Sample records for fermi-systems non-fermi liquid

  1. Anisotropic non-Fermi liquids (United States)

    Sur, Shouvik; Lee, Sung-Sik


    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  2. Topological Non-Fermi Liquid

    CERN Document Server

    Cai, Rong-Gen; Wu, Yue-Liang; Zhang, Yun-Long


    In this paper we investigate the $(2+1)$-dimensional topological non-Fermi liquid in strongly correlated electron system, which has a holographic dual description by Einstein gravity in $(3+1)$-dimensional anti-de Sitter (AdS) space-time. In a dyonic Reissner-Nordstrom black hole background, we consider a Dirac fermion coupled to the background $U(1)$ gauge theory and an intrinsic chiral gauge field $b_M$ induced by chiral anomaly. UV retarded Green's function of the charged fermion in the UV boundary from AdS$_4$ gravity is calculated, by imposing in-falling wave condition at the horizon. We also obtain IR correlation function of the charged fermion at the IR boundary arising from the near horizon geometry of the topological black hole with index $k=0,\\pm 1$. By using the UV retarded Green's function and IR correlation function, we analyze the low frequency behavior of the topological non-Fermi liquid at zero and finite temperatures, especially the relevant non-Fermi liquid behavior near the quantum critical...

  3. Chiral non-Fermi liquids (United States)

    Sur, Shouvik; Lee, Sung-Sik


    A non-Fermi liquid state without time-reversal and parity symmetries arises when a chiral Fermi surface is coupled with a soft collective mode in two space dimensions. The full Fermi surface is described by a direct sum of chiral patch theories, which are decoupled from each other in the low-energy limit. Each patch includes low-energy excitations near a set of points on the Fermi surface with a common tangent vector. General patch theories are classified by the local shape of the Fermi surface, the dispersion of the critical boson, and the symmetry group, which form the data for distinct universality classes. We prove that a large class of chiral non-Fermi liquid states exists as stable critical states of matter. For this, we use a renormalization group scheme where low-energy excitations of the Fermi surface are interpreted as a collection of (1+1)-dimensional chiral fermions with a continuous flavor labeling the momentum along the Fermi surface. Due to chirality, the Wilsonian effective action is strictly UV finite. This allows one to extract the exact scaling exponents although the theories flow to strongly interacting field theories at low energies. In general, the low-energy effective theory of the full Fermi surface includes patch theories of more than one universality classes. As a result, physical responses include multiple universal components at low temperatures. We also point out that, in quantum field theories with extended Fermi surface, a noncommutative structure naturally emerges between a coordinate and a momentum which are orthogonal to each other. We show that the invalidity of patch description for Fermi liquid states is tied with the presence of UV/IR mixing associated with the emergent noncommutativity. On the other hand, UV/IR mixing is suppressed in non-Fermi liquid states due to UV insensitivity, and the patch description is valid.

  4. Topological non-Fermi liquid (United States)

    Cai, Rong-Gen; Qi, Yong-Hui; Wu, Yue-Liang; Zhang, Yun-Long


    The (2 +1 )-dimensional non-Fermi liquid (NFL) has a dual description in the (3 +1 )-dimensional anti-de Sitter (AdS) spacetime. We begin with a dyonic Reissner-Nordstrom (RN) black brane background, and consider the bulk Dirac fermion field coupled with the background U (1 ) gauge field, as well an intrinsic axial gauge field which is induced by chiral anomaly. The axial gauge field is effectively induced from the topological term in the bulk, which would lead to nontrivial effects on the boundary NFL. We study these effects through calculating the retarded Green's functions of the dual NFL holographically, in both analytical and numerical approaches. We also obtain correlation functions in the low frequency limit at zero and finite temperatures, as well as the dispersion spectrum of the Dirac cones, Fermi arc of the surface states, which can be related with the experiment.

  5. Superconducting instability in non-Fermi liquids

    CERN Document Server

    Mandal, Ipsita


    We use renormalization group (RG) analysis and dimensional regularization techniques to study potential superconductivity-inducing four-fermion interactions in systems with critical Fermi surfaces of general dimensions ($m$) and co-dimensions ($d-m$), arising as a result of quasiparticle interaction with a gapless Ising-nematic order parameter. These are examples of non-Fermi liquid states in $d$ spatial dimensions. Our formalism allows us to treat the corresponding zero-temperature low-energy effective theory in a controlled approximation close to the upper critical dimension $d=d_c(m)$. The fixed points are identified from the RG flow equations, as functions of $d$ and $m$. We find that the flow towards the non-Fermi liquid fixed point is preempted by Cooper pair formation for both the physical cases of $(d=3, m=2)$ and $(d=2, m=1)$. In fact, there is a strong enhancement of superconductivity by the order parameter fluctuations at the quantum critical point.

  6. Non-Fermi liquid phase in metallic Skyrmion crystals (United States)

    Watanabe, Haruki; Parameswaran, Siddharth; Raghu, Srinivas; Vishwanath, Ashvin


    Motivated by reports of a non-Fermi liquid state in MnSi, we examine the effect of coupling phonons of an incommensurate skyrmion crystal (SkX) to conduction electrons. We find that non-Fermi liquid behavior emerges in both two and three dimensions over the entire phase, due to an anomalous electron-phonon coupling that is linked to the net skyrmion density. A small parameter, the spiral wave vector in lattice units, allows us to exercise analytic control and ignore Landau damping of phonons over a wide energy range. At the lowest energy scales the problem is similar to electrons coupled to a gauge field. The best prospects for realizing these effects is in short period skyrmion lattice systems such as MnGe or epitaxial MnSi films. We also compare our results with the unusual T 3 / 2 scaling of temperature dependent resistivity seen in high pressure experiments on MnSi. We acknowledge support from the NSF via Grant DMR-0645691, the DOE Office of Basic Energy Sciences via contract DE-AC02-76SF00515, and the Simons, Templeton, and Alfred P. Sloan Foundations.

  7. Non-Fermi-liquid behaviour in La4Ru6O19. (United States)

    Khalifah, P; Nelson, K D; Jin, R; Mao, Z Q; Liu, Y; Huang, Q; Gao, X P; Ramirez, A P; Cava, R J


    Understanding the complexities of electronic and magnetic ground states in solids is one of the main goals of solid-state physics. Transition-metal oxides have proved to be particularly fruitful in this regard, especially for those materials with the perovskite structure, where the special characteristics of transition-metal-oxygen orbital hybridization determine their properties. Ruthenates have recently emerged as an important family of perovskites because of the unexpected evolution from high-temperature ferromagnetism in SrRuO3 to low-temperature superconductivity in Sr2RuO4 (refs 1, 2). Here we show that a ruthenate in a different structural family, La4Ru6O19, displays a number of highly unusual properties, most notably non-Fermi-liquid behaviour. The properties of La4Ru6O19 have no analogy among the thousands of previously characterized transition-metal oxides. Instead, they resemble those of CeCu6-xAux-a widely studied f-electron-based heavy fermion intermetallic compound that is often considered as providing the best example of non-Fermi-liquid behaviour. In the ruthenate, non-Fermi-liquid behaviour appears to arise from just the right balance between the interactions of localized electronic states derived from Ru-Ru bonding and delocalized states derived from Ru-O hybridization.

  8. Non-Fermi-liquid behavior in quantum impurity models with superconducting channels (United States)

    Žitko, Rok; Fabrizio, Michele


    We study how the non-Fermi-liquid nature of the overscreened multichannel Kondo impurity model affects the response to a BCS pairing term that, in the absence of the impurity, opens a gap Δ . We find that the low-energy spectrum in the limit Δ →0 actually does not correspond to the spectrum strictly at Δ =0 . In particular, in the two-channel Kondo model, the Δ →0 ground state is an orbitally degenerate spin singlet, while it is an orbital singlet with a residual spin degeneracy at Δ =0 . In addition, there are fractionalized spin-1/2 subgap excitations whose energy in units of Δ tends toward a finite and universal value when Δ →0 , as if the universality of the anomalous power-law exponents that characterize the overscreened Kondo effect turned into universal energy ratios when the scale invariance is broken by Δ ≠0 . This intriguing phenomenon can be explained by the renormalization flow toward the overscreened fixed point and the gap cutting off the orthogonality catastrophe singularities. We also find other non-Fermi-liquid features at finite Δ : the local density of states lacks coherence peaks, the states in the continuum above the gap are unconventional, and the boundary entropy is a nonmonotonic function of temperature. The persistent subgap excitations are characteristic of the non-Fermi-liquid fixed point of the model, and thus depend on the impurity spin and the number of screening channels.

  9. Non-Fermi liquid behavior of thermal relaxation time in degenerate electron gas

    CERN Document Server

    Sarkar, Sreemoyee


    The thermal relaxation time ($\\tau_{\\kappa_{ee}}$) for the degenerate electron plasma has been calculated by incorporating non-Fermi liquid (NFL) corrections both for the thermal conductivity and specific heat capacity. Perturbative results are presented by making expansion in $T/m_D$ with next to leading order corrections. It is seen that unlike the normal Fermi liquid (FL) result where $\\tau_{\\kappa_{ee}}\\propto 1/T^2$, NFL corrections in leading order (LO) changes the temperature dependence of $\\tau_{\\kappa_{ee}}$ to 1/T. Incorporation of the phase space correction driven by the medium modified Fermion dispersion relation increases the relaxation time further.

  10. Non-Fermi liquid behavior from dynamical effects of impurity scattering in correlated Fermi liquids (United States)

    Narsimha Murthy Sudhindra, Vidhyadhiraja; Kumar, Pramod


    The interplay of disorder and interactions is a subject of perennial interest. In this work, we have investigated the effect of disorder due to chemical substitution on the dynamics and transport properties of correlated Fermi liquids. A low frequency analysis in the concentrated and dilute limits shows that the dynamical local potentials arising through disorder averaging generate a linear (in frequency) term in the scattering rate. Such non-Fermi liquid behavior (nFL) is investigated in detail for Kondo hole substitution in heavy fermions within dynamical mean field theory. Analytical expressions in limiting cases and numerical solutions of the dynamical mean field theory equations reveal that the nFL term will show up significantly only in certain regimes, although it is present for any non-zero disorder concentration in principle. Remarkably, we find that the nFL behavior due to dynamical effects of impurity scattering has features that are distinct from those arising through Griffiths singularities or distribution of Kondo scales. Relevance of our findings to experiments on alloyed correlated systems is pointed out.

  11. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point (United States)

    Lederer, Samuel; Schattner, Yoni; Berg, Erez; Kivelson, Steven A.


    Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin mn>1mn>mn>2mn>12 itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting TcTc enclosing the nematic quantum critical point. For temperatures above TcTc, we see strikingly non-Fermi liquid behavior, including a “nodal-antinodal dichotomy” reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low-frequency optical conductivity, resulting in behavior consistent with “bad metal” phenomenology.

  12. Superconductivity and non-Fermi liquid behavior on the border of itinerant ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Robert


    When magnetic order is suppressed under pressure, a superconducting (SC) phase emerges in the ferromagnet UGe{sub 2} and an extended non-Fermi liquid (NFL) regime is observed in the helimagnet MnSi. We report thermal expansion measurements of UGe{sub 2} under pressure by means of neutron Larmor diffraction. We find a new, putatively non-magnetic transition at the temperature TL at pressures close to the SC phase. In MnSi we report Hall effect measurements under pressure. We find a topological Hall effect, as the signature of a topologically non-trivial spin texture, above the critical pressure in the NFL regime.

  13. Instability of Non-Fermi Liquid Behavior in the Two-Channel Kondo Model

    Institute of Scientific and Technical Information of China (English)

    YUAN Qing-Shan; CHEN Hong; ZHANG Yu-Mei


    The effects of interchannel scattering of conduction electrons by the impu rity and repulsion of conduction electrons at the impurity site on the two-channel Kondo model are simultaneously considered in this paper.It is shown that these two perturbations will substantially modify the usual local non-Fermi liquid behavior of the two-channel Kondo model.With bosonization and unitary transformations we find that the system can be transformed into a single channel Kondo model with anisotropy between longitudinal and transverse exchange couplings.Whatever for originally antiferromagnetic or ferromagnetic isotropic coupling,the system always flows to strong-coupling limit,which exhibits local Fermi liquid behavior at low temperatures.

  14. Tuning bad metal and non-Fermi liquid behavior in a Mott material: Rare-earth nickelate thin films. (United States)

    Mikheev, Evgeny; Hauser, Adam J; Himmetoglu, Burak; Moreno, Nelson E; Janotti, Anderson; Van de Walle, Chris G; Stemmer, Susanne


    Resistances that exceed the Mott-Ioffe-Regel limit (known as bad metal behavior) and non-Fermi liquid behavior are ubiquitous features of the normal state of many strongly correlated materials. We establish the conditions that lead to bad metal and non-Fermi liquid phases in NdNiO3, which exhibits a prototype bandwidth-controlled metal-insulator transition. We show that resistance saturation is determined by the magnitude of Ni eg orbital splitting, which can be tuned by strain in epitaxial films, causing the appearance of bad metal behavior under certain conditions. The results shed light on the nature of a crossover to a non-Fermi liquid metal phase and provide a predictive criterion for Anderson localization. They elucidate a seemingly complex phase behavior as a function of film strain and confinement and provide guidelines for orbital engineering and novel devices.

  15. Magnetic ordering and non-Fermi-liquid behavior in the multichannel Kondo-lattice model (United States)

    Irkhin, Valentin Yu.


    Scaling equations for the Kondo lattice in the paramagnetic and magnetically ordered phases are derived to next-leading order with account of spin dynamics. The results are applied to describe various mechanisms of the non-Fermi-liquid (NFL) behavior in the multichannel Kondo-lattice model where a fixed point occurs in the weak-coupling region. The corresponding temperature dependences of electronic and magnetic properties are discussed. The model describes naturally formation of a magnetic state with soft boson mode and small moment value. An important role of Van Hove singularities in the magnon spectral function is demonstrated. The results are rather sensitive to the type of magnetic ordering and space dimensionality, the conditions for NFL behavior being more favorable in the antiferromagnetic and 2D cases.

  16. Protection of a non-Fermi liquid by spin-orbit interaction (United States)

    Nguyen, T. K. T.; Kiselev, M. N.


    We show that a thermoelectric transport through a quantum dot-single-mode quantum point contact nanodevice demonstrating pronounced fingerprints of nonFermi liquid (NFL) behavior in the absence of external magnetic field is protected from magnetic field NFL destruction by strong spin-orbit interaction (SOI). The mechanism of protection is associated with the appearance of additional scattering processes due to lack of spin conservation in the presence of both SOI and small Zeeman field. The interplay between in-plane magnetic field B ⃗ and SOI is controlled by the angle between B ⃗ and B⃗SOI. We predict strong dependence of the thermoelectric coefficients on the orientation of the magnetic field and discuss a window of parameters for experimental observation of NFL effects.

  17. Anisotropy induces non-Fermi liquid behavior and nemagnetic order in three-dimensional Luttinger semimetals

    CERN Document Server

    Boettcher, Igor


    We illuminate the intriguing role played by spatial anisotropy in three-dimensional Luttinger semimetals featuring quadratic band touching and long-range Coulomb interactions. We observe the anisotropy to be subject to an exceptionally slow renormalization group (RG) evolution so that it can be considered approximately constant when computing the impact of quantum fluctuations on the remaining couplings of the system. Using perturbative RG we then study the competition of all local short-range interactions that are generated from the long-range interactions for fixed anisotropy. Two main effects come to light for sufficiently strong anisotropy. First, the three-dimensional system features an Abrikosov non-Fermi liquid ground state. Second, there appear qualitatively new fixed points which describe quantum phase transitions into phases with nemagnetic orders - higher-rank tensor orders that break time-reversal symmetry, and thus have both nematic and magnetic character. In real materials these phases may be re...

  18. Scaling behaviour and superconducting instability in anisotropic non-Fermi liquids

    CERN Document Server

    Mandal, Ipsita


    We study the scaling behaviour of the optical conductivity $(\\sigma)$, free energy density $(F)$ and shear viscosity of the quantum critical point associated with spin density wave phase transition for a two-dimensional metallic system with $C_2$ symmetry. A non-Fermi liquid behaviour emerges at two pairs of isolated points on the Fermi surface due to the coupling of a bosonic order parameter to fermionic excitations at those so-called "hot-spots". We find that near the hot-spots, $\\sigma$ and $F$ obey the scalings expected for such an anisotropic system, and the direction-dependent viscosity to entropy density ratio is not a universal number due to the anisotropy. Lastly, we also estimate the effect of the fermion-boson coupling at the hot-spots on superconducting instabilities.

  19. Non-Fermi liquid regimes with and without quantum criticality in Ce(1-x)Yb(x)CoIn5. (United States)

    Hu, Tao; Singh, Yogesh P; Shu, Lei; Janoschek, Marc; Dzero, Maxim; Maple, M Brian; Almasan, Carmen C


    One of the greatest challenges to Landau's Fermi liquid theory--the standard theory of metals--is presented by complex materials with strong electronic correlations. In these materials, non-Fermi liquid transport and thermodynamic properties are often explained by the presence of a continuous quantum phase transition that happens at a quantum critical point (QCP). A QCP can be revealed by applying pressure, magnetic field, or changing the chemical composition. In the heavy-fermion compound CeCoIn5, the QCP is assumed to play a decisive role in defining the microscopic structure of both normal and superconducting states. However, the question of whether a QCP must be present in the material's phase diagram to induce non-Fermi liquid behavior and trigger superconductivity remains open. Here, we show that the full suppression of the field-induced QCP in CeCoIn5 by doping with Yb has surprisingly little impact on both unconventional superconductivity and non-Fermi liquid behavior. This implies that the non-Fermi liquid metallic behavior could be a new state of matter in its own right rather than a consequence of the underlying quantum phase transition.

  20. arXiv Density response and collective modes of semi-holographic non-Fermi liquids

    CERN Document Server

    Doucot, Benoit; Mukhopadhyay, Ayan; Policastro, Giuseppe

    Semi-holographic models of non-Fermi liquids have been shown to have generically stable generalised quasi-particles on the Fermi surface. Although these excitations are broad and exhibit particle-hole asymmetry, they were argued to be stable from interactions at the Fermi surface. In this work, we use this observation to compute the density response and collective behaviour in these systems. Compared to the Fermi liquid case, we find that the boundaries of the particle-hole continuum are blurred by incoherent contributions. However, there is a region inside this continuum, that we call inner core, within which salient features of the Fermi liquid case are preserved. A particularly striking prediction of our work is that these systems support a plasmonic collective excitation which is well-defined at large momenta, has an approximately linear dispersion relation and is located in the low-energy tail of the particle-hole continuum. Furthermore, the dynamic screening potential shows deep attractive regions as a ...

  1. Non-Fermi-liquid d-wave metal phase of strongly interacting electrons. (United States)

    Jiang, Hong-Chen; Block, Matthew S; Mishmash, Ryan V; Garrison, James R; Sheng, D N; Motrunich, Olexei I; Fisher, Matthew P A


    Developing a theoretical framework for conducting electronic fluids qualitatively distinct from those described by Landau's Fermi-liquid theory is of central importance to many outstanding problems in condensed matter physics. One such problem is that, above the transition temperature and near optimal doping, high-transition-temperature copper-oxide superconductors exhibit 'strange metal' behaviour that is inconsistent with being a traditional Landau Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase could shed new light on the interesting low-temperature behaviour in the pseudogap regime and on the d-wave superconductor itself. Here we present a theory for a specific example of a strange metal--the 'd-wave metal'. Using variational wavefunctions, gauge theoretic arguments, and ultimately large-scale density matrix renormalization group calculations, we show that this remarkable quantum phase is the ground state of a reasonable microscopic Hamiltonian--the usual t-J model with electron kinetic energy t and two-spin exchange J supplemented with a frustrated electron 'ring-exchange' term, which we here examine extensively on the square lattice two-leg ladder. These findings constitute an explicit theoretical example of a genuine non-Fermi-liquid metal existing as the ground state of a realistic model.

  2. Degenerate Fermi and non-Fermi liquids near a quantum critical phase transition (United States)

    Kambe, S.; Sakai, H.; Tokunaga, Y.; Lapertot, G.; Matsuda, T. D.; Knebel, G.; Flouquet, J.; Walstedt, R. E.


    Recently there is renewed interest in quantum critical phase transitions (QCPT) at T = 0 K in metallic strongly correlated electron systems. From early experimental results, the QCPT in the Kondo-lattice compound YbRh2Si2 is not a case of the ordinary spin density wave (SDW) instability observed in Ce-based Kondo lattices, but a candidate for a novel locally critical case. Here, we observe that coexisting, static Fermi liquid (FL) and non-Fermi liquid (NFL) states are a key feature of the QCPT in YbRh2Si2. By means of nuclear magnetic resonance (NMR) spin-lattice relaxation time (T1) measurements on a single-crystalline sample, we find that the FL and NFL states are invariant, whereas their ratio in a crossover is field dependent near the QCPT. Such a pair of states has remained hidden in Ce compounds, owing presumably to the short lifetimes of the two states. We derive a scaling law for the occupation ratio of the two states, which could be widely applicable to Kondo-lattice systems.

  3. Non-Fermi-liquid and topological states with strong spin-orbit coupling. (United States)

    Moon, Eun-Gook; Xu, Cenke; Kim, Yong Baek; Balents, Leon


    We argue that a class of strongly spin-orbit-coupled materials, including some pyrochlore iridates and the inverted band gap semiconductor HgTe, may be described by a minimal model consisting of the Luttinger Hamiltonian supplemented by Coulomb interactions, a problem studied by Abrikosov and collaborators. It contains twofold degenerate conduction and valence bands touching quadratically at the zone center. Using modern renormalization group methods, we update and extend Abrikosov's classic work and show that interactions induce a quantum critical non-Fermi-liquid phase, stable provided time-reversal and cubic symmetries are maintained. We determine the universal power-law exponents describing various observables in this Luttinger-Abrikosov-Beneslavskii state, which include conductivity, specific heat, nonlinear susceptibility, and the magnetic Gruneisen number. Furthermore, we determine the phase diagram in the presence of cubic and/or time-reversal symmetry breaking perturbations, which includes a topological insulator and Weyl semimetal phases. Many of these phases possess an extraordinarily large anomalous Hall effect, with the Hall conductivity scaling sublinearly with magnetization σ(xy)∼M0.51.

  4. (Almost) naked quantum criticality with non-Fermi liquid behavior at the onset of inhomogeneous Larkin-Ovchinikov superfluidity in two dimensions (United States)

    Strack, Philipp; Piazza, Francesco


    We present a renormalization group analysis for the non-Fermi liquid behavior and quantum criticality arising in coupled quantum wires of attractively interacting fermions with spin imbalance in two spatial dimensions.

  5. Emergent Non-Fermi-Liquid at the Quantum Critical Point of a Topological Phase Transition in Two Dimensions. (United States)

    Isobe, Hiroki; Yang, Bohm-Jung; Chubukov, Andrey; Schmalian, Jörg; Nagaosa, Naoto


    We study the effects of Coulomb interaction between 2D Weyl fermions with anisotropic dispersion which displays relativistic dynamics along one direction and nonrelativistic dynamics along the other. Such a dispersion can be realized in phosphorene under electric field or strain, in TiO_{2}/VO_{2} superlattices, and, more generally, at the quantum critical point between a nodal semimetal and an insulator in systems with a chiral symmetry. Using the one-loop renormalization group approach in combination with the large-N expansion, we find that the system displays interaction-driven non-Fermi liquid behavior in a wide range of intermediate frequencies and marginal Fermi liquid behavior at the smallest frequencies. In the non-Fermi liquid regime, the quasiparticle residue Z at energy E scales as Z∝E^{a} with a>0, and the parameters of the fermionic dispersion acquire anomalous dimensions. In the marginal Fermi-liquid regime, Z∝(|logE|)^{-b} with universal b=3/2.

  6. Non-Fermi Liquid Behavior and Continuously Tunable Resistivity Exponents in the Anderson-Hubbard Model at Finite Temperature (United States)

    Patel, Niravkumar D.; Mukherjee, Anamitra; Kaushal, Nitin; Moreo, Adriana; Dagotto, Elbio


    We employ a recently developed computational many-body technique to study for the first time the half-filled Anderson-Hubbard model at finite temperature and arbitrary correlation U and disorder V strengths. Interestingly, the narrow zero temperature metallic range induced by disorder from the Mott insulator expands with increasing temperature in a manner resembling a quantum critical point. Our study of the resistivity temperature scaling Tα for this metal reveals non-Fermi liquid characteristics. Moreover, a continuous dependence of α on U and V from linear to nearly quadratic is observed. We argue that these exotic results arise from a systematic change with U and V of the "effective" disorder, a combination of quenched disorder and intrinsic localized spins.

  7. Fluctuations of Imbalanced Fermionic Superfluids in Two Dimensions Induce Continuous Quantum Phase Transitions and Non-Fermi-Liquid Behavior

    Directory of Open Access Journals (Sweden)

    Philipp Strack


    Full Text Available We study the nature of superfluid pairing in imbalanced Fermi mixtures in two spatial dimensions. We present evidence that the combined effect of Fermi surface mismatch and order parameter fluctuations of the superfluid condensate can lead to continuous quantum phase transitions from a normal Fermi mixture to an intermediate Sarma-Liu-Wilczek superfluid with two gapless Fermi surfaces—even when mean-field theory (incorrectly predicts a first-order transition to a phase-separated “Bardeen-Cooper-Schrieffer plus excess fermions” ground state. We propose a mechanism for non-Fermi-liquid behavior from repeated scattering processes between the two Fermi surfaces and fluctuating Cooper pairs. Prospects for experimental observation with ultracold atoms are discussed.

  8. Non-Fermi liquid behavior and the undersceened Kondo effect in Fe1-yCoySi (United States)

    Wu, Yan; Fulfer, Brad; Chan, Julia; Young, David; Ditusa, John


    Mn or Co substitutions into the narrow band-gap insulator FeSi introduce charge carriers, either holes or electrons, accompanied by an equal density of more localized magnetic moments resulting in an interesting insulator-to-metal transition (IMT). Mn doping of FeSi exhibits an IMT where the nascent metal displays intriguing field sensitive non-Fermi-Liquid (NFL) behavior due to the undercompensation of S = 1 impurity moments by the spin-1/2 hole carriers. Here, we present the results of an investigation of Fe1-yCoySi (0 <= y <= 0.1). Our magnetization and susceptibility measurements indicate that for y<0.03 Co-impurities alsointroduce a S = 1 magnetic moment that have a tendency to form singlets whereas for larger ya ferromagnetic interaction that grows with y. We have discovered a NFLbehavior for y<0.03 that evolves into the standard disordered Fermi-liquid form either by applying a magnetic field or by increasing y. The results of specific heat measurements on Fe1-yCoySi,performed to explore the underlying underscreened Kondo mechanism, to investigate its variation with field and composition,and to compare with our Fe1-xMnxSi data will be presented.

  9. Crossover between Fermi liquid and non-Fermi liquid behavior in the non-centrosymmetric compound Yb2Ni12P7. (United States)

    Jang, S; White, B D; Ho, P-C; Kanchanavatee, N; Janoschek, M; Hamlin, J J; Maple, M B


    A crossover from a non-Fermi liquid to a Fermi liquid phase in Yb2Ni12P7 is observed by analyzing electrical resistivity ρ(T), magnetic susceptibility χ(T), specific heat C(T), and thermoelectric power S(T) measurements. The electronic contribution to specific heat, Ce(T), behaves as Ce(T)/T∼-ln(T) for 5 KFermi liquid behavior. Below T∼4 K, the upturn in Ce(T)/T begins to saturate, suggesting that the system crosses over into a Fermi-liquid ground state. This is consistent with robust ρ(T)-ρ0=AT2 behavior below T∼4 K, with the power-law exponent becoming sub-quadratic for T>4 K. A crossover between Fermi-liquid and non-Fermi liquid behavior suggests that Yb2Ni12P7 is in close proximity to a quantum critical point, in agreement with results from recent measurements of this compound under applied pressure.

  10. Quantum oscillations in non-Fermi liquids: Implications for high-temperature superconductors (United States)

    Scherpelz, Peter; He, Yan; Levin, K.


    We address quantum oscillation experiments in high-Tc superconductors and the evidence from these experiments for a pseudogap versus a Fermi liquid phase at high magnetic fields. As a concrete alternative to a Fermi liquid phase, the pseudogap state we consider derives from earlier work within a Gor'kov-based Landau level approach. Here the normal state pairing gap in the presence of high fields is spatially nonuniform, incorporating small gap values. These, in addition to d-wave gap nodes, are responsible for the persistence of quantum oscillations. Important here are methodologies for distinguishing different scenarios. To this end we examine the temperature dependence of the oscillations. Detailed quantitative analysis of this temperature dependence demonstrates that a high-field pseudogap state in the cuprates may well "masquerade" as a Fermi liquid.

  11. Non-Fermi Liquid Behavior Close to a Quantum Critical Point in a Ferromagnetic State without Local Moments

    Directory of Open Access Journals (Sweden)

    E. Svanidze


    Full Text Available A quantum critical point (QCP occurs upon chemical doping of the weak itinerant ferromagnet Sc_{3.1}In. Remarkable for a system with no local moments, the QCP is accompanied by non-Fermi liquid behavior, manifested in the logarithmic divergence of the specific heat both in the ferro-and the paramagnetic states, as well as linear temperature dependence of the low-temperature resistivity. With doping, critical scaling is observed close to the QCP, as the critical exponents δ, γ, and β have weak composition dependence, with δ nearly twice and β almost half of their respective mean-field values. The unusually large paramagnetic moment μ_{PM}∼1.3μ_{B}/F.U. is nearly composition independent. Evidence for strong spin fluctuations, accompanying the QCP at x_{c}=0.035±0.005, may be ascribed to the reduced dimensionality of Sc_{3.1}In, associated with the nearly one-dimensional Sc-In chains.

  12. Non-Fermi liquid picture and superconductivity in heavy fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Steffen [IFW Dresden, D- 01171 Dresden (Germany); Becker, Klaus W. [Department of Physics, TU Dresden, D-01069 Dresden (Germany)


    We study the S = 1/2 Kondo lattice model which is widely used to describe heavy fermion behavior. In conventional treatments of the model a hybridization of conduction and localized f electrons is introduced by decoupling the Kondo interaction. However, such an approximation has the detrimental effect that a breaking of a local gauge symmetry is imposed which implicates that the local f occupation n{sub i}{sup f} is no longer conserved. To avoid such an artifact, we treat the model in an alternative approach based on the Projective Renormalization Method (PRM). Thereby, within the conduction electron spectral function we identify the lattice Kondo resonance as an almost flat incoherent excitation near the Fermi surface which is composed of conduction electron creation operators combined with localized spin fluctuations. This leads to a new concept of the Kondo resonance without having to resort to a symmetry breaking and Fermi liquid theory. Based on this new picture we develop a microscopic theory for superconductivity in heavy fermion systems. Thereby we study the momentum-dependence of the superconducting order parameter for singlet as well as triplet pairing. We show that in particular the triplet pairing components are strongly affected by the incoherent excitations found to be responsible for the Kondo resonance.

  13. Evaporation temperature-tuned physical vapor deposition growth engineering of one-dimensional non-Fermi liquid tetrathiofulvalene tetracyanoquinodimethane thin films

    DEFF Research Database (Denmark)

    Sarkar, I.; Laux, M.; Demokritova, J.


    We describe the growth of high quality tetrathiofulvalene tetracyanoquinodimethane (TTF-TCNQ) organic charge-transfer thin films which show a clear non-Fermi liquid behavior. Temperature dependent angle resolved photoemission spectroscopy and electronic structure calculations show that the growth...... of TTF-TCNQ films is accompanied by the unfavorable presence of neutral TTF and TCNQ molecules. The quality of the films can be controlled by tuning the evaporation temperature of the precursor in physical vapor deposition method....

  14. Emergence of non-Fermi liquid behaviors in 5d perovskite SrIrO{sub 3} thin films: Interplay between correlation, disorder, and spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abhijit [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Ki-Seok [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Institute of Edge of Theoretical Science (IES), POSTECH, Pohang 790-784 (Korea, Republic of); Jeong, Yoon H., E-mail: [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)


    We investigate the effects of compressive strain on the electrical resistivity of 5d iridium based perovskite SrIrO{sub 3} by depositing epitaxial films of thickness 35 nm on various substrates such as GdScO{sub 3} (110), DyScO{sub 3} (110), and SrTiO{sub 3} (001). Surprisingly, we find anomalous transport behaviors as expressed by ρ∝T{sup ε} in the temperature dependent resistivity, where the temperature exponent ε evolves continuously from 4/5 to 1 and to 3/2 with an increase of compressive strain. Furthermore, magnetoresistance always remains positive irrespective of resistivity upturns at low temperatures. These observations imply that the delicate interplay between correlation and disorder in the presence of strong spin-orbit coupling is responsible for the emergence of the non-Fermi liquid behaviors in 5d perovskite SrIrO{sub 3} thin films. We offer a theoretical framework for the interpretation of the experimental results. - Highlights: • We studied the effect of compressive strain on the perovskite SrIrO{sub 3} thin films. • We revealed non-Fermi liquid behaviors in the transport properties. • Irrespective of weak localization effects, magnetoresistance remains positive. • Mott-Anderson-Griffiths scenario is proposed to account for the NFL behaviors.

  15. Spin-Fluctuation-Induced Non-Fermi-Liquid Behavior with Suppressed Superconductivity in LiFe1 -xCoxAs (United States)

    Dai, Y. M.; Miao, H.; Xing, L. Y.; Wang, X. C.; Wang, P. S.; Xiao, H.; Qian, T.; Richard, P.; Qiu, X. G.; Yu, W.; Jin, C. Q.; Wang, Z.; Johnson, P. D.; Homes, C. C.; Ding, H.


    We study a series of LiFe1 -xCox As compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe1 -xCox As is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFe1 -xCox As where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.

  16. Spin-Fluctuation-Induced Non-Fermi-Liquid Behavior with Suppressed Superconductivity in LiFe_{1−x}Co_{x}As

    Directory of Open Access Journals (Sweden)

    Y. M. Dai


    Full Text Available We study a series of LiFe_{1−x}Co_{x}As compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe_{1−x}Co_{x}As is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFe_{1−x}Co_{x}As where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.

  17. Strongly-disordered hybridization and non-Fermi liquid behavior in CePt4Ge12-xSbx studied with thermoelectric power (United States)

    White, Benjamin; Huang, Kevin; Maple, M. Brian


    Non-Fermi liquid (NFL) behavior is commonly associated with the presence of a nearby quantum critical point, but can also be observed in other scenarios. In a clean system, hybridization between localized and itinerant electron states can be characterized by a single Kondo temperature TK, but introducing chemical disorder can lead to a wide distribution of TK values. Given sufficient disorder, the resulting distribution will tend to include an appreciable number of localized electron states which are characterized by TK ~ 0 K, and NFL behavior emerges. A Kondo-disorder type of NFL behavior was recently reported in the filled skutterudite system CePt4Ge12-xSbx in the vicinity of x = 1 . We performed a study of the thermoelectric power S(T) for this system and observed an evolution of S(T) with x that is dramatic and broadly consistent with the boundaries of the proposed phase diagram. The effect of disordered hybridization is clearly observed in a low-temperature feature in S(T) in the range 0 . 5 NFL behavior is also observed at x = 1. These results clearly demonstrate how sensitively S(T) is able to probe a Kondo disorder system. Research was performed with support from the US DOE grant DE-FG02-04-ER46105.

  18. Electronic correlations and non-Fermi-liquid behaviour in ACu{sub 3}Ru{sub 4}O{sub 12}-perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Axel; Krimmel, Alexander; Loidl, Alois; Kraetschmer, Wolfgang; Dekinger, Heiko; Buettgen, Norbert [Experimentalphysik 5, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany); Scheidt, Ernst-Wilhelm [CPM, Institut fuer Physik, Universitaet Augsburg (Germany); Sheptyakov, Denis [Labor fuer Neutronenstreuung, ETHZ and PSI, 5232 Villigen PSI (Switzerland); Mutka, Hannu [Institut Laue Langevin, Grenoble (France)


    Among the large variety of AC{sub 3}B{sub 4}O{sub 12}-type perovskites, the copper-ruthenates (C=Cu, B=Ru) form a subclass exhibiting strongly correlated electron behaviour. A special feature of these compounds is that the ideal stoichiometry and structure is preserved for a large number of different A-site cations with different valence states. We have systematically studied the electronic properties by specific heat, magnetic susceptibility, transport, NMR/NQR and neutron scattering experiments. The compound A=Ca is a correlated metal showing non-Fermi-liquid behaviour below 2 K, as indicated by a logarithmic increase of the specific heat and deviations from a Korringa behaviour of the spin lattice relaxation rate. In the case of A=Pr, an anomaly in the specific heat occurs at 0.5 K whose maximum shifts to higher temperatures with increasing magnetic field. Along with data acquired from inelastic neutron scattering we obtain strong indications for a pronounced crystal field splitting.

  19. Non-fermi-liquid behaviour in CaCu{sub 3}Ru{sub 4}O{sub 12} studied by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kraetschmer, Wolfgang; Dekinger, Heiko; Buettgen, Norbert; Loidl, Alois; Guenther, Axel; Krimmel, Alexander [Experimentalphysik 5, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany); Scheidt, Ernst-Wilhelm [CPM, Universitaet Augsburg, 86135 Augsburg (Germany)


    We present a detailed study of the electronic properties of CaCu{sub 3}Ru{sub 4}O{sub 12} which has perovskite structure and shows strong electron correlations. Beside magnetic susceptibility, transport and specific heat data, we focus on NMR and NQR measurements at the copper and ruthenium sites in this compound [Krimmel et al., PRB 78, 165126 (2008)]. CaCu{sub 3}Ru{sub 4}O{sub 12} is a metallic system showing non-Fermi-liquid behaviour below 2K which becomes manifest in a logarithmic increase of the specific heat C{sub p}/T{proportional_to}-ln(T) and in an NQR spin-lattice relaxation rate 1/T{sub 1} (T) that deviates from the Korringa law at the copper site only. Static NMR measurements were conducted to extract electric field gradients for the correction of the low-temperature specific heat data for nuclear contributions. Nuclear contributions turned out to be not sufficient to account for the Schottky-anomaly. Further investigation of the spin-lattice relaxation at the ruthenium site reveals a clearly different behaviour in comparison to the copper site and reflects the local character of the strong electron correlations.

  20. Superconductivity and Non-Fermi-Liquid Behavior in the Heavy-Fermion Compound CeCo1-xNixIn5 (United States)

    Otaka, Ryo; Yokoyama, Makoto; Mashiko, Hiroaki; Hasegawa, Takeshi; Shimizu, Yusei; Ikeda, Yoichi; Tenya, Kenichi; Nakamura, Shota; Ueta, Daichi; Yoshizawa, Hideki; Sakakibara, Toshiro


    The effect of off-plane impurity on superconductivity and non-Fermi-liquid (NFL) behavior in the layered heavy-fermion compound CeCo1-xNixIn5 is investigated by specific heat, magnetization, and electrical resistivity measurements. These measurements reveal that the superconducting (SC) transition temperature Tc monotonically decreases from 2.3 K (x = 0) to 0.8 K (x = 0.20) with increasing x, and then the SC order disappears above x = 0.25. At the same time, the Ni substitution yields the NFL behavior at zero field for x = 0.25, characterized by the -ln T divergence in specific heat divided by temperature, Cp/T, and magnetic susceptibility, M/B. The NFL behavior in magnetic fields for x = 0.25 is quite similar to that seen at around the SC upper critical field in pure CeCoIn5, suggesting that both compounds are governed by the same antiferromagnetic quantum criticality. The resemblance of the doping effect on the SC order among Ni-, Sn-, and Pt-substituted CeCoIn5 supports the argument that the doped carriers are primarily responsible for the breakdown of the SC order. The present investigation further reveals the quantitative differences in the trends of the suppression of superconductivity between Ce(Co,Ni)In5 and the other alloys, such as the rates of decrease in Tc, dTc/dx, and specific heat jump at Tc, d(ΔCp/Tc)/dx. We suggest that the occupied positions of the doped ions play an important role in the origin of these differences.

  1. Strongly correlated Fermi systems as a new state of matter (United States)

    Shaginyan, V. R.; Msezane, A. Z.; Japaridze, G. S.; Popov, K. G.; Khodel, V. A.


    The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quantum spin liquids, quasicrystals, and systems with one-dimensional quantum spin liquid. We name these various systems HF compounds, since they exhibit the behavior typical of HF metals. In HF compounds at zero temperature the unique phase transition, dubbed throughout as the fermion condensation quantum phase transition (FCQPT) can occur; this FCQPT creates flat bands which in turn lead to the specific state, known as the fermion condensate. Unlimited increase of the effective mass of quasiparticles signifies FCQPT; these quasiparticles determine the thermodynamic, transport and relaxation properties of HF compounds. Our discussion of numerous salient experimental data within the framework of FCQPT resolves the mystery of the new state of matter. Thus, FCQPT and the fermion condensation can be considered as the universal reason for the non-Fermi liquid behavior observed in various HF compounds. We show analytically and using arguments based completely on the experimental grounds that these systems exhibit universal scaling behavior of their thermodynamic, transport and relaxation properties. Therefore, the quantum physics of different HF compounds is universal, and emerges regardless of the microscopic structure of the compounds. This uniform behavior allows us to view it as the main characteristic of a new state of matter exhibited by HF compounds.

  2. Fermi/non-Fermi mixing in SU($N$) Kondo effect

    CERN Document Server

    Kimura, Taro


    We apply conformal field theory analysis to the $k$-channel SU($N$) Kondo system, and find a peculiar behavior in the cases $N > k > 1$, which we call Fermi/non-Fermi mixing: The low temperature scaling is described as the Fermi liquid, while the zero temperature IR fixed point exhibits the non-Fermi liquid signature. We also show that the Wilson ratio is no longer universal for the cases $N > k > 1$. The deviation from the universal value of the Wilson ratio could be used as an experimental signal of the Fermi/non-Fermi mixing.

  3. The Kondo contribution to the electrical resistivity in UCu sub 5 sub - sub x Ni sub x and the non-Fermi liquid behaviour of UCu sub 4 Ni

    CERN Document Server

    Torre, L D L; Ellerby, M; McEwen, K A


    We report on electrical resistivity measurements performed on polycrystalline samples of UCu sub 5 sub - sub x Ni sub x (x = 0.25, 1). In order to extract the Kondo contribution to the resistivity, the experiments were carried out over a wide temperature range (0.4-800 K). From the analysis of our results, we conclude that the Kondo temperature takes values of T sub K approx 240 K for x = 1 and T sub K approx 245 K for x = 0.25, and that for both Ni concentrations the dominant part of the remarkably high residual resistivity (rho(0) approx 400 mu OMEGA cm) corresponds to the Kondo contribution. These results are discussed in comparison with previous analysis of specific heat and magnetic susceptibility data that produced similar values of T sub K. We interpret our results in terms of disorder-driven non-Fermi liquid behaviour for UCu sub 4 Ni, as indicated by the anomalous temperature dependences of the electrical, thermal and magnetic properties previously observed in this compound.

  4. Non-fermi liquid behavior in dilute quadrupolar system Pr sub x La sub 1 sub - xPb sub 3 with x <= 0.05

    CERN Document Server

    Kawae, T; Yurue, K; Tateiwa, N; Takeda, K; Kitai, T


    We have studied the low-temperature properties of Pr sub x La sub 1 sub - sub x Pb sub 3 with non-Kramers GAMMA sub 3 quadrupolar moments of the crystal-electric-field ground state, for a wide concentration range of Pr ions. For x <= 0.05, the specific heat C/T increases monotonically below T = 1.5 K, which can be scaled with a characteristic temperature T* defined at each concentration x. The electrical resistivity rho(T) in the corresponding temperature region shows a marked decrease deviating from a Fermi-liquid behavior rho(T) propor to T sup 2. The Kondo effect arising from the correlation between the dilute GAMMA sub 3 moments and the conduction electrons may give rise to such anomalous behavior.

  5. Holographic non-Fermi-liquid fixed points. (United States)

    Faulkner, Tom; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David


    Techniques arising from string theory can be used to study assemblies of strongly interacting fermions. Via this 'holographic duality', various strongly coupled many-body systems are solved using an auxiliary theory of gravity. Simple holographic realizations of finite density exhibit single-particle spectral functions with sharp Fermi surfaces, of a form distinct from those of the Landau theory. The self-energy is given by a correlation function in an infrared (IR) fixed-point theory that is represented by a two-dimensional anti de Sitter space (AdS(2)) region in the dual gravitational description. Here, we describe in detail the gravity calculation of this IR correlation function.

  6. Kinetic equation for strongly interacting dense Fermi systems

    CERN Document Server

    Lipavsky, P; Spicka, V


    We review the non-relativistic Green's-function approach to the kinetic equations for Fermi liquids far from equilibrium. The emphasis is on the consistent treatment of the off-shell motion between collisions and on the non-instant and non-local picture of binary collisions. The resulting kinetic equation is of the Boltzmann type, and it represents an interpolation between the theory of transport in metals and the theory of moderately dense gases. The free motion of particles is renormalised by various mean field and mass corrections in the spirit of Landau's quasiparticles in metals. The collisions are non-local in the spirit of Enskog's theory of non-ideal gases. The collisions are moreover non-instant, a feature which is absent in the theory of gases, but which is shown to be important for dense Fermi systems. In spite of its formal complexity, the presented theory has a simple implementation within the Monte-Carlo simulation schemes. Applications in nuclear physics are given for heavy-ion reactions and th...

  7. Dependence of information entropy of uniform Fermi systems on correlations and thermal effects (United States)

    Moustakidis, Ch. C.; Massen, S. E.


    The influence of correlations of uniform Fermi systems (nuclear matter, electron gas, and liquid He3 ) on Shannon’s information entropy, S , is studied. S is the sum of the information entropies in position and momentum spaces. It is found that, for three different Fermi systems with different particle interactions, the correlated part of S (Scor) depends on the correlation parameter of the systems or on the discontinuity gap of the momentum distribution through two parameter expressions. The values of the parameters characterize the strength of the correlations. A two parameter expression also holds between Scor and the mean kinetic energy (K) of the Fermi system. The study of thermal effects on the uncorrelated electron gas leads to a relation between the thermal part of S (Sthermal) and the fundamental quantities of temperature, thermodynamical entropy, and the mean kinetic energy. It is found that, in the case of low temperature limit, the expression connecting Sthermal with K is the same to the one which connects Scor with K . There are only some small differences on the values of the parameters. Thus, regardless of the reason (correlations or thermal) that changes K , S takes almost the same value.

  8. Feneric Fermi Size Enhancement of Pairing in Mesoscopic Fermi Systems

    CERN Document Server

    Farine, M; Schuck, P; Viñas, X


    The finite size dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well as atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is a surface effect which, when properly included, accounts for the data.

  9. Bifurcation in kinetic equation for interacting Fermi systems (United States)

    Morawetz, Klaus


    The recently derived nonlocal quantum kinetic equation for dense interacting Fermi systems combines time derivatives with finite time stepping known from the logistic mapping. This continuous delay differential equation is a consequence of the microscopic delay time representing the dynamics of the deterministic chaotic system. The responsible delay time is explicitly calculated and discussed for short-range correlations. As a novel feature oscillations in the time evolution of the distribution function itself appear and bifurcations up to chaotic behavior occur. The temperature and density conditions are presented where such oscillations and bifurcations arise indicating an onset of phase transition.

  10. Non-Fermi-liquid behavior: Exact results for ensembles of magnetic impurities

    CERN Document Server

    Zvyagin, A A


    In this work we consider several exactly solvable models of magnetic impurities in critical quantum antiferromagnetic spin chains and multichannel Kondo impurities. Their ground state properties are studied and the finite set of nonlinear integral equations, which exactly describe the thermodynamics of the models, is constructed. We obtain several analytic low-energy expressions for the temperature, magnetic field, and frequency dependences of important characteristics of exactly solvable disordered quantum spin models and disordered multichannel Kondo impurities with essential many-body interactions. We show that the only low-energy parameter that gets renormalized is the velocity of the low-lying excitations (or the effective crossover scale connected with each impurity); the others appear to be universal. In our study several kinds of strong disorder important for experiments were used. Some of them produce low divergences in certain characteristics of our strongly disordered critical systems (compared wit...

  11. Some aspects of singular interactions in condensed Fermi systems (United States)

    Stamp, P. C. E.


    This article gives a fairly detailed survey of some of the problems raised when the interaction energy f^{σ σ'}_{k k'} between 2 fermionic quasiparticles (in 2 dimensions) is singular when |k-k'|to 0. Before dealing with singular interactions, it is shown how a non-singular f^{σ σ'}_{k k'} leads to a 2-dimensional Fermi liquid theory, which is internally consistent, at least as far as its infrared properties are concerned. The quasiparticle properties are calculated in detail. The question of whether singular interactions arise for the dilute Fermi gas, with short-range repulsive interactions, is investigated perturbatively. One finds a weak singularity in f^{σ σ'}_{k k'}, when the dimensionality D = 2, but it does not destabilize the Fermi liquid. A more sophisticated analysis is then given, to all orders in the interaction, using the Lippman-Schwinger equation as well as a phase shift analysis for a finite box. The conclusion is that any breakdown of Fermi liquid theory must come from non-perturbative effects. An examination is then made of some of the consequences arising if a singular interaction is introduced — the form proposed by Anderson is used as an example. A hierarchy of singular terms arise in all quantities — this is shown for the self-energy, and also the 3 point and 4 point scattering functions. These may be summed in a perfectly consistent manner. Most attention is given to the particle-hole channel, since it appears to lead to results different from those of Anderson. Nevertheless it appears that it is possible to derive a sensible theory starting from a singular effective Hamiltonian — although Fermi Liquid theory breaks down, all fermionic quantities may be calculated consistently. Finally, the effect of a magnetic field (which cuts off the infrared divergences) is investigated, and the de Haas-van Alphen amplitude calculated, for such a singular Fermionic system.

  12. UV/IR Mixing In Non-Fermi Liquids: Higher-Loop Corrections In Different Energy Ranges

    CERN Document Server

    Mandal, Ipsita


    We revisit the Ising-nematic quantum critical point with an $m$-dimensional Fermi surface by applying a dimensional regularization scheme. We compute the contribution from two-loop and three-loop diagrams in the intermediate energy range controlled by a crossover scale. We find that for $m=2 $, the corrections continue to be one-loop exact for both the infrared and intermediate energy regimes.

  13. Non-metallic, non-Fermi-liquid resistivity of FeCrAs from 0 to 17 GPa. (United States)

    Tafti, F F; Wu, W; Julian, S R


    An unusual, non-metallic resistivity of the 111 iron-pnictide compound FeCrAs is shown to be relatively unchanged under pressures of up to 17 GPa. Combined with our previous finding that this non-metallic behaviour persists from at least 80 mK to 800 K, this shows that the non-metallic phase is exceptionally robust. Antiferromagnetic order, with a Néel temperature TN ∼ 125 K at ambient pressure, is suppressed by pressure at a rate of 7.0 ± 0.4 K GPa(-1), falling to ∼50 K at 10 GPa. We conclude that the formation of a spin-density-wave gap at TN does not play an important role in the non-metallic resistivity of FeCrAs at low temperatures.

  14. Low-energy spin fluctuations in the non-Fermi-liquid compound YbRh2Si2

    Directory of Open Access Journals (Sweden)

    O. Stockert et al


    Full Text Available We report on inelastic neutron scattering experiments on YbRh2Si2 powder to study the low-energy spin dynamics at temperatures between T=0.8 and 22 K. The low-energy magnetic response is quasielastic. However, it exhibits an unusual form not modelled by a simple relaxation rate yielding a Lorentzian lineshape, but can satisfactorily be described by a phenomenological model involving a distribution of relaxation rates. The lower bound of the relaxation rates varies roughly linear with temperature indicating a pronounced slowing down of the critical modes above the antiferromagnetic ordering temperature TNapprox70 mK.

  15. Quantum response of finite Fermi systems and the relation of Lyapunov exponent to transport coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K


    Within the frame of kinetic theory a response function is derived for finite Fermi systems which includes dissipation in relaxation time approximation and a contribution from additional chaotic processes characterized by the largest Lyapunov exponent. A generalized local density approximation is presented including the effect of many particle relaxation and the additional chaotic scattering. For small Lyapunov exponents relative to the product of wave vector and Fermi time. Therefore the transport coefficients can be connected with the largest positive Lyapunov exponent in the same way as known the transport theory in relaxation time approximation. (author)

  16. Self-consistent theory of finite Fermi systems and Skyrme–Hartree–Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Saperstein, E. E., E-mail:; Tolokonnikov, S. V. [National Research Center Kurchatov Institute (Russian Federation)


    Recent results obtained on the basis of the self-consistent theory of finite Fermi systems by employing the energy density functional proposed by Fayans and his coauthors are surveyed. These results are compared with the predictions of Skyrme–Hartree–Fock theory involving several popular versions of the Skyrme energy density functional. Spherical nuclei are predominantly considered. The charge radii of even and odd nuclei and features of low-lying 2{sup +} excitations in semimagic nuclei are discussed briefly. The single-particle energies ofmagic nuclei are examined inmore detail with allowance for corrections to mean-field theory that are induced by particle coupling to low-lying collective surface excitations (phonons). The importance of taking into account, in this problem, nonpole (tadpole) diagrams, which are usually disregarded, is emphasized. The spectroscopic factors of magic and semimagic nuclei are also considered. In this problem, only the surface term stemming from the energy dependence induced in the mass operator by the exchange of surface phonons is usually taken into account. The volume contribution associated with the energy dependence initially present in the mass operator within the self-consistent theory of finite Fermi systems because of the exchange of high-lying particle–hole excitations is also included in the spectroscopic factor. The results of the first studies that employed the Fayans energy density functional for deformed nuclei are also presented.

  17. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov


    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  18. New physics of metals: fermi surfaces without Fermi liquids.


    Anderson, P W


    I relate the historic successes, and present difficulties, of the renormalized quasiparticle theory of metals ("AGD" or Fermi liquid theory). I then describe the best-understood example of a non-Fermi liquid, the normal metallic state of the cuprate superconductors.

  19. Coordinate-Space Hartree-Fock-Bogoliubov Solvers for Superfluid Fermi Systems in Large Boxes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, J. C. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Fann, George I [ORNL; Harrison, Robert J [ORNL; Nazarewicz, W. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Hill, Judith C [ORNL; Galindo, Diego A [ORNL; Jia, Jun [ORNL


    The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi systems with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. The MADNESS-HFB solver uses a novel multi-resolution analysis based adaptive pseudo-spectral techniques to enable fully parallel 3D calculations of very large systems. In this work we present benchmark results for HFB-AX and MADNESS-HFB on ultracold trapped fermions.

  20. Temperature-dependent x-ray diffraction study of Pd/Cu site interchange in non-Fermi liquid UCu(4)Pd



    A pair distribution function (PDF) analysis of temperature-dependent x-ray diffraction measurements from UCu$_4$Pd is presented. Fits to the displacement parameters ($u^2$'s) with a Debye model show better agreement with a model that includes 25\\ percent of the Pd atoms on 16$e$ (Cu) sites. In addition, significant non-thermal disorder is observed in the Cu environment, in contrast to previous measurements of local order in the U-Cu pairs.

  1. Mechanism for the non-Fermi-liquid behavior in CeCu6-xAux

    DEFF Research Database (Denmark)

    Rosch, A.; Schröder, A.; Stockert, O.;


    in which three-dimensional conduction electrons are coupled to two-dimensional critical ferromagnetic fluctuations near the quantum critical point x(c) = 0.1. This picture is motivated by the neutron scattering data in the ordered phase (x = 0.2) and is consistent with the observed phase diagram....

  2. Quantum information aspects on bulk and nano interacting Fermi system: A spin-space density matrix approach (United States)

    Afzali, R.; Ebrahimian, N.; Eghbalifar, B.


    By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.

  3. Compressible Strips, Chiral Luttinger Liquids, and All That Jazz (United States)

    MacDonald, A. H.


    When the quantum Hall effect occurs in a two-dimensional electron gas, all low-energy elementary excitations are localized near the system edge. The edge acts in many ways like a one-dimensional ring of electrons, except that a finite current flows around the ring in equilibrium. This article is a brief and informal review of some of the physics of quantum Hall system edges. We discuss the implications of macroscopic {\\em compressible strip} models for microscopic {chiral Luttinger liquid} models and make an important distinction between the origin of non-Fermi-liquid behavior in fractional quantum Hall edges and in usual one-dimensional electron gas systems.

  4. Formation of Fermi surfaces and the appearance of liquid phases in holographic theories with hyperscaling violation

    CERN Document Server

    Kuang, Xiao-Mei; Wang, Bin; Wu, Jian-Pin


    We consider a holographic fermionic system in which the fermions are interacting with a U(1) gauge field in the presence of a dilaton field in the background of a charged black hole with hyperscaling violation. Using both analytical and numerical methods, we investigate the properties of the infrared and ultaviolet Green's functions of the holographic fermionic system. Studying the spectral functions of the system, we find that as the hyperscaling violation exponent is varied, the fermionic system possesses Fermi, non-Fermi, marginal-Fermi and log-oscillating liquid phases. Various liquid phases of the fermionic system with hyperscaling violation are also generated with the variation of the fermionic mass.

  5. A semiclassical approach to the dynamics of many-body Bose/Fermi systems by the path integral centroid molecular dynamics (United States)

    Kinugawa, Kenichi; Nagao, Hidemi; Ohta, Koji


    We present a formalism of the path integral centroid molecular dynamics (CMD) extended to Bose and Fermi statistics as a semiclassical approach to explore the dynamics of quantum many-body systems. The validity of the method is examined in relation to the time correlation functions. The presently proposed scheme, refined from our previous derivation [Chem. Phys. Lett. 307, 187 (1999)], is aimed at the calculations of not the exact quantum-mechanical dynamics but the semiclassical dynamics under certain approximations. The formalism is based on the projection operator with which the Bose/Fermi system is mapped onto a particular type of pseudo-Boltzmann system. In the pseudo-Boltzmann system the correlation due to the Bose/Fermi statistics is introduced via an extra pseudopotential called the permutation potential and its relevant operator. Using the present semiclassical formalism, the time correlation function of centroid position, which is evaluated from the CMD trajectories in the pseudo-Boltzmann system, is an approximation to the Kubo canonical correlation function of position operator of the exact quantum-statistical system composed of bosons or fermions. There is no such apparent relation between the momentum operator and the corresponding momentum centroid.

  6. New phase boundary between magnetic and non-Fermi-liquid in Ce(Rh1-xRux)3B2, for 0⩽x⩽0.4 (United States)

    Bauer, E.; Hauser, R.; Galatanu, A.; Lindbaum, A.; Hilscher, G.; Sassik, H.; Kirchmayr, H.; Sereni, J. G.; Rogl, P.


    A study of the temperature-dependent magnetic susceptibility and electrical resistivity ρ(T) (0.5-300 K) on single-phase alloys (CaCu5 type), prepared by argon arc melting, reveals a magnetic phase transition with a nonmonotonous decrease of the ordering temperature from Tc=115 K for x=0 to Tc≈0 for x=0.40. A kink in the susceptibility at about 70 K indicates that ferromagnetism (at xCeRh3B2.

  7. Field-induced quantum critical route to a Fermi liquid in high-temperature superconductors. (United States)

    Shibauchi, Takasada; Krusin-Elbaum, Lia; Hasegawa, Masashi; Kasahara, Yuichi; Okazaki, Ryuji; Matsuda, Yuji


    In high-transition-temperature (T(c)) superconductivity, charge doping is a natural tuning parameter that takes copper oxides from the antiferromagnet to the superconducting region. In the metallic state above T(c), the standard Landau's Fermi-liquid theory of metals as typified by the temperature squared (T(2)) dependence of resistivity appears to break down. Whether the origin of the non-Fermi-liquid behavior is related to physics specific to the cuprates is a fundamental question still under debate. We uncover a transformation from the non-Fermi-liquid state to a standard Fermi-liquid state driven not by doping but by magnetic field in the overdoped high-T(c) superconductor Tl(2)Ba(2)CuO(6+x). From the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid features appear above a sufficiently high field that decreases linearly with temperature and lands at a quantum critical point near the superconductivity's upper critical field-with the Fermi-liquid coefficient of the T(2) dependence showing a power-law diverging behavior on the approach to the critical point. This field-induced quantum criticality bears a striking resemblance to that in quasi-two-dimensional heavy-Fermion superconductors, suggesting a common underlying spin-related physics in these superconductors with strong electron correlations.

  8. Algebraic Fermi liquid from phase fluctuations: "topological" fermions, vortex "berryons," and QED3 theory of cuprate superconductors. (United States)

    Franz, M; Tesanović, Z


    Within the phase fluctuation model for the pseudogap state of cuprate superconductors we identify a novel statistical "Berry phase" interaction between the nodal quasiparticles and fluctuating vortex-antivortex excitations. The effective action describing this model assumes the form of an anisotropic Euclidean quantum electrodynamics in (2+1) dimensions (QED (3)) and naturally generates non-Fermi liquid behavior for its fermionic excitations. The doping axis in the x -T phase diagram emerges as a quantum critical line which regulates the low energy fermiology.

  9. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S


    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  10. Hidden Fermi liquid; the moral: a good effective low-energy theory is worth all of Monte Carlo with Las Vegas thrown in

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Philip W; Casey, Philip A, E-mail: pwa@princeton.ed [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)


    We present a formalism for dealing directly with the effects of the Gutzwiller projection implicit in the t-J model which is widely believed to underlie the phenomenology of the high-T{sub c} cuprates. We suggest that a true Bardeen-Cooper-Schrieffer condensation from a Fermi liquid state takes place, but in the unphysical space prior to projection. At low doping, however, instead of a hidden Fermi liquid one gets a 'hidden' non-superconducting resonating valence bond state which develops hole pockets upon doping. The theory which results upon projection does not follow conventional rules of diagram theory and in fact in the normal state is a Z = 0 non-Fermi liquid. Anomalous properties of the 'strange metal' normal state are predicted and compared against experimental findings.

  11. Momentum sharing in imbalanced Fermi systems

    CERN Document Server

    Hen, O; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; Beck, S May-Tal; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; DAngelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Camacho, C Munoz; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatie, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Watts, D; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I


    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.

  12. Kondo Impurities in the Kitaev Spin Liquid: Numerical Renormalization Group Solution and Gauge-Flux-Driven Screening. (United States)

    Vojta, Matthias; Mitchell, Andrew K; Zschocke, Fabian


    Kitaev's honeycomb-lattice compass model describes a spin liquid with emergent fractionalized excitations. Here, we study the physics of isolated magnetic impurities coupled to the Kitaev spin-liquid host. We reformulate this Kondo-type problem in terms of a many-state quantum impurity coupled to a multichannel bath of Majorana fermions and present the numerically exact solution using Wilson's numerical renormalization group technique. Quantum phase transitions occur as a function of Kondo coupling and locally applied field. At zero field, the impurity moment is partially screened only when it binds an emergent gauge flux, while otherwise it becomes free at low temperatures. We show how Majorana degrees of freedom determine the fixed-point properties, make contact with Kondo screening in pseudogap Fermi systems, and discuss effects away from the dilute limit.

  13. Market Liquidity and Funding Liquidity


    Brunnermeier, Markus K; Lasse Heje Pedersen


    We provide a model that links an asset's market liquidity - i.e., the ease with which it is traded - and traders' funding liquidity - i.e., the ease with which they can obtain funding. Traders provide market liquidity, and their ability to do so depends on their availability of funding. Conversely, traders' funding, i.e., their capital and the margins they are charged, depend on the assets' market liquidity. We show that, under certain conditions, margins are destabilizing and market liquidit...

  14. Market Liquidity and Funding Liquidity


    Markus K. Brunnermeier; Lasse Heje Pedersen


    We provide a model that links an asset's market liquidity - i.e., the ease with which it is traded - and traders' funding liquidity - i.e., the ease with which they can obtain funding. Traders provide market liquidity, and their ability to do so depends on their availability of funding. Conversely, traders' funding, i.e., their capital and the margins they are charged, depend on the assets' market liquidity. We show that, under certain conditions, margins are destabilizing and market liquidit...

  15. Pacifying the Fermi-liquid: battling the devious fermion signs

    Directory of Open Access Journals (Sweden)

    J. Zaanen


    Full Text Available  The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics are self consistently translated into a geometrical constraint structure (the nodal hypersurface acting on an effective bosonic dynamics. As an illustrative example we use this formalism to study 1+1-dimensional systems, where statistics are irrelevant, and hence the sign problem can be circumvented. In this low-dimensional example, the structure of the nodal constraints leads to a lucid picture of the entropic interaction essential to one-dimensional physics. Working with the path integral in momentum space, we then show that the Fermi gas can be understood by analogy to a Mott insulator in a harmonic trap. Going back to real space, we discuss the topological properties of the nodal cells, and suggest a new holographic conjecture relating Fermi liquids in higher dimensions to soft-core bosons in one dimension. We also discuss some possible connections between mixed Bose/Fermi systems and supersymmtery.

  16. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic


    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  17. Quantum phase transition and Fermi liquid behavior in Pd1 -xNix nanoalloys (United States)

    Swain, P.; Srivastava, Suneel K.; Srivastava, Sanjeev K.


    The Pd1 -xNix alloy system is an established ideal transition-metal system possessing a composition-induced paramagnetic-to-ferromagnetic quantum phase transition (QPT) at the critical concentration xc˜0.026 in bulk. A low-temperature non-Fermi liquid (NFL) behavior around xc usually indicates the presence of quantum criticality (QC) in this system. In this work, we explore the existence of such a QPT in nanoparticles of this alloy system. We synthesized single-phase, polydispersed and 40-50 nm mean diameter crystalline nanoparticles of Pd1 -xNix alloys, with x near xc and beyond, by a chemical reflux method. In addition to the determination of the size, composition, phase, and crystallinity of the alloys by microscopic and spectroscopic techniques, the existence of a possible QPT was explored by resistivity and dc magnetization measurements. A dip in the value of the exponent n near xc, and a concomitant peak in the constant A of the A Tn dependence of the low-temperature (T ) resistivity indicate the presence of a quantum-like phase transition in the system. The minimum value of n , however, remains within the Fermi liquid regime (n >2 ). The dc magnetization results suggest an anticipatory presence of a superparamagnetic-to-ferromagnetic QPT in the mean-sized nanoparticles. The observation of a possible quantum critical NFL behavior (n <2 ) through resistivity is argued to be inhibited by the electron-magnon scatterings present in the smaller nanoparticles.

  18. Entanglement entropy of composite Fermi liquid states on the lattice: In support of the Widom formula (United States)

    Mishmash, Ryan V.; Motrunich, Olexei I.


    Quantum phases characterized by surfaces of gapless excitations are known to violate the otherwise ubiquitous boundary law of entanglement entropy in the form of a multiplicative log correction: S ˜Ld -1logL . Using variational Monte Carlo, we calculate the second Rényi entropy for a model wave function of the ν =1 /2 composite Fermi liquid (CFL) state defined on the two-dimensional triangular lattice. By carefully studying the scaling of the total Rényi entropy and, crucially, its contributions from the modulus and sign of the wave function on various finite-size geometries, we argue that the prefactor of the leading L logL term is equivalent to that in the analogous free fermion wave function. In contrast to the recent results of Shao et al. [Phys. Rev. Lett. 114, 206402 (2015), 10.1103/PhysRevLett.114.206402], we thus conclude that the "Widom formula" holds even in this non-Fermi liquid CFL state. More generally, our results further elucidate—and place on a more quantitative footing—the relationship between nontrivial wave function sign structure and S ˜L logL entanglement scaling in such highly entangled gapless phases.

  19. Subsidizing Liquidity

    DEFF Research Database (Denmark)

    Malinova, Katya; Park, Andreas


    Facing increased competition over the last decade, many stock exchanges changed their trading fees to maker-taker pricing, an incentive scheme that rewards liquidity suppliers and charges liquidity demanders. Using a change in trading fees on the Toronto Stock Exchange, we study whether and why...

  20. Liquid pearls

    CERN Document Server

    Bremond, Nicolas; Bibette, Jérôme


    This fluid dynamics video reports how to form liquid core capsules having a thin hydrogel elastic membrane named liquid pearls. These fish-egg like structures are initially made of a millimetric liquid drop, aqueous or not, coated with an aqueous liquid film containing sodium alginate that gels once the double drop enters a calcium chloride bath. The creation of such pearls with micrometer thick membrane requires to suppress mixing until gelling takes place. Here, we show that superimposing a two dimensional surfactant precipitation at the interface confers a transient rigidity that can damp the shear induced instability at impact. Based on this, pearls containing almost any type of liquids can be created. The video focuses on the dynamics of the entry of the compound drop into the gelling bath.

  1. Observation of a roton collective mode in a two-dimensional Fermi liquid. (United States)

    Godfrin, Henri; Meschke, Matthias; Lauter, Hans-Jochen; Sultan, Ahmad; Böhm, Helga M; Krotscheck, Eckhard; Panholzer, Martin


    Understanding the dynamics of correlated many-body quantum systems is a challenge for modern physics. Owing to the simplicity of their Hamiltonians, (4)He (bosons) and (3)He (fermions) have served as model systems for strongly interacting quantum fluids, with substantial efforts devoted to their understanding. An important milestone was the direct observation of the collective phonon-roton mode in liquid (4)He by neutron scattering, verifying Landau's prediction and his fruitful concept of elementary excitations. In a Fermi system, collective density fluctuations (known as 'zero-sound' in (3)He, and 'plasmons' in charged systems) and incoherent particle-hole excitations are observed. At small wavevectors and energies, both types of excitation are described by Landau's theory of Fermi liquids. At higher wavevectors, the collective mode enters the particle-hole band, where it is strongly damped. The dynamics of Fermi liquids at high wavevectors was thus believed to be essentially incoherent. Here we report inelastic neutron scattering measurements of a monolayer of liquid (3)He, observing a roton-like excitation. We find that the collective density mode reappears as a well defined excitation at momentum transfers larger than twice the Fermi momentum. We thus observe unexpected collective behaviour of a Fermi many-body system in the regime beyond the scope of Landau's theory. A satisfactory interpretation of the measured spectra is obtained using a dynamic many-body theory.

  2. Managing liquidity

    DEFF Research Database (Denmark)

    Pokutta, Sebastian; Schmaltz, Christian


    Large banking groups face the question of how to optimally allocate and generate liquidity: in a central liquidity hub or in many decentralized branches. We translate this question into a facility location problem under uncertainty. We show that volatility is the key driver behind (de...... above which it is advantageous to open a liquidity center and show that it is a function of the volatility and the characteristic of the bank network. Finally, we discuss the n-branch model for real-world banking groups (10-60 branches) and show that it can be solved with high granularity (100 scenarios...

  3. Liquid explosives

    CERN Document Server

    Liu, Jiping


    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  4. Liquid Crystals (United States)


    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  5. Liquid acrobatics

    CERN Document Server

    Bird, James C


    We experiment with injecting a continuous stream of gas into a shallow liquid, similar to how one might blow into a straw placed at the bottom of a near-empty drink. By varying the angle of the straw (here a metal needle), we observe a variety of dynamics, which we film using a high-speed camera. Most noteworthy is an intermediate regime in which cyclical jets erupt from the air-liquid interface and breakup into air-born droplets. These droplets trace out a parabolic trajectory and bounce on the air-liquid interface before eventually coalescing. The shape of each jet, as well as the time between jets, is remarkably similar and leads to droplets with nearly identical trajectories. The following article accompanies the linked fluid dynamics video submitted to the Gallery of Fluid Motion in 2008.

  6. Macromolecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Safinya, C.R.; Safran, S.A. (Exxon Research and Engineering Co., Annandale, NJ (US)); Pincus, P.A. (Univ. of California at Santa Barbara, Santa Barbara, CA (US))


    Liquids include a broad range of material systems which are of high scientific and technological interest. Generally speaking, these are partially ordered or disordered phases where the individual molecular species have organized themselves on length scales which are larger than simple fluids, typically between 10 Angstroms and several microns. The specific systems reported on in this book include membranes, microemulsions, micelles, liquid crystals, colloidal suspensions, and polymers. They have a major impact on a broad spectrum of technological industries such as displays, plastics, soap and detergents, chemicals and petroleum, and pharmaceuticals.

  7. Liquid Marbles

    KAUST Repository

    Khalil, Kareem


    Granulation, the process of formation of granules from a combination of base powders and binder liquids, has been a subject of research for almost 50 years, studied extensively for its vast applications, primarily to the pharmaceutical industry sector. The principal aim of granulation is to form granules comprised of the active pharmaceutical ingredients (API’s), which have more desirable handling and flowability properties than raw powders. It is also essential to ensure an even distribution of active ingredients within a tablet with the goal of achieving time‐controlled release of drugs. Due to the product‐specific nature of the industry, however, data is largely empirical [1]. For example, the raw powders used can vary in size by two orders of magnitude with narrow or broad size distributions. The physical properties of the binder liquids can also vary significantly depending on the powder properties and required granule size. Some significant progress has been made to better our understanding of the overall granulation process [1] and it is widely accepted that the initial nucleation / wetting stage, when the binder liquid first wets the powders, is key to the whole process. As such, many experimental studies have been conducted in attempt to elucidate the physics of this first stage [1], with two main mechanisms being observed – classified by Ivenson [1] as the “Traditional description” and the “Modern Approach”. See Figure 1 for a graphical definition of these two mechanisms. Recent studies have focused on the latter approach [1] and a new, exciting development in this field is the Liquid Marble. This interesting formation occurs when a liquid droplet interacts with a hydrophobic (or superhydrophobic) powder. The droplet can become encased in the powder, which essentially provides a protective “shell” or “jacket” for the liquid inside [2]. The liquid inside is then isolated from contact with other solids or liquids and has some

  8. Liquid/liquid heat exchanger (United States)

    Miller, C. G.


    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  9. Chiral liquids

    Directory of Open Access Journals (Sweden)

    Zakharov V.I.


    Full Text Available We review briefly properties of chiral liquids, or liquids with massless fermionic constituents. We concentrate on three effects, namely, the low ratio of viscosity η to entropy density s, chiral magnetic and vortical effects. We sketch standard derivations of these effects in the hydrodynamic approximation and then concentrate on possibile unifying approach which is based on consideration of the (anomalously conserved axial current. The point is that the conservation of chirality is specific for the microscopic, field-theoretic description of massless fermions and their interactions. On the macroscopic side, the standard hydrodynamic equations are not consistent, generally speaking, with conservation of a helical macroscopic motion. Imposing extra constraints on the hydrodynamics might resolve this “clash-of-symmetries” paradox.

  10. Liquid helium

    CERN Document Server

    Atkins, K R


    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  11. Pump for Saturated Liquids (United States)

    Elliott, D. G.


    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  12. Quantum phase transitions in Bose-Fermi systems

    CERN Document Server

    Petrellis, D; Iachello, F


    Quantum phase transitions in a system of N bosons with angular momentum L=0,2 (s,d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.

  13. Partial dynamical symmetry in Bose-Fermi systems

    CERN Document Server

    Van Isacker, P; Thomas, T; Leviatan, A


    We generalize the notion of partial dynamical symmetry (PDS) to a system of interacting bosons and fermions. In a PDS, selected states of the Hamiltonian are solvable and preserve the symmetry exactly, while other states are mixed. As a first example of such novel symmetry construction, spectral features of the odd-mass nucleus $^{195}$Pt are analyzed.

  14. Modeling Strongly Correlated Fermi Systems Using Ultra-Cold Atoms (United States)


    exceeds the optical scattering rate Γsc). For the lattice described above, the Lamb Dicke parameter ER/hν = 0.12 and the festina lente criterion Γ entropy ). Initialization of the quantum register for quantum computations requires a gas of neutral atoms in a near-zero- entropy entropy state is prepared by selectively removing atoms in the second band from the lattice potential. optical lattice experiments have

  15. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Peter N Cox


    Full Text Available There has been a recent explosion of interest in the use of liquid ventilation. Over time humans have lost the physiological attributes necessary for respiration in water. However, perfluorocarbons have high solubilities for oxygen and carbon dioxide, as well as a low surface tension. These characteristics allow them to be used as a medium to assist gas exchange and recruit atelectatic-dependent lung zones in respiratory distress syndrome. Current trials may prove perfluorocarbon to be a useful adjunct in lung protective strategies in respiratory distress syndrome.

  16. From Funding Liquidity to Market Liquidity

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Lund, Jesper; Gyntelberg, Jacob

    This paper shows empirically that funding liquidity drives market liquidity. As it becomes harder to secure term funding in the money markets, liquidity deteriorates in the Danish bond market. We show that the first principal component of bond market liquidity is driven by the market makers' abil...... for other European government bonds using MTS data. The findings suggest that regulatory bond based liquidity buffers for banks will have limited effectiveness.......This paper shows empirically that funding liquidity drives market liquidity. As it becomes harder to secure term funding in the money markets, liquidity deteriorates in the Danish bond market. We show that the first principal component of bond market liquidity is driven by the market makers...

  17. Liquidation of the company


    Procházka, Michal


    This work deals with the liquidation of the company focusing on commercial companies. It describes whole process of liquidation from decision to liquidate to delete the company from the Commercial Register. The work also focuses on legal, accounting and tax site of liquidation. Accounting practices in the liquidation process are illustrated on the example of a fictive company.

  18. VizieR Online Data Catalog: Non-Fermi blazar sample (Xiong+, 2015) (United States)

    Xiong, D.; Zhang, X.; Bai, J.; Zhang, H.


    The selection criteria for the sample were that we tried to select the largest group of blazars included in the multi-frequency catalogue of blazars (the Roma BZCAT; Massaro et al.. 2009, Cat. J/A+A/495/691) with reliable broad-line luminosity (used as a proxy for disc luminosity), redshift, black hole mass and jet kinetic power. The sample of FBs was directly from Xiong & Zhang (2014MNRAS.441.3375X). The νpeak and Lpeak of our FBs were collected from Finke (2013ApJ...763..134F) and Meyer et al. (2011, Cat. J/ApJ/740/98), and the νpeak and Lpeak of NFBs from Nieppola et al. (2006, Cat. J/A+A/445/441; 2008, Cat. J/A+A/488/867), Meyer et al. (2011, Cat. J/ApJ/740/98), Wu, Gu & Jiang (2009RAA.....9..168W) and Aatrokoski et al. (2011A&A...536A..15P). (1 data file).


    Directory of Open Access Journals (Sweden)



    Full Text Available The present paper aims to present the correlation as well as the differences between liquidity/cash and liquidity ratio in terms of economic entities. Researches on this topic are based on the opinions of some specialists in accounting and in the economic-financial analysis, as well as on the national legal stipulations and the ones set out in the International Accounting Standards, the Financial report, respectively. The object of this paper is represented by the correlation between liquidity/cash and liquidity ratios representing the liquidity as current assets, assets implied in the determination of liquidity ratios. The end of the paper consists of the conclusions drawn from the issues presented in the paper but also our views on this research topic.

  20. Liquidity risk management

    Directory of Open Access Journals (Sweden)

    Milošević Miloš


    Full Text Available Liquidity risk management is a major activity of every bank. To be able to honor its matured liabilities, a bank strives to provide and maintain the required level of liquidity on a daily basis. Although each commercial bank has its own methodology of calculating the required liquidity level, in line with its adopted policies, the central bank has enacted the Decision on Liquidity Risk Management, prescribing the obligatory liquidity risk management policy.

  1. Transport phenomena in correlated quantum liquids: Ultracold Fermi gases and F/N junctions (United States)

    Li, Hua

    Landau Fermi-liquid theory was first introduced by L. D. Landau in the effort of understanding the normal state of Fermi systems, where the application of the concept of elementary excitations to the Fermi systems has proved very fruitful in clarifying the physics of strongly correlated quantum systems at low temperatures. In this thesis, I use Landau Fermi-liquid theory to study the transport phenomena of two different correlated quantum liquids: the strongly interacting ultracold Fermi gases and the ferromagnet/normal-metal (F/N) junctions. The detailed work is presented in chapter II and chapter III of this thesis, respectively. Chapter I holds the introductory part and the background knowledge of this thesis. In chapter II, I study the transport properties of a Fermi gas with strong attractive interactions close to the unitary limit. In particular, I compute the transport lifetimes of the Fermi gas due to superfluid fluctuations above the BCS transition temperature Tc. To calculate the transport lifetimes I need the scattering amplitudes. The scattering amplitudes are dominated by the superfluid fluctuations at temperatures just above Tc. The normal scattering amplitudes are calculated from the Landau parameters. These Landau parameters are obtained from the local version of the induced interaction model for computing Landau parameters. I also calculate the leading order finite temperature corrections to the various transport lifetimes. A calculation of the spin diffusion coefficient is presented in comparison to the experimental findings. Upon choosing a proper value of F0a, I am able to present a good match between the theoretical result and the experimental measurement, which indicates the presence of the superfluid fluctuations near Tc. Calculations of the viscosity, the viscosity/entropy ratio and the thermal conductivity are also shown in support of the appearance of the superfluid fluctuations. In chapter III, I study the spin transport in the low

  2. Dynamics of liquid-liquid displacement. (United States)

    Fetzer, Renate; Ramiasa, Melanie; Ralston, John


    Capillary driven liquid-liquid displacement in a system with two immiscible liquids of comparable viscosity was investigated by means of optical high speed video microscopy. For the first time, the impact of substrate wettability on contact line dynamics in liquid-liquid systems was studied. On all substrates, qualitatively different dynamics, in two distinct velocity regimes, were found. Hydrodynamic models apply to the fast stage of initial spreading, while nonhydrodynamic dissipation dominates contact line motion in a final stage at low speed, where the molecular kinetic theory (MKT) successfully captured the dynamics. The MKT model parameter values showed no systematic dependence on substrate wettability. This unexpected result is interpreted in terms of local contact line pinning.

  3. Liquid Effluent Retention Facility (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  4. Liquid Drop Measuring Device for Analyzing Liquid Properties

    Institute of Scientific and Technical Information of China (English)


    Based on the correlation between certain properties of liquid and the properties of the corresponding liquid drop formed under given conditions, a liquid drop measuring device is utilized to monitor the drop formation process of the liquid sample with photoelectric measuring methods. The mechanical and optical characteristic of the liquid is explored with the optical fibers from the internal of the liquid drop during its formation. The drop head capacitor is utilized to monitor the growth process of the liquid drop to gain the drop volume information related to the physical property of liquid. The unique liquid drop trace containing the integrated properties of liquid is generated, and it is proved by experiment that for different liquids their liquid drop traces are different. The analysis on liquid properties and discrimination between different liquids can be proceeded with the liquid drop trace obtained by the liquid drop measuring device.

  5. Global Liquidity Trap


    Fujiwara, Ippei; NAKAJIMA Tomoyuki; Sudo, Nao; Teranishi, Yuki


    In this paper we consider a two-country New Open Economy Macroeconomics model, and analyze the optimal monetary policy when countries cooperate in the face of a "global liquidity trap" -- i.e., a situation where the two countries are simultaneously caught in liquidity traps. The notable features of the optimal policy in the face of a global liquidity trap are history dependence and international dependence. The optimality of history dependent policy is confirmed as in local liquidity trap. A ...

  6. Asset Class Liquidity Risk


    Ronnie Sadka


    This paper studies liquidity risk, as measured by the covariation of returns with unexpected changes in aggregate liquidity, across 106 indices covering global equity, industry sectors, fixed income, and hedge funds. Roughly 20% of all sample indices, and over 50% of hedge-fund indices, display a significant exposure to liquidity risk. The annualized cross-sectional liquidity risk premium is estimated at about 2%. The results are robust to various controls and methodological choices. Practica...

  7. Fluid Mechanics of Liquid-Liquid Systems. (United States)

    Richards, John Reed

    The detailed hydrodynamics of selected liquid -liquid flow systems are investigated to provide a firm foundation for the rational design of separation processes. The implementation of this objective centers on the development of a robust code to simulate liquid-liquid flows. We have applied this code to the realistic simulation of aspects of the complex fluid mechanical behavior, and developed quantitative insight into the underlying processes involved. The Volume of Fluid (VOF) method is combined with the Continuous Surface Force (CSF) algorithm to provide a numerically stable code capable of solving high Reynolds numbers free surface flows. One of the developments during the testing was an efficient method for solving the Young-Laplace equation describing the shape of the meniscus in a vertical cylinder for a constrained liquid volume. The steady-state region near the nozzle for the laminar flow of a Newtonian liquid jet injected vertically into another immiscible Newtonian liquid is investigated for various Reynolds numbers by solving the axisymmetric transient equations of motion and continuity. The analysis takes into account pressure, viscous, inertial, gravitational, and surface tension forces, and comparison with previous experimental measurements shows good agreement. Comparisons of the present numerical method with the numerical results of previous boundary-layer methods help establish their range of validity. A new approximate equation for the shape of the interface of the steady jet, based on an overall momentum balance, is also developed. The full transient from liquid-liquid jet startup to breakup into drops is also simulated numerically. In comparison with experiment, the results of the present numerical method show a greater sensitivity of the jet length to the Reynolds number than the best predictions of previous linear stability analyses. The formation of drops is investigated at low to high Reynolds numbers before and after jet formation. The

  8. Liquid/liquid/solid contact angles (United States)

    Borocco, Marine; Pellet, Charlotte; Authelin, Jean-René; Clanet, Christophe; Quéré, David; Compagnie des Interfaces Team


    Many studies have investigated solid/liquid/air interfaces and their corresponding wetting properties. We discuss what happens in less-studied liquid/liquid/solid systems, and focus on questions of dynamical wetting in a tube, having in mind applications in detergency. We use a capillary tube filled with water and containing a slug of silicone oil (or vice-versa), and present a series of experiments to determine static and dynamic wetting properties corresponding to this situation. We also discuss interfacial aging of such systems.

  9. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R


    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  10. Acidic Ionic Liquids. (United States)

    Amarasekara, Ananda S


    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  11. Critical Phenomena in Liquid-Liquid Mixtures (United States)

    Jacobs, D. T.


    Critical phenomena provide intriguing and essential insight into many issues in condensed matter physics because of the many length scales involved. Large density or concentration fluctuations near a system's critical point effectively mask the identity of the system and produce universal phenomena that have been well studied in simple liquid-vapor and liquid-liquid systems. Such systems have provided useful model systems to test theoretical predictions which can then be extended to more complicated systems. Along various thermodynamic paths, several quantities exhibit a simple power-law dependence close to the critical point. The critical exponents describing these relationships are universal and should depend only on a universality class determined by the order-parameter and spatial dimensionality of the system. Liquid gas, binary fluid mixtures, uniaxial ferromagnetism, polymer-solvent, and protein solutions all belong to the same (Ising model) universality class. The diversity of critical systems that can be described by universal relations indicates that experimental measurements on one system should yield the same information as on another. Our experimental investigations have tested existing theory and also extended universal behavior into new areas. By measuring the coexistence curve, heat capacity, thermal expansion and static light scattering (turbidity) in various liquid-liquid and polymer-solvent systems, we have determined critical exponents and amplitudes that have sometimes confirmed and other times challenged current theory. Recent experiments investigating the heat capacity and light scattering in a liquid-liquid mixture very close to the critical point will be discussed. This research is currently supported by The Petroleum Research Fund and by NASA grant NAG8-1433 with some student support from NSF-DMR 9619406.

  12. Solid on liquid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Charmet, J., E-mail: jerome.charmet@he-arc.c [Institut des Microtechnologies Appliquees ARC, HES-SO Arc, Eplatures-Grise 17, 2300 La Chaux-de-Fonds (Switzerland); Banakh, O.; Laux, E.; Graf, B.; Dias, F.; Dunand, A.; Keppner, H. [Institut des Microtechnologies Appliquees ARC, HES-SO Arc, Eplatures-Grise 17, 2300 La Chaux-de-Fonds (Switzerland); Gorodyska, G.; Textor, M. [BioInterface group, ETHZ, Wolfgang-Pauli-Strasse 10, ETH Hoenggerberg HCI H 525 8093 Zuerich (Switzerland); Noell, W.; Rooij, N.F. de [Ecole Polytechnique Federale de Lausanne, Institute of Microengineering, Sensors, Actuators and Microsystems laboratory, Rue Jaquet Droz 1, 2000 Neuchatel (Switzerland); Neels, A.; Dadras, M.; Dommann, A.; Knapp, H. [Centre Suisse d' Electronique et de Microtechnique SA, Rue Jacquet-Droz 1, 2002 Neuchatel (Switzerland); Borter, Ch.; Benkhaira, M. [COMELEC SA, Rue de la Paix 129, 2300 La Chaux-de-Fonds (Switzerland)


    A process for the deposition of a solid layer onto a liquid is presented. The polymer poly-di-chloro-para-xylylene, also known as Parylene C, was grown on low vapour pressure liquids using the conventional low pressure chemical vapour deposition process. A reactor was built and a process developed to enable the deposition of Parylene C at atmospheric pressure over high vapour pressure liquids. It was used to deposit Parylene C over water among others. In all cases Parylene C encapsulated the liquid without influencing its initial shape. The results presented here show also that the Parylene C properties are not affected by its growth on liquid templates and the roughness of the Parylene C surface in contact with the liquid during the deposition is extremely low.


    Whatley, M.E.; Woods, W.M.


    This invention relates to liquid-liquid extraction systems. The invention, an improved hydroclone system, comprises a series of serially connected, axially aligned hydroclones, each of which is provided with an axially aligned overflow chamber. The chambers are so arranged that rotational motion of a fluid being passed through the system is not lost in passing from chamber to chamber; consequently, this system is highly efficient in contacting and separating two immiscible liquids. (AEC)


    Directory of Open Access Journals (Sweden)



    Full Text Available Most transactions or financial commitments have implications for a bank liquidity. Transactions are particularly vulnerable to liquidity problems at a specific institution. Therefore, one can deduce the importance of the correct calculation and liquidity indicator, not only for the bank concerned, but especially for NBR uses that bank risk management tool. That is why the authors took into consideration a sample of banks in Romania to show to what extent the banking crisis has influenced the development banks.

  15. Harvesting contaminants from liquid

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, John T.; Hunter, Scott R.


    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.

  16. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine


    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  17. Remotely controllable liquid marbles

    KAUST Repository

    Zhang, Lianbin


    Liquid droplets encapsulated by self-organized hydrophobic particles at the liquid/air interface - liquid marbles - are prepared by encapsulating water droplets with novel core/shell-structured responsive magnetic particles, consisting of a responsive block copolymer-grafted mesoporous silica shell and magnetite core (see figure; P2VP-b-PDMS: poly(2-vinylpyridine-b- dimethylsiloxane)). Desirable properties of the liquid marbles include that they rupture upon ultraviolet illumination and can be remotely manipulated by an external magnetic field. 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development


    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  19. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage


    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...


    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  1. Disposal of Liquid Propellants (United States)


    SYNTHESIS OF LIQUID PROPELLANT Hydroxylammonium nitrate (HAN), prepared via the electrolysis of nitric acid, is commercially available as a high-purity...stack gases, and brine solution from the wet scrubber (82). 5 Applicability/Limitation Most types of solid, liquid, and gaseous organic wastes or

  2. Liquid crystal colloids

    Directory of Open Access Journals (Sweden)


    Full Text Available This special issue of "Condensed Matter Physics" focuses on the most recent developments in the study of a fascinating soft matter system, representing colloidal particles in a liquid crystalline environment. Furthermore, some articles address pioneering steps in the discovery of liquid crystals going back to 1861 paper by Julius Planer.

  3. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.


    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  4. The TIPS Liquidity Premium

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Jens H.E.; Simon Riddell, Simon

    We introduce an arbitrage-free term structure model of nominal and real yields that accounts for liquidity risk in Treasury inflation-protected securities (TIPS). The novel feature of our model is to identify liquidity risk from individual TIPS prices by accounting for the tendency that TIPS, lik...

  5. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken


    This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  6. Liquid heat capacity lasers (United States)

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.


    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  7. Liquid Chromatography in 1982. (United States)

    Freeman, David H.


    Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)

  8. Column Liquid Chromatography. (United States)

    Majors, Ronald E.; And Others


    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  9. Modeling of ionic liquids (United States)

    Tatlipinar, Hasan


    Ionic liquids are very important entry to industry and technology. Because of their unique properties they may classified as a new class of materials. IL usually classified as a high temperature ionic liquids (HTIL) and room temperature ionic liquids (RTIL). HTIL are molten salts. There are many research studies on molten salts such as recycling, new energy sources, rare elements mining. RTIL recently become very important in daily life industry because of their "green chemistry" properties. As a simple view ionic liquids consist of one positively charged and one negatively charged components. Because of their Coulombic or dispersive interactions the local structure of ionic liquids emerges. In this presentation the local structural properties of the HTIL are discussed via correlation functions and integral equation theories. RTIL are much more difficult to do modeling, but still general consideration for the modeling of the HTIL is valid also for the RTIL.

  10. Liquid-liquid phase transition in Stillinger-Weber silicon

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, Philippe; Mousseau, Normand [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7 (Canada)


    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.

  11. The Risk Components of Liquidity


    Chollete, Lorán; Næs, Randi; Johannes A. Skjeltorp


    Does liquidity risk differ depending on our choice of liquidity proxy? Unlike literature that considers common liquidity variation, we focus on identifying different components of liquidity, statistically and economically, using more than a decade of US transaction data. We identify three main statistical liquidity factors which are utilized in a linear asset pricing framework. We motivate a correspondence of the statistical factors to traditional dimensions of liquidity as well as the notion...

  12. Liquid metal enabled microfluidics. (United States)

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D


    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  13. Spreading of miscible liquids (United States)

    Walls, Daniel J.; Haward, Simon J.; Shen, Amy Q.; Fuller, Gerald G.


    Miscible liquids commonly contact one another in natural and technological situations, often in the proximity of a solid substrate. In the scenario where a drop of one liquid finds itself on a solid surface and immersed within a second, miscible liquid, it will spread spontaneously across the surface. We show experimental findings of the spreading of sessile drops in miscible environments that have distinctly different shape evolution and power-law dynamics from sessile drops that spread in immiscible environments, which have been reported previously. We develop a characteristic time to scale radial data of the spreading sessile drops based on a drainage flow due to gravity. This time scale is effective for a homologous subset of the liquids studied. However, it has limitations when applied to significantly chemically different, yet miscible, liquid pairings; we postulate that the surface energies between each liquid and the solid surface becomes important for this other subset of the liquids studied. Initial experiments performed with pendant drops in miscible environments support the drainage flow observed in the sessile drop systems.

  14. Liquid crystals fundamentals

    CERN Document Server

    Singh, Shri


    Liquid crystals are partially ordered systems without a rigid, long-range structure. The study of these materials covers a wide area: chemical structure, physical properties and technical applications. Due to their dual nature - anisotropic physical properties of solids and rheological behavior of liquids - and easy response to externally applied electric, magnetic, optical and surface fields liquid crystals are of greatest potential for scientific and technological applications. The subject has come of age and has achieved the status of being a very exciting interdisciplinary field of scienti

  15. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg


    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...... applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  16. Liquidity and Risk Management


    Holmström, Bengt; Tirole, Jean


    This paper provides a model of the interaction between risk-management practices and market liquidity. On one hand, tighter risk management reduces the maximum position an institution can take, thus the amount of liquidity it can offer to the market. On the other hand, risk managers can take into account that lower liquidity amplifies the effective risk of a position by lengthening the time it takes to sell it. The main result of the paper is that a feedback effect can arise: tighter risk man...

  17. Transient Grating Investigations at Liquid-Liquid Interfaces


    Punzi, Angela; Brodard, Pierre; Vauthey, Eric


    A new four-wave-mixing technique with evanescent optical fields generated by total internal reflection at a liquid-liquid interface is described. Several applications of this method to measure thermoacoustic and dynamic properties near liquid-liquid interfaces are presented.

  18. Chiral separation by enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Schuur, B.; Verkuijl, B. J. V.; Minnaard, A. J.; De Vries, J. G.; Heeres, H. J.; Feringa, B. L.


    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and ch

  19. Liquid-Liquid Hydrocyclone Adopted in Jilin Oil Fields

    Institute of Scientific and Technical Information of China (English)


    @@ As a new invention with high technique, liquid-liquid hydrocyclone (LLH) was developed in the world in the 1980s. It is designed to separate mutually insoluble liquid mixtures by its geometry and structure which cause an eddy motion in the internal of the liquid. It is characterized by the absence of moving parts in itself.

  20. Beyond dispersive liquid-liquid microextraction. (United States)

    Leong, Mei-I; Fuh, Ming-Ren; Huang, Shang-Da


    Dispersive liquid-liquid microextraction (DLLME) and other dispersion liquid-phase microextraction (LPME) methods have been developed since the first DLLME method was reported in 2006. DLLME is simple, rapid, and affords high enrichment factor, this is due to the large contact surface area of the extraction solvent. DLLME is a method suitable for the extraction in many different water samples, but it requires using chlorinated solvents. In recent years, interest in DLLME or dispersion LPME has been focused on the use of low-toxicity solvents and more conveniently practical procedures. This review examines some of the most interesting developments in the past few years. In the first section, DLLME methods are separated in two categories: DLLME with low-density extraction solvent and DLLME with high-density extraction solvent. Besides these methods, many novel special devices for collecting low-density extraction solvent are also mentioned. In addition, various dispersion techniques with LPME, including manual shaking, air-assisted LPME (aspirating and injecting the extraction mixture by syringe), ultrasound-assisted emulsification, vortex-assisted emulsification, surfactant-assisted emulsification, and microwave-assisted emulsification are described. Besides the above methods, combinations of DLLME with other extraction techniques (solid-phase extraction, stir bar sorptive extraction, molecularly imprinted matrix solid-phase dispersion and supercritical fluid extraction) are introduced. The combination of nanotechnique with DLLME is also introduced. Furthermore, this review illustrates the application of DLLME or dispersion LPME methods to separate and preconcentrate various organic analytes, inorganic analytes, and samples.

  1. Fermi liquid theory

    CERN Document Server

    Apostol, M


    sup 3 He liquefies at 3.2 K under normal pressure, where its mean inter-particle separation of a few angstroms, is comparable with the range of the interaction potential (and with the mean inter-particle separation in the corresponding ideal gas); its thermal wavelength is about 8 A, so that, under this conditions, sup 3 He is a quantum liquid of fermions, or a Fermi liquid (sometimes called a normal Fermi liquid too). The motion of the sup 3 He atoms in the (repulsive) self-consistent, meanfield potential is affected by inertial effects, i.e. the particles possess an effective mass, and consequently they obey the Fermi distribution, like an ideal Fermi gas. In this paper the Landau's theory of the Fermi liquid is reviewed. (author)

  2. Corporate governance and liquidity

    DEFF Research Database (Denmark)

    Farooq, Omar; Derrabi, Mohamed; Naciri, Monir


    This paper examines the impact of corporate governance mechanisms on liquidity in the MENA region, i.e. Morocco, Egypt, Saudi Arabia, United Arab Emirates, Jordan, Kuwait, and Bahrain. Using turnover as a proxy for liquidity, we document significant difference in liquidity between the pre......- and the post-crisis periods in the MENA region. In addition, our results show that bulk of this reduction in turnover can be explained due to weaknesses of corporate governance mechanisms. For example, that dividend payout ratio and choice of auditors – proxies for agency problems – can explain the entire...... difference in liquidity between the two periods. Furthermore, our results indicate that more than 50% of this difference between the two periods can be explained by operational and informational complexity of a firm – proxy for transparency. We argue that poor corporate governance mechanisms increase...

  3. Liquid-Cooled Garment (United States)


    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  4. Wettability by Ionic Liquids. (United States)

    Liu, Hongliang; Jiang, Lei


    Ionic liquids (ILs) have become particularly attractive recently because they have demonstrated themselves to be important construction units in the broad fields of chemistry and materials science, from catalysis and synthesis to analysis and electrochemistry, from functional fluids to clean energy, from nanotechnology to functional materials. One of the greatest issues that determines the performance of ILs is the wettability of correlated surfaces. In this concept article, the key developments and issues in IL wettability are surveyed, including the electrowetting of ILs in gas-liquid-solid systems and liquid-liquid-solid systems, ILs as useful probe fluids, the superwettability of Ils, and future directions in IL wettability. This should generate extensive interest in the field and encourage more scientists to engage in this area to tackle its scientific challenges.

  5. Liquid rocket engine injectors (United States)

    Gill, G. S.; Nurick, W. H.


    The injector in a liquid rocket engine atomizes and mixes the fuel with the oxidizer to produce efficient and stable combustion that will provide the required thrust without endangering hardware durability. Injectors usually take the form of a perforated disk at the head of the rocket engine combustion chamber, and have varied from a few inches to more than a yard in diameter. This monograph treats specifically bipropellant injectors, emphasis being placed on the liquid/liquid and liquid/gas injectors that have been developed for and used in flight-proven engines. The information provided has limited application to monopropellant injectors and gas/gas propellant systems. Critical problems that may arise during injector development and the approaches that lead to successful design are discussed.

  6. Lacerations - liquid bandage (United States)

    ... be found at your local pharmacy. Applying and Caring for a Liquid Bandage With clean hands or ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  7. Ionic liquids in tribology. (United States)

    Minami, Ichiro


    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  8. Ionic Liquids in Tribology

    Directory of Open Access Journals (Sweden)

    Ichiro Minami


    Full Text Available Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  9. Corporate governance and liquidity

    DEFF Research Database (Denmark)

    Farooq, Omar; Derrabi, Mohamed; Naciri, Monir


    This paper examines the impact of corporate governance mechanisms on liquidity in the MENA region, i.e. Morocco, Egypt, Saudi Arabia, United Arab Emirates, Jordan, Kuwait, and Bahrain. Using turnover as a proxy for liquidity, we document significant difference in liquidity between the pre......- and the post-crisis periods in the MENA region. In addition, our results show that bulk of this reduction in turnover can be explained due to weaknesses of corporate governance mechanisms. For example, that dividend payout ratio and choice of auditors – proxies for agency problems – can explain the entire...... difference in liquidity between the two periods. Furthermore, our results indicate that more than 50% of this difference between the two periods can be explained by operational and informational complexity of a firm – proxy for transparency. We argue that poor corporate governance mechanisms increase...

  10. Gases, liquids and solids

    CERN Document Server

    Tabor, David


    It has been tradional to treat gases, liquids and solids as if they were completely unrelated material. However, this book shows that many of their bulk properties can been explained in terms of intermolecular forces.

  11. Liquid Crystal Airborne Display (United States)


    81/2X 11- 10 -9 .8 display using a large advertising alphanimeric ( TCI ) has been added to the front of the optical box used in the F-4 aircraft for over a wide range of tempera - tures, including normal room temperature. What are Liquid Crystals? Liquid crystals have been classified in three...natic fanctions and to present data needed for the semi- automatic and manual control of system functions. Existing aircraft using CRT display





    Bank liquidity management and optimal resource allocation of commercial bank Nostro accounts balances receive much less attention from the scientists compared to the questions on capital structure, funding, credit risk analysis and stress testing. Optimal liquidity management is a way to lower bank costs and risks, which are going to increase over time, especially when money markets are dry of free funds. There are two sides of the issue to be analyzed. The optimal resource allocation and cor...

  13. Gas to liquids

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Pat


    Sasol, a South African company, along with the Canadian company Talisman, are looking at gas to liquid process opportunities in North America. Sasol decided to launch a study into the feasibility of gas to liquid (GTL) operation in western Canada, and according to previous studies GTL would need a crude barrel price of $85 or higher combined with a gas price of $4 or less to be economical. Sasol is already operating a GTL plant in Qatar.

  14. The reversibility and first-order nature of liquid-liquid transition in a molecular liquid (United States)

    Kobayashi, Mika; Tanaka, Hajime


    Liquid-liquid transition is an intriguing phenomenon in which a liquid transforms into another liquid via the first-order transition. For molecular liquids, however, it always takes place in a supercooled liquid state metastable against crystallization, which has led to a number of serious debates concerning its origin: liquid-liquid transition versus unusual nano-crystal formation. Thus, there have so far been no single example free from such debates, to the best of our knowledge. Here we show experimental evidence that the transition is truly liquid-liquid transition and not nano-crystallization for a molecular liquid, triphenyl phosphite. We kinetically isolate the reverse liquid-liquid transition from glass transition and crystallization with a high heating rate of flash differential scanning calorimetry, and prove the reversibility and first-order nature of liquid-liquid transition. Our finding not only deepens our physical understanding of liquid-liquid transition but may also initiate a phase of its research from both fundamental and applications viewpoints.

  15. Occurence of non-Fermi-liquid behaviour in the f electron systems Ce{sub 1-x}La{sub x}Ni{sub 9}Ge{sub 4}, UCu{sub 5-x}Pd{sub x} and UCu{sub 9}Sn{sub 4}; Auftreten von Nicht-Fermi-Fluessigkeitsverhalten in den f-Elektronen-Systemen Ce{sub 1-x}La{sub x}Ni{sub 9}Ge{sub 4}, UCu{sub 5-x}Pd{sub x} und UCu{sub 9}Sn{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Killer, U.


    In the present thesis the experimental determination of lattice parameters, electrical conductivity, magnetic susceptibility, and specific heat of the named substances at ultralow temperatures is described. (HSI)

  16. Role of magnetic interactions in neutron stars

    CERN Document Server

    Adhya, Souvik Priyam


    In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  17. Supercooled liquids for pedestrians (United States)

    Cavagna, Andrea


    When we lower the temperature of a liquid, at some point we meet a first order phase transition to the crystal. Yet, under certain conditions it is possible to keep the system in its metastable phase and to avoid crystallization. In this way the liquid enters in the supercooled phase. Supercooled liquids have a very rich phenomenology, which is still far from being completely understood. To begin with, there is the problem of how to prevent crystallization and how deeply the liquid can be supercooled before a metastability limit is hit. But by far the most interesting feature of supercooled liquids is the dynamic glass transition: when the temperature is decreased below a certain point, the relaxation time increases so much that a dramatic dynamical arrest intervenes and we are unable to equilibrate the system within reasonable experimental times. The glass transition is a phenomenon whose physical origin has stirred an enormous interest in the last hundred years. Why does it occur? Is it just a conventional reference point, or does it have a more profound physical meaning? Is it a purely dynamical event, or the manifestation of a true thermodynamic transition? What is the correlation length associated to the sharp increase of the relaxation time? Can we define a new kind of amorphous order? A shared theory of supercooled liquids and the glass transition does not yet exist and these questions are still largely open. Here, I will illustrate in the most elementary fashion the main phenomenological traits of supercooled liquids and discuss in a very partial way a few theoretical ideas on the subject.

  18. Liquidity Risk and Syndicate Structure


    Evan Gatev; Philip Strahan


    We offer a new explanation of loan syndicate structure based on banks' comparative advantage in managing systematic liquidity risk. When a syndicated loan to a rated borrower has systematic liquidity risk, the fraction of passive participant lenders that are banks is about 8% higher than for loans without liquidity risk. In contrast, liquidity risk does not explain the share of banks as lead lenders. Using a new measure of ex-ante liquidity risk exposure, we find further evidence that syndica...

  19. On the identification of liquid surface properties using liquid bridges. (United States)

    Kostoglou, M; Karapantsios, T D


    The term liquid bridge refers to the specific silhouette of a liquid volume when it is placed between two solid surfaces. Liquid bridges have been studied extensively both theoretically and experimentally during the last century due to their significance in many technological applications. It is worth noticing that even today new technological applications based on liquid bridges continue to appear. A liquid bridge has a well-defined surface configuration dictated by a rigid theoretical foundation so the potential of its utilization as a tool to study surface properties of liquids is apparent. However, it is very scarce in literature that the use of liquid bridges is suggested as an alternative to the well-established drop techniques (pendant/sessile drop). The present work (i) presents the theoretical background for setting up a liquid-bridge based surface property estimation problem, (ii) describes the required experimental equipment and procedures and (iii) performs a thorough literature review on the subject. A case with particular interest is that of liquid bridges made of electrically conducting liquids forming between two conducting solids; such a liquid bridge presents an integral electrical conductance value which is sensitive to the specific silhouette of the bridge. This enables the use of this integral conductance as shape descriptor instead of the conventional image processing techniques. Several attempts in literature for the estimation of liquid surface tension, liquid-solid contact angle and surfactant induced surface elasticity for conducting or non/conducting liquids are presented and the prospects of the technique are discussed.

  20. Redox chemistry at liquid/liquid interfaces (United States)

    Volkov, A. G.; Deamer, D. W.


    The interface between two immiscible liquids with immobilized photosynthetic pigments can serve as the simplest model of a biological membrane convenient for the investigation of photoprocesses accompanied by spatial separation of charges. As it follows from thermodynamics, if the resolvation energies of substrates and products are very different, the interface between two immiscible liquids may act as a catalyst. Theoretical aspects of charge transfer reactions at oil/water interfaces are discussed. Conditions under which the free energy of activation of the interfacial reaction of electron transfer decreases are established. The activation energy of electron transfer depends on the charges of the reactants and dielectric permittivity of the non-aqueous phase. This can be useful when choosing a pair of immiscible solvents to decrease the activation energy of the reaction in question or to inhibit an undesired process. Experimental interfacial catalytic systems are discussed. Amphiphilic molecules such as chlorophyll or porphyrins were studied as catalysts of electron transfer reactions at the oil/water interface.

  1. Laser imaging in liquid-liquid flows (United States)

    Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota


    In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  2. Macromolecular sensing at the liquid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Flynn, Shane [Tyndall National Institute, Lee Maltings, University College, Cork (Ireland); Arrigan, Damien W M, E-mail: [Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth (Australia)


    We report here the electrochemical sensing of macromolecules, such as polyLysine dendrimers, at the polarised liquid | liquid interface. Electrochemistry at the liquid | liquid interface is a powerful analytical technique which allows the detection of non-redox active molecules via ion transfer reactions at a polarised water - oil interface. We demonstrate here that different parameters of the polyLysine dendrimers (charge number, molecular weight) have a strong influence on the sensitivity and limit of detection of these macromolecules. This work will help to the development of sensors based on charge transfer at the liquid | liquid interface.

  3. Liquid lubrication in space (United States)

    Zaretsky, Erwin V.


    The requirement for long-term, reliable operation of aerospace mechanisms has, with a few exceptions, pushed the state of the art in tribology. Space mission life requirements in the early 1960s were generally 6 months to a year. The proposed U.S. space station schedule to be launched in the 1990s must be continuously usable for 10 to 20 years. Liquid lubrication systems are generally used for mission life requirements longer than a year. Although most spacecraft or satellites have reached their required lifetimes without a lubrication-related failure, the application of liquid lubricants in the space environment presents unique challenges. The state of the art of liquid lubrication in space as well as the problems and their solutions are reviewed.

  4. Liquid crystals in tribology. (United States)

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores


    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  5. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica


    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  6. Bicontinuous liquid crystals

    CERN Document Server

    Lynch, Mathew L


    PrefaceIntroduction AcknowledgmentsBicontinuous Cubic Liquid Crystalline Materials: A Historical Perspective and Modern Assessment; Kr̄e LarssonIntermediate Phases; Michael C. Holmes and Marc S. LeaverCubic Phases and Human Skin: Theory and Practice; Steven Hoath and Lars NorlňThe Relationship between Bicontinuous Inverted Cubic Phases and Membrane Fusion; D.P. SiegelAspects of the Differential Geometry and Topology of Bicontinuous Liquid-Crystalline Phases; Robert W. CorkeryNovel L3 Phases and Their Macroscopic Properties; R. Beck and H. HoffmannBicontinuous Cubic Phases of Lipids with Entra

  7. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken


    This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...... this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency...

  8. Modeling of liquid phases

    CERN Document Server

    Soustelle, Michel


    This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This second volume in the set is devoted to the study of liquid phases.

  9. Theory of simple liquids

    CERN Document Server

    Hansen, Jean-Pierre


    This book gives a comprehensive and up-to-date treatment of the theory of ""simple"" liquids. The new second edition has been rearranged and considerably expanded to give a balanced account both of basic theory and of the advances of the past decade. It presents the main ideas of modern liquid state theory in a way that is both pedagogical and self-contained. The book should be accessible to graduate students and research workers, both experimentalists and theorists, who have a good background in elementary mechanics.Key Features* Compares theoretical deductions with experimental r

  10. High Birefringence Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Jakub Herman


    Full Text Available Liquid crystals, compounds and mixtures with positive dielectric anisotropies are reviewed. The mesogenic properties and physical chemical properties (viscosity, birefringence, refractive indices, dielectric anisotropy and elastic constants of compounds being cyano, fluoro, isothiocyanato derivatives of biphenyl, terphenyl, quaterphenyl, tolane, phenyl tolane, phenyl ethynyl tolane, and biphenyl tolane are compared. The question of how to obtain liquid crystal with a broad range of nematic phases is discussed in detail. Influence of lateral substituent of different kinds of mesogenic and physicochemical properties is presented (demonstrated. Examples of mixtures with birefringence ∆n in the range of 0.2–0.5 are given.

  11. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre


    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  12. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography. (United States)

    Koury, Albert M.; Parcher, Jon F.


    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  13. Properties of Liquid Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Freibert, Franz J. [Los Alamos National Laboratory; Mitchell, Jeremy N. [Los Alamos National Laboratory; Schwartz, Daniel S. [Los Alamos National Laboratory; Saleh, Tarik A. [Los Alamos National Laboratory; Migliori, Albert [Los Alamos National Laboratory


    Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

  14. Liquid White Enamel. (United States)

    Widmar, Marge


    A secondary teacher describes how she has her students use liquid white enamel. With the enameling process, students can create lasting, exciting artwork. They can exercise an understanding of design and color while learning the value of careful, sustained craft skills. (RM)

  15. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.


    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...

  16. Heavy liquid bubble chamber

    CERN Multimedia


    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  17. Liquid Modernity & Late Capitalism

    DEFF Research Database (Denmark)

    Hansen, Claus D.

    In Liquid Modernity, Bauman portrays Adorno and the rest of the early Frankfurt School as sociologists and thinkers belonging to the ‘heavy’ phase of modernity. In other words, they are deemed irrelevant to the discussion of current sociological time diagnoses and the purpose of critique under co...

  18. Liquid metal embrittlement mechanism

    Institute of Scientific and Technical Information of China (English)

    周国辉; 刘晓敏; 万发荣; 乔利杰; 褚武扬; 张文清; 陈难先; 周富信


    Liquid metal embrittlement was studied in the following two aspects. First the first principle and ChenNanxian three-dimensional lattice reverse method were employed to obtain the effective potentials for Al-Ga and GaGa. Then with the molecular dynamics simulation, the influence of liquid metal adsorption on dislocation emission was studied. The simulated result shows that after Ga atoms are adsorbed on the crack plane in Al crystal, the critical stress intensity factor decreases, which changes from 0.5 MPam1/2 (without adsorption) to 0.4 MPam1/2 (with adsorption). The reason for the reduction in the critical intensity stress factor is that Ga adsorption reduces the surface energy of the crack plane. Moreover, 7075 Al alloy adsorbing liquid metal (Hg+3atm%Ga) was in-situ studied in TEM by using a special constant deflection device. The experimental result showed that liquid metal adsorption could facilitate emission, multiplication and motion of dislocations. When this process reached a critical


    Energy Technology Data Exchange (ETDEWEB)



    Excess electrons can be introduced into liquids by absorption of high energy radiation, by photoionization, or by photoinjection from metal surfaces. The electron's chemical and physical properties can then be measured, but this requires that the electrons remain free. That is, the liquid must be sufficiently free of electron attaching impurities for these studies. The drift mobility as well as other transport properties of the electron are discussed here as well as electron reactions, free-ion yields and energy levels, Ionization processes typically produce electrons with excess kinetic energy. In liquids during thermalization, where this excess energy is lost to bath molecules, the electrons travel some distance from their geminate positive ions. In general the electrons at this point are still within the coulombic field of their geminate ions and a large fraction of the electrons recombine. However, some electrons escape recombination and the yield that escapes to become free electrons and ions is termed G{sub fi}. Reported values of G{sub fi} for molecular liquids range from 0.05 to 1.1 per 100 eV of energy absorbed. The reasons for this 20-fold range of yields are discussed here.

  20. Liquid White Enamel. (United States)

    Widmar, Marge


    A secondary teacher describes how she has her students use liquid white enamel. With the enameling process, students can create lasting, exciting artwork. They can exercise an understanding of design and color while learning the value of careful, sustained craft skills. (RM)

  1. Thermodynamics of liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Kushnirenko, A.N.


    The thermodynamics of a liquid metal based on quantum-mechanical models of the crystal, electronic, and nuclear structures of the metal are derived in this paper. The models are based on such formulations as the Bohr radius, the Boltzmann constant, the Planck Law, the Fermi surface, and the Pauli principle.

  2. Supercooled Liquids and Glasses



    In these lectures, which were presented at "Soft and Fragile Matter, Nonequilibrium Dynamics, Metastability and Flow" University of St. Andrews, 8 July - 22 July, 1999, I give an introduction to the physics of supercooled liquids and glasses and discuss some computer simulations done to investigate these systems.

  3. Liquidating a China Business

    Institute of Scientific and Technical Information of China (English)



    With the global economic crisis hitting some businesses in China very hard as export sales dry up, now is a timely occasion to remind executives of affected businesses of their responsibilities when having to liquidate a business. China-based subsidiaries may

  4. Liquid Cooled Garments (United States)


    Astronauts working on the surface of the moon had to wear liquid-cooled garments under their space suits as protection from lunar temperatures which sometimes reach 250 degrees Fahrenheit. In community service projects conducted by NASA's Ames Research Center, the technology developed for astronaut needs has been adapted to portable cooling systems which will permit two youngsters to lead more normal lives.

  5. Liquid rope coiling

    NARCIS (Netherlands)

    N.M. Ribe; M. Habibi; D. Bonn


    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes (visco

  6. Simulating polymer liquid crystals

    NARCIS (Netherlands)

    Bladon, P.; Frenkel, D.


    A model suitable for simulating lyotropic polymer liquid crystals (PLCs) is described. By varying the persistence length between infinity and 25, the effect of increasing flexibility on the nematic - smectic transition of a PLC with a length-to-width ratio L/D = 6 is investigated. It is found that

  7. The Heavenly Liquidity Twin : The Increasing Importance of Liquidity Risk


    Montes-Negret, Fernando


    Liquidity and solvency have been called the "heavenly twins" of banking (Goodhart, Charles, 'Liquidity Risk Management', Financial Stability Review -- Special Issue on Liquidity, Banque de France, No. 11, February, 2008). Since these "twins" interact in complex ways, it is difficult -- particularly at times of crisis--to distinguish between them, especially in the presence of information a...

  8. Bubble wake dynamics in liquids and liquid-solid suspensions

    CERN Document Server

    Fan, Liang-Shih; Brenner, Howard


    This book is devoted to a fundamental understanding of the fluid dynamic nature of a bubble wake, more specifically the primary wake, in liquids and liquid-solid suspensions, an dto the role it plays in various important flow phenomena of multiphase systems. Examples of these phenomena are liquid/solids mixing, bubble coalescence and disintergration, particle entrainment to the freeboard, and bed contraction.

  9. The effect of liquid film on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Saito, Kengo; Hayashi, Kanto [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan)


    Highlights: • Liquid droplet impingement erosion is studied experimentally using high-speed conical spray. • Erosion rate is increased with decreasing the liquid film thickness. • Erosion model is proposed considering the influence of liquid film thickness. -- Abstract: In the present paper, the pipe-wall thinning due to liquid droplet impingement erosion is studied experimentally by using a high-speed conical spray under the influences of liquid film on the target specimen. The size of the droplets considered is an order of tens of micrometers in diameter, which is the same order as those expected in the pipeline of nuclear/fossil power plants. In order to evaluate the erosion rate by the liquid droplet impingement under the influence of liquid film, the experiments are conducted by various combinations of the specimen diameters and the standoff distances of the spray from the nozzle. The experimental results show that the erosion depth increases linearly with the local flow volume, indicating the presence of terminal stage of erosion. The present results indicate that the erosion rate increases with decreasing the specimen diameter and increases slightly with increasing the standoff distance. This result combined with the theoretical consideration of the liquid film on the specimen leads to the conclusion that the erosion rate increases with decreasing the liquid film thickness, which supports the numerical result of liquid droplet impingement erosion in literature. Then, the erosion model for predicting the erosion rate by the liquid droplet impingement is proposed considering the influence of the liquid film.

  10. Gas absorption in an agitated gas-liquid-liquid system

    NARCIS (Netherlands)

    Cents, A.H.G.; Brilman, D.W.F.; Versteeg, G.F.


    Gas-liquid-liquid systems have gained interest in the past decade and are encountered in several important industrial applications. In these systems an immiscible liquid phase may affect the gas absorption rate significantly. This phenomenon, however, is not completely understood and underlying mech

  11. Black Liquid Solar Collector Demonstrator. (United States)

    Weichman, F. L.; Austen, D. J.


    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  12. Ionic liquids in chemical engineering. (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter


    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  13. Liquid bridge as a tunable-focus cylindrical liquid lens (United States)

    Chen, H.; Tabatabaei, N.; Amirfazli, A.


    We proposed a method to create a tunable-focus cylindrical liquid lens using a liquid bridge between two narrow surfaces. Due to the surface edge effect, the interface of the liquid bridge (on the long side) was shown to be able to serve as a tunable-focus cylindrical liquid lens. The working distance of the lens can be adjusted by changing either or both of the height of the bridge (H) and the volume of the liquid (V). By varying H and V, the lens can serve as either diverging or converging lens, with a minimum working distance of 2.11 mm.

  14. Liquid lubrication for space applications (United States)

    Fusaro, Robert L.; Khonsari, Michael M.


    Reviewed here is the state of the art of liquid lubrication for space applications. The areas discussed are types of liquid lubrication mechanisms, space environmental effects on lubrication, classification of lubricants, liquid lubricant additives, grease lubrication, mechanism materials, bearing anomalies and failures, lubricant supply techniques, and application types and lubricant needs for those applications.

  15. Risk allocation under liquidity constraints

    NARCIS (Netherlands)

    Csóka, P.; Herings, P.J.J.


    Risk allocation games are cooperative games that are used to attribute the risk of a financial entity to its divisions. In this paper, we extend the literature on risk allocation games by incorporating liquidity considerations. A liquidity policy specifies state-dependent liquidity requirements that

  16. The management of liquidity risk


    Claudia MITITELU; Stefan MITITELU


    The importance of ensuring liquidity exceeds the level of a single banking institution, since recording of the deficit of liquidity only at the level of a single bank may have nevagtive repercurssions on the whole banking system, and entire national economy. Liquidity represents one the permanent concerns in banking management.

  17. Liquidity regulation and bank behavior

    NARCIS (Netherlands)

    Bonner, C.


    In response to the 2007-08 financial crisis, the Basel Committee on Banking Supervision proposed two liquidity standards to reinforce banks’ resilience to liquidity risks. The purpose of this thesis is to analyze the impact of liquidity regulation on bank behavior. The first of four main chapters

  18. Liquidity regulation and bank behavior

    NARCIS (Netherlands)

    Bonner, C.


    In response to the 2007-08 financial crisis, the Basel Committee on Banking Supervision proposed two liquidity standards to reinforce banks’ resilience to liquidity risks. The purpose of this thesis is to analyze the impact of liquidity regulation on bank behavior. The first of four main chapters an

  19. Liquid Crystal Motion Picture Projector①

    Institute of Scientific and Technical Information of China (English)



    A liquid crystal moving picture projector and method are described.Light incident on a liquid crystal display-type device is selectively scattered or transmitted by respective portions of liquid crystal display,and a projection mechanism projects an image formed by either such scattered light or such transmitted light.A liquid cystal moving picture projector includes a liquid crystal display for creating characteristics of an image,and projecttion optics for projecting images sequentially created by the display.The display includes a liquid crystal material capable of temporary storing information at respective areas.The temporary storage may be a function of charge storing directly on liquid crystal material.A method of projecting plural images in sequence includes:creating an image or characteristics of an image in a liquid crystal material,storing such image in such liquid crystal material,directing light at such liquid crystal material,projecting such image as a function of light transmitted through or scattered by such liquid crystal material,and creating a further image in such liquid crystal material for subsequent projection.

  20. Applications of functionalized ionic liquids

    Institute of Scientific and Technical Information of China (English)

    LI; Xuehui; ZHAO; Dongbin; FEI; Zhaofu; WANG; Lefu


    Recent developments of the synthesis and applications of functionalized ionic liquids(including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are attracting attention as alternative solvents in green chemistry, but as more functionalized ILs are prepared, a greater number of applications in increasingly diverse fields are found.

  1. The management of liquidity risk


    Claudia MITITELU; Stefan MITITELU


    The importance of ensuring liquidity exceeds the level of a single banking institution, since recording of the deficit of liquidity only at the level of a single bank may have nevagtive repercurssions on the whole banking system, and entire national economy. Liquidity represents one the permanent concerns in banking management.

  2. Future liquid Argon detectors

    CERN Document Server

    Rubbia, A


    The Liquid Argon Time Projection Chamber offers an innovative technology for a new class of massive detectors for rare-event detection. It is a precise tracking device that allows three-dimensional spatial reconstruction with mm-scale precision of the morphology of ionizing tracks with the imaging quality of a "bubble chamber", provides $dE/dx$ information with high sampling rate, and acts as high-resolution calorimeter for contained events. First proposed in 1977 and after a long maturing process, its holds today the potentialities of opening new physics opportunities by providing excellent tracking and calorimetry performance at the relevant multi-kton mass scales, outperforming other techniques. In this paper, we review future liquid argon detectors presently being discussed by the neutrino physics community.

  3. Liquid Metal Dynamo Measurements (United States)

    Luh, W. J.; Choi, Y. H.; Hardy, B. S.; Brown, M. R.


    Detection of convected magnetic fields in a small-scale liquid metal dynamo is attempted. Initial experiments will focus on the conversion of toroidal to poloidal flux (a version of the ω effect). A precision vector magnetometer will be used to measure the effect of a rotating magnetofluid on a static magnetic field. Water will be used as a control medium and effects will be compared with a conducting medium (liquid sodium or NaK). A small spherical flask (0.16 m diameter) houses 2 liters of fluid, a teflon stirrer creates an asymmetrical flow pattern, and Helmholtz coils generate a constant magnetic field on the order of 10 gauss. The Reynold's number will be of order unity.

  4. Model of Wigner liquid

    CERN Document Server

    Batyev, E G


    One studies a two-dimensional system of low-density charge carriers that is, with the strong Coulomb interaction that may lead to occurrence of a short-wave soft mode (sign of crystallization). Within this system there are elementary excitations of two types: Fermi-excitations and Bose-excitation with a slit within the spectrum (like rotons in a superfluid helium). The presented model represents a Fermi-liquid plus soft water. Interaction of different excitations with one another is described phenomenologically in terms of the theory of the Landau Fermi-liquid. One has derived equations the solution of which presents the dependence of the effective mass of Fermi-excitations and of slit in the Bose-excitation spectrum on temperature

  5. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu


    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  6. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor


    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  7. Liquid Modernity & Late Capitalism

    DEFF Research Database (Denmark)

    Hansen, Claus D.

    conditions of such liquid modernity. In this paper, I want to argue that this picture of Adorno is mistaken and extend the view proposed by Frederic Jameson that Adorno was not only the philosopher of 1990’s but is also very useful in the 2010’s. In fact, the critique of critical theory and emancipation......In Liquid Modernity, Bauman portrays Adorno and the rest of the early Frankfurt School as sociologists and thinkers belonging to the ‘heavy’ phase of modernity. In other words, they are deemed irrelevant to the discussion of current sociological time diagnoses and the purpose of critique under....... The paper argues that there are great similarities but that Adorno (and the rest of the Early Frankfurt School) has a much more well founded philosophical layout of their critique of individualization....

  8. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    This paper shows that strict match pass-through funding of covered bonds provides safe and liquid mortgage bonds. Despite a 30% drop in house prices during the 2008 global crisis Danish mortgage bonds remained as liquid as most European government bonds. The Danish pass-through system effectively...... eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...

  9. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    This paper shows that strict match pass-through funding of covered bonds provides safe and liquid mortgage bonds. Despite a 30% drop in house prices during the 2008 global crisis Danish mortgage bonds remained as liquid as most European government bonds. The Danish pass-through system effectively...... eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...

  10. Liquidity Risk and Distressed Equity

    DEFF Research Database (Denmark)

    Medhat, Mamdouh

    , liquidity, and returns for US firms, I find evidence consistent with the model’s predictions: (1) In all solvency levels, the average firm holds enough liquid assets to cover its short-term liabilities; less solvent firms have (2) a higher fraction of their total assets in liquid assets and therefore (3......) lower conditional betas and (4) lower returns; (5) the profits of long-short solvency strategies are highest among firms with low liquidity; and (6) the profits of long-short liquidity strategies are highest among firms with low solvency....

  11. Liquid Scintillation Counting


    Carlsson, Sten


    In liquid scintillation counting (LSC) we use the process of luminescense to detect ionising radiation emit$ed from a radionuclide. Luminescense is emission of visible light of nonthermal origin. 1t was early found that certain organic molecules have luminescent properties and such molecules are used in LSC. Today LSC is the mostwidespread method to detect pure beta-ernitters like tritium and carbon-14. 1t has unique properties in its efficient counting geometry, deteetability and the lack of...

  12. Liquids at negative pressure (United States)

    Xiao, C.; Heyes, D. M.; Powles, J. G.


    We have further explored the final stages of the collapse of an unstable cavity or bubble using the Molecular Dynamics computer simulation technique. A nanometre sized spherical volume of molecules was removed from a bulk Lennard-Jones liquid, which being mechanically and thermodynamically unstable, proceeded to collapse. The molecules with the highest kinetic energy were the first to enter the initially empty cavity. The temperature of individual molecules inside the cavity, while the density was still typical of a gas, could reach at least an order of magnitude larger than that of the surrounding liquid, e.g., equivalent to 6,000 K for water, which is not unreasonable for the sonoluminescence effect to be seen. During the filling in of the cavity, the average temperature decreased, as the contents thermally equilibrated with the surrounding liquid. The bubble partially filled in, and then proceeded to partially empty again, and so on in an oscillatory manner, with ever decreasing amplitude towards the final uniform liquid state. This recoil effect is predicted by classical hydrodynamic treatments and has been observed in experiment for much larger bubbles. The temperature, density and normal pressure component were resolved as a function of radius from the centre of the bubble at selected times during the collapsing process. The simulations support the view that MD can provide a realistic representation of the final stages of cavity collapse. It does not make assumptions about equation of state and transport coefficients as would be required for a comparable solution of the Navier-Stokes hydrodynamics equations, and is therefore an especially appropriate description for the final stages of the collapse.

  13. Textures of liquid crystals

    CERN Document Server

    Dierking, Ingo


    A unique compendium of knowledge on all aspects of the texture of liquid crystals, providing not just detailed information on texture formation and determination, but also an in-depth discussion of different characterization methods. Experts as well as graduates entering the field will find all the information they need in this handbook, while the magnitude of the color images make it valuable hands-on-reference.

  14. The compression of liquids (United States)

    Whalley, E.

    The compression of liquids can be measured either directly by applying a pressure and noting the volume change, or indirectly, by measuring the magnitude of the fluctuations of the local volume. The methods used in Ottawa for the direct measurement of the compression are reviewed. The mean-square deviation of the volume from the mean at constant temperature can be measured by X-ray and neutron scattering at low angles, and the meansquare deviation at constant entropy can be measured by measuring the speed of sound. The speed of sound can be measured either acoustically, using an acoustic transducer, or by Brillouin spectroscopy. Brillouin spectroscopy can also be used to study the shear waves in liquids if the shear relaxation time is > ∼ 10 ps. The relaxation time of water is too short for the shear waves to be studied in this way, but they do occur in the low-frequency Raman and infrared spectra. The response of the structure of liquids to pressure can be studied by neutron scattering, and recently experiments have been done at Atomic Energy of Canada Ltd, Chalk River, on liquid D 2O up to 15.6 kbar. They show that the near-neighbor intermolecular O-D and D-D distances are less spread out and at shorter distances at high pressure. Raman spectroscopy can also provide information on the structural response. It seems that the O-O distance in water decreases much less with pressure than it does in ice. Presumably, the bending of O-O-O angles tends to increase the O-O distance, and so to largely compensate the compression due to the direct effect of pressure.

  15. Liquid fuel cells. (United States)

    Soloveichik, Grigorii L


    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  16. Nanomechanical sensing in liquid


    Dorrestijn, Marko


    This thesis describes advances in the field of nanomechanical sensors operating in liquid. Firstly, a novel method for measuring nanoscale displacements is presented. Secondly, microscale Chladnifigures are demonstrated on oscillating cantilevers by means of boundary streaming in the aqueous environment. Thirdly, the physics of boundary streaming is clarified for the first time. The three topics are summarized below. A novel displacement sensor based on a squeezable molecular m...

  17. Refractoriless liquid fuel burner

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.E.


    A liquid fuel burner head is described which consists of: A. a generally annular burner head housing spacedly enveloping a generally cylindrical primary air assembly, the head and assembly each having corresponding forward and rearward ends, (a) the primary air assembly having a plurality of internal primary air supply passage means extending in a generally forwardly direction in the assembly and emerging through annularly disposed primary air port means at the forward end of the primary air assembly, (b) means effective to produce a swirl of primary air in one direction about the axis of the primary air assembly as the air emerges from the primary air port means, (c) means associated with the primary air port means for adjusting the location of flame origin forward of and relative to the primary air port means, (d) the primary air assembly including a liquid fuel supply passage and a nozzle, the nozzle being centrally disposed at the forward end of the primary air assembly and encompassed by the primary air port means, the liquid fuel nozzle being effective to discharge a substantially fan-like spray of liquid fuel just forward of and across the primary air port means, (e) the primary air assembly and the nozzle together being axially movable relative to the housing between forwardmost and rearwardmost positions respectively responsive to change in burner firing rate between minimum and maximum; B. secondary air supply passage means disposed in the space between the housing and the primary air assembly; C. means rearwardly of the secondary air directional means and port means effective to meter the amount of secondary air supplied air port means from a lesser quantity when the primary air assembly and nozzle are in their forwardmost position to a greater quantity when the primary air assembly and nozzle are in their rearwardmost position.

  18. Cyclic phosphonium ionic liquids

    Directory of Open Access Journals (Sweden)

    Sharon I. Lall-Ramnarine


    Full Text Available Ionic liquids (ILs incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonylamide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners.

  19. Liquid krypton electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Aulchenko, V.M.; Bukin, A.D.; Klimenko, S.G.; Kolachev, G.M.; Leontiev, L.A.; Maslennikov, A.L.; Onuchin, A.P.; Panin, V.S.; Peleganchuk, S.V.; Pivovarov, S.G.; Rodyakin, V.A.; Tayursky, V.A.; Tikhonov, Yu.A.; Yurchenko, V.I. (Budker Inst. of Nuclear Physics, Novosibirsk (Russia)); Lanni, F.; Lo Bianco, G.; Maggi, B.; Palombo, F.; Sala, A. (Dipt. di Fisica, Univ. Milan (Italy) INFN, Milan (Italy)); Cantoni, P.; Frabetti, P.L.; Stagni, L. (Dipt. di Fisica, Univ. Bologna (Italy) INFN, Bologna (Italy)); Manfredi, P.F.; Re, V.; Speziali, V. (Dipt. di Elettronica, Univ. Pavia (Italy) INFN, Milan (Italy))


    A calorimeter using 30 tons of liquid krypton for the KEDR detector is being constructed. The main effects which determine the energy and space resolution have been studied. An energy resolution of 1.7% at 1.2 GeV was obtained with the prototype. A space resolution of 0.4 mm for relativistic particles has been reached with the prototype. (orig.).

  20. Living liquid crystals (United States)

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.


    Collective motion of self-propelled organisms or synthetic particles, often termed “active fluid,” has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter––living liquid crystals (LLCs)––that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  1. Advanced Liquid Feed Experiment (United States)

    Distefano, E.; Noll, C.


    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  2. Instabilities in liquid crystals

    CERN Document Server

    Barclay, G J


    and we examine the differences which occur for differing dielectric anisotropies. Finally, in Chapter 7 we study how a sample of smectic C liquid crystal behaves when it is subjected to a uniform shear flow within the smectic plane. We find travelling wave solutions for the behaviour of the c-director and adapt these solutions to incorporate the effects of an applied field. This thesis contains theoretical work dealing with the effects of magnetic and electric fields on samples of nematic, smectic A and smectic C liquid crystals. Some background material along with the continuum theory is introduced in Chapter 2. In Chapter 3 we consider the effect on the director within an infinite sample of nematic liquid crystal which is subjected to crossed electric and magnetic fields. In particular we examine the stability of the travelling waves which describe the director motion by considering the behaviour of the stable perturbations as time increases. The work of Chapter 4 examines a bounded sample of smectic A liqu...

  3. Some Cavitation Properties of Liquids

    Directory of Open Access Journals (Sweden)

    K. D. Efremova


    Full Text Available Cavitation properties of liquid must be taken into consideration in the engineering design of hydraulic machines and hydro devices when there is a possibility that in their operation an absolute pressure in the liquid drops below atmospheric one, and for a certain time the liquid is in depression state. Cold boiling, which occurs at a comparatively low temperature under a reduced absolute pressure within or on the surface of the liquid is regarded as hydrostatic cavitation if the liquid is stationary or as hydrodynamic cavitation, if the liquid falls into conditions when in the flow cross-section there is a sharply increasing dynamic pressure and a dropping absolute pressure.In accordance with the theory of cavitation, the first phase of cavitation occurs when the absolute pressure of the degassed liquid drops to the saturated vapour pressure, and the air dissolved in the liquid, leaving the intermolecular space, is converted into micro-bubbles of combined air and becomes a generator of cavitation “nuclei”. A quantitative estimate of the minimum allowable absolute pressure in a real, fully or partially degassed liquid at which a hydrostatic cavitation occurs is of practical interest.Since the pressure of saturated vapour of a liquid is, to a certain extent, related to the forces of intermolecular interaction, it is necessary to have information on the cavitation properties of technical solutions, including air solution in a liquid, as a solute may weaken intermolecular bonds and affect the pressure value of the saturated solvent vapour. In the experiment to carry out vacuum degassing of liquids was used a hydraulic air driven vacuum pump.The paper presents hydrostatic and hydrodynamic degassing liquid processes used in the experiment.The experimental studies of the cavitation properties of technical liquids (sea and distilled water, saturated NaCl solution, and pure glycerol and as a 49/51% solution in water, mineral oil and jet fuel enabled

  4. Probing liquid surface waves, liquid properties and liquid films with light diffraction

    CERN Document Server

    Barik, T K; Kar, S; Roy, A; Barik, Tarun Kr.; Chaudhuri, Partha Roy; Kar, Sayan; Roy, Anushree


    Surface waves on liquids act as a dynamical phase grating for incident light. In this article, we revisit the classical method of probing such waves (wavelengths of the order of mm) as well as inherent properties of liquids and liquid films on liquids, using optical diffraction. A combination of simulation and experiment is proposed to trace out the surface wave profiles in various situations (\\emph{eg.} for one or more vertical, slightly immersed, electrically driven exciters). Subsequently, the surface tension and the spatial damping coefficient (related to viscosity) of a variety of liquids are measured carefully in order to gauge the efficiency of measuring liquid properties using this optical probe. The final set of results deal with liquid films where dispersion relations, surface and interface modes, interfacial tension and related issues are investigated in some detail, both theoretically and experimentally. On the whole, our observations and analyses seem to support the claim that this simple, low--c...

  5. Simulation of Multistage Countercurrent Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Annasaheb WARADE


    Full Text Available Liquid-Liquid Extraction is one of the most significant unit operations used widely in the chemical industry for the separation of liquid-liquid mixture with the aid of an extracting solvent. There are different contacting patterns for the said purpose viz. co-current, counter current and crosscurrent and also a variety of equipments are encountered. This paper deals with the simulation of counter current liquid-liquid extraction operation for the special case of immiscible solvent using MATLAB. In this paper seven case studies have been studied and the results obtained are compared with the literature and it was found that results are in good agreement with the literature available.

  6. Application of ionic liquid in liquid phase microextraction technology. (United States)

    Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho


    Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanosecond liquid crystalline optical modulator

    Energy Technology Data Exchange (ETDEWEB)

    Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.


    An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying the electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.

  8. Entropy-driven liquid-liquid separation in supercooled water


    Holten, V.; Anisimov, M.A.


    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water a...

  9. Impulse breakdown of liquids

    CERN Document Server

    Ushakov, Vasily Y


    The book describes the main physical processes and phenomena in pulsed electric breakdown. The knowledge and the control of the electric breakdown of liquids is important not only for the insulation inside power systems but it is also used for the creation and information of high voltage and high current pulses. Such high-voltage micro- and nanosecond pulses find wide application in experimental physics, electro discharge technology, physics of dielectrics, radar detection and ranging, high-speed photography. The nature of charge carriers, mechanism of formation and evolution of the gas phase,

  10. High Performance Liquid Chromatography (United States)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  11. Molecular Relaxation in Liquids

    CERN Document Server

    Bagchi, Biman


    This book brings together many different relaxation phenomena in liquids under a common umbrella and provides a unified view of apparently diverse phenomena. It aligns recent experimental results obtained with modern techniques with recent theoretical developments. Such close interaction between experiment and theory in this area goes back to the works of Einstein, Smoluchowski, Kramers' and de Gennes. Development of ultrafast laser spectroscopy recently allowed study of various relaxation processes directly in the time domain, with time scales going down to picosecond (ps) and femtosecond (fs

  12. Nanorheology of Liquid Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.A., Cochran, H.D., Cummings, P.T. [Tennessee Univ., Knoxville, TN (United States). Dept. of Chemical Engineering], [Oak Ridge National Lab., TN (United States)


    We report molecular dynamics simulations of liquid alkanes, squalane and tetracosane, confined between moving walls to which butane chains are tethered, effectively screening the details of the wall. As in an experiment, heat is removed by thermostatting the tethered molecules. Results obtained at high strain rates, typical of practical applications, suggest little or no difference between the bulk rheology and confined flow, and the occurrence of a high degree of slip at the wall-fluid interface at the conditions studied. At relatively low velocities and high densities, tetracosane shows the formation of fully-extended chains at certain wall spacings.

  13. Berry Fermi liquid theory (United States)

    Chen, Jing-Yuan; Son, Dam Thanh


    We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current-current correlator exactly matches with the result obtained from the kinetic theory.

  14. Micellar liquid chromatography (United States)

    Basova, Elena M.; Ivanov, Vadim M.; Shpigun, Oleg A.


    Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.

  15. Liquidity, welfare and distribution

    Directory of Open Access Journals (Sweden)

    Martín Gil Samuel


    Full Text Available This work presents a dynamic general equilibrium model where wealth distribution is endogenous. I provide channels of causality that suggest a complex relationship between financial markets and the real activity which breaks down the classical dichotomy. As a consequence, the Friedman rule does not hold. In terms of the current events taking place in the world economy, this paper provides a rationale to advert against the perils of an economy satiated with liquidity. Efficiency and distribution cannot thus be considered as separate attributes once we account for the interactions between financial markets and the economic performance.

  16. Principles of Liquid Chromatography (United States)

    Bakalyar, Stephen R.

    This article reviews the basic principles of high performance liquid chromatography (HPLC). The introductory section provides an overview of the HPLC technique, placing it in historical context and discussing the elementary facts of the separation mechanism. The next section discusses the nature of resolution, describing the two principal aspects, zone center separation and zone spreading. The third section takes a detailed look at how HPLC is used in practice to achieve a separation. It discusses the three key variables that need to be adjusted: retention, efficiency, and selectivity. A fourth section is concerned with various relationships of practical importance: flow rate, temperature, and pressure. A final section discusses future trends in HPLC.

  17. Cavitation in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.


    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  18. Liquid marbles: Physics and applications

    Indian Academy of Sciences (India)

    Nachiketa Janardan; Mahesh V Panchagnula; Edward Bormashenko


    Liquid marbles are formed by encapsulating microscale volume of liquid in a particulate sheath. The marble thus formed is robust and resists rupture if the particulate layer covers the entire volume of liquid and prevents contact between the liquid and the substrate. Liquid marbles have been objects of study over the past decade. Research has been focused on understanding their formation and properties – both static and dynamic. A range of particulate materials as well as liquids have been employed to make these objects. This paper summarizes the state of the art in this regard and discusses new developments that are being discussed. Finally, some directions are proposed based on lacunae observed in the community’s understanding – both in terms of the science as well as on the application front.

  19. Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

    Directory of Open Access Journals (Sweden)

    Kubiczek Artur


    Full Text Available Room-temperature ionic liquids (RTILs are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties. For this reason, they have been termed as designer solvents and, as such, they are particularly promising for liquid-liquid extraction, which has been quite intensely studied over the last decade. This paper concentrates on the recent liquid-liquid extraction studies involving ionic liquids, yet focusing strictly on the separation of n-butanol from model aqueous solutions. Such research is undertaken mainly with the intention of facilitating biological butanol production, which is usually carried out through the ABE fermentation process. So far, various sorts of RTILs have been tested for this purpose while mostly ternary liquid-liquid systems have been investigated. The industrial design of liquid-liquid extraction requires prior knowledge of the state of thermodynamic equilibrium and its relation to the process parameters. Such knowledge can be obtained by performing a series of extraction experiments and employing a certain mathematical model to approximate the equilibrium. There are at least a few models available but this paper concentrates primarily on the NRTL equation, which has proven to be one of the most accurate tools for correlating experimental equilibrium data. Thus, all the presented studies have been selected based on the accepted modeling method. The reader is also shown how the NRTL equation can be used to model liquid-liquid systems containing more than three components as it has been the authors’ recent area of expertise.

  20. Bank Mergers, Competition and Liquidity


    Carletti, Elena; Hartmann, Philipp; Spagnolo, Giancarlo


    We model the impact of bank mergers on loan competition, reserve holdings and aggregate liquidity. A merger changes the distribution of liquidity shocks and creates an internal money market, leading to financial cost efficiencies and more precise estimates of liquidity needs. The merged banks may increase their reserve holdings through an internalization effect or decrease them because of a diversification effect. The merger also affects loan market competition, which in turn modifies the dis...

  1. Market liquidity and financial stability.




    Stability in financial institutions and in financial markets are closely intertwined. Banks and other financial institutions need liquid markets through which to conduct risk management. And markets need the back-up liquidity lines provided by financial institutions. Market liquidity depends not only on objective, exogenous factors, but also on endogenous market dynamics. Central banks responsible for systemic stability need to consider how far their traditional responsibility for the health ...

  2. Graphene-ionic liquid composites (United States)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian


    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  3. Radon Removal from Liquid Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Kai [IPMU, The University of Tokyo, 456 Higashi-Mozumi, Kamioka-cho, Hida-shi, Gifu 506-1205 (Japan)


    Efforts are underway in Kamioka to develop a new method to remove Rn directly from the liquid phase of Xe. The idea is based on the observation that in the electronic structure of liquid noble gases charges can get trapped on impurities, and the charged impurities then be drifted through the noble gas liquid. In the case of Rn drifting the impurity into a suitable storage volume is enough as it will decay.

  4. Liquidity Determinants of Moroccan Banking Industry


    FERROUHI, El Mehdi; LEHADIRI, Abderrassoul


    This paper analyzes the behavior of Moroccan bank’s liquidity during the period 2001 – 2012. The research aims to identify the determinants of Moroccan bank’s liquidity. We first evaluate Moroccan banks’ liquidity positions through different liquidity ratios to determine the effects of financial crisis on bank’s liquidity. We then highlight the effect of banks’ size on banks’ liquidity. Finally, we identify determinants of Moroccan bank’s liquidity using panel data regression. From results ob...

  5. Liquidity (risk) concepts: definitions and interactions


    Nikolaou, Kleopatra


    We discuss the notion of liquidity and liquidity risk within the financial system. We distinguish between three different liquidity types, central bank liquidity, funding and market liquidity and their relevant risks. In order to understand the workings of financial system liquidity, as well as the role of the central bank, we bring together relevant literature from different areas and review liquidity linkages among these three types in normal and turbulent times. We stress that the root of ...

  6. Nanoconfined Ionic Liquids. (United States)

    Zhang, Shiguo; Zhang, Jiaheng; Zhang, Yan; Deng, Youquan


    Ionic liquids (ILs) have been widely investigated as novel solvents, electrolytes, and soft functional materials. Nevertheless, the widespread applications of ILs in most cases have been hampered by their liquid state. The confinement of ILs into nanoporous hosts is a simple but versatile strategy to overcome this problem. Nanoconfined ILs constitute a new class of composites with the intrinsic chemistries of ILs and the original functions of solid matrices. The interplay between these two components, particularly the confinement effect and the interactions between ILs and pore walls, further endows ILs with significantly distinct physicochemical properties in the restricted space compared to the corresponding bulk systems. The aim of this article is to provide a comprehensive review of nanoconfined ILs. After a brief introduction of bulk ILs, the synthetic strategies and investigation methods for nanoconfined ILs are documented. The local structure and physicochemical properties of ILs in diverse porous hosts are summarized in the next sections. The final section highlights the potential applications of nanoconfined ILs in diverse fields, including catalysis, gas capture and separation, ionogels, supercapacitors, carbonization, and lubrication. Further research directions and perspectives on this topic are also provided in the conclusion.

  7. Vitrification and levitation of a liquid droplet on liquid nitrogen (United States)

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan


    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect. PMID:20176969

  8. Aromatic nitrations by mixed acid. Fast liquid-liquid regime

    NARCIS (Netherlands)

    Zaldivar, J.M.; Zaldivar, J.M.; Molga, E.J.; Alos, M.A.; Hernandez, H.; Westerterp, K.R.


    Aromatic nitration by mixed acid was selected as a specific case of heterogeneous liquid-liquid reaction. An extensive experimental programme was followed using adiabatic and heat flow calorimetry and pilot reactor experiments, supported by chemical analysis. A series of nitration experiments was

  9. Performance of sonication and microfluidization for liquid-liquid emulsification. (United States)

    Maa, Y F; Hsu, C C


    The purpose of this research was to evaluate and compare liquid-liquid emulsions (water-in-oil and oil-in-water) prepared using sonication and microfluidization. Liquid-liquid emulsions were characterized on the basis of emulsion droplet size determined using a laser-based particle size analyzer. An ultrasonic-driven benchtop sonicator and an air-driven microfluidizer were used for emulsification. Sonication generated emulsions through ultrasound-driven mechanical vibrations, which caused cavitation. The force associated with implosion of vapor bubbles caused emulsion size reduction and the flow of the bubbles resulted in mixing. An increase in viscosity of the dispersion phase improved the sonicator's emulsification capability, but an increase in the viscosity of the dispersed phase decreased the sonicator's emulsification capability. Although sonication might be comparable to homogenization in terms of emulsification efficiency, homogenization was relatively more effective in emulsifying more viscous solutions. Microfluidization, which used a high pressure to force the fluid into microchannels of a special configuration and initiated emulsification via a combined mechanism of cavitation, shear, and impact, exhibited excellent emulsification efficiency. Of the three methodologies, sonication generated more heat and might be less suitable for emulsion systems involving heat-sensitive materials. Homogenization is in general a more effective liquid-liquid emulsification method. The results derived from this study can serve as a basis for the evaluation of large-scale liquid-liquid emulsification in the microencapsulation process.

  10. Nanomaterials at Liquid/Liquid Interfaces-A Review. (United States)

    Divya, V; Sangaranarayanan, M V


    The charge transfer processes occurring at the interface between two immiscible electrolyte solutions are of considerable importance in diverse fields of chemistry and biology. The introduction to nanoparticles and analysis of nanostructures in diverse branches of science and engineering are provided. The chemical and electrochemical techniques pertaining to the synthesis of metal nanoparticles, polymeric nanostructures and metal-polymer nanocomposites at liquid/liquid interfaces are surveyed. The unique features pertaining to the chemical synthesis of metal nanoparticles while employing diverse electrolytes and solvents are outlined. The advantages of various electrochemical synthetic protocols such as four-electrode assembly, thin film electrode, Scanning Electrochemical Microscopy and Solid/liquid/liquid interfaces for the study of nanoparticles at liquid/liquid interfaces are emphasized. The crucial role played by the liquid/liquid interfaces in altering the morphological patterns of metal nanoparticles, conducting polymers and metal-polymer nanocomposites is indicated. A few typical novel applications of these nanomaterials in fabrication of biosensors, electrochemical supercapacitors, and electrocatalysts have been outlined.

  11. Pair Fluctuations in Ultra-small Fermi Systems within Self-Consistent RPA at Finite Temperature

    CERN Document Server

    Storozhenko, A; Dukelsky, J; Röpke, G; Vdovin, A I


    A self-consistent version of the Thermal Random Phase Approximation (TSCRPA) is developed within the Matsubara Green's Function (GF) formalism. The TSCRPA is applied to the many level pairing model. The normal phase of the system is considered. The TSCRPA results are compared with the exact ones calculated for the Grand Canonical Ensemble. Advantages of the TSCRPA over the Thermal Mean Field Approximation (TMFA) and the standard Thermal Random Phase Approximation (TRPA) are demonstrated. Results for correlation functions, excitation energies, single particle level densities, etc., as a function of temperature are presented.

  12. Origin of inertia in large-amplitude collective motion in finite Fermi systems

    Indian Academy of Sciences (India)

    Sudhir R Jain


    We argue that mass parameters appearing in the treatment of large-amplitude collective motion, be it fission or heavy-ion reactions, originate as a consequence of their relation with Lyapunov exponents coming from the classical dynamics, and, fractal dimension associated with diffusive modes coming from hydrodynamic description.

  13. Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity (United States)

    Abuki, Hiroaki; Brauner, Tomáš


    We investigate the 1/N expansion proposed recently as a strategy to include quantum fluctuation effects in the nonrelativistic, attractive Fermi gas at and near unitarity. We extend the previous results by calculating the next-to-leading order corrections to the critical temperature along the whole crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation. We demonstrate explicitly that the extrapolation from the mean-field approximation, based on the 1/N expansion, provides a useful approximation scheme only on the BCS side of the crossover. We then apply the technique to the study of strongly interacting relativistic many-fermion systems. Having in mind the application to color superconductivity in cold dense quark matter, we develop, within a simple model, a formalism suitable to compare the effects of order parameter fluctuations in phases with different pairing patterns. Our main conclusion is that the relative correction to the critical temperature is to a good accuracy proportional to the mean-field ratio of the critical temperature and the chemical potential. As a consequence, it is significant even rather deep in the BCS regime, where phenomenologically interesting values of the quark-quark coupling are expected. Possible impact on the phase diagram of color-superconducting quark matter is discussed.

  14. Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity

    CERN Document Server

    Abuki, Hiroaki


    We investigate the 1/N expansion proposed recently as a strategy to include quantum fluctuation effects in the nonrelativistic, attractive Fermi gas at and near unitarity. We extend the previous results by calculating the next-to-leading order corrections to the critical temperature along the whole BCS-BEC crossover. We demonstrate explicitly that the extrapolation from the mean-field approximation, based on the $1/N$ expansion, provides a useful approximation scheme only on the BCS side of the crossover. We then apply the technique to the study of strongly interacting relativistic many-fermion systems. Having in mind the application to color superconductivity in cold dense quark matter, we develop, within a simple model, a formalism suitable to compare the effects of order parameter fluctuations in phases with different pairing patterns. Our main conclusion is that the relative correction to the critical temperature is to a good accuracy proportional to the mean-field ratio of the critical temperature and th...

  15. Pair formation in Fermi systems with population imbalance in one- and two-dimensional optical lattices (United States)

    Batrouni, George


    I will discuss pairing in fermionic systems in one- and two-dimensional optical lattices with population imbalance. This will be done in the context of the attractive fermionic Hubbard model using the Stochastic Green Function algorithm in d=1 while for d=2 we use Determinant Quantum Monte Carlo. This is the first exact QMC study examining the effects of finite temperature which is very important in experiments on ultra-cold atoms. Our results show that, in the ground state, the dominant pairing mechanism is at nonzero center of mass momentum, i.e. FFLO. I will then discuss the effect of finite temperature in the uniform and confined systems and present finite temperature phase diagrams. The numerical results will be compared with experiments. With M. J. Wolak (CQT, National University of Singapore) and V. G. Rousseau (Department of Physics and Astronomy, Louisiana State University).

  16. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system (United States)

    Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli


    We generalize the quantum heat engine (QHE) model which was first proposed by Bender [J. Phys. A10.1088/0305-4470/33/24/302 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy Eh and a low constant energy Ec, respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size LA) for given LA (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η=1-(Ec)/(Eh) of the engine cycle is bounded from above the Carnot value ηc=1-(Tc)/(Th).

  17. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems

    DEFF Research Database (Denmark)

    Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.;


    beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...

  18. Functional renormalization group approach for inhomogeneous one-dimensional Fermi systems with finite-ranged interactions (United States)

    Weidinger, Lukas; Bauer, Florian; von Delft, Jan


    We introduce an equilibrium formulation of the functional renormalization group (fRG) for inhomogeneous systems capable of dealing with spatially finite-ranged interactions. In the general third-order truncated form of fRG, the dependence of the two-particle vertex is described by O (N4) independent variables, where N is the dimension of the single-particle system. In a previous paper [Bauer et al., Phys. Rev. B 89, 045128 (2014), 10.1103/PhysRevB.89.045128], the so-called coupled-ladder approximation (CLA) was introduced and shown to admit a consistent treatment for models with a purely onsite interaction, reducing the vertex to O (N2) independent variables. In this work, we introduce an extended version of this scheme, called the extended coupled ladder approximation (eCLA), which includes a spatially extended feedback between the individual channels, measured by a feedback length L , using O (N2L2) independent variables for the vertex. We apply the eCLA in a static approximation and at zero temperature to three types of one-dimensional model systems, focusing on obtaining the linear response conductance. First, we study a model of a quantum point contact (QPC) with a parabolic barrier top and on-site interactions. In our setup, where the characteristic length lx of the QPC ranges between approximately 4-10 sites, eCLA achieves convergence once L becomes comparable to lx. It also turns out that the additional feedback stabilizes the fRG flow. This enables us, second, to study the geometric crossover between a QPC and a quantum dot, again for a one-dimensional model with on-site interactions. Third, the enlarged feedback also enables the treatment of a finite-ranged interaction extending over up to L sites. Using a simple estimate for the form of such a finite-ranged interaction in a QPC with a parabolic barrier top, we study its effects on the conductance and the density. We find that for low densities and sufficiently large interaction ranges the conductance develops additional features, and the corresponding density shows some fluctuations that can be interpreted as Friedel oscillations arising from a renormalized barrier shape with a rather flat top and steep flanks.

  19. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems. (United States)

    Andersen, M E S; Dehkharghani, A S; Volosniev, A G; Lindgren, E J; Zinner, N T


    Interacting one-dimensional quantum systems play a pivotal role in physics. Exact solutions can be obtained for the homogeneous case using the Bethe ansatz and bosonisation techniques. However, these approaches are not applicable when external confinement is present. Recent theoretical advances beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly interacting solution with the well-known solution in the limit of vanishing interactions provides a simple and accurate description of the system for all values of the interaction strength. This indicates that one can indeed capture the physics of confined one-dimensional systems by knowledge of the limits using wave functions that are much easier to handle than the output of typical numerical approaches. We demonstrate our scheme for experimentally relevant systems with up to six particles. Moreover, we show that our method works also in the case of mixed systems of particles with different masses. This is an important feature because these systems are known to be non-integrable and thus not solvable by the Bethe ansatz technique.

  20. Spectrophotometric determination of iron species using ionic liquid ultrasound assisted dispersive liquid--liquid microextraction


    BAZMANDEGAN, ALIREZA; Shabani,Ali Mohammad Haji; DADFARNIA, SAYESSTEH; Saeidi, Mahboubeh; Moghadam,Masoud Rohani


    A simple and efficient method for speciation and determination of iron in different water samples was developed. The method is based on ionic liquid ultrasound assisted dispersive liquid--liquid microextraction (IL-USA-DLLME) followed by spectrophotometric determination. Fe(II) is complexed with 2,4,6-tri(2'-pyridyl)-l,3,5-triazine (TPTZ{)}, neutralized through ion pair formation with sodium dodecyl sulfate (SDS) and extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate [C$_...

  1. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.


    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  2. Polymer Crystallization at Curved Liquid/Liquid Interface (United States)

    Wang, Wenda

    Liquid/liquid interface, either flat or curved, is a unique template for studying self-assembly of a variety of nanomaterials such as nanoparticles and nanorods. The resultant monolayer films can be ordered or disordered depending on the regularity of the nanomaterials. Integration of nanoparticles into two-dimensional structure leads to intriguing collective properties of the nanoparticles. Crystallization can also be guided by liquid/liquid interface. Due to the particular shape of the interface, crystallization can happen in a different manner comparing to the normal solution crystallization. In this dissertation, liquid/liquid interface is employed to guide the crystallization of polymers, mainly focusing on using curved liquid/liquid interface. Due to the unique shape of the interface and feasibility to control the curvature, polymer crystallization can take place in different manner and lead to the formation of curved or vesicular crystals. Curved liquid/liquid interface is typically created through o/w emulsions. With the presence of surfactant, the emulsions are controlled to be stable at least for the polymer crystallization periods. The difference to normal solution crystallization is: the nuclei will diffuse to the curved interface due to the Pickering effect and guide the crystallization along the curved liquid/liquid interface. If the supercooling can be controlled to be very small, crystal growth in the bulk droplets can be avoided. The advantages of this strategy are: 1) the formation process of vesicular type crystals can be monitored by controlling the polymer supply; 2) curved crystals, bowl-like structures and enclosed capsules can be easily obtained comparing to the self-assembly method for vesicle formation; 3) the obtained vesicles will be made of polymer crystals, which will possess the extraordinary mechanical properties. Based on the nucleation type, this dissertation is divided into two parts. The first part is focused on the self

  3. Liquid crystal polyester thermosets (United States)

    Benicewicz, Brian C.; Hoyt, Andrea E.


    The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.

  4. Correlation of three-liquid-phase equilibria involving ionic liquids. (United States)

    Rodríguez-Escontrela, I; Arce, A; Soto, A; Marcilla, A; Olaya, M M; Reyes-Labarta, J A


    The difficulty in achieving a good thermodynamic description of phase equilibria is finding a model that can be extended to a large variety of chemical families and conditions. This problem worsens in the case of systems containing more than two phases or involving complex compounds such as ionic liquids. However, there are interesting applications that involve multiphasic systems, and the promising features of ionic liquids suggest that they will play an important role in many future processes. In this work, for the first time, the simultaneous correlation of liquid-liquid and liquid-liquid-liquid equilibrium data for ternary systems involving ionic liquids has been carried out. To that end, the phase diagram of the water + [P6 6 6 14][DCA] + hexane system has been determined at 298.15 K and 323.15 K and atmospheric pressure. The importance of this system lies in the possibility of using the surface active ionic liquid to improve surfactant enhanced oil recovery methods. With those and previous measurements, thirteen sets of equilibrium data for water + ionic liquid + oil ternary systems have been correlated. The isoactivity equilibrium condition, using the NRTL model, and some pivotal strategies are proposed to correlate these complex systems. Good agreement has been found between experimental and calculated data in all the regions (one triphasic and two biphasic) of the diagrams. The geometric aspects related to the Gibbs energy of mixing function obtained using the model, together with the minor common tangent plane equilibrium condition, are valuable tools to check the consistency of the obtained correlation results.

  5. Method of foaming a liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.K.; Johnson, C.E.


    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  6. Method of foaming a liquid metal (United States)

    Fischer, Albert K.; Johnson, Carl E.


    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  7. Efficiency in Liquidity Matters

    Institute of Scientific and Technical Information of China (English)


    While stocks plunge on investors’ fears over tightening credit in China, the U.S. Federal Reserve has decided to maintain its current interest rates near zero until a sustainable economic recovery is underway. When the recovery is in sight, U.S. demand for imports will soon return, raising hopes for China’s export sector-but a possible U.S. dollar rally may also cause capital outflows from emerging markets where hot money has pushed up assets prices. Yuan Zhigang, Dean of the School of Economics in Fudan University, spoke with 21st Century Business Herald about the efficiency of liquidity, and provided solutions to asset price hikes. Edited excerpts follow

  8. Taylor Instability of Incompressible Liquids (United States)

    Fermi, E.; von Neumann, J.


    A discussion is presented in simplified form of the problem of the growth of an initial ripple on the surface of an incompressible liquid in the presence of an acceleration, g, directed from the outside into the liquid. The model is that of a heavy liquid occupying at t = 0 the half space above the plane z = 0, and a rectangular wave profile is assumed. The theory is found to represent correctly one feature of experimental results, namely the fact that the half wave of the heavy liquid into the vacuum becomes rapidly narrower while the half wave pushing into the heavy liquid becomes more and more blunt. The theory fails to account for the experimental results according to which the front of the wave pushing into the heavy liquid moves with constant velocity. The case of instability at the boundary of 2 fluids of different densities is also explored. Similar results are obtained except that the acceleration of the heavy liquid into the light liquid is reduced.

  9. Liquid ethylene-propylene copolymers (United States)

    Rhein, R. A.; Ingham, J. D.; Humphrey, M. F.


    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight.

  10. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing


    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power...

  11. Tethered float liquid level sensor

    Energy Technology Data Exchange (ETDEWEB)

    Daily, III, William Dean


    An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.

  12. Modeling liquid crystal polymeric devices (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  13. The Liquid Argon Purity Demonstrator

    CERN Document Server

    Adamowski, M; Dvorak, E; Hahn, A; Jaskierny, W; Johnson, C; Jostlein, H; Kendziora, C; Lockwitz, S; Pahlka, B; Plunkett, R; Pordes, S; Rebel, B; Schmitt, R; Stancari, M; Tope, T; Voirin, E; Yang, T


    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  14. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.


    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  15. An Efficient Liquidity Management For ATMs

    National Research Council Canada - National Science Library

    Julia García Cabello


      Bank liquidity management has become one of the main concerns of a bank during the financial crisis as liquidity shortages have put pressure on banks to diversity and improve their liquidity sources...

  16. Hydrotreating of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V. [Sandia National Lab., Albuquerque, NM (United States)] [and others


    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  17. Separating closely resembling steroids with ionic liquids in liquid-liquid extraction systems

    NARCIS (Netherlands)

    Vitasari, C.R.; Gramblicka, M.; Gibcus, K.; Visser, T.J.; Geertman, R.M.; Schuur, B.


    Separation of steroids by liquid–liquid extraction with ionic liquids (ILs) as solvent was studied both experimentally and by simulation using a model mixture of progesterone and pregnenolone. The studies involved a solvent screening using COSMO-RS software for estimation of progesterone solubility.

  18. Comment on "Liquid Limits: The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids"



    In ref. cond-mat/0005372, Sastry studies by numerical simulations the phase diagram of a simple fragile glass-forming liquid, presenting very interesting and clear results. We apply to this system, at various density values, the analytic approach to structural glass thermodynamics recently introduced and we compare our theoretical predictions on the liquid-glass transition temperature with Sastry's data.

  19. Convenient liquidity measure for Financial markets


    Oleh Danyliv; Bruce Bland; Daniel Nicholass


    A liquidity measure based on consideration and price range is proposed. Initially defined for daily data, Liquidity Index (LIX) can also be estimated via intraday data by using a time scaling mechanism. The link between LIX and the liquidity measure based on weighted average bid-ask spread is established. Using this liquidity measure, an elementary liquidity algebra is possible: from the estimation of the execution cost, the liquidity of a basket of instruments is obtained. A formula for the ...

  20. Liquid Cell Transmission Electron Microscopy (United States)

    Liao, Hong-Gang; Zheng, Haimei


    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.

  1. Actively convected liquid metal divertor (United States)

    Shimada, Michiya; Hirooka, Yoshi


    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  2. Liquid Hole Multipliers: bubble-assisted electroluminescence in liquid xenon

    CERN Document Server

    Arazi, L; Coimbra, A E C; Rappaport, M L; Vartsky, D; Chepel, V; Breskin, A


    In this work we discuss the mechanism behind the large electroluminescence signals observed at relatively low electric fields in the holes of a Thick Gas Electron Multiplier (THGEM) electrode immersed in liquid xenon. We present strong evidence that the scintillation light is generated in xenon bubbles trapped below the THGEM holes. The process is shown to be remarkably stable over months of operation, providing - under specific thermodynamic conditions - energy resolution similar to that of present dual-phase liquid xenon experiments. The observed mechanism may serve as the basis for the development of Liquid Hole Multipliers (LHMs), capable of producing local charge-induced electroluminescence signals in large-volume single-phase noble-liquid detectors for dark matter and neutrino physics experiments.

  3. Separation of Asphaltenes by Polarity using Liquid-Liquid Extraction

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar


    In order to investigate the nature of petroleum asphaltenes in terms of polarity a process was developed using initial liquid-liquid extraction of the oil phase followed by precipitation of the asphaltenes using n-heptane. The liquid-liquid extraction was performed using toluene-methanol mixtures...... with increasing content of toluene. Although large fractions of the crude oil (Alaska ´93) was extracted in the higher polarity solvents (high concentration of methanol), the asphaltene content of the dissolved material was low. As the toluene content increased more asphaltenes were transferred to the solvent...... of the maltene phase also increase while H/C decreases. The content of heteroatoms in the asphaltenes are relatively higher and apparently increase with the polarity of the solvent. It is concluded that these asphaltenes are indeed dominated by high molecular weight substances that cannot be extracted...

  4. Optofluidic router based on tunable liquid-liquid mirrors. (United States)

    Müller, Philipp; Kopp, Daniel; Llobera, Andreu; Zappe, Hans


    We present an electrically tunable 1 × 5 optofluidic router for on-chip light routing. The device can redirect light from an optical input channel into five output channels by exploiting total internal reflection (TIR) at a liquid-liquid interface. The liquid-liquid mirrors, demonstrated for the first time, are tuned using integrated electrowetting-on-dielectrics (EWOD) actuators. The router is assembled from two chips fabricated by standard MEMS techniques. Through a combination of microfluidic with micro-optical components on chip, reliable light routing is achieved with switching times of [1.5-3.3] s, efficiencies of coupling into channels of up to 12%, optical cross-talk as low as -24 dB, a required drive voltage of 50 V, and a low power consumption of router could thus lead to novel laboratory measurement systems.

  5. Liquid-liquid contact in vapor explosion. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Segev, A.


    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture).

  6. Coaxial liquid-liquid flows in tubes with limited length

    Institute of Scientific and Technical Information of China (English)


    Coaxial liquid-liquid flows were numerically studied in a nesting two-tube system. Calculations were carried out when various exit-lengths (meaning length differences between the two tubes) were used. Numerical results indicated that there exists a certain range of exit-length for the liquid-liquid flows to form stable and smooth interfaces, which requires that the exit-length should roughly be less than 5.6 times the outer tube diameter. In this range, interface instability is effectively restrained and the core fluid shows a phenomenon of die swell. When the exit-length is about 1.6 times the outer tube diameter, the core fluid has the greatest diameter size in the shell fluid. Velocity distributions at the outer tube exit favor formation of a continuous and stable core-shell structure.

  7. Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide. (United States)

    Wu, Weikang; Zhang, Leining; Liu, Sida; Ren, Hongru; Zhou, Xuyan; Li, Hui


    We report theoretical evidence of a liquid-liquid phase transition (LLPT) in liquid silicon carbide under nanoslit confinement. The LLPT is characterized by layering transitions induced by confinement and pressure, accompanying the rapid change in density. During the layering transition, the proportional distribution of tetracoordinated and pentacoordinated structures exhibits remarkable change. The tricoordinated structures lead to the microphase separation between silicon (with the dominant tricoordinated, tetracoordinated, and pentacoordinated structures) and carbon (with the dominant tricoordinated structures) in the layer close to the walls. A strong layer separation between silicon atoms and carbon atoms is induced by strong wall-liquid forces. Importantly, the pressure confinement phase diagram with negative slopes for LLPT lines indicates that, under high pressure, the LLPT is mainly confinement-induced, but under low pressure, it becomes dominantly pressure-induced.

  8. Liquid cathode primary batteries (United States)

    Schlaikjer, Carl R.


    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  9. Liquid cathode primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schlaikjer, C.R.


    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  10. Hydrophobic ionic liquids (United States)

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.


    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  11. Measurements in liquid fuel sprays (United States)

    Chigier, N.


    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  12. Characteristics of liquid flow induced by atmospheric-pressure DC glow discharge in contact with liquid (United States)

    Tochikubo, Fumiyoshi; Aoki, Takuya; Shirai, Naoki; Uchida, Satoshi


    In this work, we investigated the characteristics of liquid flow induced by atmospheric-pressure dc glow discharge in contact with a liquid. The spatiotemporal development of liquid flow was visualized by the schlieren method, and the temperature distribution was measured using microencapsulated thermotropic liquid crystal particles dispersed in a liquid. We confirmed the appearance of specific downward liquid flow immediately below the dc glow discharge. The characteristics of downward liquid flow were reproduced by fluid simulation considering a downward driving force at the plasma–liquid interface. Our results suggest that the probable driving force for the downward liquid flow was the momentum transfer of charged species at the liquid surface.

  13. Energy conversion at liquid/liquid interfaces: artificial photosynthetic systems (United States)

    Volkov, A. G.; Gugeshashvili, M. I.; Deamer, D. W.


    This chapter focuses on multielectron reactions in organized assemblies of molecules at the liquid/liquid interface. We describe the thermodynamic and kinetic parameters of such reactions, including the structure of the reaction centers, charge movement along the electron transfer pathways, and the role of electric double layers in artificial photosynthesis. Some examples of artificial photosynthesis at the oil/water interface are considered, including water photooxidation to the molecular oxygen, oxygen photoreduction, photosynthesis of amphiphilic compounds and proton evolution by photochemical processes.

  14. Spectroscopic Detection of Chiral Aggregation at Liquid-Liquid Interfaces

    Institute of Scientific and Technical Information of China (English)


    Two new spectroscopic methods to detect the optical activity of liquid-liquid interfaces have been developed. The first one is the centrifugal liquid membrane (CLM) method combined with a conventional circular dichroism (CD) spectropolarimetry and the second one is a more interfacial specific second harmonic generation CD (SHG-CD) spectrometry. In the CLM-CD method, a cylindrical glass cell containing small amounts of organic and aqueous phases was rotated at about 7000 r/min in a sample chamber of a CD spectropolarimeter to generate an interface with a high specific interfacial area between the two-phase liquid membranes. The CD spectra of the J-aggregate of protonated 5,10,15, 20-tetraphenylporphyrin formed at the toluene-sulfuric acid interface have been measured. As for the SHG-CD, a circularly polarized wavelength-variable fs-laser system was constructed to measure the interfacial SHG spectra of a flat liquid-liquid interface. The ion-associated aggregation of a water-soluble anionic porphyrin promoted with a cationic amphiphile at the heptane-water interface was observed by this technique and the observed SHG-CD spectra proved the generation of a characteristic optical activity accompanied by the formation of the interfacial aggregate of inherently achiral porphyrin molecules. These methods will pioneer a new field of interfacial chiral chemistry in the studies of solvent extraction mechanisms.

  15. Understanding the liquid-liquid (water-hexane) interface (United States)

    Murad, Sohail; Puri, Ishwar K.


    Nonequilibrium molecular dynamics simulations are employed to investigate the interfacial thermal resistance of nanoscale hexane-water interfaces subject to an applied heat flux. Our studies show that these liquid-liquid interfaces exhibit behavior significantly dissimilar to that of solid-liquid and solid-vapor interfaces. Notably, the thermal resistance of a hexane-water interface is contingent on the interfacial temperature gradient alone with negligible dependence on the mean interfacial temperature, while the solid-liquid dependent strongly on the interfacial temperature. Application of a heat flux also increases the interface thickness significantly as compared to an equilibrium isothermal interface. Since liquid-liquid interfaces have been proposed for diverse applications, e.g., sensors for wastewater treatment and for extraction of toxic ions from water, they can be designed to be wider by applying a heat flux. This may allow the interface to be used for other applications not possible currently because of the very limited thickness of the interface in isothermal systems.

  16. Phase Segregation at the Liquid-Air Interface Prior to Liquid-Liquid Equilibrium. (United States)

    Bermúdez-Salguero, Carolina; Gracia-Fadrique, Jesús


    Binary systems with partial miscibility segregate into two liquid phases when their overall composition lies within the interval defined by the saturation points; out of this interval, there is one single phase, either solvent-rich or solute-rich. In most systems, in the one-phase regions, surface tension decreases with increasing solute concentration due to solute adsorption at the liquid-air interface. Therefore, the solute concentration at the surface is higher than in the bulk, leading to the hypothesis that phase segregation starts at the liquid-air interface with the formation of two surface phases, before the liquid-liquid equilibrium. This phenomenon is called surface segregation and is a step toward understanding liquid segregation at a molecular level and detailing the constitution of fluid interfaces. Surface segregation of aqueous binary systems of alkyl acetates with partial miscibility was theoretically demonstrated by means of a thermodynamic stability test based on energy minimization. Experimentally, the coexistence of two surface regions was verified through Brewster's angle microscopy. The observations were further interpreted with the aid of molecular dynamics simulations, which show the diffusion of the acetates from the bulk toward the liquid-air interface, where acetates aggregate into acetate-rich domains.

  17. Heat capacity singularity of binary liquid mixtures at the liquid-liquid critical point. (United States)

    Méndez-Castro, Pablo; Troncoso, Jacobo; Peleteiro, José; Romaní, Luis


    The critical anomaly of the isobaric molar heat capacity for the liquid-liquid phase transition in binary nonionic mixtures is explained through a theory based on the general assumption that their partition function can be exactly mapped into that of the Ising three-dimensional model. Under this approximation, it is found that the heat capacity singularity is directly linked to molar excess enthalpy. In order to check this prediction and complete the available data for such systems, isobaric molar heat capacity and molar excess enthalpy near the liquid-liquid critical point were experimentally determined for a large set of binary liquid mixtures. Agreement between theory and experimental results-both from literature and from present work-is good for most cases. This fact opens a way for explaining and predicting the heat capacity divergence at the liquid-liquid critical point through basically the same microscopic arguments as for molar excess enthalpy, widely used in the frame of solution thermodynamics.

  18. `Energy storage` using liquid air

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.C. [Melbourne Univ., Parkville, VIC (Australia)


    Storage of liquid air is relatively simple, and the work needed to manufacture it is, at least in principle, entirely recoverable. Available energy densities seem excellent. Unfortunately the technology to use liquid air for energy storage has never been developed. The Phillips-Stirling and McMahon and Gifford air liquefiers, and a previous proposal by Smith, provide leads as to the form which the technology might take. This paper introduces the concept of `Exergy`, and how it can be utilized in the storage of liquid air. It concludes that liquid air seems to present some real advantages over batteries for energy storage. The development presents a challenge. Since battery technology is not making the huge advances promised, it could be time to take a more serious look at this alternative. (author). 4 figs., 14 refs.

  19. Introduction to modern liquid chromatography

    National Research Council Canada - National Science Library

    Snyder, Lloyd R; Kirkland, J. J; Dolan, John W


    "High-performance liquid chromatography (HPLC) is today the leading technique for chemical analysis and related applications, with an ability to separate, analyze, and/or purify virtually any sample...

  20. Crystallization of undercooled liquid fenofibrate. (United States)

    Amstad, Esther; Spaepen, Frans; Weitz, David A


    Formulation of hydrophobic drugs as amorphous materials is highly advantageous as this increases their solubility in water and therefore their bioavailability. However, many drugs have a high propensity to crystallize during production and storage, limiting the usefulness of amorphous drugs. We study the crystallization of undercooled liquid fenofibrate, a model hydrophobic drug. Nucleation is the rate-limiting step; once seeded with a fenofibrate crystal, the crystal rapidly grows by consuming the undercooled liquid fenofibrate. Crystal growth is limited by the incorporation of molecules into its surface. As nucleation and growth both entail incorporation of molecules into the surface, this process likely also limits the formation of nuclei and thus the crystallization of undercooled liquid fenofibrate, contributing to the good stability of undercooled liquid fenofibrate against crystallization.

  1. Liquid Hydrogen Absorber for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing


    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  2. Externally Wetted Ionic Liquid Thruster (United States)

    Lozano, P.; Martinez-Sanchez, M.; Lopez-Urdiales, J. M.


    This paper presents initial developments of an electric propulsion system based on ionic liquid ion sources (ILIS). Propellants are ionic liquids, which are organic salts with two important characteristics; they remain in the liquid state at room temperature and have negligible vapor pressure, thus allowing their use in vacuum. The working principles of ILIS are similar to those of liquid metal ion sources (LMIS), in which a Taylor cone is electrostatically formed at the tip of an externally wetted needle while ions are emitted directly from its apex. ILIS have the advantage of being able to produce negative ions that have similar masses than their positive counterparts with similar current levels. This opens up the possibility of achieving plume electrical neutrality without electron emitters. The possible multiplexing of these emitters is discussed in terms of achievable thrust density for applications other than micro-propulsion.

  3. Methane Liquid Level Sensor Project (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Methane Liquid-Level Sensor, (MLS) for In-Space cryogenic storage capable of continuous monitoring of...

  4. Biological upgrading of coal liquids

    Energy Technology Data Exchange (ETDEWEB)


    Culture screening and performance studies were performed with a variety of cultures in removing nitrogen compounds from coal liquid. Two cultures were shown to be effective in removing 17 and 26 percent of the nitrogen in coal liquid as determined by elemental analysis. Experiments will continue in an effort to find additional cultures and isolates able to degrade nitrogen, as well as oxygen and sulfur as heteroatom compounds, from coal liquids. A biological process for upgrading of coal liquids would offer significant advantages, such as operation at ordinary temperature and pressure with better energy efficiency. Of greater importance is the fact that microorganisms do not require an external supply of hydrogen for heteroatom removal, obtaining required hydrogen from water. Furthermore, the biocatalysts are continuously regenerated by growth on the heteroatom compounds. Ring structures are degraded as the heteroatoms are removed. The heteroatoms are in an inocuous form, such as NH[sub 3], SO[sub 4][sup 2[minus

  5. Liquid-crystalline lanthanide complexes


    Binnemans, Koen


    The paper describes the recent developments in the field of liquid-crystalline lanthanide complexes. The role of trivalent lanthanide ions as the central metal ion in metallomesogens is considered. An outlook for the future is given.

  6. Determination of Niacinamide in Lotions and Creams Using Liquid-Liquid Extraction and High-Performance Liquid Chromatography (United States)

    Usher, Karyn M.; Simmons, Carolyn R.; Keating, Daniel W.; Rossi, Henry F., III


    Chemical separations are an important part of an undergraduate chemistry curriculum. Sophomore students often get experience with liquid-liquid extraction in organic chemistry classes, but liquid-liquid extraction is not as often introduced as a quantitative sample preparation method in honors general chemistry or quantitative analysis classes.…

  7. Determination of Niacinamide in Lotions and Creams Using Liquid-Liquid Extraction and High-Performance Liquid Chromatography (United States)

    Usher, Karyn M.; Simmons, Carolyn R.; Keating, Daniel W.; Rossi, Henry F., III


    Chemical separations are an important part of an undergraduate chemistry curriculum. Sophomore students often get experience with liquid-liquid extraction in organic chemistry classes, but liquid-liquid extraction is not as often introduced as a quantitative sample preparation method in honors general chemistry or quantitative analysis classes.…

  8. Adaptive Liquid Crystal Windows

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Bahman; Bodnar, Volodymyr


    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  9. Fermented liquid feed for pigs


    Missotten, Joris; Michiels, Joris; Ovyn, Anneke; De Smet, Stefaan; Dierick, Noël


    Since the announcement of the ban on the use of antibiotics as antimicrobial growth promoters in the feed of pigs in 2006 the investigation towards alternative feed additives has augmented considerably. Although fermented liquid feed is not an additive, but a feeding strategy, the experimental work examining its possible advantages also saw a rise. The use of fermented liquid feed (FLF) has two main advantages, namely that the simultaneous provision of feed and water may result in an alleviat...


    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  11. Ionic Liquid Epoxy Resin Monomers (United States)

    Paley, Mark S. (Inventor)


    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  12. Modelling room temperature ionic liquids. (United States)

    Bhargava, B L; Balasubramanian, Sundaram; Klein, Michael L


    Room temperature ionic liquids (IL) composed of organic cations and inorganic anions are already being utilized for wide-ranging applications in chemistry. Complementary to experiments, computational modelling has provided reliable details into the nature of their interactions. The intra- and intermolecular structures, dynamic and transport behaviour and morphologies of these novel liquids have also been explored using simulations. The current status of molecular modelling studies is presented along with the prognosis for future work in this area.

  13. Liquid Crystals for Nondestructive Evaluation (United States)


    Temperatures TI > T2 > - > TS defects was possible using the liquid crystal. are the Average TemperatursI Thes Resptivegi. Kapfer , Burns, Salvo, and Doyle...Means of Liquid Crystals,’ J. 38 .1; .1 of Sound and Vibration, Vol. 36, No. 3, pp. 407- 65. V.C. Kapfer , D.J. Bums, C.J. Salvo, and E.A. 15, Oct. 1974

  14. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol


    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  15. What constitutes a simple liquid?


    Ingebrigtsen, Trond S.; Schrøder, Thomas B.; Dyre, Jeppe C.


    Simple liquids are traditionally defined as many-body systems of classical particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be defined instead by the property of having strong correlation between virial and potential energy equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions, but also some notable differences. For instance, in the new definition simplicity is not a property of the intermole...

  16. Quantum spin liquids: a review (United States)

    Savary, Lucile; Balents, Leon


    Quantum spin liquids may be considered ‘quantum disordered’ ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.

  17. Electroviscoelasticity of liquid/liquid interfaces: fractional-order model. (United States)

    Spasic, Aleksandar M; Lazarevic, Mihailo P


    A number of theories that describe the behavior of liquid-liquid interfaces have been developed and applied to various dispersed systems, e.g., Stokes, Reiner-Rivelin, Ericksen, Einstein, Smoluchowski, and Kinch. A new theory of electroviscoelasticity describes the behavior of electrified liquid-liquid interfaces in fine dispersed systems and is based on a new constitutive model of liquids. According to this model liquid-liquid droplet or droplet-film structure (collective of particles) is considered as a macroscopic system with internal structure determined by the way the molecules (ions) are tuned (structured) into the primary components of a cluster configuration. How the tuning/structuring occurs depends on the physical fields involved, both potential (elastic forces) and nonpotential (resistance forces). All these microelements of the primary structure can be considered as electromechanical oscillators assembled into groups, so that excitation by an external physical field may cause oscillations at the resonant/characteristic frequency of the system itself (coupling at the characteristic frequency). Up to now, three possible mathematical formalisms have been discussed related to the theory of electroviscoelasticity. The first is the tension tensor model, where the normal and tangential forces are considered, only in mathematical formalism, regardless of their origin (mechanical and/or electrical). The second is the Van der Pol derivative model, presented by linear and nonlinear differential equations. Finally, the third model presents an effort to generalize the previous Van der Pol equation: the ordinary time derivative and integral are now replaced with the corresponding fractional-order time derivative and integral of order p<1.

  18. What Is a Simple Liquid? (United States)

    Ingebrigtsen, Trond S.; Schrøder, Thomas B.; Dyre, Jeppe C.


    This paper is an attempt to identify the real essence of simplicity of liquids in John Locke’s understanding of the term. Simple liquids are traditionally defined as many-body systems of classical particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be defined instead by the property of having strong correlations between virial and potential-energy equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions, but also some notable differences. For instance, in the new definition simplicity is not a direct property of the intermolecular potential because a liquid is usually only strongly correlating in part of its phase diagram. Moreover, not all simple liquids are atomic (i.e., with radially symmetric pair potentials) and not all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions may be ignored beyond the first coordination shell (FCS). This is demonstrated by NVT simulations of the structure and dynamics of several atomic and three molecular model liquids with a shifted-forces cutoff placed at the first minimum of the radial distribution function. The liquids studied are inverse power-law systems (r-n pair potentials with n=18,6,4), Lennard-Jones (LJ) models (the standard LJ model, two generalized Kob-Andersen binary LJ mixtures, and the Wahnstrom binary LJ mixture), the Buckingham model, the Dzugutov model, the LJ Gaussian model, the Gaussian core model, the Hansen-McDonald molten salt model, the Lewis-Wahnstrom ortho-terphenyl model, the asymmetric dumbbell model, and the single-point charge water model. The final part of the paper summarizes properties of strongly correlating liquids, emphasizing that these are simpler than liquids in general. Simple liquids, as defined here, may be characterized in three quite

  19. Electrochemistry at Liquid-Lidid Interfaces


    Gulaboski, Rubin


    Liquid-liquid interface is a natural border separating two solutions with different features. In this lecture, the phenomena of ion transfer at the Liquid-Liquid interfaces are elaborated, while hints are given to determine the themrodynamic and kinetic parameters relevant to the ion transfer processes.

  20. 12 CFR 704.9 - Liquidity management. (United States)


    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Liquidity management. 704.9 Section 704.9 Banks... UNIONS § 704.9 Liquidity management. (a) General. In the management of liquidity, a corporate credit union must: (1) Evaluate the potential liquidity needs of its membership in a variety of...

  1. Mesophase Formation in Discotic Liquid Crystalline Polymers

    NARCIS (Netherlands)

    Kouwer, P.H.J.


    Liquid crystals comprise a class of materials in which characteristic properties of crystals and liquids are combined. The materials show partly ordered fluid phases, between the common solid and the liquid phases. The combination of order and a high mobility is applied in the well-known liquid

  2. Syntheses of very dense halogenated liquids. (United States)

    Ye, Chengfeng; Shreeve, Jean'ne M


    A family of halogenated liquids with densities ranging from 1.95 to 2.80 g cm(-3) was readily synthesized by a one-pot procedure. These liquids exhibit characteristics of ionic liquids with melting/transition points lower than room temperature, long liquid ranges, and marked hydrolytic and thermal stabilities.

  3. Liquid crystals in biotribology synovial joint treatment

    CERN Document Server

    Ermakov, Sergey; Eismont, Oleg; Nikolaev, Vladimir


    This book summarizes the theoretical and experimental studies confirming the concept of the liquid-crystalline nature of boundary lubrication in synovial joints. It is shown that cholesteric liquid crystals in the synovial liquid play a significant role in the mechanism of intra-articular friction reduction. The results of structural, rheological and tribological research of the creation of artificial synovial liquids - containing cholesteric liquid crystals in natural synovial liquids - are described. These liquid crystals reproduce the lubrication properties of natural synovia and provide a high chondroprotective efficiency. They were tested in osteoarthritis models and in clinical practice.

  4. Orientation of semiflexible polymers at a liquid/liquid interface (United States)

    ten Bosch, Alexandra


    The formation and control of ordered liquid layers at an interface is of fundamental and practical interest and useful in the many applications of lubricants and coatings and in the preparation of self assembled liquids. Orientational order is observed in polymer systems in the immediate vicinity of a surface or interface. Semiflexible polymers resist deformation perpendicular to the monomer and the anchoring force at the surface fixes the direction of preferred orientation by coupling the direction of the molecular axis and the surface plane. When a second incompatible liquid is added to the system, a sharp interface between the two liquids forms at a given distance from the supporting substrate. By changing the nature of the second liquid, this second constraint can control the order and force the polymer in the ordered surface layer to assume different conformations. The wormlike chain model is used to calculate the orientational order parameter, the extent of the ordered surface layer and the anisotropic chain conformation and the parameters are determined for which an extended or contracted conformation will occur.

  5. Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen (United States)

    Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.


    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  6. Entropy-driven liquid-liquid separation in supercooled water

    CERN Document Server

    Holten, V


    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water at low temperatures is viewed as an 'athermal solution' of two molecular structures with different entropies and densities. Alternatively to popular models for water, in which the liquid-liquid separation is driven by energy, the phase separation in the athermal two-state water is driven by entropy upon increasing the pressure, while the critical temperature is defined by the 'reaction' equilibrium constant. In particular, the model predicts the location of density maxima at the locus of a near-constant fraction (about 0.1...

  7. Surface boiling of superheated liquid

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs.

  8. Liquid membrane purification of biogas

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. (Stevens Inst. of Tech., Hoboken, NJ (United States). Dept. of Chemistry and Chemical Engineering)


    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

  9. Global liquidity - concept, measurement and policy implications


    Bank for International Settlements


    Global liquidity has become a key focus of international policy debates over recent years. This reflects the view that global liquidity and its drivers are of major importance for international financial stability. The concept of global liquidity, however continues to be used in a variety of ways and this ambiguity can lead to unfounded and potentially destabilising policy initiatives. This report analyses global liquidity from a financial stability perspective, using two distinct liquidity c...

  10. Self-propelled film-boiling liquids


    Linke, H.; Aleman, B. J.; Melling, L. D.; Taormina, M. J.; Francis, M J; Dow-Hygelund, C. C.; Narayanan, V.; Taylor, R. P.; Stout, A.


    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchet-like) topology. The pumping effect is observed when the liquid is in the film-boiling regime, for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid.

  11. Liquidity Risk – Measurement and Control


    Blahová, Naďa


    The article deals with the liquidity risk in the banks in the context of the financial crisis. At first, the balance sheet and market liquidity are defined and the main principles of the methods for measuring liquidity risk, which banks use, are identified. Then follow review of main challenges of managing the liquidity of banks. Finally, it discusses qualitative regulatory requirements and eligibility of newly formulated standards with regard to minimum liquidity in general and in relation t...

  12. Rollover risk, liquidity and macroprudential regulation


    Ahnert, Toni


    I study rollover risk in the wholesale funding market when intermediaries can hold liquidity ex ante and are subject to fire sales ex post. Precautionary liquidity restores multiple equilibria in a global rollover game. An intermediate liquidity level supports both the usual run equilibrium and an efficient equilibrium. I provide a uniqueness refinement to characterize the privately optimal liquidity choice. Because of fire sales, liquidity holdings are strategic substitutes. Intermediaries f...

  13. Reactions and Polymerizations at the Liquid-Liquid Interface. (United States)

    Piradashvili, Keti; Alexandrino, Evandro M; Wurm, Frederik R; Landfester, Katharina


    Reactions and polymerizations at the interface of two immiscible liquids are reviewed. The confinement of two reactants at the interface to form a new product can be advantageous in terms of improved reaction kinetics, higher yields, and selectivity. The presence of the liquid-liquid interface can accelerate the reaction, or a phase-transfer catalyst is employed to draw the reaction in one phase of choice. Furthermore, the use of immiscible systems, e.g., in emulsions, offers an easy means of efficient product separation and heat dissipation. A general overview on low molecular weight organic chemistry is given, and the applications of heterophase polymerization, occurring at or in proximity of the interface, (mostly) in emulsions are presented. This strategy can be used for the efficient production of nano- and microcarriers for various applications.

  14. Thermal energy storage with liquid-liquid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santana, E.A.; Stiel, L.I. [Polytechnic Univ., Brooklyn, NY (United States)


    The use of liquid-liquid mixtures for heat and cool storage applications has been investigated. Suitable mixtures exhibit large changes in the heat of mixing above and below the critical solution temperature of the system. Analytical procedures have been utilized to determine potential energy storage capabilities of systems with upper or lower critical solution temperatures. It has been found that aqueous systems with lower critical solution temperatures in a suitable range can result in large increases in the effective heat capacity in the critical region. For cool storage with a system of this type, the cooling process results in a transformation from two liquid phases to a single phase. Heats of mixing have been measured with a flow calorimeter system for a number of potential mixtures, and the results are summarized.

  15. Sensitized Liquid Hydrazine Detonation Studies (United States)

    Rathgeber, K. A.; Keddy, C. P.; Bunker, R. L.


    Vapor-phase hydrazine (N2H4) is known to be very sensitive to detonation while liquid hydrazine is very insensitive to detonation, theoretically requiring extremely high pressures to induce initiation. A review of literature on solid and liquid explosives shows that when pure explosive substances are infiltrated with gas cavities, voids, and/or different phase contaminants, the energy or shock pressure necessary to induce detonation can decrease by an order of magnitude. Tests were conducted with liquid hydrazine in a modified card-gap configuration. Sensitization was attempted by bubbling helium gas through and/or suspending ceramic microspheres in the liquid. The hydrazine was subjected to the shock pressure from a 2 lb (0.9 kg) Composition C-4 explosive charge. The hydrazine was contained in a 4 in. (10.2 cm) diameter stainless steel cylinder with a 122 in(sup 3) (2 L) volume and sealed with a polyethylene cap. Blast pressures from the events were recorded by 63 high speed pressure transducers located on three radial legs extending from 4 to 115 ft (1.2 to 35.1 in) from ground zero. Comparison of the neat hydrazine and water baseline tests with the "sensitized" hydrazine tests indicates the liquid hydrazine did not detonate under these conditions.

  16. Fluctuating hydrodynamics for ionic liquids (United States)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos


    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  17. Supported liquid membranes technologies in metals removal from liquid effluents

    Directory of Open Access Journals (Sweden)

    de Agreda, D.


    Full Text Available The generation of liquid effluents containing organic and inorganic residues from industries present a potential hazardousness for environment and human health, being mandatory the elimination of these pollutants from the respective solutions containing them. In order to achieve this goal, several techniques are being used and among them, supported liquid membranes technologies are showing their potential for their application in the removal of metals contained in liquid effluents. Supported liquid membranes are a combination between conventional polymeric membranes and solvent extraction. Several configurations are used: flat-sheet supported liquid membranes, spiral wounds and hollow fiber modules. In order to improve their effectiveness, smart operations have been developed: non-dispersive solvent extraction, non-dispersive solvent extraction with strip phase dispersion and hollow fiber renewal liquid membrane. This paper overviewed some of these supported liquid membranes technologies and their applications to the treatment of metal-bearing liquid effluents.

    La generación, por parte de las industrias, de efluentes líquidos conteniendo sustancias orgánicas e inorgánicas, es un peligro potencial tanto para los humanos como para el medio ambiente, siendo necesaria la eliminación de estos elementos tóxicos de las disoluciones que los contienen. Para conseguir este fin, se están aplicando diversas técnicas y entre ellas las tecnologías de membranas líquidas soportadas, están demostrando sus aptitudes para la eliminación de metales contenidos en efluentes líquidos. Las membranas líquidas soportadas, resultan de la unión de las membranas poliméricas y de la tecnología de extracción líquido-líquido. Este tipo de membranas se pueden utilizar en diversas configuraciones: plana, módulo en fibra hueca y módulo en espiral y para aumentar su efectividad se están desarrollando las llamadas operaciones avanzadas: extracción no

  18. Liquid-liquid equilibria for ternary polymer mixtures (United States)

    Oh, Suk Yung; Bae, Young Chan


    A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  19. Gas-liquid autoxidation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, M.; Paludetto, R.; Carra, S.


    A procedure for the simulation of autoxidation gas-liquid reactors has been developed based both on mathematical models and laboratory experiments. It has been shown that the complex radical chain mechanism of the autoxidation process can be simulated through two global parallel reactions, whose rates are obtained by assuming pseudo-steady-state concentration values for all the radical species involved. Using ethylbenzene autoxidation as a model reaction, an experimental analysis has been performed in order to estimate all the kinetic parameters of the model. The effect of the interaction between gas-liquid mass-transfer phenomena and the complex kinetic mechanism on the overall performance of an autoxidation reactor has been examined in detail within the framework of the liquid film model.

  20. Crystalline 'Genes' in Metallic Liquids

    CERN Document Server

    Sun, Yang; Ye, Zhuo; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I; Ott, Ryan T; Kramer, M J; Ho, Kai-Ming


    The underlying structural order that transcends the liquid, glass and crystalline states is identified using an efficient genetic algorithm (GA). GA identifies the most common energetically favorable packing motif in crystalline structures close to the alloy's Al-10 at.% Sm composition. These motifs are in turn compared to the observed packing motifs in the actual liquid structures using a cluster-alignment method which reveals the average topology. Conventional descriptions of the short-range order, such as Voronoi tessellation, are too rigid in their analysis of the configurational poly-types when describing the chemical and topological ordering during transition from undercooled metallic liquids to crystalline phases or glass. Our approach here brings new insight into describing mesoscopic order-disorder transitions in condensed matter physics.

  1. Structure of liquid tricalcium aluminate (United States)

    Drewitt, James W. E.; Barnes, Adrian C.; Jahn, Sandro; Kohn, Simon C.; Walter, Michael J.; Novikov, Alexey N.; Neuville, Daniel R.; Fischer, Henry E.; Hennet, Louis


    The atomic-scale structure of aerodynamically levitated and laser-heated liquid tricalcium aluminate (Ca3Al2O6 ) was measured at 2073(30) K by using the method of neutron diffraction with Ca isotope substitution (NDIS). The results enable the detailed resolution of the local coordination environment around calcium and aluminum atoms, including the direct determination of the liquid partial structure factor, SCaCa(Q ) , and partial pair distribution function, gCaCa(r ) . Molecular dynamics (MD) simulation and reverse Monte Carlo (RMC) refinement methods were employed to obtain a detailed atomistic model of the liquid structure. The composition Ca3Al2O6 lies at the CaO-rich limit of the CaO:Al2O3 glass-forming system. Our results show that, although significantly depolymerized, liquid Ca3Al2O6 is largely composed of AlO4 tetrahedra forming an infinite network with a slightly higher fraction of bridging oxygen atoms than expected for the composition. Calcium-centered polyhedra exhibit a wide distribution of four- to sevenfold coordinated sites, with higher coordinated calcium preferentially bonding to bridging oxygens. Analysis of the MD configuration reveals the presence of ˜10 % unconnected AlO4 monomers and Al2O7 dimers in the liquid. As the CaO concentration increases, the number of these isolated units increases, such that the upper value for the glass-forming composition of CaO:Al2O3 liquids could be described in terms of a percolation threshold at which the glass can no longer support the formation of an infinitely connected AlO4 network.

  2. Liquid Spreading under Nanoscale Confinement (United States)

    Checco, Antonio


    Dynamic atomic force microscopy in the noncontact regime is used to study the morphology of a nonvolatile liquid (squalane) as it spreads along wettable nanostripes embedded in a nonwettable surface. Results show that the liquid profile depends on the amount of lateral confinement imposed by the nanostripes, and it is truncated at the microscopic contact line in good qualitative agreement with classical mesoscale hydrodynamics. However, the width of the contact line is found to be significantly larger than expected theoretically. This behavior may originate from small chemical inhomogeneity of the patterned stripes as well as from thermal fluctuations of the contact line.

  3. The scintillation of liquid argon

    CERN Document Server

    Heindl, T; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A


    A spectroscopic study of liquid argon from the vacuum ultraviolet at 110 nm to 1000 nm is presented. Excitation was performed using continuous and pulsed 12 keV electron beams. The emission is dominated by the analogue of the so called 2nd excimer continuum. Various additional emission features were found. The time structure of the light emission has been measured for a set of well defined wavelength positions. The results help to interpret literature data in the context of liquid rare gas detectors in which the wavelength information is lost due to the use of wavelength shifters.

  4. Transport properties of organic liquids

    CERN Document Server

    Latini, G; Passerini, G


    The liquid state is possibly the most difficult and intriguing state of matter to model. Organic liquids are required, mainly as working fluids, in almost all industrial activities and in most appliances (e.g. in air conditioning). Transport properties (namely dynamic viscosity and thermal conductivity) are possibly the most important properties for the design of devices and appliances. The aim of this book is to present both theoretical approaches and the latest experimental advances on the issue, and to merge them into a wider approach. It concentrates on applicability of models.This book is

  5. Fundamentals of liquid crystal devices

    CERN Document Server

    Yang, Deng-Ke


    Revised throughout to cover the latest developments in the fast moving area of display technology, this 2nd edition of Fundamentals of Liquid Crystal Devices, will continue to be a valuable resource for those wishing to understand the operation of liquid crystal displays. Significant updates include new material on display components, 3D LCDs and blue-phase displays which is one of the most promising new technologies within the field of displays and it is expected that this new LC-technology will reduce the response time and the number of optical components of LC-modules. Prof. Yang is a pion

  6. Watching nanoparticle kinetics in liquid

    Directory of Open Access Journals (Sweden)

    Yugang Sun


    Full Text Available Real-time monitoring of reaction kinetics involved in nanoparticle growth and transformation in liquid environments is crucial for understanding the complex chemical and physical events associated with nanophase evolution. Accordingly, in situ techniques that can “see through” liquids to probe nanomaterial variation are in high demand, as they will help us understand reaction mechanisms and design better synthetic strategies for building nanoparticles with precisely tailored properties. In this review, in situ transmission x-ray microscopy and time-resolved high-energy x-ray scattering techniques are discussed, highlight their capabilities in studying the dynamic processes of nanoparticles.

  7. Mechanics of liquids and gases

    CERN Document Server

    Loitsyanskii, L G; Jones, W P


    Mechanics of Liquids and Gases, Second Edition is a 10-chapter text that covers significant revisions concerning the dynamics of an ideal gas, a viscous liquid and a viscous gas.After an expanded introduction to the fundamental properties and methods of the mechanics of fluids, this edition goes on dealing with the kinetics and general questions of dynamics. The next chapters describe the one-dimensional pipe flow of a gas with friction, the elementary theory of the shock tube; Riemann's theory of the wave propagation of finite intensity, and the theory of plane subsonic and supersonic flows.

  8. Electrochemical aspects of ionic liquids

    CERN Document Server

    Ohno, Hiroyuki


    The second edition is based on the original book, which has been revised, updated and expanded in order to cover the latest information on this rapidly growing field. The book begins with a description of general and electrochemical properties of ionic liquids and continues with a discussion of applications in biochemistry, ionic devices, functional design and polymeric ionic liquids. The new edition includes new chapters on Li ion Batteries and Actuators, as well as a revision of existing chapters to include a discussion on purification and the effects of impurities, adsorption of ionic liqui

  9. Ecodesign of Liquid Fuel Tanks (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara


    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  10. Structural Characteristics of Liquid Sn

    Institute of Scientific and Technical Information of China (English)

    WU Ai-Qing; GUO Li-Jun; LIU Chang-Song; ZHU Zhen-Gang


    @@ We investigate the structural properties of liquid Sn. With the help of the internal friction (tan φ) method, it is found that a peak appears in the tan φ - T curve, suggesting that an anomalous discontinuous temperature induced structure change may take place in liquid Sn. From the experimental data of pair distribution functions, we calculate the viscosity η and the excess entropy S and it is found that there are a peak of viscosity in the η - T curve and a bend of excess entropy in the S - T curve, which give a positive support to the appearance of the internal-friction peak in the tan φ - T curve.

  11. Liquid-Liquid-Liquid Three Phase Extraction Apparatus: Operation Strategy and Influences on Mass Transfer Efficiency

    Institute of Scientific and Technical Information of China (English)

    何秀琼; 黄昆; 于品华; 张超; 谢铿; 李鹏飞; 王娟; 安震涛; 刘会洲


    Abstract A new mixer-settler-mixer three chamber integrated extractor is proposed in this work for liquid-liquid- liquid three phase countercurrent and continuous extraction. Experiments revealed the influences of the structural design of the three-liquid-phase extractor and some key operational parameters on three-phase partition of two phenolic isomers, p-nitrophenol (p-NP) and o-nitrophenol (o-NP). The model three-liquid-phase extraction system used here is nonane (organic top-plaase)-polyethylene glycol (PEG 20UU) (polymer mlddle-phase)-(NH4)2SO4 aqueous solution (aqueous bottom-phase). It is indicated that agitating speed and retention time in three-phase mixer are key parameters to extraction fraction of nitrophenol. Dispersion band behavior is related to agitating intensity, and its occurrence does not affect the extraction fraction of target compounds. The present work highlights the possibility of a feasible approach of scaling up of the proposed three-phase extraction apparatus for future in- dustrial-aimed applications.

  12. Ionic liquid based dispersive liquid-liquid microextraction of aromatic amines in water samples

    Institute of Scientific and Technical Information of China (English)

    Yun Chang Fan; Zheng Liang Hu; Mei Lan Chen; Chao Shen Tu; Yan Zhu


    In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.

  13. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples. (United States)

    Liu, Yu; Zhao, Ercheng; Zhu, Wentao; Gao, Haixiang; Zhou, Zhiqiang


    A novel microextraction method termed ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209-276) and accepted recoveries (79-110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2-100 microg/L, and the relative standard deviations (RSDs, n=5) were 4.5-10.7%. The limits of detection for the four insecticides were 0.53-1.28 microg/L at a signal-to-noise ratio (S/N) of 3.

  14. Liquid-liquid equilibrium of cholinium-derived bistriflimide ionic liquids with water and octanol. (United States)

    Costa, Anabela J L; Soromenho, Mário R C; Shimizu, Karina; Marrucho, Isabel M; Esperança, José M S S; Canongia Lopes, J N; Rebelo, Luís Paulo N


    The liquid-liquid equilibria of mixtures of cholinum-based ionic liquids (N-alkyl-N,N-dimethylhydroxyethylammonium bis(trifluoromethane)sulfonylimide, [N(11n2OH)][Ntf(2)], n = 1, 2, 3, 4, and 5) plus water or 1-octanol were investigated at atmospheric pressure over the entire composition range. The experiments were conducted between 265 and 385 K using the cloud-point method. The systems exhibit phase diagrams consistent with the existence of upper critical solution temperatures. The solubility of [N(1 1 n 2OH)][Ntf(2)] in water is lower for cations with longer alkyl side chains (larger n values). The corresponding trend in the octanol mixtures is reversed. The ([N(1 1 1 2OH)][Ntf(2)] + water + octanol) ternary system shows triple liquid-liquid immiscibility at room temperature and atmospheric pressure. A combined analytic/synthetic method was used to estimate the corresponding phase diagram under those conditions. Auxiliary molecular dynamics simulation data were used to interpret the experimental results at a molecular level.

  15. Surface tension of ionic liquids and ionic liquid solutions. (United States)

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N


    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  16. Axial Liquid Dispersion in Gas-Liquid-Solid Circulating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    M.Vatanakul; 孙国刚; 郑莹; M.Couturier


    The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSCFB).Liquid viscosity promotes the axial liquid backmixing when solid particles and gas bubbles are present. Increases in gas velocities and solid circulating rates lead to higher Dax. The effects of liquid velocity on Dax are associated with liquid viscosity. Compared with conventional expanded beds, the GLSCFBs hold less axial liquid dispersion,approaching ideal plug-flow reactors.

  17. Spectroscopic analysis of bosentan in biological samples after a liquid-liquid microextraction

    Directory of Open Access Journals (Sweden)

    Sanaz Sajedi-Amin


    Conclusion: A simple, low cost, precise and accurate spectrophotometric analysis of bosentan in biological samples after liquid-liquid microextraction were developed and validated for routine analyses.

  18. Research on colored lyotropic liquid crystals

    Institute of Scientific and Technical Information of China (English)

    WEI Xilian; YIN Baolin; SUN Dezhi; LIU Jie; WANG Zhongni; LI Ganzuo


    Splendidly colored lyotropic liquid crystals formed in the ternary system of a novel cationic surfactant, 3-p-nonylphenoxy-2-hydroxypropyl trimethyl ammonium bromide (NPTAB)-n-butanol-water system, had been observed under polarized light microscope. Small-angle X-ray scattering (SAXS), 2H (deuterium) quadrupolar splitting (2H NMR) were employed to confirm the structures of these liquid crystals. The structural transformation of these special lyotropic liquid crystals had been confirmed by differential scanning calorimetry (DSC). The influences of liquid crystal film thickness, temperature and conserving time on the color of liquid crystals have been investigated. It is also theoretically discussed for forming and changing of liquid crystal color.

  19. Recrystallized quinolinium ionic liquids for electrochemical analysis (United States)

    Selvaraj, Gowri; Wilfred, Cecilia Devi; Eang, Neo Kian


    Ionic liquids have received a lot of attention due to their unique properties. In this work the prospect of quinolinium based ionic liquids as electrolyte for dye sensitised solar cell were tested using cyclic voltammetry. The results have shown electron transfer in the ionic liquid without undergoing any permanent chemical changes. Prior to testing, the ionic liquids were purified through recrystallization as electrochemical properties of ionic liquids are highly dependent on the purity of the ionic liquids. This results have shone new light for this work.

  20. Liquid jet pumped by rising gas bubbles (United States)

    Hussain, N. A.; Siegel, R.


    A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.

  1. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.


    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  2. Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface. (United States)

    Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J


    This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems.

  3. Liquidity of Czech and Slovak commercial banks

    Directory of Open Access Journals (Sweden)

    Pavla Vodová


    Full Text Available As liquidity problems of some banks during global financial crisis re-emphasized, liquidity is very important for functioning of financial markets and the banking sector. The aim of this paper is therefore to evaluate comprehensively the liquidity positions of Czech and Slovak commercial banks via different liquidity ratios in the period of 2001–2010 and to find out whether the strategy for liquidity management differs by the size of the bank. We used unconsolidated balance sheet data over the period from 2001 to 2010 which were obtained from annual reports of Czech and Slovak banks. The sample includes significant part of Czech and Slovak banking sector (not only by the number of banks, but also by their share on total banking assets. We have calculated five different liquidity ratios for each bank in the sample. The results showed that liquidity of Czech banks has declined during last ten years. On the contrary, liquidity of Slovak banks fluctuated only slightly during the period 2001–2008. Bank liquidity has fallen due to the financial crisis in both countries; the impact is worse for Slovak banks. Both Czech and Slovak banks have become less liquid also as a result of increase in lending activity. Czech and Slovak banks have the same strategies how to insure against liquidity crises: big banks rely on the interbank market or on a liquidity assistance of the Lender of Last Resort, small and medium sized banks hold buffer of liquid assets.

  4. Solidity of viscous liquids. II

    DEFF Research Database (Denmark)

    Dyre, Jeppe


    Recent findings on displacements in the surroundings of isotropic flow events in viscous liquids [Phys. Rev. E 59, 2458 (1999)] are generalized to the anisotropic case. Also, it is shown that a flow event is characterized by a dimensionless number reflecting the degree of anisotropy....

  5. [Liquid method of electret formation]. (United States)

    Lowkis, B; Raubuć, Z


    The work presents the results of investigations of electrets formed according to the liquid method. This method utilizes transmission of electric charge from conductive liquid to dielectric surface. Electrets were made of poliester foil "Hostaphan". Various liquids such as acetone, ethanol, Ringer solution and distilled water were used for charging. It was established that surface densities of electret charge formed by Ringer solution and acetone are about from 15 to 20 nC/cm2, whereas those formed by ethanol and distilled water from 5 to 10 nC/cm2. These electrets are characterized by big stability of charge and their survival time is about 100 years. Deelectrization of electrets in liquids that were formerly used for formation was also performed. It appeared that the survival time of the samples after deelectrization was several times longer than the survival time of electrets. The longest survival time have samples formed by ethanol and deelectrized by Ringer solution (about 10(9) years).

  6. Forces in Liquid Metal Contacts

    DEFF Research Database (Denmark)

    Duggen, Lars; Mátéfi-Tempfli, Stefan


    Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review...

  7. Market liquidity around earnings announcements

    NARCIS (Netherlands)

    Pronk, M.


    Prior literature indicates that bid-ask spreads are higher and depths are lower around earnings announcements than during non-announcement periods. This thesis investigates two important aspects of this drop in market liquidity, namely (a) the ability of management to mitigate the drop in market

  8. Financial integration and liquidity crises

    NARCIS (Netherlands)

    Castiglionesi, Fabio; Feriozzi, F.; Lorenzoni, G.


    This paper analyzes the effects of financial integration on the stability of the banking system. Financial integration allows banks in different regions to smooth local liquidity shocks by borrowing and lending on a common interbank market. We show under which conditions financial integration

  9. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  10. Magnetocaloric Pumping of Liquid Oxygen (United States)

    Immer, Christopher; Kandula, Max; Lane, John; Youngquist, Robert


    The field-induced force density on a magnetic fluid is proportional to the magnetic susceptibility times the gradient of the magnetic field squared. The direction of the force is towards increasing magnetic field (positive gradient). Applying a magnetic field to a magnetic fluid will result in a force from all directions towards the location of peak field. Since the magnetic field is conservative and there are no magnetic monopoles, the net field-induced force on any fluid of constant susceptibly will be zero. The only manner to obtain a nonzero net field-induced force is to vary the susceptibility of the fluid. At the gas/liquid interface of liquid oxygen, the susceptibility varies drastically, and the exploitation of the resultant large net forces. An alternative method of varying the magnetic susceptibility is to vary the temperature of the fluid. The magnetic susceptibility of paramagnetic liquid oxygen obeys the Curie-Weiss law: it is inversely proportional to temperature. By applying a temperature gradient in the presence of a symmetric magnetic field, a nonzero net force results. Much of the theory of the so-called Magnetocaloric Effect has previously been developed for and applied to ferromagnetic fluids, or ferrofluids, but is readily applied to paramagnetic liquid oxygen.

  11. Solidity of viscous liquids. III

    DEFF Research Database (Denmark)

    Dyre, Jeppe


    It is suggested that the omega^{-1/2} high-frequency decay of the alpha loss in highly viscous liquids, which appears to be generic, is a manifestation of a negative long-time tail as typically encountered in stochastic dynamics. The proposed mechanism requires that the coherent diffusion constan...

  12. Metals Separation by Liquid Extraction. (United States)

    Malmary, G.; And Others


    As part of a project focusing on techniques in industrial chemistry, students carry out experiments on separating copper from cobalt in chloride-containing aqueous solution by liquid extraction with triisoctylamine solvent and search the literature on the separation process of these metals. These experiments and the literature research are…

  13. Micropropagation in stationay liquid media (United States)

    Micropropagation of many species is reduced as agar concentration increases. Eliminating agar or other gelling agent completely can improve microshoot proliferation and growth. If established shoot cultures are placed in vitro into shallow layers of liquid media, most of the shoot masses will remain...

  14. Liquid Metal Fuel Combustion Mechanics (United States)


    Mechanics. No such analysis seem to have been done todate . The other way is to calculate the fluid Finally the location of the liquid particles within the...3601, July about 10 axial locations before peaking up . At about y=25, the 1987. 5 3. L.P.Cook and E.R.Plante: Survey of alternate Stored Chemical

  15. Market liquidity around earnings announcements

    NARCIS (Netherlands)

    Pronk, M.


    Prior literature indicates that bid-ask spreads are higher and depths are lower around earnings announcements than during non-announcement periods. This thesis investigates two important aspects of this drop in market liquidity, namely (a) the ability of management to mitigate the drop in market liq

  16. Floating liquid bridge charge dynamics (United States)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz


    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  17. Producing liquid fuels from biomass (United States)

    Solantausta, Yrjo; Gust, Steven

    The aim of this survey was to compare, on techno-economic criteria, alternatives of producing liquid fuels from indigenous raw materials in Finland. Another aim was to compare methods under development and prepare a proposal for steering research related to this field. Process concepts were prepared for a number of alternatives, as well as analogous balances and production and investment cost assessments for these balances. Carbon dioxide emissions of the alternatives and the price of CO2 reduction were also studied. All the alternatives for producing liquid fuels from indigenous raw materials are utmost unprofitable. There are great differences between the alternatives. While the production cost of ethanol is 6 to 9 times higher than the market value of the product, the equivalent ratio for substitute fuel oil produced from peat by pyrolysis is 3 to 4. However, it should be borne in mind that the technical uncertainties related to the alternatives are of different magnitude. Production of ethanol from barley is of commercial technology, while biomass pyrolysis is still under development. If the aim is to reach smaller carbon dioxide emissions by using liquid biofuels, the most favorable alternative is pyrolysis oil produced from wood. Fuels produced from cultivated biomass are more expensive ways of reducing CO2 emissions. Their potential of reducing CO2 emissions in Finland is insignificant. Integration of liquid fuel production to some other production line is more profitable.

  18. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole


    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...

  19. Liquid chromatography of organophosphorus acids

    NARCIS (Netherlands)

    Verweij, A.; Kientz, C.E.; Berg, J. van den


    The applicability of different liquid chromatographic systems such as ion-exchange, ion-exclusion, reversed phase and ion-pair partition was studied for the analysis of a number of simple structurally related organophosphorus acids which lack a chromophoric group. Preliminary experiments based on th

  20. Salting-out assisted liquid-liquid extraction coupled to dispersive liquid-liquid microextraction for the determination of chlorophenols in wine by high-performance liquid chromatography. (United States)

    Fan, Yingying; Hu, Shibin; Liu, Shuhui


    A novel procedure of sample preparation combined with high-performance liquid chromatography with diode array detection is introduced for the analysis of highly chlorinated phenols (trichlorophenols, tetrachlorophenols, and pentachlorophenol) in wine. The main features of the proposed method are (i) low-toxicity diethyl carbonate as extraction solvent to selectively extract the analytes without matrix effect, (ii) the combination of salting-out assisted liquid-liquid extraction and dispersive liquid-liquid microextraction to achieve an enrichment factor of 334-361, and (iii) the extract is analyzed by high-performance liquid chromatography to avoid derivatization. Under the optimum conditions, correlation coefficients (r) were >0.997 for calibration curves in the range 1-80 ng/mL, detection limits and quantification limits ranged from 0.19 to 0.67 and 0.63 to 2.23 ng/mL, respectively, and relative standard deviation was wines, with recovery rates in the range 82-104%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Relationship Between Liquid Fluidity of Iron Ore and Generated Liquid Content During Sintering (United States)

    Peng, Jun; Zhang, Lei; Liu, Li-xia; An, Sheng-li


    The fluidity of sintering liquid phase reflects the effective bonding range of the binder phase in the sintering process of iron ores. In this study, the liquid composition and quantity during sintering was calculated using FactSage 7.0 thermodynamic calculation software. The results show that two liquid phases are formed during sintering. One phase is generated at about 1373 K (1100 °C) and the other is generated at about 1523 K (1250 °C). The liquid fluidity index and the low-temperature liquid phase are closely related. The higher-temperature liquid phase has little influence on the liquid fluidity index. The larger the amount of low-temperature liquid phase generated, the higher the liquid fluidity index is. The alkalinity of the low-temperature liquid phase has insignificant influence on the liquid fluidity index. The content of SiO2 in the iron ore is the main factor that affects the liquid fluidity index during sintering. The liquid fluidity index increases greatly with increasing SiO2 content. In contrast, Al2O3 content has little influence on the liquid fluidity index, with an increase in the Al2O3 content only slightly increasing the liquid fluidity index. An increase in the MgO content of the iron ore can reduce liquid generation, promote the spinel generation, and decrease the liquid fluidity index during sintering.

  2. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air



    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  3. Variable-focus cylindrical liquid lens array (United States)

    Zhao, Wu-xiang; Liang, Dong; Zhang, Jie; Liu, Chao; Zang, Shang-fei; Wang, Qiong-hua


    A variable-focus cylindrical liquid lens array based on two transparent liquids of different refractive index is demonstrated. An elastic membrane divides a transparent reservoir into two chambers. The two chambers are filled with liquid 1 and liquid 2, respectively, which are of different refractive index. The micro-clapboards help liquid 1, liquid 2 and the elastic membrane form a cylindrical lens array. Driving these two liquids to flow can change the shape of the elastic membrane as well as the focal length. In this design, the gravity effect of liquid can be overcome. A demo lens array of positive optical power is developed and tested. Moreover, a potential application of the proposed lens array for autostereoscopic 3D displays is emphasized.

  4. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron


    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  5. Infrared Sensor with Liquid Crystal Chopper

    Institute of Scientific and Technical Information of China (English)


    An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the like.



    Prof. Ph.D Maria Caracota Dimitriu; Ph.D Student Sorina Cristina Oaca


    This article aims to underline the importance of market liquidity for the stability of the financial system, emphasizing the pivotal role played by liquidity risk in the development of the current financial crisis.

  7. Liquid Flow in Shaped Fiber Bundle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; WANG Hua-ping; CHEN Yue-hua


    By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body is considered as one critical factor besides liquid viscosity, inertia force and liquid-fiber interface tension. Experimental result simulation demonstrated that the liquid-air interface tension is correlated with the geometric size of the liquid arising in body, φ0 (x) and which is affected by the cross sectional shape of fiber and the radius of single fiber. The shaped fiber bundle model is introduced to investigate liquid flow in fiber assembly. The model is generated based on a random function for stochastic forming of fibers in bundle and it is necessary to combine this fundamental model with physical explanation for investigation of liquid flow in fiber assembly.

  8. Emerging Technologies of Liquid Crystal Displays

    Institute of Scientific and Technical Information of China (English)

    Sin-Doo Lee; Chang-Jae Yu; Jae-Hong Park; Min-Sik Jung


    The general features and the emerging technologies of liquid crystal displays are described from the viewpoints of wide viewing and fast response technologies. The device applications of liquid crystals for optical communications are also described.

  9. Dynamic of particle-laden liquid sheet (United States)

    Sauret, Alban; Jop, Pierre; Troger, Anthony


    Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin liquid films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient free liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film as a function of time and the atomization process. We highlight that the presence of particles modifies the thickness and the stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.

  10. Selective Extraction of Bioproducts by Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    王键吉; 裴渊超; 赵扬; 张锁江


    Imidazolium based room temperature ionic liquids have been used to extract selectively L-tryptophan from fermentation broth. BF4 anion was found to enhance dramatically the partitioning of L-tryptophan into ionic liquid phase from aqueous solutions.

  11. High Foreign Exchange Reserves Fuel Excess Liquidity

    Institute of Scientific and Technical Information of China (English)



    This article views China’s excess liquidity problem in the global context. It suggests that market mechanisms, cooperation between all parties involved, and liquidity diversion, be resorted to in order to tackle the problem of excessive liquidity. This article also points out that the top priority is to solve the major problems, such as the current account surplus, the sources of excessive liquidity, the shortage of capital in rural areas, and the cause of capital distribution imbalance.

  12. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V


    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  13. "Practical" Electrospinning of Biopolymers in Ionic Liquids. (United States)

    Shamshina, Julia L; Zavgorodnya, Oleksandra; Bonner, Jonathan R; Gurau, Gabriela; Di Nardo, Thomas; Rogers, Robin D


    To address the need to scale up technologies for electrospinning of biopolymers from ionic liquids to practical volumes, a setup for the multi-needle electrospinning of chitin using the ionic liquid 1-ethyl-3-methylimidazolium acetate, [C2 mim]-[OAc], was designed, built, and demonstrated. Materials with controllable and high surface area were prepared at the nanoscale using ionic-liquid solutions of high-molecular-weight chitin extracted with the same ionic liquid directly from shrimp shells.

  14. Liquidity and reserve requirements in Brazil


    Patrice Robitaille


    The international reform initiative that followed the global financial crisis of 2008-09 has resulted in the introduction of liquidity requirements for banks. Under one requirement, the Liquidity Coverage Ratio (LCR), banks will need to hold enough highly liquid assets to survive for a month in a stress scenario. Banks' required reserve balances can be used to fulfill this liquidity requirement and this may be seen as an attractive option for emerging market economies, where financial sectors...

  15. Particles dispersion on fluid-liquid interfaces

    Institute of Scientific and Technical Information of China (English)

    Sathish Gurupatham; Bhavin Dalal; Md. Shahadat Hossain; Ian S. Fischer; Pushpendra Singh; Daniel D. Joseph


    This paper is concerned with the dispersion of particles on the fluid-liquid interface. In a previous study we have shown that when small particles,e.g.,flour,pollen,glass beads,etc.,contact an air-liquid interface,they disperse rapidly as ifthey were in an explosion. The rapid dispersion is due to the fact that the capillary force pulls particles into the interface causing them to accelerate to a large velocity. In this paper we show that motion of particles normal to the interface is inertia dominated: they oscillate vertically about their equilibrium position before coming to rest under viscous drag. This vertical motion of a particle causes a radially-outward lateral (secondary) flow on the interface that causes nearby particles to move away. The dispersion on a liquid-liquid interface,which is the primary focus of this study,was relatively weaker than on an air-liquid interface,and occurred over a longer period of time. When falling through an upper liquid the particles have a slower velocity than when falling through air because the liquid has a greater viscosity. Another difference for the liquid-liquid interface is that the separation of particles begins in the upper liquid before the particles reach the interface. The rate of dispersion depended on the size of the particles,the densities of the particle and liquids,the viscosities of the liquids involved,and the contact angle. For small particles,partial pinning and hysteresis of the three-phase contact line on the surface of the particle during adsorption on liquid-liquid interfaces was also important. The frequency of oscillation of particles about their floating equilibrium increased with decreasing particle size on both air-water and liquid-liquid interfaces,and the time to reach equilibrium decreased with decreasing particle size. These results are in agreement with our analysis.

  16. Liquid radioactive waste subsystem design description

    Energy Technology Data Exchange (ETDEWEB)



    The Liquid Radioactive Waste Subsystem provides a reliable system to safely control liquid waste radiation and to collect, process, and dispose of all radioactive liquid waste without impairing plant operation. Liquid waste is stored in radwaste receiver tanks and is processed through demineralizers and temporarily stored in test tanks prior to sampling and discharge. Radwastes unsuitable for discharge are transferred to the Solid Radwaste System.

  17. Liquidity, Information, and the Overnight Rate


    Ewerhart, Christian; Nuno CASSOLA; Ejerskov, Steen; Valla, Natacha


    We model the interbank market for overnight credit with heterogeneous banks and asymmetric information. An unsophisticated bank just trades to compensate its liquidity imbalance, while a sophisticated bank will exploit its private information about the liquidity situation in the market. It is shown that with positive probability, the liquidity effect (Hamilton, 1997) is reversed, i.e., a liquidity drainage from the banking system may generate an overall decrease in the market rate. The phenom...

  18. Nanoparticle enhanced ionic liquid heat transfer fluids (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.


    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  19. Analysis of liquid bridge between spherical particles

    Institute of Scientific and Technical Information of China (English)


    A pair of central moving spherical particles connected by a pendular liquid bridge with interstitial Newtonian fluid is often encountered in pariculate coalescence process. In this paper, by assuming perfect-wet condition, the effects of liquid volume and separation distance on static liquid bridge are analyzed, and the relation between rupture energy and liquid bridge volume is also studied. These points would be of significance in industrial processes related to adhesive particles.

  20. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids



    The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the sep...

  1. Orthoconic liquid crystals--a case study. (United States)

    Lagerwall, Sven T


    Since the early investigations on liquid crystals it was realized how the confining surfaces often determine the textures and even properties of the material. This influence is particularly complex and important for chiral materials. When we come to chiral smectics the surfaces may have dramatic effects. These are illustrated on the ferroelectric liquid crystals; they then again increase in importance for the antiferroelectric liquid crystals where the most recent example is given by the orthoconic liquid crystals.

  2. Determination of pyrethroid pesticides in tomato using ionic liquid-based dispersive liquid-liquid microextraction. (United States)

    Han, Dandan; Tang, Baokun; Row, Kyung Ho


    A sensitive determination method was developed for the analysis of pyrethroid pesticide residues in tomato samples using ionic liquid-based dispersive liquid-liquid microextraction. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) and acetonitrile were used as the extraction solvent and dispersive solvent, respectively. The following experimental parameters affecting the extraction efficiency were examined: types of extraction solvent and volume of extraction solvent, types of dispersive solvent and volume of dispersive solvent and pH and ion strength of the sample solution. Under the optimum conditions, the extraction recoveries ranged from 83.9 to 96.7%. Moreover, the enrichment factors for esbiothrin, fenpropathrin and cyhalothrin were 42, 48 and 45, respectively. The calibration curves were linear with correlation coefficients ranging from 0.9997 to 0.9999 at concentrations of 0.05-1.5 µg/kg. The relative standard deviation (n = 5) was 1.7-4.5%. The limits of detection for esbiothrin, fenpropathrin and cyhalothrin were 8.1, 9.9 and 14.3 µg/kg, respectively.

  3. High-throughput liquid-liquid extraction in 96-well format: Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Andresen, Alf Terje; Dahlgren, Anders


    , highly efficient sample cleanup, and direct compatibility with liquid chromatography–mass spectrometry (LC–MS). The consumption of hazardous organic solvents is also almost eliminated using PALME as the sample preparation technique. This article summarizes current experiences with PALME, based on work...

  4. Recent developments in dispersive liquid-liquid microextraction. (United States)

    Saraji, Mohammad; Boroujeni, Malihe Khalili


    During the past 7 years and since the introduction of dispersive liquid-liquid microextraction (DLLME), the method has gained widespread acceptance as a simple, fast, and miniaturized sample preparation technique. Owing to its simplicity of operation, rapidity, low cost, high recovery, and low consumption of organic solvents and reagents, it has been applied for determination of a vast variety of organic and inorganic compounds in different matrices. This review summarizes the DLLME principles, historical developments, and various modes of the technique, recent trends, and selected applications. The main focus is on recent technological advances and important applications of DLLME. In this review, six important aspects in the development of DLLME are discussed: (1) the type of extraction solvent, (2) the type of disperser solvent, (3) combination of DLLME with other extraction methods, (4) automation of DLLME, (5) derivatization reactions in DLLME, and (6) the application of DLLME for metal analysis. Literature published from 2010 to April 2013 is covered.

  5. Study of liquid deposition during laser printing of liquids (United States)

    Duocastella, M.; Patrascioiu, A.; Dinca, V.; Fernández-Pradas, J. M.; Morenza, J. L.; Serra, P.


    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  6. Two Coexisting Liquid Phases in Switchable Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Juan; Lao, David; Sui, Xiao; Zhou, Yufan; Nune, Satish K.; Ma, Xiang; Troy, Tyler; Ahmed, Musahid; Zhu, Zihua; Heldebrant, David J.; Yu, Xiao-Ying


    In situ time-of-flight secondary ion mass spectrometry (ToF-SIMS) coupled with a vacuum compatible microfluidic reactor, System for Analysis at Liquid Vacuum Interface (SALVI), has enabled the first spatial mapping of the switchable ionic liquids (SWILs) derived from 1,8-diazabicycloundec-7-ene (DBU) and 1-hexanol. As predicted by molecular dynamic simulations, our molecular imaging results confirmed a dynamic heterogeneous molecular structure with ionic regions (high CO2 concentration) coexisting with non-ionic regions (no CO2) where stoichiometry would indicate otherwise. Chemical speciation was also found to be more complex than initially thought, with spectral principal component analysis identifying dimers that ultimately highlight a highly complex molecular structure unique to SWILs. The spatial chemical mapping enabled by ToF-SIMS and SALVI advances the understanding of how the heterogeneous molecular structure impacts the dynamic physical and thermodynamic properties or SWILs.


    Directory of Open Access Journals (Sweden)

    İ. Metin HASDEMİR


    Full Text Available The influence of feed ratios ((LE/LR on the performance of a packed liquid-liquid extraction column, with a diameter of 5.86 cm and a column height of 132 cm was investigated. The column is made of borosilicate glass and packed with 10 x 10 mm glass Raschig rings. In this study, a ternary system composed of water + propionic acid + trichloroethylene was used. The data used to triangular diagram were obtained experimentally. The overall mass transfer coefficients, the numbers of overall mass transfer units, the heights of mass transfer units, the numbers of theoretical stages and height equivalent to a theoretical stage (H. E. T. S. values were calculated and compared with each other.

  8. Liquidity Constraints and Fiscal Stabilization Policy

    DEFF Research Database (Denmark)

    Kristoffersen, Mark Strøm

    It is often claimed that the presence of liquidity constrained households enhances the need for and the effects of fi…scal stabilization policies. This paper studies this in a model of a small open economy with liquidity constrained households. The results show that the consequences of liquidity...

  9. Liquid crystal displays for aircraft engineering

    Directory of Open Access Journals (Sweden)

    Kovalenko L. F.


    Full Text Available Operating conditions for liquid-crystal displays of aircraft instruments have been examined. Requirements to engineering of a liquid-crystal display for operation in severe environment have been formulated. The implementation options for liquid-crystal matrix illumination have been analyzed in order to ensure the sufficient brightness depending on external illumination of a display screen.

  10. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;


    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but util...

  11. Pricing Liquidity Risk with Heterogeneous Investment Horizons

    NARCIS (Netherlands)

    Beber, A.; Driessen, J.; Tuijp, P.F.A.


    We develop a new asset pricing model with stochastic transaction costs and investors with heterogenous horizons. Short-term investors hold only liquid assets in equilibrium. This generates segmentation effects in the pricing of liquid versus illiquid assets. Specifically, the liquidity (risk) premia

  12. The hype with ionic liquids as solvents (United States)

    Kunz, Werner; Häckl, Katharina


    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  13. The Research of Liquidated Damages in China

    Institute of Scientific and Technical Information of China (English)

    Xu; Ting


    <正>I.Liquidated damages provisions of Anglo-American countries distinguished from that in China Liquidated damages provisions in Anglo-American countries are different from penalty clauses.However,Chinese law does not recognise liquidated damages in the same way as in Anglo-

  14. Does C60 have a liquid phase?

    NARCIS (Netherlands)

    Hagen, M.H.J.; Meijer, E.J.; Mooij, G.C.A.M.; Frenkel, D.


    Above a substance's liquid–vapour critical point (i>Tc), the distinction between the liquid and vapour phases disappears. Below the triple point (T t), meanwhile (at which solid, liquid and vapour coexist), only the solid and vapour are stable. The liquid range, T c/T t, depends on the nature of the

  15. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun


    Robitaille P.-M.


    Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temper...

  16. Study on liquid-liquid bimetal composite casting hammers

    Institute of Scientific and Technical Information of China (English)

    Rong Shoufan; Zhou Haitao; ZhuYongchang; Wang Junfa; Yao Jia; Li Chunhong


    Crusher hammers for the mineral processing industry must meet the demands of both high wear resistance at the hammer head and high impact toughness at the hammer handle. The crusher hammers made of Hadfield steel have typical y low service life of less than 40 hours. To solve the problem, a kind of bimetal crusher hammers made of high chromium cast iron (HCCI) and low al oy steel (LAS) has been successful y developed by using liquid-liquid composite casting. The microstructure and composite interface bonding was analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the composite interface is metal urgical y bonded with a zigzag shape across the boundary and without unbound region or void. After heat treatment, the composite hammers have shown excellent properties. The hardness of HCCI is at least 63 HRC and its αk is greater than 3.5 J•cm-2; the hardness of LAS is greater than 35 HRC and its αk is no less than 80 J•cm-2. Diffusion of elements takes place at the interface and forms a transition region. The micro hardness increases from LAS to the interface and then to HCCI. Wear comparison was made separately between the bimetal composite hammer and a Hadfield steel hammer in two quarries of Jilin province and Liaoning province. The results showed that the liquid-liquid bimetal composite hammers did not have the fal ing off of hammer head or impact fracture phenomenon, and their service life was 3.75 times as long as that of the Hadfield steel hammers.

  17. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition (United States)

    Lan, S.; Blodgett, M.; Kelton, K. F.; Ma, J. L.; Fan, J.; Wang, X.-L.


    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ˜1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  18. Ultrasonic investigation of hydrodynamics and mass transfer in a gas-liquid(-liquid) stirred vessel

    NARCIS (Netherlands)

    Cents, A. H. G.; Brilmant, D. W. F.; Versteeg, G. F.


    The rate of gas-liquid mass transfer is very important in several industrial chemical engineering applications. In many multi-phase reaction systems, however, the mechanism of mass transfer is not well understood. This is for instance the case in Gas-Liquid-Solid (G-L-S) and Gas-Liquid-Liquid (G-L-L

  19. Theoretical and experimental investigation into the explosive boiling potential of thermally stratified liquid-liquid systems

    NARCIS (Netherlands)

    Fabiano, B.; Kersten, R.J.A.; Opschoor, G.; Pastorino, R.


    The occurrence of a rapid phase transition, or so-called explosive boiling, when a cold volatile liquid comes into contact with a hot liquid or hot surface is a potential hazard in industry. This study was focused on the explosive boiling potential of thermally stratified liquid-liquid systems that

  20. Novel bipyridinium ionic liquids as liquid electrochromic devices. (United States)

    Jordão, Noémi; Cabrita, Luis; Pina, Fernando; Branco, Luís C


    Novel mono and dialkylbipyridinium (viologens) cations combined with iodide, bromide, or bis(trifluoromethanesulfonyl)imide [NTf2] as anions were developed. Selective alkylation synthetic methodologies were optimized in order to obtain the desired salts in moderate to high yields and higher purities. All prepared mono- and dialkylbipyridinium salts were completely characterized by (1)H, (13)C, and (19)F NMR spectroscopy, Fourier-transform IR spectroscopy, and elemental analysis (in the case of NTf2 salts). Melting points, glass transition temperatures by differential scanning calorimetry (DSC) studies, and decomposition temperatures were also checked for different prepared organic salts. Viscosities at specific temperatures and activation energies were determined by rheological studies (including viscosity dependence with temperature in heating and cooling processes). Electrochemical studies based on cyclic voltammetry (CV), differential pulsed voltammetry (DPV), and square-wave voltammetry (SWV) were performed in order to determine the redox potential as well as evaluate reversibility behavior of the novel bipyridinium salts. As proof of concept, we developed a reversible liquid electrochromic device in the form of a U-tube system, the most promising dialkylbipyridinium-NTf2 ionic liquid being used as the electrochromic material and the room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)-imide [EMIM][NTf2], as a stable and efficient electrolyte. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evolution of dispersive liquid-liquid microextraction method. (United States)

    Rezaee, Mohammad; Yamini, Yadollah; Faraji, Mohammad


    Dispersive liquid-liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given.

  2. Surface nanodroplets for highly efficient liquid-liquid microextraction (United States)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua


    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  3. Gas-liquid interface of room-temperature ionic liquids. (United States)

    Santos, Cherry S; Baldelli, Steven


    The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).

  4. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction. (United States)

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel


    Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).

  5. Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas. (United States)

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel


    This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.

  6. Static and dynamic electrowetting of an ionic liquid in a solid/liquid/liquid system. (United States)

    Paneru, Mani; Priest, Craig; Sedev, Rossen; Ralston, John


    A droplet of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, bmim.BF(4)) is immersed in an immiscible liquid (n-hexadecane) and electrowetted on a flat Teflon AF1600-coated ITO electrode. The static contact angle decreases significantly when voltage is applied between the droplet and the electrode: from 145 degrees down to 50 degrees (with DC voltage) and 15 degrees (with AC voltage). The electrowetting curves (contact angle versus voltage) are similar to the ones obtained in other solid/liquid/vapor and solid/liquid/liquid systems: symmetric with respect to zero voltage and correctly described by Young-Lippmann equation below saturation. The reversibility is excellent and contact angle hysteresis is minimal (approximately 2 degrees). The step size used in applying the DC voltage and the polarity of the voltage are unimportant. The saturation contact angle cannot be predicted with the simple zero-interfacial tension theory. Spreading (after applying a DC voltage) and retraction (after switching off the voltage) of the droplet is monitored. The base area of the droplet varies exponentially during wetting (exponential saturation) and dewetting (exponential decay). The characteristic time is 20 ms for spreading and 35 ms for retraction (such asymmetry is not observed with water-glycerol mixtures of a similar viscosity). The spreading kinetics (dynamic contact angle versus contact line speed) can be described by the hydrodynamic model (Voinov's equation) for small contact angles and by the molecular-kinetic model (Blake's equation) for large contact angles. The role of viscous and molecular dissipation follows the scheme outlined by Brochard-Wyart and de Gennes.

  7. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.A. [Surbec Environmental, Norman, OK (United States); Sabatini, D.A.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States)


    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  8. Role of magnetic interactions in neutron stars

    Directory of Open Access Journals (Sweden)

    Adhya Souvik Priyam


    Full Text Available In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  9. Resilient quasiparticles in Ruthenates: transport properties within LDA+DMFT method (United States)

    Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel


    Many Rutheniums are strongly correlated metals with Fermi Liquid behavior found only a small temperature scale. Non-Fermi signatures appear in both their resistivity and optical conductivity. We study the transport properties of a set of Ruthenates within first principle methods in combination with dynamical mean field theory and find reasonable agreement with experimental findings. The non-Fermi-liquid features are attributed to the temperature dependence of resilient quasiparticles, which survives above the Fermi liquid temperature scale and exhibits a strong temperature dependence in their effective mass enhancement and scattering rate.

  10. Strange metal transport realized by gauge/gravity duality. (United States)

    Faulkner, Thomas; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David


    Fermi liquid theory explains the thermodynamic and transport properties of most metals. The so-called non-Fermi liquids deviate from these expectations and include exotic systems such as the strange metal phase of cuprate superconductors and heavy fermion materials near a quantum phase transition. We used the anti-de-Sitter/conformal field theory correspondence to identify a class of non-Fermi liquids; their low-energy behavior is found to be governed by a nontrivial infrared fixed point, which exhibits nonanalytic scaling behavior only in the time direction. For some representatives of this class, the resistivity has a linear temperature dependence, as is the case for strange metals.

  11. Function Spaces for Liquid Crystals (United States)

    Bedford, Stephen


    We consider the relationship between three continuum liquid crystal theories: Oseen-Frank, Ericksen and Landau-de Gennes. It is known that the function space is an important part of the mathematical model and by considering various function space choices for the order parameters s, n, and Q, we establish connections between the variational formulations of these theories. We use these results to justify a version of the Oseen-Frank theory using special functions of bounded variation. This proposed model can describe both orientable and non-orientable defects. Finally we study a number of frustrated nematic and cholesteric liquid crystal systems and show that the model predicts the existence of point and surface discontinuities in the director.

  12. Alien liquid detector and control

    Energy Technology Data Exchange (ETDEWEB)

    Potter, B.M.


    An alien liquid detector employs a monitoring element and an energizing circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. For this purpose an electronic circit controls a flow of heating current to the monitoring element. The presence of an alien liquid is detected by sensing a predetermined change in heating current flow to the monitoring element, e.g., to distinguish between water and oil. In preferred embodiments the monitoring element is a thermistor whose resistance is compared with a reference resistance and heating current through the thermistor is controlled in accordance with the difference. In one embodiment a bridge circuit senses the resistance difference; the difference may be sensed by an operational amplifier arrangement. Features of the invention include positioning the monitoring element at the surface of water, slightly immersed, so that the power required to maintain the thermistor temperature substantially above ambient temperature serves to detect presence of oil pollution at the surface.

  13. Strain Pattern in Supercooled Liquids (United States)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias


    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  14. Viscosity of liquid undercooled tungsten (United States)

    Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi


    Knowledge of the viscosity and its temperature dependence is essential to improve metallurgical processes as well as to validate theoretical and empirical models of liquid metals. However, data for metals with melting points above 2504K could not be determined yet due to contamination and containment problems. Here we report the viscosity of tungsten, the highest melting point metal (3695K), measured by a levitation technique. Over the 3350-3700-K temperature range, which includes the undercooled region by 345K, the viscosity data could be fitted as η(T )=0.108exp[1.28×105/(RT)](mPas). At the melting point, the datum agrees with the proposed theoretical and empirical models of liquid metals but presents atypical temperature dependence, suggesting a basic change in the mechanism of momentum transfer.


    Energy Technology Data Exchange (ETDEWEB)



    The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

  16. Structural relaxation in viscous metallic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, A. [National Inst. of Standards and Technology (BFRL), Gaithersburg, MD (United States)]|[Technische Univ. Muenchen, Muenchen (Germany); Wuttke, J.; Petry, W. [Technische Univ. Muenchen, Muenchen (Germany); Schober, H. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Randl, O.G. [Manufacture Michelin, Clermont-Ferrand (France)


    Recently, metallic alloys have been found that exhibit extremely large viscosities in the liquid state. These liquids can be quenched into bulk metallic glasses at relatively modest cooling rates. In contrast to simple metals the structural relaxation of these systems show a two step decay in the liquid state. This behaviour has long been known for molecular or ionic glass formers in their under-cooled liquid state. Applying an analysis previously used for the glass formers (mode-coupling theory) a full quantitative description of the neutron data is obtained for these metallic liquids. (authors) 3 refs., 2 figs.

  17. Development of liquid nitrogen Centrifugal Pump

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Sagiyama, R; Tsuchiya, H [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Takayama, T [Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585 (Japan); Torii, Y [OMNIX, 1-15-3 Nishishinjuku, Shinjuku, Tokyo, 160-0023 (Japan); Nakamura, M [YN Nakamura Ltd, 3-9-25 Ohjima, Koto, Tokyo, 136-0072 (Japan); Hoshino, Y [JECC TORISHA Co. Ltd, 2-8-52 Yoshinodai, Kawagoe-shi, Saitama, 350-0833 (Japan); Odashima, Y [Department of Basic Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)], E-mail:


    Usually liquid nitrogen (LN{sub 2}) transfer from a container to a laboratory equipment takes place by applying pressure to the container to push out liquid or pouring liquid into the cryostat directly by lifting the container. In order to overcome inconvenience of pressuring or lifting containers, we have been developing the Liquid Nitrogen Centrifugal Pump of a small electric turbine pump. Significant advantages that both reducing time to fill LN{sub 2}and controlling the flow rate of liquid into the cryostat are obtained by introducing this pump. We have achieved the lift of about 800mm with the vessel's opening diameter of 28mm.

  18. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    -induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric......The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision...

  19. Quantized friction across ionic liquid thin films (United States)

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.





    For the evaporation of the pure liquid under the condition of constant temperature and constant external pressure, the phase equilibrium of the liquid vapor in the bubble and the liquid outside the bubble is always a kind of stable equilibrium whether there is air or not in the bubble. If there is no air in the bubble, the bubble and liquid cannot coexist in the mechanical equilibrium when the vapor pressure of the liquid in the bubble is less than or equal to the external pressure; the bubbl...

  1. Quantized friction across ionic liquid thin films. (United States)

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan


    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  2. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    -induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric......The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision...

  3. Modal liquid crystal wavefront corrector. (United States)

    Kotova, S; Kvashnin, M; Rakhmatulin, M; Zayakin, O; Guralnik, I; Klimov, N; Clark, P; Love, Gordon; Naumov, A; Saunter, C; Loktev, M; Vdovin, G; Toporkova, L


    Results are presented of the properties of a liquid crystal wavefront corrector for adaptive optics. The device is controlled using modal addressing in which case the device behaves more like a continuous facesheet deformable mirror than a segmented one. Furthermore, the width and shape of the influence functions are electrically controllable. We describe the construction of the device, the optical properties, and we show experimental results of low order aberration generation.

  4. Photocontrollable liquid-crystalline actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haifeng [Top Runner Incubation Center for Academia-Industry Fusion and Department of Materials and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Ikeda, Tomiki [Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)


    Coupling photochromic molecules with liquid crystalline (LC) materials enables one to reversibly photocontrol unique LC features such as phase transition, photoalignment, and molecular cooperative motion. LC elastomers show photomechanical and photomobile properties, directly converting light energy into mechanical energy. In well-defined LC block copolymers, regular patternings of nanostructures in macroscopic scales are fabricated by photo-manipulation of LC actuators. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Mixing Tamiflu with Sweet Liquids

    Centers for Disease Control (CDC) Podcasts


    If your doctor prescribes Tamiflu® capsules for your child and your child cannot swallow them, this podcast describes how to mix the contents of the capsules with a sweet thick liquid so they can be given that way.  Created: 11/16/2009 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 11/16/2009.

  6. Liquidity, Interest Rates and Output


    Shouyong Shi


    This paper integrates limited participation into monetary search theory to analyze the liquidity effects of open market operations. The centralized bonds market features limited participation and shocks to government bond sales, while the decentralized goods market features bilateral matches. Unmatured bonds can be used together with money to purchase goods in a fraction of matches, but in other matches a legal restriction forbids the use of bonds as the means of payments. In this economy, a ...

  7. Liquid Crystalline Esters of Dibenzophenazines

    Directory of Open Access Journals (Sweden)

    Kevin John Anthony Bozek


    Full Text Available A series of esters of 2,3,6,7-tetrakis(hexyloxydibenzo[a,c]phenazine-11-carboxylic acid was prepared in order to probe the effects of the ester groups on the liquid crystalline behavior. These compounds exhibit columnar hexagonal phases over broad temperature ranges. Variations in chain length, branching, terminal groups, and the presence of cyclic groups were found to modify transition temperatures without substantially destabilizing the mesophase range.

  8. Liquid biofuels from blue biomass

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Jensen, Annette Eva; Bangsø Nielsen, Henrik


    Marine (blue) biomasses, such as macroalgaes, represent a huge unexploited amount of biomass. With their various chemical compositions, macroalgaes can be a potential substrate for food, feed, biomaterials, pharmaceuticals, health care products and also for bioenergy. Algae use seawater as a growth...... be the well suited candidates as feedstock for biofuel production in the future. The aim of our studies is to examine the possibility producing liquid biofuel (ethanol and butanol) from macroalgaes....

  9. Money, liquidity, and monetary policy


    Adrian, Tobias; Shin, Hyun Song


    In a market-based financial system, banking and capital market developments are inseparable, and funding conditions are closely tied to fluctuations in the leverage of market-based financial intermediaries. Offering a window on liquidity, the balance sheet growth of broker-dealers provides a sense of the availability of credit. Contractions of broker-dealer balance sheets have tended to precede declines in real economic growth, even before the current turmoil. For this reason, balance sheet q...

  10. Money, liquidity, and monetary policy


    Adrian, Tobias; Shin, Hyun Song


    In a market-based financial system, banking and capital market developments are inseparable, and funding conditions are closely tied to fluctuations in the leverage of market-based financial intermediaries. Offering a window on liquidity, the balance sheet growth of broker-dealers provides a sense of the availability of credit. Contractions of broker-dealer balance sheets have tended to precede declines in real economic growth, even before the current turmoil. For this reason, balance sheet q...

  11. Statistical mechanics of nonequilibrium liquids

    CERN Document Server

    Evans, Denis J; Craig, D P; McWeeny, R


    Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory,

  12. Droplet impacts upon liquid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ching, B.; Golay, M.W.; Johnson, T.J.


    The absorption and rebounding of single droplets and streams of droplets (of diameter less than 1200 micrometers) impacting upon the surface of a deep liquid were examined experimentally. Conservation of mechanical energy and momentum were used to explain rebounding droplet interactions, and impaction criteria have been established regarding the absorption of droplet streams. Surface tension is the dominant mechanism governing the observed behavior. Single droplets were never observed to rebound.

  13. Fast Ignition and Sustained Combustion of Ionic Liquids (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)


    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  14. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  15. Swimming bacteria in liquid crystal (United States)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg


    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  16. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino


    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  17. The Eighth Liquid Matter Conference. (United States)

    Dellago, Christoph; Kahl, Gerhard; Likos, Christos N


    The Eighth Liquid Matter Conference (LMC8) was held at the Universität Wien from 6-10 September 2011. Initiated in 1990, the conferences of this series cover a broad range of highly interdisciplinary topics, ranging from simple liquids to soft matter and biophysical systems. The vast spectrum of scientific subjects presented and discussed at the LMC8 is reflected in the themes of the ten symposia: Ionic and quantum liquids, liquid metals Water, solutions and reaction dynamics Liquid crystals Polymers, polyelectrolytes, biopolymers Colloids Films, foams, surfactants, emulsions, aerosols Confined fluids, interfacial phenomena Supercooled liquids, glasses, gels Non-equilibrium systems, rheology, nanofluids Biofluids, active matter This special issue contains scientific papers, authored by participants of the LMC8, which provide a cross-section of the scientific activities in current liquid matter science, as discussed at the conference, and demonstrate the scientific as well as methodological progress made in this field over the past couple of years. The Eighth Liquid Matter Conference contents The Eighth Liquid Matter ConferenceChristoph Dellago, Gerhard Kahl and Christos N Likos Comparing light-induced colloidal quasicrystals with different rotational symmetriesMichael Schmiedeberg and Holger Stark Hydrogen bond network relaxation in aqueous polyelectrolyte solutions: the effect of temperatureS Sarti, D Truzzolillo and F Bordi Equilibrium concentration profiles and sedimentation kinetics of colloidal gels under gravitational stressS Buzzaccaro, E Secchi, G Brambilla, R Piazza and L Cipelletti The capillary interaction between two vertical cylindersHimantha Cooray, Pietro Cicuta and Dominic Vella Hydrodynamic and viscoelastic effects in polymer diffusionJ Farago, H Meyer, J Baschnagel and A N Semenov A density-functional theory study of microphase formation in binary Gaussian mixturesM Carta, D Pini, A Parola and L Reatto Microcanonical determination of the

  18. Liquid effluent study characterization data

    Energy Technology Data Exchange (ETDEWEB)


    During the development of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), public comments were received regarding reduction of the discharge of liquid effluents into the soil column. As a result, the US Department of Energy (DOE), with concurrence of the Washington State Department of Ecology (WSDE)and the US Environmental Protection Agency (EPA), committed to a special project designed to document the discharge history and the charter of Hanford Site liquid discharges. The results of this project will be used in determining the need for additional waste stream analysis, and/or to negotiate additional milestones pertaining to such discharges in the Tri-Party Agreement. Wastestream sampling data collected prior to October 1989 were reported in the Waste Stream Characterization Report. Preliminary Stream-specific Reports were prepared which evaluated that data and proposed dangerous waste designations for each stream. This document contains the wastestream sampling and analysis data collected as part of the liquid effluent study. Data contained in this report were obtained from samples collected from October 1989 through March 1990. Information is presented on the wastestreams that have been sampled, the parameters analyzed, and the dates and times at which the samples were collected. This information will be evaluated in the final Stream-Specific Reports. 9 refs., 4 tabs.

  19. Proton Scattering on Liquid Argon (United States)

    Bouabid, Ryan; LArIAT Collaboration


    LArIAT (Liquid Argon In A Test-beam) is a liquid argon time projection chamber (LArTPC) positioned in a charged particle beamline whose primary purpose is to study the response of LArTPC's to charged particle interactions. This previously unmeasured experimental data will allow for improvement of Monte Carlo simulations and development of identification techniques, important for future planned LArTPC neutrino experiments. LArIAT's beamline is instrumented to allow for the identification of specific particles as well as measurement of those particles' incoming momenta. Among the particles present in the beamline, the analysis presented here focuses on proton-Argon interactions. This study uses particle trajectories and calorimetric information to identify proton-Argon interaction candidates. We present preliminary data results on the measurement of the proton-Argon cross-section. Liquid Argon In A Test Beam. The work is my analysis made possible through the efforts of LArIAT detector, data, and software.

  20. Nanoparticles in ionic liquids: interactions and organization. (United States)

    He, Zhiqi; Alexandridis, Paschalis


    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  1. The Liquid Hand-to-mouth

    DEFF Research Database (Denmark)

    Pagel, Michaela; Vardardottir, Arna

    income and spending categories throughout the income distribution. Spending responses to income are typically explained by households’ capital structures: households that hold little or no liquid wealth have to consume hand-tomouth. However, we find that few individuals hold little or no liquidity...... and also document that liquidity holdings are much larger than predicted by state-of-the-art models explaining spending responses with liquidity constraints due to illiquid savings. Given that present liquidity constraints do not bind, we analyze whether individuals hold cash cushions to cope with future...... liquidity constraints. To that end, we analyze cash holding responses to income payments inspired by the corporate finance literature. However, we find that individuals’ cash responses are consistent with standard models without illiquid savings and neither present nor future liquidity constraints being...

  2. Bank Liquidity Risk: Analysis and Estimates

    Directory of Open Access Journals (Sweden)

    Meilė Jasienė


    Full Text Available In today’s banking business, liquidity risk and its management are some of the most critical elements that underlie the stability and security of the bank’s operations, profit-making and clients confidence as well as many of the decisions that the bank makes. Managing liquidity risk in a commercial bank is not something new, yet scientific literature has not focused enough on different approaches to liquidity risk management and assessment. Furthermore, models, methodologies or policies of managing liquidity risk in a commercial bank have never been examined in detail either. The goal of this article is to analyse the liquidity risk of commercial banks as well as the possibilities of managing it and to build a liquidity risk management model for a commercial bank. The development, assessment and application of the commercial bank liquidity risk management was based on an analysis of scientific resources, a comparative analysis and mathematical calculations.

  3. Estimating the Energy State of Liquids

    Directory of Open Access Journals (Sweden)

    Lianwen Wang


    Full Text Available In contrast to the gaseous and the solid states, the liquid state does not have a simple model that could be developed into a quantitative theory. A central issue in the understanding of liquids is to estimate the energy state of liquids. Here, on the basis of our recent studies on crystal melting, we show that the energy sate of liquids may be reasonably approximated by the energy and volume of a vacancy. Consequently, estimation of the liquid state energy is significantly simplified comparing with previous methods that inevitably invoke many-body interactions. Accordingly, a possible equation for the state for liquids is proposed. On this basis, it seems that a simple model for liquids is in sight.

  4. The Dam Bursts for Porous Liquids. (United States)

    James, Stuart L


    In 2007 the idea was put forward that, through careful molecular design, it should be possible to synthesize liquids which contain permanent, well-defined molecule-sized cavities (pores). Such "porous liquids" could be a kind of liquid zeolite, or liquid MOF (metal-organic framework), exhibiting the size and shape-selective sorption (or dissolution) associated with microporous solids as well as the fluidity of liquids - a new and potentially useful combination of properties. However, these materials remained essentially hypothetical until recently. In 2014 and 2015 three papers were published which describe convincing examples of porous liquids, and studies have shown that they do exhibit some remarkable properties, such as very fast gas diffusion and high gas solubilities. The examples reported so far are almost certainly only the tip of the iceberg. Now that porous liquids are 'real', a new area of materials science may open up, with clear potential for long-term applications in chemical processes.

  5. Dispatch Liquidity Theory in a Deregulated Environment

    Institute of Scientific and Technical Information of China (English)

    SHEN Yu; XIA Qing; KANG Chongqing


    Power system security and reliability are more complex issues in a deregulated environment. Various criteria have been considered for power system reliability. In the day-ahead market, a successful trade schedule should be able to accept various disturbances with sufficient flexibility to be adjusted during the re-dispatch process. This paper describes the dispatch liquidity theory and some liquidity indices. The liquidity indices evaluate the effective operating reserves with the network constraints taken into consideration. A model is presented to calculate the liquidity index. An extended trade scheduling model with minimum liquidity index constraints is presented that considers the distribution requirements of the operating reserves. The liquidity indices could also be used to coordinate the security and reliability between multistage markets and for contingency selection. The algorithms were tested with real power system data. The results show that the dispatch liquidity theory is reasonable and the algorithms are effective.

  6. Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography. (United States)

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming


    A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.

  7. Dispersive Liquid-Liquid Microextraction and determination of Platinum(IV by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ali Mazloomifar


    Full Text Available A simple, rapid, and efficient procedure, dispersive liquid-liquid microextraction (DLLME, has been developed for the extraction and preconcentration of platinum (IV in environmental water samples. The factors relevant to the microextraction efficiency, such as the kind and volume of extraction and dispersive solvent, the extraction time, the pH in aqueous, and the salt effect, were optimized. Under the optimum conditions , the enrichment factor of this method for platinum was reached at 119. The detection limit for platinum was 0.3 ng mL-1 , and the relative standard deviation (RSD was 0.42% (n = 10 , C = 10 ng mL-1. The method was successfully applied to the determination of trace amounts of platinum in environmental water samples.

  8. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface. (United States)

    Matsuoka, Ryota; Sakamoto, Ryota; Hoshiko, Ken; Sasaki, Sono; Masunaga, Hiroyasu; Nagashio, Kosuke; Nishihara, Hiroshi


    Synthetic two-dimensional polymers, or bottom-up nanosheets, are ultrathin polymeric frameworks with in-plane periodicity. They can be synthesized in a direct, bottom-up fashion using atomic, ionic, or molecular components. However, few are based on carbon-carbon bond formation, which means that there is a potential new field of investigation into these fundamentally important chemical bonds. Here, we describe the bottom-up synthesis of all-carbon, π-conjugated graphdiyne nanosheets. A liquid/liquid interfacial protocol involves layering a dichloromethane solution of hexaethynylbenzene on an aqueous layer containing a copper catalyst at room temperature. A multilayer graphdiyne (thickness, 24 nm; domain size, >25 μm) emerges through a successive alkyne-alkyne homocoupling reaction at the interface. A gas/liquid interfacial synthesis is more successful. Sprinkling a very small amount of hexaethynylbenzene in a mixture of dichloromethane and toluene onto the surface of the aqueous phase at room temperature generated single-crystalline graphdiyne nanosheets, which feature regular hexagonal domains, a lower degree of oxygenation, and uniform thickness (3.0 nm) and lateral size (1.5 μm).

  9. Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid-liquid interfaces. (United States)

    Zhong, Shenghong; Jang, Chang-Hyun


    Here, we report the development of an experimental system based on liquid crystals (LCs) confined in microcapillaries for imaging interfacial phenomena. The inner surfaces of the microcapillaries were modified with octadecyltrichlorosilane to promote an escaped-radial configuration of LCs. We checked the optical appearance of the capillary-confined LCs under a crossed polarizing microscope and determined their arrangement based on side and top views. We then placed the capillary-confined LCs in contact with non-surfactant and surfactant solutions, producing characteristic textures of two bright lines and a four-petal shape, respectively. We also evaluated the sensitivity, stability, and reusability of the system. Our imaging system was more sensitive than previously reported LC thin film systems. The textures formed in microcapillaries were stable for more than 120 h and the capillaries could be reused at least 10 times. Finally, we successfully applied our system to image the interactions of phospholipids and bivalent metal ions. In summary, we developed a simple, small, portable, sensitive, stable, and reusable experimental system that can be broadly applied to monitor liquid-liquid interfacial phenomena. These results provide valuable information for designs using confined LCs as chemoresponsive materials in optical sensors.

  10. Ionic Liquids and Poly(ionic liquid)s for Morphosynthesis of Inorganic Materials. (United States)

    Gao, Min-Rui; Yuan, Jiayin; Antonietti, Markus


    Ionic liquids (ILs) are new, innovative ionic solvents with rich physicochemical properties and intriguing pre-organized solvent structures; these materials offer great potential to impact across versatile areas of scientific research, for example, synthetic inorganic chemistry. Recent use of ILs as precursors, templates, and solvents has led to inorganic materials with tailored sizes, dimensionalities, morphologies, and functionalities that are difficult to obtain, or even not accessible, by using conventional solvents. Poly(ionic liquid)s (PILs) polymerized from IL monomers also raise the prospect of modifying nucleation, growth, and crystallization of inorganic objects, shedding light on the synthesis of a wide range of new materials. Here we survey recent key progress in using ILs and PILs in the field of synthetic inorganic chemistry. As well as highlighting the unique features of ILs and PILs that enable advanced synthesis, the effects of adding other solvents to the final products, along with the emerging applications of the created inorganic materials will be discussed. We finally provide an outlook on several development opportunities that could lead to new advancements of this exciting research field.

  11. Ionic liquids screening for desulfurization of natural gasoline by liquid-liquid extraction. (United States)

    Likhanova, Natalya V; Guzmán-Lucero, Diego; Flores, Eugenio A; García, Paloma; Domínguez-Aguilar, Marco A; Palomeque, Jorge; Martínez-Palou, Rafael


    Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.

  12. Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture (United States)

    Murata, Ken-Ichiro; Tanaka, Hajime


    The existence of more than two liquid states in a single-component substance and the ensuing liquid-liquid transitions (LLTs) has attracted considerable attention because of its counterintuitive nature and its importance in the fundamental understanding of the liquid state. Here we report direct experimental evidence for a genuine (isocompositional) LLT without macroscopic phase separation in an aqueous solution of glycerol. We show that liquid I transforms into liquid II by way of two types of kinetics: nucleation and growth, and spinodal decomposition. Although liquid II is metastable against crystallization, we could access both its static and dynamical properties experimentally. We find that liquids I and II differ in density, refractive index, structure, hydrogen bonding state, glass transition temperature and fragility, and that the transition between the two liquids is mainly driven by the local structuring of water rather than of glycerol, suggesting a link to a plausible LLT inpure water.

  13. On the Chemical Stabilities of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yen-Ho Chu


    Full Text Available Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitous and in others, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention must be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  14. Injector for liquid fueled rocket engine (United States)

    Cornelius, Charles S. (Inventor); Myers, W. Neill (Inventor); Shadoan, Michael David (Inventor); Sparks, David L. (Inventor)


    An injector for liquid fueled rocket engines wherein a generally flat core having a frustoconical dome attached to one side of the core to serve as a manifold for a first liquid, with the core having a generally circular configuration having an axis. The other side of the core has a plurality of concentric annular first slots and a plurality of annular concentric second slots alternating with the first slots, the second slots having a greater depth than said first slots. A bore extends through the core for inletting a second liquid into said core, the bore intersecting the second slots to feed the second liquid into the second slots. The core also has a plurality of first passageways leading from the manifold to the first annular slots for feeding the first liquid into said first slots. A faceplate brazed to said other side of the core is provided with apertures extending from the first and second slots through said face plate, these apertures being positioned to direct fuel and liquid oxygen into contact with each other in the combustion chamber. The first liquid may be liquid oxygen and the second liquid may be kerosene or liquid hydrogen.

  15. Calculation of liquid-vapor and liquid-liquid equilibrium in multicomponent systems using correlations of equilibrium data


    Reyes Labarta, Juan Antonio; Olaya López, María del Mar; Gómez Siurana, Amparo; Marcilla Gomis, Antonio


    Póster presentado en el congreso EQUIFASE 99 (Vigo, del 20 al 24 de Junio de 1999). Resumen publicado en el libro de actas del Congreso An algebraic correlation method to calculate equilibrium data for ternary vapor-liquid equilibrium and quaternary liquid-liquid equilibrium has been proposed. The proposed method allows the calculation of the conjugated phase in equilibrium with a given phase, and the calculation of the two phases in equilibrium from the composition of a heterogeneous glob...

  16. Compartmentalized Droplets for Continuous Flow Liquid-Liquid Interface Catalysis. (United States)

    Zhang, Ming; Wei, Lijuan; Chen, Huan; Du, Zhiping; Binks, Bernard P; Yang, Hengquan


    To address the limitations of batch organic-aqueous biphasic catalysis, we develop a conceptually novel method termed Flow Pickering Emulsion, or FPE, to process biphasic reactions in a continuous flow fashion. This method involves the compartmentalization of bulk water into micron-sized droplets based on a water-in-oil Pickering emulsion, which are packed into a column reactor. The compartmentalized water droplets can confine water-soluble catalysts, thus "immobilizing" the catalyst in the column reactor, while the interstices between the droplets allow the organic (oil) phase to flow. Key fundamental principles underpinning this method such as the oil phase flow behavior, the stability of compartmentalized droplets and the confinement capability of these droplets toward water-soluble catalysts are experimentally and theoretically investigated. As a proof of this concept, case studies including a sulfuric acid-catalyzed addition reaction, a heteropolyacid-catalyzed ring opening reaction and an enzyme-catalyzed chiral reaction demonstrate the generality and versatility of the FPE method. Impressively, in addition to the excellent durability, the developed FPE reactions exhibit up to 10-fold reaction efficiency enhancement in comparison to the existing batch reactions, indicating a unique flow interface catalysis effect. This study opens up a new avenue to allow conventional biphasic catalysis reactions to access more sustainable and efficient flow chemistry using an innovative liquid-liquid interface protocol.

  17. Liquid-liquid equilibria for ternary polymer mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suk Yung [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of); Bae, Young Chan, E-mail: [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of)


    Graphical abstract: We developed a molecular thermodynamic model for multicomponent systems and discribed the phase equilibrium for ternary polymer mixtures by using the model parameters obtained from the binary systems. Research highlights: {yields} Model parameters were obtained from the binary systems. {yields} The obtained parameters were directly used to predict the ternary data. {yields} The undetermined parameters were used to correlate the ternary data. {yields} The proposed model agreed well with the experimental data. - Abstract: A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  18. Recent development and applications of dispersive liquid-liquid microextraction. (United States)

    Yan, Hongyuan; Wang, Hui


    Dispersive liquid-liquid microextraction (DLLME) is a modern sample pretreatment technique that is regarded as consilient with the current trends of modern analytical chemistry. DLLME is simple, inexpensive, environmentally friendly, and could offer high enrichment factors from a wide gap between acceptor and donor phases. As a consequence, DLLME has attracted considerable attention from researchers and, based on the numerous publications concerning DLLME, has been generally accepted in separation science since the technique's invention in 2006. However, several innate weaknesses of DLLME, which restrict the technique's use in certain fields, have led to various attempts or suggestions to improve this technique. The present review focuses on the recent advances made in DLLME; the selected papers that are discussed in this work represent modifications that fall into three main categories (exploration of new extraction solvents, disperser solvents and combination with other techniques). The recent applications of DLLME in environmental, food and biological samples are also summarised, covering almost all of the publications related to the technology from the beginning. In addition, the feasibility of future trends of DLLME is discussed.

  19. Optimized liquid-liquid extractive rerefining of spent lubricants. (United States)

    Kamal, Muhammad Ashraf; Naqvi, Syed Mumtaz Danish; Khan, Fasihullah


    Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R (2) = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent ratio r). Construction of such models has allowed the maximization of the sludge yield (more than 8% and 3% in case of alcohol and ketone, resp.) so that the extraction of useable oil components from spent lubricants can economically be performed under extremely mild conditions (t = 16.7 h, T = 10°C, and r = 2) and fairly moderate conditions (t = 26.6 h, T = 10°C, and r = 5) established for the alcohol and ketone correspondingly. Based on these performance parameters alcohol appears to be superior over ketone for this extraction process. Additionally extractive treatment results in oil stocks with lesser quantity of environmentally hazardous polyaromatic hydrocarbons that are largely left in the separated sludge.

  20. Thickness of residual wetting film in liquid-liquid displacement (United States)

    Beresnev, Igor; Gaul, William; Vigil, R. Dennis


    Core-annular flow is common in nature, representing, for example, how streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a nonwetting fluid, tends to occupy the middle (core) part of a channel, while water forms a surrounding wall-wetting film. What is the thickness of the wetting film? A classic theory has been in existence for nearly 50 years offering a solution, although in a controversial manner, for moving gas bubbles. On the other hand, an acceptable, experimentally verified theory for a body of one liquid flowing in another has not been available. Here we develop a hydrodynamic, testable theory providing an explicit relationship between the thickness of the wetting film and fluid properties for a blob of one fluid moving in another, with neither phase being gas. In its relationship to the capillary number Ca, the thickness of the film is predicted to be proportional to Ca2 at lower Ca and to level off at a constant value of ˜20% the channel radius at higher Ca. The thickness of the film is deduced to be approximately unaffected by the viscosity ratio of the fluids. We have conducted our own laboratory experiments and compiled experimental data from other studies, all of which are mutually consistent and confirm the salient features of the theory. At the same time, the classic law, originally deduced for films surrounding moving gas bubbles but often believed to hold for liquids as well, fails to explain the observations.

  1. Optimized Liquid-Liquid Extractive Rerefining of Spent Lubricants

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf Kamal


    Full Text Available Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol and a ketone (methyl ethyl ketone as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R2=0.9065 and 0.9072 for alcohol and ketone, resp. to process variables (settling time t, operating temperature T, and oil to solvent ratio r. Construction of such models has allowed the maximization of the sludge yield (more than 8% and 3% in case of alcohol and ketone, resp. so that the extraction of useable oil components from spent lubricants can economically be performed under extremely mild conditions (t = 16.7 h, T=10°C, and r=2 and fairly moderate conditions (t = 26.6 h, T=10°C, and r=5 established for the alcohol and ketone correspondingly. Based on these performance parameters alcohol appears to be superior over ketone for this extraction process. Additionally extractive treatment results in oil stocks with lesser quantity of environmentally hazardous polyaromatic hydrocarbons that are largely left in the separated sludge.

  2. Batch liquid-liquid extraction of phenol from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Palma, M.S.A.; Shibata, C. [Department of Biochemical Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo-SP (Brazil); Paiva, J.L. [Department of Chemical Engineering, Polytechnical School, University of Sao Paulo, Sao Paulo-SP (Brazil); Zilli, M. [Department of Chemical and Process Engineering, University of Genoa, Genoa (Italy); Converti, A.


    The aim of this work is the study of batch liquid-liquid extraction of phenol from aqueous solutions in a bench-scale well-mixed reactor. The influence of the ratio of phase volumes, temperature, and rotational speed on phenol removal (0.72-1.1 % w/w) was investigated using methyl isobutyl ketone as an extracting solvent. For this purpose, the ratio of phase volumes were set at 0.1 and 0.2, the temperature at 10, 20, and 30 C, and the rotational speed at 300, 400, and 500 rpm. A physical model based on the material balance of the phases as well as the equation of mass flux between the phases allowed the estimation of the overall coefficient of mass transfer coupled with the superficial area. Moreover, it proved to fit, satisfactorily well, the experimental data of residual phenol concentration in the organic phase versus time under all the conditions investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed (United States)

    Flynn, Howard; Lusby, Brian; Villemarette, Mark


    In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.

  4. Correlation of liquid-liquid equilibria of non-ideal binary systems by NRTL model

    Directory of Open Access Journals (Sweden)

    Grozdanić Nikola D.


    Full Text Available Non Random Two Liquid model (NRTL with three different forms of temperature dependant parameters was used to correlate the liquid - liquid equilibrium data for systems of alcohols with alkanes, and alcohols with two ionic liquids: 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([bmmim][BF4] and 1-butyl-3-ethylimidazolium tetrafluoroborate ([beim][BF4]. Different temperature dependences of NRTL parameters were tested on thirteen literature experimental liquid - liquid equilibrium data for binary systems. [Projekat Ministarstva nauke Republike Srbije, br. 172063

  5. Generalized Liquid Film Atomization Theory

    Institute of Scientific and Technical Information of China (English)

    HeraldoS.Couto; DemetrioBastos-Netto


    The increase of the fuel burning area required by most practical combustion processes in order to guarantee the minimum energy density rate release for their start up and operation is normally achieved by the proper choice among several existing types of atomizers.For instance.impinging and multi-impinging jets atomizers are used in rocket combustion chambers.while splash-plate atomizers find their use when wall film cooling is required.Pressure swirl atomizers,either of simplex or duplex kind,along with Y-jet or SPider Jet atomizers are used in industrial applications and in turbine combustion chambers.Notice.however,that all the types of atomizing devices listed above have one point in common:they are of pre-filming kind.i.e.,befor the droplet spray is generated,a liquid film is formed.This liquid film is broken into unstable ligaments which contract under the action of surface tension forming the droplets.Once the film thickness is estimated.the droplets'SMD(Sauter Mean Diameter)can be calculated.yielding a crucial prameter for the combustion chamber design.However,although this mechanism of droplet fromation has been under study for several decades.most of the available results.are based upon experimental data.valid for a special type of atomizer under the given sepcific conditions only.This work offers a generalized theory for theoretically estimating the SMD of sprays generated by liquid pre-filming atomizers in gereral.

  6. Tailor-made ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jork, C. [Technische Universitaet Berlin, Strasse des 17. Juni 135, Institut fuer Verfahrenstechnik, Fachgebiet Thermodynamik und Thermische Verfahrenstechnik, 10623 Berlin (Germany); Kristen, C. [Technische Universitaet Berlin, Strasse des 17. Juni 135, Institut fuer Verfahrenstechnik, Fachgebiet Thermodynamik und Thermische Verfahrenstechnik, 10623 Berlin (Germany); Pieraccini, D. [University of Pisa, Dipartimento di Chimica Bioorganica e Biofarmacia, via Bonanno 33, 56126 Pisa (Italy); Stark, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Technische Chemie und Umweltchemie, Lessingstrasse 12, 07743 Jena (Germany); Chiappe, C. [University of Pisa, Dipartimento di Chimica Bioorganica e Biofarmacia, via Bonanno 33, 56126 Pisa (Italy); Beste, Y.A. [BASF AG, GCT/A-L540, 67056 Ludwigshafen (Germany); Arlt, W. [Universitaet Erlangen/Nuernberg, Lehrstuhl fuer Thermische Verfahrenstechnik, Egerlandstrasse 3, 91058 Erlangen (Germany)]. E-mail:


    This article presents a first consequent thermodynamic optimization of ionic liquids (IL) as entrainers in the distillative separation of both an azeotropic aqueous (tetrahydrofuran + water) and a close-boiling aromatic test system (methylcyclohexane + toluene) on the basis of COSMO-RS predictions. The use of this method allows for the preselection from the large pool of available IL. Thus, favorable structural variations were identified and used for tailoring IL entrainers. For the prediction of activity coefficients with COSMO-RS, the use of different conformations of the components, derived from conformational analyses, leads to varying results. The simulations showed that the influence of conformations of the volatile components and the ionic liquids depends largely on the type of the phase equilibrium, which is investigated. The approach to tailor ionic liquids as additives for separation science starts with the prediction of the activity coefficients at infinite dilution. The simulation indicated that a higher degree of branching or longer alkyl substituents on the cation, as well as a low nucleophilicity of the anion decreases both selectivity and capacity in the polar test mixture. However, COSMO-RS calculations for the non-polar mixture showed that the selection of an entrainer for this system is more complicated, because - contrarily to (tetrahydrofuran + water) - structural variations of the IL entrainer cause converse changes in selectivity and capacity: while the selectivity for toluene increases with a lower degree of branching and a shorter alkyl substituent of the cation as well as with a lower nucleophilicity of the anion, these properties decrease the capacity. In this work, the most favorable IL entrainers were synthesized and the separation factors of the test systems were experimentally validated at finite dilution.

  7. Proton Electrodynamics in Liquid Water


    Volkov, A. A.; Artemov, V. G.; A. V. Pronin


    The dielectric spectrum of liquid water, $10^{4} - 10^{11}$ Hz, is interpreted in terms of diffusion of charges, formed as a result of self-ionization of H$_{2}$O molecules. This approach explains the Debye relaxation and the dc conductivity as two manifestations of this diffusion. The Debye relaxation is due to the charge diffusion with a fast recombination rate, $1/\\tau_{2}$, while the dc conductivity is a manifestation of the diffusion with a much slower recombination rate, $1/\\tau_{1}$. A...

  8. Hindered diffusion of coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. (University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering); Webster, I.A. (Unocal Corp., Los Angeles, CA (United States))


    The molecules comprising coal liquids can range from less than 10 to several hundred [angstrom] in diameter. Their size is, therefore, comparable to the average pore size of most hydroprocessing catalysts. Thus, during processing, transport of these molecules into the catalyst occurs mainly by configurational'' or hindered diffusion,'' which is the result of two phenomena occurring in the pores; the distribution of solute molecules in the pores is affected by the pores and the solute molecules experience an increased hydrodynamic drag. The field of hindered diffusion has been reviewed by Deen [16]. The earliest studies in the filed were by Renkin et al. [17].

  9. Perspectives in active liquid crystals. (United States)

    Majumdar, Apala; Cristina, Marchetti M; Virga, Epifanio G


    Active soft matter is a young, growing field, with potential applications to a wide variety of systems. This Theme Issue explores this emerging new field by highlighting active liquid crystals. The collected contributions bridge theory to experiment, mathematical theories of passive and active nematics, spontaneous flows to defect dynamics, microscopic to continuum levels of description, spontaneous activity to biological activation. While the perspectives offered here only span a small part of this rapidly evolving field, we trust that they might provide the interested reader with a taste for this new class of non-equilibrium systems and their rich behaviour.

  10. Freezing of a stripe liquid. (United States)

    Lee, S-H; Tranquada, J M; Yamada, K; Buttrey, D J; Li, Q; Cheong, S-W


    The existence of a stripe-liquid phase in a layered nickelate, La(1.725)Sr(0.275)NiO(4), is demonstrated through neutron scattering measurements. We show that incommensurate magnetic fluctuations evolve continuously through the charge-ordering temperature, although an abrupt decrease in the effective damping energy is observed on cooling through the transition. The energy and momentum dependence of the magnetic scattering are parametrized with a damped-harmonic-oscillator model describing overdamped spin waves in the antiferromagnetic domains defined instantaneously by charge stripes.

  11. Freezing of a Stripe Liquid (United States)

    Lee, S.-H.; Tranquada, J. M.; Yamada, K.; Buttrey, D. J.; Li, Q.; Cheong, S.-W.


    The existence of a stripe-liquid phase in a layered nickelate, La1.725Sr0.275NiO4, is demonstrated through neutron scattering measurements. We show that incommensurate magnetic fluctuations evolve continuously through the charge-ordering temperature, although an abrupt decrease in the effective damping energy is observed on cooling through the transition. The energy and momentum dependence of the magnetic scattering are parametrized with a damped-harmonic-oscillator model describing overdamped spin waves in the antiferromagnetic domains defined instantaneously by charge stripes.

  12. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  13. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)


    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  14. Liquid micro pulsed plasma thruster

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka


    Full Text Available A new type of pulsed plasma thruster (PPT for small satellite propulsion is investigated, of which the most innovative aspect is the use of a non-volatile liquid propellant. The thruster is based on an open capillary design. The thruster achieved a thrust-to-power ratio above 45 μN/W, which constitutes a 5-fold improvement over the water-propelled pulsed plasma thruster, and which is also slightly above the performance of a similarly sized PPT with a solid propellant.

  15. Microscopic structure of liquid hydrogen

    CERN Document Server

    Zoppi, M


    Hydrogen makes the simplest molecular liquid. Nonetheless, due to several different reasons, measuring its microscopic structure has been one of the most challenging tasks in neutron diffraction experiments. The recent development of modern pulsed neutron sources triggered a renewed experimental interest which, in turn, led to new knowledge and also to a more effective use of the classic reactor-based experimental data. The contemporary development of quantum mechanical computer simulation techniques, and a critical comparison among the results of different experiments using steady and pulsed neutron sources, resulted in a quantitatively reliable solution of the problem. (topical review)

  16. Negative ions in liquid helium (United States)

    Khrapak, A. G.; Schmidt, W. F.


    The structure of negative ions in liquid 4He is analyzed. The possibility of cluster or bubble formation around impurity ions of both signs is discussed. It is shown that in superfluid helium, bubbles form around negative alkaline earth metal ions and clusters form around halogen ions. The nature of "fast" and "exotic" negative ions is also discussed. It is assumed that "fast" ions are negative ions of helium excimer molecules localized inside bubbles. "Exotic" ions are stable negative impurity ions, which are always present in small amounts in gas discharge plasmas. Bubbles or clusters with radii smaller the radius of electron bubbles develop around these ions.

  17. Thermoelectricity in confined liquid electrolytes

    CERN Document Server

    Dietzel, Mathias


    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which -for narrow channels- may cause thermo-voltages larger in magnitude than for the classical Soret equilibrium.

  18. Liquidity in Government versus Covered Bond Markets

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Sangill, Thomas

    We present findings on the secondary market liquidity of government and covered bonds in Denmark before, during and after the 2008 financial crisis. The analysis focuses on wholesale trading in the two markets and is based on a complete transaction level dataset covering November 2007 until end...... 2011. Overall, our findings suggest that Danish benchmark covered bonds by and large are as liquid as Danish government bonds - including in periods of market stress. Before the financial crisis of 2008, government bonds were slightly more liquid than covered bonds. During the crisis, trading continued...... in both markets but the government bond market experienced a brief but pronounced decline in market liquidity while liquidity in the covered bond market was more robust - partly reflective of a number of events as well as policy measures introduced in the autumn of 2008. After the crisis, liquidity...

  19. Method of foaming a liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.K.; Johnson, C.E.


    A method for promoting the formation of a foam and for improving bubble retention and foam lifetimes in liquid metal NaK or sodium used to generate power in two-phase liquid metal MHD generators is described. In a two-phase liquid metal MHD generator, a compressed, hot, inert gas is used as the thermodynamic working fluid to electrically drive a conductive liquid metal such as NaK, sodium or tin through the generator channel. The gas and liquid are mixed together just as the mixture enters the generator channel so that the expansion of the gas drives the conductive liquid across the magnetic field, generating electrical power. The two phases are then separated and returned to the mixer through different loops.

  20. Mechanism of constitution liquid film migration

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Hongjun [Univ. of Alabama, Birmingham, AL (United States)


    Liquid film migration (LFM) in liquid phase sintering classically involves a large metastable liquid volume adjacent to solid, and migration occurs at an isolated solid-liquid (S-L) interface. Constitutional liquid film migration (CLFM), discovered in alloy 718, has major characteristics similar to those of LFM, except that the metastable liquid is from the constitutional liquation of precipitates on the grain boundary. The similarity between LFM and CLFM has led to the theory that coherency lattice strain responsible for LFM is also responsible for CLFM. The coherency strain hypothesis was tested in this study by evaluating whether the Hillert model of LFM would also apply for CLFM. Experimental results of CLFM in alloy 718 showed that migration velocity followed the trend predicted by the Hillert model. This indicates that the coherency strain hypothesis of LFM also applies for CLFM and that the coherency lattice strain responsible for LFM is also the driving force for CLFM.