, Jessica; Stöhlker, Thomas; Kurian, Febian; Sieber, Thomas; Schwickert, Marcus; Fernandes, Miguel

    2017-01-01

    A Cryogenic Current Comparator (CCC) is a new type of instruments for monitoring charged beams like ions or antiprotons. Using superconducting effects is it possible to create a nondestructive, contactless and easy to calibrate beam measurement system with a high current resolution in amplitude and time. The Meissner effect enables an effective magnetic shielding of the system. The screening current enables creation of DC-transformers and therefore a DC-current measurement system. The combina...

  11. Polarization of antiprotons by the Stern-Gerlach effect

    International Nuclear Information System (INIS)

    Kewisch, J.; Rossmanith, R.; Onel, Y.; Penzo, A.; Kreiser, H.

    1988-01-01

    A method to obtain polarized antiprotons in the low energy storage ring LEAR via spatial separation of opposite spin states is described in earlier papers (Y. Onel et al., 1986). We will discuss here in more detail a) the integration of the special magnets (spin splitter) into the LEAR optics and b) some first tracking results of particle and spin motion in these optics. (orig./HSI)

  12. Proton-antiproton interactions (experimental status of baryonium states)

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Y.

    1980-07-01

    Many experiments have been performed in the last few years to search for the existence of baryonium (baryon-antibaryon bound) states. The current status in this direction is reviewed. Prominent resonances such as the S-meson resonance, broad resonances, narrow resonances and states such as the strange baryonium states, exotic states, antiproton-proton states below threshold, six-quark states are explained. A summary of the experimental data with illustrations is presented in a table.

  13. Prospects for testing Lorentz and CPT symmetry with antiprotons

    Science.gov (United States)

    Vargas, Arnaldo J.

    2018-03-01

    A brief overview of the prospects of testing Lorentz and CPT symmetry with antimatter experiments is presented. The models discussed are applicable to atomic spectroscopy experiments, Penning-trap experiments and gravitational tests. Comments about the sensitivity of the most recent antimatter experiments to the models reviewed here are included. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  14. Prospects for testing Lorentz and CPT symmetry with antiprotons.

    Science.gov (United States)

    Vargas, Arnaldo J

    2018-03-28

    A brief overview of the prospects of testing Lorentz and CPT symmetry with antimatter experiments is presented. The models discussed are applicable to atomic spectroscopy experiments, Penning-trap experiments and gravitational tests. Comments about the sensitivity of the most recent antimatter experiments to the models reviewed here are included.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).

  15. Bubble detector measurements of a mixed radiation field from antiproton annihilation

    International Nuclear Information System (INIS)

    Bassler, Niels; Knudsen, Helge; Moller, Soren Pape; Petersen, Jorgen B.; Rahbek, Dennis; Uggerhoj, Ulrik I.

    2006-01-01

    In the light of recent progress in the study of the biological potential of antiproton tumour treatment it is important to be able to characterize the neutron intensity arising from antiproton annihilation using simple, compact and reliable detectors. The intensity of fast neutrons from antiproton annihilation on polystyrene has been measured with bubble detectors and a multiplicity has been derived as well as an estimated neutron equivalent dose. Additionally the sensitivity of bubble detectors towards protons was measured

  16. Simulation of an antiprotons beam applied to the radiotherapy

    International Nuclear Information System (INIS)

    Prata, Leonardo de Almeida

    2006-07-01

    Results for the interaction of a antiproton beam with constituent nuclei of the organic matter are presented. This method regards of the application of an computational algorithm to determine quantitatively the differential cross sections for the scattered particles, starting from the interaction of these antiprotons with the nuclei, what will allow in the future to draw the isodose curve for antiproton therapy, once these beams are expected to be used in cancer treatment soon. The calculation will be done through the application of the concepts of the method of intranuclear cascade, providing yield and differential cross sections of the scattered particles, present in the software MCMC. Th algorithm was developed based on Monte Carlo's method, already taking into account a validate code. The following physical quantities are presented: the yield of secondary particles, their spectral and angular distributions for these interactions. For the energy range taken into account the more important emitted particles are protons, neutrons and pions. Results shown that emitted secondary particles can modify the isodose curves, because they present high yield and energy for transverse directions. (author)

  17. Evaporative cooling of antiprotons and efforts to trap antihydrogen

    CERN Document Server

    Andresen, Gorm Bruun

    Evaporative cooling has proven to be an invaluable technique in atomic physics, allowing for the study of effects such as Bose-Einstein condensation. One main topic of this thesis is the first application of evaporative cooling to cold non-neutral plasmas stored in an ion trap. We (the ALPHA collaboration) have achieved cooling of a cloud of antiprotons to a temperature as low as 9 K, two orders of magnitude lowerthan ever directly measured previously. The measurements are well-described by appropriate rate equations for the temperature and number of particles. The technique has direct application to the ongoing attempts to produce trapped samples of antihydrogen. In these experiments the maximum trap depths are ex tremely shallow (~0.6 K for ground state atoms), and careful control of the trapped antiprotons and positrons used to form the (anti)atoms is essential to succes. Since 2006 powerful tools to diagnose and manipulate the antiproton and positron plasmas in the ALPHA apparatus have been developed and ...

  18. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, William Alan, E-mail: bertsche@cern.ch [Swansea University, Department of Physics (United Kingdom); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Carpenter, P. T. [Auburn University, Department of Physics (United States); Butler, E. [CERN, Physics Department (Switzerland); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. F. [University of California, Department of Physics (United States); Charlton, M.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T. [University of Calgary, Department of Physics and Astronomy (Canada); Fujiwara, M. C.; Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayano, R. S. [University of Tokyo, Department of Physics (Japan); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale ({approx} 50 {mu}eV), and the energy scales associated with plasma confinement and space charge ({approx}1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  19. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    International Nuclear Information System (INIS)

    Bertsche, William Alan; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bowe, P. D.; Carpenter, P. T.; Butler, E.; Cesar, C. L.; Chapman, S. F.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.

    2012-01-01

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (∼ 50 μeV), and the energy scales associated with plasma confinement and space charge (∼1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  20. Measurement of cosmic ray antiprotons from 3.7 to 19 GeV

    International Nuclear Information System (INIS)

    Hof, M.; Pfeifer, C.; Menn, W.; Simon, M.; Golden, R.L.; Stochaj, S.J.; Basini, G.; Ricci, M.

    1996-02-01

    The antiproton to proton ratio in the cosmic rays has been measured in the energy range from 3.7 to 19 GeV. This measurement was carried out using a balloon-borne superconducting magnetic spectrometer along with a gas Cherenkov counter, an imaging calorimeter and a time of flight scintillator system. The measured antiproton to proton ratio was determined to be 1.24 (+0.68, -0.51)X 10 -4 . The present result along with other recent observations show that the observed abundances of antiprotons are consistent with models, in which antiprotons are produced as secondaries during the propagation of cosmic rays in the galaxy

  1. Time-dependent density functional calculation of the energy loss of antiprotons colliding with metallic nanoshells

    International Nuclear Information System (INIS)

    Quijada, M.; Borisov, A.G.; Muino, R.D.

    2008-01-01

    Time-dependent density functional theory is used to study the interaction between antiprotons and metallic nanoshells. The ground state electronic properties of the nanoshell are obtained in the jellium approximation. The energy lost by the antiproton during the collision is calculated and compared to that suffered by antiprotons traveling in metal clusters. The resulting energy loss per unit path length of material in thin nanoshells is larger than the corresponding quantity for clusters. It is shown that the collision process can be interpreted as the antiproton crossing of two nearly bi-dimensional independent metallic systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Search for antiproton-nucleus states with (anti p,p) reactions

    International Nuclear Information System (INIS)

    Garreta, D.; Birien, P.; Bruge, G.; Chaumeaux, A.; Drake, D.M.; Janouin, S.; Legrand, D.; Lemaire, M.C.; Mayer, B.; Pain, J.; Peng, J.C.; Berrada, M.; Bocquet, J.P.; Monnand, E.; Mougey, J.; Perrin, P.

    1985-01-01

    We have studied (anti p,p) reactions on 12 C, 63 Cu, and 209 Bi to search for possible nuclear states formed by antiprotons and nuclei. The experiments used the 180 MeV antiproton beam from LEAR, and the high-resolution magnetic spectrometer, SPES II, to detect the outgoing protons. No evidence of antiproton-nucleus states was found. The gross features of the proton spectra are reasonably well described by intranuclear cascade model calculations, which consider proton emission following antiproton annihilations in the target nucleus. (orig.)

  3. A novel antiproton radial diagnostic based on octupole induced ballistic loss

    CERN Document Server

    Andresen, G.B.; Bowe, P.D.; Bray, C.C.; Butler, E.; Cesar, C.L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M.C.; Funakoshi, R.; Gill, D.R.; Hangst, J.S.; Hardy, W.N.; Hayano, R.S.; Hayden, M.E.; Humphries, A.J.; Hydomako, R.; Jenkins, M.J.; Jorgensen, L.V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R.D.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D.M.; Storey, J.W.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.; Yamazaki, Y.

    2008-01-01

    We report results from a novel diagnostic that probes the outer radial profile of trapped antiproton clouds. The diagnostic allows us to determine the profile by monitoring the time-history of antiproton losses that occur as an octupole field in the antiproton confinement region is increased. We show several examples of how this diagnostic helps us to understand the radial dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better understanding of these dynamics may aid current attempts to trap antihydrogen atoms.

  4. A novel antiproton radial diagnostic based on octupole induced ballistic loss

    International Nuclear Information System (INIS)

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.

    2008-01-01

    We report results from a novel diagnostic that probes the outer radial profile of trapped antiproton clouds. The diagnostic allows us to determine the profile by monitoring the time history of antiproton losses that occur as an octupole field in the antiproton confinement region is increased. We show several examples of how this diagnostic helps us to understand the radial dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better understanding of these dynamics may aid current attempts to trap antihydrogen atoms

  5. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    Science.gov (United States)

    Hayano, Ryugo S.

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  6. Sonic Helium Detectors in the Fermilab Tevatron

    Science.gov (United States)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  7. Sonic helium detectors in the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  8. Tests of cold helium compressors at Fermilab

    International Nuclear Information System (INIS)

    Peterson, T.J.; Fuerst, J.D.

    1987-10-01

    Fermilab has tested two cold helium compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Operating conditions required to obtain an overall Tevatron energy upgrade from 900 to 1000 GeV are (for each of 24 machines): 52 g/s mass flow rate, 0.7 atm inlet pressure, 1.4 atm exhaust pressure. Acceptable efficiency is in the 60% range. Both Creare, Inc., and Cryogenic Consultants, Inc. (CCI), have supplied units for evaluation. The Creare machine is a high speed centrifugal pump/compressor which yielded 60% adiabatic efficiency (including an approximately 20 watt heat leak) with a 1.0 atm inlet pressure and 55 g/s flow rate. Certain mechanical difficulties were present, chiefly the device's inability to withstand two-phase flow. CCI supplied a reciprocating unit which, after initial testing and modification, achieved 59% efficiency with an approximate 35 watt heat leak at a 0.7 atm inlet pressure and 48 g/s flow rate. Although the device lacks the smooth, quiet operating characteristics of a turbomachine, it has endured mechanically throughout testing and is entirely insensitive to two-phase flow

  9. Efficiency of the Fermilab Electron Cooler's Collector

    CERN Document Server

    Prost, L R

    2005-01-01

    The newly installed high-energy Recycler Electron Cooling system (REC) at Fermilab will work at an electron energy of 4.34 MeV and a DC beam current of 0.5 A in an energy recovery scheme. For reliable operation of the system, the relative beam current loss must be maintained to levels < 3.e-5. Experiments have shown that the loss is determined by the performance of the electron beam collector, which must retain secondary electrons generated by the primary beam hitting its walls. As a part of the Electron cooling project, the efficiency of the collector for the REC was optimized, both with dedicated test bench experiments and on two versions of the cooler prototype. We find that to achieve the required relative current loss, an axially-symmetric collector must be immersed in a transverse magnetic field with certain strength and gradient prescriptions. Collector efficiencies in various magnetic field configurations, including without a transverse field on the collector, are presented and discussed

  10. Compensation of dogleg effect in Fermilab Booster

    CERN Document Server

    Xiao Biao Huang

    2003-01-01

    The edge focusing of dogleg magnets in Fermilab Booster has been causing severe distortion to the horizontal linear optics. The doglegs are vertical rectangular bends, therefore the vertical edge focusing is canceled by body focusing and the overall effect is focusing in the horizontal plane. The maximum horizontal beta function is changed from 7m to 46.9m and maximum dispersion from 3.19m to 6.14m. Beam size increases accordingly. This is believed to be one of the major reasons of beam loss. In this technote we demonstrate that this effect can be effectively corrected with Booster's quadrupole correctors in short straight sections (QS). There are 24 QS correctors which can alter horizontal linear optics with negligible perturbation to the vertical plane. The currents of correctors are determined by harmonic compensation, i.e., cancellation of dogleg's harmonics that are responsible for the distortion with that of QS correctors. By considering a few leading harmonics, the ideal lattice can be partly restored....

  11. Momentum Cogging at the Fermilab Booster

    International Nuclear Information System (INIS)

    Seiya, K.; Drennan, C.C.; Pellico, W.; Triplett, A.K.; Waller, A.M.

    2012-01-01

    The Fermilab Booster has an upgrade plan called the Proton Improvement Plan (PIP). The flux throughput goal is 2E17 protons/hour which, is almost double the present flux, 1.1E17 protons/hour. The beam loss in the machine is going to be an issue. The Booster accelerates beam from 400 MeV to 8 GeV and extracts to the Main Injector (MI). The current cogging process synchronizes the extraction kicker gap to the MI by changing radial position of the beam during the cycle. The gap creation occurs at about 700 MeV, which is about 6 ms into the cycle. The cycle-to-cycle variations of the Booster are larger at lower energy. However, changing the radial position at low energy for cogging is limited because of aperture. Momentum cogging is able to move the gap creation to an earlier time by using dipole correctors and radial position feedback, and is able to control the revolution frequency and radial position at the same time. The new cogging is expected to reduce beam loss and not be limited by aperture. The progress of the momentum cogging system development is going to be discussed in this paper.

  12. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  13. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  14. Simulation of an antiprotons beam applied to the radiotherapy; Simulacao de um feixe de antiprotons aplicado a radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Leonardo de Almeida

    2006-07-15

    Results for the interaction of a antiproton beam with constituent nuclei of the organic matter are presented. This method regards of the application of an computational algorithm to determine quantitatively the differential cross sections for the scattered particles, starting from the interaction of these antiprotons with the nuclei, what will allow in the future to draw the isodose curve for antiproton therapy, once these beams are expected to be used in cancer treatment soon. The calculation will be done through the application of the concepts of the method of intranuclear cascade, providing yield and differential cross sections of the scattered particles, present in the software MCMC. Th algorithm was developed based on Monte Carlo's method, already taking into account a validate code. The following physical quantities are presented: the yield of secondary particles, their spectral and angular distributions for these interactions. For the energy range taken into account the more important emitted particles are protons, neutrons and pions. Results shown that emitted secondary particles can modify the isodose curves, because they present high yield and energy for transverse directions. (author)

  15. Simulation of an antiprotons beam applied to the radiotherapy; Simulacao de um feixe de antiprotons aplicado a radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Leonardo de Almeida

    2006-07-15

    Results for the interaction of a antiproton beam with constituent nuclei of the organic matter are presented. This method regards of the application of an computational algorithm to determine quantitatively the differential cross sections for the scattered particles, starting from the interaction of these antiprotons with the nuclei, what will allow in the future to draw the isodose curve for antiproton therapy, once these beams are expected to be used in cancer treatment soon. The calculation will be done through the application of the concepts of the method of intranuclear cascade, providing yield and differential cross sections of the scattered particles, present in the software MCMC. Th algorithm was developed based on Monte Carlo's method, already taking into account a validate code. The following physical quantities are presented: the yield of secondary particles, their spectral and angular distributions for these interactions. For the energy range taken into account the more important emitted particles are protons, neutrons and pions. Results shown that emitted secondary particles can modify the isodose curves, because they present high yield and energy for transverse directions. (author)

  16. LEAP: A balloon-borne search for low-energy cosmic ray antiprotons

    Science.gov (United States)

    Moats, Anne Rosalie Myers

    The LEAP (Low Energy Antiproton) experiment is a search for cosmic ray antiprotons in the 120 MeV to 1.2 GeV kinetic energy range. The motivation for this project was the result announced by Buffington et al. (1981) that indicated an anomalously high antiproton flux below 300 MeV; this result has compelled theorists to propose sources of primary antiprotons above the small secondary antiproton flux produced by high energy cosmic ray collisions with nuclei in the interstellar medium. LEAP consisted of the NMSU magnet spectrometer, a time-of-flight system designed at NASA-Goddard, two scintillation detectors, and a Cherenkov counter. Analysis of flight data performed by the high energy astrophysics group at Goddard Space Flight Center revealed no antiproton candidates found in the 120 MeV to 360 MeV range; 3 possible antiproton candidate events were found in the 500 MeV to 1.2 GeV range in an analysis done here at the University of Arizona. However, since it will be necessary to sharpen the calibration on all of the LEAP systems in order to positively identify these events as antiprotons, only an upper limit has been determined at present. Thus, combining the analyses performed at the University of Arizona and NASA-Goddard, 90 percent confidence upper limits of 3.5 x 10-5 in the 120 MeV to 360 MeV range and 2.3 x 10-4 in the 500 MeV to 1.2 GeV range for the antiproton/proton ratio is indicated by the LEAP results. LEAP disagrees sharply with the results of the Buffington group, indicating a low antiproton flux at these energies. Thus, a purely secondary antiproton flux may be adequate at low energies.

  17. Reuse Recycler: High Intensity Proton Stacking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermilab

    2016-07-17

    After a successful career as an antiproton storage and cooling ring, Recycler has been converted to a high intensity proton stacker for the Main Injector. We discuss the commissioning and operation of the Recycler in this new role, and the progress towards the 700 kW design goal.

  18. View of the CERN Antiproton Decelerator (AD) and portrait of Prof. Tommy Eriksson, in charge of the AD machine.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory in Geneva. It started operation in 2000. It decelerates antiprotons before sending them to several experiments studying antimatter : ALPHA, ASACUSA, ATRAP and ACE.

  19. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-05-15

    Fermilab's Accelerator Complex has been recently upgraded, in order to increase the 120 GeV proton beam power on target from about 400 kW to over 700 kW for NOvA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53 MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at Vpeak ≲150 kV, but at slightly different frequencies (Δf=1260 Hz). Their installation was completed in September 2013. This article describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.

  20. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    International Nuclear Information System (INIS)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Paul M. Jr.

    2000-01-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue

  1. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons

  2. Bid for Fermilab an effort to keep U.S. a leader in particle physics

    CERN Multimedia

    Van, Jon

    2006-01-01

    During 20 years, the world's most powerful accelerator, the Tevatron, was in Fermilab, Batavia, Ill.; but next year, Fermilab will lose that title, as in CERN, a new machine will be brought into service. (1,5 pages)

  3. U. of C. to bid for Fermilab School hopes to bring new accelerator to site

    CERN Multimedia

    Van, Jon

    2006-01-01

    For more than 20 years, Fermilab in Batavia is home to the world's most powerful atomic particle accelerator, the Tevatron, but Fermilab will lose that title next year when a new machine in Switzerland and France fires up. (2 pages)

  4. Fermilab Recycler Ring: Technical design report. Revision 1.1

    International Nuclear Information System (INIS)

    Jackson, G.

    1996-07-01

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab's ongoing High Energy Physics program and the Main Injector construction project

  5. Review of programmable systems associated with Fermilab experiments

    International Nuclear Information System (INIS)

    Nash, T.

    1981-05-01

    The design and application of programmable systems for Fermilab experiments are reviewed. The high luminosity fixed target environment at Fermilab has been a very fertile ground for the development of sophisticated, powerful triggering systems. A few of these are integrated systems designed to be flexible and to have broad application. Many are dedicated triggers taking advantage of large scale integrated circuits to focus on the specific needs of one experiment. In addition, the data acquisition requirements of large detectors, existing and planned, are being met with programmable systems to process the data. Offline reconstruction of data places a very heavy load on large general purpose computers. This offers a potentially very fruitful area for new developments involving programmable dedicated systems. Some of the present thinking at Fermilab regarding offline reconstruction processors will be described

  6. A review of programmable systems associated with Fermilab experiments

    International Nuclear Information System (INIS)

    Nash, T.

    1981-01-01

    In this paper we review the design and application of programmable systems for Fermilab experiments. The high luminosity fixed target environment at Fermilab has been a very fertile ground for the development of sophisticated, powerful triggering systems. A few of these are integrated systems designed to be flexible and to have broad application. Many are dedicated triggers taking advantage of large scale integrated circuits to focus on the specific needs of one experiment. In addition, the data acquisition requirements of large detectors, existing and planned, are being met with programmable systems to process the data. Offline reconstruction of data places a very heavy load on large general purpose computers. This offers a potentially very fruitful area for new developments involving programmable dedicated systems. Some of the present thinking at Fermilab regarding offline reconstruction processors will be described. (orig.)

  7. QA [quality assurance] at Fermilab; the hermeneutics of NQA-1

    International Nuclear Information System (INIS)

    Bodnarczuk, M.

    1988-06-01

    This paper opens with a brief overview of the purpose of Fermilab and a historical synopsis of the development and current status of quality assurance (QA) at the Laboratory. The paper subsequently addresses some of the more important aspects of interpreting the national standard ANSI/ASME NQA-1 in pure research environments like Fermilab. Highlights of this discussion include, what is hermeneutics and why are hermeneutical considerations relevant for QA, a critical analysis of NQA-1 focussing on teleological aspects of the standard, a description of the hermeneutical approach to NQA-1 used at Fermilab which attempts to capture the true intents of the document without violating the deeply ingrained traditions of quality standards and peer review that have been foundational to the overall success of the paradigms of high-energy physics

  8. QA (quality assurance) at Fermilab; the hermeneutics of NQA-1

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1988-06-01

    This paper opens with a brief overview of the purpose of Fermilab and a historical synopsis of the development and current status of quality assurance (QA) at the Laboratory. The paper subsequently addresses some of the more important aspects of interpreting the national standard ANSI/ASME NQA-1 in pure research environments like Fermilab. Highlights of this discussion include, what is hermeneutics and why are hermeneutical considerations relevant for QA, a critical analysis of NQA-1 focussing on teleological aspects of the standard, a description of the hermeneutical approach to NQA-1 used at Fermilab which attempts to capture the true intents of the document without violating the deeply ingrained traditions of quality standards and peer review that have been foundational to the overall success of the paradigms of high-energy physics.

  9. Search for the top quark at the UA2 detector at the CERN proton-antiproton collider

    International Nuclear Information System (INIS)

    Moniez, M.

    1988-06-01

    The results of a search for the top quark, done in the UA2 experiment at CERN is presented in this thesis. The data from proton-antiproton collisions, at 546 and 630 GeV energy in the centre-of-mass system, representing a total integrated luminosity of 894 nb -1 accumulated by the UA2 detector, has been used. A signal coming from the semi-leptonic decay of the top quark (t decays to b + electron + neutrino) has been searched for in the event sample containing an identified electron associated with 0.1 or 2 jets. A detailed study of the experimental background coming from misidentified electrons has been made; furthermore, the standard sources of real electrons have been estimated using a simulation program. Taking into account these background evaluations, and using a top production Monte-Carlo, a statistical analysis of the events containing one electron and 2 jets allows us to discuss a lower limit on the top quark mass. An upper limit on top production through the process proton-antiproton goes to top-antitop is derived, as a function of the top mass, from our data. Extrapolating the background and production evaluations to UA2'indicates that this experiment should be sensitive to top masses below 70 GeV/c 2 [fr

  10. Compression of a mixed antiproton and electron non-neutral plasma to high densities

    Science.gov (United States)

    Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano

    2018-04-01

    We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.

  11. Jagiellonian University Drift Chamber Calibration and Track Reconstruction in the P349 Antiproton Polarization Experiment

    CERN Document Server

    Alfs, D; Moskal, P; Zieliński, M; Grzonka, D; Hauenstein, F; Kilian, K; Lersch, D; Ritman, J; Sefzick, T; Oelert, W; Diermaier, M; Widmann, E; Zmeskal, J; Wolke, M; Nadel-Turonski, P; Carmignotto, M; Horn, T; Mkrtchyan, H; Asaturyan, A; Mkrtchyan, A; Tadevosyan, V; Zhamkochyan, S; Malbrunot-Ettenauer, S; Eyrich, W; Zink, A

    2017-01-01

    The goal of the P349 experiment is to test whether the antiproton production process can be itself a source of antiproton polarization. In this article, we present the motivation and details of the performed measurement. We report on the status of the analysis focusing mainly on calibration of the drift chambers and 3d track reconstruction.

  12. The PS 200 catching trap: A new tool for ultra-low energy antiproton physics

    International Nuclear Information System (INIS)

    Holzscheiter, M.H.; Dyer, P.L.; King, N.S.P.; Lizon, D.C.; Morgan, G.L.; Schauer, M.M.; Schecker, J.A.; Hoibraten, S.; Lewis, R.A.; Otto, T.

    1994-01-01

    Approximately one million antiprotons have been trapped and electron cooled in the PS200 catching trap from a single fast extracted pulse from LEAR. The system is described in detail, different extraction schemes are discussed, and possible applications of this instrument to ultra-low energy atomic and nuclear physics with antiprotons are mentioned

  13. What can an antiproton and a nucleus learn from each other

    International Nuclear Information System (INIS)

    Garreta, D.

    1984-01-01

    This chapter attempts to show that the - p-nucleus interaction may provide very useful information, both about the elementary - NN interaction and about nuclear structure. Topics covered include simple features which make a low-energy antiproton an interesting probe of the nucleus; simple features which make a nucleus an interesting target for an antiproton; antiproton-nucleus elastic scattering; antiproton-nucleus inelastic scattering; proton knock-out reactions on nuclei; and annihilation of the antiprotons in nuclei. The aim of experiment PS184 at the Low-Energy Antiproton Ring (LEAR) is to provide accurate data with regard to the - p-nucleus interaction in the following areas: the angular distribution of antiprotons elastically scattered from 12 C, 40 Ca, and 208 Pb; the excitation energy spectra and some angular distributions of antiprotons inelastically scattered from 12 C, 40 Ca, and 208 Pb; and the excitation energy spectra for proton knock-out reaction on 6 Li, 45 Sc, 123 Sb, and 209 B; at forward angles

  14. Trapping of antiprotons -- a first step on the way to antihydrogen

    International Nuclear Information System (INIS)

    Holzscheiter, M.H.

    1993-01-01

    A first step towards producing and effectively utilizing antihydrogen atoms consists of trapping antiprotons. The immediate next step must then be to control, i.e. trap the produced antihydrogen. The current state of the art in trapping antiprotons and positrons is reviewed, and the challenges in trapping the resulting neutral particles are discussed

  15. Status of the analysis for the search of polarization in the antiproton production process

    International Nuclear Information System (INIS)

    Alfs, D.; Asaturyan, A.; Carmignotto, M.; Diermaier, M.; Eyrich, W.; Głowacz, B.; Grzonka, D.; Hauenstein, F.; Horn, T.; Kilian, K.; Malbrunot-Ettenauer, S.; Mkrtchyan, A.; Mkrtchyan, H.; Moskal, P.; Nadel-Turonski, P.; Oelert, W.; Ritman, J.; Sefzick, T.; Tadevosyan, V.; Widmann, E.; Wolke, M.; Zhamkochyan, S.; Zieliński, M.; Zink, A.; Zmeskal, J.

    2016-01-01

    The P-349 experiment aims to test whether for antiprotons the production process itself can be a source of polarization in view of the preparation of a polarized antiproton beam. In this article we present the details of performed measurements and report on the status of the ongoing analysis.

  16. Bubble detector measurements of a mixed radiation field from antiproton annihilation

    DEFF Research Database (Denmark)

    Bassler, Niels; Knudsen, Helge; Møller, Søren Pape

    2006-01-01

    In the light of recent progress in the study of the biological potential of antiproton tumour treatment it is important to be able to characterize the neutron intensity arising from antiproton annihilation using simple, compact and reliable detectors. The intensity of fast neutrons from antiproto...

  17. Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy

    Science.gov (United States)

    Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V.; Jackson Kimball, Derek F.; Kozlov, Mikhail G.; Stadnik, Yevgeny V.; Budker, Dmitry

    2018-05-01

    Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.

  18. Partial view of the first quarter of the Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    See photo 8004261 and Annual Report 1979 p.143, Fig. 1 For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  19. Partial view of the first quarter of the Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    See under 8004261. For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  20. Report of the Fermilab ILC Citizens' Task Force

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-01

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.