WorldWideScience

Sample records for fermi systems thermal

  1. Distribution of occupation numbers in finite Fermi systems and role of interaction in chaos and thermalization

    International Nuclear Information System (INIS)

    Flambaum, V.V.; Izrailev, F.M.

    1997-01-01

    A method is developed for calculation of single-particle occupation numbers in finite Fermi systems of interacting particles. It is more accurate than the canonical distribution method and gives the Fermi-Dirac distribution in the limit of large number of particles. It is shown that statistical effects of the interaction are absorbed by an increase of the effective temperature. Criteria for quantum chaos and statistical equilibrium are considered. All results are confirmed by numerical experiments in the two-body random interaction model. copyright 1997 The American Physical Society

  2. Thermal gravitational radiation of Fermi gases and Fermi liquids

    International Nuclear Information System (INIS)

    Schafer, G.; Dehnen, H.

    1983-01-01

    In view of neutron stars the gravitational radiation power of the thermal ''zero-sound'' phonons of a Fermi liquid and the gravitational bremsstrahlung of a degenerate Fermi gas is calculated on the basis of a hard-sphere Fermi particle model. We find for the gravitational radiation power per unit volume P/sub( s/)approx. =[(9π)/sup 1/3//5] x GQ n/sup 5/3/(kT) 4 h 2 c 5 and P/sub( g/)approx. =(4 5 /5 3 )(3/π)/sup 2/3/ G a 2 n/sup 5/3/(kT) 4 /h 2 c 5 for the cases of ''zero sound'' and bremsstrahlung, respectively. Here Q = 4πa 2 is the total cross section of the hard-sphere fermions, where a represents the radius of their hard-core potential. The application to very young neutron stars results in a total gravitational luminosity of about 10 31 erg/sec

  3. Thermal modified Thomas-Fermi approximation with the Skyrme interaction for the 208Pb + 208Pb system

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Ismail, M.; Osman, M.; Ramadan, Kh.A.

    1988-01-01

    A generalization of the modified Thomas-Fermi (MTF) approximation to finite temperatures is used to calculate the optical potential for the 208 Pb + 208 Pb system using the energy density formalism derived from different effective forces of Skyrme type. The nuclear optical potential becomes more attractive when the temperature is increased. Pockets are also predicted in the total potential (Nuclear + Coulomb) wich depths are dependent on both the type of effective force and the temperature. 23 refs., 7 figs. (author)

  4. Fermi Timing and Synchronization System

    International Nuclear Information System (INIS)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-01-01

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed

  5. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  6. Universal behavior of strongly correlated Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2007-06-30

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  7. Universal behavior of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G

    2007-01-01

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  8. Fermi problem in disordered systems

    Science.gov (United States)

    Menezes, G.; Svaiter, N. F.; de Mello, H. R.; Zarro, C. A. D.

    2017-10-01

    We revisit the Fermi two-atom problem in the framework of disordered systems. In our model, we consider a two-qubit system linearly coupled with a quantum massless scalar field. We analyze the energy transfer between the qubits under different experimental perspectives. In addition, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that the classical notion of causality emerges only in the wave zone in the presence of random fluctuations of the light cone. Possible repercussions are discussed.

  9. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  10. Model for paramagnetic Fermi systems

    International Nuclear Information System (INIS)

    Ainsworth, T.L.; Bedell, K.S.; Brown, G.E.; Quader, K.F.

    1983-01-01

    We develop a mode for paramagnetic Fermi liquids. This model has both direct and induced interactions, the latter including both density-density and current-current response. The direct interactions are chosen to reproduce the Fermi liquid parameters F/sup s/ 0 , F/sup a/ 0 , F/sup s/ 1 and to satify the forward scattering sum rule. The F/sup a/ 1 and F/sup s/,a/sub l/ for l>1 are determined self-consistently by the induced interactions; they are checked aginst experimental determinations. The model is applied in detail to liquid 3 He, using data from spin-echo experiments, sound attenuation, and the velocities of first and zero sound. Consistency with experiments gives definite preferences for values of m. The model is also applied to paramagnetic metals. Arguments are given that this model should provide a basis for calculating effects of magnetic fields

  11. Fermi

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  12. Thermal response of a Fermi-Pasta-Ulam chain with Andersen thermostats

    Science.gov (United States)

    D'Ambrosio, Federico; Baiesi, Marco

    2017-11-01

    The linear response to temperature variations is well characterised for equilibrium systems but a similar theory is not available, for example, for inertial heat conducting systems, whose paradigm is the Fermi-Pasta-Ulam (FPU) model driven by two different boundary temperatures. For models of inertial systems out of equilibrium, including relaxing systems, we show that Andersen thermostats are a natural tool for studying the thermal response. We derive a fluctuation-response relation that allows to predict thermal expansion coefficients or the heat capacitance in nonequilibrium regimes. Simulations of the FPU chain of oscillators suggest that estimates of susceptibilities obtained with our relation are better than those obtained via a small perturbation.

  13. Momentum sharing in imbalanced Fermi systems

    Science.gov (United States)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  14. Momentum sharing in imbalanced Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  15. Fermi states of Bose systems in three space dimensions

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1985-01-01

    Recently an exact spectral solution was constructed by Sudarshan and Tata for the (NTHETA) Fermi version of the Lee model. We demonstrate that it provides a partial solution for the related pure Bose spectral problems. Moreover, the (NTHETA) Bose (Bolsterli--Nelson) version of the Lee model is shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the underlying Bose systems in three space dimensions are explicitly identified

  16. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2009-06-15

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.

  17. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2009-01-01

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .

  18. Isobaric expansion coefficient and isothermal compressibility for a finite-size ideal Fermi gas system

    International Nuclear Information System (INIS)

    Su, Guozhen; Chen, Liwei; Chen, Jincan

    2014-01-01

    Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions

  19. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  20. On the quantization of spin systems and Fermi systems

    International Nuclear Information System (INIS)

    Combe, P.; Rodriguez, R.; Sirugue, M.

    1978-03-01

    It is shown that spin operators and Fermi operators can be interpreted as the Weyl quantization of some functions on a classical phase space which is a compact group. Moreover the transition from quantum spin to Fermi operators is an isomorphism of the classical phase space preserving the Haar measure

  1. Surface properties of semi-infinite Fermi systems

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1979-10-01

    A functional relation between the kinetic energy density and the total density is used to analyse the surface properties of semi-infinite Fermi systems. One find an explicit expression for the surface thickness in which the role of the infinite matter compressibility, binding energy and non-locality effects is clearly shown. The method, which holds both for nuclear and electronic systems (liquid metals), yields a very simple relation between the surface thickness and the surface energy

  2. Thermal response of a Fermi-Pasta-Ulam chain with Andersen thermostats

    NARCIS (Netherlands)

    D'Ambrosio, Federico; Baiesi, Marco

    2017-01-01

    The linear response to temperature variations is well characterised for equilibrium systems but a similar theory is not available, for example, for inertial heat conducting systems, whose paradigm is the Fermi-Pasta-Ulam (FPU) model driven by two different boundary temperatures. For models of

  3. Microscopic Fermi liquid approach to disordered narrow band systems

    International Nuclear Information System (INIS)

    Kolley, E.; Kolley, W.

    1977-01-01

    A Fermi liquid approach to tightly bound electrons in disordered systems is proposed to evaluate two-particle correlation functions L at T=0 deg K. Starting with a random Hubbard model and using a local ladder approximation in the particle-particle channel the irreducible particle-hole vertex is derived, being the kernel of the Bethe-Salpeter equation for L. CPA vertex corrections to the electrical conductivity and, for the ordered case, the correlation-enhanced paramagnetic susceptibility are calculated

  4. The FERMI-Elettra FEL Photon Transport System

    International Nuclear Information System (INIS)

    Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.

    2010-01-01

    The FERMI-Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI-Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.

  5. Status report of the FERMI-Elettra control system

    International Nuclear Information System (INIS)

    Lonza, M.; Abrami, A.; Asnicar, F.; Battistello, L.; Bogani, A.I.; Borghes, R.; Chenda, V.; Cleva, S.; Curri, A.; Marco, M. de; Dos Santos, M.; Gaio, G.; Giacuzzo, F.; Kourousias, G.; Passos, G.; Passuello, R.; Pivetta, L.; Prica, M.; Pugliese, R.; Scafuri, C.; Scalamera, G.; Strangolino, G.; Vittor, D.; Zambon, L.

    2012-01-01

    FERMI-Elettra is a new fourth-generation light source based on a seeded Free Electron Laser (FEL) presently under commissioning in Trieste, Italy. It is the first seeded FEL ever designed to produce fundamental output wavelength down to 4 nm with High Gain Harmonic Generation (HGHG). FERMI-Elettra is a linac-based FEL whose 200 m long accelerator consists of a high brightness photo-cathode gun working at up to 50 Hz repetition rate, a 1.5 GeV normal conducting linac and 2 bunch compressors. Unlike storage ring based synchrotron light sources that are well known machines, the commissioning of a new-concept FEL is a complex and time-consuming process consisting in thorough testing, understanding and optimization, in which a reliable and powerful control system is mandatory. In particular, integrated shot-by-shot beam manipulation capabilities and easy-to-use high level applications are crucial to allow an effective and smooth machine commissioning. This paper reports the status of the control system and the experience gained in two years of alternating construction and commissioning phases. (authors)

  6. Branch-cut singularities in thermodynamics of Fermi liquid systems.

    Science.gov (United States)

    Shekhter, Arkady; Finkel'stein, Alexander M

    2006-10-24

    The recently measured spin susceptibility of the two-dimensional electron gas exhibits a strong dependence on temperature, which is incompatible with the standard Fermi liquid phenomenology. In this article, we show that the observed temperature behavior is inherent to ballistic two-dimensional electrons. Besides the single-particle and collective excitations, the thermodynamics of Fermi liquid systems includes effects of the branch-cut singularities originating from the edges of the continuum of pairs of quasiparticles. As a result of the rescattering induced by interactions, the branch-cut singularities generate nonanalyticities in the thermodynamic potential that reveal themselves in anomalous temperature dependences. Calculation of the spin susceptibility in such a situation requires a nonperturbative treatment of the interactions. As in high-energy physics, a mixture of the collective excitations and pairs of quasiparticles can effectively be described by a pole in the complex momentum plane. This analysis provides a natural explanation for the observed temperature dependence of the spin susceptibility, both in sign and in magnitude.

  7. Shells, orbit bifurcations, and symmetry restorations in Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V. [NASU, Institute for Nuclear Research (Ukraine); Arita, K. [Nagoya Institute of Technology, Department of Physics (Japan)

    2016-11-15

    The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of the oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.

  8. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    Science.gov (United States)

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  9. Long lifetimes of ultrahot particles in interacting Fermi systems

    Science.gov (United States)

    Bard, M.; Protopopov, I. V.; Mirlin, A. D.

    2018-05-01

    The energy dependence of the relaxation rate of hot electrons due to interaction with the Fermi sea is studied. We consider 2D and 3D systems, quasi-1D quantum wires with multiple transverse bands, as well as single-channel 1D wires. Our analysis includes both spinful and spin-polarized setups, with short-range and Coulomb interactions. We show that, quite generally, the relaxation rate is a nonmonotonic function of the electron energy and decays as a power law at high energies. In other words, ultrahot electrons regain their coherence with increasing energy. Such a behavior was observed in a recent experiment on multiband quantum wires, J. Reiner et al., Phys. Rev. X 7, 021016 (2017)., 10.1103/PhysRevX.7.021016

  10. Constructive analysis of two dimensional Fermi systems at finite temperature

    International Nuclear Information System (INIS)

    Lu, Long

    2013-01-01

    We consider a dilute Fermion system in continuum two spatial dimensions with short-range interaction. We prove nonperturbatively that at low temperature the renormalized perturbation expansion has non-zero radius of convergence. The convergence radius shrinks when the energy scale goes to the infrared cutoff. The shrinking rate of the convergence radius is established to be dependent of the sign of the coupling constant g by a detailed analysis of the so-called ladder contributions. We prove further that the self-energy of the model is uniformly of C 1 , but not C 2 in the analytic domain of the theory. The proofs are based on renormalization of the Fermi surface and multiscale analysis employing mathematical renormalization group technique. Tree expansion is introduced to reorganize perturbation expansion nicely. Finally we apply these techniques to construct a half-filled Hubbard model on honeycomb bilayer lattice with local interaction.

  11. Relaxation in a two-body Fermi-Pasta-Ulam system in the canonical ensemble

    Science.gov (United States)

    Sen, Surajit; Barrett, Tyler

    The study of the dynamics of the Fermi-Pasta-Ulam (FPU) chain remains a challenging problem. Inspired by the recent work of Onorato et al. on thermalization in the FPU system, we report a study of relaxation processes in a two-body FPU system in the canonical ensemble. The studies have been carried out using the Recurrence Relations Method introduced by Zwanzig, Mori, Lee and others. We have obtained exact analytical expressions for the first thirteen levels of the continued fraction representation of the Laplace transformed velocity autocorrelation function of the system. Using simple and reasonable extrapolation schemes and known limits we are able to estimate the relaxation behavior of the oscillators in the two-body FPU system and recover the expected behavior in the harmonic limit. Generalizations of the calculations to larger systems will be discussed.

  12. HIGH-ENERGY NON-THERMAL AND THERMAL EMISSION FROM GRB 141207A DETECTED BY FERMI

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Makoto [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo, 169-8555 (Japan); Asano, Katsuaki [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Ohno, Masanori [Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 (Japan); Veres, Péter [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Axelsson, Magnus [KTH Royal Institute of Technology, Department of Physics, SE-106 91 Stockholm (Sweden); Bissaldi, Elisabetta [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Tachibana, Yutaro; Kawai, Nobuyuki, E-mail: m.arimoto@aoni.waseda.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8551 (Japan)

    2016-12-20

    A bright long gamma-ray burst GRB 141207A was observed by the Fermi Gamma-ray Space Telescope and detected by both instruments onboard. The observations show that the spectrum in the prompt phase is not well described by the canonical empirical Band function alone, and that an additional power-law component is needed. In the early phase of the prompt emission, a modified blackbody with a hard low-energy photon index ( α  = +0.2 to +0.4) is detected, which suggests a photospheric origin. In a finely time-resolved analysis, the spectra are also well fitted by the modified blackbody combined with a power-law function. We discuss the physical parameters of the photosphere such as the bulk Lorentz factor of the relativistic flow and the radius. We also discuss the physical origin of the extra power-law component observed during the prompt phase in the context of different models such as leptonic and hadronic scenarios in the internal shock regime and synchrotron emission in the external forward shock. In the afterglow phase, the temporal and spectral behaviors of the temporally extended high-energy emission and the fading X-ray emission detected by the X-Ray Telescope on-board Swift are consistent with synchrotron emission in a radiative external forward shock.

  13. Thermal systems; Systemes thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [Valenciennes Univ. et du Hainaut Cambresis, LME, 59 (France); Lecoeuche, S. [Ecole des Mines de Douai, Dept. GIP, 59 - Douai (France)]|[Lille Univ. des Sciences et Technologies, 59 - Villeneuve d' Ascq (France); Ahmad, M.; Sallee, H.; Quenard, D. [CSTB, 38 - Saint Martin d' Heres (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Gascoin, N.; Gillard, P.; Bernard, S. [Laboratoire d' Energetique, Explosion, Structure, 18 - Bourges (France); Gascoin, N.; Toure, Y. [Laboratoire Vision et Robotique, 18 - Bourges (France); Daniau, E.; Bouchez, M. [MBDA, 18 - Bourges (France); Dobrovicescu, A.; Stanciu, D. [Bucarest Univ. Polytechnique, Faculte de Genie Mecanique (Romania); Stoian, M. [Reims Univ. Champagne Ardenne, Faculte des Sciences, UTAP/LTM, 51 (France); Bruch, A.; Fourmigue, J.F.; Colasson, S. [CEA Grenoble, Lab. Greth, 38 (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Voicu, I.; Mare, T.; Miriel, J. [Institut National des Sciences Appliquees (INSA), LGCGM, IUT, 35 - Rennes (France); Galanis, N. [Sherbrooke Univ., Genie Mecanique, QC (Canada); Nemer, M.; Clodic, D. [Ecole des Mines de Paris, Centre Energetique et Procedes, 75 (France); Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, Lab. de Thermocinetiquede Nantes, UMR-CNRS 6607, 44 (France)

    2005-07-01

    This session about thermal systems gathers 26 articles dealing with: neural model of a compact heat exchanger; experimental study and numerical simulation of the thermal behaviour of test-cells with walls made of a combination of phase change materials and super-insulating materials; hydraulic and thermal modeling of a supercritical fluid with pyrolysis inside a heated channel: pre-dimensioning of an experimental study; energy analysis of the heat recovery devices of a cryogenic system; numerical simulation of the thermo-hydraulic behaviour of a supercritical CO{sub 2} flow inside a vertical tube; mixed convection inside dual-tube exchangers; development of a nodal approach with homogenization for the simulation of the brazing cycle of a heat exchanger; chaotic exchanger for the cooling of low temperature fuel cells; structural optimization of the internal fins of a cylindrical generator; a new experimental approach for the study of the local boiling inside the channels of exchangers with plates and fins; experimental study of the flow regimes of boiling hydrocarbons on a bundle of staggered tubes; energy study of heat recovery exchangers used in Claude-type refrigerating systems; general model of Carnot engine submitted to various operating constraints; the free pistons Stirling cogeneration system; natural gas supplied cogeneration system with polymer membrane fuel cell; influence of the CRN coating on the heat flux inside the tool during the wood unrolling process; transport and mixture of a passive scalar injected inside the wake of a Ahmed body; control of a laser welding-brazing process by infrared thermography; 2D self-adaptative method for contours detection: application to the images of an aniso-thermal jet; exergy and exergy-economical study of an 'Ericsson' engine-based micro-cogeneration system; simplified air-conditioning of telephone switching equipments; parametric study of the 'low-energy' individual dwelling; brief synthesis of

  14. Derivation of the Euler equations in Thomas-Fermi theories of a hot nuclear system

    International Nuclear Information System (INIS)

    Wang, C.

    1992-01-01

    The variational extreme condition with respect to statistical distribution of nucleons in momentum space is applied to derive the Euler equation of the nuclear density profile. The resultant Euler equation of the nuclear density profile is proven to be identical with that obtained in the usual Thomas-Fermi theories of a hot nuclear system where the variation is made with respect to the nuclear density profile. A Fermi-Dirac-type distribution appears as a result of variation in the present approach, while it is used as a given expression in obtaining the variation of the nuclear density profile in the usual Thomas-Fermi theories

  15. Competing order parameters in Fermi systems with engineered band dispersion

    Science.gov (United States)

    Wu, Chien-Te; Boyack, Rufus; Anderson, Brandon; Levin, K.

    We explore a variety of competing phases in 2D and 3D Fermi gases in the presence of novel dispersion relations resulting from a shaken optical lattice. We incorporate spin imbalance along with attractive interactions. In 3D, at the mean field level we present phase diagrams reflecting the stability of alternative order parameters in the pairing (including LOFF) and charge density wave channels. We perform analogous studies in 2D, where we focus on the competition between different paired phases. Important in this regard is that our 2D studies are consistent with the Mermin Wagner theorem, so that, while there is competition, conventional superfluidity cannot occur

  16. Boundary conditions for quasiclassical Green's function for superfluid Fermi systems

    International Nuclear Information System (INIS)

    Nagai, K.; Hara, J.

    1988-01-01

    The authors show that the quasiclassical Green's Function for Fermi liquids can be constructed from the solutions of the Bogoliubov-de Gennes equation within the Andreev approximation and derive self-consistent relations to be satisfied by the quasiclassical Green's function at the surfaces. The so-called normalization condition for the quasiclassical Green's function is obtained from this self-consistent relation. They consider a specularly reflecting wall, a randomly rippled wall, and a proximity boundary as model surfaces. Their boundary condition for the randomly rippled wall is different from that derived by Buchholtz and Rainer and Buchholtz

  17. Fermi system with planes and charge reservoir: Anisotropic in-plane resistivity

    International Nuclear Information System (INIS)

    Levin, G.A.; Quader, K.F.

    1992-01-01

    The authors explore the normal state in-plane resistivity of a model Fermi system with two planes and a charge reservoir. When the Fermi energy lies near the top of one of the resulting sub-bands, the system can be described by two types of quasiparticle excitations with different energy spectra and relaxation times. They show that for certain stoichiometry, ρ ab is linear in temperature with positive or negative intercepts. A relation between the slopes and intercepts of resistivities in the a and b directions in untwinned crystals is derived. The results are in good agreement with experimental data on YBCO. 7 refs., 1 tab

  18. Theory of heavy-fermion compounds theory of strongly correlated Fermi-systems

    CERN Document Server

    Amusia, Miron Ya; Shaginyan, Vasily R; Stephanovich, Vladimir A

    2015-01-01

    This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good...

  19. Microscopic coefficients for the quantum master equation of a Fermi system

    International Nuclear Information System (INIS)

    Stefanescu, E.; Sandulescu, A.

    2002-01-01

    In a previous paper, we derived a master equation for fermions, of Lindblad's form, with coefficients depending on microscopic quantities. In this paper, we study the properties of the dissipative coefficients taking into account the explicit expressions of: (a) the matrix elements of the dissipative potential, evaluated from the condition that, essentially, this potential induces transitions among the system eigenstates without significantly modifying these states, (b) the densities of the environment states according to the Thomas-Fermi model, and (c) the occupation probabilities of these states taken as a Fermi-Dirac distribution. The matrix of these coefficients correctly describes the system dynamics: (a) for a normal, Fermi-Dirac distribution of the environment population, the decays dominate the excitation processes; (b) for an inverted (exotic) distribution of this population, specific to a clustering state, the excitation processes are dominant. (author)

  20. Application of nuclear theory methods to new family of fermi systems

    International Nuclear Information System (INIS)

    Nesterenko, V.O.

    1995-01-01

    Application of nuclear theory methods to the description of the properties of the new family of small Fermi systems (metal clusters, fullerenes, helium clusters and quantum dots) is briefly reviewed. The main attention is paid to giant resonances in these systems. 52 refs., 7 figs

  1. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected

  2. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems

    DEFF Research Database (Denmark)

    Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.

    2016-01-01

    beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...

  3. Entropy excess in strongly correlated Fermi systems near a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2012-12-15

    A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau

  4. Fermi-edge singularity in one-dimensional electron systems with long-range Coulomb interactions

    International Nuclear Information System (INIS)

    Otani, H.; Ogawa, T.

    1996-01-01

    Effects of long-range Coulomb interactions on the Fermi-edge singularity in optical spectra are investigated theoretically for one-dimensional spin-1/2 fermion systems with the use of the Tomonaga-Luttinger bosonization technique. Low-energy excitation spectrum near the Fermi level shows that dispersion of the charge-density fluctuation remains gapless but is nonlinear when the electron-electron (e-e) Coulomb interaction is of the x -1 type (i.e., an infinite force range). Temporal behavior of the current-current correlation function is calculated analytically for arbitrary force ranges, λ e and λ h , of the e-e and the electron-hole (e-h) Coulomb interactions. (i) When both the e-e and the e-h interactions have large but finite force ranges (λ e h max[λ e ,λ h ]/v F . Corresponding optical spectrum near the Fermi edge (within an energy range of ℎv F /max[λ e ,λ h ]) exhibits the power-law divergence or the power-law convergence, which is an ordinary Fermi-edge singularity. (ii) When either the e-e or the e-h interaction is of the x -1 type (i.e., λ e →∞ and/or λ h →∞), an exponent of the correlation function is dependent on time to lead the faster decay than that of any power laws. Then the optical spectra show no power law dependence and always converge (become zero) at the Fermi edge, which is in striking contrast to the ordinary power-law singularity

  5. Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Marini, P., E-mail: marini@cenbg.in2p3.fr [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Zheng, H. [Cyclotron Institute, Texas A& M University, College Station, TX-77843 (United States); Laboratori Nazionali del Sud, INFN, via Santa Sofia, 62, 95123 Catania (Italy); Boisjoli, M. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Laboratoire de Physique Nucléaire, Université Laval, Québec, G1V 0A6 (Canada); Verde, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); INFN – Sezione di Catania, via Santa Sofia, 64, 95123 Catania (Italy); Chbihi, A. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Napolitani, P.; Ademard, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Augey, L. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); Bhattacharya, C. [Variable Energy Cyclotron Center, Kolkata (India); Borderie, B. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Bougault, R. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); and others

    2016-05-10

    We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.

  6. Stochastic bosonization for a d ≥ 3 Fermi system

    International Nuclear Information System (INIS)

    Accardi, L.; Lu, Y.G.; Mastropietro, V.

    1997-01-01

    We consider a system of fermions interacting via an external field and we prove, in d ≥ 3, that a suitable collective operator, bilinear in the fermionic fields, in the stochastic limit becomes a boson quantum brownian motion. The evolution operator after the limit satisfies a quantum stochastic differential equation, in which the imaginary part of the Ito correction is the ground state shift while its real part is the lifetime of the ground state. (orig.)

  7. Overview of Fermi National Accelerator Lab Control System

    International Nuclear Information System (INIS)

    Lucas, P.W.

    1990-01-01

    Various facets of the control of the Fermilab accelerators, in particular the Tevatron, are presented. Since Fermilab contains a superconducting machine and a sophisticated injection complex, much of the controls functionality will of necessity be the same at the SSC. The various functions required at a large laboratory are discussed; these include computer-based fire and security alarms and a cable television system, as well as computer networks connected to accelerator hardware components. A description is given of that hardware, of which much is Camac but with considerable computer backplane bus equipment also present. A large fraction of the controls hardware has access to high precision real-time clocks. Our various networks are introduced, with the physical layer being a combination of copper and more modern optic cables, with the primary intercomputer link being Token Ring. A description of the computers is presented - basically these consist of operators' consoles, host VAXs, and link driving front ends. The software effort is detailed, with emphasis on consoles and microprocessors where the majority of effort has been placed. Future plans for the system are presented briefly. 3 refs., 2 figs., 2 tabs

  8. Aspects of Strongly Correlated Many-Body Fermi Systems

    Science.gov (United States)

    Porter, William J., III

    A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-theoretic observables in systems of interacting fermions, particularly the Renyi entanglement entropies Sn, even in many cases where the infamous sign problem does not appear. Several methods have been put forward to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios. This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that naive attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic insights, using intuition derived from the previous method and its successes to construct a simpler, better behaved, and more elegant algorithm. Using this method, in combination with new identities which allow us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density matrices, we compute high order Renyi entropies and perform a thorough comparison to this new algorithm's predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the Renyi entropies of degree n = 2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit using the algorithms detailed herein. We also detail an exact, few-body projective method

  9. Thermal Management and Thermal Protection Systems

    Science.gov (United States)

    Hasnain, Aqib

    2016-01-01

    During my internship in the Thermal Design Branch (ES3), I contributed to two main projects: i) novel passive thermal management system for future human exploration, ii) AVCOAT undercut thermal analysis. i) As NASA prepares to further expand human and robotic presence in space, it is well known that spacecraft architectures will be challenged with unprecedented thermal environments. Future exploration activities will have the need of thermal management systems that can provide higher reliability, mass and power reduction and increased performance. In an effort to start addressing the current technical gaps the NASA Johnson Space Center Passive Thermal Discipline has engaged in technology development activities. One of these activities was done through an in-house Passive Thermal Management System (PTMS) design for a lunar lander. The proposed PTMS, functional in both microgravity and gravity environments, consists of three main components: a heat spreader, a novel hybrid wick Variable Conductance Heat Pipe (VCHP), and a radiator. The aim of this PTMS is to keep electronics on a vehicle within their temperature limits (0 and 50 C for the current design) during all mission phases including multiple lunar day/night cycles. The VCHP was tested to verify its thermal performance. I created a thermal math model using Thermal Desktop (TD) and analyzed it to predict the PTMS performance. After testing, the test data provided a means to correlate the thermal math model. This correlation took into account conduction and convection heat transfer, representing the actual benchtop test. Since this PTMS is proposed for space missions, a vacuum test will be taking place to provide confidence that the system is functional in space environments. Therefore, the model was modified to include a vacuum chamber with a liquid nitrogen shroud while taking into account conduction and radiation heat transfer. Infrared Lamps were modelled and introduced into the model to simulate the sun

  10. Ablative thermal protection systems

    International Nuclear Information System (INIS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed. 5 references

  11. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    D'Enterria, D.G.

    2000-05-01

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E γ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar 36 + Au 197 , Ag 107 , Ni 58 , C 12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  12. Non-Fermi-Liquid Behavior in CeRu2Si2 at Ultralow Temperatures Studied by Thermal Expansion and Magnetostriction

    Science.gov (United States)

    Inoue, Daiki; Takama, Hiroyuki; Kaidou, Daisuke; Minegishi, Mitsuyuki; Ueno, Keisuke; Matsumoto, Koichi; Abe, Satoshi; Murayama, Shigeyuki

    2017-12-01

    We report the linear thermal expansion and magnetostriction of the heavy-fermion compound CeRu2Si2 along its a- and c-axes at temperatures down to 10 mK and in magnetic fields up to 9 T using a high-precision capacitive dilatometer. From the magnetostriction measurements, a large anisotropy between values for the coefficient of magnetostriction along the a- and c-axes was found in the Landau-Fermi-liquid (LFL) state. Non-Fermi-liquid (NFL) behavior was observed for both the linear thermal expansion below 60 mK for all applied magnetic fields and the linear magnetostriction below 0.5 T and 300 mK. The results suggest the existence of an additional pressure-driven quantum critical point (QCP), and a crossover from the NFL state to the LFL state occurs in CeRu2Si2 at ambient pressure near the QCP.

  13. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  14. Exploration of Fermi-Pasta-Ulam Behavior in a Magnetic System

    Science.gov (United States)

    Lewis, Jeramy; Camley, Robert E.; Anderson, Nicholas R.

    2018-04-01

    We study nonlinear spin motion in one-dimensional magnetic chains. We find significant differences from the classic Fermi-Pasta-Ulam (FPU) problem examining nonlinear elastic motion in a chain. We find that FPU behavior, the transfer of energy among low order eigenmodes, does not occur in magnetic systems with only exchange and external fields, but does exist if a uniaxial anisotropy is also present. The FPU behavior may be altered or turned off through the magnitude and orientation of an external magnetic field. A realistic micromagnetic model shows such behavior could be measurable.

  15. Pairing and low temperature properties of 2 D Fermi-systems with attraction between particles

    International Nuclear Information System (INIS)

    Gorbar, E.V.; Gusynin, V.P.; Loktev, V.M.

    1992-01-01

    Proceeding from microscopic model Hamiltonian for the system of Fermi-particles with attraction the effective Lagrangian, admitting the analysis of its superconducting properties at arbitrary fermion concentration, is obtained.Exact solution for gap and chemical potential makes it possible to trace from local pair situation to Cooper pairing. The crucial parameter discriminating between the regions of exotic and normal superconducting behaviour is show to be that of the energy of the bound fermion state, which, however, rapidly disappears with fermion density increasing. The solutions of the equations for the case of finite temperatures are analysed. (author). 42 refs

  16. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  17. The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose

    Science.gov (United States)

    Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.

    2018-01-01

    The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.

  18. E Fermi

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. E Fermi. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 1 January 2014 pp 82-96 Classics. Quantization of an Ideal Monoatomic Gas · E Fermi · More Details Fulltext PDF ...

  19. An improved 8 GeV beam transport system for the Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    Syphers, M.J.

    1987-06-01

    A new 8 GeV beam transport system between the Booster and Main Ring synchrotrons at the Fermi National Accelerator Laboratory is presented. The system was developed in an effort to improve the transverse phase space area occupied by the proton beam upon injection into the Main Ring accelerator. Problems with the original system are described and general methods of beamline design are formulated. Errors in the transverse properties of a beamline at the injection point of the second synchrotron and their effects on the region in transverse phase space occupied by a beam of particles are discussed. Results from the commissioning phase of the project are presented as well as measurements of the degree of phase space dilution generated by the transfer of 8 GeV protons from the Booster synchrotron to the Main Ring synchrotron

  20. Effective action for superfluid Fermi systems in the strong-coupling limit

    International Nuclear Information System (INIS)

    Dupuis, N.

    2005-01-01

    We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρ r and its conjugate variable, the phase θ r of the pairing order parameter Δ r . We recover the standard action of a Bose superfluid of density ρ r /2, where the bosons have a mass m B =2m and interact via a repulsive contact potential with amplitude g B =4πa B /m B ,a B =2a (a the s-wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude t B =J/2 and an on-site repulsive interaction U B =2Jz, where J=4t 2 /U (t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites)

  1. Effective action for superfluid Fermi systems in the strong-coupling limit

    Science.gov (United States)

    Dupuis, N.

    2005-07-01

    We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρr and its conjugate variable, the phase θr of the pairing order parameter Δr . We recover the standard action of a Bose superfluid of density ρr/2 , where the bosons have a mass mB=2m and interact via a repulsive contact potential with amplitude gB=4πaB/mB,aB=2a ( a the s -wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude tB=J/2 and an on-site repulsive interaction UB=2Jz , where J=4t2/U ( t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites).

  2. Thermal conductivity in one-dimensional nonlinear systems

    Science.gov (United States)

    Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo

    2000-03-01

    Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.

  3. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  4. The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose

    Energy Technology Data Exchange (ETDEWEB)

    Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.

    2018-01-01

    The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.

  5. The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems

    Science.gov (United States)

    Strinati, Giancarlo Calvanese; Pieri, Pierbiagio; Röpke, Gerd; Schuck, Peter; Urban, Michael

    2018-04-01

    of the theory, especially in the normal phase where they account for precursor pairing effects. After an introduction to present the key concepts of the BCS-BEC crossover, this report discusses the mean-field treatment of the superfluid phase, both for homogeneous and inhomogeneous systems, as well as for symmetric (spin- or isospin-balanced) and asymmetric (spin- or isospin-imbalanced) matter. Pairing fluctuations in the normal phase are then considered, with their manifestations in thermodynamic and dynamic quantities. The last two Sections provide a more specialized discussion of the BCS-BEC crossover in ultra-cold Fermi gases and nuclear matter, respectively. The separate discussion in the two contexts aims at cross communicating to both communities topics and aspects which, albeit arising in one of the two fields, share a strong common interest.

  6. Apollo telescope mount thermal systems unit thermal vacuum test

    Science.gov (United States)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  7. Thermal transport in fractal systems

    DEFF Research Database (Denmark)

    Kjems, Jørgen

    1992-01-01

    Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...

  8. Fermi liquid character in the photoemission/inverse photoemission spectra of highly correlated electron systems

    International Nuclear Information System (INIS)

    Riseborough, P.S.

    1990-01-01

    We calculate the photoemission/inverse photoemission spectrum for an N-fold degenerate Hubbard model, in the 1/N approximation. The spectra are broadened, and for sufficiently large Coulomb interaction strengths the spectra show satellites both in the photoemission and the brehmstrahlung isochromat spectroscopy portions of the spectra. The intensity of the spectra at the fermi level are equal to the noninteracting values, in accordance with Luttinger's theorem. We show that this can result in a temperature-dependent peak at the Fermi level; the width of the peak is governed by the quasi-particle lifetime. We relate the temperature dependent peak to the Fermi-liquid properties

  9. Vacuum systems - thermal issues

    International Nuclear Information System (INIS)

    Howell, J.W.

    1992-01-01

    The new high-energy synchrotron light sources currently under construction and the B-factories that are still in the planning stage present new challenges in the management of synchrotron radiation thermal loading. With particle energies from 6 to 9 GeV and currents from 0.3 to 2.5 mA, the total power and the power density of the resulting synchrotron radiation each present unique problems. The design issues involved in managing these new power levels are presented, as well as a survey of some of the proposed design solutions

  10. Control and data acquisition systems for the Fermi Elettra experimental stations

    International Nuclear Information System (INIS)

    Borghes, R.; Chenda, V.; Curri, A.; Gaio, G.; Kourousias, G.; Lonza, M.; Passos, G.; Passuello, R.; Pivetta, L.; Prica, M.; Pugliese, R.; Strangolino, G.

    2012-01-01

    FERMI-Elettra is a single-pass Free Electron Laser (FEL) user-facility covering the wavelength range from 100 nm to 4 nm. The facility is located in Trieste, Italy, nearby the third-generation synchrotron light source Elettra. Three experimental stations, dedicated to different scientific areas, have been installed in 2011: Low Density Matter (LDM), Elastic and Inelastic Scattering (EIS) and Diffraction and Projection Imaging (DiProI). The experiment control and data acquisition system is the natural extension of the machine control system. It integrates a shot-by-shot data acquisition framework with a centralized data storage and analysis system. Low-level applications for data acquisition and online processing have been developed using the Tango framework on Linux platforms. High-level experimental applications can be developed on both Linux and Windows platforms using C/C++, Python, LabView, IDL or Matlab. The Elettra scientific computing portal allows remote access to the experiment and to the data storage system. (authors)

  11. The Fermi-Pasta-Ulam System as a Model for Glasses

    Science.gov (United States)

    Carati, A.; Maiocchi, A.; Galgani, L.; Amati, G.

    2015-12-01

    We show that the standard Fermi-Pasta-Ulam system, with a suitable choice for the interparticle potential, constitutes a model for glasses, and indeed an extremely simple and manageable one. Indeed, it allows one to describe the landscape of the minima of the potential energy and to deal concretely with any one of them, determining the spectrum of frequencies and the normal modes. A relevant role is played by the harmonic energy {E} relative to a given minimum, i.e., the expansion of the Hamiltonian about the minimum up to second order. Indeed we find that there exists an energy threshold in {E} such that below it the harmonic energy {E} appears to be an approximate integral of motion for the whole observation time. Consequently, the system remains trapped near the minimum, in what may be called a vitreous or glassy state. Instead, for larger values of {E} the system rather quickly relaxes to a final equilibrium state. Moreover we find that the vitreous states present peculiar statistical behaviors, still involving the harmonic energy {E}. Indeed, the vitreous states are described by a Gibbs distribution with an effective Hamiltonian close to {E} and with a suitable effective inverse temperature. The final equilibrium state presents instead statistical properties which are in very good agreement with the Gibbs distribution relative to the full Hamiltonian of the system.

  12. Lighting system with thermal management system

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  13. Farm batch system and Fermi inter-process communication and synchronization toolkit

    International Nuclear Information System (INIS)

    Mandrichenko, I.V.

    2001-01-01

    Farms Batch System (FBS) was developed as a batch process management system for off-line Run II data processing at Fermilab. FBS will manage PC farms composed of up to 250 nodes and scalable to 1000 nodes with disk capacity of up to several TB. FBS allows users to start arrays of parallel processes on multiple computers. It uses a simplified resource counting method load balancing. FBS has been successfully used for more than a year at Fermilab by fixed target experiments and will be used for collider experiment off-line data processing. Fermi Inter-Process Communication toolkit (FIPC) was designed as a supplement product for FBS that helps establish synchronization and communication between processes running in a distributed batch environment. However, FIPC is an independent package, and can be used with other batch systems, as well as in a non-batch environment. FIPC provides users with a variety of global distributed objects such as semaphores, queues and string variables. Other types of objects can be easily added to FIPC. FIPC has been running on several PC farms at Fermilab for half a year and is going to be used by CDF for off-line data processing

  14. Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases

    Directory of Open Access Journals (Sweden)

    Antonello Sindona

    2015-03-01

    Full Text Available The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.

  15. Monitoring system for thermal plasma

    International Nuclear Information System (INIS)

    Romero G, M.; Vilchis P, A.E.

    1999-01-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  16. Fermi LAT Pulsed Detection of PSR J0737-3039A in the Double Pulsar System

    Science.gov (United States)

    Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.; Kerr, M.

    2013-01-01

    We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination alpha and the viewing angle zeta to be close to 90 deg., which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  17. FERMI LAT PULSED DETECTION OF PSR J0737-3039A IN THE DOUBLE PULSAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Guillemot, L.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Craig, H. A.; Romani, R. W.; Kerr, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ferdman, R. D. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Stairs, I. H., E-mail: guillemo@mpifr-bonn.mpg.de [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2013-05-10

    We report the Fermi Large Area Telescope discovery of {gamma}-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in {gamma} rays. PSR J0737-3039A is a faint {gamma}-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the {gamma}-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the {gamma}-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination {alpha} and the viewing angle {zeta} to be close to 90 Degree-Sign , which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  18. Long-lived trimers in a quasi-two-dimensional Fermi system

    Science.gov (United States)

    Laird, Emma K.; Kirk, Thomas; Parish, Meera M.; Levinsen, Jesper

    2018-04-01

    We consider the problem of three distinguishable fermions confined to a quasi-two-dimensional (quasi-2D) geometry, where there is a strong harmonic potential in one direction. We go beyond previous theoretical work and investigate the three-body bound states (trimers) for the case where the two-body short-range interactions between fermions are unequal. Using the scattering parameters from experiments on ultracold 6Li atoms, we calculate the trimer spectrum throughout the crossover from two to three dimensions. We find that the deepest Efimov trimer in the 6Li system is unaffected by realistic quasi-2D confinements, while the first excited trimer smoothly evolves from a three-dimensional-like Efimov trimer to an extended 2D-like trimer as the attractive interactions are decreased. We furthermore compute the excited trimer wave function and quantify the stability of the trimer against decay into a dimer and an atom by determining the probability that three fermions approach each other at short distances. Our results indicate that the lifetime of the trimer can be enhanced by at least an order of magnitude in the quasi-2D geometry, thus opening the door to realizing long-lived trimers in three-component Fermi gases.

  19. Drainback solar thermal systems

    DEFF Research Database (Denmark)

    Botpaev, R.; Louvet, Y.; Perers, Bengt

    2016-01-01

    Although solar drainback systems have been used for a long time, they are still generating questions regarding smooth functioning. This paper summarises publications on drainback systems and compiles the current knowledge, experiences, and ideas on the technology. The collective research exhibits...... of this technology has been developed, with a brief description of each hydraulic typology. The operating modes have been split into three stages: filling, operation, and draining, which have been studied separately. A difference in the minimal filling velocities for a siphon development in the solar loop has been...

  20. Multifrequency Behaviour of the Gamma-Ray Binary System PSR B1259-63: Modelling the FERMI Flare

    Directory of Open Access Journals (Sweden)

    Brian van Soelen

    2014-12-01

    Full Text Available This paper presents a brief overview of the multifrequency properties of the gamma-ray binary system PSR B1259-63 from radio to very high energy gamma-rays. A summary is also presented of the various models put forward to explain the Fermi "flare" detected in 2011. Initial results are presented of a new turbulence driven model to explain the GeV observations.

  1. Quantitative application of Fermi-Dirac functions of two- and three-dimensional systems

    International Nuclear Information System (INIS)

    Grimmer, D.P.; Luszczynski, K.; Salibi, N.

    1981-01-01

    Expressions for the various physical parameters of the ideal Fermi-Dirac gas in two dimensions are derived and compared to the corresponding three-dimensional expressions. These derivations show that the Fermi-Dirac functions most applicable to the two-dimensional problem are F/sub o/(eta), F 1 (eta), and F' 0 (eta). Analogous to the work of McDougall and Stoner in three dimensions, these functions and parameters derived from them are tabulated over the range of the argument, -4 3 He monolayer and bulk liquid 3 He nuclear magnetic susceptibilities, respectively, are considered. Calculational procedures of fitting data to theoretical parameters and criteria for judging the quality of fit of data to both two- and three-dimensional Fermi-Dirac values are discussed

  2. Spin interaction with an ideal fermi gas

    International Nuclear Information System (INIS)

    Aizenstadt, V.V.; Malyshev, V.A.

    1987-01-01

    The authors consider the equilibrium dynamics of a system consisting of a spin interacting with an ideal Fermi gas on the lattice Z/sup v, v ≥ 3. They present two examples; when this system is unitarily equivalent to an ideal Fermi gas or to a spin in an ideal Fermi gas without interactions between them

  3. Thermal animal detection system (TADS)

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M.

    2003-03-01

    This report presents data from equipment tests and software development for the Thermal Animal Detection System (TADS) development project: 'Development of a method for estimating collision frequency between migrating birds and offshore wind turbines'. The technical tests were performed to investigate the performance of remote controlling, video file compression tool and physical stress of the thermal camera when operating outdoors and under the real time vibration conditions at a 2 MW turbine. Furthermore, experimental tests on birds were performed to describe the decreasing detectability with distance on free flying birds, the performance of the thermal camera during poor visibility, and finally, the performance of the thermal sensor software developed for securing high -quality data. In general, it can be concluded that the thermal camera and its related hardware and software, the TADS, are capable of recording migrating birds approaching the rotating blades of a turbine, even under conditions with poor visibility. If the TADS is used in a vertical viewing scenario it would comply with the requirements for a setup used for estimating the avian collision frequency at offshore wind turbines. (au)

  4. Thermal animal detection system (TADS)

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M

    2003-03-01

    This report presents data from equipment tests and software development for the Thermal Animal Detection System (TADS) development project: 'Development of a method for estimating collision frequency between migrating birds and offshore wind turbines'. The technical tests were performed to investigate the performance of remote controlling, video file compression tool and physical stress of the thermal camera when operating outdoors and under the real time vibration conditions at a 2 MW turbine. Furthermore, experimental tests on birds were performed to describe the decreasing detectability with distance on free flying birds, the performance of the thermal camera during poor visibility, and finally, the performance of the thermal sensor software developed for securing high -quality data. In general, it can be concluded that the thermal camera and its related hardware and software, the TADS, are capable of recording migrating birds approaching the rotating blades of a turbine, even under conditions with poor visibility. If the TADS is used in a vertical viewing scenario it would comply with the requirements for a setup used for estimating the avian collision frequency at offshore wind turbines. (au)

  5. Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity

    Czech Academy of Sciences Publication Activity Database

    Abuki, H.; Brauner, Tomáš

    2008-01-01

    Roč. 78, č. 12 (2008), 125010/1-125010/13 ISSN 1550-7998 R&D Projects: GA ČR GA202/06/0734 Institutional research plan: CEZ:AV0Z10480505 Keywords : BCS-BEC crossover * Unitary Fermi gas * Quark matter Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.050, year: 2008

  6. Fermi and nuclear security

    International Nuclear Information System (INIS)

    Alcober Bosch, V.

    2003-01-01

    Following the scientific life of Fermi the article reviews the historical evolution of nuclear security from the base of the first system foreseen for the CP-1 critical pile, which made it possible to demonstrate self-sustaining fission reaction, until the mid-fifties by which time the subsequent importance of this concept was perceived. Technological advances have gone hand in hand with the development of the concept of security, and have become a further point to be taken into account in any nuclear installation, and which Fermi always kept in mind during his professional life. (Author) 12 refs

  7. Methods of forming thermal management systems and thermal management methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  8. Fermi Large Area Telescope

    Science.gov (United States)

    are available to the public, along with standard analysis software, from NASA's Fermi Science Support Center. For general questions about Fermi, Fermi science, or Fermi classroom materials, please contact Fermi has its own music: a prelude and a symphony. Gamma Ray Bursts trasformed into visual music

  9. Nonextensive Thomas-Fermi model

    Science.gov (United States)

    Shivamoggi, Bhimsen; Martinenko, Evgeny

    2007-11-01

    Nonextensive Thomas-Fermi model was father investigated in the following directions: Heavy atom in strong magnetic field. following Shivamoggi work on the extension of Kadomtsev equation we applied nonextensive formalism to father generalize TF model for the very strong magnetic fields (of order 10e12 G). The generalized TF equation and the binding energy of atom were calculated which contain a new nonextensive term dominating the classical one. The binding energy of a heavy atom was also evaluated. Thomas-Fermi equations in N dimensions which is technically the same as in Shivamoggi (1998) ,but behavior is different and in interesting 2 D case nonextesivity prevents from becoming linear ODE as in classical case. Effect of nonextensivity on dielectrical screening reveals itself in the reduction of the envelope radius. It was shown that nonextesivity in each case is responsible for new term dominating classical thermal correction term by order of magnitude, which is vanishing in a limit q->1. Therefore it appears that nonextensive term is ubiquitous for a wide range of systems and father work is needed to understand the origin of it.

  10. Berry Fermi liquid theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Yuan, E-mail: chjy@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States); Stanford Institute for Theoretical Physics, Stanford University, CA 94305 (United States); Son, Dam Thanh, E-mail: dtson@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States)

    2017-02-15

    We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current–current correlator exactly matches with the result obtained from the kinetic theory. - Highlights: • We extend Landau’s kinetic theory of Fermi liquid to incorporate Berry phase. • Berry phase effects in Fermi liquid take exactly the same form as in Fermi gas. • There is a new “emergent electric dipole” contribution to the anomalous Hall effect. • Our kinetic theory is matched to field theory to all orders in Feynman diagrams.

  11. Thermal states of anyonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Iblisdir, S., E-mail: iblisdir@ecm.ub.e [Dpt. Estructura i Constituents de la Materia, Universitat Barcelona, 08028 Barcelona (Spain); Perez-Garcia, D. [Dpt. Analisis Matematico, Universitad Complutense de Madrid, 28040 Madrid (Spain); Aguado, M. [Max Planck Institut fuer Quantenoptik, Garching D-85748 (Germany); Pachos, J. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2010-04-21

    A study of the thermal properties of two-dimensional topological lattice models is presented. This work is relevant to assess the usefulness of these systems as a quantum memory. For our purposes, we use the topological mutual information I{sub topo} as a 'topological order parameter'. For Abelian models, we show how I{sub topo} depends on the thermal topological charge probability distribution. More generally, we present a conjecture that I{sub topo} can (asymptotically) be written as a Kullback-Leitner distance between this probability distribution and that induced by the quantum dimensions of the model at hand. We also explain why I{sub topo} is more suitable for our purposes than the more familiar entanglement entropy S{sub topo}. A scaling law, encoding the interplay of volume and temperature effects, as well as different limit procedures, are derived in detail. A non-Abelian model is next analyzed and similar results are found. Finally, we also consider, in the case of a one-plaquette toric code, an environment model giving rise to a simulation of thermal effects in time.

  12. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  13. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  14. Experimental Observation of Fermi-Pasta-Ulam Recurrence in a Nonlinear Feedback Ring System

    Science.gov (United States)

    Wu, Mingzhong; Patton, Carl E.

    2007-01-01

    Fermi-Pasta-Ulam recurrence through soliton dynamics has been realized. The experiment used a magnetic film strip-based active feedback ring. At some ring gain level, a wide spin wave pulse is self-generated in the ring. As the pulse circulates, it separates into two envelop solitons with different speeds. When the fast soliton catches up and collides with the slow soliton, the initial wide pulse is perfectly reconstructed. The repetition of this process leads to periodic recurrences of the initial pulse.

  15. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  16. Universality class of non-Fermi liquid behaviour in mixed valence systems

    International Nuclear Information System (INIS)

    Zhang Guangming; Su Zhaobin; Lu Yu

    1995-11-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper-oxides. Using the abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed valence quantum critical point separating two different Fermi liquid phases, i.e. the Kondo phase and the empty orbital phase. In the mixed valence quantum critical regime, the local moment is only partially quenched and X-ray edge singularities are generated. Around the quantum critical point, a new type of non-Fermi liquid behaviour is predicted with an extra specific heat C imp ∼ T 1/4 and a singular spin-susceptibility χ imp ∼ T -3/4 . At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in U Pd x Cu 5-x (x=1, 1.5) alloys, which show single-impurity critical behaviour consistent with our predictions. (author). 30 refs

  17. Universality class of non-Fermi-liquid behavior in mixed-valence systems

    Science.gov (United States)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    1996-01-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.

  18. Continuous hydrino thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L.; Zhao, Guibing; Good, William [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2011-03-15

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric. (author)

  19. Continuous hydrino thermal power system

    International Nuclear Information System (INIS)

    Mills, Randell L.; Zhao, Guibing; Good, William

    2011-01-01

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric.

  20. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  1. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  2. Efficient thermal management for multiprocessor systems

    OpenAIRE

    Coşkun, Ayşe Kıvılcım

    2009-01-01

    High temperatures and large thermal variations on the die create severe challenges in system reliability, performance, leakage power, and cooling costs. Designing for worst-case thermal conditions is highly costly and time-consuming. Therefore, dynamic thermal management methods are needed to maintain safe temperature levels during execution. Conventional management techniques sacrifice performance to control temperature and only consider the hot spots, neglecting the effects of thermal varia...

  3. Non-Fermi liquid and spin-glass behavior of the Sc1-xUxPd3 system

    International Nuclear Information System (INIS)

    Gajewski, D.A.; Allenspach, P.; Seaman, C.L.; Maple, M.B.

    1994-01-01

    Previous electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C(T) measurements on the Y 1-x U x Pd 3 system have revealed Kondo behavior for 0 K , where T K is the Kondo temperature: ρ(T)/ρ(0)∼1-T/(aT K ) and C(T)/T∼-(1/T K )ln T with evidence for a finite T=0 residual entropy S(0)=(R/2)ln(2). We report measurements of ρ(T), χ(T), and C(T) on the Sc 1-x U x Pd 3 system which reveal similar Kondo, non-Fermi liquid, and spin-glass behaviors. ((orig.))

  4. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  5. Thermal management of EV battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Birch, P.K.

    1984-01-01

    The thermal limitations of the actual design and the benefits of more extensive thermal management of electric vehicle systems are described. During this work a number of practical limitations in vehicle design, which has to be frozen relatively early in the project, made it impossible to take advantage of the benefits of thermal management in connection with the design of the modular battery system. This study, therfore, deals only very briefly with the actual project. The aim has been to show the possibilities of improvement based on traditional electrochemical systems (e.g., all lead-acid) by means of thermal management.

  6. Non-thermal electron acceleration in low Mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xinyi; Narayan, Ramesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sironi, Lorenzo [NASA Einstein Postdoctoral Fellow. (United States)

    2014-12-10

    Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ≲ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (≳ 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  7. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.

    Science.gov (United States)

    Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli

    2012-08-01

    We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).

  8. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  9. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  10. Simulation-based optimization of thermal systems

    International Nuclear Information System (INIS)

    Jaluria, Yogesh

    2009-01-01

    This paper considers the design and optimization of thermal systems on the basis of the mathematical and numerical modeling of the system. Many complexities are often encountered in practical thermal processes and systems, making the modeling challenging and involved. These include property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions. The paper briefly presents approaches that may be used to accurately simulate these systems. Validation of the numerical model is a particularly critical aspect and is discussed. It is important to couple the modeling with the system performance, design, control and optimization. This aspect, which has often been ignored in the literature, is considered in this paper. Design of thermal systems based on concurrent simulation and experimentation is also discussed in terms of dynamic data-driven optimization methods. Optimization of the system and of the operating conditions is needed to minimize costs and improve product quality and system performance. Different optimization strategies that are currently used for thermal systems are outlined, focusing on new and emerging strategies. Of particular interest is multi-objective optimization, since most thermal systems involve several important objective functions, such as heat transfer rate and pressure in electronic cooling systems. A few practical thermal systems are considered in greater detail to illustrate these approaches and to present typical simulation, design and optimization results

  11. How Accurately can we Calculate Thermal Systems?

    International Nuclear Information System (INIS)

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-01-01

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K eff , for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors

  12. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sukanya [Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat (India)

    2018-01-15

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system. (orig.)

  13. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Science.gov (United States)

    Mitra, Sukanya

    2018-01-01

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system.

  14. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  15. A miniature concentrating photovoltaic and thermal system

    International Nuclear Information System (INIS)

    Kribus, Abraham; Kaftori, Daniel; Mittelman, Gur; Hirshfeld, Amir; Flitsanov, Yuri; Dayan, Abraham

    2006-01-01

    A novel miniature concentrating PV (MCPV) system is presented and analyzed. The system is producing both electrical and thermal energy, which is supplied to a nearby consumer. In contrast to PV/thermal (PV/T) flat collectors, the heat from an MCPV collector is not limited to low-temperature applications. The work reported here refers to the evaluation and preliminary design of the MCPV approach. The heat transport system, the electric and thermal performance, the manufacturing cost, and the resulting cost of energy in case of domestic water heating have been analyzed. The results show that the new approach has promising prospects

  16. Recent results of PADReS, the Photon Analysis Delivery and REduction System, from the FERMI FEL commissioning and user operations.

    Science.gov (United States)

    Zangrando, Marco; Cocco, Daniele; Fava, Claudio; Gerusina, Simone; Gobessi, Riccardo; Mahne, Nicola; Mazzucco, Eric; Raimondi, Lorenzo; Rumiz, Luca; Svetina, Cristian

    2015-05-01

    The Photon Analysis Delivery and REduction System of FERMI (PADReS) has been routinely used during the machine commissioning and operations of FERMI since 2011. It has also served the needs of several user runs at the facility from late 2012. The system is endowed with online and shot-to-shot diagnostics giving information about intensity, spatial-angular distribution, spectral content, as well as other diagnostics to determine coherence, pulse length etc. Moreover, PADReS is capable of manipulating the beam in terms of intensity and optical parameters. Regarding the optics, besides a standard refocusing system based on an ellipsoidal mirror, the Kirkpatrick-Baez active optics systems are key elements and have been used intensively to meet users' requirements. A general description of the system is given, together with some selected results from the commissioning/operations/user beam time.

  17. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  18. Quantum information aspects on bulk and nano interacting Fermi system: A spin-space density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Afzali, R., E-mail: afzali@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, Tehran, 15418 (Iran, Islamic Republic of); Ebrahimian, N., E-mail: n.ebrahimian@shahed.ac.ir [Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, 18155-159 (Iran, Islamic Republic of); Eghbalifar, B., E-mail: b.eghbali2011@yahoo.com [Department of Agricultural Management, Marvdasht Branch, Azad University, Marvdasht (Iran, Islamic Republic of)

    2016-10-07

    Highlights: • In contrast to a s-wave superconductor, the quantum correlation of the d-wave superconductor is sensitive to the change of the gap magnitude. • Quantum discord of the d-wave superconductor oscillates. • Quantum discord becomes zero at a characteristic length of the d-wave superconductor. • Quantum correlation strongly depends on the length of grain. Length of the superconductor lower, the quantum correlation length higher. • Quantum tripartite entanglement for a nano-scale d-wave superconductor is better than for a bulk d-wave superconductor. - Abstract: By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.

  19. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  20. Thermal-hydraulic unreliability of passive systems

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Saltos, N.T.

    1995-01-01

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  1. 7th International Fermi Symposium

    Science.gov (United States)

    2017-10-01

    The two Fermi instruments have been surveying the high-energy sky since August 2008. The Large Area Telescope (LAT) has discovered more than three thousand gamma-ray sources and many new source classes, bringing the importance of gamma-ray astrophysics to an ever-broadening community. The LAT catalog includes supernova remnants, pulsar wind nebulae, pulsars, binary systems, novae, several classes of active galaxies, starburst galaxies, normal galaxies, and a large number of unidentified sources. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from a wide range of transients. Fermi LAT's study of diffuse gamma-ray emission in our Galaxy revealed giant bubbles, as well as an excess of gamma-rays from the Galactic center region, both observations have become exciting puzzles for the astrophysics community. The direct measurement of a harder-than- expected cosmic-ray electron spectrum may imply the presence of nearby cosmic-ray accelerators. LAT data have provided stringent constraints on new phenomena such as supersymmetric dark-matter annihilations as well as tests of fundamental physics. The full reprocessing of the entire mission dataset with Pass 8 includes improved event reconstruction, a wider energy range, better energy measurements, and significantly increased effective area, all them boosting the discovery potential and the ability to do precision observations with LAT. The Gamma-ray Burst Monitor (GBM) continues to be a prolific detector of gamma-ray transients: magnetars, solar flares, terrestrial gamma-ray flashes and gamma-ray bursts at keV to MeV energies, complementing the higher energy LAT observations of those sources in addition to providing valuable science return in their own right. All gamma-ray data are made immediately available at the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). These publicly available data and Fermi analysis tools have enabled a large number of important studies. We

  2. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso; Alshareef, Husam N.

    2015-01-01

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  3. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso

    2015-05-28

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  4. Disorder effects in two-dimensional Fermi systems with conical spectrum: exact results for the density of states

    International Nuclear Information System (INIS)

    Nersesyan, A.A.; Tsvelik, A.M.; Wenger, F.

    1995-01-01

    The influence of weak non-magnetic disorder on the single-particle density of states ρ(ω) of two-dimensional electron systems with a conical spectrum is studied. We use a non-perturbative approach, based on the replica trick with subsequent mapping of the effective action onto a one-dimensional model of interacting fermions, the latter being treated by abelian and non-abelian bosonization methods. Specifically, we consider a weakly disordered p- or d-wave superconductor, in which case the problem reduces to a model of (2+1)-dimensional massless Dirac fermions coupled to random, static, generally non-abelian gauge fields. It is shown that the density of states of a two-dimensional p- or d-wave superconductor, averaged over randomness, follows a non-trivial power-law behavior near the Fermi energy: ρ(ω) similar vertical stroke ωvertical stroke α . The exponent α>0 is exactly calculated for several types of disorder. We demonstrate that the property ρ(0) = 0 is a direct consequence of a continuous symmetry of the effective fermionic model, whose breakdown is forbidden in two dimensions. As a counter example, we also discuss another model with a conical spectrum - a two-dimensional orbital antiferromagnet, where static disorder leads to a finite ρ(0) due to the breakdown of a discrete (particle-hole) symmetry. ((orig.))

  5. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  6. Modelling and Control of Thermal System

    Directory of Open Access Journals (Sweden)

    Vratislav Hladky

    2014-01-01

    Full Text Available Work presented here deals with the modelling of thermal processes in a thermal system consisting of direct and indirect heat exchangers. The overal thermal properties of the medium and the system itself such as liquid mixing or heat capacity are shortly analysed and their features required for modelling are reasoned and therefore simplified or neglected. Special attention is given to modelling heat losses radiated into the surroundings through the walls as they are the main issue of the effective work with the heat systems. Final part of the paper proposes several ways of controlling the individual parts’ temperatures as well as the temperature of the system considering heating elements or flowage rate as actuators.

  7. Large optical conductivity of Dirac semimetal Fermi arc surface states

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2017-08-01

    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.

  8. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  9. Pulse thermal energy transport/storage system

    Science.gov (United States)

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  10. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Allaria, Enrico; Callegari, Carlo; Cocco, Daniele; Fawley, William M.; Kiskinova, Maya; Masciovecchio, Claudio; Parmigiani, Fulvio

    2010-04-05

    FERMI@Elettra is comprised of two free electron lasers (FELs) that will generate short pulses (tau ~;; 25 to 200 fs) of highly coherent radiation in the XUV and soft X-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability to produce high quality, longitudinal coherent photon pulses. This capability together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization will open new experimental opportunities not possible with currently available FELs. Here we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source.

  11. Electronic annealing Fermi operator expansion for DFT calculations on metallic systems

    Science.gov (United States)

    Aarons, Jolyon; Skylaris, Chris-Kriton

    2018-02-01

    Density Functional Theory (DFT) calculations with computational effort which increases linearly with the number of atoms (linear-scaling DFT) have been successfully developed for insulators, taking advantage of the exponential decay of the one-particle density matrix. For metallic systems, the density matrix is also expected to decay exponentially at finite electronic temperature and linear-scaling DFT methods should be possible by taking advantage of this decay. Here we present a method for DFT calculations at finite electronic temperature for metallic systems which is effectively linear-scaling (O(N)). Our method generates the elements of the one-particle density matrix and also finds the required chemical potential and electronic entropy using polynomial expansions. A fixed expansion length is always employed to generate the density matrix, without any loss in accuracy by the application of a high electronic temperature followed by successive steps of temperature reduction until the desired (low) temperature density matrix is obtained. We have implemented this method in the ONETEP linear-scaling (for insulators) DFT code which employs local orbitals that are optimised in situ. By making use of the sparse matrix machinery of ONETEP, our method exploits the sparsity of Hamiltonian and density matrices to perform calculations on metallic systems with computational cost that increases asymptotically linearly with the number of atoms. We demonstrate the linear-scaling computational cost of our method with calculation times on palladium nanoparticles with up to ˜13 000 atoms.

  12. Mars Science Laboratory Rover System Thermal Test

    Science.gov (United States)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  13. Microscopic origin of marginal Fermi-liquid in strongly correlated spin systems

    International Nuclear Information System (INIS)

    Protogenov, A.P.; Ryndyk, D.A.

    1992-08-01

    We consider the consequences of separation of spin and charge degrees of freedom in 2+1D strongly correlated spin systems. Self-consistent spin and charge motions induced by doping in sites of ground and dual lattices form such a spectrum of quasiparticles which together with the dispersionless character of the collective excitation spectrum and the chemical potential pinning in the band centre yield the necessary behavior of charge and spin polarizability to support the theory of marginal liquid formulated by C.M. Varma et al. (Phys. Rev. Lett. 63, 1996 (1989)). (author). 28 refs, 4 figs

  14. Thermal performance advisor expert system development

    International Nuclear Information System (INIS)

    McClintock, M.; Hirota, N.; Metzinger, R.

    1991-01-01

    In recent years the electric industry has developed an increased interest in improving efficiency of nuclear power plants. EPRI has embarked upon a research project RP2407, Nuclear Plant Performance Improvements which is designed to address needs in this area. One product of this project has been the Thermal Performance Diagnostic Manual for Nuclear Power Plants (NP-4990P). The purpose of this manual is to provide engineering personnel at nuclear power plants with a consistent way in which to identify thermal performance problems. General Physics is also involved in the development of another computer system called Fossil Thermal Performance Advisor (FTPA) which helps operators improve performance for fossil power plants. FTPA is a joint venture between General Physics and New York State Electric and Gas Company. This paper describes both of these computer systems and uses the FTPA as an interesting comparison that illustrates the considerations required for the development of a computer system that effectively addresses the needs of the users

  15. Fermi-surface topology of the heavy-fermion system Ce2PtIn8

    Science.gov (United States)

    Klotz, J.; Götze, K.; Green, E. L.; Demuer, A.; Shishido, H.; Ishida, T.; Harima, H.; Wosnitza, J.; Sheikin, I.

    2018-04-01

    Ce2PtIn8 is a recently discovered heavy-fermion system structurally related to the well-studied superconductor CeCoIn5. Here we report on low-temperature de Haas-van Alphen-effect measurements in high magnetic fields in Ce2PtIn8 and Pr2PtIn8 . In addition, we performed band-structure calculations for localized and itinerant Ce-4 f electrons in Ce2PtIn8 . Comparison with the experimental data of Ce2PtIn8 and of the 4 f -localized Pr2PtIn8 suggests the itinerant character of the Ce-4 f electrons. This conclusion is further supported by the observation of effective masses in Ce2PtIn8 , which are strongly enhanced with up to 26 bare electron masses.

  16. Graded thermal insulation layer systems; Gradierte Waermedaemmschichtsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Leushake, U.; Krell, T. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Werkstoff-Forschung

    1996-12-31

    Graded thermal insulation systems reduce local stresses between two layers. Grading usually involves a concentration variation in a second phase but may also involve variations of the microstructure or chemical composition. The contribution discusses the application of this technique for thermal protection of turbine blades in aircraft propulsion systems. [Deutsch] Mit Hilfe gradierter Waermeschichtsysteme ist es moeglich die lokalen Spannungen zwischen zwei Schichten zu verringern. Die Gradierung umfasst meistens eine Variation des Gehaltes einer zweiten Phase, kann aber auch die Variation der Mikrostruktur oder der chemischen Zusammensetzung beinhalten. In diesem Beitrag wird auf die Anwendung als thermischer Schutz von Turbinenschaufeln fuer Flugtriebwerke eingegangen.

  17. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  18. Artificial heart system thermal insulation component development

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Buckman, R.W. Jr.

    1975-01-01

    A concentric cup vacuum multifoil insulation system has been selected by virtue of its size, weight, and thermal performance to insulate the hot radioisotope portion of the thermal converter of an artificial implantable heart system. A factor of 2 improvement in thermal performance, based on the heat loss per number of foil layers (minimum system weight and volume) has been realized over conventional spiral wrapped multifoil vacuum insulation. This improvement is the result of the concentric cup construction to maintain a uniform interfoil spacing and the elimination of corner heat losses. Based on external insulation system dimensions (surface area in contact with host body), heat losses of 0.019 W/ cm 2 at 1140 0 K (1600 0 F) and 0.006 W/cm 2 at 920 0 K (1200 0 F) have been achieved. Factors which influence thermal performance of the nickel foil concentric cup insulation system include the number of cups, configuration and method of application of zirconia (ZrO 2 ) spacer material, system pressure, emittance of the cups, and operating temperature

  19. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy; Bremsstrahlung thermique comme sonde de la multifragmentation nucleaire dans les collisions noyau-noyau aux energies de Fermi

    Energy Technology Data Exchange (ETDEWEB)

    D' Enterria, D.G

    2000-05-15

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E{sub {gamma}} > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar{sup 36} + Au{sup 197}, Ag{sup 107}, Ni{sup 58}, C{sup 12} at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4{pi}. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pn{gamma}) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  20. Large thermal protection system panel

    Science.gov (United States)

    Weinberg, David J. (Inventor); Myers, Franklin K. (Inventor); Tran, Tu T. (Inventor)

    2003-01-01

    A protective panel for a reusable launch vehicle provides enhanced moisture protection, simplified maintenance, and increased temperature resistance. The protective panel includes an outer ceramic matrix composite (CMC) panel, and an insulative bag assembly coupled to the outer CMC panel for isolating the launch vehicle from elevated temperatures and moisture. A standoff attachment system attaches the outer CMC panel and the bag assembly to the primary structure of the launch vehicle. The insulative bag assembly includes a foil bag having a first opening shrink fitted to the outer CMC panel such that the first opening and the outer CMC panel form a water tight seal at temperatures below a desired temperature threshold. Fibrous insulation is contained within the foil bag for protecting the launch vehicle from elevated temperatures. The insulative bag assembly further includes a back panel coupled to a second opening of the foil bag such that the fibrous insulation is encapsulated by the back panel, the foil bag, and the outer CMC panel. The use of a CMC material for the outer panel in conjunction with the insulative bag assembly eliminates the need for waterproofing processes, and ultimately allows for more efficient reentry profiles.

  1. Quaternion Based Thermal Condition Monitoring System

    Science.gov (United States)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  2. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process...

  3. System design description PFP thermal stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1998-01-01

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides

  4. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  5. Superconducting states in strongly correlated systems with nonstandard quasiparticles and real space pairing: an unconventional Fermi-liquid limit

    Directory of Open Access Journals (Sweden)

    J. Spałek

    2010-01-01

    Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.

  6. Fermi comes to CERN

    CERN Multimedia

    NASA

    2009-01-01

    1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)

  7. Fermi GBM Trigger Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  8. Equilibration and thermalization in finite quantum systems

    International Nuclear Information System (INIS)

    Yukalov, V I

    2011-01-01

    Experiments with trapped atomic gases have opened novel possibilities for studying the evolution of nonequilibrium finite quantum systems, which revived the necessity of reconsidering and developing the theory of such processes. This review analyzes the basic approaches to describing the phenomena of equilibration, thermalization, and decoherence in finite quantum systems. Isolated, nonisolated, and quasi-isolated quantum systems are considered. The relations between equilibration, decoherence, and the existence of time arrow are emphasized. The possibility for the occurrence of rare events, preventing complete equilibration, are mentioned

  9. System Design Description PFP Thermal Stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    2000-01-01

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures

  10. Enrico Fermi centenary exhibition seminar

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.

  11. Advanced materials for thermal protection system

    Science.gov (United States)

    Heng, Sangvavann; Sherman, Andrew J.

    1996-03-01

    Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.

  12. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    Science.gov (United States)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura

    2013-01-01

    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more

  13. Solar Thermal System Evaluation in China

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2015-01-01

    Full Text Available More than 581 solar thermal systems (STSs, 98 counties, and 47 renewable application demonstration cites in China need to be inspected by the end of 2015. In this study, the baseline for performance and economic evaluation of STSs are presented based on the site test data and related references. An index used to evaluate STSs was selected, and methods to acquire the parameters used to calculate the related index were set. The requirements for sensors for testing were specified. The evaluation method was applied to three systems and the result shows that the evaluation method is suitable for the evaluation of STSs in China.

  14. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. ... (solar power); wind (wind power) and the rest, thermal power and ... probability of a system performing its function adequately for ...

  15. Thermal Excitation System for Shearography (TESS)

    Science.gov (United States)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    One of the most convenient and effective methods of stressing a part or structure for shearographic evaluation is thermal excitation. This technique involves heating the part, often convectively with a heat gun, and then monitoring with a shearography device the deformation during cooling. For a composite specimen, unbonds, delaminations, inclusions, or matrix cracking will deform during cooling differently than other more structurally sound regions and thus will appear as anomalies in the deformation field. However, one of the difficulties that cause this inspection to be dependent on the operator experience is the conventional heating process. Fanning the part with a heat gun by hand introduces a wide range of variability from person to person and from one inspection to the next. The goal of this research effort was to conduct research in the methods of thermal excitation for shearography inspection. A computerized heating system was developed for inspection of 0.61 m (24 in.) square panels. The Thermal Excitation System for Shearography (TESS) provides radiant heating with continuous digital measurement of the surface temperature profile to ensure repeatability. The TESS device functions as an accessory to any electronic shearography device.

  16. Integrated operation of hydro thermal system

    International Nuclear Information System (INIS)

    Nanthakumar, J.

    1994-01-01

    Long-term power system expansion planning studies are carried out to meet the electricity requirement in the future. Prior to the expansion planning studies, it is essential to know the energy potential of the existing generating system, especially the hydro power plants. Detailed hydro thermal stimulation studies of the integrated system is therefore carried out to determine the best way to maximise the hydro energy of the existing and committed plants. The results of the integrated system simulated model are stored in numerous files and are available for retrieval. Most important output used for expansion analysis is the energy production of each hydro plant. The annual hydro energy potential of the total hydro system of Sri Lanka for the hydrological year from 1949 to 1988 is given. Hydro condition data with different probability levels are also indicated

  17. System model development for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented

  18. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process....... It must address all the current quality and safety (Q&S) standards. In this review article, an effective battery thermal management is sought considering the existing battery Q&S standards and scientific literature. The article contains a broad overview of the current existing standards and literature...... on a generic compliant BTMS. The aim is to assist in the design of a novel compatible BTMS. Additionally, the article delivers a set of recommendations to make an effective BTMS....

  19. Enrico Fermi exhibition at CERN

    CERN Multimedia

    2002-01-01

    A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...

  20. Thermal Components Boost Performance of HVAC Systems

    Science.gov (United States)

    2012-01-01

    As the International Space Station (ISS) travels 17,500 miles per hour, normal is having a constant sensation of free-falling. Normal is no rain, but an extreme amount of shine.with temperatures reaching 250 F when facing the Sun. Thanks to a number of advanced control systems onboard the ISS, however, the interior of the station remains a cool, comfortable, normal environment where astronauts can live and work for extended periods of time. There are two main control systems on the ISS that make it possible for humans to survive in space: the Thermal Control System (TCS) and the Environmental Control and Life Support system. These intricate assemblies work together to supply water and oxygen, regulate temperature and pressure, maintain air quality, and manage waste. Through artificial means, these systems create a habitable environment for the space station s crew. The TCS constantly works to regulate the temperature not only for astronauts, but for the critical instruments and machines inside the spacecraft as well. To do its job, the TCS encompasses several components and systems both inside and outside of the ISS. Inside the spacecraft, a liquid heat-exchange process mechanically pumps fluids in closed-loop circuits to collect, transport, and reject heat. Outside the ISS, an external system circulates anhydrous ammonia to transport heat and cool equipment, and radiators release the heat into space. Over the years, NASA has worked with a variety of partners.public and private, national and international. to develop and refine the most complex thermal control systems ever built for spacecraft, including the one on the ISS.

  1. Angular correlations near the Fermi energy

    International Nuclear Information System (INIS)

    Fox, D.; Cebra, D.A.; Karn, J.

    1988-01-01

    Angular correlations between light particles have been studied to probe the extent to which a thermally equilibrated system is formed in heavy ion collisions near the Fermi energy. Single-light-particle inclusive energy spectra and two-particle large-angle correlations were measured for 40 and 50 MeV/nucleon C+C, Ag, and Au. The single-particle inclusive energy spectra are well fit by a three moving source parametrization. Two-particle large-angle correlations are shown to be consistent with emission from a thermally equilibrated source when the effects of momentum conservation are considered. Single-particle inclusive spectra and light-particle correlations at small relative momentum were measured for 35 MeV/nucleon N+Ag. Source radii were extracted from the two-particle correlation functions and were found to be consistent with previous measurements using two-particle correlations and the coalescence model. The temperature of the emitting source was extracted from the relative populations of states using the quantum statistical model and was found to be 4.8/sub -2.4//sup +2.8/ MeV, compared to the 14 MeV temperature extracted from the slopes of the kinetic energy spectra

  2. Fermi comes to CERN

    CERN Multimedia

    2009-01-01

    In only 10 months of scientific activity, the Fermi space observatory has already collected an unprecedented wealth of information on some of the most amazing objects in the sky. In a recent talk at CERN, Luca Latronico, a member of the Fermi collaboration, explained some of their findings and emphasized the strong links between High Energy Physics (HEP) and High Energy Astrophysics (HEA). The Fermi gamma-ray telescope was launched by NASA in June 2008. After about two months of commissioning it started sending significant data back to the Earth. Since then, it has made observations that are changing our view of the sky: from discovering a whole new set of pulsars, the greatest total energy gamma-ray burst ever, to detecting an unexplained abundance of high-energy electrons that could be a signature of dark matter, to producing a uniquely rich and high definition sky map in gamma-rays. The high performance of the instrument comes as ...

  3. Thermal Protection Systems: Past, Present and Future

    Science.gov (United States)

    Johnson, Sylvia M.

    2015-01-01

    Thermal protection materials and systems (TPS) have been critical to fulfilling humankinds desire to explore space. Composite and ceramic materials have enabled the early missions to orbit, the moon, the space station, Mars with robots, and sample return. Crewed missions to Mars are being considered, and this places even more demands on TPS materials. This talk will give some history on the materials used for earth and planetary entry and the demands placed upon such materials. TPS needs for future missions, especially to Mars, will be identified and potential solutions discussed.

  4. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.

    2011-08-23

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  5. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.; Pastine, Stefan J.; Moreton, Jessica C.; Frechet, Jean

    2011-01-01

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  6. A chromia forming thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.P.; Evans, H.E. [Metallurgy and Materials, The University of Birmingham, Birmingham, B15 2TT (United Kingdom); Gray, S.; Nicholls, J.R. [Surface Science and Engineering Centre, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2011-07-15

    Conventional thermal barrier coating (TBC) systems consist of an insulating ceramic topcoat, a bond coat for oxidation protection and the underlying superalloy designed to combat the oxidising conditions in aero- and land-based gas turbines. Under high-temperature oxidation, the use of an alumina forming bond coat is warranted, thus all current TBC systems are optimised for the early formation of a dense, protective thermally grown oxide (TGO) of alumina. This also offers protection against Type I hot corrosion but a chromia layer gives better protection against Type II corrosion and intermediate temperatures, the conditions found in land-based gas turbines. In this paper the authors present the first known results for a chromia forming TBC system. Tests have been performed under oxidising conditions, up to 1000 h, at temperatures between 750 C and 900 C, and under Type I (900 C) and Type II (700 C) hot corrosion conditions up to 500 h. Under all these conditions no cracking, spallation or degradation was observed. Examination showed the formation of an adherent, dense chromia TGO at the bond coat / topcoat interface. These initial results are very encouraging and the TGO thicknesses agree well with comparable results reported in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Choice of thermal reactor systems: a report

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    This is a report by the UK National Nuclear Corporation published by the UK Secretary of State for Energy (Mr. Benn) on 29th July 1977. It is concerned with the advantages and disadvantages of three thermal reactor systems -the AGR (advanced gas cooled reactor), the PWR (pressurised water reactor), and the SGHWR (steam generating heavy water reactor). The object was to help in the future choice of a thermal system for the UK to cover the next 25 years. The matter of export potential is also considered. A programme of four stations of 1100 to 1300 MW each over six years starting from 1979 was assumed. It is emphasised that a decision must be taken now both about reactor systems and actual orders. Headings are as follows: Extract from conclusions reached; Summary of main features of assessment; General conclusions regarding the following - safety, security of the investment, operational characteristics, development and launching requirements, effect on industry, and capital and generation costs. It is stated that in order to make an overall judgement on reactor choice the technical, commercial and social issues involved must be weighed in conjunction with cost differentials.

  8. Theoretical prediction of thermal conductivity for thermal protection systems

    International Nuclear Information System (INIS)

    Gori, F.; Corasaniti, S.; Worek, W.M.; Minkowycz, W.J.

    2012-01-01

    The present work is aimed to evaluate the effective thermal conductivity of an ablative composite material in the state of virgin material and in three paths of degradation. The composite material is undergoing ablation with formation of void pores or char and void pores. The one dimensional effective thermal conductivity is evaluated theoretically by the solution of heat conduction under two assumptions, i.e. parallel isotherms and parallel heat fluxes. The paper presents the theoretical model applied to an elementary cubic cell of the composite material which is made of two crossed fibres and a matrix. A numerical simulation is carried out to compare the numerical results with the theoretical ones for different values of the filler volume fraction. - Highlights: ► Theoretical models of the thermal conductivity of an ablative composite. ► Composite material is made of two crossed fibres and a matrix. ► Three mechanisms of degradation are investigated. ► One dimensional thermal conductivity is evaluated by the heat conduction equation. ► Numerical simulations to be compared with the theoretical models.

  9. Design of Thermal Systems Using Topology Optimization

    DEFF Research Database (Denmark)

    Haertel, Jan Hendrik Klaas

    printeddry-cooled power plant condensers using a simpliffed thermouid topology optimizationmodel is presented in another study. A benchmarking of the optimized geometriesagainst a conventional heat exchanger design is conducted and the topologyoptimized designs show a superior performance. A thermouid......The goalof this thesis is to apply topology optimization to the design of differentthermal systems such as heat sinks and heat exchangers in order to improve thethermal performance of these systems compared to conventional designs. Thedesign of thermal systems is a complex task that has...... of optimized designs are presentedwithin this thesis.  The maincontribution of the thesis is the development of several numerical optimizationmodels that are applied to different design challenges within thermalengineering.  Topology optimization isapplied in an industrial project to design the heat rejection...

  10. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  11. Seebeck effect on a weak link between Fermi and non-Fermi liquids

    Science.gov (United States)

    Nguyen, T. K. T.; Kiselev, M. N.

    2018-02-01

    We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.

  12. Topology of Fermi surfaces and anomaly inflows

    Energy Technology Data Exchange (ETDEWEB)

    Adem, Alejandro; Camarena, Omar Antolín [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada); Semenoff, Gordon W. [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, V6T 1Z1 (Canada); Sheinbaum, Daniel [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada)

    2016-11-14

    We derive a rigorous classification of topologically stable Fermi surfaces of non-interacting, discrete translation-invariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems on an infinite crystal it is shown that there can only be topologically unstable Fermi surfaces. For systems on a half-space and with a gapped bulk, our derivation naturally yields a K-theory classification. Given the d−1-dimensional surface Brillouin zone X{sub s} of a d-dimensional half-space, our result implies that different classes of globally stable Fermi surfaces belong in K{sup −1}(X{sub s}) for systems with only discrete translation-invariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for d=2. Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.

  13. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  14. 3D Multifunctional Ablative Thermal Protection System

    Science.gov (United States)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  15. Proliferation resistance assessment of thermal recycle systems

    International Nuclear Information System (INIS)

    1979-02-01

    This paper examines the major proliferation aspects of thermal recycle systems and the extent to which technical or institutional measures could increase the difficulty or detectability of misuse of the system by would-be proliferators. It does this by examining the various activities necessary to acquire weapons-usable material using a series of assessment factors; resources required, time required, detectability. It is concluded that resistance to proliferation could be improved substantially by collecting reprocessing, conversion and fuel fabrication plants under multi national control and instituting new measures to protect fresh MOX fuel. Resistance to theft at sub-national level could be improved by co-location of sensitive facilities high levels of physical protection at plants and during transportation and possibly by adding a radiation barrier to MOX prior to shipment

  16. Atomic Fermi-Bose mixtures in inhomogeneous and random lattices: From Fermi glass to quantum spin glass and quantum percolation

    International Nuclear Information System (INIS)

    Sanpera, A.; Lewenstein, M.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.

    2004-01-01

    We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices

  17. 21 CFR 870.5900 - Thermal regulating system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. A thermal regulating system is an external system consisting of a device that is placed in contact with the patient and a temperature controller for the device. The system is used... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thermal regulating system. 870.5900 Section 870...

  18. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  19. A tribute to Enrico Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Kubbinga, H. [Groningen Univ. (Netherlands)

    2009-07-01

    This article is a short biography of Enrico Fermi 'The Pope of physics'. His main contributions in theoretical physics have paved the way to quantum electrodynamics and the quantization of the fields. Fermi got also great achievements on beta decay process and on nuclear reactions brought about by slow neutrons. Fermi was awarded the Nobel prize of physics in 1938

  20. Theory of two-dimensional fermi liquids: Pt. 3

    International Nuclear Information System (INIS)

    Cui Shimin; Cai Jianhua

    1990-01-01

    The transport properties and sound propagation of 2-D Fermi liquids are discussed. Microscopic expressions for the coefficients of diffusion, viscosity and thermal conductivity are derived using Resibois method. Velocities of the zeroth and first sounds are calculated. Based on an analysis of collision integral, it is shown that a series of relaxtion time parameters is necessary to define precisely the sound propagation properties in 2-D Fermi liquids in contrast to the 3-D case

  1. Thermal Signature Identification System (TheSIS)

    Science.gov (United States)

    Merritt, Scott; Bean, Brian

    2015-01-01

    We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.

  2. First results from the commissioning of the FERMI@Elettra free electron laser by means of the Photon Analysis Delivery and Reduction System (PADReS)

    Science.gov (United States)

    Zangrando, M.; Cudin, I.; Fava, C.; Gerusina, S.; Gobessi, R.; Godnig, R.; Rumiz, L.; Svetina, C.; Parmigiani, F.; Cocco, D.

    2011-06-01

    The Italian Free Electron Laser (FEL) facility FERMI@Elettra has started to produce photon radiation at the end of 2010. The photon beam is presently delivered by the first undulator chain (FEL1) that is supposed to produce photons in the 100-20 nm wavelength range. A second undulator chain (FEL2) will be commissioned at the end of 2011, and it will produce radiation in the 20-4nm range. The Photon Analysis Delivery and Reduction System (PADReS) was designed to collect the radiation coming from both the undulator chains (FEL1 and FEL2), to characterize and control it, and to redirect it towards the following beamlines. The first parameters that are checked are the pulse-resolved intensity and beam position. For each of these parameters two dedicated monitors are installed along PADReS on each FEL line. In this way it possible to determine the intensity reduction that is realized by the gas reduction system, which is capable of cutting the intensity by up to four orders of magnitude. The energy distribution of each single pulse is characterized by an online spectrometer installed in the experimental hall. Taking advantage of a variable line-spacing grating it can direct the almost-full beam to the beamlines, while it uses a small fraction of the beam itself to determine the spectral distribution of each pulse delivered by the FEL. The first light of FERMI@Elettra, delivered to the PADReS section in late 2010, is used for the first commissioning runs and some preliminary experiments whose results are reported and discussed in detail.

  3. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova

    2016-02-01

    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  4. Power and Thermal Management of System-on-Chip

    DEFF Research Database (Denmark)

    Liu, Wei

    , are necessary at the chip design level. In this work, we investigate the power and thermal management of System-on- Chips (SoCs). Thermal analysis is performed in a SPICE simulation approach based on the electrical-thermal analogy. We investigate the impact of inter- connects on heat distribution...

  5. Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System

    Science.gov (United States)

    Ganguly, Sayantan

    2017-04-01

    Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.

  6. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  7. Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system

    International Nuclear Information System (INIS)

    Hsu, P C; Hust, G; Zhang, M X; Lorenz, T K; Reynolds, J G; Fried, L; Springer, H K; Maienschein, J L

    2014-01-01

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.

  8. System evaluation of improved thermal stability jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Binns, K.E.; Dieterle, G.L.; Williams, T. [Univ. of Dayton Research Institute, OH (United States)

    1995-05-01

    A single-pass, single-tube heat exchanger device called the Phoenix rig and a single-pass, dual-heat exchanger system called the Extended Duration Thermal Stability Test system are specific devices/systems developed for evaluating jet fuel thermal stability. They have been used extensively in the evaluation of various jet fuels and thermal stability additives. The test results have indicated that additives can substantially improve the thermal stability of conventional jet fuels. Relationships of oxygen consumption, residence time, bulk, and wetted wall temperatures on coking deposits that form in the heated tubes have also been investigated.

  9. The Fermi GBM catalog (Paciesas+, 2012) [Dataset

    NARCIS (Netherlands)

    Paciesas, W.S.; Meegan, C.A.; von Kienlin, A.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burgess, J.M.; Chaplin, V.; Connaughton, V.; Diehl, R.; Fishman, G.J.; Fitzpatrick, G.; Foley, S.; H. Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Guiriec, S.; van der Horst, A.J.; Kippen, R.M.; Kouveliotou, C.; Lichti, G.; Lin, L.; McBreen, S.; Preece, R.D.; Rau, A.; Tierney, D.; Wilson-Hodge, C.

    2012-01-01

    The Fermi Gamma-ray Space Telescope was launched on 2008 June 11 on a mission to study the universe at high energies. The onboard Gamma-ray Burst Monitor (GBM) trigger system for detecting GRBs was first enabled on 2008 July 12. In this paper, we provide a catalog of GRBs that triggered the GBM

  10. Thermalization and prethermalization in isolated quantum systems: a theoretical overview

    Science.gov (United States)

    Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito

    2018-06-01

    The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.

  11. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling

    Science.gov (United States)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  12. Antibacterial characteristics of thermal plasma spray system.

    Science.gov (United States)

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an

  13. Economic feasibility of thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Habeebullah, B.A. [Faculty of Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2007-07-01

    This paper investigates the economic feasibility of both building an ice thermal storage and structure a time of rate tariff for the unique air conditioning (A/C) plant of the Grand Holy Mosque of Makkah, Saudi Arabia. The features of the building are unique where the air-conditioned 39,300 m{sup 2} zone is open to the atmosphere and the worshippers fully occupy the building five times a day, in addition hundreds of thousands of worshippers attend the blessed weekend's prayer at noontime, which escalates the peak electricity load. For economic analysis, the objective function is the daily electricity bill that includes the operation cost and the capital investment of the ice storage system. The operation cost is function of the energy imported for operating the plant in which the tariff structure, number of operating hours and the ambient temperature are parameters. The capital recovery factor is calculated for 10% interest rate and payback period of 10 years. Full and partial load storage scenarios are considered. The results showed that with the current fixed electricity rate (0.07 $/kWh), there is no gain in introducing ice storage systems for both storage schemes. Combining energy storage and an incentive time structured rate showed reasonable daily bill savings. For base tariff of 0.07 $/kWh during daytime operation and 0.016 $/kWh for off-peak period, savings were achieved for full load storage scenario. Different tariff structure is discussed and the break-even nighttime rate was determined (varies between 0.008 and 0.03 $/kWh). Partial load storage scenario showed to be unattractive where the savings for the base structured tariff was insignificant. (author)

  14. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  15. Thermal performance of marketed SDHW systems under laboratory conditions

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Fan, Jianhua

    A test facility for solar domestic hot water systems, SDHW systems was established at the Technical University of Denmark in 1992. During the period 1992-2012 21 marketed SDHW systems, 16 systems from Danish manufacturers and 5 systems from manufacturers from abroad, have been tested in the test...... comfort, avoiding simple errors, using the low flow principle and heat stores with a high degree of thermal stratification and by using components with good thermal characteristics....

  16. Use of the Long Duration Exposure Facility's thermal measurement system for the verification of thermal models

    Science.gov (United States)

    Berrios, William M.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) postflight thermal model predicted temperatures were matched to flight temperature data recorded by the Thermal Measurement System (THERM), LDEF experiment P0003. Flight temperatures, recorded at intervals of approximately 112 minutes for the first 390 days of LDEF's 2105 day mission were compared with predictions using the thermal mathematical model (TMM). This model was unverified prior to flight. The postflight analysis has reduced the thermal model uncertainty at the temperature sensor locations from +/- 40 F to +/- 18 F. The improved temperature predictions will be used by the LDEF's principal investigators to calculate improved flight temperatures experienced by 57 experiments located on 86 trays of the facility.

  17. Effects of impurity and Bose-Fermi interactions on the transition temperature of a dilute dipolar Bose-Einstein condensation in trapped Bose-Fermi mixtures

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.

    2014-03-01

    The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).

  18. Small systems of Duffing oscillators and the Fermi-Pasta-Ulam-Tsingou system An examination of the possible reasons for the unusual stability of localized nonlinear excitations in these systems

    Science.gov (United States)

    Kashyap, Rahul; Westley, Alexandra; Sen, Surajit

    The Duffing oscillator, a nonlinear oscillator with a potential energy with both quadratic and cubic terms, is known to show highly chaotic solutions in certain regions of its parameter space. Here, we examine the behaviors of small chains of harmonically and anharmonically coupled Duffing oscillators and show that these chains exhibit localized nonlinear excitations (LNEs) similar to the ones seen in the Fermi-Pasta-Ulam-Tsingou (FPUT) system. These LNEs demonstrate properties such as long-time energy localization, high periodicity, and slow energy leaking which rapidly accelerates upon frequency matching with the adjacent particles all of which have been observed in the FPUT system. Furthermore, by examining bifurcation diagrams, we will show that many qualitative properties of this system during the transition from weakly to strongly nonlinear behavior depend directly upon the frequencies associated with the individual Duffing oscillators.

  19. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  20. Real-time thermal neutron radiographic detection systems

    International Nuclear Information System (INIS)

    Berger, H.; Bracher, D.A.

    1976-01-01

    Systems for real-time detection of thermal neutron images are reviewed. Characteristics of one system are presented; the data include contrast, resolution and speed of response over the thermal neutron intensity range 2.5 10 3 n/cm 2 -sec to 10 7 n/cm 2 -sec

  1. The role of Solar thermal in Future Energy Systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth

    This report deals with solar thermal technologies and investigates possible roles for solar thermal in future energy systems for four national energy systems; Germany, Austria, Italy and Denmark. The project period started in January 2014 and finished by October 2017. This report is based...

  2. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    KAUST Repository

    Yukawa, Satoshi; Ogushi, Fumiko; Shimada, Takashi; Ito, Nobuyasu

    2010-01-01

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.

  3. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  4. Passive thermal management system for downhole electronics in harsh thermal environments

    International Nuclear Information System (INIS)

    Shang, Bofeng; Ma, Yupu; Hu, Run; Yuan, Chao; Hu, Jinyan; Luo, Xiaobing

    2017-01-01

    Highlights: • A passive thermal management system is proposed for downhole electronics. • Electronics temperature can be maintained within 125 °C for six-hour operating time. • The result shows potential application for the logging tool in oil and gas industry. - Abstract: The performance and reliability of downhole electronics will degrade in high temperature environments. Various active cooling techniques have been proposed for thermal management of such systems. However, these techniques require additional power input, cooling liquids and other moving components which complicate the system. This study presents a passive Thermal Management System (TMS) for downhole electronics. The TMS includes a vacuum flask, Phase Change Material (PCM) and heat pipes. The thermal characteristics of the TMS is evaluated experimentally. The results show that the system maintains equipment temperatures below 125 °C for a six-hour operating period in a 200 °C downhole environment, which will effectively protect the downhole electronics.

  5. Numerical modeling of aquifer thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongchan [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of); Lee, Youngmin [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Yoon, Woon Sang; Jeon, Jae Soo [nexGeo Inc., 134-1 Garak 2-dong, Songpa-gu, Seoul 138-807 (Korea, Republic of); Koo, Min-Ho; Keehm, Youngseuk [Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of)

    2010-12-15

    The performance of the ATES (aquifer thermal energy storage) system primarily depends on the thermal interference between warm and cold thermal energy stored in an aquifer. Additionally the thermal interference is mainly affected by the borehole distance, the hydraulic conductivity, and the pumping/injection rate. Thermo-hydraulic modeling was performed to identify the thermal interference by three parameters and to estimate the system performance change by the thermal interference. Modeling results indicate that the thermal interference grows as the borehole distance decreases, as the hydraulic conductivity increases, and as the pumping/injection rate increases. The system performance analysis indicates that if {eta} (the ratio of the length of the thermal front to the distance between two boreholes) is lower than unity, the system performance is not significantly affected, but if {eta} is equal to unity, the system performance falls up to {proportional_to}22%. Long term modeling for a factory in Anseong was conducted to test the applicability of the ATES system. When the pumping/injection rate is 100 m{sup 3}/day, system performances during the summer and winter after 3 years of operation are estimated to be {proportional_to}125 kW and {proportional_to}110 kW, respectively. Therefore, 100 m{sup 3}/day of the pumping/injection rate satisfies the energy requirements ({proportional_to}70 kW) for the factory. (author)

  6. Small Spacecraft Integrated Power System with Active Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop an integrated power generation and energy storage system with an active thermal management system. Carbon fiber solar panels will contain...

  7. DISCOVERY OF HIGH-ENERGY GAMMA-RAY EMISSION FROM THE BINARY SYSTEM PSR B1259-63/LS 2883 AROUND PERIASTRON WITH FERMI

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bonamente, E.; Brigida, M.; Bruel, P.; Caliandro, G. A.

    2011-01-01

    We report on the discovery of ≥100 MeV γ-rays from the binary system PSR B1259-63/LS 2883 using the Large Area Telescope (LAT) on board Fermi. The system comprises a radio pulsar in orbit around a Be star. We report on LAT observations from near apastron to ∼128 days after the time of periastron, t p , on 2010 December 15. No γ-ray emission was detected from this source when it was far from periastron. Faint γ-ray emission appeared as the pulsar approached periastron. At ∼t p + 30 days, the ≥100 MeV γ-ray flux increased over a period of a few days to a peak flux 20-30 times that seen during the pre-periastron period, but with a softer spectrum. For the following month, it was seen to be variable on daily timescales, but remained at ∼(1-4) x 10 -6 cm -2 s -1 before starting to fade at ∼t p + 57 days. The total γ-ray luminosity observed during this period is comparable to the spin-down power of the pulsar. Simultaneous radio and X-ray observations of the source showed no corresponding dramatic changes in radio and X-ray flux between the pre-periastron and post-periastron flares. We discuss possible explanations for the observed γ-ray-only flaring of the source.

  8. Implication of nonintegral occupation number and Fermi-Dirac statistics in the local-spin-density approximation applied to finite systems

    International Nuclear Information System (INIS)

    Dhar, S.

    1989-01-01

    In electronic-structure calculations for finite systems using the local-spin-density (LSD) approximation, it is assumed that the eigenvalues of the Kohn-Sham equation should obey Fermi-Dirac (FD) statistics. In order to comply with this assumption for some of the transition-metal atoms, a nonintegral occupation number is used which also minimizes the total energy. It is shown here that for finite systems it is not necessary that the eigenvalues of the Kohn-Sham equation obey FD statistics. It is also shown that the Kohn-Sham exchange potential used in all LSD models is correct only for integer occupation number. With a noninteger occupation number the LSD exchange potential will be smaller than that given by the Kohn-Sham potential. Ab initio self-consistent spin-polarized calculations have been performed numerically for the total energy of an iron atom. It is found that the ground state belongs to the 3d 6 4s 2 configuration. The ionization potentials of all the Fe/sup n/ + ions are reported and are in agreement with experiment

  9. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  10. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  11. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  12. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  13. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  14. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  15. Experimental investigation of thermal storage integrated micro trigeneration system

    International Nuclear Information System (INIS)

    Johar, Dheeraj Kishor; Sharma, Dilip; Soni, Shyam Lal; Goyal, Rahul; Gupta, Pradeep K.

    2017-01-01

    Highlights: • Energy Storage System is integrated with Micro trigeneration system. • Erythritol is used as Phase Change Material. • Maximum energy saved is 15.30%. • Combined systems are feasible to increase energy efficiency. - Abstract: In this study a 4.4 kW stationary compression ignition engine is coupled with a double pipe heat exchanger, vapour absorption refrigeration system and thermal energy storage system to achieve Trigeneration i.e. power, heating and cooling. A shell and tube type heat exchanger filled with erythritol is used to store thermal energy of engine exhaust. Various combinations of thermal energy storage system integrated micro-trigeneration were investigated and results related to performance and emissions are reported in this paper. The test results show that micro capacity (4.4 kW) stationary single cylinder diesel engine can be successfully modified to simultaneously produce power, heating and cooling and also store thermal energy.

  16. Proposed Casey's Pond Improvement Project, Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), evaluating the impacts associated with the proposed Casey's Pond Improvement Project at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The improvement project would maximize the efficiency of the Fermilab Industrial Cooling Water (ICW) distribution system, which removes (via evaporation) the thermal load from experimental and other support equipment supporting the high energy physics program at Fermilab. The project would eliminate the risk of overheating during fixed target experiments, ensure that the Illinois Water Quality Standards are consistently achieved and provide needed additional water storage for fire protection. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required

  17. FERMI multi-chip module

    CERN Multimedia

    This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.

  18. Enrico Fermi and uranium fission

    International Nuclear Information System (INIS)

    Hahn, O.

    1962-01-01

    The author describes the part of his scientific work connected to the research made by Enrico Fermi in the field of nuclear reactions. He said that 'Our gratitude to Fermi today is therefore due less perhaps for his reactor than for his experiments using uncharged neutrons in order to bring about artificial nuclear processes'

  19. Route to thermalization in the α-Fermi–Pasta–Ulam system

    Science.gov (United States)

    Onorato, Miguel; Vozella, Lara; Lvov, Yuri V.

    2015-01-01

    We study the original α-Fermi–Pasta–Ulam (FPU) system with N = 16, 32, and 64 masses connected by a nonlinear quadratic spring. Our approach is based on resonant wave–wave interaction theory; i.e., we assume that, in the weakly nonlinear regime (the one in which Fermi was originally interested), the large time dynamics is ruled by exact resonances. After a detailed analysis of the α-FPU equation of motion, we find that the first nontrivial resonances correspond to six-wave interactions. Those are precisely the interactions responsible for the thermalization of the energy in the spectrum. We predict that, for small-amplitude random waves, the timescale of such interactions is extremely large and it is of the order of 1/ϵ8, where ϵ is the small parameter in the system. The wave–wave interaction theory is not based on any threshold: Equipartition is predicted for arbitrary small nonlinearity. Our results are supported by extensive numerical simulations. A key role in our finding is played by the Umklapp (flip-over) resonant interactions, typical of discrete systems. The thermodynamic limit is also briefly discussed. PMID:25805822

  20. Dynamic thermal performance of alveolar brick construction system

    International Nuclear Information System (INIS)

    Gracia, A. de; Castell, A.; Medrano, M.; Cabeza, L.F.

    2011-01-01

    Highlights: → Even though U-value does not measure thermal inertia, it is the commonly used parameter. → The thermal performance analysis of buildings must include the evaluation of transient parameters. → Transient parameters of alveolar brick constructive system show good agreement with its low energy consumption. -- Abstract: Alveolar bricks are being introduced in building sector due to the simplicity of their construction system and to the elimination of the insulation material. Nevertheless, it is not clear if this new system is energetically efficient and which is its thermal behaviour. This paper presents an experimental and theoretical study to evaluate the thermal behaviour of the alveolar brick construction system, compared with a traditional Mediterranean brick system with insulation. The experimental study consists of measuring the thermal performance of four real house-like cubicles. The thermal transmittance in steady-state, also known as U-value, is calculated theoretically and experimentally for each cubicle, presenting the insulated cubicles as the best construction system, with differences around 45% in comparison to the alveolar one. On the other hand, experimental results show significantly smaller differences on the energy consumption between the alveolar and insulated construction systems during summer period (around 13% higher for the alveolar cubicle). These values demonstrate the high thermal efficiency of the alveolar system. In addition, the lack of agreement between the measured energy consumption and the calculated U-values, guides the authors to analyze the thermal inertia of the different building components. Therefore, several transient parameters, extracted from the heat transfer matrix and from experimental data, are also evaluated. It can be concluded that the alveolar brick construction system presents higher thermal inertia than the insulated one, justifying the low measured energy consumption.

  1. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  2. Thermal and hydraulic analyses of the System 81 cold traps

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.

    1977-06-15

    Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.

  3. Boson spectra and correlations for thermal locally equilibrium systems

    International Nuclear Information System (INIS)

    Sinyukov, Y.M.

    1999-01-01

    The single- and multi-particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for a boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wavelengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeably grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough. (author)

  4. Displacements of Metallic Thermal Protection System Panels During Reentry

    Science.gov (United States)

    Daryabeigi, Kamran; Blosser, Max L.; Wurster, Kathryn E.

    2006-01-01

    Bowing of metallic thermal protection systems for reentry of a previously proposed single-stage-to-orbit reusable launch vehicle was studied. The outer layer of current metallic thermal protection system concepts typically consists of a honeycomb panel made of a high temperature nickel alloy. During portions of reentry when the thermal protection system is exposed to rapidly varying heating rates, a significant temperature gradient develops across the honeycomb panel thickness, resulting in bowing of the honeycomb panel. The deformations of the honeycomb panel increase the roughness of the outer mold line of the vehicle, which could possibly result in premature boundary layer transition, resulting in significantly higher downstream heating rates. The aerothermal loads and parameters for three locations on the centerline of the windward side of this vehicle were calculated using an engineering code. The transient temperature distributions through a metallic thermal protection system were obtained using 1-D finite volume thermal analysis, and the resulting displacements of the thermal protection system were calculated. The maximum deflection of the thermal protection system throughout the reentry trajectory was 6.4 mm. The maximum ratio of deflection to boundary layer thickness was 0.032. Based on previously developed distributed roughness correlations, it was concluded that these defections will not result in tripping the hypersonic boundary layer.

  5. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2013-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Based on above knowledge, improved methods for the JSME guideline and Numerical simulation methods for thermal fatigue evaluation were studied. Furthermore, probabilistic failure analysis approach with main influence parameters were investigated to be applied for the plant system safety. (author)

  6. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    Science.gov (United States)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  7. The art of software thermal management for embedded systems

    CERN Document Server

    Benson, Mark

    2014-01-01

    This book introduces Software Thermal Management (STM) as a means of reducing power consumption in a computing system, in order to manage heat, improve component reliability, and increase system safety.  Readers will benefit from this pragmatic guide to the field of STM for embedded systems and its catalog of software power management techniques.  Since thermal management is a key bottleneck in embedded systems design, this book focuses on power as the root cause of heat. Since software has an enormous impact on power consumption in an embedded system, this book guides readers to manage heat effectively by understanding, categorizing, and developing new ways to reduce dynamic power. Whereas most books on thermal management describe mechanisms to remove heat, this book focuses on ways to avoid generating heat in the first place.   • Explains fundamentals of software thermal management, application techniques and advanced optimization strategies; • Describes a novel method for managing dynamic power, e...

  8. Enrico Fermi Symposium at CERN : opening celebration

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani - Welcome and Introduction Antonino Zichichi - The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi - Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger - Fermi in Chicago Valentin Telegdi - A Close-up of Fermi Arnaldo Stefanini - Celebrating Fermi's Centenary in Documents and Pictures and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (English version - c. 30 mins).

  9. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system

    International Nuclear Information System (INIS)

    Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Sohn, Dong Kee; Yeo, Taejung

    2016-01-01

    Highlights: • Three-dimensional electrochemical thermal model of Li-ion battery pack using computational fluid dynamics (CFD). • Novel pack design for compact liquid cooling based thermal management system. • Simple temperature estimation algorithm for the cells in the pack using the results from the model. • Sensitivity of the thermal performance to contact resistance has been investigated. - Abstract: Thermal management system is of critical importance for a Li-ion battery pack, as high performance and long battery pack life can be simultaneously achieved when operated within a narrow range of temperature around the room temperature. An efficient thermal management system is required to keep the battery temperature in this range, despite widely varying operating conditions. A novel liquid coolant based thermal management system, for 18,650 battery pack has been introduced herein. This system is designed to be compact and economical without compromising safety. A coupled three-dimensional (3D) electrochemical thermal model is constructed for the proposed Li-ion battery pack. The model is used to evaluate the effects of different operating conditions like coolant flow-rate and discharge current on the pack temperature. Contact resistance is found to have the strongest impact on the thermal performance of the pack. From the numerical solution, a simple and novel temperature correlation of predicting the temperatures of all the individual cells given the temperature measurement of one cell is devised and validated with experimental results. Such coefficients have great potential of reducing the sensor requirement and complexity in a large Li-ion battery pack, typical of an electric vehicle.

  10. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  11. Fermi arc mediated entropy transport in topological semimetals

    Science.gov (United States)

    McCormick, Timothy M.; Watzman, Sarah J.; Heremans, Joseph P.; Trivedi, Nandini

    2018-05-01

    The low-energy excitations of topological Weyl semimetals are composed of linearly dispersing Weyl fermions that act as monopoles of Berry curvature in the bulk momentum space. Furthermore, on the surface there exist topologically protected Fermi arcs at the projections of these Weyl points. We propose a pathway for entropy transport involving Fermi arcs on one surface connecting to Fermi arcs on the other surface via the bulk Weyl monopoles. We present results for the temperature and magnetic field dependence of the magnetothermal conductance of this conveyor belt channel. The circulating currents result in a net entropy transport without any net charge transport. We provide results for the Fermi arc mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultraquantum limit, where only chiral Landau levels are involved. Our work provides a proposed signature of Fermi arc mediated magnetothermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in thermal applications.

  12. Fermi, Heisenberg y Lawrence

    Directory of Open Access Journals (Sweden)

    Ynduráin, Francisco J.

    2002-01-01

    Full Text Available Not available

    Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.

  13. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  14. DoubleFace: Adjustable translucent system to improve thermal comfort

    Directory of Open Access Journals (Sweden)

    Michela Turrin

    2014-11-01

    Full Text Available The DoubleFace project aims at developing a new product that passively improves thermal comfort of indoor and semi-indoor spaces by means of lightweight materials for latent heat storage, while simultaneously allowing daylight to pass through as much as possible. Specifically, the project aims at designing and prototyping an adjustable translucent modular system featuring thermal insulation and thermal absorption in a calibrated manner, which is adjustable according to different heat loads during summer- and wintertime. The output consists of a proof of concept, a series of performance simulations and measurement and a prototype of an adjustable thermal mass system based on lightweight and translucent materials: phase-changing materials (PCM for latent heat storage and translucent aerogel particles for thermal insulation.

  15. Thermal fatigue evaluation of piping system Tee-connections

    International Nuclear Information System (INIS)

    Metzner, K.J.; Braillard, O.; Faidy, C.; Marcelles, I.; Solin, J.; Stumpfrock, L.

    2004-01-01

    Thermal fatigue is one significant long-term degradation mechanism nuclear power plants (NPP), in particular, as operating plants become older and life time extension activities have been initiated. In general, the common thermal fatigue issues are understood and controlled by plant instrumentation systems. However, incidents in some plants indicate that certain piping system Tees are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentation. The THERFAT project has been initiated to advance the accuracy and reliability of thermal fatigue load determination in engineering tools and research oriented approaches to outline a science based practical methodology for managing thermal fatigue risks in Tee-connections susceptible to high cyclic thermal fatigue. (orig.)

  16. Systems with Many Degrees of Freedom: from Mean - Theories of Non-Fermi Liquid Behavior in Impurity Models to Implied Binomial Trees for Modeling Financial Markets

    Science.gov (United States)

    Barle, Stanko

    In this dissertation, two dynamical systems with many degrees of freedom are analyzed. One is the system of highly correlated electrons in the two-impurity Kondo problem. The other deals with building a realistic model of diffusion underlying financial markets. The simplest mean-field theory capable of mimicking the non-Fermi liquid behavior of the critical point in the two-impurity Kondo problem is presented. In this approach Landau's adiabaticity assumption--of a one-to-one correspondence between the low-energy excitations of the interacting and noninteracting systems--is violated through the presence of decoupled local degrees of freedom. These do not couple directly to external fields but appear indirectly in the physical properties leading, for example, to the log(T, omega) behavior of the staggered magnetic susceptibility. Also, as observed previously, the correlation function = -1/4 is a consequence of the equal weights of the singlet and triplet impurity configurations at the critical point. In the second problem, a numerical model is developed to describe the diffusion of prices in the market. Implied binomial (or multinomial) trees are constructed to enable practical pricing of derivative securities in consistency with the existing market. The method developed here is capable of accounting for both the strike price and term structure of the implied volatility. It includes the correct treatment of interest rate and dividends which proves robust even if these quantities are unusually large. The method is explained both as a set of individual innovations and, from a different prospective, as a consequence of a single plausible transformation from the tree of spot prices to the tree of futures prices.

  17. Thermal management, systems and modules; Thermomanagement, Systeme und Module

    Energy Technology Data Exchange (ETDEWEB)

    Flik, M. [Behr GmbH und Co., Stuttgart (Germany)

    1999-11-01

    Up till now the individual systems for engine temperature control and air conditioning of the vehicle cabin have to a large extent been viewed independently of one another. With the progress of electronic control systems, however, Behr has adopted an integrative approach to managing all heat and substance flows outside of the engine. This perspective, which is known as thermal management, has significantly boosted the rate of innovation. In a short period of time, new and optimized modules and systems have allowed considerable improvements to be made in relation to passenger comfort and safety, the integration of subsystems and modules into the vehicle and environmental compatibility. This innovation drive, which also extends to the design of major modules, will continue to gain impetus in the future. (orig.) [German] Bisher wurden die verschiedenen Systeme zur Temperierung des Motors und zur Klimatisierung der Fahrzeugkabine weitgehend unabhaengig voneinander betrachtet. Mit dem Vordringen der elektronischen Regelung hat bei Behr jedoch eine gesamtheitliche Betrachtung aller Waerme- und Stoffstroeme ausserhalb des Motors eingesetzt. Diese Sichtweise, Thermomanagement genannt, hat eine erhebliche Innovationsdynamik ermoeglicht. Mit neuen und optimierten Modulen und Systemen konnten in kurzer Zeit betraechtliche Verbesserungen erzielt werden - bei Komfort und Sicherheit der Fahrzeuginsassen, bei der Integration der Subsysteme und Module ins Fahrzeug sowie bei seiner oekologischen Vertraeglichkeit. Diese Innovationsdynamik, die auch die Bildung von Grossmodulen einschliesst, wird in Zukunft noch zunehmen. (orig.)

  18. Kinetic Integrated Thermal Protection System (KnITPS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Use the flexibility and shape formation possibilities inherent in knitting to form thermal protection systems that can be custom fitted to a heat shield carrier...

  19. NDE for Ablative Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for non-destructive evaluation (NDE) methods for quality assessment and defect evaluation of thermal protection systems (TPS),...

  20. NDE for Ablative Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for non-destructive evaluation (NDE) methods for quality assessment and defect evaluation of thermal protection systems (TPS). Novel...

  1. Thermal Protection System Materials (TPSM): 3D MAT

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D MAT Project seeks to design and develop a game changing Woven Thermal Protection System (TPS) technology tailored to meet the needs of the Orion Multi-Purpose...

  2. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  3. FermiGrid—experience and future plans

    Science.gov (United States)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.

    2008-07-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.

  4. FermiGrid - experience and future plans

    International Nuclear Information System (INIS)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.

    2007-01-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems

  5. FermiGrid-experience and future plans

    International Nuclear Information System (INIS)

    Chadwick, K; Berman, E; Canal, P; Hesselroth, T; Garzoglio, G; Levshina, T; Sergeev, V; Sfiligoi, I; Sharma, N; Timm, S; Yocum, D R

    2008-01-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems

  6. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  7. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  8. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  9. Battery management systems with thermally integrated fire suppression

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2017-07-11

    A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.

  10. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  11. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  12. Evolution of the Fermi surface of the strongly correlated f electron system under hydrostatic and uniaxial pressures

    CERN Document Server

    Aoki, H; Endo, M; Nakayama, M; Takei, H; Kimura, N; Kunii, S; Terashima, T; Uji, S; Matsumoto, T

    2002-01-01

    We report our recent developments of experimental systems for measuring the de Haas-van Alphen (dHvA) effect under hydrostatic and uniaxial pressures. The dHvA effect of CeB sub 6 has been studied under both hydrostatic and uniaxial pressures and the effects of the pressures on the electronic structure are discussed.

  13. Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2014-06-01

    Full Text Available In order to ensure integrity of thermal protection system (TPS structure for hypersonic vehicles exposed to severe operating environments, a study is undertaken to investigate the response and thermal-acoustic fatigue damage of a representative multilayer TPS structure under combined thermal and acoustic loads. An unsteady-state flight of a hypersonic vehicle is composed of a series of steady-state snapshots, and for each snapshot an acoustic load is imposed to a static steady-state TPS structure. A multistep thermal-acoustic fatigue damage intensity analysis procedure is given and consists of a heat transfer analysis, a nonlinear thermoelastic analysis, and a random response analysis under a combined loading environment and the fatigue damage intensity has been evaluated with two fatigue analysis techniques. The effects of thermally induced deterministic stress and nondeterministic dynamic stress due to the acoustic loading have been considered in the damage intensity estimation with a maximum stress fatigue model. The results show that the given thermal-acoustic fatigue intensity estimation procedure is a viable approach for life prediction of TPS structures under a typical mission cycle with combined loadings characterized by largely different time-scales. A discussion of the effects of the thermal load, the acoustic load, and fatigue analysis methodology on the fatigue damage intensity has been provided.

  14. Earth evolution as a thermal system

    Science.gov (United States)

    Tang, C.

    2014-12-01

    After fifty years of plate-tectonic theory, the reasons why earth sometime freezed as a snowball or sometime became lethally hot resulting in mass extinction remain enigmatic. This article proposes a new hypothesis on Earth evolution. The unbalance of heat between the input and output is considered as the driving force for the Earth evolution, the lithospheric expansion and associated uplift are the triggers, the self-organized progressive failure leading to collapse of the Earth are the amplifier, and the global scale response in terms of volcanism and magmatism is the globalizer. This shallow process of lithosphere may reach a critical state with a positive feedback loop, and result in the formation of no-plume original Large Igneous Provinces (NPOLIP) in a top-down pattern. Endothermic phase changes during de-compressive melting remove heat from and cool their surroundings, including the upper parts of the lithosphere. The huge loss of Earth's heat during eruption of LIPs, together with the endothermic cooling, may put the thermal cycle to an end and a new start of the cycle initiates. In summary, Earth drives itself to evolve in terms of thermal cycles. Global cooling and warming are the two stages of the many cycles during the Earth evolution. Glaciations are the extreme result of global cooling, whereas the LIPs, sometime accompanied with remarkable sea level dropping, are the extreme result of global warming, with a long recovering age, the interglacialstage, between them. They come and go as thermal cycle evolves, with climate warming, being caused by Earth itself rather than by external forces or human activities, as the most attractive prediction.

  15. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  16. Preliminary thermal sizing of intermediate heat exchanger for NHDD system

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung Deok; Kim, Yong Wan; Chang, Jongh Wa

    2009-01-01

    Nuclear Hydrogen Development and Demonstration (NHDD) system is a Very High Temperature gascooled Reactor (VHTR) coupled with hydrogen production systems. Intermediate heat exchanger transfers heat from the nuclear reactor to the hydrogen production system. This study presented the sensitivity analysis on a preliminary thermal sizing of the intermediate heat exchanger. Printed Circuit Heat Exchanger (PCHE) was selected for the thermal sizing because the printed circuit heat exchanger has the largest compactness among the heat exchanger types. The analysis was performed to estimate the effect of key parameters including the operating condition of the intermediate system, the geometrical factors of the PCHE, and the working fluid of the intermediate system.

  17. Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System

    International Nuclear Information System (INIS)

    Satow, D.

    2015-01-01

    It was suggested that supersymmetry (SUSY) is broken at finite temperature, and as a result of the symmetry breaking, a Nambu-Goldstone fermion (goldstino) related to SUSY breaking appears. Since dispersion relations of quarks and gluons are almost degenerate at extremely high temperature, quasi-zero energy quark excitation was suggested to exist in quark-gluon plasma (QGP), though QCD does not have exact SUSY. On the other hand, in condensed matter system, a setup of cold atom system in which the Hamiltonian has SUSY was proposed, the goldstino was suggested to exist, and the dispersion relation of that mode at zero temperature was obtained recently. In this presentation, we obtain the expressions for the dispersion relation of the goldstino in cold atom system at finite temperature, and compare it with the dispersion of the quasi zero-mode in QGP. Furthermore, we show that the form of the dispersion relation of the goldstino can be understood by using an analogy with a magnon in ferromagnet. We also discuss on how the dispersion relation of the goldstino is reflected in observable quantities in experiment. (author)

  18. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  19. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  20. The Statistical Fermi Paradox

    Science.gov (United States)

    Maccone, C.

    In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in

  1. Transient Thermal Analyses of Passive Systems on SCEPTOR X-57

    Science.gov (United States)

    Chin, Jeffrey C.; Schnulo, Sydney L.; Smith, Andrew D.

    2017-01-01

    As efficiency, emissions, and noise become increasingly prominent considerations in aircraft design, turning to an electric propulsion system is a desirable solution. Achieving the intended benefits of distributed electric propulsion (DEP) requires thermally demanding high power systems, presenting a different set of challenges compared to traditional aircraft propulsion. The embedded nature of these heat sources often preclude the use of traditional thermal management systems in order to maximize performance, with less opportunity to exhaust waste heat to the surrounding environment. This paper summarizes the thermal analyses of X-57 vehicle subsystems that don't employ externally air-cooled heat sinks. The high-power battery, wires, high-lift motors, and aircraft outer surface are subjected to heat loads with stringent thermal constraints. The temperature of these components are tracked transiently, since they never reach a steady-state equilibrium. Through analysis and testing, this report demonstrates that properly characterizing the material properties is key to accurately modeling peak temperature of these systems, with less concern for spatial thermal gradients. Experimentally validated results show the thermal profile of these systems can be sufficiently estimated using reduced order approximations.

  2. THERMAL PROTECTION AND THERMAL STABILIZATION OF FIBER-OPTICAL GYROSCOPE INCLUDED IN STRAPDOWN INERTIAL NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    D. S. Gromov

    2014-03-01

    Full Text Available It is known, that temperature perturbations and thermal modes have significant influence on the accuracy of a fiber-optical gyroscope. Nowadays, thermal perturbations are among the main problems in the field of navigation accuracy. Review of existing methods for decrease of temperature influences on the accuracy of a strapdown inertial navigation system with fiberoptical gyros showed, that the usage of constructive and compensation methods only is insufficient and, therefore, thermostabilization is required. Reversible thermostabilization system is offered, its main executive elements are thermoelectric modules (Peltier’s modules, heat transfer from which is provided by heatsinks at work surfaces of modules. This variant of thermostabilization maintenance is considered; Peltier’s modules and temperature sensors for the system are chosen. Parameters of heatsinks for heat transfer intensification are calculated. Fans for necessary air circulation in the device are chosen and thickness of thermal isolation is calculated. Calculations of thermal modes of navigation system with thermostabilization are made in modern software Autodesk Simulation CFD. Comparison of results for present and previous researches and calculations shows essential decrease in gradients of temperature on gyro surfaces and better uniformity of temperature field in the whole device. Conclusions about efficiency of the given method usage in view of accuracy improvement of navigation system are made. Thermostabilization provision of a strapdown inertial navigation system with fiberoptical gyros is proved. Thermostabilization application in combination with compensational methods can reach a necessary accuracy of navigation system.

  3. Integrated thermal treatment system sudy: Phase 2, Results

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  4. Integrated thermal treatment system sudy: Phase 2, Results

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr)

  5. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  6. Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems

    OpenAIRE

    Ryoo, NK; Kwon, J-W; Wee, WR; Miller, KM; Han, YK

    2013-01-01

    Abstract Background To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Methods Experiments were performed under in-...

  7. How to satisfy the energy-momentum conservation law and to take into account Fermi motion of constituents in simulation of compound system interactions

    International Nuclear Information System (INIS)

    Uzhinskij, V.V.; Shmakov, S.Yu.

    1988-01-01

    A method is suggested which enables one to take unto account the Fermi motion of nuclear nucleons in Monte-Carlo simulation of exclusive states in hadron-nucleus and nucleus-nucleus interactions and, in hadron-hadron interaction simulation, to take into account the quark transverse momentum without violation of the energy-momentum conservation law

  8. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  9. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs

  10. Microscopic description of pair transfer between two superfluid Fermi systems: Combining phase-space averaging and combinatorial techniques

    Science.gov (United States)

    Regnier, David; Lacroix, Denis; Scamps, Guillaume; Hashimoto, Yukio

    2018-03-01

    In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions) on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should at least average over different initial relative gauge-angles. In the present work, we propose a new approach to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking this approach in a schematic model, we apply it to the collision 20O+20O at various energies below the Coulomb barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced. The applicability of the PSC method to asymmetric nuclear collisions is investigated for the 14O+20O collision and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground for probing gauge-angle effects in nuclear reaction and/or for applying the proposed

  11. Fermi acceleration in non-autonomous billiards

    International Nuclear Information System (INIS)

    Gelfreich, V; Turaev, D

    2008-01-01

    Fermi acceleration can be modelled by a classical particle moving inside a time-dependent domain and elastically reflecting from its boundary. In this paper, we describe how the results from the dynamical system theory can be used to explain the existence of trajectories with unbounded energy. In particular, we show for slowly oscillating boundaries that the energy of the particle may increase exponentially fast in time. (fast track communication)

  12. Thermal energy storage and utilization system

    International Nuclear Information System (INIS)

    1976-01-01

    The power output from a nuclear power plant or fossil fuel power plant operating under constant reactor (or furnace) and boiler conditions is varied by regulating the rate of turbine extraction steam and primary high pressure steam used to heat boiler feed water (BFW). During periods of low power demand, excess extraction steam is drawn off to heat excess quantities of boiler feed water. Such boiler feed water can be heated to the maximum extent possible and used to reheat interstage steam before being sent at slightly reduced temperature to the boilers. In this way, maximum use can be made of the thermal energy stored in the low vapor pressure organic material. Alternatively, or simultaneously, the stored hot LVP organic material can be used to raise intermediate pressure steam and this steam can be injected into the steam turbines between appropriate stages or into auxiliary turbines used solely for this purpose

  13. Thermal Gradient Data Acquisition System Documentation

    National Research Council Canada - National Science Library

    Walker, Larry D; Robinson, Scott B; Leon, Lisa

    2004-01-01

    ... that can be recorded in mice. Since acceptable commercial systems are not available, this system was custom-built to acquire data using National Instruments' versatile hardware components and LabVIEW...

  14. Enrico Fermi the obedient genius

    CERN Document Server

    Bruzzaniti, Giuseppe

    2016-01-01

    This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...

  15. An engineering code to analyze hypersonic thermal management systems

    Science.gov (United States)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  16. Inversion Approach For Thermal Data From A Convecting Hydrothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1985-01-01

    Hydrothermal systems are often studied by collecting thermal gradient data and temperature depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are conventionally interpreted by the ''forward'' method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the ''forward'' method may inadvertently miss the correct set of initial conditions. Analytical methods for ''inverting'' data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.

  17. ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. M.; Zuo, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lombardo, U. [Universita di Catania and Laboratori Nazionali del Sud (INFN), Catania I-95123 (Italy); Zhang, H. F. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2016-01-20

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  18. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  19. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi; Shimada, Takashi; Ogushi, Fumiko; Ito, Nobuyasu

    2009-01-01

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  20. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2014-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and many patterns, so that their problems still occur in spite of well-known issues. The guideline of the JSME (Japan Society of Mechanical Engineering) for estimation of thermal fatigue failures in piping system is employed as Japanese regulation. To improve this guideline, generation mechanisms of thermal load and fatigue failure have been investigated and summarized into the knowledgebase. And numerical simulation methods to replace experimental based methods were studied. Furthermore, probabilistic failure analysis approach with main influence parameters was investigated to be applied for the plant system safety. Thus, based on the knowledge, estimation methods revised from the JSME guideline were proposed. (author)

  1. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  2. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  3. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  4. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    Science.gov (United States)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  5. Seasonal thermal energy storage in shallow geothermal systems: thermal equilibrium stage

    Directory of Open Access Journals (Sweden)

    Nowamooz Hossein

    2016-01-01

    Full Text Available This paper is dedicated to the study of seasonal heat storage in shallow geothermal installations in unsaturated soils for which hydrothermal properties such as degree of saturation and thermal conductivity vary with time throughout the profile. In the model, a semi-analytical model which estimates time-spatial thermal conductivity is coupled with a 2D cylindrical heat transfer modeling using finite difference method. The variation of temperature was obtained after 3 heating and cooling cycles for the different types of loads with maximum thermal load of qmax = 15 W.m−1 with variable angular frequency (8 months of heating and 4 months of cooling.and constant angular frequency (6 months of heating and 6 months of cooling to estimate the necessary number of cycles to reach the thermal equilibrium stage. The results show that we approach a thermal equilibrium stage where the same variation of temperature can be observed in soils after several heating and cooling cycles. Based on these simulations, the necessary number of cycles can be related to the total applied energy on the system and the minimum number of cycles is for a system with the total applied energy of 1.9qmax.

  6. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  7. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  8. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  9. Phase change thermal storage for a solar total energy system

    Science.gov (United States)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  10. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  11. Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas

    International Nuclear Information System (INIS)

    Liao Kai; Chen Jisheng; Li Chao

    2010-01-01

    The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)

  12. DNA - A Thermal Energy System Simulator

    DEFF Research Database (Denmark)

    2008-01-01

    DNA is a general energy system simulator for both steady-state and dynamic simulation. The program includes a * component model library * thermodynamic state models for fluids and solid fuels and * standard numerical solvers for differential and algebraic equation systems and is free and portable...... (open source, open use, standard FORTRAN77). DNA is text-based using whichever editor, you like best. It has been integerated with the emacs editor. This is usually available on unix-like systems. for windows we recommend the Installation instructions for windows: First install emacs and then run...... the DNA installer...

  13. Residential Photovoltaic/Thermal Energy System

    Science.gov (United States)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  14. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  15. Thermal management evaluation of the complex electro-optical system

    Directory of Open Access Journals (Sweden)

    Nijemčević Srećko S.

    2017-01-01

    Full Text Available The thermal management of a complex electro-optical system aimed for outdoor application is challenging task due to the requirement of having an air-sealed enclosure, harsh working environment, and an additional thermal load generated by sunlight. It is essential to consider the effect of heating loads in the system components, as well as the internal temperature distribution, that can have influence on the system life expectancy, operational readiness and parameters, and possibility for catastrophic failure. The main objective of this paper is to analyze internal temperature distribution and evaluate its influence on system component operation capability. The electro-optical system simplified model was defined and related thermal balance simulation model based on Solid Works thermal analysis module was set and applied for temperature distribution calculation. Various outdoor environment scenarios were compared to evaluate system temperature distribution and evaluate its influence on system operation, reliability, and life time in application environment. This work was done during the design process as a part of the electro-optical system optimization. The results show that temperature distribution will not be cause for catastrophic failure and malfunction operation during operation in the expected environment.

  16. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  17. Review of the integrated thermal and nonthermal treatment system studies

    International Nuclear Information System (INIS)

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering

  18. Thermalization and out-of-equilibrium dynamics in open quantum many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Buchhold, Michael

    2015-06-30

    In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics. As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state. As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermis golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate σ{sup R}=ImΣ{sup R}, determined by the self-energy at equilibrium. However, for long times τ, it also reveals the presence of dynamical slow

  19. Outdoor thermal and electrical characterisation of photovoltaic modules and systems

    OpenAIRE

    Herteleer, Bert

    2016-01-01

    Current and future investors in photovoltaic systems are interested in how well the system performs, and how predictable this is over the expected lifetime. To do so, models have been developed and measurements of photovoltaic systems have been done. This dissertation presents the outdoor measurement set-up that has been developed for thermal and electrical characterisation of photovoltaic modules and systems, aimed at measuring transient effects and changes. The main design decisions and ...

  20. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  1. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Science.gov (United States)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  2. Improvements in or relating to thermal barrier systems

    International Nuclear Information System (INIS)

    Birch, W.; Pearson, R.

    1976-01-01

    Reference is made to thermal barrier systems for the internal surface of gas cooled reactor prestressed concrete pressure vessels. Provision has to be made to anchor the thermal barrier system to a metal limit within the pressure vessel, and the object of the arrangement described is to provided a suitable attachment means. The thermal barrier may consist of a number of plates arranged in overlapped fashion or having flexible joint portions. A problem that arises concerns anchoring of the hot plates to the cold pressure vessel by a rigid attachment, and the design must be such as to ensure adequate bending and axial strength compatible with a minimum heat conduction area and allowable thermal stress. The arrangement must also allow easy installation. The arrangement described also provides for a 'fail-safe' structure. It comprises a metal stud with a hollow body; two or more helical channels are provided through the side walls of the body. The body portion expands or contracts to accommodate axial temperature gradient stress set up by the temperature difference between the pressure vessel and the thermal barrier. The space between the thermal barrier and the pressure vessel may contain solid insulating material. (U.K.)

  3. A Thermal Test System for Helmet Cooling Studies

    Directory of Open Access Journals (Sweden)

    Shaun Fitzgerald

    2018-02-01

    Full Text Available One of the primary causes of discomfort to both irregular and elite cyclists is heat entrapment by a helmet resulting in overheating and excessive sweating of the head. To accurately assess the cooling effectiveness of bicycle helmets, a heated plastic thermal headform has been developed. The construction consists of a 3D-printed headform of low thermal conductivity with an internal layer of high thermal mass that is heated to a constant uniform temperature by an electrical heating element. Testing is conducted in a wind tunnel where the heater power remains constant and the resulting surface temperature distribution is directly measured by 36 K-type thermocouples embedded within the surface of the head in conjunction with a thermal imaging camera. Using this new test system, four bicycle helmets were studied in order to measure their cooling abilities and to identify ‘hot spots’ where cooling performance is poor.

  4. System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics

    Science.gov (United States)

    Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita

    2012-01-01

    The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.

  5. Thermal performance of various multilayer insulation systems below 80K

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m 2 at an insulating vacuum of 10 -6 torr

  6. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  7. Discrete nature of thermodynamics in confined ideal Fermi gases

    International Nuclear Information System (INIS)

    Aydin, Alhun; Sisman, Altug

    2014-01-01

    Intrinsic discrete nature in thermodynamic properties of Fermi gases appears under strongly confined and degenerate conditions. For a rectangular confinement domain, thermodynamic properties of an ideal Fermi gas are expressed in their exact summation forms. For 1D, 2D and 3D nano domains, variations of both number of particles and internal energy per particle with chemical potential are examined. It is shown that their relation with chemical potential exhibits a discrete nature which allows them to take only some definite values. Furthermore, quasi-irregular oscillatory-like sharp peaks are observed in heat capacity. New nano devices can be developed based on these behaviors. - Highlights: • “Discrete behaviors” appear in thermodynamic properties of ideal Fermi gases at nano scale. • Variations of particle number and internal energy with chemical potential have stepwise behavior. • There are oscillations and peaks in the variation of heat capacity with domain size and particle number. • Fermi line and Fermi surface at nano scale are not continuous but “discrete”. • Heat capacity oscillations can be used for excess thermal energy storage at nano scale

  8. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, H.A.; Schmidt, L.J.; Erickson, T.A.; Sondreal, E.A.; Erjavec, J.; Steadman, E.N.; Fabrycky, W.J.; Wilson, J.S.; Musich, M.A.

    1996-07-01

    This report analyzes three systems engineering (SE) studies performed on integrated thermal treatment systems (ITTSs) and integrated nonthermal treatment systems (INTSs) for the remediation of mixed low-level waste (MLLW) stored throughout the US Department of Energy (DOE) weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center (EERC), Science Applications International Corporation (SAIC), the Waste Policy Institute (WPI), and Virginia Tech (VT). The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions taken in the studies might bias the resulting economic evaluations of both thermal and nonthermal systems, (2) identify the critical areas of the studies that would benefit from further investigation, and (3) develop a standard template that could be used in future studies to produce sound SE applications.

  9. Tehachapi solar thermal system first annual report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  10. Modeling and analysis of a robust thermal control system based on forced convection thermal switches

    Science.gov (United States)

    Williams, Andrew D.; Palo, Scott E.

    2006-05-01

    There is a critical need, not just in the Department of Defense (DOD) but the entire space industry, to reduce the development time and overall cost of satellite missions. To that end, the DOD is actively pursuing the capability to reduce the deployment time of a new system from years to weeks or even days. The goal is to provide the advantages space affords not just to the strategic planner but also to the battlefield commanders. One of the most challenging aspects of this problem is the satellite's thermal control system (TCS). Traditionally the TCS must be vigorously designed, analyzed, tested, and optimized from the ground up for every satellite mission. This "reinvention of the wheel" is costly and time intensive. The next generation satellite TCS must be modular and scalable in order to cover a wide range of applications, orbits, and mission requirements. To meet these requirements a robust thermal control system utilizing forced convection thermal switches was investigated. The problem was investigated in two separate stages. The first focused on the overall design of the bus. The second stage focused on the overarching bus architecture and the design impacts of employing a thermal switch based TCS design. For the hot case, the fan provided additional cooling to increase the heat transfer rate of the subsystem. During the cold case, the result was a significant reduction in survival heater power.

  11. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Science.gov (United States)

    Pałaszyńska, Katarzyna; Bandurski, Karol; Porowski, Mieczysław

    2017-11-01

    Thermally Activated Building Systems (TABS) are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational). The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year - a typical meteorological year. The model was prepared using a generally accepted simulation tool - TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  12. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Directory of Open Access Journals (Sweden)

    Pałaszyńska Katarzyna

    2017-01-01

    Full Text Available Thermally Activated Building Systems (TABS are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational. The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year – a typical meteorological year. The model was prepared using a generally accepted simulation tool – TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  13. Improved thermal isolation for superconducting magnet systems

    Science.gov (United States)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  14. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  15. Instabilities of a Fermi gas with nested Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schlottmann, Pedro [Department of Physics, Florida State University, Tallahassee, FL (United States)

    2018-01-15

    The nesting of the Fermi surfaces of an electron and a hole pocket separated by a vector Q commensurate with the lattice in conjunction with the interaction between the quasiparticles can give rise to a rich phase diagram. Of particular importance is itinerant antiferromagnetic order in the context of pnictides and heavy fermion compounds. By mismatching the nesting the order can gradually be suppressed and as the Neel temperature tends to zero a quantum critical point is obtained. A superconducting dome above the quantum critical point can be induced by the transfer of pairs of electrons between the pockets. The conditions under which such a dome arises are studied. In addition numerous other phases may arise, e.g. charge density waves, non-Fermi liquid behavior, non-s-wave superconductivity, Pomeranchuk instabilities of the Fermi surface, nematic order, and phases with persistent orbital currents. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  17. Performance of a thermal neutron radiographic system using imaging plates

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo L. de; Furieri, Rosanne; Lopes, Ricardo T.

    2009-01-01

    A performance evaluation of a neutron radiographic system equipped with a thermal neutron sensitive imaging plate has been undertaken. It includes the assessment of spatial resolution, linearity, dynamic range and the response to exposure time, as well as a comparison of these parameters with the equivalent ones for neutron radiography employing conventional films and a gadolinium foil as converter. The evaluation and comparison between the radiographic systems have been performed at the Instituto de Engenharia Nuclear - CNEN, using the Argonauta Reactor as source of thermal neutrons and a commercially available imaging plate reader. (author)

  18. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  19. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  20. Thermal Storage Systems Assessment for Energy Sustainability in Housing Units

    Directory of Open Access Journals (Sweden)

    Tania I. Lagunes Vega

    2016-04-01

    Full Text Available In order to achieve greater enhancements in energy sustainability for housing, the function and efficiency of two different passive cooling systems were studied: encapsulated water in recycled bottles of Polyethylene terephthalate (PET and polystyrene plates, in comparison with standard concrete slab systems, which are customarily used in housing. Experiments were placed over a tile surface, in which temperature changes were monitored for a period of 20 days from 08:00 to 20:00. The efficiency of passive thermal storage systems was endorsed through statistical analysis using the “SPSS” software. This resulted in a 17% energy saving, thus promoting energy sustainability in housing units, which reduces the use of electrical appliances required to stabilize conditions to achieve optimum thermal comfort for the human body inside a house, therefore, reducing electrical power consumption, CO2 emissions to the atmosphere and generating savings. Due to the complexity of a system with temperature changes, a fractal analysis was performed for each experimental system, using the “Benoit” software (V.1.3 with self-compatible tools of rescaled range (R/S and a wavelets method, showing that the thermal fluctuations on the tiles with the thermal storage system adapt to the rescaled range analysis and the regular tiles adapt to the wavelets method.

  1. Thermal performance of Danish solar combi systems in practice and in theory

    DEFF Research Database (Denmark)

    Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon

    2004-01-01

    An overview of measured thermal performances of Danish solar combi systems in practice is given. The thermal performance varies greatly from system to system. Measured and calculated thermal performances of different solar combi systems are compared and the main reasons for the different thermal ...... as theoretically expected....

  2. Avoided operating costs in thermal generating systems

    International Nuclear Information System (INIS)

    Chowdhury, N.; Billinton, R.; Gupta, R.

    1995-01-01

    A simple and straightforward technique was developed to assess avoided system operating costs associated with non-utility generation (NUG). The technique was based on optimum loading configurations of the committed units both before and after the inclusion of NUG energy. The salient features of the technique were presented in this paper. Assessment of avoided operating cost with deterministic and probabilistic criteria were explained. A time differentiated price system was adopted in the algorithms to reflect the different value placed on purchased price by a utility at different times of the day. The algorithms show the utility effects of dispatchable and non-dispatchable NUG energies. The IEEE Reliability Test System (RTS) was utilized for numerical analysis. Results were illustrated. It was found that sensitivity studies similar to those performed on the IEEE-RTS could be utilized to determine the amount of energy and the time period during which utilities and NUGs can maximize their economic benefits. 7 refs., 5 figs., 1 tab

  3. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  4. Thermal effects in gravitational Hartree systems

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Gonca L. [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Dolbeault, Jean [Paris-Dauphine Univ. (FR). Ceremade (UMR CNRS 7534); Sparber, Christof [Illinois Univ., Chicago, IL (United States). Dept. of Mathematics, Statistics, and Computer Science

    2010-07-01

    We consider the non-relativistic Hartree model in the gravitational case, i.e. with attractive Coulomb-Newton interaction. For a given mass M>0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T*>0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature T{sub c} element of (0,T*) above which mixed states appear. (orig.)

  5. Thermal Effects in Gravitational Hartree Systems

    KAUST Repository

    Aki, Gonca L.

    2011-04-06

    We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.

  6. Thermal-economic analysis of cogeneration systems

    International Nuclear Information System (INIS)

    Walter, A.C.S.; Bajay, S.V.

    1992-01-01

    Approximately 80 countries produce sugar, and fortuitously alcohol, from sugar cane. In all these countries the cogeneration technology of steam turbines is utilized, although almost always inefficient. The greater potential of cogeneration in Brazil is in sugar and alcohol sector, because of the use of sugar cane bagasse as combustible. This work applies the techniques of simulation and economic analysis to different configuration of plants, to determine power generation and associated costs of each alternative. The application of the same procedure at operating condition of several configurations in transient system permits the determination of production profile of exceeding during one day. (C.M.)

  7. Thermal Effects in Gravitational Hartree Systems

    KAUST Repository

    Aki, Gonca L.; Dolbeault, Jean; Sparber, Christof

    2011-01-01

    We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.

  8. Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems

    Science.gov (United States)

    Zeng, C.; Deng, W.; Wu, C.; Insall, M.

    2017-12-01

    In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.

  9. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  10. Integrated thermal treatment systems study. Internal review panel report

    International Nuclear Information System (INIS)

    Cudahy, J.; Escarda, T.; Gimpel, R.

    1995-04-01

    The U.S. Department of Energy (DOE) Office of Technology Development (OTD) commissioned two studies to evaluate nineteen thermal treatment technologies for treatment of DOE mixed low-level waste. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the help of the DOE Office of Environmental Management (EM) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel to review and comment on the ITTS studies. This Panel was composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency, the California EPA, and private experts. The Panel met from November 15-18, 1994 to review the ITTS studies and to make recommendations on the most promising thermal treatment systems for DOE mixed low-level wastes and on research and development necessary to prove the performance of the technologies. This report describes the findings and presents the recommendations of the Panel

  11. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    Science.gov (United States)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  12. The Fermiac or Fermi's Trolley

    Science.gov (United States)

    Coccetti, F.

    2016-03-01

    The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.

  13. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  14. Review of the integrated thermal and nonthermal treatment system studies

    International Nuclear Information System (INIS)

    1996-01-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering

  15. Massive Fermi gas in the expanding universe

    Energy Technology Data Exchange (ETDEWEB)

    Trautner, Andreas, E-mail: atrautner@uni-bonn.de [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany)

    2017-03-01

    The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic at decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.

  16. Thermal oxidation vitrification flue gas elimination system

    International Nuclear Information System (INIS)

    Kephart, W.; Angelo, F.; Clemens, M.

    1995-01-01

    With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO x emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ''greenhouse gas'' contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition

  17. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: gor@tornado.nsk.ru [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  18. Moessbauer thermal scan study of a spin crossover system

    Energy Technology Data Exchange (ETDEWEB)

    Zelis, P Mendoza; Pasquevich, G A; Sanchez, F H; Veiga, A; Cabrera, A F [Departamento de Fisica, FCE-UNLP, La Plata (Argentina); Ceolin, M [Instituto de Investigaciones FIsico-Quimicas Teoricas y Aplicadas (UNLP-CONICET), La Plata (Argentina); Coronado-Miralles, E; Monrabal-Capilla, M; Galan-Mascaros, J R, E-mail: pmendoza@fisica.unlp.edu.a [Instituto de Ciencias Moleculares, Universidad de Valencia, Valencia (Spain)

    2010-03-01

    Programmable Velocity equipment was used to perform a Moessbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz){sub 2}(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.

  19. Phonons and solitons in the "thermal" sine-Gordon system

    DEFF Research Database (Denmark)

    Salerno, Mario; Jørgensen, E.; Samuelsen, Mogens Rugholm

    1984-01-01

    Standard methods of stochastic processes are used to study the coupling of the sine-Gordon system with a heat reservoir. As a result we find thermal phonons with an average energy of kB T per mode. The translational mode (zero mode) is found to carry an average energy of 1 / 2kBT. This last value...

  20. On the establishment of thermal equilibrium in simplest mechanical systems

    International Nuclear Information System (INIS)

    Kotsinyan, Ar.M.

    1987-01-01

    The process of the establishment of thermal equilibrium of the damping oscillators and a ''free'' particle in interaction with the blackbody radiation field is considered. A special attention is payed to the principal role of non-closedness of real systems as well as to the irreversibility of the microscopic equations of motion in the question of grounding of the statistical physics

  1. Monte Carlo calculations of neutron thermalization in a heterogeneous system

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, T

    1959-07-15

    The slowing down of neutrons in a heterogeneous system (a slab geometry) of uranium and heavy water has been investigated by Monte Carlo methods. Effects on the neutron spectrum due to the thermal motions of the scattering and absorbing atoms are taken into account. It has been assumed that the speed distribution of the moderator atoms are Maxwell-Boltzmann in character.

  2. Damage Detection/Locating System Providing Thermal Protection

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Jones, Thomas W. (Inventor); Taylor, Bryant D. (Inventor); Qamar, A. Shams (Inventor)

    2010-01-01

    A damage locating system also provides thermal protection. An array of sensors substantially tiles an area of interest. Each sensor is a reflective-surface conductor having operatively coupled inductance and capacitance. A magnetic field response recorder is provided to interrogate each sensor before and after a damage condition. Changes in response are indicative of damage and a corresponding location thereof.

  3. Commercial thermal distribution systems, Final report for CIEE/CEC

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct

  4. Thomas-Fermi molecular dynamics

    International Nuclear Information System (INIS)

    Clerouin, J.; Pollock, E.L.; Zerah, G.

    1992-01-01

    A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)], the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker [Phys. Rev. A 38, 2205 (1988)]. As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated

  5. Full scope upgrade project for the Fermi 2 simulator

    International Nuclear Information System (INIS)

    Bollacasa, D.; Gonsalves, J.B.; Newcomb, P.C.

    1994-01-01

    The Detroit Edison company (DECO) concentrated the Simulation Division of Asea Brown Boveri (ABB) to perform a full scope upgrade of the Fermi 2 simulator. The Fermi 2 plant is a BWR 6 generation Nuclear Steam Supply System (NSSS). The project included the complete replacement of the existing simulation model sofware with ABB's high fidelity BWR models, addition of an advanced instructor station facility and new simulation computers. Also provided on the project were ABB's advanced simulation environment (CETRAN), a comprehensive configuration management system based on a modern relational database system and a new computer interface to the input/output system. (8 refs., 2 figs.)

  6. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  7. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  8. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  9. Thermal modeling and design of electronic systems and devices

    International Nuclear Information System (INIS)

    Wirtz, R.A.; Lehmann, G.L.

    1990-01-01

    The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance

  10. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  11. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    Science.gov (United States)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  12. Lighting system with thermal management system having point contact synthetic jets

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2013-12-10

    Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  13. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  14. A survey of manufacturers of solar thermal energy systems

    Science.gov (United States)

    Levine, N.; Slonski, M. L.

    1982-01-01

    Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes.

  15. Impact Testing of Orbiter Thermal Protection System Materials

    Science.gov (United States)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  16. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1979-01-01

    A simultaneous pulsed neutron porosity and thermal neutron capture cross section logging system is provided for radiological well logging of subsurface earth formations. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a combination gamma ray and fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations; and, during the bursts, the fast neutron and epithermal neutron populations are sampled. During the interval between bursts the thermal neutron capture gamma ray population is sampled in two or more time intervals. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity phi. The capture gamma ray measurements are combined to provide a simultaneous determination of the thermal neutron capture cross section Σ

  17. Computational design and experimental validation of new thermal barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validation applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and confirmed it’s hot corrosion performance.

  18. Fermi and the Art of Estimation

    Indian Academy of Sciences (India)

    IAS Admin

    The balance wheel will now shed some ... work best when used by someone with the ... [1] Laura Fermi, Atoms in the Family: My Life with Enrico Fermi, The. University of Chicago ... Geneva, European Organization for Nuclear Research, 1969.

  19. Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity

    CERN Document Server

    Iizuka, Norihiro; Narayan, Prithvi; Trivedi, Sandip P

    2012-01-01

    We study the two-point function for fermionic operators in a class of strongly coupled systems using the gauge-gravity correspondence. The gravity description includes a gauge field and a dilaton which determines the gauge coupling and the potential energy. Extremal black brane solutions in this system typically have vanishing entropy. By analyzing a charged fermion in these extremal black brane backgrounds we calculate the two-point function of the corresponding boundary fermionic operator. We find that in some region of parameter space it is of Fermi liquid type. Outside this region no well-defined quasi-particles exist, with the excitations acquiring a non-vanishing width at zero frequency. At the transition, the two-point function can exhibit non-Fermi liquid behaviour.

  20. Thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  1. On the interrelation between bulk and thin-film Fermi surfaces

    KAUST Repository

    Schwingenschlögl, Udo

    2010-12-01

    A general scheme for inferring the Fermi surface of a finite slab from ab initio electronic-structure calculations for the parent bulk system is introduced. The simple cubic ReO 3 oxide is studied as an example system. We show that our scheme provides an accurate approximation of the Fermi surface even for very thin slabs. © 2010 Europhysics Letters Association.

  2. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  3. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  4. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  5. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    International Nuclear Information System (INIS)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios

  6. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  7. Thermal Vacuum Integrated System Test at B-2

    Science.gov (United States)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  8. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  9. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  10. Spatial modulation of the Fermi level by coherent illumination of undoped GaAs

    Science.gov (United States)

    Nolte, D. D.; Olson, D. H.; Glass, A. M.

    1989-11-01

    The Fermi level in undoped GaAs has been modulated spatially by optically quenching EL2 defects. The spatial gradient of the Fermi level produces internal electric fields that are much larger than fields generated by thermal diffusion alone. The resulting band structure is equivalent to a periodic modulation-doped p-i-p structure of alternating insulating and p-type layers. The internal fields are detected via the electro-optic effect by the diffraction of a probe laser in a four-wave mixing geometry. The direct control of the Fermi level distinguishes this phenomenon from normal photorefractive behavior and introduces a novel nonlinear optical process.

  11. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  12. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  13. Thermal Design for Extra-Terrestrial Regenerative Fuel Cell System

    Science.gov (United States)

    Gilligan, R.; Guzik, M.; Jakupca, I.; Bennett, W.; Smith, P.; Fincannon, J.

    2017-01-01

    The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 C versus SOFCs which operate at temperatures greater than 700 C. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.

  14. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  15. Decomposition of thermal-equilibrium states

    International Nuclear Information System (INIS)

    Gu Lei

    2010-01-01

    It is shown that a thermal-equilibrium state can be decomposed into a tensor product of the operators in subspaces of single-particle energy. On the basis of this form, a straightforward derivation of the Fermi-Dirac and the Bose-Einstein distribution is performed. The derivation can be generalized for systems with weak interaction to obtain an approximate distribution in momentum.

  16. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    Science.gov (United States)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  17. Quantum chaos and thermalization in isolated systems of interacting particles

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2016-04-15

    This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.

  18. Comparative analysis of thermally activated, environmentally friendly cooling systems

    International Nuclear Information System (INIS)

    Gupta, Y.; Metchop, L.; Frantzis, A.; Phelan, P.E.

    2008-01-01

    This paper compares the relative performances of three different thermally activated, environmentally friendly cooling systems, e.g. a silica-gel-water adsorption system, a LiBr-H 2 O absorption system and a desiccant air system. The adsorption and absorption systems in the current study employ water as the refrigerant, while the desiccant system cools atmospheric air directly. Each of these systems can be utilized at relatively low heat source temperatures such as achieved by flat plate solar collectors, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation etc. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW deg. C -1 is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica-gel in the adsorption and desiccant systems and the mass of LiBr-H 2 O solution in the absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 deg. C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 deg. C, while the desiccant air system outperforms the others at temperatures above 90 deg. C

  19. Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System?

    Science.gov (United States)

    Westerhold, T.; Röhl, U.; Donner, B.; Frederichs, T.; Kordesch, W. E. C.; Bohaty, S. M.; Hodell, D. A.; Laskar, J.; Zeebe, R. E.

    2018-01-01

    Recognizing and deciphering transient global warming events triggered by massive release of carbon into Earth's ocean-atmosphere climate system in the past are important for understanding climate under elevated pCO2 conditions. Here we present new high-resolution geochemical records including benthic foraminiferal stable isotope data with clear evidence of a short-lived (30 kyr) warming event at 41.52 Ma. The event occurs in the late Lutetian within magnetochron C19r and is characterized by a ˜2°C warming of the deep ocean in the southern South Atlantic. The magnitudes of the carbon and oxygen isotope excursions of the Late Lutetian Thermal Maximum are comparable to the H2 event (53.6 Ma) suggesting a similar response of the climate system to carbon cycle perturbations even in an already relatively cooler climate several million years after the Early Eocene Climate Optimum. Coincidence of the event with exceptionally high insolation values in the Northern Hemisphere at 41.52 Ma might indicate that Earth's climate system has a thermal threshold. When this tipping point is crossed, rapid positive feedback mechanisms potentially trigger transient global warming. The orbital configuration in this case could have caused prolonged warm and dry season leading to a massive release of terrestrial carbon into the ocean-atmosphere system initiating environmental change.

  20. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    Science.gov (United States)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES

  1. Phase structure of strongly correlated Fermi gases

    International Nuclear Information System (INIS)

    Roscher, Dietrich

    2015-01-01

    Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.

  2. Fermi liquid and non-Fermi liquid in M-channel N fold degenerate anderson lattice

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi; Ono, Yoshiaki; Matsuura, Tamifusa; Kuroda, Yoshihiro; Kobayashi, Akito; Deguchi, Ken

    1999-01-01

    We investigate Fermi liquid in the single-channel U-infinite N fold degenerate Anderson lattice with use of the expansion from the large limit of the spin-orbital degeneracy N. By collecting all diagrams up to O(N -2 ) of the imaginary part of the self-energy of the conduction electrons, the sum of those is shown to be given by a form proportional to ω 2 + π 2 T 2 up to O(N -2 ) in the single-channel model. On the other hand, the imaginary part of the self-energy of O(N -1 ) in the multichannel model has more singular frequency-/temperature-dependence, so the system is regarded as non-Fermi liquid. (author)

  3. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  4. Analysis of dynamic effects in solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  5. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil

    2002-05-01

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  6. Preliminary design of the thermal protection system for solar probe

    Science.gov (United States)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  7. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    International Nuclear Information System (INIS)

    Shaginyan, V. R.

    2011-01-01

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  8. Coupled fast-thermal system at the 'RB' nuclear reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    1987-04-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  9. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  10. Using Einstein's method to derive both the Planck and Fermi--Dirac distributions

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1988-01-01

    Many quantum mechanics textbooks give the remarkable argument of Einstein wherein he introduces his famous ''A and B coefficients'' and uses detailed balancing to derive the Planck distribution for thermal photons. But it seems to be not widely known that the same approach can yield the Fermi--Dirac distribution for thermal electrons

  11. Study of system safety evaluation on LTO of national project. Thermal fatigue evaluation of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo

    2012-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Numerical simulation methods for thermal fatigue evaluation were studied to replace structural tests. Theses knowledge was utilized to validate and justify the JSME guideline. Furthermore, new studies have been launched to apply above knowledge to enhance plant system safety. (author)

  12. Mathematical modeling and simulation of a thermal system

    Science.gov (United States)

    Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.

    2016-12-01

    The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.

  13. Mathematical modelling of thermal storage systems for the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Lacarra, G. [Universidad Publica de Navarra Campus Arrosadia, Pamplona (Spain). Area de Tecnologia de Alimentos

    1999-07-01

    Dynamic mathematical models of two thermal storage systems used in the food industry to produce chilled water are presented; an ice-bank system and a holding tank system. The variability of the refrigeration demand with time was taken into account in the model. A zoned approach using mass and energy balances was applied. Heat transfer phenomena in the evaporator were modelled using empirical correlations. The experimental validation of the mathematical models on an ice-bank system at pilot plant scale, and a centralized refrigeration system with a holding tank in a winery, showed accurate prediction. Simple models are adequate to predict the dynamic behaviour of these refrigeration systems under variable heat loads. (Author)

  14. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  15. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  16. Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries

    International Nuclear Information System (INIS)

    Werner, Michael; Reimer, O.; Reimer, A.

    2013-01-01

    Here, colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativistic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy γ-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Furthermore, we strive to find evidence of γ-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting γ-rays. We make a comparison with existing γ-ray flux predictions and investigate possible constraints. We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. As a result, we find no evidence of γ-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi-LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi-LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB η Car is made.

  17. Integrated thermal treatment system study: Phase 1 results. Volume 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01

    An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked

  18. PREFACE: Eurotherm Seminar 102: Thermal Management of Electronic Systems

    Science.gov (United States)

    Punch, J.; Walsh, E.

    2014-07-01

    About EUROTHERM The aim of the EUROTHERM Committee (www.eurothermcommittee.eu) is to promote and foster European cooperation in Thermal Sciences and Heat Transfer by gathering together scientists and engineers working in specialized areas. The Committee consists of members representing and appointed by national bodies in the EU countries. The current President of EUROTHERM is Professor Anton van Steenhoven from the University of Eindhoven (The Netherlands). The Committee organizes and coordinates European scientific events such as the EUROTHERM Seminars (about 4 per year) and the European Thermal Sciences Conference (every 4 years). About EUROTHERM Seminar 102 (www.eurothermseminar102.com) This seminar, part of the long-running series of European seminars on the thermal sciences, took place in June 2014 at the University of Limerick in Limerick, Ireland. The seminar addressed the topic of 'Thermal Management of Electronic Systems', a critical contemporary application area which represents a vibrant challenge for practitioners of the thermal sciences. We convey special thanks to the reviewers who have evaluated these papers. We also thank the scientific committee, consisting of internationally recognized experts. Their role has been to manage the evaluation of abstracts and the papers selection process as co-coordinators for specific topics. This seminar was hosted by the Stokes Institute at the University of Limerick. It could not have been organized without the efficient help of our administrators and technicians for IT support. This volume of Journal of Physics: Conference Series includes 27 articles presented at the seminar. Dr. Jeff Punch, Chair Stokes Institute, University of Limerick, Limerick, Ireland Email: jeff.punch@ul.ie Prof. Edmond Walsh, Co-Chair Associate Professor, Osney Laboratories, Department of Engineering Science, University of Oxford, UK Email: edmond.walsh@bnc.ox.ac.uk

  19. Aeolian system dynamics derived from thermal infrared data

    Science.gov (United States)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  20. SO2 oxidation catalyst model systems characterized by thermal methods

    DEFF Research Database (Denmark)

    Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M

    2002-01-01

    The molten salts M2S2O7 and MHSO4, the binary molten salt Systems M2S2O7-MHSO4 and the molten salt-gas systems M2S2O7 V2O5 and M2S2O7-M2SO4 V2O5 (M = Na, K, Rb, Cs) in O-2, SO2 and At atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....

  1. Theoretical bases on thermal stability of layered metallic systems

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Rusakov, V.S.; Turkebaev, T.Eh.; Zhankadamova, A.M.; Ensebaeva, M.Z.

    2003-01-01

    The paper is dedicated to implementation of the theoretical bases for layered metallic systems thermal stabilization. The theory is based on the stabilization mechanism expense of the intermediate two-phase field formation. As parameters of calculated model are coefficients of mutual diffusion and inclusions sizes of generated phases in two-phase fields. The stabilization time dependence for beryllium-iron (Be (1.1 μm)-Fe(5.5 μm)) layered system from iron and beryllium diffusion coefficients, and inclusions sizes is shown as an example. Conclusion about possible mechanisms change at transition from microscopic consideration to the nano-crystal physics level is given

  2. Possibilities and Limitations of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Behrendt, Benjamin

    The strong political market drive towards energy savings in the building sector calls for efficient solutions. Using so called low temperature heating and high temperature cooling systems such as for instance thermally activated building systems (TABS) has a significant impact on the required...... will be mostly needed to operate the building within acceptable boundaries. It will also allow the user to see if dehumidification will be needed for undisturbed operation of TABS. With the combination of both tools it is possible to provide a holistic evaluation of a building proposal at a very early design...

  3. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  4. Progressive reduction of the thermal wall system by modal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Meslem, A.; Bounif, A.; Kadi, L. [Universite des Sciences et de la Technologie, Oran (Algeria)

    1993-12-31

    A reduction method of thermal systems called ``progress`` using the modal Analysis is presented. It allows to do, at each time of simulation, a synthesis information in the system evolution. Consequently, the limited number of descriptive and significant parameters (proper modes), can produce some extremely useful indication about dynamic evolution. However this method can eliminate proper modes of which the energetic contribution will be neglected or amortized. Some examples were studied, showing the efficiency of this method by reducing the computing time, as well as, having high precision on predicted dynamic response over time of simulation. (Authors). 4 refs., 4 figs.

  5. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  6. Nuclear thermal rocket workshop reference system Rover/NERVA

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed

  7. Collapse and revival of the Fermi sea in a Bose-Fermi mixture

    Science.gov (United States)

    Iyer, Deepak; Will, Sebastian; Rigol, Marcos

    2014-05-01

    The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.

  8. Thermodynamics of ultracold Fermi gases

    International Nuclear Information System (INIS)

    Nascimbene, Sylvain

    2010-01-01

    Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally studied using ultracold gases. This thesis describes a new method for determining the equation of state of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the measurement of the local pressure inside a trapped gas from the analysis of its in situ image. We first apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting 7 Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary gas accounts for the equation of state deduced from our study over its full range. The virial expansion extracted from the high-temperature data agrees with the resolution of the three-body problem. At low temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi liquid. Finally we obtain the critical temperature for superfluidity from a clear signature on the equation of state. We also measure the pressure of the ground state as a function of spin imbalance and interaction strength - measure directly relevant to describe the crust of neutron stars. Our data validate Monte-Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-field interactions in low-density fermionic or bosonic superfluids. We show that, in most cases, the partially polarized normal phase can be described as a Fermi liquid of polarons. The polaron effective mass extracted from the equation of state is in agreement with a study of collective modes. (author)

  9. Ballistic Performance of Porous-Ceramic, Thermal Protection Systems

    Science.gov (United States)

    Miller, J. E.; Bohl, W. E.; Christiansen, Eric C.; Davis, B. A.; Foreman, C. D.

    2011-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on 8 lb/cu ft alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrous-insulation/ reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principals impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. Model extensions to look at the implications of greater than 10 GPa equation of state is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.

  10. Thermal power terms in the Einstein-dilaton system

    International Nuclear Information System (INIS)

    Zuo, Fen

    2014-01-01

    We employ the gauge/string duality to study the thermal power terms of various thermodynamic quantities in gauge theories and the renormalized Polyakov loop above the deconfinement phase transition. We restrict ourselves to the five-dimensional Einstein gravity coupled to a single scalar, the dilaton. The asymptotic solutions of the system for a general dilaton potential are employed to study the power contributions of various quantities. If the dilaton is dual to the dimension-4 operator TrF μν 2 , no power corrections would be generated. Then the thermal quantities approach their asymptotic values much more quickly than those observed in lattice simulation. When the dimension of the dual operator is different from 4, various power terms are generated. The lowest power contributions to the thermal quantities are always quadratic in the dilaton, while that of the Polyakov loop is linear. As a result, the quadratic terms in inverse temperature for both the trace anomaly and the Polyakov loop, observed in lattice simulation, cannot be implemented consistently in the system. This is in accordance with the field theory expectation, where no gauge-invariant operator can accommodate such contributions. Two simple models, where the dilaton is dual to operators with different dimensions, are studied in detail to clarify the conclusion.

  11. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  12. Fermi UNIX trademark environment

    International Nuclear Information System (INIS)

    Nicholls, J.

    1991-03-01

    The introduction of UNIX at Fermilab involves multiple platforms and multiple vendors. Additionally, a single user may have to use more than one platform. This heterogeneity and multiplicity makes it necessary to define a Fermilab environment for UNIX so that as much as possible the systems ''look and feel'' the same. We describe our environment, including both the commercial products and the local tools used to support it. Other products designed for the UNIX environment are also described. 19 refs

  13. Decreasing the Thermal Load on the Environment with the Help of Thermal Pumps in the Sewage Treatment System

    Science.gov (United States)

    Lozovetskii, V. V.; Lebedev, V. V.; Cherkina, V. M.; Ivanchuk, M. S.

    2018-05-01

    We propose designs for practical use of residual heat of sewage by means of thermal-pump transformation of thermal energy in plants operating on inverse Rankine and Lorentz cycles, as well as a method for sewage heat removal in drainage canals of water removal systems based on the application of double-pipe heat exchangers known as Field tubes.

  14. Thermal entanglement and teleportation in a dipolar interacting system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.S., E-mail: ccastro@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil); Centro de Formação de Professores, Universidade Federal do Recôncavo da Bahia, Av. Nestor de Mello Pita, n. 535, 45.300-000 Amargosa, BA (Brazil); Duarte, O.S.; Pires, D.P.; Soares-Pinto, D.O. [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, São Carlos, 13560-970 SP (Brazil); Reis, M.S. [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil)

    2016-04-22

    Quantum teleportation, which depends on entangled states, is a fascinating subject and an important branch of quantum information processing. The present work reports the use of a dipolar spin thermal system as a noisy quantum channel to perform quantum teleportation. Non-locality, tested by violation of Bell's inequality and thermal entanglement, measured by negativity, shows that for the present model all entangled states, even those that do not violate Bell's inequality, are useful for teleportation. - Highlights: • The effects of a dipolar interaction between two spins on their degree of entanglement and non-locality is reported. • The model presents some degree of non-locality and entanglement at a given coupling parameters. • It is shown how the magnetic anisotropies can influence the fidelity of teleportation.

  15. Separation of Kr-Xe system by thermal diffusion method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Numata, Kazuyoshi; Matsuda, Yuji; Ouchi, Misao; Naruse, Yuji

    1979-11-01

    Separation experiments of Kr-Xe system were carried out to study the possibility of adapting thermal diffusion method for concentration of krypton in a fuel reprocessing off-gas treatment process. The results are as follows. (1) A batchwise thermal diffusion column of hot tube diameter 21 mm, cold tube diameter 32 mm, effective hight 1000 mm and volume -- 500 CC is the best in separation characteristics and in ease of operation under the different conditions. (2) The overall separation factor increases with increase of the operating temperature in the column with and without reservoir. (3) The optimum operating pressure (about 400 Torr) is independent of the operating conditions such as temperature, reservoir volume and feed gas content. (4) A preliminary design of the Kr-Xe separating plant for a reprocessing plant (1500 ton-U/yr) shows the required number of columns and the total electric power. (author)

  16. Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems

    Science.gov (United States)

    Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.

    2009-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.

  17. Final design of thermal diagnostic system in SPIDER ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2016-11-15

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  18. Final design of thermal diagnostic system in SPIDER ion source

    International Nuclear Information System (INIS)

    Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-01-01

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H"− production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  19. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    Science.gov (United States)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  20. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    International Nuclear Information System (INIS)

    Clark, J.S.; Borowski, S.K.; Mcilwain, M.C.; Pellaccio, D.G.

    1992-09-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the next generation of space propulsion systems - the key to space exploration

  1. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  2. PREDICTING THERMAL PERFORMANCE OF ROOFING SYSTEMS IN SURABAYA

    Directory of Open Access Journals (Sweden)

    MINTOROGO Danny Santoso

    2015-07-01

    Full Text Available Traditional roofing systems in the developing country likes Indonesia are still be dominated by the 30o, 45o, and more pitched angle roofs; the roofing cover materials are widely used to traditional clay roof tiles, then modern concrete roof tiles, and ceramic roof tiles. In the 90’s decay, shop houses are prosperous built with flat concrete roofs dominant. Green roofs and roof ponds are almost rarely built to meet the sustainable environmental issues. Some tested various roof systems in Surabaya were carried out to observe the roof thermal performances. Mathematical equation model from three references are also performed in order to compare with the real project tested. Calculated with equation (Kabre et al., the 30o pitched concrete-roof-tile, 30o clay-roof-tile, 45o pitched concrete-roof-tile are the worst thermal heat flux coming to room respectively. In contrast, the bare soil concrete roof and roof pond system are the least heat flux streamed onto room. Based on predicted calculation without insulation and cross-ventilation attic space, the roof pond and bare soil concrete roof (greenery roof are the appropriate roof systems for the Surabaya’s climate; meanwhile the most un-recommended roof is pitched 30o or 45o angle with concrete-roof tiles roofing systems.

  3. Thermal hydraulic analysis of BWR containment venting system

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Sharma, Prashant; Paul, U.K.; Gaikwad, Avinash

    2015-01-01

    Installation of additional containment filtered venting system (CFVS) is necessary to depressurize the containment to maintain its mechanical integrity due to over pressurization during severe accident condition. A typical venting system for BWR is modelled using RELAP5 and analysed to investigate the effect of various thermal hydraulic parameters on the operational parameters of the venting system. The venting system consists of piping from the containment to the scrubber tank and exit line from the scrubber tank. The scrubber tank is partially filled with water to enable the scrubbing action to remove the particulate radionuclides from the incoming containment air. The pipe line from the containment is connected to the venturi inlet and the throat of the venturi is open to the scrubber tank water inventory at designed submergence level. The exit of the venturi is open to scrubber tank water. Filters are used in the upper air space of the scrubber tank as mist separator before venting out the air into the atmosphere through the exit vent line. The effect of thermal hydraulic parameters such as inlet fluid temperature, inlet steam content and venturi submergence in the scrubber tank on the venting flow rate, exit steam content, scrubber tank inventory, overflow line and siphon breaker flow rate is analysed. Results show that inlet steam content and the venturi nozzle submergence influence the venting system parameters. (author)

  4. Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2005-12-01

    Full Text Available Power losses calculation and thermal modelling for a three-phase inverter power system is presented in this paper. Aiming a long real time thermal simulation, an accurate average power losses calculation based on PWM reconstruction technique is proposed. For carrying out the thermal simulation, a compact thermal model for a three-phase inverter power module is built. The thermal interference of adjacent heat sources is analysed using 3D thermal simulation. The proposed model can provide accurate power losses with a large simulation time-step and suitable for a long real time thermal simulation for a three phase inverter drive system for hybrid vehicle applications.

  5. Pairing and condensation in a resonant Bose-Fermi mixture

    International Nuclear Information System (INIS)

    Fratini, Elisa; Pieri, Pierbiagio

    2010-01-01

    We study by diagrammatic means a Bose-Fermi mixture, with boson-fermion coupling tuned by a Fano-Feshbach resonance. For increasing coupling, the growing boson-fermion pairing correlations progressively reduce the boson condensation temperature and make it eventually vanish at a critical coupling. Such quantum critical point depends very weakly on the population imbalance and, for vanishing boson densities, coincides with that found for the polaron-molecule transition in a strongly imbalanced Fermi gas, thus bridging two quite distinct physical systems.

  6. Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas

    International Nuclear Information System (INIS)

    Bettelheim, Eldad; Abanov, Alexander G; Wiegmann, Paul B

    2008-01-01

    We present new nonlinear differential equations for spacetime correlation functions of Fermi gas in one spatial dimension. The correlation functions we consider describe non-stationary processes out of equilibrium. The equations we obtain are integrable equations. They generalize known nonlinear differential equations for correlation functions at equilibrium [1-4] and provide vital tools for studying non-equilibrium dynamics of electronic systems. The method we developed is based only on Wick's theorem and the hydrodynamic description of the Fermi gas. Differential equations appear directly in bilinear form. (fast track communication)

  7. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    International Nuclear Information System (INIS)

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-01-01

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  8. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    Science.gov (United States)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  9. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  10. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  11. Magnet system for a thermal barrier Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Kim, N.S.; Conn, R.W.

    1981-01-01

    The magnet system for a thermal barrier D-D tandem mirror reactor has been studied as part of the UCLA tandem mirror reactor design study SATYR. Three main considerations in designing the SATYR magnet system are to obtain the desired field strength variation throughout the system, to have proper space for plasma and neutron shielding, and to satisfy the MHD stability to achieve maximum central cell /beta/. Due to the importance and the complexity, the 'internal' field reversal magnet is the main concern in the entire magnet system for SATYR. Two different magnet designs, a non-uniform current density solenoid and a higher-order solenoid, are discussed. Coil levitation for the internal field reversal magnet has been analyzed

  12. Generalized thermalization for integrable system under quantum quench.

    Science.gov (United States)

    Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S

    2018-01-01

    We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.

  13. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  14. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  15. Remote Thermal IR Spectroscopy of our Solar System

    Science.gov (United States)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  16. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  17. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  18. Modeling of thermal explosion under pressure in metal ceramic systems

    International Nuclear Information System (INIS)

    Shapiro, M.; Dudko, V.; Skachek, B.; Matvienko, A.; Gotman, I.; Gutmanas, E.Y.

    1998-01-01

    The process of reactive in situ synthesis of dense ceramic matrix composites in Ti-B-C, Ti-B-N, Ti-Si-N systems is modeled. These ceramics are fabricated on the basis of compacted blends of ceramic powders, namely Ti-B 4 C and/or Ti-BN. The objectives of the project are to identify and investigate the optimal thermal conditions preferable for production of fully dense ceramic matrix composites. Towards this goal heat transfer and combustion in dense and porous ceramic blends are investigated during monotonous heating at a constant rate. This process is modeled using a heat transfer-combustion model with kinetic parameters determined from the differential thermal analysis of the experimental data. The kinetic burning parameters and the model developed are further used to describe the thermal explosion synthesis in a restrained die under pressure. It is shown that heat removal from the reaction zone affects the combustion process and the final phase composition

  19. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  20. Improved thermal storage material for portable life support systems

    Science.gov (United States)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  1. Thermal-hydraulic analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1987-01-01

    This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs

  2. Orientifolding of the ABJ Fermi gas

    International Nuclear Information System (INIS)

    Okuyama, Kazumi

    2016-01-01

    The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of N=5O(n)×USp(n"′) theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few “half-instanton” corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k=2,4,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k=2,4 we prove the functional relations among the grand partition functions conjectured in http://arxiv.org/abs/1410.7658.

  3. Orientifolding of the ABJ Fermi gas

    Science.gov (United States)

    Okuyama, Kazumi

    2016-03-01

    The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of {N}=5O(n)× USp({n}^') theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k = 2 ,4 ,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k = 2 , 4 we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.

  4. Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems.

    Science.gov (United States)

    Ryoo, Na Kyung; Kwon, Ji-Won; Wee, Won Ryang; Miller, Kevin M; Han, Young Keun

    2013-10-12

    To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Experiments were performed under in-vitro conditions in this study.Three phacoemulsification handpieces (Infiniti, Signature, and Stellaris) were inserted into balanced salt solution-filled silicone test chambers and were imaged side-by-side by using a thermal camera. Incision compression was simulated by suspending 30.66-gram weights from the silicone chambers. The irrigation flow rate was set at 0, 1, 2, 3, 4, and 5 cc/min and the phacoemulsification power on the instrument consoles was set at 40, 60, 80, and 100%. The highest temperatures generated from each handpiece around the point of compression were measured at 0, 10, 30, and 60 seconds. Under the same displayed phacoemulsification power settings, the peak temperatures measured when using the Infiniti were lower than when using the other two machines, and the Signature was cooler than the Stellaris. At 10 seconds, torsional phacoemulsification with Infiniti at 100% power showed data comparable to that of the Signature at 80% and the Stellaris at 60%. At 30 seconds, the temperature from the Infiniti at 100% power was lower than the Signature at 60% and the Stellaris at 40%. Torsional phacoemulsification with the Infiniti generates less heat than longitudinal phacoemulsification with the Signature and the Stellaris. Lower operating temperatures indicate lower heat generation within the same fluid volume, which may provide additional thermal protection during cataract surgery.

  5. Design and simulation of a low concentrating photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Rosell, J.I.; Vallverdu, X.; Lechon, M.A.; Ibanez, M.

    2005-01-01

    The advantages of photovoltaic/thermal (PV/T) collectors and low solar concentration technologies are combined into a photovoltaic/thermal system to increase the solar energy conversion efficiency. This paper presents a prototype 11X concentration rate and two axis tracking system. The main novelty is the coupling of a linear Fresnel concentrator with a channel photovoltaic/thermal collector. An analytical model to simulate the thermal behaviour of the prototype is proposed and validated. Measured thermal performance of the solar system gives values above 60%. Theoretical analysis confirms that thermal conduction between the PV cells and the absorber plate is a critical parameter

  6. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D.; Smith, M.P.

    1980-01-01

    An improved method and apparatus are described for simultaneously measuring the porosity and thermal neutron capture cross section of earth formations in situ in the vicinity of a well borehole using pulsed neutron well logging techniques. The logging tool which is moved through the borehole consists of a 14 MeV pulsed neutron source, an epithermal neutron detector and a combination gamma ray and fast neutron detector. The associated gating systems, counters and combined digital computer are sited above ground. (U.K.)

  7. Solar-thermal-energy collection/storage-pond system

    Science.gov (United States)

    Blahnik, D.E.

    1982-03-25

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  8. Development of intelligent system for a thermal analysis instrument

    International Nuclear Information System (INIS)

    Xu Xiaoli; Wu Guoxin; Shi Yongchao

    2005-01-01

    The key techniques for the intelligent analysis instrument developed are proposed. Based on the technique of virtual instrumentation, the intelligent PID control algorithm to control the temperature of thermal analysis instrument is described. The dynamic character and the robust performance of traditional PID controls are improved through the dynamic gain factor, temperature rate change factor, the forecast factor, and the temperature correction factor is introduced. Using the graphic development environment of LabVIEW, the design of system modularization and the graphic display are implemented. By means of multiple mathematical modules, intelligent data processing is realized

  9. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  10. New water intake systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Ishchuk, T.B.; Samodel'nikov, B.T.

    1989-01-01

    Problems arising during design of water intake and spillway structures for the auxiliary water supply system of thermal and nuclear power plants connected with the provision of their reliable operation and with the effect on the temperature condition of reservoirs and their ecology are investigated. Design providing for the connection of intake channel and catch drain for a through (transition) channel and supplying a water transition flow by ejecting water outputs is suggested. The variant considered is effective for seas, lakes and reservoirs with adverse conditions for natural cooling and it is suitable for regions with seismicity up to 5-6 balls

  11. The proposed combustion standards and DOE thermal treatment systems

    International Nuclear Information System (INIS)

    McFee, J.; Hinman, M.B.; Eaton, D.; NcNeel, K.

    1997-01-01

    Under the provisions of the Clean Air Act (CAA) concerning emission of hazardous air pollutants (HAPs), the Environmental Protection Agency (EPA) published the proposed Revised Standards for Hazardous Waste Combustors on April 19, 1996 (EPA, 1996). These standards would apply to the existing Department of Energy (DOE) radioactive and mixed waste incinerators, and may be applied to several developing alternatives to incineration. The DOE has reviewed the basis for these regulations and prepared extensive comments to present concerns about the bases and implications of the standards. DOE is now discussing compliance options with the EPA for regulation of radioactive and mixed waste thermal treatment systems

  12. An Integrated Thermal Compensation System for MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Sheng-Ren Chiu

    2014-03-01

    Full Text Available An active thermal compensation system for a low temperature-bias-drift (TBD MEMS-based gyroscope is proposed in this study. First, a micro-gyroscope is fabricated by a high-aspect-ratio silicon-on-glass (SOG process and vacuum packaged by glass frit bonding. Moreover, a drive/readout ASIC, implemented by the 0.25 µm 1P5M standard CMOS process, is designed and integrated with the gyroscope by directly wire bonding. Then, since the temperature effect is one of the critical issues in the high performance gyroscope applications, the temperature-dependent characteristics of the micro-gyroscope are discussed. Furthermore, to compensate the TBD of the micro-gyroscope, a thermal compensation system is proposed and integrated in the aforementioned ASIC to actively tune the parameters in the digital trimming mechanism, which is designed in the readout ASIC. Finally, some experimental results demonstrate that the TBD of the micro-gyroscope can be compensated effectively by the proposed compensation system.

  13. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  14. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  15. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  16. Inversion approach for thermal data from a convecting hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1983-08-01

    Efforts to invert thermal data from 13 deep geothermal wells, and from additional shallow heat-flow holes, in order to determine the age and total flow rate of the Salton Sea hydrothermal system are described. The data were inverted for a very restrictive model: single-phase, horizontal flow along prescribed flowlines in a single aquifer bounded by an impermeable cap and base. With simplifying assumptions, the results are shown to depend on only two parameters, the system age, and the aquifer/cap thickness ratio. The surface gradient and temperature distribution within the cap are calculated analytically for all possible parameter values. Those parameters producing temperatures that agree with observations are identified, and the range of acceptable parameters is reduced by conclusions drawn from other geophysical data. The cap thickness is inferred to be 500m from thermal and lithologic data from the wells. The aquifer thickness is limited to less than 2500m by seismic, resistivity and magnetic data. It is concluded that if this model is valid, the system age is constrained between 3000 and 20,000 years.

  17. Scaling of Thermal-Hydraulic Phenomena and System Code Assessment

    International Nuclear Information System (INIS)

    Wolfert, K.

    2008-01-01

    In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.

  18. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  19. Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model

    Science.gov (United States)

    Lvov, Yuri V.; Onorato, Miguel

    2018-04-01

    We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.

  20. The Anderson localization problem, the Fermi-Pasta-Ulam paradox and the generalized diffusion approach

    International Nuclear Information System (INIS)

    Kuzovkov, V N

    2011-01-01

    The goal of this paper is twofold. First, based on the interpretation of a quantum tight-binding model in terms of a classical Hamiltonian map, we consider the Anderson localization (AL) problem as the Fermi-Pasta-Ulam (FPU) effect in a modified dynamical system containing both stable and unstable (inverted) modes. Delocalized states in the AL are analogous to the stable quasi-periodic motion in FPU, whereas localized states are analogous to thermalization, respectively. The second aim is to use the classical Hamilton map for a simplified derivation of exact equations for the localization operator H(z). The latter was presented earlier (Kuzovkov et al 2002 J. Phys.: Condens. Matter 14 13777) treating the AL as a generalized diffusion in a dynamical system. We demonstrate that counter-intuitive results of our studies of the AL are similar to the FPU counter-intuitivity.

  1. The Anderson localization problem, the Fermi-Pasta-Ulam paradox and the generalized diffusion approach

    Science.gov (United States)

    Kuzovkov, V. N.

    2011-12-01

    The goal of this paper is twofold. First, based on the interpretation of a quantum tight-binding model in terms of a classical Hamiltonian map, we consider the Anderson localization (AL) problem as the Fermi-Pasta-Ulam (FPU) effect in a modified dynamical system containing both stable and unstable (inverted) modes. Delocalized states in the AL are analogous to the stable quasi-periodic motion in FPU, whereas localized states are analogous to thermalization, respectively. The second aim is to use the classical Hamilton map for a simplified derivation of exact equations for the localization operator H(z). The latter was presented earlier (Kuzovkov et al 2002 J. Phys.: Condens. Matter 14 13777) treating the AL as a generalized diffusion in a dynamical system. We demonstrate that counter-intuitive results of our studies of the AL are similar to the FPU counter-intuitivity.

  2. Integrated Thermal Protection Systems and Heat Resistant Structures

    Science.gov (United States)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  3. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  4. Standard Guide for Specifying Thermal Performance of Geothermal Power Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Outer skin protection of columbium Thermal Protection System (TPS) panels

    Science.gov (United States)

    Culp, J. D.

    1973-01-01

    A coated columbium alloy material system 0.04 centimeter thick was developed which provides for increased reliability to the load bearing character of the system in the event of physical damage to and loss of the exterior protective coating. The increased reliability to the load bearing columbium alloy (FS-85) was achieved by interposing an oxidation resistant columbium alloy (B-1) between the FS-85 alloy and a fused slurry silicide coating. The B-1 alloy was applied as a cladding to the FS-85 and the composite was fused slurry silicide coated. Results of material evaluation testing included cyclic oxidation testing of specimens with intentional coating defects, tensile testing of several material combinations exposed to reentry profile conditions, and emittance testing after cycling of up to 100 simulated reentries. The clad material, which was shown to provide greater reliability than unclad materials, holds significant promise for use in the thermal protection system of hypersonic reentry vehicles.

  6. Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report

    Science.gov (United States)

    Wieland, P. O.; Hawk, H. D.

    2001-01-01

    During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.

  7. Enthalpy estimation for thermal comfort and energy saving in air conditioning system

    International Nuclear Information System (INIS)

    Chu, C.-M.; Jong, T.-L.

    2008-01-01

    The thermal comfort control of a room must consider not only the thermal comfort level but also energy saving. This paper proposes an enthalpy estimation that is conducive for thermal comfort control and energy saving. The least enthalpy estimator (LEE) combines the concept of human thermal comfort with the theory of enthalpy to predict the load for a suitable setting pair in order to maintain more precisely the thermal comfort level and save energy in the air conditioning system

  8. Pulsar Timing with the Fermi LAT

    Science.gov (United States)

    2010-12-01

    Pulsar Timing with the Fermi LAT Paul S. Ray∗, Matthew Kerr†, Damien Parent∗∗ and the Fermi PSC‡ ∗Naval Research Laboratory, 4555 Overlook Ave., SW...Laboratory, Washington, DC 20375, USA ‡Fermi Pulsar Search Consortium Abstract. We present an overview of precise pulsar timing using data from the Large...unbinned photon data. In addition to determining the spindown behavior of the pulsars and detecting glitches and timing noise, such timing analyses al

  9. Many-body pairing in a two-dimensional Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Neidig, Mathias

    2017-05-24

    This thesis reports on experiments conducted in a single layer, quasi two-dimensional, two-component ultracold Fermi gas in the strongly interacting regime. Ultracold gases can be used to simulate key aspects of more complicated systems like for example cuprates which show high-T{sub c} superconductivity. The momentum distribution of a sample of bosonic dimers in a quasi-2D square lattice geometry was measured to obtain the coherence properties. For shallow lattices, sharp peaks in the momentum distribution, indicating coherence, were observed at zero momentum as well as at positive and negative lattice momenta along each axis. For deeper lattices, heating impeded the ability to prepare a Mott-insulator. A spatially resolved radio-frequency spectroscopy was employed for a quasi-2D Fermi gas in the normal phase throughout the BEC-BCS crossover. The interaction induced energy shifts were measured in the strongly interacting region where they can be on the order of the Fermi energy and thus the local resolution is crucial. Furthermore, the onset of pairing in the strongly interacting region was measured as a function of temperature and it was shown that the fraction of free atoms decreases faster than expected from thermal non-interacting theory. At last, the pairing gap was measured using an imbalanced sample. On the BEC side it was found to be in very good agreement with two-body physics as expected. In the strongly interacting regime, however, a deviation from two-body physics indicates that here many-body effects play a role and thus further studies are required.

  10. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  11. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  12. Detecting Friedel oscillations in ultracold Fermi gases

    Science.gov (United States)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  13. Theory of Fermi Liquid with Flat Bands

    Science.gov (United States)

    Khodel, V. A.

    2018-04-01

    A self-consistent theory of Fermi systems hosting flat bands is developed. Compared with an original model of fermion condensation, its key point consists in proper accounting for mixing between condensate and non-condensate degrees of freedom that leads to formation of a non-BCS gap Υ (p) in the single-particle spectrum. The results obtained explain: (1) the two-gap structure of spectra of single-particle excitations of electron systems of copper oxides, revealed in ARPES studies, (2) the role of violation of the topological stability of the Landau state in the arrangement of the T-x phase diagram of this family of high-T_c superconductors, (3) the topological nature of a metal-insulator transition, discovered in homogeneous two-dimensional low-density electron liquid of MOSFETs more than 20 years ago.

  14. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  15. Influence of the ventilation system on thermal comfort of the chilled panel system in heating mode

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhe; Ding, Yan; Wang, Shuo; Yin, Xinglei; Wang, Menglei [Tianjin University, Tianjin 300072 (China)

    2010-12-15

    In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation. (author)

  16. Compositeness and the Fermi scale

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1984-01-01

    The positive attitude adopted up to now, due to the non-observation of effects of substructure, is that the compositeness scale Λ must be large: Λ > or approx. 1 TeV. Such a large value of Λ gives rise to two theoretical problems which I examine here, namely: 1) What dynamics yields light composite quarks and leptons (msub(f) < < Λ) and 2) What relation does the compositeness scale Λ have with the Fermi scale Λsub(F) = (√2 Gsub(F))sup(-1/2) approx.= 250 GeV. (orig./HSI)

  17. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  18. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La₂-xSrxCuO₄.

    Science.gov (United States)

    Chang, J; Månsson, M; Pailhès, S; Claesson, T; Lipscombe, O J; Hayden, S M; Patthey, L; Tjernberg, O; Mesot, J

    2013-01-01

    High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.

  19. Challenges in thermal and hydraulic analysis of ADS target systems

    International Nuclear Information System (INIS)

    Groetzbach, G.; Batta, A.; Lefhalm, C.-H.; Otic, I.

    2004-01-01

    The liquid metal cooled spallation targets of Accelerator Driven nuclear reactor Systems obey high thermal loads; in addition some flow and cooling conditions are of a prototypical character; in contrast the operating conditions for the engaged materials are narrow; thus, the target development requires a very careful analysis by experimental and numerical means. Especially the cooling of the steel window, which is heated by the proton beam, needs special care. Some of the main goals of the experimental and numerical analyses of the thermal dynamics of those systems are discusses. The prediction of locally detached flows and of flows with larger recirculation areas suffers from insufficient turbulence modeling; this has to be compensated by using prototypical model experiments, e.g. with water, to select the adequate models and numerical schemes. The well known problems with the Reynolds analogy in predicting the heat transfer in liquid metals requires always prototypic liquid metal experiments to select and adapt the turbulent heat flux models. The uncertainties in liquid metal experiments cannot be neglected; so it is necessary to perform CFD calculations and experiments always hand in hand and to develop improve turbulent heat flux models. One contribution to an improved 3 or 4-equation model is deduced from recent Direct Numerical Simulation (DNS) data. (author)

  20. Computational Design and Experimental Validation of New Thermal Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2011-12-31

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This proposal will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; we will perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; we will perform material characterizations and oxidation/corrosion tests; and we will demonstrate our new Thermal barrier coating (TBC) systems experimentally under Integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed High Temperature/High Pressure Durability Test Rig under real syngas product compositions.

  1. Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators

    Science.gov (United States)

    DelCorso, Joseph A.; Bruce, Walter E., III; Hughes, Stephen J.; Dec, John A.; Rezin, Marc D.; Meador, Mary Ann B.; Guo, Haiquan; Fletcher, Douglas G.; Calomino, Anthony M.; Cheatwood, McNeil

    2012-01-01

    The Hypersonic Inflatable Aerodynamic Decelerators (HIAD) project has invested in development of multiple thermal protection system (TPS) candidates to be used in inflatable, high downmass, technology flight projects. Flexible TPS is one element of the HIAD project which is tasked with the research and development of the technology ranging from direct ground tests, modelling and simulation, characterization of TPS systems, manufacturing and handling, and standards and policy definition. The intent of flexible TPS is to enable large deployable aeroshell technologies, which increase the drag performance while significantly reducing the ballistic coefficient of high-mass entry vehicles. A HIAD requires a flexible TPS capable of surviving aerothermal loads, and durable enough to survive the rigors of construction, handling, high density packing, long duration exposure to extrinsic, in-situ environments, and deployment. This paper provides a comprehensive overview of key work being performed within the Flexible TPS element of the HIAD project. Included in this paper is an overview of, and results from, each Flexible TPS research and development activity, which includes ground testing, physics-based thermal modelling, age testing, margins policy, catalysis, materials characterization, and recent developments with new TPS materials.

  2. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    Science.gov (United States)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  3. Evaluation of Fermi read-out of the Atlas Tilecal prototype

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Alifanov, A.

    1998-01-01

    Prototypes of the FERMI system have been used to read out a prototype of the ATLAS hadron calorimeter in a beam test at the CERN SPS. The FERMI read-out system, using a compressor and a sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of FERMI data. The resulting energy resolution is better than the one obtained with the standard read-out. (orig.)

  4. Thermostatistic properties of a q-deformed ideal Fermi gas with a general energy spectrum

    International Nuclear Information System (INIS)

    Cai, Shukuan; Su, Guozhen; Chen, Jincan

    2007-01-01

    The thermostatistic problems of a q-deformed ideal Fermi gas in any dimensional space and with a general energy spectrum are studied, based on the q-deformed Fermi-Dirac distribution. The effects of the deformation parameter q on the properties of the system are revealed. It is shown that q-deformation results in some novel characteristics different from those of an ordinary system. Besides, it is found that the effects of the q-deformation on the properties of the Fermi systems are very different for different dimensional spaces and different energy spectrums

  5. Analysis of thermal systems using the entropy balance method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C L.D.; Fartaj, S A; Fenton, D L [Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering

    1992-04-01

    This study investigates the applicability of the second law of thermodynamics using an entropy balance method to analyse and design thermal systems. As examples, the entropy balance method is used to analyse a single stage chiller system and a single stage heat transformer, both with lithium-bromide/water as the working fluid. The entropy method yields not only the same information as is conveyed by the methods of energy and exergy analysis, but it also predicts clearly the influence of irreversibilities of individual components on the coefficient of performance and its effectiveness, based on the process properties, rather than on ambient conditions. Furthermore, this method is capable of presenting the overall distribution of the heat input by displaying the additional heat required to overcome irreversibility of each component without ambiguity. (Author).

  6. Different Approaches to Control of TISO Thermal System

    Directory of Open Access Journals (Sweden)

    Jaroslava KRÁLOVÁ

    2009-06-01

    Full Text Available The contribution is aimed on problematic of multivariable control. Multivariable system can be controlled by multivariable controller or we can use decentralized control. Control of thermal system with two inputs and one output is shown in the paper. The goal of paper is to find what sort of results we can get by classical approaches and by more sophisticated strategies. Two discrete-time PID controllers are selected as a representative of classical approach and split-range with discrete-time PID controller is selected as a representative of more sophisticated strategy. Control strategies are compared in the view of control quality and costs, information and knowledge required by control design and application.

  7. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  8. Advanced Oxide Material Systems for 1650 Deg. C Thermal/Environmental Barrier Coating Applications

    National Research Council Canada - National Science Library

    Zhu, Dongming; Fox, Dennis S; Bansal, Narottam P; Miller, Robert A

    2004-01-01

    ... systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore-, and magnetoplumbite-based TEBC materials are evaluated...

  9. Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System

    Science.gov (United States)

    2015-09-01

    thank my Mom, Dad , Allison, Jessica, and father-in-law, Tom, for always being there to listen and encourage me. xxiv THIS PAGE INTENTIONALLY...thermal conductivity is temperature measurement inaccuracies. A probe constructed of a poor thermally conductive material when inserted into a hot...interface- resistance-measurement-using-a-transient-method/ [26] H. Fukushima, L. T. Drzal, B. P. Rook and M. J. Rich , “Thermal conductivity of exfoliated

  10. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    Science.gov (United States)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  11. Thermal mixing in T-junction piping system concerned with high-cycle thermal fatigue in structure

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Ohshima, Hiroyuki; Monji, Hideaki

    2008-01-01

    In Japan Atomic Energy Agency (JAEA), a numerical simulation code 'MUGTHES' has been developed to investigate thermal striping phenomena caused by turbulence mixing of fluids in different temperature and to provide transient data for an evaluation method of high-cycle thermal fatigue. MUGTHES adopts Large Eddy Simulation (LES) approach to predict unsteady phenomena in thermal mixing and employs boundary fitted coordinate system to be applied to complex geometry in a power reactor. Numerical simulation of thermal striping phenomena in a T-junction piping system (T-pipe) is conducted. Boundary condition for the simulation is chosen from an existing water experiment in JAEA, named as WATLON experiment. In the numerical simulation, standard Smagorinsky model is employed as eddy viscosity model with the model coefficient of 0.14 (=Cs). Numerical results of MUGTHES are verified by the comparisons with experimental results of velocity and temperature. Through the numerical simulation in the T-pipe, applicability of MUGTHES to the thermal striping phenomena is confirmed and the characteristic large-scale eddy structure which dominates thermal mixing and may cause high-cycle thermal fatigue is revealed. (author)

  12. Robotic system for the servicing of the orbiter thermal protection system

    Science.gov (United States)

    Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg

    1994-01-01

    This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.

  13. Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code

    International Nuclear Information System (INIS)

    Raimondi, L.; Svetina, C.; Mahne, N.; Cocco, D.; Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M.; De Ninno, G.; Zeitoun, P.; Dovillaire, G.; Lambert, G.; Boutu, W.; Merdji, H.; Gonzalez, A.I.; Gauthier, D.

    2013-01-01

    FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization

  14. Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, L., E-mail: lorenzo.raimondi@elettra.trieste.it [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); Svetina, C.; Mahne, N. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); Cocco, D. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS-19 Menlo Park, CA 94025 (United States); Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); De Ninno, G. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); University of Nova Gorica, Vipavska 13, Rozna Dolina, SI-5000 Nova Gorica (Slovenia); Zeitoun, P. [Laboratoire d' Optique Appliquée, CNRS-ENSTA-École Polytechnique, Chemin de la Humiére, 91761 Palaiseau (France); Dovillaire, G. [Imagine Optic, 18 Rue Charles de Gaulle, 91400 Orsay (France); Lambert, G. [Laboratoire d' Optique Appliquée, CNRS-ENSTA-École Polytechnique, Chemin de la Humiére, 91761 Palaiseau (France); Boutu, W.; Merdji, H.; Gonzalez, A.I. [Service des Photons, Atomes et Molécules, IRAMIS, CEA-Saclay, Btiment 522, 91191 Gif-sur-Yvette (France); Gauthier, D. [University of Nova Gorica, Vipavska 13, Rozna Dolina, SI-5000 Nova Gorica (Slovenia); and others

    2013-05-11

    FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.

  15. Dynamic thermal analysis of a concentrated photovoltaic system

    Science.gov (United States)

    Avrett, John T., II; Cain, Stephen C.; Pochet, Michael

    2012-02-01

    Concentrated photovoltaic (PV) technology represents a growing market in the field of terrestrial solar energy production. As the demand for renewable energy technologies increases, further importance is placed upon the modeling, design, and simulation of these systems. Given the U.S. Air Force cultural shift towards energy awareness and conservation, several concentrated PV systems have been installed on Air Force installations across the country. However, there has been a dearth of research within the Air Force devoted to understanding these systems in order to possibly improve the existing technologies. This research presents a new model for a simple concentrated PV system. This model accurately determines the steady state operating temperature as a function of the concentration factor for the optical part of the concentrated PV system, in order to calculate the optimum concentration that maximizes power output and efficiency. The dynamic thermal model derived is validated experimentally using a commercial polysilicon solar cell, and is shown to accurately predict the steady state temperature and ideal concentration factor.

  16. Scaling in nuclear reactor system thermal-hydraulics

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.

    2010-01-01

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  17. Scaling in nuclear reactor system thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    D' Auria, F., E-mail: dauria@ing.unipi.i [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Galassi, G.M. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2010-10-15

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  18. FermiLib v0.1

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-27

    FermiLib is an open source software package designed to facilitate the development and testing of algorithms for simulations of fermionic systems on quantum computers. Fermionic simulations represent an important application of early quantum devices with a lot of potential high value targets, such as quantum chemistry for the development of new catalysts. This software strives to provide a link between the required domain expertise in specific fermionic applications and quantum computing to enable more users to directly interface with, and develop for, these applications. It is an extensible Python library designed to interface with the high performance quantum simulator, ProjectQ, as well as application specific software such as PSI4 from the domain of quantum chemistry. Such software is key to enabling effective user facilities in quantum computation research.

  19. Adaptationism fails to resolve Fermi's paradox

    Directory of Open Access Journals (Sweden)

    Ćirković Milan M.

    2005-01-01

    Full Text Available One of the most interesting problems in the nascent discipline of astrobiology is more than half-century old Fermi's paradox: why, considering extraordinary young age of Earth and the Solar System in the Galactic context, don't we perceive much older intelligent communities or signposts of their activity? In spite of a vigorous research activity in recent years, especially bolstered by successes of astrobiology in finding extrasolar planets and extremophiles, this problem (also known as the "Great Silence" or "astrosociological" paradox remains as open as ever. In a previous paper, we have discussed a particular evolutionary solution suggested by Karl Schroeder based on the currently dominant evolutionary doctrine of adaptationism. Here, we extend that discussion with emphasis on the problems such a solution is bound to face, and conclude that it is ultimately quite unlikely. .

  20. System Level Analysis of a Water PCM HX Integrated into Orion's Thermal Control System

    Science.gov (United States)

    Navarro, Moses; Hansen, Scott; Seth, Rubik; Ungar, Eugene

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system in a 100km Lunar orbit. The study verified of the thermal model by using a wax PCM and analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option for any case. Additionally, it was found that the radiator area would have to be increased by at least 40% in order to support a viable water-based PCM HX.