WorldWideScience

Sample records for fermi surface reconstruction

  1. Spin density wave order, topological order, and Fermi surface reconstruction

    CERN Document Server

    Sachdev, Subir; Chatterjee, Shubhayu; Schattner, Yoni

    2016-01-01

    In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small 'pockets'. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping.

  2. Fermi-surface reconstruction by stripe order in cuprate superconductors.

    Science.gov (United States)

    Laliberté, F; Chang, J; Doiron-Leyraud, N; Hassinger, E; Daou, R; Rondeau, M; Ramshaw, B J; Liang, R; Bonn, D A; Hardy, W N; Pyon, S; Takayama, T; Takagi, H; Sheikin, I; Malone, L; Proust, C; Behnia, K; Taillefer, Louis

    2011-08-16

    The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa(2)Cu(3)O(y) (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study of thermoelectric transport in the cuprates YBCO and La(1.8-x)Eu(0.2)Sr(x)CuO(4) (Eu-LSCO) to show that the two materials exhibit the same process of Fermi-surface reconstruction as a function of temperature and doping. The fact that in Eu-LSCO this reconstruction coexists with spin and charge modulations that break translational symmetry shows that stripe order is the generic non-superconducting ground state of hole-doped cuprates.

  3. Fermi-surface reconstruction and complex phase equilibria in CaFe2As2.

    Science.gov (United States)

    Gofryk, K; Saparov, B; Durakiewicz, T; Chikina, A; Danzenbächer, S; Vyalikh, D V; Graf, M J; Sefat, A S

    2014-05-09

    Fermi-surface topology governs the relationship between magnetism and superconductivity in iron-based materials. Using low-temperature transport, angle-resolved photoemission, and x-ray diffraction, we show unambiguous evidence of large Fermi-surface reconstruction in CaFe2As2 at magnetic spin-density-wave and nonmagnetic collapsed-tetragonal (cT) transitions. For the cT transition, the change in the Fermi-surface topology has a different character with no contribution from the hole part of the Fermi surface. In addition, the results suggest that the pressure effect in CaFe2As2 is mainly leading to a rigid-band-like change of the valence electronic structure. We discuss these results and their implications for magnetism and superconductivity in this material.

  4. Fermi-Surface Reconstruction and Complex Phase Equilibria in CaFe2As2

    Science.gov (United States)

    Gofryk, K.; Saparov, B.; Durakiewicz, T.; Chikina, A.; Danzenbächer, S.; Vyalikh, D. V.; Graf, M. J.; Sefat, A. S.

    2014-05-01

    Fermi-surface topology governs the relationship between magnetism and superconductivity in iron-based materials. Using low-temperature transport, angle-resolved photoemission, and x-ray diffraction, we show unambiguous evidence of large Fermi-surface reconstruction in CaFe2As2 at magnetic spin-density-wave and nonmagnetic collapsed-tetragonal (cT) transitions. For the cT transition, the change in the Fermi-surface topology has a different character with no contribution from the hole part of the Fermi surface. In addition, the results suggest that the pressure effect in CaFe2As2 is mainly leading to a rigid-band-like change of the valence electronic structure. We discuss these results and their implications for magnetism and superconductivity in this material.

  5. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor.

    Science.gov (United States)

    Chan, M K; Harrison, N; McDonald, R D; Ramshaw, B J; Modic, K A; Barišić, N; Greven, M

    2016-01-01

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy.

  6. Electron-hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator.

    Science.gov (United States)

    Kawasugi, Yoshitaka; Seki, Kazuhiro; Edagawa, Yusuke; Sato, Yoshiaki; Pu, Jiang; Takenobu, Taishi; Yunoki, Seiji; Yamamoto, Hiroshi M; Kato, Reizo

    2016-08-05

    It is widely recognized that the effect of doping into a Mott insulator is complicated and unpredictable, as can be seen by examining the Hall coefficient in high Tc cuprates. The doping effect, including the electron-hole doping asymmetry, may be more straightforward in doped organic Mott insulators owing to their simple electronic structures. Here we investigate the doping asymmetry of an organic Mott insulator by carrying out electric-double-layer transistor measurements and using cluster perturbation theory. The calculations predict that strongly anisotropic suppression of the spectral weight results in the Fermi arc state under hole doping, while a relatively uniform spectral weight results in the emergence of a non-interacting-like Fermi surface (FS) in the electron-doped state. In accordance with the calculations, the experimentally observed Hall coefficients and resistivity anisotropy correspond to the pocket formed by the Fermi arcs under hole doping and to the non-interacting FS under electron doping.

  7. Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5.

    Science.gov (United States)

    Jiao, Lin; Chen, Ye; Kohama, Yoshimitsu; Graf, David; Bauer, E D; Singleton, John; Zhu, Jian-Xin; Weng, Zongfa; Pang, Guiming; Shang, Tian; Zhang, Jinglei; Lee, Han-Oh; Park, Tuson; Jaime, Marcelo; Thompson, J D; Steglich, Frank; Si, Qimiao; Yuan, H Q

    2015-01-20

    Conventional, thermally driven continuous phase transitions are described by universal critical behavior that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behavior remain open issues. Here we report measurements of heat capacity and de Haas-van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (Bc0 ≈ 50 T) in the heavy-fermion metal CeRhIn5. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B0* ≈ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn5 suggest that the Fermi-surface change at B0* is associated with a localized-to-itinerant transition of the Ce-4f electrons in CeRhIn5. Taken in conjunction with pressure experiments, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn5, a significant step toward the derivation of a universal phase diagram for QCPs.

  8. Effets Seebeck et Nernst dans les cuprates: Etude de la reconstruction de la surface de Fermi sous champ magnetique intense

    Science.gov (United States)

    Laliberte, Francis

    2010-06-01

    Ce memoire presente des mesures de transport thermoelectrique, les effets Seebeck et Nernst, dans une serie d'echantillons de supraconducteurs a haute temperature critique. Des resultats obtenus recemment au Laboratoire National des Champs Magnetiques Intenses a Grenoble sur La1.7Eu0.2Sr0.1 CuO4, La1.675Eu0.2Sr0.125CuO 4, La1.64Eu0.2Sr0.16CuO4, La1.74Eu0.1Sr0.16CuO4 et La 1.4Nd0.4Sr0.2CuO4 sont analyses. Une attention particuliere est accordee aux equations de la theorie semi-classique du transport et leur validite est verifiee. La procedure experimentale et les materiaux utilises pour concevoir les montages de mesures sont expliques en detail. Enfin, un chapitre est dedie a l'explication et l'interpretation des resultats de transport thermoelectrique sur YBa2Cu3O6+delta publies au cours de l'hiver 2010 dans les revues Nature et Physical Review Letters. Les donnees d'effet Seebeck dans les echantillons de La 1.8-x,Eu0.2SrxCuO 4, ou un changement de signe est observe, permettent de conclure a la presence d'une poche d'electrons dans la surface de Fermi qui domine le transport a basse temperature dans la region sous-dopee du diagramme de phase. Cette conclusion est similaire a celle obtenue par des mesures d'effet Hall dans YBa 2Cu3O6+delta et elle cadre bien dans un scenario de reconstruction de la surface de Fermi. Les donnees d'effet Nernst recueillies indiquent que la contribution des fluctuations supraconductrices est limitee a un modeste intervalle de temperature au-dessus de la temperature critique.

  9. Reconstruction de la surface de Fermi dans l'etat normal d'un supraconducteur a haute Tc: Une etude du transport electrique en champ magnetique intense

    Science.gov (United States)

    Le Boeuf, David

    Des mesures de resistance longitudinale et de resistance de Hall en champ magnetique intense transverse (perpendiculaire aux plans CuO2) ont ete effectuees au sein de monocristaux de YBa2Cu3Oy (YBCO) demacles, ordonnes et de grande purete, afin d'etudier l'etat fondamental des supraconducteurs a haute Tc dans le regime sous-dope. Cette etude a ete realisee en fonction du dopage et de l'orientation du courant d'excitation J par rapport a l'axe orthorhombique b de la structure cristalline. Les mesures en champ magnetique intense revelent par suppression de la supraconductivite des oscillations magnetiques des resistances longitudinale et de Hall dans YBa2Cu 3O6.51 et YBa2Cu4O8. La conformite du comportement de ces oscillations quantiques au formalisme de Lifshitz-Kosevich, apporte la preuve de l'existence d'une surface de Fermi fermee a caractere quasi-2D, abritant des quasiparticules coherentes respectant la statistique de Fermi-Dirac, dans la phase pseudogap d'YBCO. La faible frequence des oscillations quantiques, combinee avec l'etude de la partie monotone de la resistance de Hall en fonction de la temperature indique que la surface de Fermi d'YBCO sous-dope comprend une petite poche de Fermi occupee par des porteurs de charge negative. Cette particularite de la surface de Fermi dans le regime sous-dope incompatible avec les calculs de structure de bande est en fort contraste avec la structure electronique presente dans le regime surdope. Cette observation implique ainsi l'existence d'un point critique quantique dans le diagramme de phase d'YBCO, au voisinage duquel la surface de Fermi doit subir une reconstruction induite par l'etablissement d'une brisure de la symetrie de translation du reseau cristallin sous-jacent. Enfin, l'etude en fonction du dopage de la resistance de Hall et de la resistance longitudinale en champ magnetique intense suggere qu'un ordre du type onde de densite (DW) est responsable de la reconstruction de la surface de Fermi. L'analogie de

  10. Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa_{2}Cu_{3}O_{y}: Fermi-Surface Reconstruction by Bidirectional Charge Order

    Directory of Open Access Journals (Sweden)

    O. Cyr-Choinière

    2017-09-01

    Full Text Available The Seebeck coefficient S of the cuprate YBa_{2}Cu_{3}O_{y} is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p=0.11 and p=0.12, for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S/T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in S_{b}, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S/T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.

  11. Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa2 Cu3 Oy : Fermi-Surface Reconstruction by Bidirectional Charge Order

    Science.gov (United States)

    Cyr-Choinière, O.; Badoux, S.; Grissonnanche, G.; Michon, B.; Afshar, S. A. A.; Fortier, S.; LeBoeuf, D.; Graf, D.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis

    2017-07-01

    The Seebeck coefficient S of the cuprate YBa2 Cu3 Oy is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p =0.11 and p =0.12 , for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S /T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in Sb, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S /T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.

  12. Attachment of Surface "Fermi Arcs" to the Bulk Fermi Surface: "Fermi-Level Plumbing" in Topological Metals

    OpenAIRE

    Haldane, F. D. M.

    2014-01-01

    The role of "Fermi arc" surface-quasiparticle states in "topological metals" (where some Fermi surface sheets have non-zero Chern number) is examined. They act as "Fermi-level plumbing" conduits that transfer quasiparticles among groups of apparently-disconnected Fermi sheets with non-zero Chern numbers to maintain equality of their chemical potentials, which is required by gauge invariance. Fermi arcs have a chiral tangential attachment to the surface projections of sheets of the bulk Fermi ...

  13. Pressure Evolution of a Field-Induced Fermi Surface Reconstruction and of the Neel Critical Field in CeIn3

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, C.; Purcell, K.M.; Graf, D.; Kano, M.; Bourg, J.; Palm, E.C.; Murphy, T.; McDonald, R.; Mielke, C.H.; Altarawneh, M.M.; Hu, R.; Ebihara, T.; Cooley, J.; Schlottmann, P.; Tozer, S.W.

    2009-06-01

    We report high-pressure skin-depth measurements on the heavy fermion material CeIn{sub 3} in magnetic fields up to 64 T using a self-resonant tank circuit based on a tunnel diode oscillator. At ambient pressure, an anomaly in the skin depth is seen at 45 T. The field where this anomaly occurs decreases with applied pressure until approximately 1.0 GPa, where it begins to increase before merging with the antiferromagnetic phase boundary. Possible origins for this transport anomaly are explored in terms of a Fermi surface reconstruction. The critical magnetic field at which the Neel-ordered phase is suppressed, is also mapped as a function of pressure and extrapolates to the previous ambient-pressure measurements at high magnetic fields and high-pressure measurements at zero magnetic field.

  14. Fermi surface reconstruction in (Ba1-xKx)Fe2As2 (0.44 ≤ x ≤ 1) probed by thermoelectric power measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hodovanets, Halyna; Liu, Yong; Jesche, Anton; Ran, Sheng; Mun, Eun Deok; Lograsso, Thomas A; Bud' ko, Sergey L; Canfield, Paul C

    2014-06-01

    We report in-plane thermoelectric power measurements on single crystals of (Ba1-xKx)Fe2As2(0.44≤x≤1). We observe a minimum in the S|T=const versus x at x~0.55 that can be associated with the change in the topology of the Fermi surface, a Lifshitz transition, related to the electron pockets at the center of M point crossing the Fermi level. This feature is clearly observable below ~75 K. Thermoelectric power also shows a change in the x~0.8–0.9 range, where the maximum in the thermoelectric power collapses into a plateau. This Lifshitz transition is most likely related to the reconstruction of the Fermi surface associated with the transformation of the hole pockets at the M point into four blades as observed by ARPES measurements.

  15. Fermi Surface and Antiferromagnetism in Europium Metal

    DEFF Research Database (Denmark)

    Andersen, O. Krogh; Loucks, T. L.

    1968-01-01

    We have calculated the Fermi surface of europium in order to find those features which determine the wave vector of the helical moment arrangement below the Néel point. We find that there are two pieces of Fermi surface: an electron surface at the symmetry point H, which has the shape of rounded-...

  16. Fermi surface topology in the proximity to the Mott insulator

    Science.gov (United States)

    Yamaji, Youhei; Imada, Masatoshi

    2010-03-01

    Since the discovery of cuprate superconductors, how its low energy electronic excitations evolve with doping has attracted much attention. The normal metallic state offers a typical example of strongly correlated metallic state. Recent experiments suggest the existence of the k-dependent renormalized quasiparticle [1], or more drastic reconstruction of the Fermi surface [2]. Numerical theories on the two-dimensional Hubbard model also predict the reconstruction of the Fermi surface [3]. We propose a scenario for the Fermi surface reconstruction in the proximity to the Mott insulator based on the simple slave-boson mean-field theory [4] including charge fluctuations [5]. The key idea is the emergence of new fermionic excitations consisting of charge bosons and low energy coherent electrons, and occurrence of topological changes in the Fermi surface. We also discuss relation between the topological changes and superconductivities. [1] As a review, A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003). [2] J. Meng, et al., arXiv: 0906.2682v1. [3] For example, T. D. Stanescu and G. Kotliar, Phys. Rev. B 74, 125110 (2006). [4] G. Kotliar, and A. E. Ruckenstein: Phys. Rev. Lett. 57, 1362 (1987). [5] R. Raimondi, and C. Castellani; Phys. Rev. B 48, 11453 (1993).

  17. Quantum chaos on a critical Fermi surface

    CERN Document Server

    Patel, Aavishkar A

    2016-01-01

    We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of $N$ species of fermions at non-zero density coupled to a $U(1)$ gauge field in two spatial dimensions, and determine the Lyapunov rate and the butterfly velocity in an extended RPA approximation. The thermal diffusivity is found to be universally related to these chaos parameters, i.e. the relationship is independent of $N$, the gauge coupling constant, the Fermi velocity, the Fermi surface curvature, and high energy details.

  18. Fermi Surface of the Most Dilute Superconductor

    Science.gov (United States)

    Lin, Xiao; Zhu, Zengwei; Fauqué, Benoît; Behnia, Kamran

    2013-04-01

    The origin of superconductivity in bulk SrTiO3 is a mystery since the nonmonotonous variation of the critical transition with carrier concentration defies the expectations of the crudest version of the BCS theory. Here, employing the Nernst effect, an extremely sensitive probe of tiny bulk Fermi surfaces, we show that, down to concentrations as low as 5.5×1017cm-3, the system has both a sharp Fermi surface and a superconducting ground state. The most dilute superconductor currently known therefore has a metallic normal state with a Fermi energy as little as 1.1 meV on top of a band gap as large as 3 eV. The occurrence of a superconducting instability in an extremely small, single-component, and barely anisotropic Fermi surface implies strong constraints for the identification of the pairing mechanism.

  19. Holography, fermi surfaces and criticality

    NARCIS (Netherlands)

    Čubrović, Mihailo

    2013-01-01

    We employ the novel method of AdS/CFT correspondence to study strongly correlated fermions, their ground states and the phase transitions between them. AdS/CFT maps the quantum many-body problem to a classical gravity problem, making it more tractable. We find a holographic description of Fermi

  20. Surface reconstructions

    CERN Document Server

    Fisher, David J

    2009-01-01

    It is well-known, even at the most elementary level of scientific knowledge, that free surfaces have properties which make them differ from the underlying bulk material. In the case of liquids, it is common knowledge - even among laymen - that the liquid surface acts as though it were a distinct skin-like material. At a slightly more advanced level, it is known that the liquid surface will seek to minimize its total surface energy by minimizing its surface area; thereby affecting its local vapor-pressure and adsorption behavior. In the case of solids too, it has long been known that different

  1. Critical Doping for the Onset of Fermi-Surface Reconstruction by Charge-Density-Wave Order in the Cuprate Superconductor La_{2-x}Sr_{x}CuO_{4}

    Directory of Open Access Journals (Sweden)

    S. Badoux

    2016-04-01

    Full Text Available The Seebeck coefficient S of the cuprate superconductor La_{2-x}Sr_{x}CuO_{4} (LSCO was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from x=0.07 to x=0.15. For x=0.11, 0.12, 0.125, and 0.13, S/T decreases upon cooling to become negative at low temperatures. The same behavior is observed in the Hall coefficient R_{H}(T. In analogy with other hole-doped cuprates at similar hole concentrations p, the negative S and R_{H} show that the Fermi surface of LSCO undergoes a reconstruction caused by the onset of charge-density-wave modulations. Such modulations have indeed been detected in LSCO by x-ray diffraction in precisely the same doping range. Our data show that in LSCO this Fermi-surface reconstruction is confined to 0.085

  2. Switchable Fermi surface sheets in greigite

    NARCIS (Netherlands)

    Zhang, B.; de Wijs, G. A.; de Groot, R. A.

    2012-01-01

    Greigite (Fe3S4) and magnetite (Fe3O4) are isostructural and isoelectronic ferrimagnets with quite distinct properties. Electronic structure calculations reveal greigite is a normalmetal in contrast to half-metallic magnetite. Greigite shows a complex Fermi surface with a unique influence of

  3. Switchable Fermi surface sheets in greigite

    NARCIS (Netherlands)

    Zhang, B.; de Wijs, G. A.; de Groot, R. A.

    2012-01-01

    Greigite (Fe3S4) and magnetite (Fe3O4) are isostructural and isoelectronic ferrimagnets with quite distinct properties. Electronic structure calculations reveal greigite is a normalmetal in contrast to half-metallic magnetite. Greigite shows a complex Fermi surface with a unique influence of relativ

  4. New physics of metals: fermi surfaces without Fermi liquids.

    OpenAIRE

    Anderson, P W

    1995-01-01

    I relate the historic successes, and present difficulties, of the renormalized quasiparticle theory of metals ("AGD" or Fermi liquid theory). I then describe the best-understood example of a non-Fermi liquid, the normal metallic state of the cuprate superconductors.

  5. Fermi surface effects in terbium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, P.

    1976-10-01

    Work is reported which was conducted to test of the relation of the generalized susceptibility (and therefore, the ordering properties) for Tb to the Fermi energy of Tb. In order to properly analyze the data a simple theory was developed to account for the effects on band structure which accompany alloying and attendant lattice size changes. Using this simple theory, the alloys of Tb with Mg are understood as a combination of Fermi energy lowering and of lattice contraction. The tendency of Th to promote the ferromagnetic structure in Th is understood as a combination of the Fermi energy being raised and of the lattice being expanded. The theory was also useful in explaining the interesting behavior of the Tb with Yb alloys which upon preliminary analysis did not seem to follow the theoretical predictions. After consideration of the volume effect, indeed the Tb with Yb alloys showed promotion of the helical structure as predicted. The complicated behavior of the Tb with Yb alloys is a case where the volume and valence effects compete. Results show that the magnetic ordering properties of the rare earths are intimately related to the Fermi surface geometry through the generalized susceptibility.

  6. Unconventional Fermi surface in an insulating state

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, B. S. [Cambridge Univ., Cambridge (United Kingdom); Hsu, Y. -T. [Cambridge Univ., Cambridge (United Kingdom); Zeng, B. [National High Magnetic Field Lab., Tallahassee, FL (United States); Hatnean, M. Ciomaga [Univ. of Warwick, Coventry (United Kingdom); Zhu, Z. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartstein, M. [Cambridge Univ., Cambridge (United Kingdom); Kiourlappou, M. [Cambridge Univ., Cambridge (United Kingdom); Srivastava, A. [Cambridge Univ., Cambridge (United Kingdom); Johannes, M. D. [Center for Computational Materials Science, Washington, DC (United States); Murphy, T. P. [National High Magnetic Field Lab., Tallahassee, FL (United States); Park, J. -H. [National High Magnetic Field Lab., Tallahassee, FL (United States); Balicas, L. [National High Magnetic Field Lab., Tallahassee, FL (United States); Lonzarich, G. G. [Cambridge Univ., Cambridge (United Kingdom); Balakrishnan, G. [Univ. of Warwick, Coventry (United Kingdom); Sebastian, Suchitra E. [Cambridge Univ., Cambridge (United Kingdom)

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  7. Fermi Surface Nesting in UGe_2

    Science.gov (United States)

    Wang, F.; Allen, J. W.; Denlinger, J. D.; Rossnagel, Kai; Huxley, A. D.; Flouquet, J.

    2004-03-01

    UGe2 is of high current interest in connection with the possible role of ferromagnetic fluctuations in its pressure induced superconductivity, for which the Fermi surface (FS) is thought to be important. The band structure and FS contours of a single crystal have been measured using resonant angle-resolved photoemission near the U 5d to 5f edge. The measured dominant large sheet Fermi surface contour shows good agreement with magneto-oscillatory orbit frequencies, but with a much simpler diamond-like shape as compared to LDA and LDA+U band calculations. The measured FS topology is suggestive of a possible diagonal nesting condition different than previously proposed for SCDW models of the ferromagnetic transition(s) in UGe2 and allows assessment of FS topology-driven models of the ferromagnetic superconductor phase diagram.(e.g. K.G. Sandeman et al.), Phys. Rev. Lett. 90, 167005 (2003). Supported by the U.S. NSF at U. Mich. (DMR-03-02825) and by the DOE at the Advanced Light Source (DE-AC03-76SF00098).

  8. Evolution of electron Fermi surface with doping in cobaltates.

    Science.gov (United States)

    Ma, Xixiao; Lan, Yu; Qin, Ling; Kuang, Lülin; Feng, Shiping

    2016-08-24

    The notion of the electron Fermi surface is one of the characteristic concepts in the field of condensed matter physics, and it plays a crucial role in the understanding of the physical properties of doped Mott insulators. Based on the t-J model, we study the nature of the electron Fermi surface in the cobaltates, and qualitatively reproduce the essential feature of the evolution of the electron Fermi surface with doping. It is shown that the underlying hexagonal electron Fermi surface obeys Luttinger's theorem. The theory also predicts a Fermi-arc phenomenon at the low-doped regime, where the region of the hexagonal electron Fermi surface along the [Formula: see text]-K direction is suppressed by the electron self-energy, and then six disconnected Fermi arcs located at the region of the hexagonal electron Fermi surface along the [Formula: see text]-M direction emerge. However, this Fermi-arc phenomenon at the low-doped regime weakens with the increase of doping.

  9. Entanglement rules for holographic Fermi surfaces

    Science.gov (United States)

    Roychowdhury, Dibakar

    2016-08-01

    In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  10. Entanglement rules for holographic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, Dibakar, E-mail: dibakarphys@gmail.com

    2016-08-15

    In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  11. Entanglement rules for holographic Fermi surfaces

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2016-08-01

    Full Text Available In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  12. Effect of Rashba Spin-Orbit Interaction on the Stability of Spin-Vortex-Induced Loop Current in Hole-Doped Cuprate Superconductors: A Scenario for the Appearance of Magnetic Field Enhanced Charge Order and Fermi Surface Reconstruction

    Science.gov (United States)

    Morisaki, Tsubasa; Wakaura, Hikaru; Koizumi, Hiroyasu

    2017-10-01

    Rashba type spin-orbit interaction is included in the model Hamiltonian for the spin-vortex-induced loop current (SVILC) mechanism of superconductivity for hole doped cuprate superconductors and its effects are investigated. We assume that a Rashba interaction appears around the small polarons formed by the doped holes in the bulk; its internal electric field is assumed to be in the direction perpendicular to the CuO2 plane and stabilizes the spin polarization lying in the CuO2 plane. We examine 4 × 4, 4 × 6, and 4 × 8 spin-vortex-quartet (SVQ) and perform Monte Carlo simulations to estimate the superconducting transition temperature Tc, where each SVQ is a n × m two dimensional region (in the units of the lattice constant) containing four holes, four spin-vortices, and four SVILCs. We find that the 4 × 6 SVQ is the most stable one among them with the highest Tc; in this case, the hole concentration per Cu atom is x = 0.167, which is close to the optimal doping value x = 0.170, suggesting that the optimal doping may be related to the stabilization of the superconducting state by the Rashba interaction. We also find that the 4 × 8 SVQ becomes more stable than the 4 × 6 SVQ in a current flowing situation; this indicates that the conversion from the 4 × 6 SVQs to 4 × 8 SVQs may occur upon the emergence of a macroscopic current by the application of a magnetic field. This conversion may explain the enhancement of the charge order around x = 0.125 and the Fermi surface reconstruction upon an application of a magnetic field.

  13. Revisiting the Fermi Surface in Density Functional Theory

    Science.gov (United States)

    Das, Mukunda P.; Green, Frederick

    2016-06-01

    The Fermi surface is an abstract object in the reciprocal space of a crystal lattice, enclosing the set of all those electronic band states that are filled according to the Pauli principle. Its topology is dictated by the underlying lattice structure and its volume is the carrier density in the material. The Fermi surface is central to predictions of thermal, electrical, magnetic, optical and superconducting properties in metallic systems. Density functional theory is a first-principles method used to estimate the occupied-band energies and, in particular, the isoenergetic Fermi surface. In this review we survey several key facts about Fermi surfaces in complex systems, where a proper theoretical understanding is still lacking. We address some critical difficulties.

  14. Effective field theories for superconducting systems with multiple Fermi surfaces

    Science.gov (United States)

    Braga, P. R.; Granado, D. R.; Guimaraes, M. S.; Wotzasek, C.

    2016-11-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  15. Effective field theories for superconducting systems with multiple Fermi surfaces

    CERN Document Server

    Braga, P R; Guimaraes, M S; Wotzasek, C

    2016-01-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more the one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  16. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  17. Manipulating superconductivity in ruthenates through Fermi surface engineering

    Science.gov (United States)

    Hsu, Yi-Ting; Cho, Weejee; Rebola, Alejandro Federico; Burganov, Bulat; Adamo, Carolina; Shen, Kyle M.; Schlom, Darrell G.; Fennie, Craig J.; Kim, Eun-Ah

    2016-07-01

    The key challenge in superconductivity research is to go beyond the historical mode of discovery-driven research. We put forth a new strategy, which is to combine theoretical developments in the weak-coupling renormalization-group approach with the experimental developments in lattice-strain-driven Fermi surface engineering. For concreteness we theoretically investigate how superconducting tendencies will be affected by strain engineering of ruthenates' Fermi surface. We first demonstrate that our approach qualitatively reproduces recent experiments under uniaxial strain. We then note that the order of a few percent strain, readily accessible to epitaxial thin films, can bring the Fermi surface close to van Hove singularity. Using the experimental observation of the change in the Fermi surface under biaxial epitaxial strain and ab initio calculations, we predict Tc for triplet pairing to be maximized by getting close to the van Hove singularities without tuning on to the singularity.

  18. Fermi

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  19. Kondo Screening and Fermi Surface in the Antiferromagnetic Metal Phase

    Science.gov (United States)

    Yamamoto, Seiji; Si, Qimiao

    2006-03-01

    We address the Kondo effect deep inside the antiferromagnetic metal phase of a Kondo lattice Hamiltonian with SU(2) invariance. The local- moment component is described in terms of a non-linear sigma model. The Fermi surface of the conduction electron component is taken to be sufficiently small, so that it is not spanned by the antiferromagnetic wavevector. The effective low energy form of the Kondo coupling simplifies drastically, corresponding to the uniform component of the magnetization that forward-scatters the conduction electrons on their own Fermi surface. We use a combined bosonic and fermionic (Shankar) renormalization group procedure to analyze this effective theory and study the Kondo screening and Fermi surface in the antiferromagnetic phase. The implications for the global magnetic phase diagram, as well as quantum critical points, of heavy fermion metals are discussed.

  20. ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. M.; Zuo, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lombardo, U. [Universita di Catania and Laboratori Nazionali del Sud (INFN), Catania I-95123 (Italy); Zhang, H. F. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2016-01-20

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  1. Surfaces, Digitisations and Reconstructions

    DEFF Research Database (Denmark)

    2015-01-01

    We present a new digital reconstruction of r-regular sets in three-dimensional Euclidean space. We introduce a vector field and analyse the relation between the topologies of the boundaries of the r-regular set and its reconstruction. This reconstruction can be carried out faster than prior models...... based on the same digitisation, making it attractive for computing....

  2. Fermi surface behavior in the ABJM M2-brane theory

    Science.gov (United States)

    DeWolfe, Oliver; Henriksson, Oscar; Rosen, Christopher

    2015-06-01

    We calculate fermionic Green's functions for states of the three-dimensional Aharony-Bergman-Jafferis-Maldacena M2-brane theory at large N using the gauge-gravity correspondence. We embed extremal black brane solutions in four-dimensional maximally supersymmetric gauged supergravity, obtain the linearized Dirac equations for each spin-1 /2 mode that cannot mix with a gravitino, and solve these equations with infalling boundary conditions to calculate retarded Green's functions. For generic values of the chemical potentials, we find Fermi surfaces with universally non-Fermi liquid behavior, matching the situation for four-dimensional N =4 super-Yang-Mills. Fermi surface singularities appear and disappear discontinuously at the point where all chemical potentials are equal, reminiscent of a quantum critical point. One limit of parameter space has zero entropy at zero temperature, and fermionic fluctuations are perfectly stable inside an energy region around the Fermi surface. An ambiguity in the quantization of the fermions is resolved by supersymmetry.

  3. Are the surface Fermi arcs in Dirac semimetals topologically protected?

    Science.gov (United States)

    Kargarian, Mehdi; Randeria, Mohit; Lu, Yuan-Ming

    2016-08-01

    Motivated by recent experiments probing anomalous surface states of Dirac semimetals (DSMs) Na3Bi and Cd3As2, we raise the question posed in the title. We find that, in marked contrast to Weyl semimetals, the gapless surface states of DSMs are not topologically protected in general, except on time-reversal-invariant planes of surface Brillouin zone. We first demonstrate this finding in a minimal four-band model with a pair of Dirac nodes at k=(0,0,±Q),k=(0,0,±Q), where gapless states on the side surfaces are protected only near kz=0.kz=0. We then validate our conclusions about the absence of a topological invariant protecting double Fermi arcs in DSMs, using a K-theory analysis for space groups of Na3Bi and Cd3As2. Generically, the arcs deform into a Fermi pocket, similar to the surface states of a topological insulator, and this pocket can merge into the projection of bulk Dirac Fermi surfaces as the chemical potential is varied. We make sharp predictions for the doping dependence of the surface states of a DSM that can be tested by angle-resolved photoemission spectroscopy and quantum oscillation experiments.

  4. Are the surface Fermi arcs in Dirac semimetals topologically protected?

    Science.gov (United States)

    Kargarian, Mehdi; Randeria, Mohit; Lu, Yuan-Ming

    2016-08-02

    Motivated by recent experiments probing anomalous surface states of Dirac semimetals (DSMs) Na3Bi and Cd3As2, we raise the question posed in the title. We find that, in marked contrast to Weyl semimetals, the gapless surface states of DSMs are not topologically protected in general, except on time-reversal-invariant planes of surface Brillouin zone. We first demonstrate this finding in a minimal four-band model with a pair of Dirac nodes at [Formula: see text] where gapless states on the side surfaces are protected only near [Formula: see text] We then validate our conclusions about the absence of a topological invariant protecting double Fermi arcs in DSMs, using a K-theory analysis for space groups of Na3Bi and Cd3As2 Generically, the arcs deform into a Fermi pocket, similar to the surface states of a topological insulator, and this pocket can merge into the projection of bulk Dirac Fermi surfaces as the chemical potential is varied. We make sharp predictions for the doping dependence of the surface states of a DSM that can be tested by angle-resolved photoemission spectroscopy and quantum oscillation experiments.

  5. Unconventional fermi surface instabilities in the kagome Hubbard model.

    Science.gov (United States)

    Kiesel, Maximilian L; Platt, Christian; Thomale, Ronny

    2013-03-22

    We investigate the competing Fermi surface instabilities in the kagome tight-binding model. Specifically, we consider on-site and short-range Hubbard interactions in the vicinity of van Hove filling of the dispersive kagome bands where the fermiology promotes the joint effect of enlarged density of states and nesting. The sublattice interference mechanism devised by Kiesel and Thomale [Phys. Rev. B 86, 121105 (2012)] allows us to explain the intricate interplay between ferromagnetic fluctuations and other ordering tendencies. On the basis of the functional renormalization group used to obtain an adequate low-energy theory description, we discover finite angular momentum spin and charge density wave order, a twofold degenerate d-wave Pomeranchuk instability, and f-wave superconductivity away from van Hove filling. Together, this makes the kagome Hubbard model the prototypical scenario for several unconventional Fermi surface instabilities.

  6. Image Interpolation Through Surface Reconstruction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling; LI Xue-mei

    2013-01-01

    Reconstructing an HR (high-resolution) image which preserves the image intrinsic structures from its LR ( low-resolution) counterpart is highly challenging. This paper proposes a new surface reconstruction algorithm applied to image interpolation. The interpolation surface for the whole image is generated by putting all the quadratic polynomial patches together. In order to eliminate the jaggies of the edge, a new weight function containing edge information is incorporated into the patch reconstruction procedure as a constraint. Extensive experimental results demonstrate that our method produces better results across a wide range of scenes in terms of both quantitative evaluation and subjective visual quality.

  7. Unconventional Fermi surface spin patterns in the (Bi/Pb/Sb)/Ag(111) surface alloy

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Fabian; Dil, Hugo [Physik Institut Universitaet Zuerich (Switzerland); Swiss Light Source PSI (Switzerland); Petrov, Vladimir [Physics Institute St Petersburg (Russian Federation); Patthey, Luc [Swiss Light Source PSI (Switzerland); Osterwalder, Juerg [Physik Institut Universitaet Zuerich (Switzerland)

    2009-07-01

    By a controllable change in the stoichiometry of the long range ordered mixed surface alloy (Bi/Pb/Sb)/Ag(111) the Rashba and Fermi energy can be tuned over a wide range. We show by spin and angle-resolved photoemission spectroscopy that the spin structure of the individual surface state bands remain unaffected despite the random intermixing of the adatoms. We further report on the observation of unconventional Fermi surface spin textures. These spin textures are found when the Fermi energy lies between the crossing point and the apex of the Rashba type Kramer's pair. The results will be discussed in the context of spin transport.

  8. Markov Random Field Surface Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Bærentzen, Jakob Andreas; Larsen, Rasmus

    2010-01-01

    ) and knowledge about data (the observation model) in an orthogonal fashion. Local models that account for both scene-specific knowledge and physical properties of the scanning device are described. Furthermore, how the optimal distance field can be computed is demonstrated using conjugate gradients, sparse......A method for implicit surface reconstruction is proposed. The novelty in this paper is the adaption of Markov Random Field regularization of a distance field. The Markov Random Field formulation allows us to integrate both knowledge about the type of surface we wish to reconstruct (the prior...

  9. Detecting spin fractionalization in a spinon Fermi surface spin liquid

    Science.gov (United States)

    Li, Yao-Dong; Chen, Gang

    2017-08-01

    Motivated by the recent proposal that several candidate materials such as YbMgGaO4 could be spinon Fermi surface spin liquids, we explore the experimental consequences of the external magnetic fields on this exotic state. Specifically, we focus on the weak field regime where the spin-liquid state is well preserved and the spinon remains to be a good description of the magnetic excitations. From the spin-1/2 nature of the spinon excitation, we predict the unique features of the spinon continuum when the weak magnetic field is applied to the system. Due to the small energy scale of the exchange interactions between the local moments in the spin-liquid candidate like YbMgGaO4, our proposal for the spectral weight shifts and spectral crossing in the magnetic fields can be immediately tested by inelastic neutron scattering experiments. Several other experimental aspects about the spinon Fermi surface and the spinon excitations are discussed and proposed. Our work provides an experimental scheme to examine the fractionalized spinon excitation and the candidate spin-liquid states in YbMgGaO4, the 6H-B phase of Ba3NiSb2O9 , and other relevant materials.

  10. Reconstructing NURBS Surface with Features

    Institute of Scientific and Technical Information of China (English)

    SUN Chunhua

    2006-01-01

    The method of reconstructing NURBS surface with features is proposed in this paper. Features including boundary curves and feature points are recognized from the scanned data. An initial surface is constructed with boundary curves. The desired NURBS is determined by modifying the initial surface to pass through feature points. Lagrange multiplier is used to find the solution. The error analysis is then done. Examples are given to verify the algorithm at last. The method can keep some features fixed and be widely used in CAD modeling.

  11. Asphericity in the Fermi Surface and Fermi Energy of Na-K,Na-Rb and Na-Cs Binary Alloys

    Institute of Scientific and Technical Information of China (English)

    MinalH.Patel; A.M.Vora; 等

    2002-01-01

    Detailed theoretical investigations into asphericity in the Fermi surface(FS) and Fermi energy(FE) of Na1-xKx,Na1-xRbx,and Na1-xCsx binary solid solutions are carried out for the first time,The allying behavior of the K,Rb,and Cs with the Na generates the Fermi surface distortion(FSD) of bcc simple metals,The FS of Na-K,Na-Rb,and Na-Cs solid solution is a distorted sphere with the largest deviation along[110],We have found that the impact of local-field correction function on FSD is maximum at [100] point and minimum at [111] point.The exchange and correlation effect is found to suppress the value of FE.

  12. Hermite variational implicit surface reconstruction

    Institute of Scientific and Technical Information of China (English)

    PAN RongJiang; MENG XiangXu; WHANGBO TaegKeun

    2009-01-01

    We propose a new technique for reconstructing surfaces from a large set of unorganized 3D data points and their associated normal vectors. The surface is represented as the zero level set of an implicit vol-ume model which fits the data points and normal constraints. Compared with variational implicit sur-faces, we make use of surface normal vectors at data points directly in the implicit model and avoid of introducing manufactured off-surface points. Given n surface point/normal pairs, the proposed method only needs to solve an n×n positive definite linear system. It allows fitting large datasets effectively and robustly. We demonstrate the performance of the proposed method with both globally supported and compactly supported radial basis functions on several datasets.

  13. On the interrelation between bulk and thin-film Fermi surfaces

    KAUST Repository

    Schwingenschlögl, Udo

    2010-12-01

    A general scheme for inferring the Fermi surface of a finite slab from ab initio electronic-structure calculations for the parent bulk system is introduced. The simple cubic ReO 3 oxide is studied as an example system. We show that our scheme provides an accurate approximation of the Fermi surface even for very thin slabs. © 2010 Europhysics Letters Association.

  14. de Haas-van Alphen Effect, LMTO Bandstructure and Fermi Surface of beta-AuMg

    DEFF Research Database (Denmark)

    Dunsworth, A. E.; Jan, J. -P.; Skriver, Hans Lomholt

    1979-01-01

    The de Haas-van Alphen effect has been measured in the ordered alloy beta '-AuMg. The relativistic LMTO bandstructure has been calculated and predicts a Fermi surface in good agreement with experiment. Both bandstructure and Fermi surface are similar in those of other beta brasses with the same...

  15. de Haas-van Alphen Effect, LMTO Bandstructure and Fermi Surface of beta-AgMg

    DEFF Research Database (Denmark)

    Dunsworth, A. E.; Jan, J. - P.; Skriver, Hans Lomholt

    1978-01-01

    The de Haas-van Alphen effect has been measured in the ordered alloy beta '-AgMg. The relativistic LMTO bandstructure has been calculated, and predicts a Fermi surface in good agreement with experiment. Both bandstructure and Fermi surface are similar to those of other beta brasses with the same...

  16. Probing critical surfaces in momentum space using real-space entanglement entropy: Bose versus Fermi

    Science.gov (United States)

    Lai, Hsin-Hua; Yang, Kun

    2016-03-01

    A codimension-one critical surface in momentum space can be either a familiar Fermi surface, which separates occupied states from empty ones in the noninteracting fermion case, or a novel Bose surface, where gapless bosonic excitations are anchored. The presence of such surfaces gives rise to logarithmic violation of entanglement entropy area law. When they are convex, we show that the shape of these critical surfaces can be determined by inspecting the leading logarithmic term of real-space entanglement entropy. The fundamental difference between a Fermi surface and a Bose surface is revealed by the fact that the logarithmic terms in entanglement entropies differ by a factor of 2: SlogBose=2 SlogFermi , even when they have identical geometry. Our method has remarkable similarity with determining Fermi surface shape using quantum oscillation. We also discuss possible probes of concave critical surfaces in momentum space.

  17. Fermi surface and quantum well states of V(110) films on W(110)

    Energy Technology Data Exchange (ETDEWEB)

    Krupin, Oleg [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rotenberg, Eli [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kevan, S D [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2007-09-05

    Using angle-resolved photoemission spectroscopy, we have measured the Fermi surface of V(110) films epitaxially grown on a W(110) substrate. We compare our results for thicker films to existing calculations and measurements for bulk vanadium and find generally very good agreement. For thinner films, we observe and analyse a diverse array of quantum well states that split and distort the Fermi surface segments. We have searched unsuccessfully for a thickness-induced topological transition associated with contact between the zone-centre jungle gym and zone-boundary hole ellipsoid Fermi surface segments. We also find no evidence for ferromagnetic splitting of any bands on this surface.

  18. Two-dimensional Fermi surfaces in Kondo insulator SmB₆.

    Science.gov (United States)

    Li, G; Xiang, Z; Yu, F; Asaba, T; Lawson, B; Cai, P; Tinsman, C; Berkley, A; Wolgast, S; Eo, Y S; Kim, Dae-Jeong; Kurdak, C; Allen, J W; Sun, K; Chen, X H; Wang, Y Y; Fisk, Z; Li, Lu

    2014-12-05

    In the Kondo insulator samarium hexaboride (SmB6), strong correlation and band hybridization lead to an insulating gap and a diverging resistance at low temperature. The resistance divergence ends at about 3 kelvin, a behavior that may arise from surface conductance. We used torque magnetometry to resolve the Fermi surface topology in this material. The observed oscillation patterns reveal two Fermi surfaces on the (100) surface plane and one Fermi surface on the (101) surface plane. The measured Fermi surface cross sections scale as the inverse cosine function of the magnetic field tilt angles, which demonstrates the two-dimensional nature of the conducting electronic states of SmB6. Copyright © 2014, American Association for the Advancement of Science.

  19. Prediction of Fermi-Surface Pressure Dependence in Rb and Cs

    DEFF Research Database (Denmark)

    Jan, J. P.; MacDonald, A. H.; Skriver, Hans Lomholt

    1980-01-01

    The linear muffin-tin orbitals method of band-structure calculation, combined with a Gaussian integration technique using special directions in the Brillouin zone, has been used to calculate Fermi radii and extremal cross-sectional areas of the Fermi surface in rubidium and cesium. Band shifts were...

  20. Uniaxial Stress Dependence of the Fermi Surface of Copper.

    Science.gov (United States)

    Ruesink, Derk Willem

    Form a comprehensive experimental study of quantum oscillations in magnetostriction and torque, values have been deduced for all non-vanishing tetragonal and angular shear strain derivatives for the five principal extremal cross sections of the Fermi surface of copper, viz., the neck and belly normal to {111}, the dogsbone normal to {110} and the rosette and belly normal to {001}. It is found that the neck is most sensitive to angular shear strain, whereas the bellies are most affected by uniform dilation. For the other orbits the magnitudes of shear and dilation derivatives are comparable. The results are self consistent and agree with experimental tensile stress results of Shoenberg and Watts. Earlier magnetostriction results for the neck obtained by Aron and by Slavin can be brought into agreement with the present data by recalculating the former using the presently accepted value of the neck effective mass. The present experimental values are in reasonable agreement with theoretical values calculated by Lee, except for the tetragonal shear derivative of the {001} belly; the theoretical value is about 50% higher than the experimentally determined derivative.

  1. Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs.

    Science.gov (United States)

    Arnold, F; Naumann, M; Wu, S-C; Sun, Y; Schmidt, M; Borrmann, H; Felser, C; Yan, B; Hassinger, E

    2016-09-30

    Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.

  2. The Fermi surface and f-valence electron count of UPt3

    Science.gov (United States)

    McMullan, G. J.; Rourke, P. M. C.; Norman, M. R.; Huxley, A. D.; Doiron-Leyraud, N.; Flouquet, J.; Lonzarich, G. G.; McCollam, A.; Julian, S. R.

    2008-05-01

    Combining old and new de Haas-van Alphen (dHvA) and magnetoresistance data, we arrive at a detailed picture of the Fermi surface of the heavy fermion superconductor UPt3. Our work was partially motivated by a new proposal that two 5f valence electrons per formula unit in UPt3 are localized by correlation effects—agreement with previous dHvA measurements of the Fermi surface was invoked in its support. Comprehensive comparison with our new observations shows that this 'partially localized' model fails to predict the existence of a major sheet of the Fermi surface, and is therefore less compatible with experiment than the originally proposed 'fully itinerant' model of the electronic structure of UPt3. In support of this conclusion, we offer a more complete analysis of the fully itinerant band structure calculation, where we find a number of previously unrecognized extremal orbits on the Fermi surface.

  3. Fermi surfaces of CeRh3B2: An LSDA+ U study

    Science.gov (United States)

    Yamauchi, K.; Yanase, A.; Harima, H.

    2006-05-01

    The Fermi surfaces for ferromagnetic CeRh3B2 are calculated by using FLAPW and LSDA+ U method. The result reveals that the nine Fermi surfaces show the large spin split due to the magnetic contribution of the occupied 4f1 electron. The occupied Ce-4f component which shows large dispersion due to the extremely short c-distance of the crystal structure might be related to the high Curie temperature.

  4. Strong phonon anomalies and Fermi surface nesting of simple cubic Polonium

    Science.gov (United States)

    Belabbes, A.; Zaoui, A.; Ferhat, M.

    2010-12-01

    The unknown lattice dynamics of simple cubic Polonium is calculated using first-principles density-functional perturbation theory with pseudopotentials and a plane-wave basis set. We notice several phonon anomalies, in particular along major symmetry directions namely M-R, R-Γ, Γ-M, M-X, and X-Γ. The analysis of the Fermi surface strongly suggests that the observed phonon anomalies are Kohn anomalies arising from strong Fermi surface nesting.

  5. Fermi surface evolution and checker-board block-spin antiferromagnetism in AxFe2-ySe2

    Science.gov (United States)

    Tai, Yuan-Yen; Zhu, Jian-Xin; Graf, Matthias J.; Ting, C. S.

    2012-10-01

    We develop an effective multiorbital mean-field t-J Hamiltonian with realistic tight-binding and exchange parameters to describe the electronic and magnetic structures of iron-selenide based superconductors AxFe2-ySe2 for iron vacancy doping in the range 0≤y≤0.4. The Fermi surface topology extracted from the spectral function of angle-resolved photoemission spectroscopy (ARPES) experiments is adequately accounted for by a tight-binding lattice model with random vacancy disorder. Since introducing iron vacancies breaks the lattice periodicity of the stochiometric compound, it greatly affects the electronic band structure. With changing vacancy concentration, the electronic band structure evolves, leading to a reconstruction of the Fermi surface topology. For intermediate doping levels, the realized stable electronic structure is a compromise between the solutions for the perfect lattice with y=0 and the vacancy stripe-ordered lattice with y=0.4, which results in a competition between vacancy random disorder and vacancy stripe order. A multiorbital hopping model is parameterized by comparing Fermi surface topologies to ARPES experiments, from which we construct a mean-field t-J lattice model to study the paramagnetic and antiferromagnetic (AFM) phases of K0.8Fe1.6Se2. In the AFM phase the calculated spin magnetization of the t-J model leads to a checker-board block-spin structure in good agreement with neutron scattering experiments and abinitio calculations.

  6. Fermi-Surface Topology and Superconductivity Induced by Jahn-Teller Phonons

    Science.gov (United States)

    Shiba, Yuji; Hotta, Takashi

    2013-04-01

    We discuss emergence of superconductivity in a two-dimensional eg-electron system coupled with Jahn-Teller phonons in the framework of the Migdal-Eliashberg theory. Here we focus on the dependence of superconducting transition temperature Tc on the Fermi-surface structure controlled by the Slater-Koster integrals of eg-electron hopping. When the Fermi-surface structure is abruptly changed, in general, there appears the van Hove singularity in the density of states, leading to the enhancement of Tc. In addition to it, for the superconductivity induced by Jahn-Teller phonons, we also observe the increase of Tc apart from the van Hove singularity point, when the eg-electron system exhibits disconnected Fermi surfaces. Even for the pocket-like Fermi-surface structure, we find the relatively high Tc in comparison with the case of single Fermi surface. This is understood by the fact that the pair-hopping attraction between Cooper pairs on different Fermi surfaces is enhanced by Jahn-Teller phonons.

  7. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  8. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Hiroshi, E-mail: yamagami@cc.kyoto-su.ac.jp [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan)

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu{sub 2}Si{sub 2} are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu{sub 2}Si{sub 2} crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like 'curing-stone', 'rugby-ball' and 'ball'. The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  9. Ocular Surface Reconstruction: Recent Innovations

    Directory of Open Access Journals (Sweden)

    Madhavan HN

    2009-01-01

    protocol of LSCD patients. Autologous limbal transplantation Despite its success, its utility is limited. the requirement for a sizable limbal donation; up to 30-40% must be harvested from the contralateral donor eye and its harvest may theoretically harm the structural integrity, cause subclinical LSCD or cryptogenic changes in the donor eye. Ex vivo expansion and cultivation techniques for autologous limbal stem cells are being actively investigated. , the use of human AM for ocular surface regeneration (OSR and as a growth support substrate for ex vivo expansion of autologous corneal equivalent epithelial cells and their successful OSR in animal cornea model, as well as human, was reported. The conventional cultivation methods for corneal epithelial tissues for clinical transplantation applications involve utilization of xenobiotic materials such as fetal bovine serum (FBS and murine-derived feeder cells. FBS-free culture systems have been developed to reduce the risk of zoonotic infection, but these have the disadvantage of reduced efficacy for cell propagation. it must be emphasized that AMT is not a substitution for LSCT and AMT should not be performed when true LSCD exists because AM only provides a supportive matrix for the limbal stem cells to migrate, proliferate and restore the corneal surface. There are several disadvantages of AMT and LSCT technique. This delicate procedure requires technical skill for the preparation of AM with attached corneal epithelial cells and surgical dexterity to manipulate the AM onto the ocular surface.A rabbit model for transplantation of cultivated corneal limbal stem cells onto corneal stem cell deficient animals was developed & its results are very encouraging for similar studies in human corneal surface reconstruction. Our investigations indicated that Ex vivo cultivation of human corneal limbal stem cells (HCLSC occurred with ease in the thermoresponsive biodegradable gel - “Mebiol Gel”. The growth rate within Mebiol Gel

  10. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...

  11. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    2016-01-01

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy...

  12. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions.

    Science.gov (United States)

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-08-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes.

  13. Universal signatures of Fermi arcs in quasiparticle interference on the surface of Weyl semimetals

    Science.gov (United States)

    Kourtis, Stefanos; Li, Jian; Wang, Zhijun; Yazdani, Ali; Bernevig, B. Andrei

    2016-01-01

    Weyl semimetals constitute a newly discovered class of three-dimensional topological materials with linear touchings of valence and conduction bands in the bulk. The most striking property of topological origin in these materials, so far unequivocally observed only in photoemission experiments, is the presence of open constant-energy contours at the boundary— the so-called Fermi arcs. In this Rapid Communication, we establish the universal characteristics of Fermi-arc contributions to surface quasiparticle interference. Using a general phenomenological model, we determine the defining interference patterns stemming from the existence of Fermi arcs in a surface band structure. We then trace these patterns in both simple tight-binding models and realistic ab initio calculations. Our results show that definitive signatures of Fermi arcs can be observed in existing and proposed Weyl semimetals using scanning tunneling spectroscopy.

  14. Tunable Fermi surface topology and Lifshitz transition in bilayer graphene

    OpenAIRE

    Varlet, Anastasia; Mucha-Kruczyński, Marcin; Bischoff, Dominik; Simonet, Pauline; Taniguchi, Takashi; Watanabe, Kenji; Fal'ko, Vladimir; Ihn, Thomas; Ensslin, Klaus

    2015-01-01

    Bilayer graphene is a highly tunable material: not only can one tune the Fermi energy using standard gates, as in single-layer graphene, but the band structure can also be modified by external perturbations such as transverse electric fields or strain. We review the theoretical basics of the band structure of bilayer graphene and study the evolution of the band structure under the influence of these two external parameters. We highlight their key role concerning the ease to experimentally pro...

  15. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    The set of all surface tensors of a convex body K (Minkowski tensors derived from the surface area measure of K) determine K up to translation, and hereby, the surface tensors of K contain all information on the shape of K. Here, shape means the equivalence class of all convex bodies...... that are translates of each other. An algorithm for reconstructing an unknown convex body in R 2 from its surface tensors up to a certain rank is presented. Using the reconstruction algorithm, the shape of an unknown convex body can be approximated when only a finite number s of surface tensors are available....... The output of the reconstruction algorithm is a polytope P, where the surface tensors of P and K are identical up to rank s. We establish a stability result based on a generalization of Wirtinger’s inequality that shows that for large s, two convex bodies are close in shape when they have identical surface...

  16. Quantum Oscillation Studies of the Fermi Surface of LaFePO

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, A.

    2010-05-26

    We review recent experimental measurements of the Fermi surface of the iron-pnictide superconductor LaFePO using quantum oscillation techniques. These studies show that the Fermi surface topology is close to that predicted by first principles density functional theory calculations, consisting of quasi-twodimensional electron-like and hole-like sheets. The total volume of the two hole sheets is almost equal to that of the two electron sheets, and the hole and electron Fermi surface sheets are close to a nesting condition. No evidence for the predicted three dimensional pocket arising from the Fe d{sub z}{sup 2} band is found. Measurements of the effective mass suggest a renormalisation of around two, close to the value for the overall band renormalisation found in recent angle resolved photoemission measurements.

  17. Hall Effect in the Vortex Lattice of d-Wave Superconductors with Anisotropic Fermi Surfaces

    Science.gov (United States)

    Kohno, Wataru; Ueki, Hikaru; Kita, Takafumi

    2017-02-01

    On the basis of the augmented quasiclassical theory of superconductivity with the Lorentz force, we study the magnetic field dependence of the charge distribution due to the Lorentz force in a d-wave vortex lattice with anisotropic Fermi surfaces. Owing to the competition between the energy-gap and Fermi surface anisotropies, the charge profile in the vortex lattice changes dramatically with increasing magnetic field because of the overlaps of each nearest vortex-core charge. In addition, the accumulated charge in the core region may reverse its sign as a function of magnetic field. This strong field dependence of the vortex-core charge cannot be observed in the model with an isotropic Fermi surface.

  18. Neural Network Based 3D Surface Reconstruction

    Directory of Open Access Journals (Sweden)

    Vincy Joseph

    2009-11-01

    Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  19. Fermi surface properties of paramagnetic NpCd{sub 11} with a large unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Yoshiya; Aoki, Dai; Shiokawa, Yoshinobu [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Haga, Yoshinori; Sakai, Hironori; Ikeda, Shugo; Yamamoto, Etsuji; Nakamura, Akio; Onuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Settai, Rikio [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Takeuchi, Tetsuya [Cryogenic Center, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yamagami, Hiroshi, E-mail: yhomma@imr.tohoku.ac.jp [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan)

    2010-03-15

    We succeeded in growing a high-quality single crystal of NpCd{sub 11} with the cubic BaHg{sub 11}-type structure by the Cd-self flux method. The lattice parameter of a = 9.2968(2) A and crystallographic positions of the atoms were determined by x-ray single-crystal structure analysis. From the results of the magnetic susceptibility and specific heat experiments, this compound is found to be a 5f-localized paramagnet with the singlet ground state in the crystalline electric field (CEF) scheme. Fermi surface properties were measured using the de Haas-van Alphen (dHvA) technique. Long-period oscillations were observed in the dHvA frequency range of 9.1 x 10{sup 5} to 1.9 x 10{sup 7} Oe, indicating small cross-sectional areas of Fermi surfaces, which is consistent with a small Brillouin zone based on a large unit cell. From the results of dHvA and magnetoresistance experiments, the Fermi surface of NpCd{sub 11} is found to consist of many kinds of closed Fermi surfaces and a multiply-connected-like Fermi surface, although the result of energy band calculations based on the 5f-localized Np{sup 3+}(5f{sup 4}) configuration reveals the existence of only closed Fermi surfaces. The corresponding cyclotron effective mass is small, ranging from 0.1 to 0.7 m{sub 0}, which is consistent with a small electronic specific heat coefficient {gamma} {approx_equal} 10mJ/K{sup 2{center_dot}}mol, revealing no hybridization between the 5f electrons and conduction electrons.

  20. The effect of polarity and surface states on the Fermi level at III-nitride surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, P; Bryan, I; Bryan, Z; Guo, W; Hussey, L; Collazo, R; Sitar, Z

    2014-09-28

    Surface states and their influence on the Fermi level at the surface of GaN and AlN are studied using x-ray photoelectron spectroscopy (XPS). The effect of polarity on surface electronic properties was studied. Accurate modeling of the valence band edge and comparison with XPS data revealed the presence of donor surface states at 1.4 eV and acceptor states at energies > 2.7 eV from the valence band in GaN. Al polar AlN showed acceptor states at energies > 3.3 eV. Density of acceptor surface states was estimated to be between 10(13) and 10(14) eV(-1) cm(-2) in both GaN and AlN. The shift in charge neutrality levels and barrier heights due to polarity and the density of surface states on AlN and GaN were estimated from XPS measurements. Theoretical modeling and comparison with XPS data implied full compensation of spontaneous polarization charge by charged surface states. Barrier height measurements also reveal a dependence on polarity with phi(metal-polar)>phi(non-polar)>phi(nitrogen-polar) suggesting that the N-polar surface is the most suitable for Ohmic contacts. (C) 2014 AIP Publishing LLC.

  1. Bogoliubov Fermi Surfaces in Superconductors with Broken Time-Reversal Symmetry

    Science.gov (United States)

    Agterberg, D. F.; Brydon, P. M. R.; Timm, C.

    2017-03-01

    It is commonly believed that, in the absence of disorder or an external magnetic field, there are three possible types of superconducting excitation gaps: The gap is nodeless, it has point nodes, or it has line nodes. Here, we show that, for an even-parity nodal superconducting state which spontaneously breaks time-reversal symmetry, the low-energy excitation spectrum generally does not belong to any of these categories; instead, it has extended Bogoliubov Fermi surfaces. These Fermi surfaces can be visualized as two-dimensional surfaces generated by "inflating" point or line nodes into spheroids or tori, respectively. These inflated nodes are topologically protected from being gapped by a Z2 invariant, which we give in terms of a Pfaffian. We also show that superconducting states possessing these Fermi surfaces can be energetically stable. A crucial ingredient in our theory is that more than one band is involved in the pairing; since all candidate materials for even-parity superconductivity with broken time-reversal symmetry are multiband systems, we expect these Z2-protected Fermi surfaces to be ubiquitous.

  2. Surface reconstruction by offset surface filtering

    Institute of Scientific and Technical Information of China (English)

    DONG Chen-shi; WANG Guo-zhao

    2005-01-01

    The problem of computing a piecewise linear approximation to a surface from its sample has been a focus of research in geometry modeling and graphics due to its widespread applications in computer aided design. In this paper, we give a new algorithm, to be called offset surface filtering (OSF) algorithm, which computes a piecewise-linear approximation of a smooth surface from a finite set of cloud points. The algorithm has two main stages. First, the surface normal on every point is estimated by the least squares best fitting plane method. Second, we construct a restricted Delaunay triangulation, which is a tubular neighborhood of the surface defined by two offset surfaces. The algorithm is simple and robust. We describe an implementation of it and show example outputs.

  3. Thin film surface reconstruction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Imperatori, P. [CNR, Monterotondo Stazione, Rome (Italy). Istituto di Chimica dei materiali

    1996-09-01

    The study of the atomic structure of surfaces and interfaces is a fundamental step in the knowledge and the development of new materials. Among the several surface-sensitive techniques employed to characterise the atomic arrangements, grazing incidence x-ray diffraction (GIXD) is one of the most powerful. With a simple data treatment, based on the kinematical theory, and using the classical methods of x-ray bulk structure determination, it gives the atomic positions of atoms at a surface or an interface and the atomic displacements of subsurface layers for a complete determination of the structure. In this paper the main features of the technique will be briefly reviewed and selected of application to semiconductor and metal surfaces will be discussed.

  4. Ocular Surface Reconstruction: Recent Innovations

    OpenAIRE

    Madhavan HN

    2009-01-01

    The ocular surface is exceptionally rich in complexity and functionality. Severe ocular surface disorders/conditions, such as chemical or thermal injuries, Stevens-Johnson syndrome (SJS), ocular cicatricial pemphigoid, neurotrophic keratopathy, chronic limbitis, and severe microbial keratitis cause significant morbidities and even corneal blindness. Hypofunction may be caused by Aniridia, Neurotrophy, Endocrine, Pterygium and Chronic limbitis Approximately 6000 patients are seen in Ocular Sur...

  5. The Fermi surface and f-valence electron count of UPt{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G J [MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH (United Kingdom); Rourke, P M C; McCollam, A; Julian, S R [Department of Physics, University of Toronto, Toronto, ON, M5S 1A7 (Canada); Norman, M R [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Huxley, A D [School of Physics, James Clerk Maxwell Building, King' s Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Doiron-Leyraud, N [Departement de Physique, Universite de Sherbrooke, Sherbrooke, PQ, J1K 2R1 (Canada); Flouquet, J [Departement de Recherche Fondamentale sur la Matiere Condensee, SPSMS, CEA/Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Lonzarich, G G [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom)], E-mail: sjulian@physics.utoronto.ca

    2008-05-15

    Combining old and new de Haas-van Alphen (dHvA) and magnetoresistance data, we arrive at a detailed picture of the Fermi surface of the heavy fermion superconductor UPt{sub 3}. Our work was partially motivated by a new proposal that two 5f valence electrons per formula unit in UPt{sub 3} are localized by correlation effects-agreement with previous dHvA measurements of the Fermi surface was invoked in its support. Comprehensive comparison with our new observations shows that this 'partially localized' model fails to predict the existence of a major sheet of the Fermi surface, and is therefore less compatible with experiment than the originally proposed 'fully itinerant' model of the electronic structure of UPt{sub 3}. In support of this conclusion, we offer a more complete analysis of the fully itinerant band structure calculation, where we find a number of previously unrecognized extremal orbits on the Fermi surface.

  6. The Fermi surface and f-valence electron count of UPt{sub 3}.

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G. J.; Rourke, P. M. C.; Norman, M. R.; Huxley, A. D.; Doiron-Layraud, N.; Flouquet, J.; Lonzarich, G. G.; McCollam, A.; Julian, S. R.; Materials Science Division; MRC Lab. Molecular Biology; Univ. of Toronto; School of Phys. Edinburgh; Univ. de Sherbrooke; CEA/Grenoble; Univ. of Cambridge

    2008-01-01

    Combining old and new de Haas-van Alphen (dHvA) and magnetoresistance data, we arrive at a detailed picture of the Fermi surface of the heavy fermion superconductor UPt{sub 3}. Our work was partially motivated by a new proposal that two 5f valence electrons per formula unit in UPt{sub 3} are localized by correlation effects--agreement with previous dHvA measurements of the Fermi surface was invoked in its support. Comprehensive comparison with our new observations shows that this 'partially localized' model fails to predict the existence of a major sheet of the Fermi surface, and is therefore less compatible with experiment than the originally proposed 'fully itinerant' model of the electronic structure of UPt{sub 3}. In support of this conclusion, we offer a more complete analysis of the fully itinerant band structure calculation, where we find a number of previously unrecognized extremal orbits on the Fermi surface.

  7. Fermi surfaces in general codimension and a new controlled nontrivial fixed point.

    Science.gov (United States)

    Senthil, T; Shankar, R

    2009-01-30

    The energy of a d-dimensional Fermi system typically varies only along d(c)=1 ("radial") dimensions. We consider d(c)=1+epsilon and study a transition to superconductivity in an epsilon expansion. The nontrivial fixed point describes a scale invariant theory with an effective space-time dimension D=d(c)+1. Remarkably, the results can be reproduced by the Hertz-Millis action for the superconducting order parameter in higher effective space-time dimensions. We consider possible realizations of the transition at epsilon=1, which corresponds to a linear Fermi surface in d=3.

  8. Fermi Surface Topology of Na0.5CoO2 from the Hybrid Density Functional

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-Ying; XIANG Hong-Jun; YANG Jin-Long

    2005-01-01

    @@ The Fermi surface topology of Na0.5CoO2 is studied using the hybrid density functional theory. We first study a single (CoO2)0.5- layer model with the percentage of the nonlocal Hartree-Fock exchange changing from 0% to 20%. The results show that only when the mixed nonlocal Hartree-Fock exchange is between 1% and 5%, the Fermi surface topology is similar to the experimental one. With 3% HF exchange in the hybrid density functional,considering the effects of Na ions in the Na0.sCoO2 system, we find that the Fermi surface is split to double holes and small gaps open near the intersections between the Brillouin zone and the Fermi surface. Our results show that both the amounts of the nonlocal Hartree-Fock exchange in the hybrid density functional and the Na ions have much influence on the Fermi surface topology.

  9. Fermi Surface and Van Hove Singularities in the Itinerant Metamagnet Sr(3)Ru(2)O(7)

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, A.; Allan, M.P.; Mercure, J.F.; /Scottish U. Research Reactor Ctr. /St. Andrews U.; Meevasana, W.; Dunkel, R.; Lu, D.H.; /Physics Intl., San Leandro /Stanford U., Phys. Dept. /SLAC, SSRL; Perry, R.S.; /Scottish U. Research Reactor Ctr. /Edinburgh U.; Mackenzie, A.P.; /Scottish U. Research Reactor Ctr. /St. Andrews U.; Singh, D.J.; /Hong Kong, City U. /Oak Ridge; Shen, Z.-X.; /Physics Intl., San Leandro /Stanford U., Phys. Dept. /SLAC, SSRL; Baumberger, F.; /Scottish U. Research Reactor Ctr. /St. Andrews U.

    2011-01-04

    The low-energy electronic structure of the itinerant metamagnet Sr{sub 3}Ru{sub 2}O{sub 7} is investigated by angle resolved photoemission and density functional calculations. We find well-defined quasiparticle bands with resolution limited line widths and Fermi velocities up to an order of magnitude lower than in single layer Sr{sub 2}RuO{sub 4}. The complete topography, the cyclotron masses and the orbital character of the Fermi surface are determined, in agreement with bulk sensitive de Haas - van Alphen measurements. An analysis of the dxy band dispersion reveals a complex density of states with van Hove singularities (vHs) near the Fermi level; a situation which is favorable for magnetic instabilities.

  10. String Theory on Thin Semiconductors: Holographic Realization of Fermi Points and Surfaces

    CERN Document Server

    Rey, Soo-Jong

    2009-01-01

    I make a novel contact between string theory and degenerate fermion dynamics in thin semiconductors. Utilizing AdS/CFT correspondence in string theory and tunability of coupling parameters in condensed matter systems, I focus on the possibilities testing string theory from tabletop experiments. I first discuss the observation that stability of Fermi surface is classifiable according to K-theory. I then elaborate two concrete realization of Fermi surfaces of zero and two dimensions. Both are realized by complex of D3-branes and D7-branes of relative codimension 6 and 4, respectively. The setup with Fermi point models gauge dynamics of multiply stacked graphenes at half-filling. I show that string theory predicts dynamical generation of mass gap and metal-insulator quantum phase transition at zero temperature. I emphasize that conformally invariant gauge theory dynamics of the setup plays a crucial role, leading to novel conformal phase transition. The setup with Fermi surface is in collaboration with Dongsu Ba...

  11. Asphericity in the Fermi Surface and Fermi Energy of Na-K, Na-Rb and Na-Cs Binary Alloys

    Institute of Scientific and Technical Information of China (English)

    Minal H. Patel; A.M. Vora; P.N. Gajjar; A.R. Jani

    2002-01-01

    Detailed theoretical investigations into asphericity in the Fermi surface (FS) and Fermi energy (FE) ofNa1_xKx, Na1_xRbx, and Na1_xCsx binary solid solutions are carried out for the first time. The alloying behavior ofthe K, Rb, and Cs with the Na generates the Fermi surface distortion (FSD) of bce simple metals. The FS of Na-K,Na-Rb, and Na-Cs solid solution is a distorted sphere with the largest deviation along [110]. We have found that theimpact of local-field correction function on FSD is maximun at [100] point and minimum at [111] point. The exchangeand correlation effect is found to suppress the value of FE.

  12. 3D Surface Reconstruction and Automatic Camera Calibration

    Science.gov (United States)

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  13. Mirror Surface Reconstruction from a Single Image.

    Science.gov (United States)

    Liu, Miaomiao; Hartley, Richard; Salzmann, Mathieu

    2015-04-01

    This paper tackles the problem of reconstructing the shape of a smooth mirror surface from a single image. In particular, we consider the case where the camera is observing the reflection of a static reference target in the unknown mirror. We first study the reconstruction problem given dense correspondences between 3D points on the reference target and image locations. In such conditions, our differential geometry analysis provides a theoretical proof that the shape of the mirror surface can be recovered if the pose of the reference target is known. We then relax our assumptions by considering the case where only sparse correspondences are available. In this scenario, we formulate reconstruction as an optimization problem, which can be solved using a nonlinear least-squares method. We demonstrate the effectiveness of our method on both synthetic and real images. We then provide a theoretical analysis of the potential degenerate cases with and without prior knowledge of the pose of the reference target. Finally we show that our theory can be similarly applied to the reconstruction of the surface of transparent object.

  14. Anatomically Plausible Surface Alignment and Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus R.; Larsen, Rasmus

    2010-01-01

    With the increasing clinical use of 3D surface scanners, there is a need for accurate and reliable algorithms that can produce anatomically plausible surfaces. In this paper, a combined method for surface alignment and reconstruction is proposed. It is based on an implicit surface representation...... combined with a Markov Random Field regularisation method. Conceptually, the method maintains an implicit ideal description of the sought surface. This implicit surface is iteratively updated by realigning the input point sets and Markov Random Field regularisation. The regularisation is based on a prior...... energy that has earlier proved to be particularly well suited for human surface scans. The method has been tested on full cranial scans of ten test subjects and on several scans of the outer human ear....

  15. Surface reconstruction of W2C(0001)

    Science.gov (United States)

    Aizawa, Takashi; Hishita, Shunichi; Tanaka, Takaho; Otani, Shigeki

    2011-08-01

    A single crystal surface of ditungsten carbide, W2C(0001) was investigated using low-energy (LEED) and high-energy electron diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy (XPS), and high-resolution electron energy loss spectroscopy (HREELS). A new reconstruction, \\sqrt {13} \\times \\sqrt {13} {R}+/- 13.9^{\\circ } , was found as a clean surface structure after annealing the W2C at > 1900 K. The surface carbon content is shown as larger than that in the bulk. Our preliminary results showed that the same structure is realized also on WC(0001). The same surface periodicity is described for an Mo2C(0001) LEED pattern in the literature. This reconstruction phase is presumably common on the (0001) surface of hexagonal group-6 transition-metal carbides. In the off-specular HREELS, an atomic vibration of 44.8 meV (361 cm - 1) appeared within the gap energy region of the bulk phonon bands, which was assigned to a surface carbon vibration perpendicular to the surface. One possible explanation of the low vibrational frequency is very low adsorption height of the surface carbon atoms.

  16. Overlapping constraint for variational surface reconstruction

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Solem, J.E.

    2005-01-01

    In this paper a counter example, illustrating a shortcoming in most variational formulations for 3D surface estimation, is presented. The nature of this shortcoming is a lack of an overlapping constraint. A remedy for this shortcoming is presented in the form of a penalty function with an analysis...... of the effects of this function on surface motion. For practical purposes, this will only have minor influence on current methods. However, the insight provided in the analysis is likely to influence future developments in the field of variational surface reconstruction....

  17. Topological transitions of the Fermi surface of osmium under pressure: an LDA+DMFT study

    Science.gov (United States)

    Feng, Qingguo; Ekholm, Marcus; Tasnádi, Ferenc; Jönsson, H. Johan M.; Abrikosov, Igor A.

    2017-03-01

    The influence of pressure on the electronic structure of Os has attracted substantial attention recently due to reports on isostructural electronic transitions in this metal. Here, we theoretically investigate the Fermi surface of Os from ambient to high pressure, using density functional theory combined with dynamical mean field theory. We provide a detailed discussion of the calculated Fermi surface and its dependence on the level of theory used for the treatment of the electron–electron interactions. Although we confirm that Os can be classified as weakly correlated metal, the inclusion of local quantum fluctuations between 5{{d}} electrons beyond the local density approximation explains the most recent experimental reports regarding the occurrence of electronic topological transitions in Os.

  18. Fermi surface traversal resonance in metals: two theories and an experiment

    Science.gov (United States)

    Ardavan, Arzhang; Schrama, J. M.; Blundell, S. J.; Singleton, J.; Semeno, A.; Goy, Philippe; Kurmoo, M.; Day, P.

    1999-09-01

    Fermi-surface traversal resonance (FTR) is caused by the periodic motion of carriers in a magnetic field across open sections of Fermi surface (FS). Owing to the warping of the FS, the real space velocities of the carries oscillate, generating resonances in the high frequency conductivity which may be described by a semiclassical model. A rectangular resonance cavity, oscillating at 70 GHz, which can rotate in the external magnetic field, has been used to confirm the existence of the effect in the organic metal (alpha) -(BEDT-TTF)2KHg(SCN)4. The data contain a great deal of information about the FS, including the direction and anharmonicity of warping components. A quantum mechanical model is presented which predicts all of the features of FTR appearing in the semiclassical model. This confirms that FTR is a fundamental property of low- dimensional systems, existing under a very wide range of conditions.

  19. Bandstructure and Fermi Surfaces of CeRh3B2

    Science.gov (United States)

    Yamauchi, Kunihiko; Yanase, Akira; Harima, Hisatomo

    2010-04-01

    The electronic bandstructure and the Fermi surfaces of ferromagnetic CeRh3B2 are calculated by using FLAPW and LSDA+U method. As assuming several kinds of the ground state to describe the 4f electronic state, we propose a fully orbital- and spin-polarized state | lz=0, sx=1/2 > as the ground state, instead of the conventional \\mathit{LS}-coupled CEF ground state, generally expected in typical 4f compounds. This is supported by the fact that both the observed magnetic moment and the observed dHvA frequencies are well explained by the calculated electronic structure and the Fermi surfaces. The unconventional ground state is stabilized by the strong 4f-4f direct mixing between the neighbored Ce atoms along the extremely small distance along the c-axis in the hexagonal crystal cell.

  20. Andreev reflection without Fermi surface alignment in high-T c van der Waals heterostructures

    Science.gov (United States)

    Zareapour, Parisa; Hayat, Alex; Zhao, Shu Yang F.; Kreshchuk, Michael; Xu, Zhijun; Liu, T. S.; Gu, G. D.; Jia, Shuang; Cava, Robert J.; Yang, H.-Y.; Ran, Ying; Burch, Kenneth S.

    2017-04-01

    We address the controversy over the proximity effect between topological materials and high-T c superconductors. Junctions are produced between Bi2Sr2CaCu2O{}8+δ and materials with different Fermi surfaces (Bi2Te3 and graphite). Both cases reveal tunneling spectra that are consistent with Andreev reflection. This is confirmed by a magnetic field that shifts features via the Doppler effect. This is modeled with a single parameter that accounts for tunneling into a screening supercurrent. Thus the tunneling involves Cooper pairs crossing the heterostructure, showing that the Fermi surface mismatch does not hinder the ability to form transparent interfaces, which is accounted for by the extended Brillouin zone and different lattice symmetries.

  1. Massively Parallel Computation of Soil Surface Roughness Parameters on A Fermi GPU

    Science.gov (United States)

    Li, Xiaojie; Song, Changhe

    2016-06-01

    Surface roughness is description of the surface micro topography of randomness or irregular. The standard deviation of surface height and the surface correlation length describe the statistical variation for the random component of a surface height relative to a reference surface. When the number of data points is large, calculation of surface roughness parameters is time-consuming. With the advent of Graphics Processing Unit (GPU) architectures, inherently parallel problem can be effectively solved using GPUs. In this paper we propose a GPU-based massively parallel computing method for 2D bare soil surface roughness estimation. This method was applied to the data collected by the surface roughness tester based on the laser triangulation principle during the field experiment in April 2012. The total number of data points was 52,040. It took 47 seconds on a Fermi GTX 590 GPU whereas its serial CPU version took 5422 seconds, leading to a significant 115x speedup.

  2. Fermi surface properties in an enhanced Pauli paramagnet NpGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, D. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)]. E-mail: aoki@imr.tohoku.ac.jp; Yamagami, H. [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Homma, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Shiokawa, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Yamamoto, E. [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakamura, A. [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Haga, Y. [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Settai, R. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Onuki, Y. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)

    2006-05-01

    We grew high-quality single crystals of an enhanced Pauli paramagnet NpGe{sub 3} and measured the de Haas-van Alphen (dHvA) effect. The topology of the Fermi surfaces are well explained by the band calculations based on the 5f-itinerant band model. The cyclotron effective masses are ranging from 2.6 to 16m{sub 0}, which are approximately 3.5 times enhanced from the corresponding band masses.

  3. Fermi surface determination from wavevector quantization in LaSrCuO films

    Science.gov (United States)

    Ariosa, D.; Cancellieri, C.; Lin, P. H.; Pavuna, D.

    2008-03-01

    We have observed the wavevector quantization in LaSrCuO films thinner than 12 unit cells grown on SrTiO3 substrates. Low energy dispersions were determined in situ for different photon energies by angle resolved photoemission spectroscopy. From the wavevector quantization, we extract three dimensional dispersions within a tight-binding model and obtain the Fermi surface topology, without resorting to the nearly free-electron approximation. Such method can be extended to similar confined electron nanostructures.

  4. Surface Reconstruction for Cross Sectional Data

    Institute of Scientific and Technical Information of China (English)

    徐美和; 唐泽圣

    1996-01-01

    In this paper,a new solution to the problem of reconstructing the surface of 3D objects over a set of cross-sectional contours is proposed.An algorithm for single branch contours connection,which is based on the closest local polar angle method,is first presented.Then the branching problems(including non-singular branchin and singular branching)are completely solved by decomposing them into several single-branching problems.Finally,these methods are applied to the reconstruction of the external surface of a complexly shaped object such as the cellular region of human brain.The results show that the presented methods are practical and satisfactory.

  5. Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe

    Science.gov (United States)

    Fanfarillo, Laura; Mansart, Joseph; Toulemonde, Pierre; Cercellier, Hervé; Le Fèvre, Patrick; Bertran, François; Valenzuela, Belen; Benfatto, Lara; Brouet, Véronique

    2016-10-01

    A large anisotropy in the electronic properties across a structural transition in several correlated systems has been identified as the key manifestation of electronic nematic order, breaking rotational symmetry. In this context, FeSe is attracting tremendous interest, since electronic nematicity develops over a wide range of temperatures, allowing accurate experimental investigation. Here we combine angle-resolved photoemission spectroscopy and theoretical calculations based on a realistic multiorbital model to unveil the microscopic mechanism responsible for the evolution of the electronic structure of FeSe across the nematic transition. We show that the self-energy corrections due to the exchange of spin fluctuations between hole and electron pockets are responsible for an orbital-dependent shrinking of the Fermi surface that affects mainly the x z /y z parts of the Fermi surface. This result is consistent with our experimental observation of the Fermi surface in the high-temperature tetragonal phase, which includes the x y electron sheet that was not clearly resolved before. In the low-temperature nematic phase, we experimentally confirm the appearance of a large (˜50 meV) x z /y z splitting. It can be well reproduced in our model by assuming a moderate splitting between spin fluctuations along the x and y crystallographic directions. Our mechanism shows how the full entanglement between orbital and spin degrees of freedom can make a spin-driven nematic transition equivalent to an effective orbital order.

  6. Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals.

    Science.gov (United States)

    Zhang, Yi; Bulmash, Daniel; Hosur, Pavan; Potter, Andrew C; Vishwanath, Ashvin

    2016-04-01

    We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools--semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals--we discover several important generalizations to previous conclusions that were implicitly tailored to the special case of identical Fermi arcs on top and bottom surfaces. We show that the phase-space quantization picture fixes an ambiguity in the previously utilized energy-time quantization approach and correctly reproduces the numerically calculated quantum oscillations for generic Weyl semimetals with distinctly curved Fermi arcs on the two surfaces. Based on these methods, we identify a 'magic' magnetic-field angle where quantum oscillations become independent of sample thickness, with striking experimental implications. We also analyze the stability of these quantum oscillations to disorder, and show that the high-field oscillations are expected to persist in samples whose thickness parametrically exceeds the quantum mean free path.

  7. Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal

    Science.gov (United States)

    Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr

    2016-12-01

    Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov-de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model.

  8. Reconstruction of low-index graphite surfaces

    Science.gov (United States)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2016-07-01

    The low-index graphite surfaces (10 1 -0), (10 1 -1), (11 2 -0) and (11 2 - 1) have been studied by density functional theory (DFT) including van-der-Waals (vdW) corrections. Different from the (0001) surface which has been extensively investigated both experimentally and theoretically, there is no comprehensive study on the (10 1 -0)- (10 1 -1)-, (11 2 -0)- and (11 2 - 1)-surfaces available, although they are of relevance for Li insertion processes, e.g. in Li-ion batteries. In this study the structure and stability of all non-(0001) low-index surfaces were calculated with RPBE-D3 and converged slab models. In all cases reconstruction involving bond formation between unsaturated carbon atoms of two neighboring graphene sheets reduces the surface energy dramatically. Two possible reconstruction patterns have been considered. The first possibility leads to formation of oblong nanotubes. Alternatively, the graphene sheets form bonds to different neighboring sheets at the upper and lower sides and sinusoidal structures are formed. Both structure types have similar stabilities. Based on the calculated surface energies the Gibbs-Wulff theorem was applied to construct the macroscopic shape of graphite single crystals.

  9. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  10. Fermi surface versus Fermi sea contributions to intrinsic anomalous and spin Hall effects of multiorbital metals in the presence of Coulomb interaction and spin-Coulomb drag

    Science.gov (United States)

    Arakawa, Naoya

    2016-06-01

    Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.

  11. Dense surface reconstruction with shadows in MIS.

    Science.gov (United States)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-09-01

    Three-dimensional reconstruction of internal organ surfaces provides useful information for better control and guidance of the operations of surgical tools for minimally invasive surgery (MIS). The current reconstruction techniques using stereo cameras are still challenging due to the difficulties in correspondence matching in MIS, since there is very limited texture but significant specular reflection on organ surfaces. This paper proposes a new approach to overcome the problem by introducing weakly structured light actively casting surgical tool shadows on organ surfaces. The contribution of this paper is twofold: first, we propose a robust approach to extract shadow edges from a sequence of shadowed images; second, we develop a novel field surface interpolation (FSI) approach to obtain an accurate and dense disparity map. Our approach does not rely on texture information and is able to reconstruct accurate 3-D information by exploiting shadows from surgical tools. One advantage is that the point correspondences are directly calculated and no explicit stereo matching is required, which ensures the efficiency of the method. Another advantage is the minimum hardware requirement because only stereo cameras and a separated single-point light source are required. We evaluated the proposed approach using both phantom models and ex vivo images. Based on the experimental results, we achieved the precision of the recovered 3-D surfaces within 0.7 mm for phantom models and 1.2 mm for ex vivo images. The comparison of disparity maps indicates that with the addition of shadows, the proposed method significantly outperforms the state-of-the-art stereo algorithms for MIS.

  12. Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface.

    Science.gov (United States)

    Zhong, Shudan; Moore, Joel E; Souza, Ivo

    2016-02-19

    The current density j^{B} induced in a clean metal by a slowly-varying magnetic field B is formulated as the low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for α_{ij}^{GME}=j_{i}^{B}/B_{j} in terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi surface. An alternate semiclassical derivation provides an intuitive picture of the effect, and takes into account the influence of scattering processes in dirty metals. This "gyrotropic magnetic effect" is fundamentally different from the chiral magnetic effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi surface, and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the Fermi-liquid description of transport in broken-symmetry metals.

  13. Fermi surface and band structure of BiPd from ARPES studies

    Science.gov (United States)

    Lohani, H.; Mishra, P.; Gupta, Anurag; Awana, V. P. S.; Sekhar, B. R.

    2017-03-01

    We present a detailed electronic structure study of the non-centrosymmetric superconductor BiPd based on our angle resolved photoemission spectroscopy (ARPES) measurements and Density Functional Theory (DFT) based calculations. We observe a high intensity distribution on the Fermi surface (FS) of this compound resulting from various electron and hole like bands which are present in the vicinity of the Fermi energy (Ef). The near Ef states are primarily composed of Bi-6p with a little admixture of Pd-4dx2-y2/zy orbitals. There are various spin-orbit split bands involved in the crossing of Ef making a complex FS. The FS mainly consists of multi sheets of three dimensions which disfavor the nesting between different sheets of the FS. Our comprehensive study elucidates that BiPd could be a s-wave multiband superconductor.

  14. Iterative reconstruction of the transducer surface velocity.

    Science.gov (United States)

    Alles, Erwin; van Dongen, Koen

    2013-05-01

    Ultrasound arrays used for medical imaging consist of many elements placed closely together. Ideally, each element vibrates independently. However, because of mechanical coupling, crosstalk between neighboring elements may occur. To quantify the amount of crosstalk, the transducer velocity distribution should be measured. In this work, a method is presented to reconstruct the velocity distribution from far-field pressure field measurements acquired over an arbitrary surface. The distribution is retrieved from the measurements by solving an integral equation, derived from the Rayleigh integral of the first kind, using a conjugate gradient inversion scheme. This approach has the advantages that it allows for arbitrary transducer and pressure field measurement geometries, as well as the application of regularization techniques. Numerical experiments show that measuring the pressure field along a hemisphere enclosing the transducer yields significantly more accurate reconstructions than measuring along a parallel plane. In addition, it is shown that an increase in accuracy is achieved when the assumption is made that all points on the transducer surface vibrate in phase. Finally, the method has been tested on an actual transducer with an active element of 700 × 200 μm which operates at a center frequency of 12.2 MHz. For this transducer, the velocity distribution has been reconstructed accurately to within 50 μm precision from pressure measurements at a distance of 1.98 mm (=16λ0) using a 200-μm-diameter needle hydrophone.

  15. Investigations on electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl

    Science.gov (United States)

    Wei, Xiao-Ping; Sun, Weiwei; Zhang, Ya-Ling; Sun, Xiao-Wei; Song, Ting; Wang, Ting; Zhang, Jia-Liang; Su, Hao; Deng, Jian-Bo; Zhu, Xing-Feng

    2017-03-01

    Using full-potential local-orbital minimum-basis along with spin-polarized relativistic Korringa-Kohn-Rostoker methods, we study the electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl alloy. The alloy with Li2AgSb and Cu2MnAl structures are compared in terms of magnetic properties, and the electronic structures in two structures are also discussed. According to the calculated electronic states, it finds that the Zr2CoAl with Li2AgSb structure is half-metallic ferromagnet with an integral magnetic moment of 2.00μB , meanwhile we also notice the d-d and p-d hybridizations are responsible for the formation of minority-spin gap, furthermore, the fat-bands are applied to discuss the mixture between d and p electrons in the vicinity of the Fermi level. The Fermi surfaces related to the valence bands are constructed, and it is found that the spin-up valence bands 26, 27 and 28 across the Fermi energy dominate the nature of electrons. By mapping the system onto a Heisenberg Hamiltonian, we obtain the exchange coupling parameters, and observe that the Zr(A)-Co(C) and Zr(A)-Zr(B) interactions provide a major contribution for exchange interactions. Based on the calculated exchange coupling parameters, the Curie temperature is estimated to be 287.86 K at equilibrium, and also the dependence of Curie temperature on lattice constant related to the tunable Curie temperature in Zr2CoAl alloy is studied. Finally, we report the optical properties of Zr2CoAl alloy, and present the photon energy dependence of the absorption, the optical conductivity and the loss function.

  16. Electron dynamics in the normal state of cuprates: Spectral function, Fermi surface and ARPES data

    Science.gov (United States)

    Zubov, E. E.

    2016-11-01

    An influence of the electron-phonon interaction on excitation spectrum and damping in a narrow band electron subsystem of cuprates has been investigated. Within the framework of the t-J model an approach to solving a problem of account of both strong electron correlations and local electron-phonon binding with characteristic Einstein mode ω0 in the normal state has been presented. In approximation Hubbard-I it was found an exact solution for the polaron bands. We established that in the low-dimensional system with a pure kinematic part of Hamiltonian a complicated excitation spectrum is realized. It is determined mainly by peculiarities of the lattice Green's function. In the definite area of the electron concentration and hopping integrals a correlation gap may be possible on the Fermi level. Also, in specific cases it is observed a doping evolution of the Fermi surface. We found that the strong electron-phonon binding enforces a degree of coherence of electron-polaron excitations near the Fermi level and spectrum along the nodal direction depends on wave vector module weakly. It corresponds to ARPES data. A possible origin of the experimentally observed kink in the nodal direction of cuprates is explained by fine structure of the polaron band to be formed near the mode -ω0.

  17. Bilayer honeycomb lattice with ultracold atoms: Multiple Fermi surfaces and incommensurate spin density wave instability

    Science.gov (United States)

    Dey, Santanu; Sensarma, Rajdeep

    2016-12-01

    We propose an experimental setup using ultracold atoms to implement a bilayer honeycomb lattice with Bernal stacking. In the presence of a potential bias between the layers and at low densities, fermions placed in this lattice form an annular Fermi sea. The presence of two Fermi surfaces leads to interesting patterns in Friedel oscillations and RKKY interactions in the presence of impurities. Furthermore, a repulsive fermion-fermion interaction leads to a Stoner instability towards an incommensurate spin density wave order with a wave vector equal to the thickness of the Fermi sea. The instability occurs at a critical interaction strength which goes down with the density of the fermions. We find that the instability survives interaction renormalization due to vertex corrections and discuss how this can be seen in experiments. We also track the renormalization group flows of the different couplings between the fermionic degrees of freedom, and find that there are no perturbative instabilities, and that Stoner instability is the strongest instability which occurs at a critical threshold value of the interaction. The critical interaction goes to zero as the chemical potential is tuned towards the band bottom.

  18. Evolution of the Fermi surface of BiTeCl with pressure

    OpenAIRE

    Vangennep, D; Jackson, D E; Graf, D.; Berger, H.; Hamlin, J. J.

    2017-01-01

    We report measurements of Shubnikov-de Haas oscillations in the giant Rashba semiconductor BiTeCl under applied pressures up to ~2.5 GPa. We observe two distinct oscillation frequencies, corresponding to the Rashba-split inner and outer Fermi surfaces. BiTeCl has a conduction band bottom that is split into two sub-bands due to the strong Rashba coupling, resulting in two spin-polarized conduction bands as well as a Dirac point. Our results suggest that the chemical potential lies above this D...

  19. Fermi Surface of an Important Nanosized Metastable Phase: Al3Li

    Science.gov (United States)

    Laverock, J.; Dugdale, S. B.; Alam, M. A.; Roussenova, M. V.; Wensley, J. R.; Kwiatkowska, J.; Shiotani, N.

    2010-12-01

    Nanoscale particles embedded in a metallic matrix are of considerable interest as a route towards identifying and tailoring material properties. Al-Li alloys, which form ordered nanoscale precipitates of Al3Li for a range of concentrations, have been deployed successfully in the aerospace industry owing to their superior strength-to-weight ratio. The precipitates are metastable and their electronic structure has so far been inaccessible through conventional techniques. Here, we take advantage of the strong positron affinity of Li to probe the Fermi surface of nanoscale Al3Li precipitates.

  20. Bandstructure and Fermi Surfaces of CeRh3B2

    OpenAIRE

    2010-01-01

    The electronic bandstructure and the Fermi surfaces of ferromagnetic CeRh3B2 are calculated by using FLAPW and LSDA+U method. As assuming several kinds of the ground state to describe the 4f electronic state, we propose a fully orbital- and spin-polarized state |lz=0, sx=1/2> as the ground state, instead of the conventional LS-coupled CEF ground state, generally expected in typical 4f compounds. This is supported by the fact that both the observed magnetic moment and the observed dHvA frequen...

  1. Consistent Reconstruction of Cortical Surfaces from Longitudinal Brain MR Images

    OpenAIRE

    Li, Gang; Nie, Jingxin; Shen, Dinggang

    2011-01-01

    Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying subtle morphological changes of the cerebral cortex. This paper presents a new deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstructed ...

  2. Distinct fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42)Fe1.72Se2 superconductor.

    Science.gov (United States)

    Mou, Daixiang; Liu, Shanyu; Jia, Xiaowen; He, Junfeng; Peng, Yingying; Zhao, Lin; Yu, Li; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Wang, Hangdong; Dong, Chiheng; Fang, Minghu; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Xu, Zuyan; Chen, Chuangtian; Zhou, X J

    2011-03-11

    High resolution angle-resolved photoemission measurements have been carried out to study the electronic structure and superconducting gap of the (Tl0.58Rb0.42)Fe1.72Se2 superconductor with a T(c) = 32  K. The Fermi surface topology consists of two electronlike Fermi surface sheets around the Γ point which is distinct from that in all other iron-based superconductors reported so far. The Fermi surface around the M point shows a nearly isotropic superconducting gap of ∼12  meV. The large Fermi surface near the Γ point also shows a nearly isotropic superconducting gap of ∼15  meV, while no superconducting gap opening is clearly observed for the inner tiny Fermi surface. Our observed new Fermi surface topology and its associated superconducting gap will provide key insights and constraints into the understanding of the superconductivity mechanism in iron-based superconductors.

  3. Surface reconstruction of Pt(001) quantitatively revisited

    Science.gov (United States)

    Hammer, R.; Meinel, K.; Krahn, O.; Widdra, W.

    2016-11-01

    The complex hexagonal reconstructions of the (001) surfaces of platinum and gold have been under debate for decades. Here, the structural details of the Pt(001) reconstruction have been quantitatively reinvestigated by combining the high resolving power of scanning tunneling microscopy (STM) and spot profile analysis low energy electron diffraction (SPA-LEED). In addition, LEED simulations based on a Moiré approach have been applied. Annealing temperatures around 850 °C yield a superstructure that approaches a commensurable c (26.6 ×118 ) substrate registry. It evolves from a Moiré-like buckling of a compressed hexagonal top layer (hex) where atomic rows of the hex run parallel to atomic rows of the square substrate. Annealing at 920 °C stimulates a continuous rotation of the hex where all angles between ±0.7° are simultaneously realized. At temperatures around 1080 °C, the nonrotated hex coexists with a hex that is rotated by about 0.75°. Annealing at temperatures around 1120 °C yield a locking of the hex in fixed rotation angles of 0.77°, 0.88°, and 0.94°. At temperatures around 1170 °C, the Pt(001)-hex-R 0.94° prevails as the energetically most favored form of the rotated hex.

  4. Double stripe reconstruction of the Pt(111) surface

    Indian Academy of Sciences (India)

    Raghani Pushpa; Shobhana Narasimhan

    2003-01-01

    We have studied the reconstruction of the Pt(111) surface theoretically, using a 2D generalization of the Frenkel–Kontorova model. The parameters in the model are obtained by performing ab initio density functional theory calculations. The Pt(111) surface does not reconstruct under normal conditions but experiments have shown that there are two ways to induce the reconstruction: by increasing the temperature, or by depositing adatoms on the surface. The basic motif of this reconstruction is a `double stripe’ with an increased surface density and alternating hcp and fcc domains, arranged to form a honeycomb pattern with a very large repeat distance of 100–300 Å. In this paper, we have studied the `double stripe’ reconstruction of the Pt(111) surface. In agreement with experiment, we find that it is favourable for the surface to reconstruct in the presence of adatoms, but not otherwise.

  5. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

    Science.gov (United States)

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H. C.; Steffens, P.; Boehm, M.; Hao, Yiqing; Quintero-Castro, D. L.; Harriger, L. W.; Frontzek, M. D.; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    2016-12-01

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

  6. Silicon quantum wires on Ag(1 1 0): Fermi surface and quantum well states

    Energy Technology Data Exchange (ETDEWEB)

    Valbuena, M.A. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), C/ Sor Juana Ines de la Cruz, 3, 28049 Madrid (Spain); Avila, J. [Synchrotron SOLEIL, Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex (France)], E-mail: jose.avila@synchrotron-soleil.fr; Davila, M.E. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), C/ Sor Juana Ines de la Cruz, 3, 28049 Madrid (Spain); Leandri, C.; Aufray, B.; Le Lay, G. [CRMCN-CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9 (France); Asensio, M.C. [Synchrotron SOLEIL, Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex (France)

    2007-10-31

    One-dimensional Si quantum wires have been grown on silver single crystals upon deposition of {approx}0.25 monolayer of Si on Ag(1 1 0) surfaces. Scanning tunneling microscopy (STM) clearly shows parallel 1D Si chains along the [-1 1 0] Ag crystallographic direction. Low Energy Electron Diffraction (LEED) confirms the massively parallel assembly of these selforganized Nanowires (NWs). We have characterized these nano-objects by measuring the dispersion of the NWs valence band at room temperature using Angle-Resolved PhotoEmission Spectroscopy (ARPES). Also, the Fermi Surface (FS) of the Ag(1 1 0) substrate has been mapped before and after the silicon deposition, trying to put in evidence the metallic or semiconductor character of the NWs silicon's states close to the Fermi level. Our results show the existence of well-defined quantum states associated to the silicon super-structure. Both LEED and ARUPS results confirm that the NWs have typical 1D features, however their metallic or semiconductor character could not be confirmed.

  7. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate.

    Science.gov (United States)

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H C; Steffens, P; Boehm, M; Hao, Yiqing; Quintero-Castro, D L; Harriger, L W; Frontzek, M D; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    2016-12-05

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinons'). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

  8. High-field phase transitions and Fermi surfaces in the organic conductor α-(BEDT-TTF) 2KHg(SCN) 4: Influence of the magnetic breakdown on evaluation of the effective mass and the scattering time

    Science.gov (United States)

    Sasaki, T.; Biberacher, W.; Fukase, T.

    1998-05-01

    The change of the de Haas-van Alphen (dHvA) oscillation between the low-field spin-density-wave (SDW) phase and the high-field ( H⩾23 T) metallic phase of the organic conductor α-(BEDT-TTF) 2KHg(SCN) 4 is explained in terms of a model of the magnetic breakdown (MB) and a reconstructed Fermi surface by SDW. On the reconstructed Fermi surface, the scattering time obtained by fitting the standard Lifshitz-Kosevich formulation to the dHvA oscillations is affected by the MB giving the additional field-dependent effect. Furthermore, the evaluation of the effective mass needs to consider the additional temperature-dependent factor being due to the MB gap which may change intrinsically and/or thermally with temperature.

  9. NEW VISUAL METHOD FOR FREE-FORM SURFACE RECONSTRUCTION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method is put forward combining computer vision with computer aided geometric design (CAGD) to resolve the problem of free-form surface reconstruction. The surface is first subdivided into N-sided Gregory patches, and a stereo algorithm is used to reconstruct the boundary curves. Then, the cross boundary tangent vectors are computed through reflectance analysis. At last, the whole surface can be reconstructed jointing these patches with G1 continuity(tangent continuity). Examples on synthetic images are given.

  10. Properties of superconductivity on a density wave background with small ungapped Fermi surface parts

    Science.gov (United States)

    Grigoriev, P. D.

    2008-06-01

    We investigate the properties and the microscopic structure of superconductivity (SC) coexisting and sharing the common conducting band with density wave (DW). Such coexistence may take place when the nesting of the Fermi surface (FS) is not perfect, and in the DW state some quasiparticle states remain on the Fermi level and lead to the Cooper instability. The dispersion of such quasiparticle states strongly differs from that without DW, and so do the properties of SC on the DW background. The upper critical field Hc2 in such a SC state increases as the system approaches the critical pressure, where the ungapped quasiparticles and superconductivity just appear, and it may considerably exceed the usual Hc2 value without DW. The spin-density wave (SDW) background strongly suppresses the singlet SC pairing, while it does not affect so much the triplet SC transition temperature. The results obtained explain the experimental observations in layered organic metals (TMTSF)2PF6 and α-(BEDT-TTF)2KHg(SCN)4 , where SC appears in the DW states under pressure and shows many unusual properties.

  11. Fermi surface studies of Co-based Heusler alloys: Ab-initio study

    Science.gov (United States)

    Ram, Swetarekha; Kanchana, V.

    2013-02-01

    The electronic, Fermi surface (FS) and magnetic properties of ferromagnetic Heusler alloys Co2XY (X = Cr, Mn, Fe; Y=Al, Ga) have been investigated by means of first principles calculation. Out of these compounds, Co2CrAl is found to be perfectly half-metallic (HM) at ambient. Under pressure HM to nearly HM (NHM) transition is observed around 75 GPa for Co2CrAl and NHM to HM transition is observed around 40 GPa and 18 GPa for Co2CrGa and Co2MnAl, respectively, while no transition is observed for other compounds under study and is also analyzed from the FS studies. The states at the Fermi level in the majority spin are strongly hybridized Co-d and X-d like states. The majority band FS topology change is observed under pressure for the compounds where we observe a transition, while the minority band FS remain unaltered under pressure for all compounds except in Co2FeGa, where we observed an electron sheet at X point instead of hole pocket at Γ point.

  12. Fermi surface properties of AB3 (A = Y, La; B = Pb, In, Tl) intermetallic compounds under pressure

    DEFF Research Database (Denmark)

    Ram, Swetarekha; Kanchana, V; Svane, Axel

    2013-01-01

    The electronic structures, densities of states, Fermi surfaces and elastic properties of AB3 (A = La, Y; B = Pb, In, Tl) compounds are studied under pressure using the full-potential linear augmented plane wave (FP-LAPW) method within the local density approximation for the exchange–correlation f......The electronic structures, densities of states, Fermi surfaces and elastic properties of AB3 (A = La, Y; B = Pb, In, Tl) compounds are studied under pressure using the full-potential linear augmented plane wave (FP-LAPW) method within the local density approximation for the exchange...

  13. Fermi Surface and Order Parameter Driven Vortex Lattice Structure Transitions in Twin-Free YBa2Cu3O7

    DEFF Research Database (Denmark)

    White, J.S.; Hinkov, V.; Heslop, R.W.;

    2009-01-01

    fields. It is separated from a low-field hexagonal phase of different orientation and distortion by a first-order transition at 2.0(2) T that is probably driven by Fermi surface effects. We argue that another first-order transition at 6.7(2) T, into a rhombic structure with a distortion of opposite sign......, marks a crossover from a regime where Fermi surface anisotropy is dominant, to one where the VL structure and distortion is controlled by the order-parameter anisotropy....

  14. Effect of Fermi surface nesting on resonant spin excitations in Ba(1-x)K(x)Fe2As2.

    Science.gov (United States)

    Castellan, J-P; Rosenkranz, S; Goremychkin, E A; Chung, D Y; Todorov, I S; Kanatzidis, M G; Eremin, I; Knolle, J; Chubukov, A V; Maiti, S; Norman, M R; Weber, F; Claus, H; Guidi, T; Bewley, R I; Osborn, R

    2011-10-21

    We report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.

  15. Effect of Fermi surface nesting on resonant spin excitations in Ba{<_1-x}K{<_x}Fe{<_2}As{<_2}.

    Energy Technology Data Exchange (ETDEWEB)

    Castellan, J.-P.; Rosenkranz, S.; Goremychkin, E.A.; Chung, D.Y.; Todorov, I.S.; Kanatzidis, M.G.; Eremin, I.; Knolle, J.; Chubukov, A.V.; Maiti, s.; Norman, M.R.; Weber, F.; Claus, H.; Guidi, T.; Bewley, R.I.; Osborn, R. (Materials Science Division); (Northwestern Univ.); (Ruhr Univ.); (Max-Planck-Institut fur Physik komplexer Systeme); (Univ. Wisconsin-Madison); (Rutherford AppletonLab)

    2011-01-01

    We report inelastic neutron scattering measurements of the resonant spin excitations in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s{sub {+-}}-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.

  16. Fermi surfaces of PrOs{sub 4}Sb{sub 12} based on the LDA+U method

    Energy Technology Data Exchange (ETDEWEB)

    Harima, Hisatomo [Department of Physics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)]. E-mail: harima@phys.sci.kobe-u.ac.jp; Takegahara, Katsuhiko [Department of Materials Science and Technology, Hirosaki University, Hirosaki, 036-8561 Japan (Japan)

    2005-04-30

    Fermi surfaces of PrOs{sub 4}Sb{sub 12} are investigated based on the LDA+U method with many U values. The 4f{sup 2} electrons in PrOs{sub 4}Sb{sub 12} are experimentally suggested to be localized, in contrast with other heavy-fermion superconductors. This study has revealed that the 4f electrons remain localized with small U=0.1Ry, then become itinerant with U=0.05Ry, where the topology of the Fermi surfaces are changed and no longer explains the dHvA measurement.

  17. An Application Study of Transition Surface Reconstruction in Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    LUJing-ping; HEYu-lin; LIAOXiao-ping

    2004-01-01

    the reconstruction of transition surface is one of time consuming activities during surface modeling in reverse engineering. Yet currently available software applications suffer from shortcoming in processing the connection among free form surfaces. In this paper, a new method is put forward combining Surfacer with Unigraphics to resolve this problem: Curves and surfaces are first constructed in Surfacer, then, the finished data is imported into Unigraphics based on IGES format. At last, the transition surface can be reconstructed in Unigraphics. The application of this method in transition surface reconstruction is illustrated by means of two case studies,showing the connection between free form surfaces; filleting and rounding among multiple surfaces; transition surface between two sets of surfaces.

  18. Fermi surfaces of YBa sub 2 Cu sub 3 O sub 6. 9 as seen by angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Campuzano, J.C.; Jennings, G.; Faiz, M.; Beaulaigue, L.; Veal, B.W.; Liu, J.Z.; Paulikas, A.P.; Vandervoort, K.; Claus, H. (Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (USA) University of Illinois at Chicago, Chicago, IL (USA)); List, R.S.; Arko, A.J.; Bartlett, R.J. (Los Alamos National Laboratory, Los Alamos, NM (USA))

    1990-05-07

    We have carried out angle-resolved photoemission spectroscopy on single crystals of YBa{sub 2}Cu{sub 3}O{sub 6.9}. The crystals were cleaved {ital in} {ital situ}, under ultrahigh vacuum while the sample stage was cooled to 8 K. By observing the dispersion of the electron energy bands as they cross the Fermi energy, we have mapped the Fermi surfaces. There is reasonable agreement between the experimental results and the predictions of band-structure calculations using the local-density approximation, as well as with positron annihilation experiments. Rather than {delta} holes, these results indicate that the Fermi surface of YBa{sub 2}Cu{sub 3}O{sub 6.9} encloses 1+{delta} holes, where {delta} is the doping level.

  19. Surface reconstruction precursor to melting in Au309 clusters

    Directory of Open Access Journals (Sweden)

    Fuyi Chen

    2011-09-01

    Full Text Available The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. The surface reconstruction lead to an enhanced melting temperature for (100 faceted decahedral and cuboctahedral cluster than (111 faceted icosahedral gold cluster, which form a liquid patch due to surface vacancy.

  20. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  1. Close relation between antinodal Fermi-surface effect and superconductivity in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hisatoshi, E-mail: yoko@cmpt.phys.tohoku.ac.j [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Ogata, Masao [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kobayashi, Kenji [Department of Natural Sciences, Chiba Institute of Technology, Shibazono, Narashino 275-0023 (Japan)

    2010-12-15

    A strongly correlated Hubbard (t-t{sup '}-U) model is studied using a variational Monte Carlo method. The magnitude of momentum distribution function n(k) varies slightly near the nodal quasi-Fermi surface [{approx}({pi}/2,{pi}/2)], but varies outstandingly in an antinodal part [near ({pi},0)], as the value of t{sup '}/t varies, which is sensitive to the strength of superconductivity. Furthermore, the behavior of the slope of n(k) around ({pi},0) coincides well with that of the d-wave superconducting correlation function. It follows the electrons near the antinode play a leading role to control the strength of superconductivity.

  2. Surface-plasmon resonances of arbitrarily shaped nanometallic structures in the small-Fermi-wavelength limit

    CERN Document Server

    Schnitzer, Ory; Maier, Stefan A; Craster, Richard V

    2016-01-01

    Surface-plasmon resonances of metallic nanostructures blueshift owing to the nonlocal response of the metal's electron gas. The Fermi wavelength, characterising the nonlocal effect, is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained nonlocal description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary shaped nanometallic structures is then developed. The effect of nonlocality is not always a perturbation and we present a detailed analysis of the "bonding" modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalisation of those predicted assuming a local metal permittivity.

  3. Relativistic Band Structure and Fermi Surface of PdTe2 by the LMTO Method

    DEFF Research Database (Denmark)

    Jan, J. P.; Skriver, Hans Lomholt

    1977-01-01

    The energy bands of the trigonal layer compound PdTe2 have been calculated, using the relativistic linear muffin-tin orbitals method. The bandstructure is separated into three distinct regions with low-lying Te 5s bands, conduction bands formed by Pd 4d and Te 5p states, and high-lying bands formed...... by Pd 5p, Te 6s and Te 5d states. Density of states and joint density of states have been calculated from the bands determined over the appropriate irreducible zone. The Fermi surface consists of two closed sheets in band 11 and band 13, and sheets in band 12 connected to one another by tubes...

  4. Fermi surface of an important nano-sized metastable phase: Al3Li

    Science.gov (United States)

    Dugdale, Stephen; Laverock, Jude; Alam, Ashraf; Roussenova, Mina; Wensley, Joanne; Kwiatkowska, Jadwiga; Shiotani, Nobu

    2011-03-01

    Nanoscale particles embedded in a metallic matrix are of considerable interest as a route towards identifying and tailoring material properties. In particular, Al-Li alloys, which form ordered nanoscale precipitates of L12 Al 3 Li for a range of Li concentrations, have been deployed successfully in the aerospace industry owing principally to their superior strength-to-weight ratio. These precipitates, however, are metastable and only form within the surrounding Al matrix, meaning their electronic structure, thought to be important in contributing to the enhanced material properties through its Young's modulus, has so far been inaccessible through conventional techniques. Here, we take advantage of the strong positron affinity of Li to directly probe the Fermi surface of metastable Al 3 Li nanoscale precipitates of Al-Li.

  5. Topological connection between the stability of Fermi surfaces and topological insulators and superconductors

    Science.gov (United States)

    Zhao, Y. X.; Wang, Z. D.

    2014-02-01

    A topology-intrinsic connection between the stabilities of Fermi surfaces (FSs) and topological insulators/superconductors (TIs/TSCs) is revealed. First, through revealing the topological difference of the roles played by the time-reversal (or particle-hole) symmetry respectively on FSs and TIs/TSCs, a one-to-one relation between the topological types of FSs and TIs/TSCs is rigorously derived by two distinct methods with one relying on the direct evaluation of topological invariants and the other on K theory. Secondly, we propose and prove a general index theorem that relates the topological charge of FSs on the natural boundary of a TI/TSC to its bulk topological number. In the proof, FSs of all codimensions for all symmetry classes and topological types are systematically constructed by Dirac matrices. Moreover, implications of the general index theorem on the boundary quasiparticles are also addressed.

  6. Band structure and Fermi surface of electron-doped C60 monolayers.

    Science.gov (United States)

    Yang, W L; Brouet, V; Zhou, X J; Choi, Hyoung J; Louie, Steven G; Cohen, Marvin L; Kellar, S A; Bogdanov, P V; Lanzara, A; Goldoni, A; Parmigiani, F; Hussain, Z; Shen, Z-X

    2003-04-11

    C60 fullerides are challenging systems because both the electron-phonon and electron-electron interactions are large on the energy scale of the expected narrow band width. We report angle-resolved photoemission data on the band dispersion for an alkali-doped C60 monolayer and a detailed comparison with theory. Compared to the maximum bare theoretical band width of 170 meV, the observed 100-meV dispersion is within the range of renormalization by electron-phonon coupling. This dispersion is only a fraction of the integrated peak width, revealing the importance of many-body effects. Additionally, measurements on the Fermi surface indicate the robustness of the Luttinger theorem even for materials with strong interactions.

  7. Fermi surface distortion induced by interaction between Rashba and Zeeman effects

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Young; Koo, Hyun Cheol, E-mail: hckoo@kist.re.kr [Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Chang, Joonyeon; Kim, Hyung-jun [Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, Kyung-Jin, E-mail: kj-lee@korea.ac.kr [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-05-07

    To evaluate Fermi surface distortion induced by interaction between Rashba and Zeeman effects, the channel resistance in an InAs quantum well layer is investigated with an in-plane magnetic field transverse to the current direction. In the magnetoresistance curve, the critical point occurs at ∼3.5 T, which is approximately half of the independently measured Rashba field. To get an insight into the correlation between the critical point in magnetoresistance curve and the Rashba strength, the channel conductivity is calculated using a two-dimensional free-electron model with relaxation time approximation. The critical point obtained from the model calculation is in agreement with the experiment, suggesting that the observation of critical point can be an alternative method to experimentally determine the Rashba parameter.

  8. Fermi Surface Evolution Across Multiple Charge Density Wave Transitions in ErTe3

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.G.; /SLAC, SSRL /Stanford U., Geballe Lab.; Brouet, V.; /Orsay, LPS; He, R.; /SLAC, SSRL /Stanford U., Geballe Lab.; Lu, D.H.; /SLAC, SSRL; Ru, N.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.; Shen, Z.-X.; /SLAC, SSRL /Stanford U., Geballe Lab.

    2010-02-15

    The Fermi surface (FS) of ErTe{sub 3} is investigated using angle-resolved photoemission spectroscopy (ARPES). Low temperature measurements reveal two incommensurate charge density wave (CDW) gaps created by perpendicular FS nesting vectors. A large {Delta}{sub 1} = 175 meV gap arising from a CDW with c* - q{sub CDW1} {approx} 0.70(0)c* is in good agreement with the expected value. A second, smaller {Delta}{sub 2} = 50 meV gap is due to a second CDW with a* - q{sub CDW2} {approx} 0.68(5)a*. The temperature dependence of the FS, the two gaps and possible interaction between the CDWs are examined.

  9. Consistent Reconstruction of Cortical Surfaces from Longitudinal Brain MR Images

    OpenAIRE

    Li, Gang; Nie, Jingxin; Wu, Guorong; Wang, Yaping; Shen, Dinggang

    2011-01-01

    Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying longitudinal subtle change of the cerebral cortex. This paper presents a novel deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal brain MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstr...

  10. Structural Stability and Optical Properties of Nanomaterials with Reconstructed Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Puzder, A; Williamson, A; Reboredo, F; Galli, G

    2003-10-24

    The authors present density functional and quantum Monte Carlo calculations of the stability and optical properties of semiconductor nanomaterials with reconstructed surfaces. they predict the relative stability of silicon nanostructures with reconstructed and unreconstructed surfaces, and show that surface step geometries unique to highly curved surfaces dramatically reduce the optical gaps and decrease excitonic lifetimes. These predictions provide an explanation of both the variations in the photoluminescence spectra of colloidally synthesized nanoparticles and observed deep gap levels in porous silicon.

  11. Ultra Fast Optical Sectioning: Signal preserving filtering and surface reconstruction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Poel, Mike van der; Larsen, Rasmus

    2011-01-01

    In 3D surface scanning it is desirable to lter away bad data without altering the quality of the remaining good data. Filtering of raw scanner data before surface reconstruction can minimize the induced er- ror and improve on the probability of reconstructing the true surface. If outliers consist...... to extract high quality 3D surface points from 2D images recorded at over 3000 fps. The scanner has been developed for digital impression taking in the dental area. Our work relates to future in-ear scanning for tting custom hearing aids without impression taking.......In 3D surface scanning it is desirable to lter away bad data without altering the quality of the remaining good data. Filtering of raw scanner data before surface reconstruction can minimize the induced er- ror and improve on the probability of reconstructing the true surface. If outliers consist...

  12. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  13. DFT and Monte Carlo study of the W(001) surface reconstruction

    Science.gov (United States)

    Yakovkin, Ivan N.; Yakovkin, Ivan I.; Petrova, Nataliia V.

    2017-07-01

    The driving force for the W(001) surface reconstruction and electronic structures of pristine and H-covered W(001) surfaces are studied by means of relativistic DFT calculations. The spin-orbit coupling leads to the splitting of the bands. Adsorbed physical monolayer of hydrogen due to forming adsorption bonds stabilizes the (1 × 1) structure of the H/W(001) surface. The performed calculations have not revealed any substantial nesting of Fermi surface, so do not support the Peierls-like charge-density-wave mechanism of the surface reconstruction. The total energy of the (√2 × √2) )R45° W(001) surface structure is found to be lower, by 0.14 eV per atom, than for the (1 × 1 W(001). The dependence of the relative intensity of the characteristic LEED reflection on temperature, obtained with the help of Monte Carlo simulations using the interaction energies estimated from DFT calculations, is in good agreement with available experimental data, thus supporting the concept of the order-disorder type of the transition between the low-temperature ((√2 × √2))R45° and room-temperature (1 × 1) surface structures of W(001).

  14. Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in transition metals from ab initio theory

    Science.gov (United States)

    Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy

    2016-04-01

    The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.

  15. Size and topology of Bi_2Sr_2CaCu_2O_8+x Fermi surface versus doping

    Science.gov (United States)

    Larosa, S.; Berger, H.; Margaritondo, G.; Kendziora, C.; Kelley, R. J.; Chubukov, A.; Onellion, M.

    1996-03-01

    We have studied the size and topology of the Fermi surface of Bi_2Sr2 CaCu_2O_8+x single crystal samples from underdoped samples with superconducting transition temperature, T_c=20K to overdoped samples with T_c=55K.[1] Compared to optimally doped samples, underdoped samples exhibit: * a reduction in the size of the Fermi surface by at least a factor of (x10); * a much weaker extended van Hove singularity around the (π,0) and conjugate points; * the large Fermi surface section around the X-point (π,π) are collapsed to small sections around the (π/2,π/2), while that around the Y-point (π,-π) remains but is much (x4) smaller.[2] These data are in excellent agreement with the calculations of A. Chubukov.[3] Our data indicate that the shadow band arises from short-range antiferromagnetic (AFM) fluctuations; the data are consistent with either a structural or a long-range AFM model to explain the shadow band. Finally, we find that the light polarization symmetry of the Fermi surface electronic states in the (π,±π) directions depends on the doping level.[2,4

  16. Fermi surface and extended van Hove singularity in the noncuprate superconductor Sr{sub 2}RuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.H.; Schmidt, M.; Cummins, T.R.; Schuppler, S. [Forschungszentrum Karlsruhe, INFP, P.O. Box 3640, D-76021 Karlsruhe (Germany); Lichtenberg, F.; Bednorz, J.G. [IBM Research Division, Zuerich Research Laboratory, CH-8803 Rueschlikon (Switzerland)

    1996-06-01

    We mapped the Fermi surface of the first copper-free layered perovskite superconductor, Sr{sub 2}RuO{sub 4} by high-resolution ({approx_equal}22 meV) angle-resolved photoemission. Three bands cross the Fermi energy, consistent with band structure calculations; one around {Gamma} and two around {bar {ital X}}. The highlight is the observation of an extended van Hove singularity located 17meV below the Fermi level. It extends around {bar {ital M}} for {approx_equal}0.2 A{sup {minus}1} along {Gamma}-{bar {ital M}}-{Gamma} and {bar {ital X}}-{bar {ital M}}-{bar {ital X}} in the projected Brillouin zone. This raises important questions related to the possible role of a van Hove singularity for oxide superconductivity. {copyright} {ital 1996 The American Physical Society.}

  17. Fermi surface topology and the upper critical field in two-band superconductors: application to MgB2.

    Science.gov (United States)

    Dahm, T; Schopohl, N

    2003-07-04

    Recent measurements of the anisotropy of the upper critical field B(c2) on MgB2 single crystals have shown a puzzling strong temperature dependence. Here, we present a calculation of the upper critical field based on a detailed modeling of band structure calculations that takes into account both the unusual Fermi surface topology and the two gap nature of the superconducting order parameter. Our results show that the strong temperature dependence of the B(c2) anisotropy can be understood as an interplay of the dominating gap on the sigma band, which possesses a small c-axis component of the Fermi velocity, with the induced superconductivity on the pi-band possessing a large c-axis component of the Fermi velocity. We provide analytic formulas for the anisotropy ratio at T=0 and T=T(c) and quantitatively predict the distortion of the vortex lattice based on our calculations.

  18. Corneal surface reconstruction - a short review

    Directory of Open Access Journals (Sweden)

    Madhavan H N

    2009-01-01

    Full Text Available Cornea is the clear, dome-shaped surface that covers the front of the eye and when damage due to burns or injury and several other diseases, stem cells residing in its rim called "limbus" are stimulated to multiply to support growth of new epithelial cells over its surface. If this ready source of stem cells is damaged or destroyed the natural repair is not possible and such a condition is known as corneal limbal stem cell deficiency (CLSCD disease. Stem cell transplant helps such persons to regenerate the corneal surface. Human corneal limbal stem cell transplantation is at present an established procedure with reasonable good clinical outcome particularly when autologous limbal epithelial tissue from a fellow unaffected eye is used. 1, 2 A major concern related to the autograft is the possibility of CLSCD at the donor site, 3 techniques that allowed the expansion of a small limbal biopsy in the laboratory using cell cultures that could be then transplanted to the affected eye have been developed ,4, 5 Human amniotic membrane (HAM is used as a scaffold for both culturing the human limbal epithelial cells and for ocular surface reconstruction with the cultured limbal epithelial cells. 4-7 However, researchers have used alternative scaffolds like collagen 8, fibrin gel 9 and cross-linked gel of fibronectin and fibrin. 10 All these are biological materials and also need for animal 3T3 feeder layer for stem cell cultures. The properties of HAM are unique including antiadhesive effects, bacteriostatic effects, wound protection, pain reduction, and improvement of epithelialization and characteristically lacking imunogenicity. The use of amniotic membrane transplantation (AMT to treat ocular surface abnormalities was first reported by Graziella Pellegrini, chief of stem cell laboratory at Giovanni Paolo Hospital in Venice, Italy, who was the first to demonstrate the limbal stem cell transplant in 1997. Amniotic membrane has been successfully used in

  19. Surface reconstruction precursor to melting in Au309 clusters

    OpenAIRE

    Fuyi Chen; Li, Z. Y.; Roy L. Johnston

    2011-01-01

    The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm) decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. ...

  20. Highly efficient solid state catalysis by reconstructed (001) Ceria surface

    Energy Technology Data Exchange (ETDEWEB)

    Solovyov, VF; Ozaki, T; Atrei, A; Wu, LJ; Al-Mahboob, A; Sadowski, JT; Tong, X; Nykypanchuk, D; Li, Q

    2014-04-10

    Substrate engineering is a key factor in the synthesis of new complex materials. The substrate surface has to be conditioned in order to minimize the energy threshold for the formation of the desired phase or to enhance the catalytic activity of the substrate. The mechanism of the substrate activity, especially of technologically relevant oxide surfaces, is poorly understood. Here we design and synthesize several distinct and stable CeO2 (001) surface reconstructions which are used to grow epitaxial films of the high-temperature superconductor YBa2Cu3O7. The film grown on the substrate having the longest, fourfold period, reconstruction exhibits a twofold increase in performance over surfaces with shorter period reconstructions. This is explained by the crossover between the nucleation site dimensions and the period of the surface reconstruction. This result opens a new avenue for catalysis mediated solid state synthesis.

  1. Surface Reconstruction and Image Enhancement via $L^1$-Minimization

    KAUST Repository

    Dobrev, Veselin

    2010-01-01

    A surface reconstruction technique based on minimization of the total variation of the gradient is introduced. Convergence of the method is established, and an interior-point algorithm solving the associated linear programming problem is introduced. The reconstruction algorithm is illustrated on various test cases including natural and urban terrain data, and enhancement oflow-resolution or aliased images. Copyright © by SIAM.

  2. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  3. Formation of Fermi surfaces and the appearance of liquid phases in holographic theories with hyperscaling violation

    CERN Document Server

    Kuang, Xiao-Mei; Wang, Bin; Wu, Jian-Pin

    2014-01-01

    We consider a holographic fermionic system in which the fermions are interacting with a U(1) gauge field in the presence of a dilaton field in the background of a charged black hole with hyperscaling violation. Using both analytical and numerical methods, we investigate the properties of the infrared and ultaviolet Green's functions of the holographic fermionic system. Studying the spectral functions of the system, we find that as the hyperscaling violation exponent is varied, the fermionic system possesses Fermi, non-Fermi, marginal-Fermi and log-oscillating liquid phases. Various liquid phases of the fermionic system with hyperscaling violation are also generated with the variation of the fermionic mass.

  4. Three-dimensional surface reconstruction from multistatic SAR images.

    Science.gov (United States)

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.

  5. Itinerant 5f electrons and the Fermi surface properties in neptunium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, D. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)]. E-mail: aoki@imr.tohoku.ac.jp; Yamagami, H. [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Homma, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Sakai, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ikeda, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Shiokawa, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Yamamoto, E. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nakamura, A. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Haga, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Settai, R. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Onuki, Y. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2007-03-15

    We grew high-quality single crystals of NpGe{sub 3}, NpIn{sub 3}, NpCoGa{sub 5}, NpRhGa{sub 5} and NpFe{sub 4}P{sub 12} by the flux method, and measured the de Haas-van Alphen (dHvA) effect, magnetic susceptibility and resistivity. The results of dHvA experiments in NpGe{sub 3}, NpCoGa{sub 5} and NpRhGa{sub 5} were well explained by the energy band calculation based on the 5f-itinerant model, while the topology of Fermi surfaces in NpIn{sub 3} is similar to those of LaIn{sub 3}, implying the 5f-localized nature of NpIn{sub 3}. The skutterudite compound NpFe{sub 4}P{sub 12} is a low carrier system with the 5f{sup 3} configuration.

  6. Evidence for the complicated Fermi surface in 2H- and 4H-NbSe$_2$

    Indian Academy of Sciences (India)

    I NAIK; A K RASTOGI

    2016-09-01

    In this study, we have found superconducting state (SC) at 7.4 and 6.4 K and charge density wave state (CDW) at 35 and 42 K in our 2H- and 4H-NbSe$_2$ single crystals, respectively. Besides this, there exists a positive magneto-resistance (MR) below the CDWtransition temperature on both the crystals. Therefore, we have calculated their fractional change in MR i.e., $\\Delta \\rho/\\rho_0$ around 8 K in $H_{\\perp}$ plane of NbSe$_2$ and $H_{\\parallel}$ plane of NbSe$_2$ configurations. Both single crystals show anisotropic $\\Delta \\rho/\\rho_0$, which are described by Kohler’s rule, two-band model and magnetic breakdown model. In the present scenario, the magnetic breakdown model explains our anisotropic $\\Delta \\rho/\\rho_0$ better than other two models: Kohler’s and two-band model. This model also established the presence of complicated Fermi surface on both single crystals.

  7. Pressure-enhanced superconductivity in A15-type Nb3 Ge via increased Fermi surface nesting

    Science.gov (United States)

    Stillwell, Ryan; Jeffries, Jason; McCall, Scott; Jenei, Zsolt; Weir, Sam; Vohra, Yogesh

    The A15-type superconductors are the most widely used superconductors in industrial applications yet the physics behind maximizing the superconducting transition temperature is still not completely understood. The highest transition temperatures found to date have recently been reported for high-pressure hydride materials and it is believed that they too are BCS-type phonon-mediated superconductors, just like the A15-type superconductors. Understanding the electron-phonon coupling has therefore been brought front stage in the search to understand the mechanisms for optimizing high-temperature superconductors. Using a multi-faceted suite of high-pressure techniques we found that Nb3Ge has an isostructural phase transition at high pressure that correlates directly with a bandstructure change seen in high-pressure magnetotransport measurements. Our results suggest that A15-type superconductivity is not only phonon-mediated but that the degree of Fermi surface nesting is a controlling parameter for maximizing the superconducting transition temperature. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  8. Fermi-surface collapse and dynamical scaling near a quantum-critical point.

    Science.gov (United States)

    Friedemann, Sven; Oeschler, Niels; Wirth, Steffen; Krellner, Cornelius; Geibel, Christoph; Steglich, Frank; Paschen, Silke; Kirchner, Stefan; Si, Qimiao

    2010-08-17

    Quantum criticality arises when a macroscopic phase of matter undergoes a continuous transformation at zero temperature. While the collective fluctuations at quantum-critical points are being increasingly recognized as playing an important role in a wide range of quantum materials, the nature of the underlying quantum-critical excitations remains poorly understood. Here we report in-depth measurements of the Hall effect in the heavy-fermion metal YbRh(2)Si(2), a prototypical system for quantum criticality. We isolate a rapid crossover of the isothermal Hall coefficient clearly connected to the quantum-critical point from a smooth background contribution; the latter exists away from the quantum-critical point and is detectable through our studies only over a wide range of magnetic field. Importantly, the width of the critical crossover is proportional to temperature, which violates the predictions of conventional theory and is instead consistent with an energy over temperature, E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our results provide evidence that the quantum-dynamical scaling and a critical Kondo breakdown simultaneously operate in the same material. Correspondingly, we infer that macroscopic scale-invariant fluctuations emerge from the microscopic many-body excitations associated with a collapsing Fermi-surface. This insight is expected to be relevant to the unconventional finite-temperature behavior in a broad range of strongly correlated quantum systems.

  9. Fermi surface deformation in a simple iron-based superconductor, FeSe

    Science.gov (United States)

    Coldea, Amalia; Watson, Matthew; Kim, Timur; Haghighirad, Amir; McCollam, Alix; Hoesch, Moritz; Schofield, Andrew

    2015-03-01

    One of the outstanding problems in the field superconductivity is the identification of the normal state out of which superconductivity emerges. FeSe is one of the simplest and most intriguing iron-based superconductors, since in its bulk form it undergoes a structural transition before it becomes superconducting, whereas its single-layer form is believed to be a high-temperature superconductor. The nature of the structural transition, occurring in the absence of static magnetism, is rather unusual and how the electronic structure is stabilized by breaking of the rotational symmetry is the key to understand the superconductivity in bulk FeSe. Here we report angle-resolved photoemission spectroscopy measurements on FeSe that gives direct access to the band structure and orbital-dependent effects. We complement our studies on bulk FeSe with low-temperature angular-dependent quantum oscillation measurements using applied magnetic fields that are sufficiently strong to suppress superconductivity and reach the normal state. These studies reveal a strong deformation of Fermi surface through the structural transition driven by electronic correlations and orbital-dependent effects. . This work was supported by EPSRC, UK (EP/I004475/1), Diamond Light Source, UK and HFML, Nijmegen.

  10. NbSe{sub 3}: Fermi surface and magnetoresistance under uniaxial stress

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G.X.; Gamble, B.K.; Kuh, J.; Skove, M.J. [Clemson Univ., SC (United States); Lacerda, A.H.; Bennett, M. [Clemson Univ., SC (United States); NHMFL, Los Alamos National Lab. (United States)

    1999-12-01

    The Fermi surface of NbSe{sub 3} below the two CDW transitions is still not very clear. Large magnetoresistance and giant quantum oscillations have been seen at low temperature below the second CDW transition. The SdH oscillations are attributed to one or several small pieces of electron or hole pockets spared by the two CDW transitions at 145 and 59 K. In a previous low field study ({mu}{sub 0}H<8 T) of the transverse magnetoresistance (H in the (b,c) plane) we have shown that the extremal area of one of these pockets decreases linearly with strain, {epsilon}, vanishing at {epsilon} = 2.5%. Here we extend our study into the high magnetic field regime (pulsed 60 T) and investigate the effect of uniaxial stress on the magnetoresistance (I//H). Our high field study is consistent with the fermiology study and shows that uniaxial stress leads to the obliteration of a small closed pocket. Above 1% strain the magnetoresistance is linear with H with no sign of saturation. (orig.)

  11. Direct Measurements of Fermi Level Pinning at the Surface of Intrinsically n-Type InGaAs Nanowires.

    Science.gov (United States)

    Speckbacher, Maximilian; Treu, Julian; Whittles, Thomas J; Linhart, Wojciech M; Xu, Xiaomo; Saller, Kai; Dhanak, Vinod R; Abstreiter, Gerhard; Finley, Jonathan J; Veal, Tim D; Koblmüller, Gregor

    2016-08-10

    Surface effects strongly dominate the intrinsic properties of semiconductor nanowires (NWs), an observation that is commonly attributed to the presence of surface states and their modification of the electronic band structure. Although the effects of the exposed, bare NW surface have been widely studied with respect to charge carrier transport and optical properties, the underlying electronic band structure, Fermi level pinning, and surface band bending profiles are not well explored. Here, we directly and quantitatively assess the Fermi level pinning at the surfaces of composition-tunable, intrinsically n-type InGaAs NWs, as one of the prominent, technologically most relevant NW systems, by using correlated photoluminescence (PL) and X-ray photoemission spectroscopy (XPS). From the PL spectral response, we reveal two dominant radiative recombination pathways, that is, direct near-band edge transitions and red-shifted, spatially indirect transitions induced by surface band bending. The separation of their relative transition energies changes with alloy composition by up to more than ∼40 meV and represent a direct measure for the amount of surface band bending. We further extract quantitatively the Fermi level to surface valence band maximum separation using XPS, and directly verify a composition-dependent transition from downward to upward band bending (surface electron accumulation to depletion) with increasing Ga-content x(Ga) at a crossover near x(Ga) ∼ 0.2. Core level spectra further demonstrate the nature of extrinsic surface states being caused by In-rich suboxides arising from the native oxide layer at the InGaAs NW surface.

  12. Absorption and Emission in quantum dots: Fermi surface effects of Anderson excitons

    OpenAIRE

    Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J.

    2005-01-01

    Recent experiments measuring the emission of exciton recombination in a self-organized single quantum dot (QD) have revealed that novel effects occur when the wetting layer surrounding the QD becomes filled with electrons, because the resulting Fermi sea can hybridize with the local electron levels on the dot. Motivated by these experiments, we study an extended Anderson model, which describes a local conduction band level coupled to a Fermi sea, but also includes a local valence band level. ...

  13. Surface reconstruction through poisson disk sampling.

    Directory of Open Access Journals (Sweden)

    Wenguang Hou

    Full Text Available This paper intends to generate the approximate Voronoi diagram in the geodesic metric for some unbiased samples selected from original points. The mesh model of seeds is then constructed on basis of the Voronoi diagram. Rather than constructing the Voronoi diagram for all original points, the proposed strategy is to run around the obstacle that the geodesic distances among neighboring points are sensitive to nearest neighbor definition. It is obvious that the reconstructed model is the level of detail of original points. Hence, our main motivation is to deal with the redundant scattered points. In implementation, Poisson disk sampling is taken to select seeds and helps to produce the Voronoi diagram. Adaptive reconstructions can be achieved by slightly changing the uniform strategy in selecting seeds. Behaviors of this method are investigated and accuracy evaluations are done. Experimental results show the proposed method is reliable and effective.

  14. NeuralNetwork Based 3D Surface Reconstruction

    CERN Document Server

    Joseph, Vincy

    2009-01-01

    This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D) surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  15. Determination of the Fermi surface of MgB2 by the de Haas-van Alphen effect.

    Science.gov (United States)

    Carrington, A; Meeson, P J; Cooper, J R; Balicas, L; Hussey, N E; Yelland, E A; Lee, S; Yamamoto, A; Tajima, S; Kazakov, S M; Karpinski, J

    2003-07-18

    We report measurements of the de Haas-van Alphen (dHvA) effect for single crystals of MgB2, in magnetic fields up to 32 T. In contrast to our earlier work, dHvA orbits from all four sheets of the Fermi surface were detected. Our results are in good overall agreement with calculations of the electronic structure and the electron-phonon mass enhancements of the various orbits, but there are some small quantitative discrepancies. In particular, systematic differences in the relative volumes of the Fermi-surface sheets and the magnitudes of the electron-phonon coupling constants could be large enough to affect detailed calculations of T(c) and other superconducting properties.

  16. Fermi surface of SrFe2P2 determined by de Haas-van Alphen effect

    Energy Technology Data Exchange (ETDEWEB)

    Analytis, J.G.

    2010-05-26

    We report measurements of the Fermi surface (FS) of the ternary iron-phosphide SrFe{sub 2}P{sub 2} using the de Haas-van Alphen effect. The calculated FS of this compound is very similar to SrFe{sub 2}As{sub 2}, the parent compound of the high temperature superconductors. Our data show that the Fermi surface is composed of two electron and two hole sheets in agreement with bandstructure calculations. Several of the sheets show strong c-axis warping emphasizing the importance of three-dimensionality in the non-magnetic state of the ternary pnictides. We find that the electron and hole pockets have a different topology, implying that this material does not satisfy a ({pi},{pi}) nesting condition.

  17. Electron Magnetic Resonance Fermi Surface Imaging. Applications to Organic Conductors and Sr2RuO4

    Science.gov (United States)

    Hill, S.; Kovalev, A.; Mola, M. M.; Palassis, C.; Mao, Z. Q.; Maeno, Y.; Qualls, J. S.

    We report detailed angle dependent studies of the metallic state microwave (40 to 200 GHz) magneto-conductivity of single crystal samples of the α-(BEDT-TTF)2KHg(SCN)4 organic charge density wave conductor, and the perovskite superconductor Sr2RuO4. We observe series' of resonant absorptions which we attribute to periodic orbit resonances - a phenomenon closely related to cyclotron resonance. By performing measurements on several samples, and in different electromagnetic field configurations, we are able to couple to different orbital modes (+ harmonics), which derive from deformations (warpings) of the quasi-one and quasi-two-dimensional Fermi surfaces of these compounds. These studies provide vital information concerning interlayer dispersion which, in turn, affects the Fermi surface nesting characteristics which are believed to play a crucial role in the low temperature physics of these exotic materials.

  18. Quantum critical point due to nested Fermi surface: damping of quasi-particles, resistivity and Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Schlottmann, P. [Department of Physics, Florida State University, MC 4350-309 Keene Building, Tallahassee, FL 32306 (United States)]. E-mail: schlottm@martech.fsu.edu

    2004-12-31

    The nesting of the Fermi surfaces of an electron pocket and a hole pocket separated by a wave vector Q and the interaction between electrons gives rise to spin- and charge-density waves. The order can gradually be suppressed by mismatching the nesting and a quantum critical point is obtained as the critical temperature tends to zero. We calculate the quasi-particle damping close to the quantum critical point and discuss its consequences on the resistivity and Hall effect.

  19. Large Fermi Surface of Heavy Electrons at the Border of Mott Insulating State in NiS2

    Science.gov (United States)

    Friedemann, S.; Chang, H.; Gamża, M. B.; Reiss, P.; Chen, X.; Alireza, P.; Coniglio, W. A.; Graf, D.; Tozer, S.; Grosche, F. M.

    2016-01-01

    One early triumph of quantum physics is the explanation why some materials are metallic whereas others are insulating. While a treatment based on single electron states is correct for most materials this approach can fail spectacularly, when the electrostatic repulsion between electrons causes strong correlations. Not only can these favor new and subtle forms of matter, such as magnetism or superconductivity, they can even cause the electrons in a half-filled energy band to lock into position, producing a correlated, or Mott insulator. The transition into the Mott insulating state raises important fundamental questions. Foremost among these is the fate of the electronic Fermi surface and the associated charge carrier mass, as the Mott transition is approached. We report the first direct observation of the Fermi surface on the metallic side of a Mott insulating transition by high pressure quantum oscillatory measurements in NiS2. Our results point at a large Fermi surface consistent with Luttinger’s theorem and a strongly enhanced quasiparticle effective mass. These two findings are in line with central tenets of the Brinkman-Rice picture of the correlated metal near the Mott insulating state and rule out alternative scenarios in which the carrier concentration vanishes continuously at the metal-insulator transition. PMID:27174799

  20. Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.

    Science.gov (United States)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-11

    The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}.

  1. Large Fermi Surface of Heavy Electrons at the Border of Mott Insulating State in NiS2.

    Science.gov (United States)

    Friedemann, S; Chang, H; Gamża, M B; Reiss, P; Chen, X; Alireza, P; Coniglio, W A; Graf, D; Tozer, S; Grosche, F M

    2016-05-12

    One early triumph of quantum physics is the explanation why some materials are metallic whereas others are insulating. While a treatment based on single electron states is correct for most materials this approach can fail spectacularly, when the electrostatic repulsion between electrons causes strong correlations. Not only can these favor new and subtle forms of matter, such as magnetism or superconductivity, they can even cause the electrons in a half-filled energy band to lock into position, producing a correlated, or Mott insulator. The transition into the Mott insulating state raises important fundamental questions. Foremost among these is the fate of the electronic Fermi surface and the associated charge carrier mass, as the Mott transition is approached. We report the first direct observation of the Fermi surface on the metallic side of a Mott insulating transition by high pressure quantum oscillatory measurements in NiS2. Our results point at a large Fermi surface consistent with Luttinger's theorem and a strongly enhanced quasiparticle effective mass. These two findings are in line with central tenets of the Brinkman-Rice picture of the correlated metal near the Mott insulating state and rule out alternative scenarios in which the carrier concentration vanishes continuously at the metal-insulator transition.

  2. RECONSTRUCTION OF WELD POOL SURFACE BASED ON SHAPE FROM SHADING

    Institute of Scientific and Technical Information of China (English)

    DU Quanying; CHEN Shanben; LIN Tao

    2006-01-01

    A valid image-processing algorithm of weld pool surface reconstruction according to an input image of weld pool based on shape from shading (SFS) in computer vision is presented. The weld pool surface information is related to the backside weld width, which is crucial to the quality of weldjoint. The image of weld pool is recorded with an optical sensing method. Firstly, the reflectance map model, which specifies the imaging process, is estimated. Then, the algorithm of weld pool surface reconstruction based on SFS is implemented by iteration scheme and speeded by hierarchical structure. The results indicate the accuracy and effectiveness of the approach.

  3. Homotopy based Surface Reconstruction with Application to Acoustic Signals

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Anton, François

    2011-01-01

    This work introduces a new algorithm for surface reconstruction in a"e(3) from spatially arranged one-dimensional cross sections embedded in a"e(3). This is generally the case with acoustic signals that pierce an object non-destructively. Continuous deformations (homotopies) that smoothly...... homotopies that can generate a C (2) surface. An algorithm to generate surface from acoustic sonar signals is presented with results. Reconstruction accuracies of the homotopies are compared by means of simulations performed on basic geometric primitives....

  4. Inference-Based Surface Reconstruction of Cluttered Environments

    KAUST Repository

    Biggers, K.

    2012-08-01

    We present an inference-based surface reconstruction algorithm that is capable of identifying objects of interest among a cluttered scene, and reconstructing solid model representations even in the presence of occluded surfaces. Our proposed approach incorporates a predictive modeling framework that uses a set of user-provided models for prior knowledge, and applies this knowledge to the iterative identification and construction process. Our approach uses a local to global construction process guided by rules for fitting high-quality surface patches obtained from these prior models. We demonstrate the application of this algorithm on several example data sets containing heavy clutter and occlusion. © 2012 IEEE.

  5. Emergent nesting of the Fermi surface from local-moment description of iron-pnictide high-Tc superconductors

    Science.gov (United States)

    Rodriguez, Jose P.; Araujo, Miguel A. N.; Sacramento, Pedro D.

    2014-07-01

    We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3dxz and 3dyz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 × 4 × 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d + = 3d(x + iy)z and d - = 3d(x - iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.

  6. Electronic band structure and Fermi surfaces of the quasi-two-dimensional monophosphate tungsten bronze, P4W12O44

    Science.gov (United States)

    Paul, S.; Ghosh, A.; Sato, T.; Sarma, D. D.; Takahashi, T.; Wang, E.; Greenblatt, M.; Raj, S.

    2014-02-01

    The electronic structure of quasi-two-dimensional monophosphate tungsten bronze, P4W12O44, has been investigated by high-resolution angle-resolved photoemission spectroscopy and density functional theoretical calculations. Experimental electron-like bands around \\Gamma point and Fermi surfaces have similar shapes as predicted by calculations. Fermi surface mapping at different temperatures shows a depletion of density of states at low temperature in certain flat portions of the Fermi surfaces. These flat portions of the Fermi surfaces satisfy the partial nesting condition with incommensurate nesting vectors q_1 and q_2 , which leads to the formation of charge density waves in this phosphate tungsten bronzes. The setting up of charge density wave in these bronzes can well explain the anomaly observed in its transport properties.

  7. Fermi-surface topology of YBa sub 2 Cu sub 3 O sub x with varied oxygen stoichiometry: A photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R.; Veal, B.W.; Paulikas, A.P.; Downey, J.W.; Kostic, P.J.; Fleshler, S.; Welp, U. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)); Olson, C.G.; Wu, X. (Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa 50011 (United States)); Arko, A.J.; Joyce, J.J. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1992-11-01

    High-resolution angle-resolved photoemission measurements are reported for YBa{sub 2}Cu{sub 3}O{sub {ital x}} when oxygen stoichiometry {ital x} was varied between 6.3 and 6.9. Fermi surfaces were measured and their dependence on oxygen stoichiometry was monitored by observing the dispersing behavior of spectral features, scanning the entire first Brillouin zone. For {ital x}=6.9, measured Fermi surfaces correspond very well with the plane-related Fermi surfaces calculated from band theory. Relatively small changes in Fermi surfaces were observed when oxygen stoiochiometry was varied in the range 6.5{le}{ital x}{le}6.9, where the material is metallic. However, significant changes in the spectral behavior were observed when the material becomes insulating.

  8. Charge transfer effects on the Fermi surface of Ba0.5K 0.5Fe2As2

    KAUST Repository

    Nazir, Safdar

    2011-01-31

    Ab-initio calculations within density functional theory are performed to obtain a more systematic understanding of the electronic structure of iron pnictides. As a prototypical compound we study Ba0.5K 0.5Fe2As2 and analyze the changes of its electronic structure when the interaction between the Fe2As 2 layers and their surrounding is modified. We find strong effects on the density of states near the Fermi energy as well as the Fermi surface. The role of the electron donor atoms in iron pnictides thus cannot be understood in a rigid band picture. Instead, the bonding within the Fe2As 2 layers reacts to a modified charge transfer from the donor atoms by adapting the intra-layer Fe-As hybridization and charge transfer in order to maintain an As3- valence state. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Surface Reconstruction from Parallel Curves with Application to Parietal Bone Fracture Reconstruction.

    Directory of Open Access Journals (Sweden)

    Abdul Majeed

    Full Text Available Maxillofacial trauma are common, secondary to road traffic accident, sports injury, falls and require sophisticated radiological imaging to precisely diagnose. A direct surgical reconstruction is complex and require clinical expertise. Bio-modelling helps in reconstructing surface model from 2D contours. In this manuscript we have constructed the 3D surface using 2D Computerized Tomography (CT scan contours. The fracture part of the cranial vault are reconstructed using GC1 rational cubic Ball curve with three free parameters, later the 2D contours are flipped into 3D with equidistant z component. The constructed surface is represented by contours blending interpolant. At the end of this manuscript a case report of parietal bone fracture is also illustrated by employing this method with a Graphical User Interface (GUI illustration.

  10. Reconstructing surface triangulations by their intersection matrices

    OpenAIRE

    2014-01-01

    The intersection matrix of a finite simplicial complex has as each of its entries the rank of the intersection of its respective simplices. We prove that such matrix defines the triangulation of a closed connected surface up to isomorphism.

  11. Energy Bands and Fermi Surface for beta-MgMh and beta-MgTl

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1977-01-01

    The energy bands of ordered β′-MgHg and β′-MgTl have been calculated by the relativistic linear-muffintin-orbital method. We show how the gross features of the energy bands may be estimated from Wigner-Seitz rules. The densities of states are calculated and the heat capacities derived. The Fermi...

  12. Nanopatterned articles produced using surface-reconstructed block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  13. Superconductivity of metal-induced surface reconstructions on silicon

    Science.gov (United States)

    Uchihashi, Takashi

    2016-11-01

    Recent progress in superconducting metal-induced surface reconstructions on silicon is reviewed, mainly focusing on the results of the author’s group. After a brief introduction of an ultrahigh-vacuum (UHV)-low-temperature (LT)-compatible electron transport measurement system, direct observation of the zero resistance state for the Si(111)-(\\sqrt{7} × \\sqrt{3} )-In surface is described, which demonstrates the existence of a superconducting transition in this class of two-dimensional (2D) materials. The measurement and analysis of the temperature dependence of the critical current density indicate that a surface atomic step works as a Josephson junction. This identification is further confirmed by LT-scanning tunneling microscopy (STM) observation of Josephson vortices trapped at atomic steps on the Si(111)-(\\sqrt{7} × \\sqrt{3} )-In surface. These experiments reveal unique features of metal-induced surface reconstructions on silicon that may be utilized to explore novel superconductivity.

  14. Regulating spin and Fermi surface topology of a quantum metal film by the surface (interface) monatomic layer

    Science.gov (United States)

    Matsuda, Iwao

    2012-02-01

    the Rashba-type surface alloy reduces the spin-relaxation time in the ultrathin film significantly [5]. These results demonstrate that spin and Fermi surface topology of a quantum metal film can be regulated by the surface (interface) monatomic layer.[0pt] [1] T. Okuda, Y. Takeichi, K. He, A. Harasawa, A. Kakizaki, and I. Matsuda, Phys. Rev. B 80, 113409 (2009).[0pt] [2] K. He, T. Hirahara, T. Okuda, S. Hasegawa, A. Kakizaki, and I. Matsuda, Phys. Rev. Lett. 101, 107604 (2008).[0pt] [3] K. He, Y. Takeichi, M. Ogawa, T. Okuda, P. Moras, D. Topwal, A. Harasawa, T. Hirahara, C. Carbone, A. Kakizaki, and I. Matsuda, Phys. Rev. Lett. 104, 156805 (2010).[0pt] [4] N. Miyata, R. Hobara, H. Narita, T. Hirahara, S. Hasegawa, and I. Matsuda, Japanese Journal of Applied Physics 50, 036602 (2011).[0pt] [5] N. Miyata, H. Narita, M. Ogawa, A. Harasawa, R. Hobara, T. Hirahara, P. Moras, D.Topwal, C.Carbone, S.Hasegawa, and I. Matsuda, Phys. Rev. B, 83, 195305 (2011).

  15. Streaming Surface Reconstruction from Real Time 3D Measurements

    OpenAIRE

    Bodenmüller, Tim

    2009-01-01

    In this thesis, a robust method for fast surface reconstruction from real time 3D point streams is presented. It is designed for the integration in a fast visual feedback system that supports a user while manually 3D scanning objects. The method iteratively generates a dense and homogeneous triangular mesh by inserting sample points from the real time data stream and refining the surface model locally. A spatial data structure ensures a fast access to growing point sets and continuously updat...

  16. SOLID-STATE PHYSICS. Scalable T² resistivity in a small single-component Fermi surface.

    Science.gov (United States)

    Lin, Xiao; Fauqué, Benoît; Behnia, Kamran

    2015-08-28

    Scattering among electrons generates a distinct contribution to electrical resistivity that follows a quadratic temperature (T) dependence. In strongly correlated electron systems, the prefactor A of this T(2) resistivity scales with the magnitude of the electronic specific heat, γ. Here we show that one can change the magnitude of A by four orders of magnitude in metallic strontium titanate (SrTiO3) by tuning the concentration of the carriers and, consequently, the Fermi energy. The T(2) behavior persists in the single-band dilute limit despite the absence of two known mechanisms for T(2) behavior: distinct electron reservoirs and Umklapp processes. The results highlight the absence of a microscopic theory for momentum decay through electron-electron scattering in various Fermi liquids.

  17. Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons

    Science.gov (United States)

    Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J.

    2005-09-01

    Recent experiments measuring the emission of exciton recombination in a self-organized single quantum dot (QD) have revealed that different effects occur when the wetting layer surrounding the QD becomes filled with electrons because the resulting Fermi sea can hybridize with the local electron levels on the dot. Motivated by these experiments, we study an extended Anderson model, which describes a local conduction band level coupled to a Fermi sea, but also includes a local valence band level. We are interested, in particular, in how many-body correlations resulting from the presence of the Fermi sea affect the absorption and emission spectra. Using Wilson’s numerical renormalization group method, we calculate the zero-temperature absorption (emission) spectrum of a QD, which starts from (ends up in) a strongly correlated Kondo ground state. We predict two features: First, we find that the spectrum shows a power-law divergence close to the threshold, with an exponent that can be understood by analogy to the well-known x-ray edge absorption problem. Second, the threshold energy ω0 —below which no photon is absorbed (above which no photon is emitted)—shows a marked, monotonic shift as a function of the exciton binding energy Uexc .

  18. Fermi surface of CeIn{sub 3} under pressure studied by the LDA+U method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.-T. [Department of Condensed Matter Physics, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501 (Japan)], E-mail: michi@kobe-u.ac.jp; Harima, H. [Department of Condensed Matter Physics, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2008-04-01

    We have carried out the electronic structure calculation by a local density approximation (LDA) and an LDA+U method to study the electronic structure of CeIn{sub 3} under pressure. The LDA+U calculation reproduces the f state with mainly occupied |j=5/2 ,{gamma}{sub 7}> orbitals. Then, the calculated Fermi surface drastically changes the character from the LDA result. We have found that the dHvA frequencies observed in the nonmagnetic state are well explained by the LDA+U method with upward shifted f level.

  19. A digital system for surface reconstruction

    Science.gov (United States)

    Zhou, Weiyang; Brock, Robert H.; Hopkins, Paul F.

    1996-01-01

    A digital photogrammetric system, STEREO, was developed to determine three dimensional coordinates of points of interest (POIs) defined with a grid on a textureless and smooth-surfaced specimen. Two CCD cameras were set up with unknown orientation and recorded digital images of a reference model and a specimen. Points on the model were selected as control or check points for calibrating or assessing the system. A new algorithm for edge-detection called local maximum convolution (LMC) helped extract the POIs from the stereo image pairs. The system then matched the extracted POIs and used a least squares “bundle” adjustment procedure to solve for the camera orientation parameters and the coordinates of the POIs. An experiment with STEREO found that the standard deviation of the residuals at the check points was approximately 24%, 49% and 56% of the pixel size in the X, Y and Z directions, respectively. The average of the absolute values of the residuals at the check points was approximately 19%, 36% and 49% of the pixel size in the X, Y and Z directions, respectively. With the graphical user interface, STEREO demonstrated a high degree of automation and its operation does not require special knowledge of photogrammetry, computers or image processing.

  20. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy

    Institute of Scientific and Technical Information of China (English)

    梁爱基; 彭莹莹; 刘艳; 刘德发; 胡成; 赵林; 刘国东; 董晓莉; 张君; M Nakatake; H Iwasawa; 陈朝宇; K Shimada; M Arita; H Namatame; M Taniguchi; 许祖彦; 陈创天; 翁红明; 戴希; 方忠; 周兴江; 王志俊; 石友国; 冯娅; 伊合绵; 谢卓晋; 何少龙; 何俊峰

    2016-01-01

    The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A3Bi (A=Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the kx–ky plane and by varying the photon energy to get access to different out-of-plane kzs. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of∼150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface.

  1. The reconstruction of fossil planation surface in China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On the basis of results of relative subjects, the fossil planation surface has been discussed by the authors from the point of geomorphologic view. The discussion contents included the characteristic information, research methods, paleotopography (gradient and altitude) and other problems about fossil planation surface. The recognition and reconstruction of fossil planation surface mainly rely on the following characteristic information: ( i ) the character of erosion unconformity surface; (ii) the paleo-weathering crust and residual deposits; (iii) the paleo-karst and filled deposit in the paleo-karst under the unconformity surface,and (iv) the character and environment of sediment above the unconformity surface. According to the above-mentioned characteristic information, the authors recognized and reconstructed two stages of fossil planation surface on Paleo-land of North China and Yangtze Paleo-land. These two fossil planation surfaces formed from Middle Ordovician to Lower Carboniferous and from Lower Permian to Upper Permian respectively. The paleo-gradient of fossil planation surface changed within 0.31‰-1.32‰, mostly less than 1.0‰. According to the developing depth of paleo-karst, the authors considered that in Suqiao buried-hill region of Paleo-land of North China, the paleo-altitude is 300 m or so above paleo-sea-level. The authors hope that the research is in favor of discussion about rising scale and process of the Tibetan Plateau. Besides, the research of fossil planation surface can provide a theoretical base for relative research,such as the reconstruction of paleoenvironment, the evolution and drift of paleo-continent, the formation and distribution of weathering ore deposits, the reservior and prospection of oil and gas, etc.

  2. Origin of surface electron accumulation and fermi level pinning in low energy ion induced InN/GaN heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Shibin Krishna, T.C. [Surface Physics and Nanostructure Heteroepitaxy Laboratory, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Kumar, Mukesh [Surface Physics and Nanostructure Heteroepitaxy Laboratory, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Surface Physics and Nanostructure Heteroepitaxy Laboratory, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2015-07-15

    InN/GaN heterostructure was fabricated via reactive low energetic Nitrogen ion (LENI at 300 eV) bombardment at lower substrate temperature (350 °C). X-Ray Photoemission spectroscopic (XPS) and Atomic Force Microscopic (AFM) measurements were performed to analyse the electronic structure, surface chemistry, band alignment, and the morphology of the grown heterostructure. XPS analysis revealed the evolution of InN structure with nitridation time, surface electron accumulation, fermi level pinning and the band offset of the grown InN/GaN hetero structure. The valence band and conduction band offsets (VBO & CBO) were calculated to be 0.49 ± 0.19 eV and 2.21 ± 0.1 eV and divulged the formation of a type-I heterojunction. A Fermi Level (FL) pinning of 1.5 ± 0.1 eV above the conduction band minima was perceived and indicated towards strong downward band bending. The analysis of the VB spectra suggested that surface electron accumulation occurred due to the presence of metallic In-adlayer on the surface which resulted in FL pinning and the corresponding downward band bending. Atomic Force Microscopy analysis divulged the formation of smooth surface with granular structure. It was also observed that the growth parameters (e.g. substrate temperature) strongly influence the aforementioned surface and interfacial properties. - Highlights: • A novel technique for the growth of ultrathin InN/GaN heterostructure is reported. • Surface Electron Accumulation and FL Pinning were observed. • A strong downward band bending was also observed in the InN/GaN heterostructure.

  3. Reconstruction of faults in elastic half space from surface measurements

    Science.gov (United States)

    Volkov, Darko; Voisin, Christophe; Ionescu, Ioan R.

    2017-05-01

    We study in this paper a half-space linear elasticity model for surface displacements caused by slip along underground faults. We prove uniqueness of the fault location and (piecewise-planar) geometry and of the slip field for a given surface displacement field. We then introduce a reconstruction algorithm for the realistic case where only a finite number of surface measurements are available. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data were recorded during slow slip events in Guerrero, Mexico. Since this is a well studied subduction zone, it is possible to compare our inferred fault geometry to other reconstructions (obtained using different techniques) found in the literature.

  4. Recent advances in 3D SEM surface reconstruction.

    Science.gov (United States)

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Alavi, Zahrasadat; Owen, Heather A; Yu, Zeyun

    2015-11-01

    The scanning electron microscope (SEM), as one of the most commonly used instruments in biology and material sciences, employs electrons instead of light to determine the surface properties of specimens. However, the SEM micrographs still remain 2D images. To effectively measure and visualize the surface attributes, we need to restore the 3D shape model from the SEM images. 3D surface reconstruction is a longstanding topic in microscopy vision as it offers quantitative and visual information for a variety of applications consisting medicine, pharmacology, chemistry, and mechanics. In this paper, we attempt to explain the expanding body of the work in this area, including a discussion of recent techniques and algorithms. With the present work, we also enhance the reliability, accuracy, and speed of 3D SEM surface reconstruction by designing and developing an optimized multi-view framework. We then consider several real-world experiments as well as synthetic data to examine the qualitative and quantitative attributes of our proposed framework. Furthermore, we present a taxonomy of 3D SEM surface reconstruction approaches and address several challenging issues as part of our future work.

  5. A molecular dynamics investigation of surface reconstruction on magnetite (001)

    Science.gov (United States)

    Rustad, J. R.; Wasserman, E.; Felmy, A. R.

    1999-07-01

    Molecular dynamics calculations using analytical potential functions with polarizable oxygen ions have been used to identify a novel mode of reconstruction on the half-occupied tetrahedral layer termination of the magnetite (Fe 3O 4) (001) surface. In the proposed reconstruction, the twofold coordinated iron ion in the top monolayer rotates downward to occupy a vacant half-octahedral site in the plane of the second-layer iron ions. At the same time, half of the tetrahedral iron ions in the third iron layer are pushed upward to occupy an adjacent octahedral vacancy at the level of the second-layer iron ions. The other half of the third-layer iron ions remain roughly in their original positions. The proposed reconstruction is consistent with recent low-energy electron diffraction and X-ray photoelectron spectroscopy results. It also provides a compelling interpretation for the arrangement of atoms suggested by high-resolution scanning-tunneling microscopy studies.

  6. Contactless electroreflectance studies of the Fermi level position at the air/GaN interface: Bistable nature of the Ga-polar surface

    Science.gov (United States)

    Janicki, Łukasz; Gładysiewicz, Marta; Misiewicz, Jan; Klosek, Kamil; Sobanska, Marta; Kempisty, Paweł; Zytkiewicz, Zbigniew R.; Kudrawiec, Robert

    2017-02-01

    In this paper we show that the surface Fermi level of Ga-polar GaN exhibits a bistable behavior allowing it to be located at two distinct energetic positions at the air/GaN interface which is unusual for other III-V semiconductors such as GaAs or GaSb. To determine the Fermi level position at the air/GaN interface we perform contactless electroreflectance measurements on specially designed UD+ structures [GaN(undoped)/GaN(highly doped)/substrate] doped by Si and Mg. Analyzing the period of Franz-Keldysh oscillation we determine the built-in electric field in the undoped (U) layer. These studies coupled with numerical solutions of the Poisson equation allowed us to determine the position of the Fermi level at the air/GaN interface. We observe a change in the band bending correlated to different Fermi level positions in the doped (D+) layer. We show that depending on the doping type in the D+ layer the Fermi level at the air/GaN interface is located in the upper or lower singularity of surface density of states (SDOS) for Si or Mg doping of D+ layer, respectively. We support our findings with the density functional theory calculations of the SDOS and the dependence of the Fermi level position on the doping concentration in the bulk of a GaN slab.

  7. Bulk Fermi Surface of Charge-Neutral Excitations in SmB_{6} or Not: A Heat-Transport Study.

    Science.gov (United States)

    Xu, Y; Cui, S; Dong, J K; Zhao, D; Wu, T; Chen, X H; Sun, Kai; Yao, Hong; Li, S Y

    2016-06-17

    Recently, there have been increasingly hot debates on whether a bulk Fermi surface of charge-neutral excitations exists in the topological Kondo insulator SmB_{6}. To unambiguously resolve this issue, we perform the low-temperature thermal conductivity measurements of a high-quality SmB_{6} single crystal down to 0.1 K and up to 14.5 T. Our experiments show that the residual linear term of thermal conductivity at the zero field is zero, within the experimental accuracy. Furthermore, the thermal conductivity is insensitive to the magnetic field up to 14.5 T. These results demonstrate the absence of fermionic charge-neutral excitations in bulk SmB_{6}, such as scalar Majorana fermions or spinons and, thus, exclude the existence of a bulk Fermi surface suggested by a recent quantum oscillation study of SmB_{6}. This puts a strong constraint on the explanation of the quantum oscillations observed in SmB_{6}.

  8. Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting.

    Science.gov (United States)

    Kibria, M G; Zhao, S; Chowdhury, F A; Wang, Q; Nguyen, H P T; Trudeau, M L; Guo, H; Mi, Z

    2014-04-30

    Solar water splitting is one of the key steps in artificial photosynthesis for future carbon-neutral, storable and sustainable source of energy. Here we show that one of the major obstacles for achieving efficient and stable overall water splitting over the emerging nanostructured photocatalyst is directly related to the uncontrolled surface charge properties. By tuning the Fermi level on the nonpolar surfaces of gallium nitride nanowire arrays, we demonstrate that the quantum efficiency can be enhanced by more than two orders of magnitude. The internal quantum efficiency and activity on p-type gallium nitride nanowires can reach ~51% and ~4.0 mol hydrogen h(-1) g(-1), respectively. The nanowires remain virtually unchanged after over 50,000 μmol gas (hydrogen and oxygen) is produced, which is more than 10,000 times the amount of photocatalyst itself (~4.6 μmol). The essential role of Fermi-level tuning in balancing redox reactions and in enhancing the efficiency and stability is also elucidated.

  9. Large magnetothermopower and Fermi surface reconstruction in Sb$_2$Te$_2$Se

    OpenAIRE

    Wang, Kefeng; Graf, D.; Petrovic, C.

    2016-01-01

    We report the magnetoresistance, magnetothermopower and quantum oscillation study of Sb$_2$Te$_2$Se single crystal. The in-plane transverse magnetoresistance exhibits a crossover at a critical field $B^*$ from semiclassical weak-field $B^2$ dependence to the high-field unsaturated linear magnetoresistance which persists up to the room temperature. The low-temperature Seebeck coefficient is negative in zero field contrary to the positive Hall resistivity, indicating the multiband effect. The m...

  10. Energy minimization calculations for diamond (111) surface reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Vanderbilt, D.; Louie, S.G.

    1984-08-01

    A remarkable variety of surface reconstructions occur on the (111) surfaces of the tetrahedral elements C, Si and Ge. A possible common denominator may be the occurrence of a similar 2 x 1 reconstruction on all three elemental surfaces. While clear 2 x 1 LEED patterns are observed for Si and Ge (111) surfaces, LEED cannot distinguish between a true 2 x 2 or disordered domains of 2 x 1 for the diamond (111) surface. However, the similarity of the angle-resolved photoemission (ARUPS) results for C, Si, and Ge suggests that a common 2 x 1 structure may be responsible. The 2 x 1 structure disappears upon annealing for Si and Ge but appears upon annealing for C, indicating that it may be thermodynamically stable only for C. Thus the study of the diamond 2 x 2/2 x 1 surface is of particular interest. Here, we report direct energy minimization calculations for these models. A first principles linear combination of atomic orbitals approach has been used to calculate total energies in the pseudopotential and local density (LDA) approximations. 27 refs., 3 figs., 2 tabs.

  11. 3D reconstruction of concave surfaces using polarisation imaging

    Science.gov (United States)

    Sohaib, A.; Farooq, A. R.; Ahmed, J.; Smith, L. N.; Smith, M. L.

    2015-06-01

    This paper presents a novel algorithm for improved shape recovery using polarisation-based photometric stereo. The majority of previous research using photometric stereo involves 3D reconstruction using both the diffuse and specular components of light; however, this paper suggests the use of the specular component only as it is the only form of light that comes directly off the surface without subsurface scattering or interreflections. Experiments were carried out on both real and synthetic surfaces. Real images were obtained using a polarisation-based photometric stereo device while synthetic images were generated using PovRay® software. The results clearly demonstrate that the proposed method can extract three-dimensional (3D) surface information effectively even for concave surfaces with complex texture and surface reflectance.

  12. Colored 3D surface reconstruction using Kinect sensor

    Science.gov (United States)

    Guo, Lian-peng; Chen, Xiang-ning; Chen, Ying; Liu, Bin

    2015-03-01

    A colored 3D surface reconstruction method which effectively fuses the information of both depth and color image using Microsoft Kinect is proposed and demonstrated by experiment. Kinect depth images are processed with the improved joint-bilateral filter based on region segmentation which efficiently combines the depth and color data to improve its quality. The registered depth data are integrated to achieve a surface reconstruction through the colored truncated signed distance fields presented in this paper. Finally, the improved ray casting for rendering full colored surface is implemented to estimate color texture of the reconstruction object. Capturing the depth and color images of a toy car, the improved joint-bilateral filter based on region segmentation is used to improve the quality of depth images and the peak signal-to-noise ratio (PSNR) is approximately 4.57 dB, which is better than 1.16 dB of the joint-bilateral filter. The colored construction results of toy car demonstrate the suitability and ability of the proposed method.

  13. Stability and effects of carbon-induced surface reconstructions in cobalt Fischer-Tropsch synthesis

    Science.gov (United States)

    Ciobîcă, I. M.; van Helden, P.; van Santen, R. A.

    2016-11-01

    This computational study of carbon induced reconstruction of Co surfaces demonstrates that surface reconstruction is stable in the presence of a hydrogen at low coverage. These reconstructions can create new sites that allow for low activation energy CO dissociation. Carbon induced surface reconstruction of the edge of the FCC-Co(221) step surface will result in highly reactive step-edge sites. Such sites also provide a low activation energy for carbon to diffuse into the subsurface layer of cobalt.

  14. Multiview specular stereo reconstruction of large mirror surfaces

    KAUST Repository

    Balzer, Jonathan

    2011-06-01

    In deflectometry, the shape of mirror objects is recovered from distorted images of a calibrated scene. While remarkably high accuracies are achievable, state-of-the-art methods suffer from two distinct weaknesses: First, for mainly constructive reasons, these can only capture a few square centimeters of surface area at once. Second, reconstructions are ambiguous i.e. infinitely many surfaces lead to the same visual impression. We resolve both of these problems by introducing the first multiview specular stereo approach, which jointly evaluates a series of overlapping deflectometric images. Two publicly available benchmarks accompany this paper, enabling us to numerically demonstrate viability and practicability of our approach. © 2011 IEEE.

  15. Chiral non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2014-07-01

    A non-Fermi liquid state without time-reversal and parity symmetries arises when a chiral Fermi surface is coupled with a soft collective mode in two space dimensions. The full Fermi surface is described by a direct sum of chiral patch theories, which are decoupled from each other in the low-energy limit. Each patch includes low-energy excitations near a set of points on the Fermi surface with a common tangent vector. General patch theories are classified by the local shape of the Fermi surface, the dispersion of the critical boson, and the symmetry group, which form the data for distinct universality classes. We prove that a large class of chiral non-Fermi liquid states exists as stable critical states of matter. For this, we use a renormalization group scheme where low-energy excitations of the Fermi surface are interpreted as a collection of (1+1)-dimensional chiral fermions with a continuous flavor labeling the momentum along the Fermi surface. Due to chirality, the Wilsonian effective action is strictly UV finite. This allows one to extract the exact scaling exponents although the theories flow to strongly interacting field theories at low energies. In general, the low-energy effective theory of the full Fermi surface includes patch theories of more than one universality classes. As a result, physical responses include multiple universal components at low temperatures. We also point out that, in quantum field theories with extended Fermi surface, a noncommutative structure naturally emerges between a coordinate and a momentum which are orthogonal to each other. We show that the invalidity of patch description for Fermi liquid states is tied with the presence of UV/IR mixing associated with the emergent noncommutativity. On the other hand, UV/IR mixing is suppressed in non-Fermi liquid states due to UV insensitivity, and the patch description is valid.

  16. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    Science.gov (United States)

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality.

  17. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    Science.gov (United States)

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling.

  18. Adaptive Surface Reconstruction Based on Tensor Product Algebraic Splines

    Institute of Scientific and Technical Information of China (English)

    Xinghua Song; Falai Chen

    2009-01-01

    Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput. Math., 17 (2002), pp. 135-152) based on tensor product algebraic spline surfaces from fixed meshes to adaptive meshes. We start with a tensor product algebraic B-spline surface defined on an initial mesh to fit the given data based on an optimization approach. By measuring the fitting errors over each cell of the mesh, we recursively insert new knots in cells over which the errors are larger than some given threshold, and construct a new algebraic spline surface to better fit the given data locally. The algorithm terminates when the error over each cell is less than the threshold. We provide some examples to demonstrate our algorithm and compare it with Jiittler's method. Examples suggest that our method is effective and is able to produce reconstruction surfaces of high quality.AMS subject classifications: 65D17

  19. The novel metallic states of the cuprates: Topological Fermi liquids and strange metals

    Science.gov (United States)

    Sachdev, Subir; Chowdhury, Debanjan

    2016-12-01

    We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the ℤ spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of "topological" Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using ℤ-FL* or ℤ-ACL states with Ising-nematic order. These pseudogap metal states are also described as Higgs phases of a SU(2) gauge theory. The Higgs field represents local antiferromagnetism, but the Higgs-condensed phase does not have long-range antiferromagnetic order: the magnitude of the Higgs field determines the pseudogap, the reconstruction of the Fermi surface, and the Ising-nematic order. Finally, we discuss the route to the large Fermi surface Fermi liquid via the critical point where the Higgs condensate and Ising nematic order vanish, and the application of Higgs criticality to the strange metal.

  20. Confinement and the quark Fermi-surface in SU(2N) QCD-like theories

    CERN Document Server

    Langfeld, Kurt; Wipf, Andreas

    2009-01-01

    Yang-Mills theories with a gauge group SU(N_c\\=3)and quark matter in the fundamental representation share many properties with the theory of strong interactions, QCD with N_c=3. We show that, for N_c even and in the confinement phase, the quark determinant is independent of the boundary conditions, periodic or anti-periodic ones. We then argue that a Fermi sphere of quarks can only exist under extreme conditions when the centre symmetry is spontaneously broken and colour is liberated. Our findings are supported by lattice gauge simulations for N_c=2...5 and are illustrated by means of a simple quark model.

  1. Contour-Based Surface Reconstruction using MPU Implicit Models.

    Science.gov (United States)

    Braude, Ilya; Marker, Jeffrey; Museth, Ken; Nissanov, Jonathan; Breen, David

    2007-03-01

    This paper presents a technique for creating a smooth, closed surface from a set of 2D contours, which have been extracted from a 3D scan. The technique interprets the pixels that make up the contours as points in ℝ(3) and employs Multi-level Partition of Unity (MPU) implicit models to create a surface that approximately fits to the 3D points. Since MPU implicit models additionally require surface normal information at each point, an algorithm that estimates normals from the contour data is also described. Contour data frequently contains noise from the scanning and delineation process. MPU implicit models provide a superior approach to the problem of contour-based surface reconstruction, especially in the presence of noise, because they are based on adaptive implicit functions that locally approximate the points within a controllable error bound. We demonstrate the effectiveness of our technique with a number of example datasets, providing images and error statistics generated from our results.

  2. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit; Ruan, Dan

    2015-01-01

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method

  3. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method

  4. Absolute surface reconstruction by slope metrology and photogrammetry

    Science.gov (United States)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  5. Surface chemistry and Fermi level movement during the self-cleaning of GaAs by trimethyl-aluminum

    Science.gov (United States)

    Tallarida, M.; Adelmann, C.; Delabie, A.; Van Elshocht, S.; Caymax, M.; Schmeisser, D.

    2011-07-01

    The removal of the native oxides from NH4OH-cleaned p-GaAs (100) by exposure to trimethyl-aluminum (TMA) was studied by in situ photoelectron spectroscopy using synchrotron radiation. The reduction of high-valence As- and Ga-oxides occurred through different routes: while As3+ was reduced to As(1±Δ)+ suboxides (with 0 ≤ Δ ≤ 1), Ga3+ was directly removed. The surface Fermi level was shifted by about 100 meV towards the valence band edge upon TMA exposure. This indicates that removing the native oxide of GaAs by TMA is insufficient to create interfaces between GaAs and Al2O3 with defects densities below the 1012 cm-2 range.

  6. Phonon dispersions and Fermi surfaces nesting explaining the variety of charge ordering in titanium-oxypnictides superconductors

    Science.gov (United States)

    Nakano, Kousuke; Hongo, Kenta; Maezono, Ryo

    2016-01-01

    There has been a puzzle between experiments and theoretical predictions on the charge ordering of layered titanium-oxypnictides superconductors. Unconventional mechanisms to explain this discrepancy have been argued so far, even affecting the understanding of superconductivity on the compound. We provide a new theoretical prediction, by which the discrepancy itself is resolved without any complicated unconventional explanation. Phonon dispersions and changes of nesting vectors in Fermi surfaces are clarified to lead to the variety of superlattice structures even for the common crystal structures when without CDW, including orthorhombic 2 × 2 × 1 one for BaTi2As2O, which has not yet been explained successfully so far, being different from tetragonal for BaTi2Sb2O and BaTi2Bi2O. The electronic structure analysis can naturally explain experimental observations about CDW including most latest ones without any cramped unconventional mechanisms. PMID:27430418

  7. Robust surface reconstruction by design-guided SEM photometric stereo

    Science.gov (United States)

    Miyamoto, Atsushi; Matsuse, Hiroki; Koutaki, Gou

    2017-04-01

    We present a novel approach that addresses the blind reconstruction problem in scanning electron microscope (SEM) photometric stereo for complicated semiconductor patterns to be measured. In our previous work, we developed a bootstrapping de-shadowing and self-calibration (BDS) method, which automatically calibrates the parameter of the gradient measurement formulas and resolves shadowing errors for estimating an accurate three-dimensional (3D) shape and underlying shadowless images. Experimental results on 3D surface reconstruction demonstrated the significance of the BDS method for simple shapes, such as an isolated line pattern. However, we found that complicated shapes, such as line-and-space (L&S) and multilayered patterns, produce deformed and inaccurate measurement results. This problem is due to brightness fluctuations in the SEM images, which are mainly caused by the energy fluctuations of the primary electron beam, variations in the electronic expanse inside a specimen, and electrical charging of specimens. Despite these being essential difficulties encountered in SEM photometric stereo, it is difficult to model accurately all the complicated physical phenomena of electronic behavior. We improved the robustness of the surface reconstruction in order to deal with these practical difficulties with complicated shapes. Here, design data are useful clues as to the pattern layout and layer information of integrated semiconductors. We used the design data as a guide of the measured shape and incorporated a geometrical constraint term to evaluate the difference between the measured and designed shapes into the objective function of the BDS method. Because the true shape does not necessarily correspond to the designed one, we use an iterative scheme to develop proper guide patterns and a 3D surface that provides both a less distorted and more accurate 3D shape after convergence. Extensive experiments on real image data demonstrate the robustness and effectiveness

  8. Deformable Surface 3D Reconstruction from Monocular Images

    CERN Document Server

    Salzmann, Matthieu

    2010-01-01

    Being able to recover the shape of 3D deformable surfaces from a single video stream would make it possible to field reconstruction systems that run on widely available hardware without requiring specialized devices. However, because many different 3D shapes can have virtually the same projection, such monocular shape recovery is inherently ambiguous. In this survey, we will review the two main classes of techniques that have proved most effective so far: The template-based methods that rely on establishing correspondences with a reference image in which the shape is already known, and non-rig

  9. 3D surface reconstruction multi-scale hierarchical approaches

    CERN Document Server

    Bellocchio, Francesco; Ferrari, Stefano; Piuri, Vincenzo

    2012-01-01

    3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced

  10. Merging Surface Reconstructions of Terrestrial and Airborne LIDAR Range Data

    Science.gov (United States)

    2009-05-19

    take advantage of weak locality in any data [7]. A number of surface reconstruction algorithms triangulate unstructured point clouds [1,3,6]. In...Xeon CPU with 4 GB of RAM. The results for five different point clouds from S1, S2, and S3 are shown in Table 2. Fig. 6 shows the fused mesh from...point cloud 2, and Fig. 11 shows the fused mesh from point cloud 4. Table 2 reports run times for all point clouds , including a break down of the

  11. Height measurement of astigmatic test surfaces by a keratoscope that uses plane geometry surface reconstruction.

    Science.gov (United States)

    Tripoli, N K; Cohen, K L; Obla, P; Coggins, J M; Holmgren, D E

    1996-06-01

    To assess the accuracy with which the Keratron keratoscope (Optikon 2000, Rome, Italy) measured astigmatic test surfaces by a profile reconstruction algorithm within a plane geometry model and to discriminate between error caused by the model and error caused by other factors. Height was reported by the Keratron for eight surfaces with central astigmatism ranging from 4 to 16 diopters. A three-dimensional ray tracing simulation produced theoretic reflected ring patterns on which the Keratron's reconstruction algorithm was performed. The Keratron's measurements were compared with the surfaces' formulas and the ray-traced simulations. With a new mathematical filter for smoothing ring data, now part of the Keratron's software, maximum error was 0.47% of the total height and was usually less than 1% of local power for surfaces with 4 diopters of astigmatism. For surfaces with 16 diopters of astigmatism, maximum error was as high as 2.9% of total height and was usually less than 2.5% of local power. The reconstruction algorithm accounted for 40% and 70% of height error, respectively. The efficacy of keratoscopes cannot be assumed from their design theories but must be tested. Although plane geometry surface reconstruction contributed greatly to total height error, total error was so small that it is unlikely to affect clinical use.

  12. Local Surface Reconstruction from MER images using Stereo Workstation

    Science.gov (United States)

    Shin, Dongjoe; Muller, Jan-Peter

    2010-05-01

    The authors present a semi-automatic workflow that reconstructs the 3D shape of the martian surface from local stereo images delivered by PnCam or NavCam on systems such as the NASA Mars Exploration Rover (MER) Mission and in the future the ESA-NASA ExoMars rover PanCam. The process is initiated with manually selected tiepoints on a stereo workstation which is then followed by a tiepoint refinement, stereo-matching using region growing and Levenberg-Marquardt Algorithm (LMA)-based bundle adjustment processing. The stereo workstation, which is being developed by UCL in collaboration with colleagues at the Jet Propulsion Laboratory (JPL) within the EU FP7 ProVisG project, includes a set of practical GUI-based tools that enable an operator to define a visually correct tiepoint via a stereo display. To achieve platform and graphic hardware independence, the stereo application has been implemented using JPL's JADIS graphic library which is written in JAVA and the remaining processing blocks used in the reconstruction workflow have also been developed as a JAVA package to increase the code re-usability, portability and compatibility. Although initial tiepoints from the stereo workstation are reasonably acceptable as true correspondences, it is often required to employ an optional validity check and/or quality enhancing process. To meet this requirement, the workflow has been designed to include a tiepoint refinement process based on the Adaptive Least Square Correlation (ALSC) matching algorithm so that the initial tiepoints can be further enhanced to sub-pixel precision or rejected if they fail to pass the ALSC matching threshold. Apart from the accuracy of reconstruction, it is obvious that the other criterion to assess the quality of reconstruction is the density (or completeness) of reconstruction, which is not attained in the refinement process. Thus, we re-implemented a stereo region growing process, which is a core matching algorithm within the UCL

  13. Proposal to determine the Fermi-surface topology of a doped iron-based superconductor using bulk-sensitive Fourier-transform Compton scattering

    NARCIS (Netherlands)

    Wang, Y.J.; Lin, H.; Barbiellini, B.; Mijnarends, P.E.; Kaprzyk, S.; Markiewicz, R.S.; Bansil, A.

    2010-01-01

    We have carried out first-principles calculations of the Compton scattering spectra to demonstrate that the filling of the hole Fermi surface in LaO1−xFxFeAs produces a distinct signature in the Fourier-transformed Compton spectrum when the momentum transfer vector lies along the [100] direction. We

  14. Theory of alkali-metal-induced reconstructions of fcc(100) surfaces

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel

    1992-01-01

    Calculations of missing-row reconstruction energies of the fcc(100) surfaces of the metals Al, Ni, Pd, Pt, Cu, Ag, and Au have been performed with the effective-medium theory with and without the presence of a potassium overlayer. It is shown that the tendency to reconstruct in the presence......-metal-induced reconstruction of fcc(110) surfaces are pointed out....

  15. Evidence for three-dimensional Fermi-surface topology of the layered electron-doped iron superconductor Ba(Fe1 xCox)2As2

    Energy Technology Data Exchange (ETDEWEB)

    Vilmercati, P. [University of Tennessee, Knoxville (UTK); Fedorov, A. V. [Lawrence Berkeley National Laboratory (LBNL); Vobornik, I. [TASC National Laboratory, Trieste, Italy; Manju, U. [TASC National Laboratory, Trieste, Italy; Panaccione, G. [TASC National Laboratory, Trieste, Italy; Goldoni, A. [Sincrotrone Trieste, Basovizza, Italy; Safa-Sefat, Athena [ORNL; McGuire, Michael A [ORNL; Sales, Brian C [ORNL; Jin, Rongying [ORNL; Mandrus, David [ORNL; Singh, David J [ORNL; Mannella, Norman [ORNL

    2009-01-01

    The electronic structure of electron doped iron-arsenide superconductors Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} has been measured with Angle Resolved Photoemission Spectroscopy. The data reveal a marked photon energy dependence of points in momentum space where the bands cross the Fermi energy, a distinctive and direct signature of three-dimensionality in the Fermi surface topology. By providing a unique example of high temperature superconductivity hosted in layered compounds with three-dimensional electronic structure, these findings suggest that the iron-arsenides are unique materials, quite different from the cuprates high temperature superconductors.

  16. Gutzwiller density functional studies of FeAs-based superconductors: structure optimization and evidence for a three-dimensional Fermi surface.

    Science.gov (United States)

    Wang, Guangtao; Qian, Yumin; Xu, Gang; Dai, Xi; Fang, Zhong

    2010-01-29

    The electronic structures of FeAs compounds are sensitive to FeAs bonding, which is described unsuccessfully by the local density approximation (LDA). Treating the multiorbital fluctuations from ab inito LDA+Gutzwiller method, we can now predict the correct FeAs bond length and bonding strength, which will explain the observed "soft phonon." The bands are narrowed by a factor of 2 from their LDA widths. The d{3z{2}-r{2}} orbital is pushed up to cross the Fermi level, forming a three-dimensional Fermi surface, which reduces the anisotropy. The interorbital Hund's coupling J rather than U plays a crucial role in obtaining these results.

  17. Experimental electronic structure and Fermi-surface instability of the correlated 3d sulphide BaVS3 : High-resolution angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Mitrovic, S.; Fazekas, P.; Søndergaard, C.; Ariosa, D.; Barišić, N.; Berger, H.; Cloëtta, D.; Forró, L.; Höchst, H.; Kupčić, I.; Pavuna, D.; Margaritondo, G.

    2007-04-01

    The correlated 3d sulphide BaVS3 exhibits an interesting coexistence of one-dimensional and three-dimensional properties. Our experiments determine the electronic band structure and shed light on this puzzle. High-resolution angle-resolved photoemission measurements in a 4-eV -wide range below the Fermi energy level uncover and investigate the coexistence of a1g wide-band and eg narrow-band d electrons, which lead to the complicated electronic properties of this material. We explore the effects of strong correlations and the Fermi surface instability associated with the metal-insulator transition.

  18. Reconstruction of MODIS daily land surface temperature under clouds

    Science.gov (United States)

    Sun, L.; Gao, F.; Chen, Z.; Song, L.; Xie, D.

    2015-12-01

    Land surface temperature (LST), generally defined as the skin temperature of the Earth's surface, controls the process of evapotranspiration, surface energy balance, soil moisture change and climate change. Moderate Resolution Imaging Spectrometer (MODIS) is equipped with 1km resolution thermal sensor andcapable of observing the earth surface at least once per day.Thermal infrared bands cannot penetrate cloud, which means we cannot get consistency drought monitoring condition at one area. However, the cloudy-sky conditions represent more than half of the actual day-to-day weather around the global. In this study, we developed an LST filled model based on the assumption that under good weather condition, LST difference between two nearby pixels are similar among the closest 8 days. We used all the valid pixels covered by a 9*9 window to reconstruct the gap LST. Each valid pixel is assigned a weight which is determined by the spatial distance and the spectral similarity. This model is applied in the Middle-East of China including Gansu, Ningxia, Shaanxi province. The terrain is complicated in this area including plain and hill. The MODIS daily LST product (MOD11A3) from 2000 to 2004 is tested. Almost all the gap pixels are filled, and the terrain information is reconstructed well and smoothly. We masked two areas in order to validate the model, one located in the plain, another located in the hill. The correlation coefficient is greater than 0.8, even up to 0.92 in a few days. We also used ground measured day maximum and mean surface temperature to valid our model. Although both the temporal and spatial scale are different between ground measured temperature and MODIS LST, they agreed well in all the stations. This LST filled model is operational because it only needs LST and reflectance, and does not need other auxiliary information such as climate factors. We will apply this model to more regions in the future.

  19. RECONSTRUCTION OF SYMMETRIC B-SPLINE CURVES AND SURFACES

    Institute of Scientific and Technical Information of China (English)

    ZHU Weidong; KE Yinglin

    2007-01-01

    A method to reconstruct Symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using Symmetric knot vector and Symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a Symmetric knot vector is selected in order to get Symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be Symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.

  20. Object 3D surface reconstruction approach using portable laser scanner

    Science.gov (United States)

    Xu, Ning; Zhang, Wei; Zhu, Liye; Li, Changqing; Wang, Shifeng

    2017-06-01

    The environment perception plays the key role for a robot system. The 3D surface of the objects can provide essential information for the robot to recognize objects. This paper present an approach to reconstruct objects' 3D surfaces using a portable laser scanner we designed which consists of a single-layer laser scanner, an encoder, a motor, power supply and mechanical components. The captured point cloud data is processed to remove the discrete points, denoise filtering, stitching and registration. Then the triangular mesh generation of point cloud is accomplished by using Gaussian bilateral filtering, ICP real-time registration and greedy triangle projection algorithm. The experiment result shows the feasibility of the device designed and the algorithm proposed.

  1. Fermi surface evolution of Na-doped PbTe studied through density functional theory calculations and Shubnikov-de Haas measurements

    Science.gov (United States)

    Giraldo-Gallo, P.; Sangiorgio, B.; Walmsley, P.; Silverstein, H. J.; Fechner, M.; Riggs, S. C.; Geballe, T. H.; Spaldin, N. A.; Fisher, I. R.

    2016-11-01

    We present a combined experimental and theoretical study of the evolution of the low-temperature Fermi surface of lead telluride (PbTe) when holes are introduced through sodium substitution on the lead site. Our Shubnikov-de Haas measurements for samples with carrier concentrations up to 9.4 ×1019cm-3 (0.62 Na at. %) show the qualitative features of the Fermi surface evolution (topology and effective mass) predicted by our density functional (DFT) calculations within the generalized gradient approximation (GGA): we obtain perfect ellipsoidal L pockets at low and intermediate carrier concentrations, evolution away from ideal ellipsoidicity for the highest doping studied, and cyclotron effective masses increasing monotonically with doping level, implying deviations from perfect parabolicity throughout the whole band. Our measurements show, however, that standard DFT calculations underestimate the energy difference between the L point and Σ -line valence band maxima, since our data are consistent with a single-band Fermi surface over the entire doping range studied, whereas the calculations predict an occupation of the Σ pockets at higher doping. Our results for low and intermediate compositions are consistent with a nonparabolic Kane-model dispersion, in which the L pockets are ellipsoids of fixed anisotropy throughout the band, but the effective masses depend strongly on Fermi energy.

  2. Efficient Surface Mesh Reconstruction from Unorganized Points Using Neural Network

    Institute of Scientific and Technical Information of China (English)

    YUANYouwei; YANLamei; GUOQingping

    2005-01-01

    In this paper, a new approach for the automatic reconstruction from unorganized points is presented,where first an artificial neural network is used to order the data and form a grid of control vertices with triangle topology. Then, we present a general scheme for mesh simplification and optimization that allows to control the geometric approximation as well as the element shape and size quality (required for numerical simulations). The new approach makes possible the construction of adapted geometric meshes for surfaces by specifying the element sizes(and directions) so as to bound the error below a usergiven threshold value. The experimental results show that our methods are accurate and simple to implement.

  3. Electronic structure, Fermi surface and optical properties of metallic compound Be{sub 8}(B{sub 48})B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Azam, Sikander, E-mail: sikander.physicst@gmail.com [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Chyský, Jan [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-02-15

    The band structure, density of states, electronic charge density, Fermi surface and optical properties for B{sub 8}(Be{sub 48})B{sub 2} compound has been investigated in the support of density functional theory (DFT). The atomic positions of B{sub 8}(Be{sub 48})B{sub 2} compound were optimized by minimization of the forces acting on the atoms using the full potential linear augmented plane wave (FPLAPW) method. We have employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engal-Vosko GGA (EVGGA) to indulgence the exchange correlation potential by solving Kohn–Sham equations. The result shows that the compound is metallic with sturdy hybridization near the Fermi energy level (E{sub F}). The density of states at Fermi energy, N(E{sub F}), is determined by the overlaping between B-p, B-s and Be-s states. This overlaping is strong enough indicating metallic origin with different values of N(E{sub F}). These values are 16.4, 16.27 and 14.89 states/eV, and the corresponding bare linear low-temperature electronic specific heat coefficient (γ) is found to be 2.84, 2.82 and 2.58 mJ/mol K{sup 2} for EVGGA, GGA and LDA respectively. There exists a strong hybridization between B-s and B-p states, also between B-s and Be-p states around the Fermi level. The Fermi surface is composed of three sheets. These sheets consist of set of holes and electrons. The bonding features of the compounds are analyzed using the electronic charge density in the (101 and −101) crystallographic planes and also the analyzing of charge density shows covalent bonding between B and B. The linear optical properties are also deliberated and discussed in particulars. - Highlights: • The compound is metallic. • The density of states at the Fermi energy is calculated. • The bare linear low-temperature electronic specific heat coefficient is obtained. • Fermi surface is composed of three sheets. • The bonding features are analyzed using the electronic

  4. Tomo-PIV measurement of flow around an arbitrarily moving body with surface reconstruction

    Science.gov (United States)

    Im, Sunghyuk; Jeon, Young Jin; Sung, Hyung Jin

    2015-02-01

    A three-dimensional surface of an arbitrarily moving body in a flow field was reconstructed using the DAISY descriptor and epipolar geometry constraints. The surface shape of a moving body was reconstructed with tomographic PIV flow measurement. Experimental images were captured using the tomographic PIV system, which consisted of four high-speed cameras and a laser. The originally captured images, which contained the shape of the arbitrary moving body and the tracer particles, were separated into the particle and surface images using a Gaussian smoothing filter. The weak contrast of the surface images was enhanced using a local histogram equalization method. The histogram-equalized surface images were used to reconstruct the surface shape of the moving body. The surface reconstruction method required a sufficiently detailed surface pattern to obtain the intensity gradient profile of the local descriptor. The separated particle images were used to reconstruct the particle volume intensity via tomographic reconstruction approaches. Voxels behind the reconstructed body surface were neglected during the tomographic reconstruction and velocity calculation. The three-dimensional three-component flow vectors were calculated based on the cross-correlation functions between the reconstructed particle volumes. Three-dimensional experiments that modeled the flows around a flapping flag, a rotating cylinder, and a flapping robot fish tail were conducted to validate the present technique.

  5. The relationship between anisotropic magnetoresistance and topology of Fermi surface in Td-MoTe2 crystal

    Science.gov (United States)

    Lv, Yang-Yang; Li, Xiao; Pang, Bin; Cao, Lin; Lin, Dajun; Zhang, Bin-Bin; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Dong, Song-Tao; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng

    2017-07-01

    Layered transition-metal dichalcogenides have been recently attracted a lot of attention because of their unique physical properties, such as extremely large and anisotropic magnetoresistance (MR) in WTe2. In this work, we observed the abnormally anisotropic MR on Td-MoTe2 crystal that is strongly dependent on the temperature, as well as the orientations of both magnetic field B and electric field E with respect to crystallographic axes of Td-MoTe2. When E//a-axis and B//c-axis, MR is parabolically dependent on B and is as high as 520% under 9 T and 2 K conditions; the MR is quasi-linearly dependent on B when E//a-axis and B//b-axis (E//b-axis and B//c-axis), and the corresponding MR is only 130% (220%); MR is initially parabolically dependent on B, then linearly on B, and finally shows a saturate trend under E//B//a-axis (or E//B//b-axis) conditions, and the MR is about 16% (30%). These anisotropic MR behaviors can be qualitatively explained by the features of the Fermi surface of Td-MoTe2. This work may demonstrate the rich anisotropic physical behavior in layered transition-metal dichalcognides.

  6. Direct angle resolved photoelectron spectroscopy (DARPES) on high-Tc films: doping, strains, Fermi surface topology and superconductivity

    Science.gov (United States)

    Pavuna, D.; Ariosa, D.; Cancellieri, C.; Cloetta, D.; Abrecht, M.

    2008-03-01

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-Tc films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La2-xSrxCuO4 (LSCO) thin films we double Tc from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while Tc is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the 2D character of the dispersion and increases Tc, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO2 planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  7. Controlled calculation of the thermal conductivity for a spinon Fermi surface coupled to a U(1) gauge field

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Hermann, E-mail: hfreire@mit.edu

    2014-10-15

    Motivated by recent transport measurements on the candidate spin-liquid phase of the organic triangular lattice insulator EtMe{sub 3}Sb[Pd(dmit){sub 2}]{sub 2}, we perform a controlled calculation of the thermal conductivity at intermediate temperatures in a spin liquid system where a spinon Fermi surface is coupled to a U(1) gauge field. The present computation builds upon the double expansion approach developed by Mross et al. (2010) for small ϵ=z{sub b}−2 (where z{sub b} is the dynamical critical exponent of the gauge field) and large number of fermionic species N. Using the so-called memory matrix formalism that most crucially does not assume the existence of well-defined quasiparticles at low energies in the system, we calculate the temperature dependence of the thermal conductivity κ of this model due to non-critical Umklapp scattering of the spinons for a finite N and small ϵ. Then we discuss the physical implications of such theoretical result in connection with the experimental data available in the literature.

  8. Correlations between neutrons and protons near Fermi surface and $Q_{\\alpha}$ of super-heavy nuclei

    CERN Document Server

    Wang, Ning; Wu, Xizhen; Meng, Jie

    2015-01-01

    The shell corrections and shell gaps in nuclei are systematically studied with the latest Weizs\\"acker-Skyrme (WS4) mass model. We find that most of asymmetric nuclei with (sub)-shell closures locate along the shell stability line (SSL), $N=1.37Z+13.5$, which might be due to a strong correlation between neutrons and protons near Fermi surface. The double magicity of nuclei $^{46}$Si and $^{78}$Ni is predicted according to the corresponding shell gaps, shell corrections and nuclear deformations. The unmeasured super-heavy nuclei $^{296}$118 and $^{298}$120, with relatively large shell gaps and shell corrections, also locate along the SSL, whereas the traditional magic nucleus $^{298}$Fl evidently deviates from the line. The $\\alpha$-decay energies of super-heavy nuclei with $Z=113-126$ are simultaneously investigated by using the WS4 model together with the radial basis function corrections. For super-heavy nuclei with large shell corrections, the smallest $\\alpha$-decay energy for elements $Z=116$, 117 and 11...

  9. Fractal reconstruction of rough membrane surface related with membrane fouling in a membrane bioreactor.

    Science.gov (United States)

    Zhang, Meijia; Chen, Jianrong; Ma, Yuanjun; Shen, Liguo; He, Yiming; Lin, Hongjun

    2016-09-01

    In this paper, fractal reconstruction of rough membrane surface with a modified Weierstrass-Mandelbrot (WM) function was conducted. The topography of rough membrane surface was measured by an atomic force microscopy (AFM), and the results showed that the membrane surface was isotropous. Accordingly, the fractal dimension and roughness of membrane surface were calculated by the power spectrum method. The rough membrane surface was reconstructed on the MATLAB platform with the parameter values acquired from raw AFM data. The reconstructed membrane was much similar to the real membrane morphology measured by AFM. The parameters (including average roughness and root mean square (RMS) roughness) associated with membrane morphology for the model and real membrane were calculated, and a good match of roughness parameters between the reconstructed surface and real membrane was found, indicating the feasibility of the new developed method. The reconstructed membrane surface can be potentially used for interaction energy evaluation.

  10. LETTER TO THE EDITOR: Unique Fermi surfaces with quasi-one-dimensional character in CeRh3B2 and LaRh3B2

    Science.gov (United States)

    Okubo, T.; Yamada, M.; Thamizhavel, A.; Kirita, S.; Inada, Y.; Settai, R.; Harima, H.; Takegahara, K.; Galatanu, A.; Yamamoto, E.; Onuki, Y.

    2003-11-01

    We have carried out de Haas-van Alphen (dHvA) experiments on a ferromagnet CeRh3B2 with an extremely high Curie temperature T_{\\mathrm {C}} \\simeq 120 K and a non-4f reference compound LaRh3B2. The dHvA data of LaRh3B2 are well explained by the results of energy band calculations. The topology of the Fermi surfaces in CeRh3B2 is found to be very similar to that of LaRh3B2, possessing wavy but flat Fermi surfaces in the basal plane. Observation of a quasi-one-dimensional electronic state is the first such case in a rare earth compound.

  11. Fermi surface evolution and d-wave superconductivity in CeCoIn5: Analysis based on LDA+DMFT method

    Science.gov (United States)

    Nomoto, Takuya; Ikeda, Hiroaki

    2014-09-01

    Based on the advanced first-principles theoretical approach, we investigate the superconducting gap structure and the pairing glue in the heavy-fermion superconductor CeCoIn5. Unexpectedly, the nesting function in the original GGA-based band structure, which is considered to be consistent with the dHvA measurement, shows a Q structure incompatible with experimental observations. Instead we find the importance of the temperature-dependent Fermi surface evolution driven by electron correlations, which has been calculated by the DMFT method. Considering this effect, we obtain reasonable antiferromagnetic correlation, which can also induce the expected d-wave superconductivity. The system encounters the superconducting transition, before a part of the Fermi surface is formed. Similar effects can be expected in generic heavy-fermion superconductors.

  12. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Science.gov (United States)

    Galvis, J. A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-02-01

    Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  13. Determining the in-plane Fermi surface topology in high T(c) superconductors using angle-dependent magnetic quantum oscillations.

    Science.gov (United States)

    Harrison, N; McDonald, R D

    2009-05-13

    We propose a quantum oscillation experiment by which the rotation of an underdoped YBa(2)Cu(3)O(6+x) sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2ΔF between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds |B|.

  14. Electronic structure of reconstructed InAs(001) surfaces - identification of bulk and surface bands based on their symmetries

    Science.gov (United States)

    Olszowska, Natalia; Kolodziej, Jacek J.

    2016-02-01

    Using angle-resolved photoelectron spectroscopy (ARPES) band structures of indium- and arsenic-terminated InAs(001) surfaces are investigated. These surfaces are highly reconstructed, elementary cells of their lattices contain many atoms in different chemical configurations, and moreover, they are composed of domains having related but different reconstructions. These domain-type surface reconstructions result in the reciprocal spaces containing regions with well-defined k→∥-vector and regions with not-well-defined one. In the ARPES spectra most of the surface related features appear as straight lines in the indeterminate k→∥-vector space. It is shown that, thanks to differences in crystal and surface symmetries, the single photon energy ARPES may be successfully used for classification of surface and bulk bands of electronic states on complex, highly reconstructed surfaces instead of the most often used variable photon energy studies.

  15. NON-CONTACT MEASUREMENT SYSTEM OF FREEFORM SURFACE AND NURBS RECONSTRUCTION OF MEASUREMENT POINTS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the development of the non-contact measurement system of free-form surface, NURBS reconstruc-tion of measurement points of freeform surface is effectively realized by modifying the objective function and recursiveprocedure and calculating the optimum number of control points. The reconstruction precision is evaluated through Ja-cobi's transformation method. The feasibility of the measurement system and effectiveness of the reconstruction algo-rithm above are proved by experiment.

  16. Surface Topology Reconstruction From The White Light Interferogram By Means Of Prony Analysis

    Directory of Open Access Journals (Sweden)

    Khoma Anna

    2015-12-01

    Full Text Available The paper presents a new method of surface topology reconstruction from a white light interferogram. The method is based on interferogram modelling by complex exponents (Prony method. The compatibility of white light interferogram and Prony models has already been proven. Effectiveness of the method was tested by modelling and examining reconstruction of tilted and spherical surfaces, and by estimating the reconstruction accuracy.

  17. Direct angle resolved photoelectron spectroscopy (DARPES) on high-T{sub c} films: doping, strains, Fermi surface topology and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Pavuna, D; Ariosa, D; Cancellieri, C; Cloetta, D; Abrecht, M [Institute of Physics of Complex Matter, FSB, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: davor.pavuna@epfl.ch

    2008-03-15

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-T{sub c} films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) thin films we double T{sub c} from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while T{sub c} is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO{sub 2} plane, enhances the 2D character of the dispersion and increases T{sub c}, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO{sub 2} planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  18. Reduction of Fermi level pinning at Au-MoS2 interfaces by atomic passivation on Au surface

    Science.gov (United States)

    Min, Kyung-Ah; Park, Jinwoo; Wallace, Robert M.; Cho, Kyeongjae; Hong, Suklyun

    2017-03-01

    Monolayer molybdenum disulfide (MoS2), which is a semiconducting material with direct band gap of ˜1.8 eV, has drawn much attention for application in field effect transistors (FETs). In this connection, it is very important to understand the Fermi level pinning (FLP) which occurs at metal-semiconductor interfaces. It is known that MoS2 has an n-type contact with Au, which is a high work function metal, representing the strong FLP at Au-MoS2 interfaces. However, such FLP can obstruct the attainment of high performance of field effect devices. In this study, we investigate the reduction of FLP at Au-MoS2 interfaces by atomic passivation on Au(111) using first-principles calculations. To reduce the FLP at Au-MoS2 interfaces, we consider sulfur, oxygen, nitrogen, fluorine, and hydrogen atoms that can passivate the surface of Au(111). Calculations show that passivating atoms prevent the direct contact between Au(111) and MoS2, and thus FLP at Au-MoS2 interfaces is reduced by weak interaction between atom-passivated Au(111) and MoS2. Especially, FLP is greatly reduced at sulfur-passivated Au-MoS2 interfaces with the smallest binding energy. Furthermore, fluorine-passivated Au(111) can form ohmic contact with MoS2, representing almost zero Schottky barrier height (SBH). We suggest that SBH can be controlled depending on the passivating atoms on Au(111).

  19. Multiframe image point matching and 3-d surface reconstruction.

    Science.gov (United States)

    Tsai, R Y

    1983-02-01

    This paper presents two new methods, the Joint Moment Method (JMM) and the Window Variance Method (WVM), for image matching and 3-D object surface reconstruction using multiple perspective views. The viewing positions and orientations for these perspective views are known a priori, as is usually the case for such applications as robotics and industrial vision as well as close range photogrammetry. Like the conventional two-frame correlation method, the JMM and WVM require finding the extrema of 1-D curves, which are proved to theoretically approach a delta function exponentially as the number of frames increases for the JMM and are much sharper than the two-frame correlation function for both the JMM and the WVM, even when the image point to be matched cannot be easily distinguished from some of the other points. The theoretical findings have been supported by simulations. It is also proved that JMM and WVM are not sensitive to certain radiometric effects. If the same window size is used, the computational complexity for the proposed methods is about n - 1 times that for the two-frame method where n is the number of frames. Simulation results show that the JMM and WVM require smaller windows than the two-frame correlation method with better accuracy, and therefore may even be more computationally feasible than the latter since the computational complexity increases quadratically as a function of the window size.

  20. Molecular Precursors-Induced Surface Reconstruction at Graphene/Pt(111) Interfaces

    CERN Document Server

    Wang, Qian; Shi, Xingqiang

    2015-01-01

    Inspired by experimental observations of Pt(111) surfaces reconstruction at the Pt/graphene (Gr) interfaces with ordered vacancy networks in the outermost Pt layer, the mechanism of the surface reconstruction is investigated by van-der-Waals-corrected density functional theory in combination with particle-swarm optimization algorithm and ab initio atomistic thermodynamics. Our global structural search finds a more stable reconstructed (Rec) structure than that was reported before. With correction for vacancy formation energy, we demonstrate that the experimental observed surface reconstruction occurred at the earlier stages of graphene formation: 1) reconstruction occurred when C60 adsorption (before decomposition to form graphene) for C60 as a molecular precursor, or 2) reconstruction occurred when there were (partial) hydrogens retain in the adsorbed carbon structures for C2H4 and C60H30 as precursors. The reason can be attributed to that the energy gain, from the strengthened Pt-C bonding for C of C60 or f...

  1. Enrico Fermi

    Institute of Scientific and Technical Information of China (English)

    李琳

    2006-01-01

    Enrico Fermi was born in Rome on 29th September, 1901. He attended a local grammar school, and in 1918, he won a fellowship of the Scuola Normale Superiore of Pisa, where he gained his doctor’s degree in physics in 1922, with Professor Puccianti. In 1923, he was awarded a scholarship from the Italian Government. With a Rockefeller Fellowship, in 1924, he moved to Leyden, and later that same year he returned to Italy to occupy for two

  2. 11B and 27Al NMR spin-lattice relaxation and Knight shift of Mg1-xAlxB2: Evidence for an anisotropic Fermi surface

    Science.gov (United States)

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-10-01

    We report a detailed study of the 11B and 27Al NMR spin-lattice relaxation rates (1/T1) and the 27Al Knight shift (K) in Mg1-xAlxB2, 0<=x<=1. The evolution of (1/T1T) and K with x is in excellent agreement with the prediction of ab initio calculations of a highly anisotropic Fermi surface, consisting mainly of hole-type two-dimensional (2D) cylindrical sheets from bonding 2px,y boron orbitals. The density of states at the Fermi level also decreases sharply on Al doping and the 2D sheets collapse at x~0.55, where the superconducting phase disappears.

  3. Precision analysis of non-conformal reconstruction for the surface acoustic field on axisymmetric structures

    Institute of Scientific and Technical Information of China (English)

    HE Yuanan; HE Zuoyong

    2003-01-01

    Reconstruction of the surface acoustic field of axisymmetric body with arbitrary boundary conditions using near-field acoustic data is studied. The method of numerical reconstruction based on orthonormalization function expansion (OFE) and boundary element integral (BEI) is presented which can overcome the singular integral problem in the boundary integral equations. By numerical examples, the precision of reconstruction for the non-conformal surface with the axisymmetric or non-axisymmetric vibrating on axisymmetric body is given.The results of the numerical simulation are shown that this kind of reconstruction method is available for engineering.

  4. Landau Theory of Helical Fermi Liquids.

    Science.gov (United States)

    Lundgren, Rex; Maciejko, Joseph

    2015-08-07

    We construct a phenomenological Landau theory for the two-dimensional helical Fermi liquid found on the surface of a three-dimensional time-reversal invariant topological insulator. In the presence of rotation symmetry, interactions between quasiparticles are described by ten independent Landau parameters per angular momentum channel, by contrast with the two (symmetric and antisymmetric) Landau parameters for a conventional spin-degenerate Fermi liquid. We project quasiparticle states onto the Fermi surface and obtain an effectively spinless, projected Landau theory with a single projected Landau parameter per angular momentum channel that captures the spin-momentum locking or nontrivial Berry phase of the Fermi surface. As a result of this nontrivial Berry phase, projection to the Fermi surface can increase or lower the angular momentum of the quasiparticle interactions. We derive equilibrium properties, criteria for Fermi surface instabilities, and collective mode dispersions in terms of the projected Landau parameters. We briefly discuss experimental means of measuring projected Landau parameters.

  5. Reconstruction of surface impedance of an object located over a planar PEC surface

    Energy Technology Data Exchange (ETDEWEB)

    Uenal, Guel Seda; Cayoeren, Mehmet; Tetik, Evrim [Istanbul Technical University Electrical and Electronics Engineering Faculty Maslak 34469 Istanbul (Turkey)], E-mail: unalgu@itu.edu.tr, E-mail: mehmet@cayoren.com, E-mail: tetike@itu.edu.tr

    2008-11-01

    A method for the determination of inhomogeneous surface impedance of an arbitrary shaped cylindrical object located over a perfectly conducting (PEC) plane is presented. The problem is reduced to the solution of an ill-posed integral equation by the use of single layer representation which is handled by Truncated Singular Value Decomposition (TSVD). The total field and its normal derivative on the boundary of the object which are required for the evaluation of the surface impedance are obtained through Nystroem method. The method can also be used in shape reconstruction by using the relation between the shape of a PEC object and its equivalent one in terms of the surface impedance. The numerical implementations yield quite satisfactory results.

  6. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  7. Buckling of reconstruction elements of the edges of triple steps on vicinal Si(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhachuk, R. A., E-mail: zhachuk@gmail.com [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Coutinho, J. [University of Aveiro, Campus Santiago, I3N, Department of Physics (Portugal); Rayson, M. J. [University of Surrey, Department of Chemistry (United Kingdom); Briddon, P. R. [Newcastle University, School of Electrical, Electronic and Computer Engineering (United Kingdom)

    2015-04-15

    The structure of steps with a height of three (111) interplanar distances on vicinal Si(111) surfaces has been analyzed through density functional theory calculations. It has been shown that several stable atomic configurations are possible depending on the buckling of the reconstruction elements of edges of the steps on the surface. It has been found that the direction of the buckling of reconstruction elements in the ground state of the surface is determined by the Coulomb interaction with their nearest atomic environment.

  8. Observation of an electron band above the Fermi level in FeTe{sub 0.55}Se{sub 0.45} from in-situ surface doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Ma, J.; Qian, T. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Richard, P., E-mail: p.richard@iphy.ac.cn; Ding, H., E-mail: dingh@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Xu, N. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Paul Scherrer Institut, Swiss Light Source, CH-5232 Villigen PSI (Switzerland); Xu, Y.-M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fedorov, A. V.; Denlinger, J. D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Gu, G. D. [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-10-27

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe{sub 0.55}Se{sub 0.45}. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily electron-doped KFe{sub 2−x}Se{sub 2} compound.

  9. A Survey on Methods for Reconstructing Surfaces from Unorganized Point Sets

    Directory of Open Access Journals (Sweden)

    Vilius Matiukas

    2011-08-01

    Full Text Available This paper addresses the issue of reconstructing and visualizing surfaces from unorganized point sets. These can be acquired using different techniques, such as 3D-laser scanning, computerized tomography, magnetic resonance imaging and multi-camera imaging. The problem of reconstructing surfaces from their unorganized point sets is common for many diverse areas, including computer graphics, computer vision, computational geometry or reverse engineering. The paper presents three alternative methods that all use variations in complementary cones to triangulate and reconstruct the tested 3D surfaces. The article evaluates and contrasts three alternatives.Article in English

  10. A Computer Vision Method for 3D Reconstruction of Curves-Marked Free-Form Surfaces

    Institute of Scientific and Technical Information of China (English)

    Xiong Hanwei; Zhang Xiangwei

    2001-01-01

    Visual method is now broadly used in reverse engineering for 3D reconstruction. Thetraditional computer vision methods are feature-based, i.e., they require that the objects must revealfeatures owing to geometry or textures. For textureless free-form surfaces, dense feature points areadded artificially. In this paper, a new method is put forward combining computer vision with CAGD.The surface is subdivided into N-side Gregory patches using marked curves, and a stereo algorithm isused to reconstruct the curves. Then, the cross boundary tangent vector is computed throughreflectance analysis. At last, the whole surface can be reconstructed by jointing these patches withG1 continuity.

  11. Topographic matching of distal radius and proximal fibula articular surface for distal radius osteoarticular reconstruction.

    Science.gov (United States)

    Zhang, H; Chen, S; Wang, Z; Guo, Y; Liu, B; Tong, D

    2016-07-01

    During osteoarticular reconstruction of the distal radius with the proximal fibula, congruity between the two articular surfaces is an important factor in determining the quality of the outcome. In this study, a three-dimensional model and a coordinate transformation algorithm were developed on computed tomography scanning. Articular surface matching was performed and parameters for the optimal position were determined quantitatively. The mean radii of best-fit spheres of the articular surfaces of the distal radius and proximal fibula were compared quantitatively. The radial inclination and volar tilt following reconstruction by an ipsilateral fibula graft, rather than the contralateral, best resembles the values of the native distal radius. Additionally, the ipsilateral fibula graft reconstructed a larger proportion of the distal radius articular surface than did the contralateral. The ipsilateral proximal fibula graft provides a better match for the reconstruction of the distal radius articular surface than the contralateral, and the optimal position for graft placement is quantitatively determined.

  12. Diagnostic value of 3 D CT surface reconstruction in spinal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, S. [Department of Radiology, Univ. of Leipzig (Germany); Dietrich, K. [Department of Radiology, Univ. of Leipzig (Germany); Steinecke, R. [Department of Radiology, Univ. of Leipzig (Germany); Kloeppel, R. [Department of Radiology, Univ. of Leipzig (Germany); Schulz, H.G. [Department of Radiology, Univ. of Leipzig (Germany)

    1997-02-01

    Our purpose was to evaluate the diagnostic value of three-dimensional (3 D) CT surface reconstruction in spinal fractures in comparison with axial and reformatted images. A total of 50 patients with different CT-proven spinal fractures were analysed retrospectively. Based on axial scans and reformatted images, the spinal fractures were classified according to several classifications as Magerl for the thoraco-lumbar and lower cervical spine by one radiologist. Another radiologist performed 3 D CT surface reconstructions with the aim of characterizing the different types of spinal fractures. A third radiologist classified the 3 D CT surface reconstruction according to the Magerl classification. The results of the blinded reading process were compared. It was checked to see in which type and subgroup 3 D surface reconstructions were helpful. Readers one and two obtained the same results in the classification. The 3 D surface reconstruction did not yield any additional diagnostic information concerning type A and B injuries. Indeed, the full extent of the fracture could be easier recognized with axial and reformatted images in all cases. In 10 cases of C injuries, the dislocation of parts of vertebrae could be better recognized with the help of 3 D reconstructions. A 3 D CT surface reconstruction is only useful in rotational and shear vertebral injuries (Magerl type C injury). (orig.). With 4 figs., 1 tab.

  13. Electronic structure, Fermi surface topology and spectroscopic optical properties of LaBaCo{sub 2}O{sub 5.5} compound

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Al-Douri, Y. [Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara 29000 (Algeria); Khan, Wilayat; Khan, Saleem Ayaz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Azam, Sikander, E-mail: sikander.physicst@gmail.com [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic)

    2014-08-01

    We have investigated the electronic band structure, Fermi surface topology, chemical bonding and optical properties of LaBaCo{sub 2}O{sub 5.5} compound. The first-principle calculations based on density functional theory (DFT) by means of the full-potential linearized augmented plane-wave method were employed. The atomic positions of LaBaCo{sub 2}O{sub 5.5} compound were optimized by minimizing the forces acting on atoms. We employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel–Vosko GGA (EVGGA) to treat the exchange correlation potential by solving Kohn–Sham equations. Electronic structure and bonding properties are studied throughout the calculation of densities of states, Fermi surfaces and charge densities. Furthermore, the optical properties are investigated via the calculation of the dielectric tensor component in order to characterize the linear optical properties. Optical spectra are analyzed by means of the electronic structure, which provides theoretical understanding of the conduction mechanism of the investigated compound. - Highlights: • DFT-FPLAPW method used for calculating the properties of LaBaCo{sub 2}O{sub 5.5} compound. • This study shows that nature of the compound is metallic. • Crystallographic plane which shows covalent character of O–Co bond. • The optical properties were also calculated and analyzed. • The Fermi surface of LaBaCo{sub 2}O{sub 5.5} is composed of five bands crossing along Γ–Z direction.

  14. $^{11}$B and $^{27}$Al NMR spin-lattice relaxation and Knight shift study of Mg$_{1-x}$Al$_x$B$_2$. Evidence for anisotropic Fermi surface

    OpenAIRE

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-01-01

    We report a detailed study of $^{11}$B and $^{27}$Al NMR spin-lattice relaxation rates ($1/T_1$), as well as of $^{27}$Al Knight shift (K) of Mg$_{1-x}$Al$_x$B$_2$, $0\\leq x\\leq 1$. The obtained ($1/T_1T$) and K vs. x plots are in excellent agreement with ab initio calculations. This asserts experimentally the prediction that the Fermi surface is highly anisotropic, consisting mainly of hole-type 2-D cylindrical sheets from bonding $2p_{x,y}$ boron orbitals. It is also shown that the density ...

  15. Recent high-pressure Fermi-surface studies on (TMTSF)/sub 2/PF/sub 6/ and ReO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, J.E.

    1981-01-01

    Hydrostatic pressure coupled with temperatures near absolute zero has proven to be an extremely important environment in the study of the Fermi surface and electronic structure of metals. This environment allows critical testing of theoretical models for the electronic structure and allows access to regions of the phase diagram of the material where interesting and desirable properties may be isolated and studied. Two recent examples of the latter type of study are reviewed involving the compressibility collapse transition in ReO/sub 3/ and quantum oscillatory behavior at high-magnetic fields in (TMTSF)/sub 2/PF/sub 6/. 11 figures.

  16. Temperature dependent scattering rates at the fermi surface of optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta)

    Science.gov (United States)

    Valla; Fedorov; Johnson; Li; Gu; Koshizuka

    2000-07-24

    For optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta), scattering rates in the normal state are found to have a linear temperature dependence over most of the Fermi surface. In the immediate vicinity of the (pi, 0) point, the scattering rates are nearly constant in the normal state, consistent with models in which scattering at this point determines the c-axis transport. In the superconducting state, the scattering rates away from the nodal direction appear to level off and become temperature independent.

  17. Extended Reconstructed Sea Surface Temperature (ERSST) Monthly Analysis, Version 3b

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 3b (v3b) of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a monthly SST analysis on a 2-degree global grid based on the International...

  18. Reversible wurtzite-tetragonal reconstruction in ZnO(1010) surfaces.

    Science.gov (United States)

    He, Mo-Rigen; Yu, Rong; Zhu, Jing

    2012-07-27

    Bistable surface: The reversible phase transition between wurtzite (WZ) and body-centered-tetragonal (BCT) lattice was activated in ZnO(1010) surfaces and directly imaged at atomic scale by using aberration-corrected electron microscopy. A nucleation-growth mechanism for the surface reconstruction is further proposed based on observations and calculations of the WZ-BCT domain boundary.

  19. QUALITY ANALYSIS OF 3D SURFACE RECONSTRUCTION USING MULTI-PLATFORM PHOTOGRAMMETRIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Z. Lari

    2016-06-01

    Full Text Available In recent years, the necessity of accurate 3D surface reconstruction has been more pronounced for a wide range of mapping, modelling, and monitoring applications. The 3D data for satisfying the needs of these applications can be collected using different digital imaging systems. Among them, photogrammetric systems have recently received considerable attention due to significant improvements in digital imaging sensors, emergence of new mapping platforms, and development of innovative data processing techniques. To date, a variety of techniques haven been proposed for 3D surface reconstruction using imagery collected by multi-platform photogrammetric systems. However, these approaches suffer from the lack of a well-established quality control procedure which evaluates the quality of reconstructed 3D surfaces independent of the utilized reconstruction technique. Hence, this paper aims to introduce a new quality assessment platform for the evaluation of the 3D surface reconstruction using photogrammetric data. This quality control procedure is performed while considering the quality of input data, processing procedures, and photo-realistic 3D surface modelling. The feasibility of the proposed quality control procedure is finally verified by quality assessment of the 3D surface reconstruction using images from different photogrammetric systems.

  20. Research on free curved surface reconstructing technology based on laser tracker

    Science.gov (United States)

    He, Binggao; An, Zhiyong; Gao, Yuhan; Li, Lijuan

    2011-11-01

    This paper studied the 3-D reconstructing technology of free curved surface. Initially, it scanned the local model of flight vehicle to use the new digital measuring equipment-laser tracker, got the point clouds of the model. And then, it reconstructed curved surface of the model by using the powerful modeling function of CATIA. Finally, the paper also utilized the units of alignment and data processing to make a relative error analysis of the reconstructed model and point clouds. The experiment conclusion showed that the method of measurement accorded with error requirements, and had the practical value of industrial application and production.

  1. Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Directory of Open Access Journals (Sweden)

    Jacob J Setterbo

    Full Text Available BACKGROUND: Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. OBJECTIVE: To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. METHODS: Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. RESULTS: Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. CONCLUSIONS: Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof

  2. Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy

    Science.gov (United States)

    Zhang, Xiaofeng; Badea, Cristian T.; Johnson, G. Allan

    2009-11-01

    We present a 3-D image reconstruction method for free-space fluorescence tomography of mice using hybrid anatomical prior information. Specifically, we use an optically reconstructed surface of the experimental animal and a digital mouse atlas to approximate the anatomy of the animal as structural priors to assist image reconstruction. Experiments are carried out on a cadaver of a nude mouse with a fluorescent inclusion (2.4-mm-diam cylinder) implanted in the chest cavity. Tomographic fluorescence images are reconstructed using an iterative algorithm based on a finite element method. Coregistration of the fluorescence reconstruction and micro-CT (computed tomography) data acquired afterward show good localization accuracy (localization error 1.2+/-0.6 mm). Using the optically reconstructed surface, but without the atlas anatomy, image reconstruction fails to show the fluorescent inclusion correctly. The method demonstrates the utility of anatomical priors in support of free-space fluorescence tomography.

  3. Conducting Boron Sheets Formed by the Reconstruction of the α-Boron (111) Surface

    Science.gov (United States)

    Amsler, Maximilian; Botti, Silvana; Marques, Miguel A. L.; Goedecker, Stefan

    2013-09-01

    Systematic ab initio structure prediction was applied for the first time to predict low energy surface reconstructions by employing the minima hopping method on the α-boron (111) surface. Novel reconstruction geometries were identified and carefully characterized in terms of structural and electronic properties. Our calculations predict the formation of a planar, monolayer sheet at the surface, which is responsible for conductive surface states. Furthermore, the isolated boron sheet is shown to be the ground state 2D structure in vacuum at a hole density of η=1/5 and is therefore a potential candidate as a precursor for boron nanostructures.

  4. Eu valence and Fermi-surface development in EuX{sub 2}Si{sub 2} (X = Co, Rh, Ir) systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetze, K. [Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Germany); TU Dresden, Institut fuer Festkoerperphysik (Germany); Seiro, S.; Geibel, C.; Rosner, H.; Petzold, V. [MPI for Chemical Physics of Solids (Germany); Polyakov, A.; Wosnitza, J. [Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Sheikin, I. [LNCMI-Grenoble (France); Suslov, A. [National High Magnetic Field Laboratory, Tallahassee (United States)

    2013-07-01

    The valence-fluctuating Eu systems EuX{sub 2}Si{sub 2}, with X being the transition metal Co, Ir, or Rh, show different types of ground states, strongly depending on X. The instability of the Eu 4f shell underlies this phenomenon and leads among other effects to different valence states ranging from Eu{sup 2+} over mixed valence and intermediate valence behavior to Eu{sup 3+}. Investigations on the structure and the magnetic behavior of EuCo{sub 2}Si{sub 2}, EuIr{sub 2}Si{sub 2}, and EuRh{sub 2}Si{sub 2} have revealed their Eu valence. Further experiments on specific heat and resistivity gave insights to magnetic ordering, electronic correlations, and possible valence fluctuations. We report about a systematic de Haas-van Alphen study on the Fermi-surface development of the EuX{sub 2}Si{sub 2} compounds in magnetic fields up to 35 T. High-quality single crystals were available for the first time. We focus on the Fermi-surface topology obtained by angle dependent measurements and discuss a comparison to band-structure calculations.

  5. Spinon Fermi surface U (1 ) spin liquid in the spin-orbit-coupled triangular-lattice Mott insulator YbMgGaO4

    Science.gov (United States)

    Li, Yao-Dong; Lu, Yuan-Ming; Chen, Gang

    2017-08-01

    Motivated by the recent progress in the spin-orbit-coupled triangular lattice spin liquid candidate YbMgGaO4, we carry out a systematic projective symmetry group analysis and mean-field study of candidate U (1 ) spin-liquid ground states. Due to the spin-orbital entanglement of the Yb moments, the space-group symmetry operation transforms both the position and the orientation of the local moments, and hence it brings different features for the projective realization of the lattice symmetries from the cases with spin-only moments. Among the eight U (1 ) spin liquids that we find with the fermionic parton construction, only one spin-liquid state, which was proposed and analyzed by Yao Shen et al. [Nature (London) 540, 559 (2016), 10.1038/nature20614] and labeled as U1A00 in the present work, stands out and gives a large spinon Fermi surface and provides a consistent explanation for the spectroscopic results in YbMgGaO4. Further connection of this spinon Fermi surface U (1 ) spin liquid with YbMgGaO4 and the future directions are discussed. Finally, our results may apply to other spin-orbit-coupled triangular lattice spin-liquid candidates, and more broadly, our general approach can be well extended to spin-orbit-coupled spin-liquid candidate materials.

  6. Fermi surfaces and Phase Stability of Ba(Fe$_{1-x}$M$_x$)$_2$As$_2$ (M=Co, Ni, Cu, Zn)

    CERN Document Server

    Khan, Suffian; Johnson, Duane

    2014-01-01

    BaFe$_2$As$_2$ with transition-metal doping exhibits a variety of rich phenomenon from coupling of structure, magnetism, and superconductivity. Using density functional theory, we systematically compare the Fermi surfaces (FS), formation energies ($\\Delta E_f$), and density of states (DOS) of electron-doped Ba(Fe$_{1-x}$M$_x$)$_2$As$_2$ with M={Co, Ni, Cu, Zn} in tetragonal (I$4/mmm$) and orthorhombic (F$mmm$) structures in nonmagnetic (NM), antiferromagnetic (AFM), and paramagnetic (PM, disordered local moment) states. We explain changes to phase stability ($\\Delta E_f$) and Fermi surfaces (and nesting) due to chemical and magnetic disorder, and compare to observed/assessed properties and contrast alloy theory with that expected from rigid-band model. With alloying, the DOS changes from common-band (Co,Ni) to split-band (Cu,Zn), which dictates $\\Delta E_f$ and can overwhelm FS-nesting instabilities, as for Cu,Zn cases.

  7. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure

    Science.gov (United States)

    Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.

    2016-01-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line. PMID:27216477

  8. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure

    Science.gov (United States)

    Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.

    2016-05-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.

  9. Geometry of the valence transition induced surface reconstruction of Sm(0001)

    CERN Document Server

    Lundgren, E; Nyholm, R; Torrelles, X; Rius, J; Delin, A; Grechnev, A; Eriksson, O; Konvicka, C; Schmid, M; Varga, P

    2002-01-01

    We present a structural determination of the surface reconstruction of the Sm(0001) surface using surface x-ray diffraction, scanning tunneling microscopy, and {\\it ab initio} calculations. The reconstruction is associated with a large (22%) expansion of the atomic radius for the top monolayer surface Sm atoms. The mechanism driving the surface reconstruction in Sm is unique among all elements and is connected to the strong correlations of the $4f$ electrons in Sm and the intermediate valence observed in certain Sm compounds. The atoms constituting the top monolayer of Sm(0001) have vastly different chemical properties compared to the layer underneath and behave as if they were an adsorbate of a different chemical species.

  10. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Cheung, Yam [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas, 75390 and Department of Radiation Oncology, University of Maryland, College Park, Maryland 20742 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  11. Reconstruction of ploughed soil surface with 3D fractal interpolation

    NARCIS (Netherlands)

    Liu, Y.; Lu, Z.; Hoogmoed, W.B.; Li, X.

    2014-01-01

    By using a laser profiler, the roughness of ploughed soil surface was obtained. 3D fractal interpolation method was used to interpolate several kinds of reduced measured surface data which were reduced from the original measured ploughed soil surface elevation data in different reduction rates. Also

  12. Shape-aware surface reconstruction from sparse 3D point-clouds.

    Science.gov (United States)

    Bernard, Florian; Salamanca, Luis; Thunberg, Johan; Tack, Alexander; Jentsch, Dennis; Lamecker, Hans; Zachow, Stefan; Hertel, Frank; Goncalves, Jorge; Gemmar, Peter

    2017-05-01

    The reconstruction of an object's shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are "oriented" according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    Science.gov (United States)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  14. Fermi level pinning characterisation on ammonium fluoride-treated surfaces of silicon by energy-filtered doping contrast in the scanning electron microscope

    Science.gov (United States)

    Chee, Augustus K. W.

    2016-08-01

    Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed.

  15. Quasi-two-dimensional Fermi surfaces in the flat antiferromagnetic Brillouin zone of NpRhGa{sub 5} studied by dHvA experiments and energy band calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Dai [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yamagami, Hiroshi [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Homma, Yoshiya [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Shiokawa, Yoshinobu [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yamamoto, Etsuji [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakamura, Akio [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Settai, Rikio [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Onuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)

    2005-05-04

    We succeeded in growing a high-quality single crystal of NpRhGa{sub 5} by the Ga-flux method and observed the de Haas-van Alphen oscillation in the antiferromagnetic state. Four kinds of nearly cylindrical Fermi surfaces, which correspond to main Fermi surfaces, were clearly detected. These quasi-two-dimensional Fermi surfaces are formed in the flat antiferromagnetic Brillouin zone and are well explained on the basis of spin- and orbital-polarized LAPW energy band calculations. The cyclotron masses are moderately enhanced, ranging from 8.1 to 11.7 m{sub 0}, which are approximately four times larger than the corresponding band masses. This is the first case where the 5f-itinerant band model is applicable to a neptunium magnetic compound. (letter to the editor)

  16. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers

    Science.gov (United States)

    Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Ivy-Ochs, Susan; Frew, Craig R.; Hughes, Philip; Ribolini, Adriano; Lukas, Sven; Renssen, Hans

    2016-09-01

    Glacier reconstructions are widely used in palaeoclimatic studies and this paper presents a new semi-automated method for generating glacier reconstructions: GlaRe, is a toolbox coded in Python and operating in ArcGIS. This toolbox provides tools to generate the ice thickness from the bed topography along a palaeoglacier flowline applying the standard flow law for ice, and generates the 3D surface of the palaeoglacier using multiple interpolation methods. The toolbox performance has been evaluated using two extant glaciers, an icefield and a cirque/valley glacier from which the subglacial topography is known, using the basic reconstruction routine in GlaRe. Results in terms of ice surface, ice extent and equilibrium line altitude show excellent agreement that confirms the robustness of this procedure in the reconstruction of palaeoglaciers from glacial landforms such as frontal moraines.

  17. Application of x-ray direct methods to surface reconstructions: The solution of projected superstructures

    Science.gov (United States)

    Torrelles, X.; Rius, J.; Boscherini, F.; Heun, S.; Mueller, B. H.; Ferrer, S.; Alvarez, J.; Miravitlles, C.

    1998-02-01

    The projections of surface reconstructions are normally solved from the interatomic vectors found in two-dimensional Patterson maps computed with the intensities of the in-plane superstructure reflections. Since for difficult reconstructions this procedure is not trivial, an alternative automated one based on the ``direct methods'' sum function [Rius, Miravitlles, and Allmann, Acta Crystallogr. A52, 634 (1996)] is shown. It has been applied successfully to the known c(4×2) reconstruction of Ge(001) and to the so-far unresolved In0.04Ga0.96As (001) p(4×2) surface reconstruction. For this last system we propose a modification of one of the models previously proposed for GaAs(001) whose characteristic feature is the presence of dimers along the fourfold direction.

  18. A Scheme for Reconstructing Free-form Surface from Shading with Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    XU Bin; TANG Linxin; SHI Hanmin

    2006-01-01

    The reconstruction of free-form surface is a fundamental problem in digital manufacture. This article presents a novel solution to reconstructing free-form surface from an intensity image under the Lambertian reflection model,that is a method called shape from shading (SFS). Our approach is based on the two-dimensional cellular automata (CA), and fully uses the local information of both image and the reconstructed surface. After several iterations, the free-form surface corresponding to the input image is obtained. The encouraging results on both synthetic and real-world images are provided in this paper, and the performance of our algorithm is analyzed on synthetic images using mean and standard deviation of depth (Z) errors.

  19. Probing the electronic transport on the reconstructed Au/Ge(001 surface

    Directory of Open Access Journals (Sweden)

    Franciszek Krok

    2014-09-01

    Full Text Available By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001-c(8 × 2-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons.

  20. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    Science.gov (United States)

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  1. Wavefront Reconstruction and Mirror Surface Optimizationfor Adaptive Optics

    Science.gov (United States)

    2014-06-01

    correction. A DM has a reflective surface with actuators along the back struc- ture that apply forces causing the mirror surface to adapt to a desired shape...actuators. The actuators cause forces along the back of the mirror structure and the mirror surface deflects to form the conjugate shape of the wavefront...optical axis of the primary mirror. The interferometer and null corrector are mounted to remove the 81 Interferometer Null corrector Hexapod ❋✐❣✉r

  2. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kotoku, J; Nakabayashi, S; Kumagai, S; Ishibashi, T; Kobayashi, T [Teikyo University, Itabashi-ku, Tokyo (Japan); Haga, A; Saotome, N [University of Tokyo Hospital, Bunkyo-ku, Tokyo (Japan); Arai, N [Teikyo University Hospital, Itabashi-ku, Tokyo (Japan)

    2014-06-01

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)

  3. One-shot 3d surface reconstruction from instantaneous frequencies: solutions to ambiguity problems

    NARCIS (Netherlands)

    Heijden, van der F.; Spreeuwers, L.J.; Nijmeijer, A.C.

    2009-01-01

    Phase-measuring profilometry is a well known technique for 3D surface reconstruction based on a sinusoidal pattern that is projected on a scene. If the surface is partly occluded by, for instance, other objects, then the depth shows abrupt transitions at the edges of these occlusions. This causes am

  4. An orientation inference framework for surface reconstruction from unorganized point clouds.

    Science.gov (United States)

    Chen, Yi-Ling; Lai, Shang-Hong

    2011-03-01

    In this paper, we present an orientation inference framework for reconstructing implicit surfaces from unoriented point clouds. The proposed method starts from building a surface approximation hierarchy comprising of a set of unoriented local surfaces, which are represented as a weighted combination of radial basis functions. We formulate the determination of the globally consistent orientation as a graph optimization problem by treating the local implicit patches as nodes. An energy function is defined to penalize inconsistent orientation changes by checking the sign consistency between neighboring local surfaces. An optimal labeling of the graph nodes indicating the orientation of each local surface can, thus, be obtained by minimizing the total energy defined on the graph. The local inference results are propagated over the model in a front-propagation fashion to obtain the global solution. The reconstructed surfaces are consolidated by a simple and effective inspection procedure to locate the erroneously fitted local surfaces. A progressive reconstruction algorithm that iteratively includes more oriented points to improve the fitting accuracy and efficiently updates the RBF coefficients is proposed. We demonstrate the performance of the proposed method by showing the surface reconstruction results on some real-world 3-D data sets with comparison to those by using the previous methods.

  5. SiO adsorption on a p(2 × 2) reconstructed Si(1 0 0) surface

    NARCIS (Netherlands)

    Violanda, M.; Rudolph, H.

    2009-01-01

    We have investigated the adsorption mechanism of SiO molecule incident on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. Stable adsorption geometries of SiO on Si surface, as well as their corresponding activation and adsorption energies are identifie

  6. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hume-Rothery stabilisation mechanism and d-states-mediated Fermi surface-Brillouin zone interactions in structurally complex metallic alloys

    Science.gov (United States)

    Mizutani, U.; Inukai, M.; Sato, H.

    2011-07-01

    The stability of Co2Zn11 and Al8V5 gamma-brasses, both of which are composed of a transition metal element and polyvalent elements Zn or Al, can be discussed in terms of d-states-mediated Fermi surface-Brillouin zone (FsBz) interactions in the context of first-principles full-potential linearised augmented plane wave (FLAPW) band calculations. A FsBz-induced pseudogap is revealed in the FLAPW-Fourier spectrum, though it is hidden behind a much larger d-band in the total density of states. The stability range of three families of complex metallic alloys (CMAs) that include gamma-brasses, RT-, MI- and Tsai-type 1/1-1/1-1/1 approximants and 2/1-2/1-2/1 approximant, each of which is characterised by ? = 18, 50 and 125, respectively, can be well scaled in terms of the number of electrons per unit cell (e/uc) given by the product of the number of atoms per unit cell and the e/a value determined by the Hume-Rothery plot on the basis of the FLAPW-Fourier method. This is taken as the evidence for the justification of the Hume-Rothery stabilisation mechanism for all these CMAs having a pseudogap at the Fermi level.

  8. Charge transfer effects on the Fermi surface of Ba{sub 0.5}K{sub 0.5}Fe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, S.; Zhu, Z.Y.; Schwingenschloegl, U. [KAUST, PSE Division, Thuwal 23955-6900 (Saudi Arabia)

    2011-03-15

    Ab-initio calculations within density functional theory are performed to obtain a more systematic understanding of the electronic structure of iron pnictides. As a prototypical compound we study Ba{sub 0.5}K{sub 0.5}Fe{sub 2}As{sub 2} and analyze the changes of its electronic structure when the interaction between the Fe{sub 2}As{sub 2} layers and their surrounding is modified. We find strong effects on the density of states near the Fermi energy as well as the Fermi surface. The role of the electron donor atoms in iron pnictides thus cannot be understood in a rigid band picture. Instead, the bonding within the Fe{sub 2}As{sub 2} layers reacts to a modified charge transfer from the donor atoms by adapting the intra-layer Fe-As hybridization and charge transfer in order to maintain an As{sup 3-} valence state. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Three-dimensional reconstruction of tubulin sheets and re-investigation of microtubule surface lattice.

    Science.gov (United States)

    Schultheiss, R; Mandelkow, E

    1983-10-25

    Sheets are incomplete microtubule walls observed as polymorphic variants of microtubule assembly. Their substructure is similar to that of microtubules, as shown by two-dimensional optical and computer reconstruction. We have extended earlier studies by computing a three-dimensional reconstruction. From a re-investigation of the surface lattice it appears that the three-start helix of microtubules is right-handed rather than left-handed.

  10. Reconstruction

    Directory of Open Access Journals (Sweden)

    Stefano Zurrida

    2011-01-01

    Full Text Available Breast cancer is the most common cancer in women. Primary treatment is surgery, with mastectomy as the main treatment for most of the twentieth century. However, over that time, the extent of the procedure varied, and less extensive mastectomies are employed today compared to those used in the past, as excessively mutilating procedures did not improve survival. Today, many women receive breast-conserving surgery, usually with radiotherapy to the residual breast, instead of mastectomy, as it has been shown to be as effective as mastectomy in early disease. The relatively new skin-sparing mastectomy, often with immediate breast reconstruction, improves aesthetic outcomes and is oncologically safe. Nipple-sparing mastectomy is newer and used increasingly, with better acceptance by patients, and again appears to be oncologically safe. Breast reconstruction is an important adjunct to mastectomy, as it has a positive psychological impact on the patient, contributing to improved quality of life.

  11. Lifting of the Au(100) surface reconstruction by Pt, Cr, Fe, and Cu adsorption

    Science.gov (United States)

    Tempas, Christopher D.; Skomski, Daniel; Tait, Steven L.

    2016-12-01

    The adsorption and growth of metals on the surfaces of other metals is an important topic for studies of heterogeneous catalysis and bimetallic nanoparticles. The surface structure of these systems impacts nanoparticle growth, catalytic activity, and reaction selectivity. In these experiments, platinum, chromium, iron, or copper were vapor deposited on the reconstructed Au(100) surface. The initial growth of each metal was studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Each of the four metals forms anisotropic rectangular islands oriented in the direction of the gold reconstruction rows. The gradual lifting of the surface reconstruction by increased metal coverage is observed, and the reconstruction is fully lifted after 0.5 ML of Pt, Cr, or Fe, or by 3.3 ML of Cu. After the reconstruction is lifted, the island shape changes from rectangular to square, illustrating the effect of surface structure on growth. Second layer islands begin to form before the completion of the first full layer.

  12. Structural and electronic properties and the fermi surface of the new non-centrosymmetric superconductors: 3.6 K CaIrSi3 and 2.3 K CaPtSi3

    Science.gov (United States)

    Bannikov, V. V.; Shein, I. R.; Ivanovskii, A. L.

    2010-09-01

    Ab initio FLAPW-GGA calculations have been performed to investigate structural properties, electronic band structure, and Fermi surface topology of the newly discovered non-centrosymmetric superconductors: 3.6 K CaIrSi3 and 2.3 K CaPtSi3. As a result, the peculiarities of the crystal structure, electronic bands, total and site-projected l-decomposed densities of states, and the shape of the Fermi surface for CaIrSi3 and CaPtSi3 were obtained and analyzed.

  13. Unconventional pairing in doped band insulators on a honeycomb lattice: the role of the disconnected Fermi surface and a possible application to superconducting β-MNCl (M=Hf, Zr

    Directory of Open Access Journals (Sweden)

    Kazuhiko Kuroki

    2008-01-01

    Full Text Available We investigate the possibility of realizing unconventional superconductivity in doped band insulators on the square and honeycomb lattices. The latter lattice is found to be a good candidate due to the disconnectivity of the Fermi surface. We propose applying the theory to the superconductivity in doped layered nitride β-MNCl (M= Hf, Zr. Finally, we compare two groups of superconductors with disconnected Fermi surface, β-MNCl and the iron pnictides, which have high critical temperature Tc, despite some faults against superconductivity are present.

  14. Unconventional pairing in doped band insulators on a honeycomb lattice: the role of the disconnected Fermi surface and a possible application to superconducting β-MNCl (M=Hf, Zr).

    Science.gov (United States)

    Kuroki, Kazuhiko

    2008-12-01

    We investigate the possibility of realizing unconventional superconductivity in doped band insulators on the square and honeycomb lattices. The latter lattice is found to be a good candidate due to the disconnectivity of the Fermi surface. We propose applying the theory to the superconductivity in doped layered nitride β-MNCl (M= Hf, Zr). Finally, we compare two groups of superconductors with disconnected Fermi surface, β-MNCl and the iron pnictides, which have high critical temperature Tc, despite some faults against superconductivity are present.

  15. Quantum Oscillations in the Parent pnictide BaFe2As2 : Itinerant Electrons in the Reconstructed State

    Energy Technology Data Exchange (ETDEWEB)

    Analytis, J.G.

    2010-05-26

    We report quantum oscillation measurements that enable the direct observation of the Fermi surface of the low temperature ground state of BaFe{sub 2}As{sub 2}. From these measurements we characterize the low energy excitations, revealing that the Fermi surface is reconstructed in the antiferromagnetic state, but leaving itinerant electrons in its wake. The present measurements are consistent with a conventional band folding picture of the antiferromagnetic ground state, placing important limits on the topology and size of the Fermi surface.

  16. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves

    Science.gov (United States)

    Krynkin, A.; Dolcetti, G.; Hunting, S.

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  17. Patient Registration Using Photogrammetric Surface Reconstruction from Smartphone Imagery

    Science.gov (United States)

    Hellwich, O.; Rose, A.; Bien, T.; Malolepszy, C.; Mucha, D.; Krüger, T.

    2016-06-01

    In navigated surgery the patient's body has to be co-registered with presurgically acquired 3D data in order to enable navigation of the surgical instrument. For this purpose the body surface of the patient can be acquired by means of photogrammetry and co-registered to corresponding surfaces in the presurgical data. In this paper this task is exemplarily solved for 3D data of human heads using the face surface to establish correspondence. We focus on investigation of achieved geometric accuracies reporting positioning errors in the range of 1 mm.

  18. Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014

    OpenAIRE

    2015-01-01

    The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.

  19. Radial Basis Function Based Implicit Surface Reconstruction Interpolating Arbitrary Triangular Mesh

    Institute of Scientific and Technical Information of China (English)

    PANG Mingyong

    2006-01-01

    In this paper, we present an approach for smooth surface reconstructions interpolating triangular meshes with arbitrary topology and geometry. The approach is based on the well-known radial basis functions (RBFs) and the constructed surfaces are generalized thin-plate spline surfaces. Our algorithm first defines a pair of offset points for each vertex of a given mesh to enhance the controllability of local geometry and to assure stability of the construction. A linear system is then solved by LU decomposition and the implicit governing equation of interpolating surface is obtained. The constructed surfaces finally are visualized by a Marching Cubes based polygonizer. The approach provides a robust and efficient solution for smooth surface reconstruction from various 3D meshes.

  20. Three-dimensional reconstruction of specular reflecting technical surfaces using structured light microscopy

    Science.gov (United States)

    Kettel, Johannes; Müller, Claas; Reinecke, Holger

    2014-11-01

    In computer assisted quality control the three-dimensional reconstruction of technical surfaces is playing an ever more important role. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution for the three-dimensional measurement of technical surfaces with high vertical and lateral resolution. However, the three-dimensional reconstruction of specular reflecting technical surfaces with very low surface-roughness and local slopes still remains a challenge to optical measurement principles. Furthermore the high data acquisition rates of current optical measurement systems depend on highly complex and expensive scanning-techniques making them impractical for inline quality control. In this paper we present a novel measurement principle based on a multi-pinhole structured light solution without moving parts which enables the threedimensional reconstruction of specular and diffuse reflecting technical surfaces. This measurement principle is based on multiple and parallel processed point-measurements. These point measurements are realized by spatially locating and analyzing the resulting Point Spread Function (PSF) in parallel for each point measurement. Analysis of the PSF is realized by pattern recognition and model-fitting algorithms accelerated by current Graphics-Processing-Unit (GPU) hardware to reach suitable measurement rates. Using the example of optical surfaces with very low surface-roughness we demonstrate the three-dimensional reconstruction of these surfaces by applying our measurement principle. Thereby we show that the resulting high measurement accuracy enables cost-efficient three-dimensional surface reconstruction suitable for inline quality control.

  1. RETRACTION: Surface impedance determination of an object located over a planar PEC surface and its use in shape reconstruction Surface impedance determination of an object located over a planar PEC surface and its use in shape reconstruction

    Science.gov (United States)

    Seda Ünal, Gül; Yapar, Ali; Akduman, Ibrahim

    2009-06-01

    This paper has substantial overlap with the paper 'Reconstruction of surface impedance of an object located over a planar PEC surface' by Gül Seda Ünal, Mehmet Çayören and Evrim Tetik (2008 Journal of Physics: Conference Series 135 012099). Therefore this article has been retracted by IOP Publishing and by the authors, Gül Seda Ünal, Ali Yapar and Ibrahim Akduman.

  2. Locally controlled globally smooth ground surface reconstruction from terrestrial point clouds

    CERN Document Server

    Rychkov, Igor

    2012-01-01

    Approaches to ground surface reconstruction from massive terrestrial point clouds are presented. Using a set of local least squares (LSQR) planes, the "holes" are filled either from the ground model of the next coarser level or by Hermite Radial Basis Functions (HRBF). Global curvature continuous as well as infinitely smooth ground surface models are obtained with Partition of Unity (PU) using either tensor product B-Splines or compactly supported exponential function. The resulting surface function has local control enabling fast evaluation.

  3. Correlation between phonon anomaly along [211] and the Fermi surface nesting features with associated electron-phonon interactions in Ni{sub 2}FeGa: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Chabungbam, Satyananda; Sahariah, Munima B., E-mail: munima@iasst.gov.in

    2015-10-25

    First principles calculation reaffirms the presence of phonon anomaly along [211] direction in Ni{sub 2}FeGa shape memory alloy supporting the experimental findings of J. Q. Li et al. Fermi surface scans have been performed in both austenite and martensite phase to see the possible Fermi nesting features in this alloy. The magnitude of observed Fermi surface nesting vectors in (211) plane exactly match the phonon anomaly wavevectors along [211] direction. Electron-phonon calculation in the austenite phase shows that there is significant electron-phonon coupling in this alloy which might arise out of the lattice coupling between lower acoustic modes and higher optical modes combined with the observed strong Fermi nesting features in the system. - Highlights: • Transverse acoustic (TA{sub 2}) modes show anomaly along [211] direction in Ni{sub 2}FeGa. • The phonon anomaly wavevector has been correlated with the Fermi nesting vectors. • Electron-phonon coupling calculation shows significant coupling in this system. • Max. el-ph coupling occurs in transition frequencies from acoustic to optical modes.

  4. Anomalous asymmetry in the Fermi surface of the high-temperature superconductor YBa2Cu4O8 revealed by angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi; Khasanov, R.; Sassa, Y.; Bendounan, A.; Paihes, S.; Chang, J.; Mesot, J.; Keller, H.; Zhigadlo, N.D.; Shi, M.; Bukowski, Z.; Karpinski, J.; Kaminski, A.

    2009-09-15

    We use microprobe angle-resolved photoemission spectroscopy to study the Fermi surface and band dispersion of the CuO{sub 2} planes in the high-temperature superconductor, YBa{sub 2}Cu{sub 4}O{sub 8}. We find a strong in-plane asymmetry of the electronic structure between directions along a and b axes. The saddle point of the antibonding band lies at a significantly higher energy in the a direction ({pi},0) than the b direction (0,{pi}), whereas the bonding band displays the opposite behavior. We demonstrate that the abnormal band shape is due to a strong asymmetry of the bilayer band splitting, likely caused by a nontrivial hybridization between the planes and chains. This asymmetry has an important implication for interpreting key properties of the Y-Ba-Cu-O family, especially the superconducting gap, transport, and results of inelastic neutron scattering.

  5. The effects of spin-orbit coupling and electron correlations on the Fermi surface of Sr{sub 2}RuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoren; Gorelov, Evgeny [Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425, Juelich (Germany); Pavarini, Eva [Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425, Juelich (Germany); JARA High-Performance Computing (Germany)

    2015-07-01

    In this work we investigate the effects of spin-orbit coupling (SOC) and electron correlations on the Fermi surface (FS) of Sr{sub 2}RuO{sub 4}. We first study the spin-orbit coupling effects by comparing the FSs obtained by local-density approximation (LDA) and LDA+SOC calculations. Then, to study the effects of electron correlations, we perform LDA + dynamical mean field theory method (DMFT) and LDA+SOC+DMFT calculations. Our LDA and LDA+SOC results are consistent with previous theoretical works. Our LDA+SOC+DMFT results show that, in order to reproduce the experimental FS, it is key to include both effects.

  6. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  7. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    Science.gov (United States)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  8. PHOTOMETRIC STEREO SHAPE-AND-ALBEDO-FROM-SHADING FOR PIXEL-LEVEL RESOLUTION LUNAR SURFACE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    W. C. Liu

    2017-07-01

    Full Text Available Shape and Albedo from Shading (SAfS techniques recover pixel-wise surface details based on the relationship between terrain slopes, illumination and imaging geometry, and the energy response (i.e., image intensity captured by the sensing system. Multiple images with different illumination geometries (i.e., photometric stereo can provide better SAfS surface reconstruction due to the increase in observations. Photometric stereo SAfS is suitable for detailed surface reconstruction of the Moon and other extra-terrestrial bodies due to the availability of photometric stereo and the less complex surface reflecting properties (i.e., albedo of the target bodies as compared to the Earth. Considering only one photometric stereo pair (i.e., two images, pixel-variant albedo is still a major obstacle to satisfactory reconstruction and it needs to be regulated by the SAfS algorithm. The illumination directional difference between the two images also becomes an important factor affecting the reconstruction quality. This paper presents a photometric stereo SAfS algorithm for pixel-level resolution lunar surface reconstruction. The algorithm includes a hierarchical optimization architecture for handling pixel-variant albedo and improving performance. With the use of Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC photometric stereo images, the reconstructed topography (i.e., the DEM is compared with the DEM produced independently by photogrammetric methods. This paper also addresses the effect of illumination directional difference in between one photometric stereo pair on the reconstruction quality of the proposed algorithm by both mathematical and experimental analysis. In this case, LROC NAC images under multiple illumination directions are utilized by the proposed algorithm for experimental comparison. The mathematical derivation suggests an illumination azimuthal difference of 90 degrees between two images is recommended to achieve

  9. Sharpening our Understanding but Blurring the Boundaries: Dynamic Observations of Surface Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.

    2003-08-20

    Every now and then, reading a specific paper stimulates--in my mind at least--a variety of associations and connections that highlight advances that have been made and suggests links between areas that I may not have previously connected. The recent series of papers by McCarty and Bartelt (and co-workers) using low energy electron microscopy (LEEM) to study the dynamics of surface reconstruction of TiO2 , and NiAl sent my thinking in a variety loosely connected directions. Paraphrasing the response of one of my colleagues - the work causes us to think dynamically where we have often thought statically about what happens when surfaces reconstruct. The measurements also highlight the importance of newer techniques to help us visualize and understand phenomena that may have puzzled us for years. The dynamic interactions between surface structure and both the defect structure (and history) of the substrate and the nature of the environment of the specimen highlight an aspect of phenomena that drive surface reconstruction not normally considered and suggests additional and delightful challenges we face in understanding the bulk stability and surface structures of nano-sized objects. Since the physical arrangement of the atoms controls every aspect of the physics and chemistry of a surface or interface, the atomic geometry is a fundamental defining characteristic of a surface. , Details of the structure of a surface, including altered atomic positions, the presence of steps and various types of defects can significantly change the chemistry of a surface and impact processes ranging from the formation of interfaces in electronic components to the efficiency of a catalyst. Because of its importance there has been considerable effort devoted to understanding and predicting surface structures. However, dynamical aspects of surface reconstruction and the significance of material defects in the process have not been part of the standard picture.

  10. Miniature photometric stereo system for textile surface structure reconstruction

    Science.gov (United States)

    Gorpas, Dimitris; Kampouris, Christos; Malassiotis, Sotiris

    2013-04-01

    In this work a miniature photometric stereo system is presented, targeting the three-dimensional structural reconstruction of various fabric types. This is a supportive module to a robot system, attempting to solve the well known "laundry problem". The miniature device has been designed for mounting onto the robot gripper. It is composed of a low-cost off-the-shelf camera, operating in macro mode, and eight light emitting diodes. The synchronization between image acquisition and lighting direction is controlled by an Arduino Nano board and software triggering. The ambient light has been addressed by a cylindrical enclosure. The direction of illumination is recovered by locating the reflection or the brightest point on a mirror sphere, while a flatfielding process compensates for the non-uniform illumination. For the evaluation of this prototype, the classical photometric stereo methodology has been used. The preliminary results on a large number of textiles are very promising for the successful integration of the miniature module to the robot system. The required interaction with the robot is implemented through the estimation of the Brenner's focus measure. This metric successfully assesses the focus quality with reduced time requirements in comparison to other well accepted focus metrics. Besides the targeting application, the small size of the developed system makes it a very promising candidate for applications with space restrictions, like the quality control in industrial production lines or object recognition based on structural information and in applications where easiness in operation and light-weight are required, like those in the Biomedical field, and especially in dermatology.

  11. Three-dimensional wavelet transform and multiresolution surface reconstruction from volume data

    Science.gov (United States)

    Wang, Yun; Sloan, Kenneth R., Jr.

    1995-04-01

    Multiresolution surface reconstruction from volume data is very useful in medical imaging, data compression and multiresolution modeling. This paper presents a hierarchical structure for extracting multiresolution surfaces from volume data by using a 3-D wavelet transform. The hierarchical scheme is used to visualize different levels of detail of the surface and allows a user to explore different features of the surface at different scales. We use 3-D surface curvature as a smoothness condition to control the hierarchical level and the distance error between the reconstructed surface and the original data as the stopping criteria. A 3-D wavelet transform provides an appropriate hierarchical structure to build the volume pyramid. It can be constructed by the tensor products of 1-D wavelet transforms in three subspaces. We choose the symmetric and smoothing filters such as Haar, linear, pseudoCoiflet, cubic B-spline and their corresponding orthogonal wavelets to build the volume pyramid. The surface is reconstructed at each level of volume data by using the cell interpolation method. Some experimental results are shown through the comparison of the different filters based on the distance errors of the surfaces.

  12. Reconstruction of Sub-Surface Velocities from Satellite Observations Using Iterative Self-Organizing Maps

    CERN Document Server

    Chapman, Christopher

    2016-01-01

    In this letter a new method based on modified self-organizing maps is presented for the reconstruction of deep ocean current velocities from surface information provided by satellites. This method takes advantage of local correlations in the data-space to improve the accuracy of the reconstructed deep velocities. Unlike previous attempts to reconstruct deep velocities from surface data, our method makes no assumptions regarding the structure of the water column, nor the underlying dynamics of the flow field. Using satellite observations of surface velocity, sea-surface height and sea-surface temperature, as well as observations of the deep current velocity from autonomous Argo floats to train the map, we are able to reconstruct realistic high--resolution velocity fields at a depth of 1000m. Validation reveals extremely promising results, with a speed root mean squared error of ~2.8cm/s, a factor more than a factor of two smaller than competing methods, and direction errors consistently smaller than 30 degrees...

  13. Surface structure of anatase TiO{sub 2}(001): Reconstruction, atomic steps, and domains

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yong; Gan, Shupan; Chambers, Scott A.; Altman, Eric I.

    2001-06-15

    The surface structure of anatase TiO{sub 2}(001) was investigated using scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), reflection high-energy electron diffraction (RHEED), and low-energy electron diffraction (LEED). A two-domain (1{times}4)/(4{times}1) reconstruction, similar to those previously reported in LEED and ion scattering studies, was observed by STM and RHEED. This reconstruction was found to be stable not only from room temperature to 850{degree}C in ultrahigh vacuum and oxygen-rich environments, but also during the anatase film growth. High-resolution STM images obtained at positive sample biases revealed two types of atomic row within each surface unit cell, indicating different Ti-derived states at the surface. At the same time, XPS of the reconstructed surfaces showed no evidence of Ti{sup 3+}. Based on the STM, XPS, RHEED, and LEED results, an {open_quotes}added{close_quotes}-and-{open_quotes}missing{close_quotes}-row model is proposed to account for the (1{times}4) reconstruction. Atomic steps and their relationship to the population of (1{times}4) and (4{times}1) domains were also investigated. The results showed that for vicinal surfaces the domain population depended strongly on the overall surface step orientation. While populations of the (1{times}4) and the (4{times}1) domains were nearly equal on flat (001) surfaces, they became significantly lopsided on a surface with its normal 2{degree} away from the (001) direction, demonstrating a strong correlation between surface steps and domain population on vicinal surfaces.

  14. Surface Structure of Anatase TiO{sub 2}(001): Reconstruction, Atomic Steps, and Domains

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yong; Gan, Shupan; Chambers, Scott A.; Altman, Eric I.

    2001-06-15

    The surface structure of anatase TiO{sub 2}(001) was investigated using scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), reflection high energy electron diffraction (RHEED), and low energy electron diffraction (LEED). A two-domain (1 x 4)/(4 x 1) reconstruction, similar to those previously reported in LEED and ion scattering studies, was observed by STM and RHEED. This reconstruction was found to be stable not only from room temperature to 850 C in ultra-high vacuum and oxygen rich environments, but also during the anatase film growth. High-resolution STM images obtained at positive sample biases revealed two types of atomic rows within each surface unit cell, indicating different Ti-derived states at the surface. At the same time, XPS of the reconstructed surfaces showed no evidence of Ti{sup 3+}. Based on the STM, XPS, RHEED, and LEED results, an ''added''-and-''missing''-row model is proposed to account for the (1 x 4) reconstruction. Atomic steps and their relationship to the population of (1 x 4) and (4 x 1) domains were also investigated. Results showed that for vicinal surfaces, the domain population depended strongly on the overall surface step orientation. While populations of the (1 x 4) and the (4 x 1) domains were nearly equal on the flat (001) surfaces, they became significantly lopsided on the surface with its normal 2{sup o} away from the (001) direction, demonstrating a strong correlation between surface steps and domain population on vicinal surfaces.

  15. Berry curvature, triangle anomalies, and the chiral magnetic effect in Fermi liquids.

    Science.gov (United States)

    Son, Dam Thanh; Yamamoto, Naoki

    2012-11-02

    In a three-dimensional Fermi liquid, quasiparticles near the Fermi surface may possess a Berry curvature. We show that if the Berry curvature has a nonvanishing flux through the Fermi surface, the particle number associated with this Fermi surface has a triangle anomaly in external electromagnetic fields. We show how Landau's Fermi liquid theory should be modified to take into account the Berry curvature. We show that the "chiral magnetic effect" also emerges from the Berry curvature flux.

  16. Preservation of the Pt(100) surface reconstruction after growth of a continuous layer of graphene

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Bjerre, Jacob;

    2012-01-01

    Scanning tunneling microscopy shows that a layer of graphene can be grown on the hex-reconstructed Pt(100) surface and that the reconstruction is preserved after growth. A continuous sheet of graphene can be grown across domain boundaries and step edges without loss of periodicity or change...... to accommodation of edge dislocations. The defect formation energy and the induced buckling of the graphene have been characterized by DFT calculations....... in direction. Density functional theory calculations on a simple model system support the observation that the graphene can have different rotation angles relative to the hex-reconstructed Pt surface. The graphene sheet direction can be changed by incorporating pentagon-heptagon defects giving rise...

  17. THREE DIMENSIONAL RECONSTRUCTION OF HUMAN HEART SURFACE FROM SINGLE IMAGE- VIEW UNDER DIFFERENT ILLUMINATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Aqeel Al-Surmi

    2013-01-01

    Full Text Available The 3D reconstruction from a single-view image is a longstanding issue in computer vision literature, especially in the medical field. Traditional medical imaging techniques that provide information about the heart and which are used to reconstruct the heart model, include Magnetic Resonance Imaging (MRI and Computed Tomography (CT images. However, in some cases, they are not available and the applications that use these techniques to model the human heart only produce acceptable results after a long process, which involves acquiring the input data, as well as the segmentation process, the matching process, effort and cost. Therefore, it would be useful to be able to use a 2D single image to reconstruct the 3D heart surface model. We introduce an image-based human heart surface reconstruction from a single image as input. To model the surface of the heart, the proposed method, first, detects and corrects the specular reflection from the heart’s surface, which causes deformation of the surface in the R3. Second, it extrudes the three axes for each image pixel (e.g., x, y and z axes from the input image, in which the z-axis is calculated using the intensity value. Finally, a 3D reconstruction of the heart surface is created to help the novice cardiac surgeon to reduce the period of time in learning cardiac surgery and to enhance their perception of the operating theatre. The experimental results for images of the heart show the efficiency of the proposed method compared to the existing methods.

  18. Ocean Surface reconstruction from the synergy of Sentinel-3 sensors

    Science.gov (United States)

    Gonzalez-Haro, C.; Autret, E.; Isern-Fontanet, J.; Tandeo, P.; Le Goff, C.; Garello, R.; Fablet, R.

    2015-12-01

    Along-track altimetric measurements of Sea Surface Heights (SSH) are very well suited to quantify across-track currents. However, the spatial resolution of derived 2D velocities is restricted to scales above 100-150 km and the limited number of altimeters can lead to errors in the location of currents. On the contrary, infrared measurements of Sea Surface Temperature (SST) are well suited to locate flow patterns but it is difficult to extract quantitative estimations of ocean currents. During the last years, some works began to exploit the synergy of SST and altimetry measurements in order to retrieve ocean currents. Nevertheless, all this previous works employed measurements which were near in time but not simultaneous. In that sense, Sentinel-3 is a multi-instrument mission that will circumvent this temporal limitation, providing simultaneous measurements of SST and altimetry with high-end accuracy and reliability. Our approach, based on the spectral properties of simultaneous SST and SSH observations, is tested using ENVISAT (RA, AATSR) data, since its geometry is similar to that of Sentinel-3 (SRAL, SLSTR).

  19. Coexistence of Fermi arcs and Fermi pockets in a high-T(c) copper oxide superconductor.

    Science.gov (United States)

    Meng, Jianqiao; Liu, Guodong; Zhang, Wentao; Zhao, Lin; Liu, Haiyun; Jia, Xiaowen; Mu, Daixiang; Liu, Shanyu; Dong, Xiaoli; Zhang, Jun; Lu, Wei; Wang, Guiling; Zhou, Yong; Zhu, Yong; Wang, Xiaoyang; Xu, Zuyan; Chen, Chuangtian; Zhou, X J

    2009-11-19

    In the pseudogap state of the high-transition-temperature (high-T(c)) copper oxide superconductors, angle-resolved photoemission (ARPES) measurements have seen Fermi arcs-that is, open-ended gapless sections in the large Fermi surface-rather than a closed loop expected of an ordinary metal. This is all the more puzzling because Fermi pockets (small closed Fermi surface features) have been suggested by recent quantum oscillation measurements. The Fermi arcs cannot be understood in terms of existing theories, although there is a solution in the form of conventional Fermi surface pockets associated with competing order, but with a back side that is for detailed reasons invisible to photoemission probes. Here we report ARPES measurements of Bi(2)Sr(2-x)La(x)CuO(6+delta) (La-Bi2201) that reveal Fermi pockets. The charge carriers in the pockets are holes, and the pockets show an unusual dependence on doping: they exist in underdoped but not overdoped samples. A surprise is that these Fermi pockets appear to coexist with the Fermi arcs. This coexistence has not been expected theoretically.

  20. Ab initio study of Fermi surface and dynamical properties of Ni{sub 2}XAl (X = Ti, V, Zr, Nb, Hf and Ta)

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasa Reddy, P.V.; Kanchana, V., E-mail: kanchana@iith.ac.in

    2014-12-15

    Highlights: • Electronic structure properties studied at ambient as well as under compression. • Mechanical properties are predicted for the first time. • Vibrational properties are studied at ambient as well as under compression. • Ni{sub 2}TiAl is found to have the lowest C{sub v}, S, and higher U, F{sub vib} and linear thermal expansion coefficient. • T{sub c} of Ni{sub 2}NbAl is calculated and a non-monotonic variation in the T{sub c} is observed under compression. - Abstract: A detailed study on the pressure and temperature effects on ternary Ni-based inter-metallic compounds Ni{sub 2}XAl (X = Ti, V, Zr, Nb, Hf and Ta) have been carried out using density functional theory. The calculated ground state properties are in good agreement with experiments for all the investigated compounds. The band structures and Fermi surface topology is found to be quite similar for all the compounds except for Ni{sub 2}NbAl, where we find an extra band to cross the Fermi level under compression resulting in a new electron pocket at X-point. Ni{sub 2}NbAl is found to be a superconductor with superconducting transition temperature of 3.1 K which agrees quite well with the experimental value and the calculated T{sub c} is found to vary non-monotonically under pressure. From the calculated phonon dispersion relation, we find all the investigated Ni-based Heusler compounds to be dynamically stable, until high pressure. The ductile nature of these compounds is confirmed from the calculated Cauchy’s pressure, Pugh’s ratio and Poisson’s ratio. In addition, the thermodynamic properties show Ni{sub 2}TiAl to have lower specific heat and entropy but higher internal energy and free energy among all the investigated compounds.

  1. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy

    NARCIS (Netherlands)

    Faber, E.T.; Martinez-Martinez, D.; Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    2015-01-01

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DlC). It is argued that the strength of the met

  2. Comprehensive Use of Curvature For Robust And Accurate Online Surface Reconstruction.

    Science.gov (United States)

    Lefloch, Damien; Kluge, Markus; Sarbolandi, Hamed; Weyrich, Tim; Kolb, Andreas

    2017-01-05

    Interactive real-time scene acquisition from hand-held depth cameras has recently developed much momentum, enabling applications in ad-hoc object acquisition, augmented reality and other fields. A key challenge to online reconstruction remains error accumulation in the reconstructed camera trajectory, due to drift-inducing instabilities in the range scan alignments of the underlying iterative-closest-point (ICP) algorithm. Various strategies have been proposed to mitigate that drift, including SIFT-based pre-alignment, color-based weighting of ICP pairs, stronger weighting of edge features, and so on. In our work, we focus on surface curvature as a feature that is detectable on range scans alone and hence does not depend on accurate multi-sensor alignment. In contrast to previous work that took curvature into consideration, however, we treat curvature as an independent quantity that we consistently incorporate into every stage of the real-time reconstruction pipeline, including densely curvature-weighted ICP, range image fusion, local surface reconstruction, and rendering. Using multiple benchmark sequences, and in direct comparison to other state-of-the-art online acquisition systems, we show that our approach significantly reduces drift, both when analyzing individual pipeline stages in isolation, as well as seen across the online reconstruction pipeline as a whole.

  3. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data

    Science.gov (United States)

    Sun, Liang; Chen, Zhongxin; Gao, Feng; Anderson, Martha; Song, Lisheng; Wang, Limin; Hu, Bo; Yang, Yun

    2017-08-01

    Land surface temperature (LST) is a critical parameter in environmental studies and resource management. The MODIS LST data product has been widely used in various studies, such as drought monitoring, evapotranspiration mapping, soil moisture estimation and forest fire detection. However, cloud contamination affects thermal band observations and will lead to inconsistent LST results. In this study, we present a new Remotely Sensed DAily land Surface Temperature reconstruction (RSDAST) model that recovers clear sky LST for pixels covered by cloud using only clear-sky neighboring pixels from nearby dates. The reconstructed LST was validated using the original LST pixels. Model shows high accuracy for reconstructing one masked pixel with R2 of 0.995, bias of -0.02 K and RMSE of 0.51 K. Extended spatial reconstruction results show a better accuracy for flat areas with R2 of 0.72‒0.89, bias of -0.02-0.21 K, and RMSE of 0.92-1.16 K, and for mountain areas with R2 of 0.81-0.89, bias of -0.35-1.52 K, and RMSE of 1.42‒2.24 K. The reconstructed areas show spatial and temporal patterns that are consistent with the clear neighbor areas. In the reconstructed LST and NDVI triangle feature space which is controlled by soil moisture, LST values distributed reasonably and correspond well to the real soil moisture conditions. Our approach shows great potential for reconstructing clear sky LST under cloudy conditions and provides consistent daily LST which are critical for daily drought monitoring.

  4. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    Directory of Open Access Journals (Sweden)

    Kelly de Jesus

    2015-01-01

    Full Text Available This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.. Root Mean Square (RMS error with homography of control and validations points was lower than without it for surface and underwater cameras (P≤0.03. With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P≥0.47. Without homography, RMS error of control points was greater for underwater than surface cameras (P≤0.04 and the opposite was observed for validation points (P≤0.04. It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy.

  5. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  6. Concurrence of bulk and surface order reconstruction to the relaxation of frustrated nematics

    Science.gov (United States)

    Amoddeo, Antonino

    2016-08-01

    Applying appropriate electric pulses to a nematic liquid crystal confined between plates, the bulk order reconstruction can occur, a mechanism allowing the switching between topologically different nematic textures without any director rotation. Using a moving mesh finite element method we describe the order tensor dynamics for a nematic inside an asymmetric n-cell, putting in evidence as textural distortions induced by strong asymmetries can be relaxed via both bulk and surface order reconstruction, occurring close to a confining plate with different time duration.

  7. Antiferrodistortive reconstruction of the PbTiO{sub 3} surface.

    Energy Technology Data Exchange (ETDEWEB)

    Munkholm, A.; Streiffer, S. K.; Murty, R. M. V.; Eastman, J. A.; Thompson, C.; Auciello, O.; Thompson, L.; Moore, J. F. Stephenson, G. B.; Northern Illinois Univ.

    2002-01-07

    We present in situ x-ray scattering measurements of the surface structures of PbTiO{sub 3} (001) in equilibrium with PbO vapor. At 875 to 1025 K, a reconstruction having c(2x2) symmetry is present under most conditions, while a 1x6 reconstruction occurs under PbO-poor conditions. The atomic structure of the c(2x2) phase is found to consist of a single layer of an antiferrodistortive structure with oxygen cages counter-rotated by 10 degrees about the titanium ions.

  8. Stereo Reconstruction of Atmospheric Cloud Surfaces from Fish-Eye Camera Images

    Science.gov (United States)

    Katai-Urban, G.; Otte, V.; Kees, N.; Megyesi, Z.; Bixel, P. S.

    2016-06-01

    In this article a method for reconstructing atmospheric cloud surfaces using a stereo camera system is presented. The proposed camera system utilizes fish-eye lenses in a flexible wide baseline camera setup. The entire workflow from the camera calibration to the creation of the 3D point set is discussed, but the focus is mainly on cloud segmentation and on the image processing steps of stereo reconstruction. Speed requirements, geometric limitations, and possible extensions of the presented method are also covered. After evaluating the proposed method on artificial cloud images, this paper concludes with results and discussion of possible applications for such systems.

  9. Atomic scale control and understanding of cubic silicon carbide surface reconstructions, nanostructures and nanochemistry

    Science.gov (United States)

    Soukiassian, Patrick G.; Enriquez, Hanna B.

    2004-05-01

    The atomic scale ordering and properties of cubic silicon carbide (bgr-SiC) surfaces and nanostructures are investigated by atom-resolved room and high-temperature scanning tunnelling microscopy (STM) and spectroscopy (STS), synchrotron radiation-based valence band and core level photoelectron spectroscopy (VB-PES, CL-PES) and grazing incidence x-ray diffraction (GIXRD). In this paper, we review the latest results on the atomic scale understanding of (i) the structure of bgr-SiC(100) surface reconstructions, (ii) temperature-induced metallic surface phase transition, (iii) one dimensional Si(C) self-organized nanostructures having unprecedented characteristics, and on (iv) nanochemistry at SiC surfaces with hydrogen. The organization of these surface reconstructions as well as the 1D nanostructures' self-organization are primarily driven by surface stress. In this paper, we address such important issues as (i) the structure of the Si-rich 3 × 2, the Si-terminated c (4 × 2), the C-terminated c (2 × 2) reconstructions of the bgr-SiC(100) surface, (ii) the temperature-induced reversible {\\mathrm {c}}(4\\times 2) \\Leftrightarrow 2\\times 1 metallic phase transition, (iii) the formation of highly stable (up to 900 °C) Si atomic and vacancy lines, (iv) the temperature-induced sp to sp3 diamond like surface transformation, and (v) the first example of H-induced semiconductor surface metallization on the bgr-SiC (100) 3 × 2 surface. The results are discussed and compared to other experimental and theoretical investigations.

  10. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold

    Directory of Open Access Journals (Sweden)

    Koichi Tomita, MD, PhD

    2015-03-01

    Full Text Available Summary: Recent advances in 3-dimensional (3D surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP flaps (5 immediate, 6 delayed using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast.

  11. An adaptive learning approach for 3-D surface reconstruction from point clouds.

    Science.gov (United States)

    Junior, Agostinho de Medeiros Brito; Neto, Adrião Duarte Dória; de Melo, Jorge Dantas; Goncalves, Luiz Marcos Garcia

    2008-06-01

    In this paper, we propose a multiresolution approach for surface reconstruction from clouds of unorganized points representing an object surface in 3-D space. The proposed method uses a set of mesh operators and simple rules for selective mesh refinement, with a strategy based on Kohonen's self-organizing map (SOM). Basically, a self-adaptive scheme is used for iteratively moving vertices of an initial simple mesh in the direction of the set of points, ideally the object boundary. Successive refinement and motion of vertices are applied leading to a more detailed surface, in a multiresolution, iterative scheme. Reconstruction was experimented on with several point sets, including different shapes and sizes. Results show generated meshes very close to object final shapes. We include measures of performance and discuss robustness.

  12. 3D shape reconstruction of specular surfaces by using phase measuring deflectometry

    Science.gov (United States)

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-10-01

    The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.

  13. A DFT study of atomic geometry and electronic structures for oxidized Al{sub 0.25}Ga{sub 0.75}N (0 0 1) (2 × 2) reconstruction surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mingzhu [Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, Peoples Republic of China (China); Shi, Feng [Key Laboratory of Low Light Level Technology of COSTIND, Xi’an 710065, Peoples Republic of China (China); Chang, Benkang, E-mail: bkchang@mail.njust.edu.cn [Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, Peoples Republic of China (China); Cheng, Hongchang [Key Laboratory of Low Light Level Technology of COSTIND, Xi’an 710065, Peoples Republic of China (China); Wang, Meishan [School of Physics, Ludong University, Yantai 264025, Peoples Republic of China (China)

    2015-04-01

    Highlights: • The formation energy of oxidized Al{sub 0.25}Ga{sub 0.75}N (0 0 1) (2 × 2) reconstruction surface decreases as the increase of O coverage under O-rich conditions. • The length values of Ga−O and Al−O bonds are 1.856 Å and 1.853 Å, respectively. • The dangling bonds of Ga and Al atoms on the surface were occupied with the addition of O atoms. • Charge redistribution of the oxidized Al{sub 0.25}Ga{sub 0.75}N (0 0 1) (2 × 2) reconstruction surfaces leads to higher work function values. - Abstract: In order to study formation energies, atomic geometry, electronic structures, and surface states of oxidized Al{sub 0.25}Ga{sub 0.75}N (001) (2 × 2) reconstruction surfaces, models of Al{sub 0.25}Ga{sub 0.75}N (0 0 1) (2 × 2) reconstruction surfaces with different coverages of oxygen atoms were built, and first-principles calculations were performed based on density functional theory (DFT). The results of these calculations show that formation energy of the oxidized Al{sub 0.25}Ga{sub 0.75}N (0 0 1) (2 × 2) reconstruction surfaces decreases as the increasing of O coverage under O-rich conditions. O atom prefers to locate on the top of Ga−Ga and Ga−Al dimers. After relaxation, the length values of Ga−O and Al−O bonds are 1.856 Å and 1.853 Å, respectively. With smaller electronegativity values, Ga and Al atoms donate electrons to O atom, and the dangling bonds of Ga and Al atoms on the surface were occupied. At Fermi level, the partial density of states (PDOS) of Ga and Al atoms on the topmost surface decrease significantly after Ga and Al atoms bond with O atoms, showing that surface states disappear. O atoms adsorption or replacement on Al{sub 0.25}Ga{sub 0.75}N (001) (2 × 2) reconstruction surface induces charge redistribution, which in turn forms Ga(Al)−O dipoles oriented to O atoms. With Ga(Al)−O dipoles, work functions of oxidized surfaces are larger than that of clean surface, and the work function increases as O

  14. Cortical Surface Reconstruction via Unified Reeb Analysis of Geometric and Topological Outliers in Magnetic Resonance Images

    Science.gov (United States)

    Shi, Yonggang; Lai, Rongjie

    2013-01-01

    In this paper we present a novel system for the automated reconstruction of cortical surfaces from T1-weighted magnetic resonance images. At the core of our system is a unified Reeb analysis framework for the detection and removal of geometric and topological outliers on tissue boundaries. Using intrinsic Reeb analysis, our system can pinpoint the location of spurious branches and topological outliers, and correct them with localized filtering using information from both image intensity distributions and geometric regularity. In this system, we have also developed enhanced tissue classification with Hessian features for improved robustness to image inhomogeneity, and adaptive interpolation to achieve sub-voxel accuracy in reconstructed surfaces. By integrating these novel developments, we have a system that can automatically reconstruct cortical surfaces with improved quality and dramatically reduced computational cost as compared with the popular FreeSurfer software. In our experiments, we demonstrate on 40 simulated MR images and the MR images of 200 subjects from two databases: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and International Consortium of Brain Mapping (ICBM), the robustness of our method in large scale studies. In comparisons with FreeSurfer, we show that our system is able to generate surfaces that better represent cortical anatomy and produce thickness features with higher statistical power in population studies. PMID:23086519

  15. Feneric Fermi Size Enhancement of Pairing in Mesoscopic Fermi Systems

    CERN Document Server

    Farine, M; Schuck, P; Viñas, X

    2002-01-01

    The finite size dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well as atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is a surface effect which, when properly included, accounts for the data.

  16. COMPLEX SURFACE RECONSTRUCTION BASED ON OBJECT-ORIENTED DEVELOPING TOOL VBA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Taking AutoCAD2000 as platform, an algorithm for the reconstruction of surface from scattered data points based on VBA is presented. With this core technology customers can be free from traditional AutoCAD as an electronic board and begin to create actual presentation of real-world objects. VBA is not only a very powerful tool of development, but with very simple syntax. Associating with those solids, objects and commands of AutoCAD 2000, VBA notably simplifies previous complex algorithms, graphical presentations and processing, etc. Meanwhile, it can avoid appearance of complex data structure and data format in reverse design with other modeling software. Applying VBA to reverse engineering can greatly improve modeling efficiency and facilitate surface reconstruction.

  17. Prediction of a reconstructed α-boron (111) surface by the minima hopping method

    Science.gov (United States)

    Amsler, Maximilian; Goedecker, Stefan; Botti, Silvana; Marques, Miguel A. L.

    2014-03-01

    Boron exhibits an impressive structural variety and immense efforts have recently been made to explore boron structures of low dimensionality, such as boron fullerenes, two-dimensional boron sheets or boron nanotubes which are theoretically predicted to exhibit superior electronic properties compared to their carbon analogues. By performing an extensive and systematic ab initio structural search for the (111) surface of α-boron (111) using the minima hopping structure prediction method we found very strong reconstructions that lead to two-dimensional surface layers. The topmost layer of these low energy reconstructions is a conductive, nearly perfectly planar boron sheet. If exfoliation was experimentally possible, promising precursors for a large variety of boron nano-structures such as single walled boron nanotubes and boron fullerenes could be obtained.

  18. Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr 3 , AlCu 3 , and AlCu 2 Zr: First-principles study

    Science.gov (United States)

    Parvin, R.; Parvin, F.; Ali, M. S.; Islam, A. K. M. A.

    2016-08-01

    The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM 3 (M = Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K-100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR-visible-UV region up to ˜ 15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.

  19. Magnetic polaron and Fermi surface effects on the ESR spin-flip scattering of EuB6 above TC≈15 K

    Science.gov (United States)

    Urbano, R. R.; Pagliuso, P. G.; Rettori, C.; Oseroff, S. B.; Sarrao, J. L.; Schlottmann, P.; Fisk, Z.

    2004-12-01

    The spin-flip scattering (SFS) between conduction and Eu4f7 ( S7/28) electrons in the paramagnetic phase of EuB6 ( T⩾TC≈15 K) is studied by electron spin resonance (ESR) and magneto-resistance (MR) experiments. The observed Dysonian resonance suggests a metallic environment for the Eu ions. ESR at high field, H≅12.05 kG ( ν≅33.9 GHz), shows an anisotropic line width with cubic symmetry. ESR at low-field, 1.46 kG (4.1 GHz) and 3.35 kG (9.5 GHz), shows broader line width and smaller anisotropy than at higher field. The narrowing and anisotropy of the line width at high fields are indicative of a homogeneous resonance where the line width is mainly governed by the SFS mechanism due to the exchange interaction between Eu4f7 and conduction electrons. Besides the negative MR, we found an anisotropic MR with cubic symmetry. These results are interpreted in terms of magnetic polaron and Fermi surface effects.

  20. Magnetic polaron and Fermi surface effects on the ESR spin-flip scattering of EuB6 above TC{approx}15K

    Energy Technology Data Exchange (ETDEWEB)

    Urbano, R.R. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Cidade Universitaria ' Zaferino Vaz' , UNICAMP, CP 6165, Campinas 13083-970 (Brazil)]. E-mail: urbano@ifi.unicamp.br; Pagliuso, P.G. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Cidade Universitaria ' Zaferino Vaz' , UNICAMP, CP 6165, Campinas 13083-970 (Brazil); Rettori, C. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Cidade Universitaria ' Zaferino Vaz' , UNICAMP, CP 6165, Campinas 13083-970 (Brazil); Oseroff, S.B. [San Diego State University, San Diego, CA 92182 (United States); Sarrao, J.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schlottmann, P. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 2310 (United States); Fisk, Z. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 2310 (United States)

    2004-12-31

    The spin-flip scattering (SFS) between conduction and Eu2+4f7 (S7/28) electrons in the paramagnetic phase of EuB6 (T>=TC{approx}15K) is studied by electron spin resonance (ESR) and magneto-resistance (MR) experiments. The observed Dysonian resonance suggests a metallic environment for the Eu2+ ions. ESR at high field, H-bar 12.05kG ({nu}-bar 33.9GHz), shows an anisotropic line width with cubic symmetry. ESR at low-field, 1.46kG (4.1GHz) and 3.35kG (9.5GHz), shows broader line width and smaller anisotropy than at higher field. The narrowing and anisotropy of the line width at high fields are indicative of a homogeneous resonance where the line width is mainly governed by the SFS mechanism due to the exchange interaction between Eu2+ 4f7 and conduction electrons. Besides the negative MR, we found an anisotropic MR with cubic symmetry. These results are interpreted in terms of magnetic polaron and Fermi surface effects.

  1. Improving past sea surface temperature reconstructions from the Southern Hemisphere oceans using planktonic foraminiferal census data

    Science.gov (United States)

    Haddam, N. A.; Michel, E.; Siani, G.; Cortese, G.; Bostock, H. C.; Duprat, J. M.; Isguder, G.

    2016-06-01

    We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere oceans (SHO) from 15°S to 64°S. The SHO database combines three existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/ΔCO32- threshold of ~3800 m/ΔCO32- = ~ -10 to -5 µmol/kg for the Pacific and Indian Oceans and ~4000 m/ΔCO32- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core tops beyond these thresholds from the SHO database. This database has 598 core tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect how dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core tops. We used this database to reconstruct summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the three databases used to compile the SHO database, thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich database. We leave this data set open-ended to future additions; the new core tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.

  2. Surface reconstructions and related local properties of a BiFeO3 thin film

    Science.gov (United States)

    Jin, L.; Xu, P. X.; Zeng, Y.; Lu, L.; Barthel, J.; Schulthess, T.; Dunin-Borkowski, R. E.; Wang, H.; Jia, C. L.

    2017-01-01

    Coupling between lattice and order parameters, such as polarization in ferroelectrics and/or polarity in polar structures, has a strong impact on surface relaxation and reconstruction. However, up to now, surface structures that involve the termination of both matrix polarization and polar atomic planes have received little attention, particularly on the atomic scale. Here, we study surface structures on a BiFeO3 thin film using atomic-resolution scanning transmission electron microscopy and spectroscopy. Two types of surface structure are found, depending on the polarization of the underlying ferroelectric domain. On domains that have an upward polarization component, a layer with an Aurivillius-Bi2O2-like structural unit is observed. Dramatic changes in local properties are measured directly below the surface layer. On domains that have a downward polarization component, no reconstructions are visible. Calculations based on ab initio density functional theory reproduce the results and are used to interpret the formation of the surface structures. PMID:28102296

  3. Second-order model for free surface convection and interface reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong O.; Hwang, Young Dong; Kim, Young In; Chang, Moon Hee

    1997-03-01

    To improve the numerical analysis of free surface convection and its reconstruction, both first- and second-order algorithms are developed based on the volume of fraction method. Through the rearrangement of the surface cell and resetting of volume fraction, 16 possible cases of distribution of volume fraction in a cell block can be reduced to a single case. The methodology applied to the second-order model is to define the second-order linear curve having both face slopes as near to horizontal as possible while satisfying the cell`s defined volume fraction. The second-order method is compared with the FLAIR method and the first-order method through the simulation of the convection for various sizes of circular liquid shapes and solitary waves. For the small curvature of a free surface, e.g. circles with a large diameter, the linear method such as the FLAIR method and the first-order method shows relatively good predictions. However, for large curvature configurations, e.g. circles with a relatively small diameter or solitary waves, the linear approach shows large distortion of free surface. On the contrary, the second-order model always shows powerful prediction capabilities of free surface convection. Therefore, it is recommended that for the reconstruction and convection of free surface geometry with a large curvature, the second-order model should be used. (author). 21 refs., 1 tab., 21 figs.

  4. Real-time surface reconstruction from stereo endoscopic images for intraoperative registration

    Science.gov (United States)

    Röhl, S.; Bodenstedt, S.; Suwelack, S.; Kenngott, H.; Mueller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2011-03-01

    Minimally invasive surgery is a medically complex discipline that can heavily benefit from computer assistance. One way to assist the surgeon is to blend in useful information about the intervention into the surgical view using Augmented Reality. This information can be obtained during preoperative planning and integrated into a patient-tailored model of the intervention. Due to soft tissue deformation, intraoperative sensor data such as endoscopic images has to be acquired and non-rigidly registered with the preoperative model to adapt it to local changes. Here, we focus on a procedure that reconstructs the organ surface from stereo endoscopic images with millimeter accuracy in real-time. It deals with stereo camera calibration, pixel-based correspondence analysis, 3D reconstruction and point cloud meshing. Accuracy, robustness and speed are evaluated with images from a test setting as well as intraoperative images. We also present a workflow where the reconstructed surface model is registered with a preoperative model using an optical tracking system. As preliminary result, we show an initial overlay between an intraoperative and a preoperative surface model that leads to a successful rigid registration between these two models.

  5. Transition from Reconstruction toward Thin Film on the (110) Surface of Strontium Titanate.

    Science.gov (United States)

    Wang, Z; Loon, A; Subramanian, A; Gerhold, S; McDermott, E; Enterkin, J A; Hieckel, M; Russell, B C; Green, R J; Moewes, A; Guo, J; Blaha, P; Castell, M R; Diebold, U; Marks, L D

    2016-04-13

    The surfaces of metal oxides often are reconstructed with a geometry and composition that is considerably different from a simple termination of the bulk. Such structures can also be viewed as ultrathin films, epitaxed on a substrate. Here, the reconstructions of the SrTiO3 (110) surface are studied combining scanning tunneling microscopy (STM), transmission electron diffraction, and X-ray absorption spectroscopy (XAS), and analyzed with density functional theory calculations. Whereas SrTiO3 (110) invariably terminates with an overlayer of titania, with increasing density its structure switches from n × 1 to 2 × n. At the same time the coordination of the Ti atoms changes from a network of corner-sharing tetrahedra to a double layer of edge-shared octahedra with bridging units of octahedrally coordinated strontium. This transition from the n × 1 to 2 × n reconstructions is a transition from a pseudomorphically stabilized tetrahedral network toward an octahedral titania thin film with stress-relief from octahedral strontia units at the surface.

  6. Could the Earth's surface Ultraviolet irradiance be blamed for the global warming? (II) ----Ozone layer depth reconstruction via HEWV effect

    CERN Document Server

    Chen, Jilong; Zheng, Yujun

    2014-01-01

    It is suggested by Chen {\\it et al.} that the Earth's surface Ultraviolet irradiance ($280-400$ nm) could influence the Earth's surface temperature variation by "Highly Excited Water Vapor" (HEWV) effect. In this manuscript, we reconstruct the developing history of the ozone layer depth variation from 1860 to 2011 based on the HEWV effect. It is shown that the reconstructed ozone layer depth variation correlates with the observational variation from 1958 to 2005 very well ($R=0.8422$, $P>99.9\\%$). From this reconstruction, we may limit the spectra band of the surface Ultraviolet irradiance referred in HEWV effect to Ultraviolet B ($280-320$ nm).

  7. Decoupled Method for Reconstruction of Surface Conditions From Internal Temperatures On Ablative Materials With Uncertain Recession Model

    Science.gov (United States)

    Oliver, A. Brandon

    2017-01-01

    Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.

  8. Quantum phases of Fermi-Fermi mixtures in optical lattices

    OpenAIRE

    Iskin, M.; de Melo, C. A. R. Sa

    2007-01-01

    The ground state phase diagram of Fermi-Fermi mixtures in optical lattices is analyzed as a function of interaction strength, population imbalance, filling fraction and tunneling parameters. It is shown that population imbalanced Fermi-Fermi mixtures reduce to strongly interacting Bose-Fermi mixtures in the molecular limit, in sharp contrast to homogeneous or harmonically trapped systems where the resulting Bose-Fermi mixture is weakly interacting. Furthermore, insulating phases are found in ...

  9. A method for brain 3D surface reconstruction from MR images

    Science.gov (United States)

    Zhao, De-xin

    2014-09-01

    Due to the encephalic tissues are highly irregular, three-dimensional (3D) modeling of brain always leads to complicated computing. In this paper, we explore an efficient method for brain surface reconstruction from magnetic resonance (MR) images of head, which is helpful to surgery planning and tumor localization. A heuristic algorithm is proposed for surface triangle mesh generation with preserved features, and the diagonal length is regarded as the heuristic information to optimize the shape of triangle. The experimental results show that our approach not only reduces the computational complexity, but also completes 3D visualization with good quality.

  10. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yiming Yan

    2017-01-01

    Full Text Available In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM, which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.

  11. Fermi liquid behavior of the in-plane resistivity in the pseudogap state of YBa2Cu4O8

    Science.gov (United States)

    Proust, Cyril; Vignolle, Baptiste; Levallois, Julien; Adachi, S.; Hussey, Nigel E.

    2016-11-01

    Our knowledge of the ground state of underdoped hole-doped cuprates has evolved considerably over the last few years. There is now compelling evidence that, inside the pseudogap phase, charge order breaks translational symmetry leading to a reconstructed Fermi surface made of small pockets. Quantum oscillations [Doiron-Leyraud N, et al. (2007) Nature 447(7144):565-568], optical conductivity [Mirzaei SI, et al. (2013) Proc Natl Acad Sci USA 110(15):5774-5778], and the validity of Wiedemann-Franz law [Grissonnache G, et al. (2016) Phys Rev B 93:064513] point to a Fermi liquid regime at low temperature in the underdoped regime. However, the observation of a quadratic temperature dependence in the electrical resistivity at low temperatures, the hallmark of a Fermi liquid regime, is still missing. Here, we report magnetoresistance measurements in the magnetic-field-induced normal state of underdoped YBa2Cu4O8 that are consistent with a T2 resistivity extending down to 1.5 K. The magnitude of the T2 coefficient, however, is much smaller than expected for a single pocket of the mass and size observed in quantum oscillations, implying that the reconstructed Fermi surface must consist of at least one additional pocket.

  12. LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement

    Science.gov (United States)

    Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan

    2015-03-01

    Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.

  13. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  14. Self-organized homo-epitaxial growth of (001) vanadium assisted by oxygen surface reconstruction

    Science.gov (United States)

    Andrieu, S.; Turban, P.; Kierren, B.

    2016-09-01

    In this paper the effect of oxygen on the vanadium homoepitaxial growth process is analyzed by using Auger spectroscopy, electron diffraction and scanning tunneling microscopy. As the oxygen induced 1 × 5 surface structure got a lattice spacing 6% different from the pure V lattice, relaxation is observed by electron diffraction during the growth. The average in-plane lattice spacing is thus shown to be proportional to the oxygen surface concentration. The surface lattice relaxation is observed to exponentially vary with the number of deposited atomic planes. A kinetic model is proposed and allows us to explain these observations. Furthermore, it helps us to distinguish two regimes depending on growth temperature. At high temperature, the oxygen surface concentration during growth is due to oxygen upward diffusion from the underneath V layer. For lower temperature however, this upward diffusion is not efficient and another source of oxygen contamination is evidenced. When the oxygen surface concentration is sufficient, a spectacular self-organization is observed at the surface by surface microscopy. Ribbons shape islands are observed and are tentatively explained as a consequence of oxygen surface concentration and stress induced by the surface reconstruction.

  15. Fermi liquid theory

    CERN Document Server

    Apostol, M

    2001-01-01

    sup 3 He liquefies at 3.2 K under normal pressure, where its mean inter-particle separation of a few angstroms, is comparable with the range of the interaction potential (and with the mean inter-particle separation in the corresponding ideal gas); its thermal wavelength is about 8 A, so that, under this conditions, sup 3 He is a quantum liquid of fermions, or a Fermi liquid (sometimes called a normal Fermi liquid too). The motion of the sup 3 He atoms in the (repulsive) self-consistent, meanfield potential is affected by inertial effects, i.e. the particles possess an effective mass, and consequently they obey the Fermi distribution, like an ideal Fermi gas. In this paper the Landau's theory of the Fermi liquid is reviewed. (author)

  16. Reconstructing the vibro-acoustic quantities on a highly non-spherical surface using the Helmholtz equation least squares method.

    Science.gov (United States)

    Natarajan, Logesh Kumar; Wu, Sean F

    2012-06-01

    This paper presents helpful guidelines and strategies for reconstructing the vibro-acoustic quantities on a highly non-spherical surface by using the Helmholtz equation least squares (HELS). This study highlights that a computationally simple code based on the spherical wave functions can produce an accurate reconstruction of the acoustic pressure and normal surface velocity on planar surfaces. The key is to select the optimal origin of the coordinate system behind the planar surface, choose a target structural wavelength to be reconstructed, set an appropriate stand-off distance and microphone spacing, use a hybrid regularization scheme to determine the optimal number of the expansion functions, etc. The reconstructed vibro-acoustic quantities are validated rigorously via experiments by comparing the reconstructed normal surface velocity spectra and distributions with the benchmark data obtained by scanning a laser vibrometer over the plate surface. Results confirm that following the proposed guidelines and strategies can ensure the accuracy in reconstructing the normal surface velocity up to the target structural wavelength, and produce much more satisfactory results than a straight application of the original HELS formulations. Experiment validations on a baffled, square plate were conducted inside a fully anechoic chamber.

  17. Investigation of the Hysteretic Phenomena in RHEED Intensity Change in the Study of Surface Reconstruction

    Directory of Open Access Journals (Sweden)

    Jenő Takács

    2010-12-01

    Full Text Available This paper describes a study of the RHEED intensity change against temperaturein case of GaAs and InAs surfaces. RHEED as a technique is a widely used monitoringmethod for observing molecular-beam-epitaxial (MBE growth. The reconstruction andother changes of the surface can be investigated by observing the RHEED pattern. Both thestatic and the dynamic RHEED-s are very complex phenomena, but these effects can beused as versatile tools for in-situ monitoring of the growth of the epitaxial layer, in spite ofthe fact that we do not know much about the details of its nature. Our observations showedthat the specular beam intensity of RHEED had changed with the change of the surfacetemperature. We investigated the changes of the GaAs and InAs (001 surfaces by using thiseffect. The change in intensity follows the observed surface reconstruction. This change inthe RHEED intensity against temperature shows hysteretic properties, with a differentcharacter for each material. So far, the explanations for these phenomena were different inboth cases. Here, we explain these hysteretic phenomena in general terms with the T(xhyperbolic model for coupled hysteretic systems, which is applicable to both materials.Experimental results presented in the paper are in good agreement with the modelpredictions.

  18. Reconstructing Variations of Global Sea-Surface Temperature during the Last Interglaciation

    Science.gov (United States)

    Hoffman, J. S.; Clark, P. U.; He, F.; Parnell, A. C.

    2015-12-01

    The last interglaciation (LIG; ~130-116 ka) was the most recent period in Earth history with higher-than-present global sea level (≥6 m) under similar-to-preindustrial concentrations of atmospheric CO2, suggesting additional feedbacks related to albedo, insolation, and ocean circulation in generating the apparent climatic differences between the LIG and present Holocene. However, our understanding of how much warmer the LIG sea surface was relative to the present interglaciation remains uncertain, with current estimates suggesting from 0°C to 2°C warmer than late-20thcentury average global temperatures. Moreover, the timing, spatial expression, and amplitude of regional and global sea surface temperature variability related to other climate forcing during the LIG are poorly constrained, largely due to uncertainties in age control and proxy temperature reconstructions. An accurate characterization of global and regional temperature change during the LIG can serve as a benchmark for paleoclimate modeling intercomparison projects and help improve understanding of sea-level sensitivity to temperature change. We will present a global compilation (~100 published records) of sea surface temperature (SST) and other climate reconstructions spanning the LIG. Using a Monte Carlo-enabled cross-correlation maximization algorithm to climatostratigraphically align proxy records and then account for both the resulting chronologic and proxy calibration uncertainties with Bayesian statistical inference, our results quantify the spatial timing, amplitude, and uncertainty in estimates of global and regional sea surface temperature change during the LIG and its relation to potential forcings.

  19. Nanoscale patterning, macroscopic reconstruction, and enhanced surface stress by organic adsorption on vicinal surfaces

    Science.gov (United States)

    Pollinger, Florian; Schmitt, Stefan; Sander, Dirk; Tian, Zhen; Kirschner, Jürgen; Vrdoljak, Pavo; Stadler, Christoph; Maier, Florian; Marchetto, Helder; Schmidt, Thomas; Schöll, Achim; Umbach, Eberhard

    2017-01-01

    Self-organization is a promising method within the framework of bottom-up architectures to generate nanostructures in an efficient way. The present work demonstrates that self-organization on the length scale of a few to several tens of nanometers can be achieved by a proper combination of a large (organic) molecule and a vicinal metal surface if the local bonding of the molecule on steps is significantly stronger than that on low-index surfaces. In this case thermal annealing may lead to large mass transport of the subjacent substrate atoms such that nanometer-wide and micrometer-long molecular stripes or other patterns are being formed on high-index planes. The formation of these patterns can be controlled by the initial surface orientation and adsorbate coverage. The patterns arrange self-organized in regular arrays by repulsive mechanical interactions over long distances accompanied by a significant enhancement of surface stress. We demonstrate this effect using the planar organic molecule PTCDA as adsorbate and Ag(10 8 7) and Ag(775) surfaces as substrate. The patterns are directly observed by STM, the formation of vicinal surfaces is monitored by high-resolution electron diffraction, the microscopic surface morphology changes are followed by spectro-microscopy, and the macroscopic changes of surface stress are measured by a cantilever bending method. The in situ combination of these complementary techniques provides compelling evidence for elastic interaction and a significant stress contribution to long-range order and nanopattern formation.

  20. Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface.

    Science.gov (United States)

    Wang, Yang; Sun, Huijuan; Tan, Shijing; Feng, Hao; Cheng, Zhengwang; Zhao, Jin; Zhao, Aidi; Wang, Bing; Luo, Yi; Yang, Jinlong; Hou, J G

    2013-01-01

    The chemical reactivity of different surfaces of titanium dioxide (TiO2) has been the subject of extensive studies in recent decades. The anatase TiO2(001) and its (1 × 4) reconstructed surfaces were theoretically considered to be the most reactive and have been heavily pursued by synthetic chemists. However, the lack of direct experimental verification or determination of the active sites on these surfaces has caused controversy and debate. Here we report a systematic study on an anatase TiO2(001)-(1 × 4) surface by means of microscopic and spectroscopic techniques in combination with first-principles calculations. Two types of intrinsic point defects are identified, among which only the Ti(3+) defect site on the reduced surface demonstrates considerable chemical activity. The perfect surface itself can be fully oxidized, but shows no obvious activity. Our findings suggest that the reactivity of the anatase TiO2(001) surface should depend on its reduction status, similar to that of rutile TiO2 surfaces.

  1. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films

    Science.gov (United States)

    Gao, Peng; Liu, Heng-Jui; Huang, Yen-Lin; Chu, Ying-Hao; Ishikawa, Ryo; Feng, Bin; Jiang, Ying; Shibata, Naoya; Wang, En-Ge; Ikuhara, Yuichi

    2016-04-01

    At the ferroelectric surface, the broken translational symmetry induced bound charge should significantly alter the local atomic configurations. Experimentally revealing the atomic structure of ferroelectric surface, however, is very challenging due to the strong spatial variety between nano-sized domains, and strong interactions between the polarization and other structural parameters. Here, we study surface structures of Pb(Zr0.2Ti0.8)O3 thin film by using the annular bright-field imaging. We find that six atomic layers with suppressed polarization and a charged 180° domain wall are at negatively poled surfaces, no reconstruction exists at positively poled surfaces, and seven atomic layers with suppressed polarization and a charged 90° domain wall exist at nominally neutral surfaces in ferroelastic domains. Our results provide critical insights into engineering ferroelectric thin films, fine grain ceramics and surface chemistry devices. The state-of-the-art methodology demonstrated here can greatly advance our understanding of surface science for oxides.

  2. Topological non-Fermi liquid

    Science.gov (United States)

    Cai, Rong-Gen; Qi, Yong-Hui; Wu, Yue-Liang; Zhang, Yun-Long

    2017-06-01

    The (2 +1 )-dimensional non-Fermi liquid (NFL) has a dual description in the (3 +1 )-dimensional anti-de Sitter (AdS) spacetime. We begin with a dyonic Reissner-Nordstrom (RN) black brane background, and consider the bulk Dirac fermion field coupled with the background U (1 ) gauge field, as well an intrinsic axial gauge field which is induced by chiral anomaly. The axial gauge field is effectively induced from the topological term in the bulk, which would lead to nontrivial effects on the boundary NFL. We study these effects through calculating the retarded Green's functions of the dual NFL holographically, in both analytical and numerical approaches. We also obtain correlation functions in the low frequency limit at zero and finite temperatures, as well as the dispersion spectrum of the Dirac cones, Fermi arc of the surface states, which can be related with the experiment.

  3. Analysis of past surface temperature reconstructions based on the tree-ring chronologies and borehole temperature measurements

    Science.gov (United States)

    Nagornov, O. V.; Nikitaev, V. G.; Pronichev, A. N.; Tyuflin, S. A.; Bukharova, T. I.

    2016-06-01

    There have been done many past surface temperature reconstructions based on the temperature measurements in rock and glacier boreholes. However, the reliability of these reconstructions connected with the uniqueness and stability properties is not studied. We carried out the reconstruction by search of the past surface temperature in form of the finite set of the Fourier series that provides the unique and stable solution. The tree-ring chronologies are used as the high-resolution proxy climate indicator to find out the dominant periods of the Fourier series. The Tikhonov regularization method is applied to solve the inverse problem.

  4. Three-dimensional surface reconstruction within noncontact diffuse optical tomography using structured light

    Science.gov (United States)

    Baum, Kirstin; Hartmann, Raimo; Bischoff, Tobias; Oelerich, Jan O.; Finkensieper, Stephan; Heverhagen, Johannes T.

    2012-12-01

    A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.

  5. Three-dimensional surface reconstruction within noncontact diffuse optical tomography using structured light.

    Science.gov (United States)

    Baum, Kirstin; Hartmann, Raimo; Bischoff, Tobias; Oelerich, Jan O; Finkensieper, Stephan; Heverhagen, Johannes T

    2012-12-01

    A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.

  6. REGION-BASED 3D SURFACE RECONSTRUCTION USING IMAGES ACQUIRED BY LOW-COST UNMANNED AERIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Z. Lari

    2015-08-01

    Full Text Available Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  7. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    Science.gov (United States)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  8. Critical surface phase of α2(2 × 4) reconstructed zig-zag chains on InAs(001)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiang [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); Zhou, Xun [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); School of Physics and Electronics Science, Guizhou Normal University, Guizhou, Guiyang 550001 (China); Wang, Ji-Hong [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); Luo, Zi-Jiang [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); School of Education Administration, Guizhou University of Finance and Economics, Guizhou, Guiyang 550004 (China); Zhou, Qing; Liu, Ke; Hu, Ming-Zhe [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); Ding, Zhao, E-mail: zding@gzu.edu.cn [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China)

    2014-07-01

    The critical condition for InAs(001) surface phase transition has been studied, the surface phase transition of InAs(001) showed discontinuity with hysteresis cycle as a function of substrate temperature. A mixed reconstruction surface and zig-zag chain α2(2 × 4) reconstruction surface have been observed by scanning tunneling microscopy. Considering the interaction and dynamics of surface arsenic atoms, the zig-zag chains of α2(2 × 4) reconstruction were found to be actually caused by the selective adsorption and desorption of surface arsenic dimers, they played a critical role in the surface phase transition between (2 × 4) and (4 × 2). - Highlights: • Discontinuous surface phase transition phenomena on the flat InAs(001) surface • Nanoscale InAs(001) surface observed by scanning tunneling microscopy • “Zig-Zag” chains of α2(2 × 4) reconstruction • Critical role in the surface phase transition between (2 × 4) and (4 × 2)

  9. Phase analysis for three-dimensional surface reconstruction of apples using structured-illumination reflectance imaging

    Science.gov (United States)

    Lu, Yuzhen; Lu, Renfu

    2017-05-01

    Three-dimensional (3-D) shape information is valuable for fruit quality evaluation. This study was aimed at developing phase analysis techniques for reconstruction of the 3-D surface of fruit from the pattern images acquired by a structuredillumination reflectance imaging (SIRI) system. Phase-shifted sinusoidal patterns, distorted by the fruit geometry, were acquired and processed through phase demodulation, phase unwrapping and other post-processing procedures to obtain phase difference maps relative to the phase of a reference plane. The phase maps were then transformed into height profiles and 3-D shapes in a world coordinate system based on phase-to-height and in-plane calibrations. A reference plane-based approach, coupled with the curve fitting technique using polynomials of order 3 or higher, was utilized for phase-to-height calibrations, which achieved superior accuracies with the root-mean-squared errors (RMSEs) of 0.027- 0.033 mm for a height measurement range of 0-91 mm. The 3rd-order polynomial curve fitting technique was further tested on two reference blocks with known heights, resulting in relative errors of 3.75% and 4.16%. In-plane calibrations were performed by solving a linear system formed by a number of control points in a calibration object, which yielded a RMSE of 0.311 mm. Tests of the calibrated system for reconstructing the surface of apple samples showed that surface concavities (i.e., stem/calyx regions) could be easily discriminated from bruises from the phase difference maps, reconstructed height profiles and the 3-D shape of apples. This study has laid a foundation for using SIRI for 3-D shape measurement, and thus expanded the capability of the technique for quality evaluation of horticultural products. Further research is needed to utilize the phase analysis techniques for stem/calyx detection of apples, and optimize the phase demodulation and unwrapping algorithms for faster and more reliable detection.

  10. A particle filter to reconstruct a free-surface flow from a depth camera

    Science.gov (United States)

    Combés, Benoit; Heitz, Dominique; Guibert, Anthony; Mémin, Etienne

    2015-10-01

    We investigate the combined use of a kinect depth sensor and of a stochastic data assimilation (DA) method to recover free-surface flows. More specifically, we use a weighted ensemble Kalman filter method to reconstruct the complete state of free-surface flows from a sequence of depth images only. This particle filter accounts for model and observations errors. This DA scheme is enhanced with the use of two observations instead of one classically. We evaluate the developed approach on two numerical test cases: a collapse of a water column as a toy-example and a flow in an suddenly expanding flume as a more realistic flow. The robustness of the method to depth data errors and also to initial and inflow conditions is considered. We illustrate the interest of using two observations instead of one observation into the correction step, especially for unknown inflow boundary conditions. Then, the performance of the Kinect sensor in capturing the temporal sequences of depth observations is investigated. Finally, the efficiency of the algorithm is qualified for a wave in a real rectangular flat bottomed tank. It is shown that for basic initial conditions, the particle filter rapidly and remarkably reconstructs the velocity and height of the free surface flow based on noisy measurements of the elevation alone.

  11. A particle filter to reconstruct a free-surface flow from a depth camera

    Energy Technology Data Exchange (ETDEWEB)

    Combés, Benoit; Heitz, Dominique; Guibert, Anthony [IRSTEA, UR TERE, 17 avenue de Cucillé, F-35044 Rennes Cedex (France); Mémin, Etienne, E-mail: dominique.heitz@irstea.fr, E-mail: etienne.memin@inria.fr [INRIA, Fluminance group, Campus universitaire de Beaulieu, F-35042 Rennes Cedex (France)

    2015-10-15

    We investigate the combined use of a kinect depth sensor and of a stochastic data assimilation (DA) method to recover free-surface flows. More specifically, we use a weighted ensemble Kalman filter method to reconstruct the complete state of free-surface flows from a sequence of depth images only. This particle filter accounts for model and observations errors. This DA scheme is enhanced with the use of two observations instead of one classically. We evaluate the developed approach on two numerical test cases: a collapse of a water column as a toy-example and a flow in an suddenly expanding flume as a more realistic flow. The robustness of the method to depth data errors and also to initial and inflow conditions is considered. We illustrate the interest of using two observations instead of one observation into the correction step, especially for unknown inflow boundary conditions. Then, the performance of the Kinect sensor in capturing the temporal sequences of depth observations is investigated. Finally, the efficiency of the algorithm is qualified for a wave in a real rectangular flat bottomed tank. It is shown that for basic initial conditions, the particle filter rapidly and remarkably reconstructs the velocity and height of the free surface flow based on noisy measurements of the elevation alone. (paper)

  12. Virtual three dimensions reconstruction and isoline analysis of human marks on the surface of animal fossils

    Institute of Scientific and Technical Information of China (English)

    WU XianZhu; WANG YunFu; PEI ShuWen; WU XiuJie

    2009-01-01

    Animal fossils in archaeological sites are closely related to human activities. The environment and human activities, such as hunting-selection, cook process, traditional culture and habits can be partly Inferred from the variety of fauna, fragmentation of the bones, and the human marks on bones' aur-faces. So far, researches about marks on fossils are few in China, and are mainly observed directly by eyes. Light Microscopes and Scanning Electron Microscopes are also applied to the observation abroad. These methods could provide us a lot of information, but are mainly confined to 2 dimensions. In this paper, we analyze human marks on the surface of animal fossils through three dimensions re-construction and isoline analysis, which enable us observe and measure in 3 dimensions. This method gives us a lot of information as follows: the formation of the marks, the tools that produced the marks, the cutting edge, movement and micro-abrasion of the tools. Through study of human marks on the surface of animal fossils unearthed from Bailongdong Cave in Yunxi, Hubei Province, we have got the characteristics of the marks, and further deepen cognition of the cutting edge, cutting orientation, cut-ting sequence, as well as micro-abrasion of tools during the formation of these marks. This is the first to use virtual three dimensions reconstruction in studying the human marks on the surface of animal fossils in China.

  13. Fermi and Szilard

    CERN Document Server

    Byers, N

    2002-01-01

    This talk is about Enrico Fermi and Leo Szilard, their collaboration and involvement in nuclear energy development and decisions to construct and use the atomic bomb in World War II. Fermi and Szilard worked closely together at Columbia in 1939-40 to explore feasibility of a nuclear chain reaction, and then on the physics for construction of the first pile (nuclear reactor). "On matters scientific or technical there was rarely any disagreement between Fermi and myself" Szilard said. But there were sharp differences on other matters.

  14. Fermi comes to CERN

    CERN Multimedia

    NASA

    2009-01-01

    1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)

  15. Tsunami Lead Wave Reconstruction Based on Noisy Sea Surface Height Measurements

    Science.gov (United States)

    Yu, Kegen

    2016-06-01

    This paper presents a Tsunami lead wave reconstruction method using noisy sea surface height (SSH) measurements such as observed by a satellite-carried GNSS reflectometry (GNSS-R) sensor. It is proposed to utilize wavelet theory to mitigate the strong noise in the GNSS-R based SSH measurements. Through extracting the noise components by high-pass filters at decomposition stage and shrinking the noise by thresholding prior to reconstruction, the noise is greatly reduced. Real Tsunami data based simulation results demonstrate that in presence of SSH measurement error of standard deviation 50 cm the accuracy in terms of root mean square error (RMSE) of the lead wave height (true value 145.5 cm) and wavelength (true value 592.0 km) estimation is 21.5 cm and 56.2 km, respectively. The results also show that the proposed wavelet based method considerably outperforms the Kalman filter based method on average. The results demonstrate that the proposed wave reconstruction approach has the potential for Tsunami detection and parameter estimation to assist in achieving reliable Tsunami warning.

  16. TSUNAMI LEAD WAVE RECONSTRUCTION BASED ON NOISY SEA SURFACE HEIGHT MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    K. Yu

    2016-06-01

    Full Text Available This paper presents a Tsunami lead wave reconstruction method using noisy sea surface height (SSH measurements such as observed by a satellite-carried GNSS reflectometry (GNSS-R sensor. It is proposed to utilize wavelet theory to mitigate the strong noise in the GNSS-R based SSH measurements. Through extracting the noise components by high-pass filters at decomposition stage and shrinking the noise by thresholding prior to reconstruction, the noise is greatly reduced. Real Tsunami data based simulation results demonstrate that in presence of SSH measurement error of standard deviation 50 cm the accuracy in terms of root mean square error (RMSE of the lead wave height (true value 145.5 cm and wavelength (true value 592.0 km estimation is 21.5 cm and 56.2 km, respectively. The results also show that the proposed wavelet based method considerably outperforms the Kalman filter based method on average. The results demonstrate that the proposed wave reconstruction approach has the potential for Tsunami detection and parameter estimation to assist in achieving reliable Tsunami warning.

  17. Iterative algorithm for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution

    Science.gov (United States)

    Quan, Haiyang; Wu, Fan; Hou, Xi

    2015-10-01

    New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.

  18. Observation of a (√3x√3)R30° Reconstruction on O-Polar ZnO Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, S.; Parihar, S; Pradhan, K; Johnson-Steigelman, H; Lyman, P

    2008-01-01

    Low energy electron diffraction revealed a previously unreported (3x3)R30 reconstruction on clean, O-polar ZnO surfaces after in-situ preparation under conditions with an extremely low H background or after ex-situ tube-furnace annealing [1]. It has been proposed that unreconstructed, H-free, O-polar ZnO surfaces cannot be produced [2]. As the sample is prepared from the as-received surface, to a clean (1x1), and finally to the clean (3x3)R30 reconstruction, x-ray photoelectron spectroscopy shows decreasing intensity of the hydroxyl shoulder (located to the high-binding-energy side of the O1s peak). This reconstruction is stable against H2, N2, and air, although its formation is suppressed when preparation occurs under an intentional H2 background. A structural investigation of the reconstruction with LEED-IV is under way.

  19. Fermi surface-Brillouin-zone-induced pseudogap in {gamma}-Mg{sub 17}Al{sub 12} and a possible stabilization mechanism of {beta}-Al{sub 3}Mg{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, U [Nagoya Industrial Science Research Institute, JST Plaza-Tokai, Ahara-cho, Minami-ku, Nagoya 457-0063 (Japan); Kondo, Y; Nishino, Y [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Inukai, M [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Kouto, Sayo, Hyogo 679-5198 (Japan); Feuerbacher, M [Institut fuer Mikrostrukturforschung, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Sato, H, E-mail: uichiro@sky.sannet.ne.j [Department of Physics, Aichi University of Education, Kariya-shi, Aichi 448-8542 (Japan)

    2010-12-08

    The electronic structure of {gamma} phase in the system Mg{sub 17}Al{sub 12} containing 58 atoms per unit cell with space group I 4-bar 3m has been calculated by using the WIEN2k-FLAPW program package. A pseudogap is found across the Fermi level. The FLAPW-Fourier spectra at the symmetry points N and {Gamma} of the bcc Brillouin zone revealed that electronic states across the Fermi level at these symmetry points are dominated by |G|{sup 2} = 26 and 24 states corresponding to centers of {l_brace}510{r_brace} + {l_brace}431{r_brace} and {l_brace}422{r_brace} zone planes, respectively. The 1253-wave nearly-free-electron (NFE) band calculations identified that a combination of the two Fermi surface-Brillouin-zone (FsBz) interactions associated with |G|{sup 2} = 26 and 24 account well for the observed DOS pseudogap in {gamma}-Mg{sub 17}Al{sub 12}, most likely leading to the stabilization of this complex metallic compound. The {beta}-Al{sub 3}Mg{sub 2} containing 1178 atoms per cubic unit cell is suggested to be stabilized by satisfying the Hume-Rothery matching condition expressed in terms of e/uc, the number of electrons per unit cell, versus critical |G|{sup 2}. A critical |G|{sup 2} is predicted to be 200 in {beta}-Al{sub 3}Mg{sub 2}, which results in 84 Brillouin zone planes interacting almost simultaneously with a more or less spherical Fermi surface.

  20. Reconstructing extreme AMOC events through nudging of the ocean surface: a perfect model approach

    Science.gov (United States)

    Ortega, Pablo; Guilyardi, Eric; Swingedouw, Didier; Mignot, Juliette; Nguyen, Sébastien

    2017-01-01

    While the Atlantic Meridional Overturning Circulation (AMOC) is thought to be a crucial component of the North Atlantic climate, past changes in its strength are challenging to quantify, and only limited information is available. In this study, we use a perfect model approach with the IPSL-CM5A-LR model to assess the performance of several surface nudging techniques in reconstructing the variability of the AMOC. Special attention is given to the reproducibility of an extreme positive AMOC peak from a preindustrial control simulation. Nudging includes standard relaxation techniques towards the sea surface temperature and salinity anomalies of this target control simulation, and/or the prescription of the wind-stress fields. Surface nudging approaches using standard fixed restoring terms succeed in reproducing most of the target AMOC variability, including the timing of the extreme event, but systematically underestimate its amplitude. A detailed analysis of the AMOC variability mechanisms reveals that the underestimation of the extreme AMOC maximum comes from a deficit in the formation of the dense water masses in the main convection region, located south of Iceland in the model. This issue is largely corrected after introducing a novel surface nudging approach, which uses a varying restoring coefficient that is proportional to the simulated mixed layer depth, which, in essence, keeps the restoring time scale constant. This new technique substantially improves water mass transformation in the regions of convection, and in particular, the formation of the densest waters, which are key for the representation of the AMOC extreme. It is therefore a promising strategy that may help to better constrain the AMOC variability and other ocean features in the models. As this restoring technique only uses surface data, for which better and longer observations are available, it opens up opportunities for improved reconstructions of the AMOC over the last few decades.

  1. Fermi LAT GRBs

    Data.gov (United States)

    National Aeronautics and Space Administration — All analysis results presented here are preliminary and are not intended as an official catalog of Fermi-LAT detected GRBs. Please consult the table's caveat page...

  2. Fermi GBM Trigger Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  3. Robust affine-invariant feature points matching for 3D surface reconstruction of complex landslide scenes

    Science.gov (United States)

    Stumpf, André; Malet, Jean-Philippe; Allemand, Pascal; Skupinski, Grzegorz; Deseilligny, Marc-Pierrot

    2013-04-01

    Multi-view stereo surface reconstruction from dense terrestrial photographs is being increasingly applied for geoscience applications such as quantitative geomorphology, and a number of different software solution and processing streamlines have been suggested. For image matching, camera self-calibration and bundle block adjustment, most approaches make use of scale-invariant feature transform (SIFT) to identify homologous points in multiple images. SIFT-like point matching is robust to apparent translation, rotation, and scaling of objects in multiple viewing geometries but the number of correctly identified matching points typically declines drastically with increasing angles between the viewpoints. For the application of multi-view stereo of complex landslide scenes, the viewing geometry is often constrained by the local topography and barriers such as rocks and vegetation occluding the target. Under such conditions it is not uncommon to encounter view angle differences of > 30% that hinder the image matching and eventually prohibit the joint estimation of the camera parameters from all views. Recently an affine invariant extension of the SIFT detector (ASIFT) has been demonstrated to provide more robust matches when large view-angle differences become an issue. In this study the ASIFT detector was adopted to detect homologous points in terrestrial photographs preceding 3D reconstruction of different parts (main scarp, toe) of the Super-Sauze landslide (Southern French Alps). 3D surface models for different time periods and different parts of the landslide were derived using the multi-view stereo framework implemented in MicMac (©IGN). The obtained 3D models were compared with reconstructions using the traditional SIFT detectors as well as alternative structure-from-motion implementations. An estimate of the absolute accuracy of the photogrammetric models was obtained through co-registration and comparison with high-resolution terrestrial LiDAR scans.

  4. First-principles study of the electronic structure, charge density, Fermi surface and optical properties of zintl phases compounds Sr{sub 2}ZnA{sub 2} (A=P, As and Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of complex systems, FFPW, CENAKVA, South .Bohemia University in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Azam, Sikander, E-mail: sikander.physicst@gmail.com [Institute of complex systems, FFPW, CENAKVA, South .Bohemia University in CB, Nove Hrady 37333 (Czech Republic)

    2013-11-15

    We present first-principles calculations of the electronic structure, Fermi surface, electronic charge density and optical properties of Sr{sub 2}ZnA{sub 2} (A=P, As and Sb) based on density-functional theory using the local density approximation (LDA), generalized-gradient approximation (GGA) and the Engel–Vosko GGA formalism (EV-GGA). Additionally, modified Becke–Johnson (mBJ) is also used to improve the band splitting results. The calculated band structure and density of states show that Sr{sub 2}ZnA{sub 2} compounds are metallic. The total DOS at Fermi level N(E{sub F}) is 72.92, 73.06 and 33.47 states/eV and the bare electronic specific heat coefficient (γ) is 12.64, 5.805 and 12.67 mJ/mol-K{sup 2} for Sr{sub 2}ZnP{sub 2}, Sr{sub 2}ZnAs{sub 2} and Sr{sub 2}ZnSb{sub 2,} respectively. The Fermi surface of Sr{sub 2}ZnA{sub 2} compounds is composed of two bands crossing along the Γ−A direction of Brillouin zone. There exists a strong hybridization between Zn-p/s and Sb-d, Sb-p and Sr-d and also between Sr-s and Sr-p states. The bonding features are analyzed by using the electronic charge density contour in the (101) crystallographic plane. We found that Sr forms an ionic bond with Zn, whereas Zn forms a strong covalent interaction with P/As/Sb atoms. For further insight information about the electronic structure, the optical properties are derived and analyzed. - Highlights: • The compounds are metallic. • The density of states at the Fermi energy is calculated. • The bare linear low-temperature electronic specific heat coefficient is obtained. • Fermi surface is composed of two sheets. • The bonding features are analyzed using the electronic charge density.

  5. Adenine adsorption on Au(1 1 1) and Au(1 0 0) electrodes: Characterisation, surface reconstruction effects and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Cesar [Department of Physical Chemistry, University of Sevilla, c/ Prof. Garcia Gonzalez n 2, Sevilla 41012 (Spain); Prieto, Francisco [Department of Physical Chemistry, University of Sevilla, c/ Prof. Garcia Gonzalez n 2, Sevilla 41012 (Spain); Rueda, Manuela [Department of Physical Chemistry, University of Sevilla, c/ Prof. Garcia Gonzalez n 2, Sevilla 41012 (Spain)]. E-mail: marueda@us.es; Feliu, Juan [Department of Physical Chemistry, University of Alicante, Apart 99, Alicante E-03080 (Spain); Aldaz, Antonio [Department of Physical Chemistry, University of Alicante, Apart 99, Alicante E-03080 (Spain)

    2007-02-15

    Adsorption of adenine on Au(1 1 1) and Au(1 0 0) electrodes is studied by cyclic voltammetry, impedance and chronoamperometric measurements in 0.1 M and 0.01 M KClO{sub 4} and in 0.5 M NaF solutions. The experiments performed with flame-annealed electrodes at different contact potentials, scan potential limits and scan rates, suggest different adsorption behaviour on the unreconstructed and reconstructed surface domains. This is confirmed by comparing the results obtained with electrochemically annealed unreconstructed and with flame-annealed reconstructed surfaces. In both cases the initial electrode surface state is characterised by the E {sub pzc} values. The adsorption on reconstructed surfaces takes place at more positive potentials than on the unreconstructed surfaces and induces the lifting of the reconstruction. The thermodynamic analysis is performed on the chronoamperometric data for adenine desorption on well characterised unreconstructed Au(1 1 1) surfaces. To this end a new methodology of the chronoamperometric experiments is introduced. Quantitative thermodynamic adsorption parameters such as surface tension, Gibbs surface excess, Gibbs energy of adsorption, potential versus Gibbs excess slope and electrosorption valency are determined. Weak chemisorption of adenine is inferred with a molecular orientation independent on the coverage and on the electrode potential. It is proposed that adsorbed adenine molecules adopt a tilted orientation at the surface to facilitate the coordination to the gold atoms.

  6. Quantitative reconstruction of thermal and dynamic characteristics of lava flow from surface thermal measurements

    Science.gov (United States)

    Korotkii, Alexander; Kovtunov, Dmitry; Ismail-Zadeh, Alik; Tsepelev, Igor; Melnik, Oleg

    2016-06-01

    We study a model of lava flow to determine its thermal and dynamic characteristics from thermal measurements of the lava at its surface. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. We develop a numerical approach to the mathematical problem in the case of steady-state flow. Assuming that the temperature and the heat flow are prescribed at the upper surface of the model domain, we determine the flow characteristics in the entire model domain using a variational (adjoint) method. We have performed computations of model examples and showed that in the case of smooth input data the lava temperature and the flow velocity can be reconstructed with a high accuracy. As expected, a noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. Also we analyse the influence of optimization methods on the solution convergence rate. The proposed method for reconstruction of physical parameters of lava flows can also be applied to other problems in geophysical fluid flows.

  7. Low-cost surface reconstruction for aesthetic results assessment and prediction in breast cancer surgery.

    Science.gov (United States)

    Lacher, Rene M; Hipwell, John H; Williams, Norman R; Keshtgar, Mohammed R S; Hawkes, David J; Stoyanov, Danail

    2015-08-01

    The high incidence and low mortality of breast cancer surgery has led to an increasing emphasis on the cosmetic outcome of surgical treatment. Advances in aesthetic evaluation, as well as surgical planning and outcome prediction, have been investigated by using geometrically precise 3D modelling of the breast surface prior to surgery and after the procedure. However, existing solutions are based on expensive site specific setups and remain weakly validated. In this paper, we explore the possibility of using low-cost RGBD cameras as an affordable and mobile system for breast surface reconstruction. The methodology relies on sensor calibration, uncertainty-driven point filtering, dense reconstruction and subsequent multi-view joint optimization to diffuse residual pose errors. Results from a phantom study, with ground truth obtained through commercially available scanners, indicate that the approach is promising with RMS errors in order of 2 mm. A clinical study shows the practical applicability of our method and compares favourably to high-end scanning solutions.

  8. A coral-based reconstruction of Atlantic sea surface temperature trends and variability since 1552 (Invited)

    Science.gov (United States)

    Saenger, C. P.; Cohen, A. L.; Oppo, D.; Carilli, J.; Halley, R. B.

    2009-12-01

    North Atlantic sea-surface temperature (SST) variability can have a near global impact on climate. Observed variability has been described as a natural multidecadal (65-100 year) oscillation superimposed upon a linearly- increasing, externally-forced background warming. The multidecadal portion of this variability may be persistent, suggesting useful decadal climate predictions may soon be possible. However, our understanding of multidecadal Atlantic SST variability prior to the brief instrumental record relies almost exclusively on high latitude tree-ring proxies. No proxy SST reconstruction from the Atlantic itself has the resolution, dating accuracy and length needed to assess the behavior of multidecadal variability. We present the first absolutely dated and annually-resolved multi-centennial record of Atlantic sea surface temperature. Our 439-year coral-based reconstruction suggests western low-latitude Atlantic SSTs were nearly as warm as today from ~1552-1570 A.D., cooled by more than 1°C from ~1650-1730 A.D. and generally warmed to the present. Estimates of externally-forced background variability suggest that anthropogenic forcing can account for most of the warming since 1850 A.D. Multidecadal variations superimposed upon this background disappear prior to ~1730 A.D. in favor of interdecadal (15-20 year) variability. This suggests observed multidecadal variability is not persistent and may be difficult to predict.

  9. Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces

    Science.gov (United States)

    Zhachuk, R.; Teys, S.; Coutinho, J.; Rayson, M. J.; Briddon, P. R.

    2014-10-01

    Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.

  10. Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhachuk, R., E-mail: zhachuk@gmail.com; Teys, S. [Institute of Semiconductor Physics, pr. Lavrentyeva 13, Novosibirsk 630090 (Russian Federation); Coutinho, J. [Department of Physics and I3N, University of Aveiro, Campus Santiago, 3810-193 Aveiro (Portugal); Rayson, M. J. [Department of Chemistry, University of Surrey, Guildford GU2 7XH (United Kingdom); Briddon, P. R. [School of Electrical, Electronic and Computer Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom)

    2014-10-27

    Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.

  11. Enrico Fermi centenary exhibition seminar

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.

  12. Trends in structural, electronic properties, Fermi surface topology, and inter-atomic bonding in the series of ternary layered dichalcogenides KNi2S2, KNi2Se2, and KNi2Te2 from first principles calculations

    Science.gov (United States)

    Bannikov, V. V.; Ivanovskii, A. L.

    2013-06-01

    By means of the FLAPW-GGA approach, we have systematically studied the structural and electronic properties of tetragonal dichalcogenides KNi2Ch2 (Ch=S, Se, and Te). Our results show that replacements of chalcogens (S→Se→Te) lead to anisotropic deformations of the crystals structure, which are related to the strong anisotropic character of the inter-atomic bonds, where inside the [Ni2Ch2] blocks, mixed covalent-ionic-metallic bonds occur, whereas between the adjacent [Ni2Ch2] blocks and K atomic sheets, ionic bonds emerge. We found that in the sequence KNi2S2→KNi2Se2→KNi2Te2 (i) the overall band structure (where the near-Fermi valence bands are due mainly to the Ni states) is preserved, but the width of the common valence band and the widths of the separate sub-bands and the gaps decrease; (ii) the total DOSs at the Fermi level also decrease; and (iii) for the Fermi surfaces, the most appreciable changes are demonstrated by the hole-like sheets, when a necklace-like topology is formed for the 2D-like sheets and the volume of the closed pockets decreases. Some trends in structural and electronic parameters for ThCr2Si2-type layered dichalcogenides, KNi2Ch2, KFe2Ch2, KCo2Se2, are discussed.

  13. Detection of surface cutting defect on magnet using Fourier image reconstruction

    Institute of Scientific and Technical Information of China (English)

    王福亮; 左博

    2016-01-01

    A magnet is an important component of a speaker, as it makes the coil move back forth, and it is commonly used in mobile information terminals. Defects may appear on the surface of the magnet while cutting it into smaller slices, and hence, automatic detection of surface cutting defect detection becomes an important task for magnet production. In this work, an image-based detection system for magnet surface defect was constructed, a Fourier image reconstruction based on the magnet surface image processing method was proposed. The Fourier transform was used to get the spectrum image of the magnet image, and the defect was shown as a bright line in it. The Hough transform was used to detect the angle of the bright line, and this line was removed to eliminate the defect from the original gray image;then the inverse Fourier transform was applied to get the background gray image. The defect region was obtained by evaluating the gray-level differences between the original image and the background gray image. Further, the effects of several parameters in this method were studied and the optimized values were obtained. Experiment results show that the proposed method can detect surface cutting defects in a magnet automatically and efficiently.

  14. MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.

    Science.gov (United States)

    Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram

    2015-11-01

    We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.

  15. Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.

    Science.gov (United States)

    Zheng, Wei; Zhai, Hui

    2014-12-31

    In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.

  16. Influence of reconstruction water-bearing levels on surface displacement of post-mining areas

    Science.gov (United States)

    Milczarek, Wojciech; Blachowski, Jan; Grzempowski, Piotr

    2014-05-01

    The phenomenon of secondary deformation characteristic of the post-mining areas is not sufficiently recognized. For ground surfaces phenomenon may be continuous or discontinuous. There is no sufficient information that describes behavior of the rock mass in the long term after end of exploitation. It is considered that this phenomenon is gradually disappears with end of exploitation. Reliable quantitative data comes only from the analysis of direct measurements in selected areas: geodetic and satellites measurements. Analyzing current situation of operating mines can be said that in the near years, more centers will limit the mining of coal mining. This will contribute to separation further of post-mining areas, in which will be required to maintaining a permanent monitoring and making predictions on the impact of ended exploitation of the rock mass surface. This will be particularly important for highly urbanized areas. This study used finite element method (FEM) to describe phenomenon of reconstruction water-bearing levels and its impact on displacement on the ground surface. It was assumed that significant factors that influence the occurrence and size of secondary deformations are: reconstruction of water-bearing levels in the prior drainer rock mass, size of past exploitation, spatial distribution of coal seams and geological and tectonic structure has been assumed. The transversally isotropic model of six elastic constants: E1 = E2, E3, ν = ν12, ν13, G12, G13 has been assumed to describe of rock mass in the numerical calculations. Geometrical models used in the numerical calculations have been developed using GIS tools. For the study two-dimensional and three-dimensional models characterized by different geological conditions and different configuration of mining data have been developed. The results obtained displacements of the ground surface for the period of mining activity has been verified with the results based on the Knothe theory. The results of

  17. Mott criticality and pseudogap in Bose-Fermi mixtures.

    Science.gov (United States)

    Altman, Ehud; Demler, Eugene; Rosch, Achim

    2012-12-07

    We study the Mott transition of a mixed Bose-Fermi system of ultracold atoms in an optical lattice, where the number of (spinless) fermions and bosons adds up to one atom per lattice, n(F)+n(B)=1. For weak interactions, a Fermi surface coexists with a Bose-Einstein condensate while for strong interaction the system is incompressible but still characterized by a Fermi surface of composite fermions. At the critical point, the spectral function of the fermions A(k,ω) exhibits a pseudogapped behavior, rising as |ω| at the Fermi momentum, while in the Mott phase it is fully gapped. Taking into account the interaction between the critical modes leads at very low temperatures either to p-wave pairing or the transition is driven weakly first order. The same mechanism should also be important in antiferromagnetic metals with a small Fermi surface.

  18. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong

    2016-06-23

    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  19. Metal-insulator transition and nanoscale phase separation in a hole-doped surface reconstruction

    Science.gov (United States)

    Mulugeta, Daniel; Snijders, Paul; Weitering, Hanno

    2014-03-01

    Doping, the deliberate introduction of impurities to alter electronic or magnetic properties, has been a tremendously successful method to study and understand systems with multiple competing interactions, as reflected in both the widespread use of doped semiconductors and in the large number of emergent electronic phases in doping-dependent phase diagrams of e.g. complex oxides. In low dimensional systems, however, the perturbation to the crystal lattice by the dopant atoms can overwhelm a delicate balance of interactions in e.g. a ground state with coexisting phases. Here we introduce a modulation doping technique used to dope holes in a surface reconstruction of Sn on Si(111). Using variable and low temperature scanning tunneling microscopy and spectroscopy, we observe a doping-induced metal-insulator phase transition that is of a displacive nature, contrasting with the order-disorder nature of other surface phase transitions. Moreover, the transition leads to an intrinsic nanoscale phase coexistence at 5 K never before observed on semiconductor surfaces. Clearly, modulation doping allows us to study the delicate balance of interactions in the phase diagram of low-dimensional electronic surface systems that is otherwise experimentally inaccessible. Funded by NSF DMR.

  20. Enrico Fermi exhibition at CERN

    CERN Document Server

    2002-01-01

    A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...

  1. Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction

    Science.gov (United States)

    Kar, Nandini; Garzione, Carmala N.; Jaramillo, Carlos; Shanahan, Timothy; Carlotto, Victor; Pullen, Alex; Moreno, Federico; Anderson, Veronica; Moreno, Enrique; Eiler, John

    2016-08-01

    The central Altiplano is inferred to have experienced ∼ 2.5 ± 1km surface uplift between ∼10 and 6 Ma, while the southern Altiplano experienced a similar magnitude of surface uplift that began earlier, between ∼16 and 9 Ma. To properly constrain the along strike timing of the Altiplano plateau surface uplift, it is necessary to know how and when the northernmost part of the Altiplano plateau evolved. We reconstruct the paleoclimate and infer the corresponding paleoelevation from the Miocene-Pliocene deposits of the Descanso-Yauri basin (14-15°S) in the northernmost part of the Altiplano plateau using 4 different proxies, including carbonate clumped isotope composition (i.e., Δ47 values), carbonate δ18Oc, leaf wax δDwax and pollen assemblages from paleosol, lacustrine and palustrine carbonates and organic-rich sediments. The isotopic signatures reflect past climate conditions of mean annual air temperature (Δ47) and meteoric water isotope values (δ18Oc, δDwax). Our results show that the northernmost plateau remained at low elevation (0.9 ± 0.8 to 2.1 ± 0.9km) until late Miocene time (∼9 Ma) characterized by ∼15 °C warmer than modern temperature (mean annual air temperature of 23 ± 4 °C, 2σ), low elevation vegetation and precipitation signature with reconstructed □ δ18Omw (VSMOW) of - 8.3 ± 2.0 ‰ (2 σ) from carbonate (δ18Oc) and - 8.6 ± 1.8 ‰ (2 σ) from leaf wax (δDwax). Modern elevations of 4 km were not reached until 5.4 ± 1.0Ma, as indicated by a negative shift in δDwax (VSMOW) from - 143.4 ± 12.8 ‰ (2 σ) to - 209.2 ± 21.1 ‰ (2 σ) between 9.1 ± 0.7 and 5.4 ± 1.0Ma. The timing of surface uplift of the northernmost Altiplano is consistent with the evidence for late Miocene surface uplift of the central Altiplano (16-19°S) between 10 and 6 Ma, and indicates that regional scale uplift in the northern-central plateau significantly postdates the onset of surface uplift in the southern Altiplano (19-22°S) between ∼16

  2. Effect of cation deficiency on the electronic properties and on the Fermi surface topology of K{sub 1−x}Ni{sub 2−y}Se{sub 2} from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, V.V.; Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru

    2013-09-15

    Highlights: • Effect of cation deficiency on the electronic properties and Fermi surface for K{sub 1−x}Ni{sub 2−y}Se{sub 2} was studied. • Electronic structure and Fermi surface are probed within first principles calculations. • The role of K vacancies, as well as the joint effect of K and Ni vacancies, were discussed. -- Abstract: Soon after the discovery of superconductivity in layered Fe-Ch systems, the intense search of related Fe-free materials has been begun. It was found that these systems such as K{sub x}Ni{sub 2}(S,Se){sub 2} are cation-deficient, and the superconducting state should be sensitive to the presence of K and Ni vacancies. Herein, using the first principles FLAPW-GGA calculations, we have studied the electronic structure and Fermi surface (FS) topology for cation-deficient K{sub 1−x}Ni{sub 2−y}Se{sub 2}. We have found that the presence of potassium vacancies (for K{sub 0.8}Ni{sub 2}Se{sub 2}) as well as the joint effect of K and Ni vacancies (for K{sub 0.8}Ni{sub 1.6}Se{sub 2}) change essentially the topology of their FSs and the character of electronic bands. Unlike 2D-like FS for stoichiometric KNi{sub 2}Se{sub 2}, the FSs for cation-deficient compositions demonstrate much more complex topology of mixed 2D-3D type.

  3. Peculiar oxygen and copper isotope effects on the pseudogap formation temperature in underdoped to overdoped cuprates: Pseudogap induced by pairing correlations above Tc in cuprates with large and small Fermi surfaces

    Science.gov (United States)

    Dzhumanov, S.; Khudayberdiev, Z. S.; Djumanov, Sh. S.

    2015-05-01

    We investigate the pseudogap (PG) state and the peculiar oxygen and copper isotope effects on the PG onset temperature T* in cuprate superconductors with large and small Fermi surfaces within the polaron model and two different BCS-based approaches extended to the intermediate coupling regime. We argue that the unconventional electron-phonon interactions are responsible for the polaron formation and BCS-like pairing correlations above Tc in underdoped to overdoped cuprates, which are exotic (non-BCS) superconductors. Using the generalized BCS-like theory, we calculate pseudogap formation temperatures T*, isotope shifts ΔT*, oxygen and copper isotope exponents (i.e. αT*O and αT*Cu) and show that isotope effects on T* strongly depend on strengths of Coulomb and electron-phonon interactions, doping levels and dielectric constants of the cuprates. This theory explains the existence of small positive or sign reversed oxygen isotope effect, sizable and very large negative oxygen and copper isotope effects on T* in cuprates with large Fermi surfaces. Further, we use another version of the extended BCS-like model to study the PG formation and the peculiar isotope effects on T* in deeply underdoped cuprates with small Fermi surfaces and predict the existence of small and sizable negative oxygen and copper isotope effects on T* in such underdoped cuprates. The results for T*, isotope shifts ΔT* and exponents (αT*O and αT*Cu) in different classes of high-Tc cuprates are in good agreement with the existing well-established experimental data and explain the controversy between various experiments on isotope effects for T* in the cuprates.

  4. Ensemble reconstruction of small-scale variability in Atlantic sea surface temperatures from 1870 - 2001

    Science.gov (United States)

    Karspeck, A. R.; Sain, S.; Kaplan, A.

    2008-12-01

    Existing historical records of sea surface temperature extending back to the mid 1800's are a valuable source of information for understanding climate variability at interannual and decadal time-scales. However, the temporal and spatial irregularity of these data make them difficult to use in scientific climate research, where gridded data fields are preferred for both direct analysis and forcing of numerical models of the atmosphere. Infilling methods based on constraining the leading eigenvectors of the global-scale covariance have proven very successful in creating gridded estimates of sea surface temperature. These methods are especially useful for infilling within the vast regions of unobserved ocean that characterize the earliest segments of the data record. Regional variability, on the other hand, is not well represented by these methods. This is especially true in data-poor regions. Here we present a method for augmenting the existing large-scale reconstruction methods with a statistical model of the regional scale variability. Using high quality sea surface temperature data from the last 25 years, including satellite-derived records, we specify a spatially non-stationary covariance model for the regional scale marine surface temperature variability. The use of a non-stationary, non-isotropic correlation function in the covariance model is a novel aspect in this work. With the covariance model estimated from the modern record, historical observations are used to condition posterior distributions on the regional scales back to the mid 1800's It is common in the geosciences for the expected value of the distribution to be offered as the data reconstruction. If uncertainty information is provided, it often takes the form of a point-wise estimate that neglects the covariability inherent in the full distribution. In contrast to this common practice, we generate multiple realizations from the full posterior distribution. These samples will be made available to

  5. New Virtual Cutting Algorithms for 3D Surface Model Reconstructed from Medical Images

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-hong; QIN Xu-Jia

    2006-01-01

    This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively.The cut model still maintains its correct topology structure. With these operations,tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.

  6. Review of three-dimensional (3D) surface imaging for oncoplastic, reconstructive and aesthetic breast surgery.

    Science.gov (United States)

    O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E

    2015-08-01

    Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice.

  7. Breast segmentation in MRI using Poisson surface reconstruction initialized with random forest edge detection

    Science.gov (United States)

    Martel, Anne L.; Gallego-Ortiz, Cristina; Lu, YingLi

    2016-03-01

    Segmentation of breast tissue in MRI images is an important pre-processing step for many applications. We present a new method that uses a random forest classifier to identify candidate edges in the image and then applies a Poisson reconstruction step to define a 3D surface based on the detected edge points. Using a leave one patient out cross validation we achieve a Dice overlap score of 0.96 +/- 0.02 for T1 weighted non-fat suppressed images in 8 patients. In a second dataset of 332 images acquired using a Dixon sequence, which was not used in training the random classifier, the mean Dice score was 0.90 +/- 0.03. Using this approach we have achieved accurate, robust segmentation results using a very small training set.

  8. Simulation of droplet impact on a solid surface using the level contour reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Won [Hongik University, Seoul (Korea, Republic of); Juric, Damir [Laboratoire d' Informatique pour la Mecanique et les Sciences de l' Ingenieur, Orsay (France)

    2009-09-15

    We simulate the three-dimensional impact of a droplet onto a solid surface using the level contour reconstruction method (LCRM). A Navier-slip dynamic contact line model is implemented in this method and contact angle hysteresis is accounted for by fixing the contact angle limits to prescribed advancing or receding angles. Computation of a distance function directly from the tracked interface enables a straightforward implementation of the contact line dynamic model in the LCRM. More general and sophisticated contact line models are readily applicable in this front tracking approach with few modifications, since complete knowledge of the geometrical information of the interface in the vicinity of the wall contact region is available. Several validation tests are performed including 2D planar droplet, 2D axisymmetric droplet, and full three-dimensional droplet splashing problems. The results show good agreement compared with existing numerical and experimental solutions

  9. Pico Lantern: Surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector.

    Science.gov (United States)

    Edgcumbe, Philip; Pratt, Philip; Yang, Guang-Zhong; Nguan, Christopher; Rohling, Robert

    2015-10-01

    The Pico Lantern is a miniature projector developed for structured light surface reconstruction, augmented reality and guidance in laparoscopic surgery. During surgery it will be dropped into the patient and picked up by a laparoscopic tool. While inside the patient it projects a known coded pattern and images onto the surface of the tissue. The Pico Lantern is visually tracked in the laparoscope's field of view for the purpose of stereo triangulation between it and the laparoscope. In this paper, the first application is surface reconstruction. Using a stereo laparoscope and an untracked Pico Lantern, the absolute error for surface reconstruction for a plane, cylinder and ex vivo kidney, is 2.0 mm, 3.0 mm and 5.6 mm, respectively. Using a mono laparoscope and a tracked Pico Lantern for the same plane, cylinder and kidney the absolute error is 1.4 mm, 1.5 mm and 1.5 mm, respectively. These results confirm the benefit of the wider baseline produced by tracking the Pico Lantern. Virtual viewpoint images are generated from the kidney surface data and an in vivo proof-of-concept porcine trial is reported. Surface reconstruction of the neck of a volunteer shows that the pulsatile motion of the tissue overlying a major blood vessel can be detected and displayed in vivo. Future work will integrate the Pico Lantern into standard and robot-assisted laparoscopic surgery.

  10. Fermi comes to CERN

    CERN Multimedia

    2009-01-01

    In only 10 months of scientific activity, the Fermi space observatory has already collected an unprecedented wealth of information on some of the most amazing objects in the sky. In a recent talk at CERN, Luca Latronico, a member of the Fermi collaboration, explained some of their findings and emphasized the strong links between High Energy Physics (HEP) and High Energy Astrophysics (HEA). The Fermi gamma-ray telescope was launched by NASA in June 2008. After about two months of commissioning it started sending significant data back to the Earth. Since then, it has made observations that are changing our view of the sky: from discovering a whole new set of pulsars, the greatest total energy gamma-ray burst ever, to detecting an unexplained abundance of high-energy electrons that could be a signature of dark matter, to producing a uniquely rich and high definition sky map in gamma-rays. The high performance of the instrument comes as ...

  11. The Fermi's Bayes Theorem

    CERN Document Server

    D'Agostini, G

    2005-01-01

    It is curious to learn that Enrico Fermi knew how to base probabilistic inference on Bayes theorem, and that some influential notes on statistics for physicists stem from what the author calls elsewhere, but never in these notes, {\\it the Bayes Theorem of Fermi}. The fact is curious because the large majority of living physicists, educated in the second half of last century -- a kind of middle age in the statistical reasoning -- never heard of Bayes theorem during their studies, though they have been constantly using an intuitive reasoning quite Bayesian in spirit. This paper is based on recollections and notes by Jay Orear and on Gauss' ``Theoria motus corporum coelestium'', being the {\\it Princeps mathematicorum} remembered by Orear as source of Fermi's Bayesian reasoning.

  12. Atlas-free surface reconstruction of the cortical grey-white interface in infants.

    Directory of Open Access Journals (Sweden)

    François Leroy

    Full Text Available BACKGROUND: The segmentation of the cortical interface between grey and white matter in magnetic resonance images (MRI is highly challenging during the first post-natal year. First, the heterogeneous brain maturation creates important intensity fluctuations across regions. Second, the cortical ribbon is highly folded creating complex shapes. Finally, the low tissue contrast and partial volume effects hamper cortex edge detection in parts of the brain. METHODS AND FINDINGS: We present an atlas-free method for segmenting the grey-white matter interface of infant brains in T2-weighted (T2w images. We used a broad characterization of tissue using features based not only on local contrast but also on geometric properties. Furthermore, inaccuracies in localization were reduced by the convergence of two evolving surfaces located on each side of the inner cortical surface. Our method has been applied to eleven brains of one- to four-month-old infants. Both quantitative validations against manual segmentations and sulcal landmarks demonstrated good performance for infants younger than two months old. Inaccuracies in surface reconstruction increased with age in specific brain regions where the tissue contrast decreased with maturation, such as in the central region. CONCLUSIONS: We presented a new segmentation method which achieved good to very good performance at the grey-white matter interface depending on the infant age. This method should reduce manual intervention and could be applied to pathological brains since it does not require any brain atlas.

  13. Evaluating Dense 3d Reconstruction Software Packages for Oblique Monitoring of Crop Canopy Surface

    Science.gov (United States)

    Brocks, S.; Bareth, G.

    2016-06-01

    Crop Surface Models (CSMs) are 2.5D raster surfaces representing absolute plant canopy height. Using multiple CMSs generated from data acquired at multiple time steps, a crop surface monitoring is enabled. This makes it possible to monitor crop growth over time and can be used for monitoring in-field crop growth variability which is useful in the context of high-throughput phenotyping. This study aims to evaluate several software packages for dense 3D reconstruction from multiple overlapping RGB images on field and plot-scale. A summer barley field experiment located at the Campus Klein-Altendorf of University of Bonn was observed by acquiring stereo images from an oblique angle using consumer-grade smart cameras. Two such cameras were mounted at an elevation of 10 m and acquired images for a period of two months during the growing period of 2014. The field experiment consisted of nine barley cultivars that were cultivated in multiple repetitions and nitrogen treatments. Manual plant height measurements were carried out at four dates during the observation period. The software packages Agisoft PhotoScan, VisualSfM with CMVS/PMVS2 and SURE are investigated. The point clouds are georeferenced through a set of ground control points. Where adequate results are reached, a statistical analysis is performed.

  14. Reconstruction of a conic-section surface from autocollimator-based deflectometric profilometry

    CERN Document Server

    Thompson, Samantha J; Rees, Paul; Roberts, Gareth W

    2016-01-01

    We present a description of our method to process a set of autocollimator-based deflectometer 1-dimensional line-scans taken over a large optical surface and reconstruct them to a best-fit conic-section surface. The challenge with our task is that each line-scan is in a different (unknown) coordinate reference frame with respect to the other line-scans in the set. This problem arises due to the limited angular measurement range of the autocollimator used in the deflectometer and the need to measure over a greater range; this results in the optic under measurement being rotated (in pitch and roll) between each scan to bring the autocollimator back into measurement range and therefore each scan is taken in a different coordinate frame. We describe an approach using a 6N+2 dimension optimisation (where N is the number of scan lines taken across the mirror) that uses a gradient-based non-linear least squares fitting combined with a multi-start global search strategy to find the best-fit surface. Careful formulati...

  15. Surface pollen and vegetation reconstruction from central and northern mountains of Taiwan

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Surface pollen from various montane vegetations in Shalixian Mt. and Lepei Mt. of central and northern Taiwan have been explored and analyzed. The pollen data were used to simulate vegetation types by using the biomisation technique. Computing three matrixes of pollen taxa, plant functional types and combined biomes, vegetation types at each site have been finally defined through the fuzz selections of a tie-breaking rule. The results show that surface pollen data can simulate the subtropical Castanopsis and Cyclobalanopsis forests, alpine warm-temperate Quercus and Quercus-Pinus forests, and alpine temperate/cool-temperate conifers of Tsuga-Picea and Picea-Abies forests. Simulated elevations of the forests are similar to actual locations of the forests. This study can add vertical surface pollen data for extending investigation of various vegetation types in China, provide PFT schemes and vegetation types in low-latitude and montane areas, and be applied as modern analogues for fossil pollen in order to reconstruct Quaternary vegetations.

  16. Fermi Bubbles with HAWC

    OpenAIRE

    Solares, H. A. Ayala; Hui, C. M.; Hüntemeyer, P.; collaboration, for the HAWC

    2015-01-01

    The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave d...

  17. First principle study of the electronic structure, Fermi surface, electronic charge density and optical properties of ThCu{sub 5}In and ThCu{sub 5}Sn single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of complex systems, FFPW, CENAKVA-University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Azam, Sikander, E-mail: sikander.physicst@gmail.com [Institute of complex systems, FFPW, CENAKVA-University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic)

    2014-02-15

    The electronic structure, Fermi surface, electronic charge density and optical properties of ThCu{sub 5}In and ThCu{sub 5}Sn single crystals are studied. The calculations are based on the full potential-linearized augmented plane wave (FPLAPW) method. The exchange and correlation potential is treated by the local density approximation (LDA) and generalized-gradient approximation (GGA), in addition the Engel–Vosko (EV-GGA) formalism was also applied. The DFT calculations show that these compounds have metallic origin. The contribution of different bands was analyzed from total and partial density of states curves. The values of the density of states at Fermi energy (N(E{sub F})) for ThCu{sub 5}In (ThCu{sub 5}Sn) is 1.75 (1.63) states/eV unit cell. The bare electronic specific heat coefficient (γ) is found to be equal to 0.30 and 0.28 mJ/mol-K{sup 2} for ThCu{sub 5}In and ThCu{sub 5}Sn, respectively. The Fermi surface of ThCu{sub 5}In/ThCu{sub 5}Sn is composed of three/four bands crossing along the R–Γ direction. The bonding features are analyzed by using the electronic charge density contour in the (101) crystallographic plane and it shows the covalent character of Cu–Cu and Sn/In–Cu bonds. The optical properties were also calculated and analyzed. - Highlights: • The DFT-FPLAPW method used for calculating the properties of ThCu{sub 5}In and ThCu{sub 5}Sn compounds. • This study shows that the nature of the two compounds is metallic. • Crystallographic plane and it shows the covalent character of Cu–Cu and Sn/In–Cu bonds. • The optical properties were also calculated and analyzed. • The Fermi surface of ThCu{sub 5}In/ThCu{sub 5}Sn is composed of three/four bands crossing along the R–Γ direction.

  18. Pairing in a dry Fermi sea.

    Science.gov (United States)

    Maier, T A; Staar, P; Mishra, V; Chatterjee, U; Campuzano, J C; Scalapino, D J

    2016-06-17

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  19. High speed 3-D Surface Profilometry Employing Trapezoidal HSI Phase Shifting Method with Multi-band Calibration for Colour Surface Reconstruction

    CERN Document Server

    Chen, L C; Shu, Y S

    2010-01-01

    This article presents a new optical measurement method employing a HSI (Hue, Saturation and Intensity) colour model to form trapezoidal structured patterns for morphology reconstruction of a measured object at a high speed. Profilometry on objects having non-monochromatic surfaces is considered as one of the remaining most challenges faced by the currently existing structured-light projection methods since the surface reflectivity to red, green and blue light may vary significantly. To address this, an innovative colour calibration method for hue component is developed to determine the accurate reflectivity response of the measured surface. The trapezoidal colour pattern is calibrated to compensate the hue-shifted quantity induced by the reflective characteristics of the object's surface. The developed method can reconstruct precise 3-D surface models from objects by acquiring a single-shot image, which can achieve high-speed profilometry and avoid in-situ potential measurement disturbances such as environmen...

  20. Reconstruction of the surface-layer vertical structure from measurements of wind, temperature and humidity at two levels

    Science.gov (United States)

    Musson-Genon, Luc; Dupont, Eric; Wendum, Denis

    2007-08-01

    We present a comparison between several methods used to reconstruct fluxes and vertical profiles of wind, temperature and humidity from measurements at two levels in the atmospheric surface layer for different practical applications. An analytical method and an iterative method are tested by evaluating the quality of estimations of surface fluxes from detailed field measurements obtained during a campaign on the site of Lannemezan in the south-west of France. The iterative method yields better results, but the analytical one can give results of the same level of accuracy provided that specific constants in its formulation are modified. Then these techniques are applied to wind and temperature reconstruction for an experiment dedicated to wind power estimates over flat terrain. If turbulent fluxes are not needed, a simple power law appears to be sufficient, as the method based on Monin-Obukhov theory does not improve the accuracy of the vertical profile reconstruction.

  1. Fermi Bubbles with HAWC

    CERN Document Server

    Solares, H A Ayala; Hüntemeyer, P

    2015-01-01

    The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave data from the WMAP and Planck satellites. Recent publications show that the spectrum of the Fermi Bubbles is well described by a power law with an exponential cutoff in the energy range of 100MeV to 500GeV. Observing the Fermi Bubbles at higher gamma-ray energies will help constrain the origin of the bubbles. A steeper cutoff will favor a leptonic model. The High Altitude Water Cherenkov (HAWC) Observatory, located 4100m above sea level in Mexico, is designed to measure high-energy gamma rays between 100GeV to 100TeV. With...

  2. Sobre a viagem de Enrico Fermi ao Brasil em 1934

    CERN Document Server

    Caruso, Francisco

    2014-01-01

    Enrico Fermi was one of the greater physicists of the XX century. In 1934, he gave several lectures in Brazil. Invited by Theodoro Ramos to work in S\\~ao Paulo, he preferred to stay in Rome and went to the USA in 1938. However, Fermi recommended Gleb Wataghin to come in his place. Wataghin made history in Brazil, becoming one of the first Professors of the future S\\~ao Paulo University. Besides his relevance to the History of Science, Fermi eventually leaved an indelible mark on the creation and institutionalization of national scientific research due to the indication of Wataghin. Despite this fact, very little is known about Fermi's trip to Brazil. This work tries to reconstruct the fullest possible steps of the famous Italian physicist in our lands.

  3. A particle filter to reconstruct a free-surface flow from a depth camera

    CERN Document Server

    Combès, Benoit; Guibert, Anthony; Mémin, Etienne

    2016-01-01

    We investigate the combined use of a Kinect depth sensor and of a stochastic data assimilation method to recover free-surface flows. More specifically, we use a Weighted ensemble Kalman filter method to reconstruct the complete state of free-surface flows from a sequence of depth images only. This particle filter accounts for model and observations errors. This data assimilation scheme is enhanced with the use of two observations instead of one classically. We evaluate the developed approach on two numerical test cases: a collapse of a water column as a toy-example and a flow in an suddenly expanding flume as a more realistic flow. The robustness of the method to depth data errors and also to initial and inflow conditions is considered. We illustrate the interest of using two observations instead of one observation into the correction step, especially for unknown inflow boundary conditions. Then, the performance of the Kinect sensor to capture temporal sequences of depth observations is investigated. Finally,...

  4. Three-dimensional surface reconstruction via a robust binary shape-coded structured light method

    Science.gov (United States)

    Tang, Suming; Zhang, Xu; Song, Zhan; Jiang, Hualie; Nie, Lei

    2017-01-01

    A binary shape-coded structured light method for single-shot three-dimensional reconstruction is presented. The projected structured pattern is composed with eight geometrical shapes with a coding window size of 2×2. The pattern element is designed as rhombic with embedded geometrical shapes. The pattern feature point is defined as the intersection of two adjacent rhombic shapes, and a multitemplate-based feature detector is presented for its robust detection and precise localization. Based on the extracted grid-points, a topological structure is constructed to separate the pattern elements from the obtained image. In the decoding stage, a training dataset is first established from training samples that are collected from a variety of target surfaces. Then, the deep neural network technique is applied for the classification of pattern elements. Finally, an error correction algorithm is introduced based on the epipolar and neighboring constraints to refine the decoding results. The experimental results show that the proposed method not only owns high measurement precision but also has strong robustness to surface color and texture.

  5. Water Induced Surface Reconstruction of the Oxygen (2x1) covered Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Sabine; Cabrera-Sanfelix, Pepa; Stass, Ingeborg; Sanchez-Portal, Daniel; Arnau, Andres; Salmeron, Miquel

    2010-08-06

    Low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) were used to study the adsorption of water on a Ru(0001) surface covered with half monolayer of oxygen. The oxygen atoms occupy hcp sites in an ordered structure with (2x1) periodicity. DFT predicts that water is weakly bound to the unmodified surface, 86 meV compared to the ~;;200 meV water-water H-bond. Instead, we found that water adsorption causes a shift of half of the oxygen atoms from hcp sites to fcc sites, creating a honeycomb structure where water molecules bind strongly to the exposed Ru atoms. The energy cost of reconstructing the oxygen overlayer, around 230 meV per displaced oxygen atom, is more than compensated by the larger adsorption energy of water on the newly exposed Ru atoms. Water forms hydrogen bonds with the fcc O atoms in a (4x2) superstructure due to alternating orientations of the molecules. Heating to 185 K results in the complete desorption of the water layer, leaving behind the oxygen honeycomb structure, which is metastable relative to the original (2x1). This stable structure is not recovered until after heating to temperatures close to 260K.

  6. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.

  7. Calibration of multiple Kinect depth sensors for full surface model reconstruction

    Science.gov (United States)

    Tsui, Kwan Pang; Wong, Kin Hong; Wang, Changling; Kam, Ho Chuen; Yau, Hing Tuen; Yu, Ying Kin

    2016-07-01

    In this paper, we have investigated different methods to calibrate a 3-D scanning system consisting of multiple Kinect sensors. The main function of the scanning system is for the reconstruction of the full surface model of an object. In this work, we build a four-Kinect system that the Kinect range sensors are positioned around the target object. Each Kinect is responsible for capturing a small local model, and the local models found will be combined to become the full model. To build such a system, calibration of the poses among the Kinects is essential. We have tested a number of methods: using (1) a sphere, (2) a checker board and (3) a cube as the calibration object. After calibration, the results of method (1) and (2) are used in the multiple Kinect system for obtaining the 3-D model of a real object. Results are shown and compared. For method (3) we only performed the simulation test on finding the rotation between two Kinects and the result is promising. This is the first part of a long term project on building a full surface model capturing system. Such a system should be useful in robot vision, scientific research and many other industrial applications.

  8. RECONSTRUCTIVE MICROSURGERY IN THE TREATMENT OF SURFACE FORMS OF CALCANEal OSTEOMYELITIS

    Directory of Open Access Journals (Sweden)

    E. S. Tsybul’

    2016-01-01

    Full Text Available One of the most common complications associated with the treatment of calcaneus fracturesis, a necrosis of the edges of the surgical wound and as a result – chronic nonhealing ulcers of the heel region and osteomyelitis of the calcaneus. In the structure of skeletal lesions osteomyelitic chronic osteomyelitis of the calcaneus occurs in 3.1–14.8% of cases, and in relation to the bones of the foot – up to 51%. At the same time after open fractures of the total incidence of deep infection from soft tissue even higher than that for the surface (12.2% vs. 9.6%. The traditional approach to the treatment of osteomyelitis of the calcaneus is often accompanied by poor performance with recurrent osteomyelitis process and highsubsequent disability of working age.Objective: to identify opportunities and assess the effectiveness of the use of reconstructive microsurgery techniques in the treatment of patients with superficial forms of osteomyelitis of the calcaneus, accompanied by the presence of soft tissue defect.Materials and мethods.The results of treatment of 28 patients with superficial forms of osteomyelitis of the calcaneus, which in the period from 2006 to 2013 in RNIITO them. R.R.Vredena were performed reconstructive plastic surgery using microsurgical techniques. Defects covering tissues were located on the sole (20 and back-side surfaces (8 of the calcaneus. Scope of interventions included the radical surgical treatment of osteomyelitis focus, marginal resection of the affected heel bone and tissue replacement of defect cover flap with axial blood supply.Results. With the localization of the defect cover tissues to non-reference surface of the heel region was carried out free plastic ray skin-fascial flap (9 cases. When the location of the defect on the plantar surface of the heel region favored medial plantar flap (10 cases. However, the presence of scarring and damage to the medial plantar artery was performed

  9. One-dimensional diffusion of Sr atoms on Sr/Si(111)-3 × 2 reconstruction surface

    Science.gov (United States)

    Du, Wenhan; Yang, Jingjing

    2016-11-01

    The electronic and geometric structures of the Sr/Si(111)-3 × 2 surface were investigated by scanning tunnelling microscopy and scanning tunnelling spectroscopy. The honeycomb-chain (HCC) model may be used to describe the reconstruction structure of the Sr/Si(111)-3 × 2 surface. Furthermore, one-dimensional (1D) concerted motion of Sr atom chains on the Sr/Si(111)-3 × 2 surface was observed at room temperature. Three reasons contribute to this 1D self-diffusion: low metal coverage of the Sr/Si(111)-3 × 2 reconstruction surface, weak interaction between the Sr and Si substrate, and surface vacancies and thermal fluctuation energy at room temperature. From this study, the origin of the long-existing blurred low energy electron diffraction pattern of alkali-earth metal induced-Si(111)3 × 2 surface was clarified, and the self-diffusion of metal atoms at room temperature also explains the common phase transition phenomenon on these reconstructed surfaces.

  10. Fe3O4(001) films on Fe(001): Termination and reconstruction of iron-rich surfaces

    DEFF Research Database (Denmark)

    Spiridis, N.; Barbasz, J.; Lodziana, Zbigniew;

    2006-01-01

    High-quality and impurity-free magnetite surfaces with (root 2x root 2)R45 degrees reconstruction have been obtained for the Fe3O4(001) epitaxial films deposited on Fe(001). Based on atomically resolved scanning tunneling microscopy images for both negative and positive sample polarity and densit...

  11. Structure determination of the indium-induced Ge(103)-(1x1) reconstruction by surface X-ray diffraction

    DEFF Research Database (Denmark)

    Bunk, O.; Falkenberg, G.; Zeysing, J.H.;

    1999-01-01

    A detailed structural model of the indium-induced Ge(103)-(1 X 1) surface reconstruction has been established by analyzing an extensive set of X-ray data recorded with synchrotron radiation. Our results show that models with one indium and one germanium adatom per unit cell are incompatible with ...

  12. Observation of Fermi Arc Surface States Induced by Organic Memristive/Memcapacitive Devices with a Double-Helical Polarized Single-Wall Nanotube Membrane for Direct Chelating with Matrix Matelloproteinase-2

    Directory of Open Access Journals (Sweden)

    E. T. CHEN

    2017-07-01

    Full Text Available Matrix Matelloproteinase-2 (MMP-2 plays a key role in many diseases. A new type of dual-functioning device was developed for fast, direct ultrasensitive detection of MMP-2. We report a memristive/memcapacitive device with vertex double-helical polarized biomimetic protein nanotubules forming double membranes with potential gradient mimicking mitochondria’s inner double membrane has developed. We also report Fermi arcs with nodes on the surface of the nanostructured membrane was observed at the first time by using a 3D real-time - energy-current dynamic mapping method based on data obtained from the Cyclic Voltammetry (CV method. The memristive/memcapacitive device comprises a cross- linked organic polymer having single-wall cross-bar polarized nanotube self-assembling membrane (SAM on a gold chip, under an applied potential, a pair of vertex double- helical circular current flow induced the Fermi arcs states occurrence and these Fermi arcs promoted a direct chelating with zinc ions of the MMP-2 to become possible without any antibody, tracer, or reagent used at room temperature was accomplished. We observed the pair of Dirac Cones became alignment and strengthened with each other in the presence of MMP-2 compared without MMP-2. The MMP-2 can be detected with ag/mL level sensitivity and the value of Detection of Limits (DOL reached orders of magnitude lower than published reports with simplified procedures by a Chronoamperometry (CA method and a Double Step Chronopotentiometry (DSCPO method using NIST SRM 965A standard human serum, respectively. The results show a feasible application for developing the commercial fast and real-time MMP monitoring devices for various diseases.

  13. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries

    Energy Technology Data Exchange (ETDEWEB)

    Neukom, R.; Grosjean, M.; Wanner, H. [University of Bern, Oeschger Centre for Climate Change Research (OCCR), Bern (Switzerland); University of Bern, Institute of Geography, Climatology and Meteorology, Bern (Switzerland); Luterbacher, J. [Justus Liebig University of Giessen, Department of Geography, Climatology, Climate Dynamics and Climate Change, Giessen (Germany); Villalba, R.; Morales, M.; Srur, A. [CONICET, Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales (IANIGLA), Mendoza (Argentina); Kuettel, M. [University of Bern, Oeschger Centre for Climate Change Research (OCCR), Bern (Switzerland); University of Bern, Institute of Geography, Climatology and Meteorology, Bern (Switzerland); University of Washington, Department of Earth and Space Sciences, Seattle (United States); Frank, D. [Swiss Federal Research Institute WSL, Birmensdorf (Switzerland); Jones, P.D. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Aravena, J.-C. [Centro de Estudios Cuaternarios de Fuego Patagonia y Antartica (CEQUA), Punta Arenas (Chile); Black, D.E. [Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook (United States); Christie, D.A.; Urrutia, R. [Universidad Austral de Chile Valdivia, Laboratorio de Dendrocronologia, Facultad de Ciencias Forestales y Recursos Naturales, Valdivia (Chile); D' Arrigo, R. [Earth Institute at Columbia University, Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Lara, A. [Universidad Austral de Chile Valdivia, Laboratorio de Dendrocronologia, Facultad de Ciencias Forestales y Recursos Naturales, Valdivia (Chile); Nucleo Cientifico Milenio FORECOS, Fundacion FORECOS, Valdivia (Chile); Soliz-Gamboa, C. [Utrecht Univ., Inst. of Environmental Biology, Utrecht (Netherlands); Gunten, L. von [Univ. of Bern (Switzerland); Univ. of Massachusetts, Climate System Research Center, Amherst (United States)

    2011-07-15

    We statistically reconstruct austral summer (winter) surface air temperature fields back to ad 900 (1706) using 22 (20) annually resolved predictors from natural and human archives from southern South America (SSA). This represents the first regional-scale climate field reconstruction for parts of the Southern Hemisphere at this high temporal resolution. We apply three different reconstruction techniques: multivariate principal component regression, composite plus scaling, and regularized expectation maximization. There is generally good agreement between the results of the three methods on interannual and decadal timescales. The field reconstructions allow us to describe differences and similarities in the temperature evolution of different sub-regions of SSA. The reconstructed SSA mean summer temperatures between 900 and 1350 are mostly above the 1901-1995 climatology. After 1350, we reconstruct a sharp transition to colder conditions, which last until approximately 1700. The summers in the eighteenth century are relatively warm with a subsequent cold relapse peaking around 1850. In the twentieth century, summer temperatures reach conditions similar to earlier warm periods. The winter temperatures in the eighteenth and nineteenth centuries were mostly below the twentieth century average. The uncertainties of our reconstructions are generally largest in the eastern lowlands of SSA, where the coverage with proxy data is poorest. Verifications with independent summer temperature proxies and instrumental measurements suggest that the interannual and multi-decadal variations of SSA temperatures are well captured by our reconstructions. This new dataset can be used for data/model comparison and data assimilation as well as for detection and attribution studies at sub-continental scales. (orig.)

  14. Advances in modeling semiconductor epitaxy: Contributions of growth orientation and surface reconstruction to InN metalorganic vapor phase epitaxy

    Science.gov (United States)

    Kusaba, Akira; Kangawa, Yoshihiro; Kempisty, Pawel; Shiraishi, Kenji; Kakimoto, Koichi; Koukitu, Akinori

    2016-12-01

    We propose a newly improved thermodynamic analysis method that incorporates surface energies. The new theoretical approach enables us to investigate the effects of the growth orientation and surface reconstruction. The obtained knowledge would be indispensable for examining the preferred growth conditions in terms of the contribution of the surface state. We applied the theoretical approach to study the growth processes of InN(0001) and (000\\bar{1}) by metalorganic vapor phase epitaxy. Calculation results reproduced the difference in optimum growth temperature. That is, we successfully developed a new theoretical approach that can predict growth processes on various growth surfaces.

  15. Reconstructing Links between AMOC and Surface Temperature Variability in the North Atlantic

    Science.gov (United States)

    Borchert, Leonard; Fischer, Matthias; Müller, Wolfgang; Baehr, Johanna

    2016-04-01

    Recent studies found an impact of the Atlantic Meridional Overturning Circulation (AMOC) through sea surface temperatures (SSTs) and ocean-atmosphere surface heat fluxes (SHFs) on North Atlantic (NA) climate on interannual time scales. Since fluctuations in SSTs and SHFs as well as AMOC and oceanic heat transport (OHT) are highly model dependent and cannot be assumed to be independent of the mean state of the model in use. By using the Max Planck Institute Ocean Model (MPIOM) forced with the Twentieth Century Reanalysis (20CR, Compo et al (2011)), we confirm earlier studies and reconstruct for the governing period 1871-2010, that cold SSTs emerge in the Gulf Stream region and warm SSTs emerge in the NA Subpolar Gyre after strong AMOC anomalies at 50° N. The MPIOM in use has an average 1.5° horizontal resolution and 40 vertical non-equidistant depth levels. The model is forced by fluxes of heat, momentum, and freshwater at the air sea boundary through bulk formulas as described in Müller et al (2014). A positive density anomaly in the NA (= higher salinity / lower temperatures) is followed by an intensification of the AMOC and subsequently OHT. The proposed mechanism is examined in more detail studying correlations between AMOC, OHT, SSTs, and SHFs, as well as composite means of SSTs and SHFs in the Atlantic focusing on particularly strong and weak AMOC and OHT states at 50° N. High SSTs are shown to mostly appear simultaneously with upward SHFs and vice versa. The characteristic AMOC anomaly pattern appears in both correlation analysis and composite mean analysis over strong AMOC states after 2-6 years, and seems to occur favorably in winter (DJF). We further demonstrate that a similar, stronger pattern arises from OHT anomalies on similar time scales. Literature: Compo, GP, JS Whitaker, PD Sardeshmukh, N Matsui, RJ Allan, X Yin, BE Gleason, RS Vose, G Rutledge, P Bessemoulin, S Brönnimann, M Brunet, RJ Crouthamel, AN Grant, PY Groisman, PD Jones, MC Kruk, AC

  16. Reconstruction of micron resolution mouse brain surface from large-scale imaging dataset using resampling-based variational model.

    Science.gov (United States)

    Li, Jing; Quan, Tingwei; Li, Shiwei; Zhou, Hang; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2015-08-06

    Brain surface profile is essential for brain studies, including registration, segmentation of brain structure and drawing neuronal circuits. Recent advances in high-throughput imaging techniques enable imaging whole mouse brain at micron spatial resolution and provide a basis for more fine quantitative studies in neuroscience. However, reconstructing micron resolution brain surface from newly produced neuronal dataset still faces challenges. Most current methods apply global analysis, which are neither applicable to a large imaging dataset nor to a brain surface with an inhomogeneous signal intensity. Here, we proposed a resampling-based variational model for this purpose. In this model, the movement directions of the initial boundary elements are fixed, the final positions of the initial boundary elements that form the brain surface are determined by the local signal intensity. These features assure an effective reconstruction of the brain surface from a new brain dataset. Compared with conventional typical methods, such as level set based method and active contour method, our method significantly increases the recall and precision rates above 97% and is approximately hundreds-fold faster. We demonstrated a fast reconstruction at micron level of the whole brain surface from a large dataset of hundreds of GB in size within 6 hours.

  17. Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases.

    Science.gov (United States)

    Kobayashi, Masakazu; Nakamura, Takahiro; Yasuda, Makoto; Hata, Yuiko; Okura, Shoki; Iwamoto, Miyu; Nagata, Maho; Fullwood, Nigel J; Koizumi, Noriko; Hisa, Yasuo; Kinoshita, Shigeru

    2015-01-01

    Severe ocular surface diseases (OSDs) with severe dry eye can be devastating and are currently some of the most challenging eye disorders to treat. To investigate the feasibility of using an autologous tissue-engineered cultivated nasal mucosal epithelial cell sheet (CNMES) for ocular surface reconstruction, we developed a novel technique for the culture of nasal mucosal epithelial cells expanded ex vivo from biopsy-derived human nasal mucosal tissues. After the protocol, the CNMESs had 4-5 layers of stratified, well-differentiated cells, and we successfully generated cultured epithelial sheets, including numerous goblet cells. Immunohistochemistry confirmed the presence of keratins 3, 4, and 13; mucins 1, 16, and 5AC; cell junction and basement membrane assembly proteins; and stem/progenitor cell marker p75 in the CNMESs. We then transplanted the CNMESs onto the ocular surfaces of rabbits and confirmed the survival of this tissue, including the goblet cells, up to 2 weeks. The present report describes an attempt to overcome the problems of treating severe OSDs with the most severe dry eye by treating them using tissue-engineered CNMESs to supply functional goblet cells and to stabilize and reconstruct the ocular surface. The present study is a first step toward assessing the use of tissue-engineered goblet-cell transplantation of nonocular surface origin for ocular surface reconstruction.

  18. Leaky Fermi accelerators

    CERN Document Server

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  19. A comparison of semiglobal and local dense matching algorithms for surface reconstruction

    Science.gov (United States)

    Dall'Asta, E.; Roncella, R.

    2014-06-01

    Encouraged by the growing interest in automatic 3D image-based reconstruction, the development and improvement of robust stereo matching techniques is one of the most investigated research topic of the last years in photogrammetry and computer vision. The paper is focused on the comparison of some stereo matching algorithms (local and global) which are very popular both in photogrammetry and computer vision. In particular, the Semi-Global Matching (SGM), which realizes a pixel-wise matching and relies on the application of consistency constraints during the matching cost aggregation, will be discussed. The results of some tests performed on real and simulated stereo image datasets, evaluating in particular the accuracy of the obtained digital surface models, will be presented. Several algorithms and different implementation are considered in the comparison, using freeware software codes like MICMAC and OpenCV, commercial software (e.g. Agisoft PhotoScan) and proprietary codes implementing Least Square e Semi-Global Matching algorithms. The comparisons will also consider the completeness and the level of detail within fine structures, and the reliability and repeatability of the obtainable data.

  20. Can Reconstructed Land Surface Temperature Data from Space Predict a West Nile Virus Outbreak?

    Science.gov (United States)

    Andreo, V.; Metz, M.; Neteler, M.; Rosà, R.; Marcantonio, M.; Billinis, C.; Rizzoli, A.; Papa, A.

    2017-07-01

    Temperature is one of the main drivers of ecological processes. The availability of temporally and spatially continuous temperature time series is crucial in different research and application fields, such as epidemiology and control of zoonotic diseases. In 2010, several West Nile virus (WNV) outbreaks in humans were observed in Europe, with the largest number of cases recorded in Greece. Human cases continued to occur for four more years. The occurrence of the 2010's outbreak in Greece has been related to positive anomalies in temperature. Currently available remote sensing time series might provide the temporal and spatial coverage needed to assess this kind of hypothesis. However, the main problem with remotely sensed temperature are the gaps caused by cloud cover. With the objective of testing the former hypothesis, we reconstructed daily MODIS Land Surface Temperature (LST) data and derived several indices that are known or hypothesized to be related to mosquito populations, WNV transmission or risk of disease since they might constitute proxies for favoring or limiting conditions. We present the first results of the comparisons of time series of LST-derived indices among locations with WNV human cases and municipalities with and without reported WNV infection in Greece between 2010 and 2014.

  1. Surface reconstruction of Y-doped HoMnO3 and LuMnO3

    Science.gov (United States)

    Vasic, Relja; Sadowski, Jerzy T.; Rowe; Cheong, S. W.; Choi, Y. J.; Zhou, H. D.; Wiebe, C. R.

    2010-03-01

    We investigate (0001) surfaces of several hexagonal perovskites by low-energy electron diffraction (LEED) to determine the surface periodicity which is different from the bulk materials. Our LEED studies were conducted at the BNL-CFN using a normal incidence geometry with a LEEM/LEED apparatus from room temperature to 1200 C and with an electron energy in the range of 15eV to 200eV. Diffraction patterns showed features of bulk terminated periodicity and a 3x3 surface reconstruction. Possible origins for this surface structure are discussed and comparisons are made with surface studies of other complex oxides. The temperature dependence of the data is also used to estimate the surface Debye temperature of these manganates. Additional diffraction patterns of cleaved or polished (1010) surfaces showed bulk terminated periodicity corresponding to a real space 11.4å ---10.5å unit mesh.

  2. Scalable and Detail-Preserving Ground Surface Reconstruction from Large 3D Point Clouds Acquired by Mobile Mapping Systems

    Science.gov (United States)

    Craciun, D.; Serna Morales, A.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.

    2014-08-01

    The currently existing mobile mapping systems equipped with active 3D sensors allow to acquire the environment with high sampling rates at high vehicle velocities. While providing an effective solution for environment sensing over large scale distances, such acquisition provides only a discrete representation of the geometry. Thus, a continuous map of the underlying surface must be built. Mobile acquisition introduces several constraints for the state-of-the-art surface reconstruction algorithms. Smoothing becomes a difficult task for recovering sharp depth features while avoiding mesh shrinkage. In addition, interpolation-based techniques are not suitable for noisy datasets acquired by Mobile Laser Scanning (MLS) systems. Furthermore, scalability is a major concern for enabling real-time rendering over large scale distances while preserving geometric details. This paper presents a fully automatic ground surface reconstruction framework capable to deal with the aforementioned constraints. The proposed method exploits the quasi-flat geometry of the ground throughout a morphological segmentation algorithm. Then, a planar Delaunay triangulation is applied in order to reconstruct the ground surface. A smoothing procedure eliminates high frequency peaks, while preserving geometric details in order to provide a regular ground surface. Finally, a decimation step is applied in order to cope with scalability constraints over large scale distances. Experimental results on real data acquired in large urban environments are presented and a performance evaluation with respect to ground truth measurements demonstrate the effectiveness of our method.

  3. Localization of endocardial ectopic activity by means of noninvasive endocardial surface current density reconstruction

    Science.gov (United States)

    Lai, Dakun; Liu, Chenguang; Eggen, Michael D.; Iaizzo, Paul A.; He, Bin

    2011-07-01

    Localization of the source of cardiac ectopic activity has direct clinical benefits for determining the location of the corresponding ectopic focus. In this study, a recently developed current-density (CD)-based localization approach was experimentally evaluated in noninvasively localizing the origin of the cardiac ectopic activity from body-surface potential maps (BSPMs) in a well-controlled experimental setting. The cardiac ectopic activities were induced in four well-controlled intact pigs by single-site pacing at various sites within the left ventricle (LV). In each pacing study, the origin of the induced ectopic activity was localized by reconstructing the CD distribution on the endocardial surface of the LV from the measured BSPMs and compared with the estimated single moving dipole (SMD) solution and precise pacing site (PS). Over the 60 analyzed beats corresponding to ten pacing sites (six for each), the mean and standard deviation of the distance between the locations of maximum CD value and the corresponding PSs were 16.9 mm and 4.6 mm, respectively. In comparison, the averaged distance between the SMD locations and the corresponding PSs was slightly larger (18.4 ± 3.4 mm). The obtained CD distribution of activated sources extending from the stimulus site also showed high consistency with the endocardial potential maps estimated by a minimally invasive endocardial mapping system. The present experimental results suggest that the CD method is able to locate the approximate site of the origin of a cardiac ectopic activity, and that the distribution of the CD can portray the propagation of early activation of an ectopic beat.

  4. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  5. From bed topography to ice thickness: GlaRe, a GIS tool to reconstruct the surface of palaeoglaciers

    Science.gov (United States)

    Pellitero, Ramon; Rea, Brice; Spagnolo, Matteo; Bakke, Jostein; Ivy-Ochs, Susan; Frew, Craig; Hughes, Philip; Ribolini, Adriano; Renssen, Hans; Lukas, Sven

    2016-04-01

    We present GlaRe, A GIS tool that automatically reconstructs the 3D geometry for palaeoglaciers given the bed topography. This tool utilises a numerical approach and can work using a minimum of morphological evidence i.e. the position of the palaeoglacier front. The numerical approach is based on an iterative solution to the perfect plasticity assumption for ice rheology, explained in Benn and Hulton (2010). The tool can be run in ArcGIS 10.1 (ArcInfo license) and later updates and the toolset is written in Python code. The GlaRe toolbox presented in this paper implements a well-established approach for the determination of palaeoglacier equilibrium profiles. Significantly it permits users to quickly run multiple glacier reconstructions which were previously very laborious and time consuming (typically days for a single valley glacier). The implementation of GlaRe will facilitate the reconstruction of large numbers of palaeoglaciers which will provide opportunities for such research addressing at least two fundamental problems: 1. Investigation of the dynamics of palaeoglaciers. Glacier reconstructions are often based on a rigorous interpretation of glacial landforms but not always sufficient attention and/or time has been given to the actual reconstruction of the glacier surface, which is crucial for the calculation of palaeoglacier ELAs and subsequent derivation of quantitative palaeoclimatic data. 2. the ability to run large numbers of reconstructions and over much larger spatial areas provides an opportunity to undertake palaeoglaciers reconstructions across entire mountain, ranges, regions or even continents, allowing climatic gradients and atmospheric circulation patterns to be elucidated. The tool performance has been evaluated by comparing two extant glaciers, an icefield and a cirque/valley glacier from which the subglacial topography is known with a basic reconstruction using GlaRe. Results from the comparisons between extant glacier surfaces and modelled

  6. Gradient catastrophe and Fermi-edge resonances in Fermi gas.

    Science.gov (United States)

    Bettelheim, E; Kaplan, Y; Wiegmann, P

    2011-04-22

    Any smooth spatial disturbance of a degenerate Fermi gas inevitably becomes sharp. This phenomenon, called the gradient catastrophe, causes the breakdown of a Fermi sea to multiconnected components characterized by multiple Fermi points. We argue that the gradient catastrophe can be probed through a Fermi-edge singularity measurement. In the regime of the gradient catastrophe the Fermi-edge singularity problem becomes a nonequilibrium and nonstationary phenomenon. We show that the gradient catastrophe transforms the single-peaked Fermi-edge singularity of the tunneling (or absorption) spectrum to a sequence of multiple asymmetric singular resonances. An extension of the bosonic representation of the electronic operator to nonequilibrium states captures the singular behavior of the resonances.

  7. A Coral-based Reconstruction of Sea Surface Salinity at Sabine Bank, Vanuatu from 2007 to 1843 CE

    Science.gov (United States)

    Gorman, M. K.; Quinn, T. M.; Taylor, F. W.; Dunn, E. M.; Cabioch, G.; Ballu, V.; Maes, C.; Austin, J. A.; Saustrup, S.; Pelletier, B.

    2011-12-01

    We present a reconstruction of sea surface salinity (SSS) derived from a coral δ18O time series extending from 2007-1843 CE at Sabine Bank, Vanuatu (SBV, 166.04° E, 15.94°S). This reconstruction is significant because instrumental records of SSS are rare in time and space, yet the SSS response to the El Niño Southern Oscillation (ENSO) forcing is large in many regions of the tropical oceans. There is a strong positive relationship between sea surface temperature anomalies (SSTA) in the central Pacific (Niño 3.4 region; canonical ENSO signal) and six month lagged sea surface salinity anomalies (SSSA, data from Delcroix et al., 2011) at SBV, which establishes a dynamical link between surface ocean variability at SBV and ENSO variability. We calculate a coral δ18O anomaly time series and note that there is a strong correlation between it and instrumental SSS variations over the period 1970-2007 (r = 0.70, p 0.5 psu) pre-1970 corresponding to strong ENSO warm phase events recorded in the SST instrumental record and historical ENSO record (i.e. 1941-42, 1918-19, 1877-78), and an overall freshening trend, demonstrating the ability of our reconstructed dataset to capture interannual variability as well as long-term trends in SSS at Vanuatu.

  8. Fermi Large Area Telescope Operations: Progress Over 4 Years

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.; /SLAC

    2012-06-28

    The Fermi Gamma-ray Space Telescope was launched into orbit in June 2008, and is conducting a multi-year gamma-ray all-sky survey, using the main instrument on Fermi, the Large Area Telescope (LAT). Fermi began its science mission in August 2008, and has now been operating for almost 4 years. The SLAC National Accelerator Laboratory hosts the LAT Instrument Science Operations Center (ISOC), which supports the operation of the LAT in conjunction with the Mission Operations Center (MOC) and the Fermi Science Support Center (FSSC), both at NASA's Goddard Space Flight Center. The LAT has a continuous output data rate of about 1.5 Mbits per second, and data from the LAT are stored on Fermi and transmitted to the ground through TDRS and the MOC to the ISOC about 10 times per day. Several hundred computers at SLAC are used to process LAT data to perform event reconstruction, and gamma-ray photon data are subsequently delivered to the FSSC for public release with a few hours of being detected by the LAT. We summarize the current status of the LAT, and the evolution of the data processing and monitoring performed by the ISOC during the first 4 years of the Fermi mission, together with future plans for further changes to detected event data processing and instrument operations and monitoring.

  9. Comparing and integrating multiple data source for 3D surface reconstruction of Alpine Glaciers

    Science.gov (United States)

    Scaioni, Marco; Fugazza, Davide; Diolaiuti, Guglielmina Adele; Cernuschi, Massimo; Corti, Manuel

    2017-04-01

    Alpine glaciers are generally undergoing a fast and complex process leading to the reduction of the ice mass. Monitoring this process from a quantitative and qualitative point-of-view is of great importance for understanding the related dynamics and to apply proper numerical models. While the analysis of archive maps, medium resolution satellite images and DEM's may provide an overview of the long-term processes, the application of close-range sensing techniques offers the unprecedented opportunity to operate a 4D reconstruction of the glacier geometry. Terrestrial sensors technologies (Long and Very-long Range TLS and SfM Photogrammetry) integrated to UAV Photogrammetry may offer a complete view of the dynamical evolution of a glacier, reaching a high spatial and temporal resolution. Up until today, not many cases exist where a long-term archive of 4D high-resolution data has been established, limiting the chance to understand and to model the undergoing physical processes. The goal of the research presented here is to collect a set of multi-temporal data sets of the lower part of the Forni Glacier, in the National Stelvio Park, Italy. The first data acquisition campaign was carried out during August 2016, to be followed on yearly regular-basis. This will give the researchers the opportunity to analyse 4D data describing in detail the disruption of the glacier and its dramatic retreat. These data sets could be compared to DEM's acquired in the past by using UAV-Photogrammetry (2014) and traditional stereo-photogrammetry (2007). In addition, the presence of additional hydrological and meteorological data can be exploited in the analyses. The first data acquisition campaign has also given the opportunity to investigate the data acquisition methodology. The UAV flight has revealed to output a complete overview of the glacier surface in terms of DEM and orthophoto. Thanks to the photogrammetric process and the use of seven GNSS-GCPs, a high resolution has been

  10. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    National Research Council Canada - National Science Library

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-01-01

    ...)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction...

  11. Berry Fermi liquid theory

    Science.gov (United States)

    Chen, Jing-Yuan; Son, Dam Thanh

    2017-02-01

    We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current-current correlator exactly matches with the result obtained from the kinetic theory.

  12. Umklapp superradiance with a collisionless quantum degenerate Fermi gas.

    Science.gov (United States)

    Piazza, Francesco; Strack, Philipp

    2014-04-11

    The quantum dynamics of the electromagnetic light mode of an optical cavity filled with a coherently driven Fermi gas of ultracold atoms strongly depends on the geometry of the Fermi surface. Superradiant light generation and self-organization of the atoms can be achieved at low pumping threshold due to resonant atom-photon umklapp processes, where the fermions are scattered from one side of the Fermi surface to the other by exchanging photon momenta. The cavity spectrum exhibits sidebands that, despite strong atom-light coupling and cavity decay, retain narrow linewidth, due to absorptionless transparency windows outside the atomic particle-hole continuum and the suppression of broadening and thermal fluctuations in the collisionless Fermi gas.

  13. Effects of surface reconstruction on the epitaxial growth of III-Sb on GaAs using interfacial misfit array

    Science.gov (United States)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt

    2017-03-01

    The effects of pre-growth Sb reconstruction on a GaAs surface on the epitaxial growth of III-Sb (GaSb and InSb) on a (100) GaAs substrate using interfacial misfit array were investigated. All samples exhibited smooth surface with a root mean square (r.m.s.) roughness below 1.5 nm and nearly 100% relaxation. Modeling indicated that the distribution and types of misfit dislocations can be evaluated using a reciprocal space map (RSM) of the x-ray measurements. The interfacial misfit (IMF) arrays in III-Sb/GaAs samples were characterized by RSMs of high-resolution x-ray diffraction (XRD) and transmission electron microscopy (TEM). The RSM results suggest that all samples exhibited highly uniformly distributed misfit dislocations, and pre-growth (2 × 8) Sb surface reconstruction promoted the formation of 90° dislocations in an IMF array. Hall measurements of unintentionally doped GaSb and InSb layers also suggested that the highest motilities at both 77 K and 300 K were achieved at the samples grown on GaAs with pre-growth (2 × 8) Sb reconstruction.

  14. A Feature-adaptive Subdivision Method for Real-time 3D Reconstruction of Repeated Topology Surfaces

    Science.gov (United States)

    Lin, Jinhua; Wang, Yanjie; Sun, Honghai

    2017-03-01

    It's well known that rendering for a large number of triangles with GPU hardware tessellation has made great progress. However, due to the fixed nature of GPU pipeline, many off-line methods that perform well can not meet the on-line requirements. In this paper, an optimized Feature-adaptive subdivision method is proposed, which is more suitable for reconstructing surfaces with repeated cusps or creases. An Octree primitive is established in irregular regions where there are the same sharp vertices or creases, this method can find the neighbor geometry information quickly. Because of having the same topology structure between Octree primitive and feature region, the Octree feature points can match the arbitrary vertices in feature region more precisely. In the meanwhile, the patches is re-encoded in the Octree primitive by using the breadth-first strategy, resulting in a meta-table which allows for real-time reconstruction by GPU hardware tessellation unit. There is only one feature region needed to be calculated under Octree primitive, other regions with the same repeated feature generate their own meta-table directly, the reconstruction time is saved greatly for this step. With regard to the meshes having a large number of repeated topology feature, our algorithm improves the subdivision time by 17.575% and increases the average frame drawing time by 0.2373 ms compared to the traditional FAS (Feature-adaptive Subdivision), at the same time the model can be reconstructed in a watertight manner.

  15. Signatures of an annular Fermi sea

    Science.gov (United States)

    Jo, Insun; Liu, Yang; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.; Winkler, R.

    2017-01-01

    The concept of a Fermi surface, the constant-energy surface containing all the occupied electron states in momentum, or wave-vector (k ) , space plays a key role in determining electronic properties of conductors. In two-dimensional (2D) carrier systems, the Fermi surface becomes a contour which, in the simplest case, encircles the occupied states. In this case, the area enclosed by the contour, which we refer to as the Fermi sea (FS), is a simple disk. Here we report the observation of an FS with a new topology, namely, an FS in the shape of an annulus. Such an FS is expected in a variety of 2D systems where the energy band dispersion supports a ring of extrema at finite k , but its experimental observation has been elusive. Our study provides (1) theoretical evidence for the presence of an annular FS in 2D hole systems confined to wide GaAs quantum wells and (2) experimental signatures of the onset of its occupation as an abrupt rise in the sample resistance, accompanied by a sudden appearance of Shubnikov-de Haas oscillations at an unexpectedly high frequency whose value does not simply correspond to the (negligible) density of holes contained within the annular FS.

  16. Isotropic 3D cardiac cine MRI allows efficient sparse segmentation strategies based on 3D surface reconstruction.

    Science.gov (United States)

    Odille, Freddy; Bustin, Aurélien; Liu, Shufang; Chen, Bailiang; Vuissoz, Pierre-André; Felblinger, Jacques; Bonnemains, Laurent

    2017-10-02

    Segmentation of cardiac cine MRI data is routinely used for the volumetric analysis of cardiac function. Conventionally, 2D contours are drawn on short-axis (SAX) image stacks with relatively thick slices (typically 8 mm). Here, an acquisition/reconstruction strategy is used for obtaining isotropic 3D cine datasets; reformatted slices are then used to optimize the manual segmentation workflow. Isotropic 3D cine datasets were obtained from multiple 2D cine stacks (acquired during free-breathing in SAX and long-axis (LAX) orientations) using nonrigid motion correction (cine-GRICS method) and super-resolution. Several manual segmentation strategies were then compared, including conventional SAX segmentation, LAX segmentation in three views only, and combinations of SAX and LAX slices. An implicit B-spline surface reconstruction algorithm is proposed to reconstruct the left ventricular cavity surface from the sparse set of 2D contours. All tested sparse segmentation strategies were in good agreement, with Dice scores above 0.9 despite using fewer slices (3-6 sparse slices instead of 8-10 contiguous SAX slices). When compared to independent phase-contrast flow measurements, stroke volumes computed from four or six sparse slices had slightly higher precision than conventional SAX segmentation (error standard deviation of 5.4 mL against 6.1 mL) at the cost of slightly lower accuracy (bias of -1.2 mL against 0.2 mL). Functional parameters also showed a trend to improved precision, including end-diastolic volumes, end-systolic volumes, and ejection fractions). The postprocessing workflow of 3D isotropic cardiac imaging strategies can be optimized using sparse segmentation and 3D surface reconstruction. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. In-plane X-ray diffraction study of the C-60/Au(110) p(6x5) reconstructed surface by direct methods

    NARCIS (Netherlands)

    Torrelles, X.; Rius, J.; Pedio, M.; Felici, R.; Rudolf, P.; Ferrer, S.; Miravitlles, C.; Alvarez, J.

    1999-01-01

    Adsorption of C60 on the highly anisotropic Au(110) 1 × 2 reconstructed surface leads to an ordered quasi hexagonal 6 × 5 superstructure. This interfacial reconstruction has been investigated by grazing incidence X-ray diffraction. Analysis of the in-plane data set reveals four C60 molecules per (6

  18. In-plane X-ray diffraction study of the C-60/Au(110) p(6x5) reconstructed surface by direct methods

    NARCIS (Netherlands)

    Torrelles, X.; Rius, J.; Pedio, M.; Felici, R.; Rudolf, P.; Ferrer, S.; Miravitlles, C.; Alvarez, J.

    1999-01-01

    Adsorption of C60 on the highly anisotropic Au(110) 1 × 2 reconstructed surface leads to an ordered quasi hexagonal 6 × 5 superstructure. This interfacial reconstruction has been investigated by grazing incidence X-ray diffraction. Analysis of the in-plane data set reveals four C60 molecules per (6

  19. Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Mersmann, Sven; Seitel, Alexander; Maier-Hein, Lena [Division of Medical and Biological Informatics, Junior Group Computer-assisted Interventions, German Cancer Research Center (DKFZ), Heidelberg, Baden-Wurttemberg 69120 (Germany); Erz, Michael; Jähne, Bernd [Heidelberg Collaboratory for Image Processing (HCI), University of Heidelberg, Baden-Wurttemberg 69115 (Germany); Nickel, Felix; Mieth, Markus; Mehrabi, Arianeb [Department of General, Visceral and Transplant Surgery, University of Heidelberg, Baden-Wurttemberg 69120 (Germany)

    2013-08-15

    Purpose: In image-guided surgery (IGS) intraoperative image acquisition of tissue shape, motion, and morphology is one of the main challenges. Recently, time-of-flight (ToF) cameras have emerged as a new means for fast range image acquisition that can be used for multimodal registration of the patient anatomy during surgery. The major drawbacks of ToF cameras are systematic errors in the image acquisition technique that compromise the quality of the measured range images. In this paper, we propose a calibration concept that, for the first time, accounts for all known systematic errors affecting the quality of ToF range images. Laboratory and in vitro experiments assess its performance in the context of IGS.Methods: For calibration the camera-related error sources depending on the sensor, the sensor temperature and the set integration time are corrected first, followed by the scene-specific errors, which are modeled as function of the measured distance, the amplitude and the radial distance to the principal point of the camera. Accounting for the high accuracy demands in IGS, we use a custom-made calibration device to provide reference distance data, the cameras are calibrated too. To evaluate the mitigation of the error, the remaining residual error after ToF depth calibration was compared with that arising from using the manufacturer routines for several state-of-the-art ToF cameras. The accuracy of reconstructed ToF surfaces was investigated after multimodal registration with computed tomography (CT) data of liver models by assessment of the target registration error (TRE) of markers introduced in the livers.Results: For the inspected distance range of up to 2 m, our calibration approach yielded a mean residual error to reference data ranging from 1.5 ± 4.3 mm for the best camera to 7.2 ± 11.0 mm. When compared to the data obtained from the manufacturer routines, the residual error was reduced by at least 78% from worst calibration result to most accurate

  20. Holocene Sea Surface and Subsurface Water Mass Variability Reconstructed from Temperature and Sea-ice Proxies in Fram Strait

    Science.gov (United States)

    Werner, Kirstin; Spielhagen, Robert F.; Müller, Juliane; Husum, Katrine; Kandiano, Evgenia S.; Polyak, Leonid

    2016-04-01

    In two high-resolution sediment cores from the West Spitsbergen continental margin we investigated planktic foraminiferal, biomarker and dinocyst proxy data in order to reconstruct surface and subsurface water mass variability during the Holocene. The two study sites are today influenced by northward flowing warm and saline Atlantic Water. Both foraminiferal and dinocyst (de Vernal et al., 2013) temperature reconstructions indicate a less-stratified, ice-free, nutrient-rich summer surface ocean with strong Atlantic Water advection between 10.6 and 8.5 cal ka BP, likely related to maximum July insolation during the early Holocene. Sea surface to subsurface water temperatures of up to 6°C prevailed until ca 5 cal ka BP. A weakened contribution of Atlantic Water is found when subsurface temperatures strongly decreased with minimum values between ca 4 and 3 cal ka BP. High planktic foraminifer shell fragmentation and increased oxygen isotope values of the subpolar planktic foraminifer species Turborotalita quinqueloba as well as increasing concentrations of the sea ice biomarker IP25 further indicate cool conditions. Indices associated with IP25 as well as dinocyst data suggest a sustained cooling and consequently sea-ice increase during the late Holocene. However, planktic foraminiferal data indicate a slight return of stronger subsurface influx of Atlantic Water since ca 3 cal ka BP. The observed decoupling of cooling surface and warming subsurface waters during the later Holocene might be attributed to a strong pycnocline layer separating cold sea-ice fed surface waters from enhanced subsurface Atlantic Water advection. Reference: de Vernal, A., Hillaire-Marcel, C., Rochon, A., Fréchette, B., Henry, M., Solignac, S., Bonnet, S., 2013. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews 79, 111-121.

  1. Fermi Communications and Public Outreach

    CERN Document Server

    Cominsky, L

    2015-01-01

    The Sonoma State University (SSU) Education and Public Outreach (E/PO) group participates in the planning and execution of press conferences that feature noteworthy Fermi discoveries, as well as supporting social media and outreach websites. We have also created many scientific illustrations for the media, tools for amateur astronomers for use at star parties, and have given numerous public talks about Fermi discoveries.

  2. FERMI multi-chip module

    CERN Multimedia

    This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.

  3. Spiraling Fermi arcs in Weyl materials

    Science.gov (United States)

    Li, Songci; Andreev, Anton

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band bending potential. For close valleys arc state morphology may be understood in terms of avoided crossing of oppositely winding spirals. This work is supported by the U.S. Department of Energy Office of Science, Basic Energy Sciences under Award Number DE-FG02-07ER46452.

  4. Sea-surface temperature reconstruction from trace elements variations of tropical coralline red algae

    Science.gov (United States)

    Darrenougue, Nicolas; De Deckker, Patrick; Eggins, Stephen; Payri, Claude

    2014-06-01

    We used laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) to obtain high-resolution variations of the Mg/Ca, Sr/Ca and Li/Ca composition of free-living forms (i.e. rhodoliths) of the coralline red algal species Sporolithon durum in order to test their potential to archive seawater temperature information. A monitoring experiment was conducted based on alizarin red S (ARS) staining of rhodoliths specimens collected in various locations across a ˜1 km2 rhodolith bed in the vicinity of Nouméa, New Caledonia, where in situ temperature (IST) variations were recorded for 22 months between November 2009 and August 2011. A >45-year comparison of Mg and trace elements with sea-surface temperature (SST) was established from the analysis of 5 different branches belonging to three of the largest (7.4-8.5 cm in diameter) rhodolith specimens observed at the site. Consistent mean Mg/Ca, Sr/Ca and Li/Ca concentrations and seasonal patterns are found for the rhodoliths' last living years (2009-2011) across 43 branches and for the full 1963-2008 period across the 5 branches. Average elemental concentrations (Mg/Ca: 0.31 ± 0.04 mol/mol; Sr/Ca: 3.5 ± 0.4 mmol/mol and Li/Ca: 0.08 ± 0.02 mmol/mol) fall within range of those found in the literature. Individual element variations show good reproducibility between records and Mg/Ca, Sr/Ca and Li/Ca co-vary systematically. Combined records of Mg/Ca, Sr/Ca and Li/Ca are highly correlated with the IST monthly pattern for the 2009-2011 period (0.82 < r < 0.91; p < 0.001) and with local variations of monthly SST for the 1963-2008 period (0.65 < r < 0.85; p < 0.001), with Mg/Ca systematically being the best fit to monthly seawater temperature variations. Inter-annual Mg/Ca anomalies show significant correlation with the Oceanic Nino Index (ONI), indicating that S. durum rhodoliths also have the capacity to record the regional climate pattern in the tropical Pacific. Finally, consistent variations between the combined Mg

  5. Bi-and Au-Induced Reconstructions on GaAs(001)-2×4 Surface

    Institute of Scientific and Technical Information of China (English)

    TANG Zhe; YANG Shen-Yuan; JIANG Ying; WANG Wen-Xin; JIA Jin-Feng; XUE Qi-Sun; WANG En-Ge; WU Ke-Hui

    2008-01-01

    @@ Submonolayer Bi and Au adsorptions on the GaAs(001)-2×4 surface are investigated by scanning tunnelling microscopy, low energy electron diffraction and first-principles calculations. The 1 × 4 and 3 × 4 reconstructed surface induced by Bi and Au, respectively, are reveaied and their structural models are proposed based on experiments and first-principles calculations. Moreover, the validity of the recently proposed generalized electron counting (GEC) model [Phys. Rev. Lett. 97 (2006) 126103] is examined in detail by using the two surfaces. The GEC model perfectly explains the structural features, such as the characteristic short double-line structure in the Bi-1 × 4 surface and the 3× arrangement of four-atom Au clusters.

  6. Preliminary multiproxy surface air temperature field reconstruction for China over the past millennium

    Science.gov (United States)

    Shi, Feng; Yang, Bao; Von Gunten, Lucien

    2013-04-01

    We present the first millennial-length gridded field reconstruction of annual temperature for China, and analyze the reconstruction for spatiotemporal changes and associated uncertainties, based on a network of 415 well-distributed and accurately dated climatic proxy series. The new reconstruction method is a modified form of the point-by-point regression (PPR) approach. The main difference is the incorporation of the "composite plus scale" (CPS) and "Regularized errors-in-variables" (EIV) algorithms to allow for the assimilation of various types of the proxy data. Furthermore, the search radius is restricted to a grid size; this restriction helps effectively exclude proxy data possibly correlated with temperature but belonging to a different climate region. The results indicate that: 1) the past temperature record in China is spatially heterogenic, with variable correlations between cells in time; 2) the late 20th century warming in China probably exceeds mean temperature levels at any period of the past 1000 years, but the temperature anomalies of some grids in eastern China during the Medieval climate anomaly period are warmer than during the modern warming; 3) the climatic variability in the eastern and western regions of China was not synchronous during much of the last millennium, probably due to the influence of the Tibetan Plateau. Our temperature reconstruction may serve as a reference to test simulation results over the past millennium, and help to finely analyze the spatial characteristics and the driving mechanism of the past temperature variability. However, the lower reconstruction skill scores for some grid points underline that the present set of available proxy data series is not yet sufficient to accurately reconstruct the heterogeneous climate of China in all regions, and that there is the need for more highly resolved temperature proxies, particularly in the Tibetan Plateau.

  7. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients

    Science.gov (United States)

    Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin

    2013-06-01

    As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.

  8. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Directory of Open Access Journals (Sweden)

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  9. Enrico Fermi Symposium at CERN : opening celebration

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani - Welcome and Introduction Antonino Zichichi - The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi - Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger - Fermi in Chicago Valentin Telegdi - A Close-up of Fermi Arnaldo Stefanini - Celebrating Fermi's Centenary in Documents and Pictures and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (English version - c. 30 mins).

  10. Surface Reconstruction of Hexagonal Y-doped HoMnO3 and LuMnO3 Studied Using Low-energy Electron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Vasic, R.; Sadowski, J.

    2010-04-15

    We have investigated the (0001) surfaces of several hexagonal manganite perovskites by low-energy electron diffraction (LEED) in order to determine if the surface periodicity is different from that of the bulk materials. These LEED studies were conducted using near-normal incidence geometry with a low energyelectron microscope (LEEM)/LEED apparatus from room temperature to 1200 degrees C and with an electron energy in the range of 15-50 eV. Diffraction patterns showed features of bulk-terminated periodicity as well as a 2 2 surface reconstruction. Possible origins for this surface reconstruction structure are discussed and comparisons are made with surface studies of other complex oxides.

  11. Variations in sea surface temperature reconstructed by algal biomarker thermometry in the Neogene equatorial Pacific sediments

    Science.gov (United States)

    Sawada, K.; Nakamura, H.; Yamamoto, S.; Kobayashi, M.

    2012-12-01

    The eastern equatorial Pacific Ocean today sustains significant amounts of global marine productivity, and the region is one of the largest marine sources of CO2 to the atmosphere. However, geological time-scale variations of marine environment and ecological / biogeochemical systems in the equatorial Pacific have been still unclear. In this study, we reconstruct the variations of sea surface temperature (SST) by long chain alkenone and the newest long-chain diol thermometers from the equatorial Pacific sediments, and discuss fluctuations in paleoceanographic and paleoclimatic systems in this region during the Neogene. Integrated Ocean Drilling Program (IODP) Expeditions 320/321 (Pacific Equatorial Age Transect; PEAT) recovered a Cenozoic sediment record from the equatorial Pacific by coring above the palaeoposition of the Equator at successive crustal ages on the Pacific plate. We used a core U1337 in the present study. We identify C37 - C38 alkenones as well as saturated C28 and C30 1,13-diols, C28 and C30 1,14-diols, and C30 1,15-diol from almost all the Neogene sediments (23 - 0.23 Ma) in a core U1337. This indicates that diatom, haptophyte and eustigmatophyte algal productions were consistently significant in the equatorial Pacific throughout the Neogene. The UK'37 values were converted to temperatures by using the calibrations reported by Prahl et al. (1988) and Kienast et al. (2012). The alkenone-based SSTs in a core U1337 were nearly constant over the past 25 Ma, ranging from 26 to 28 C, although there were two much lower spikes of 15 - 20 C in 13.2 - 12.5 Ma and 6 Ma. The Long chain Diol Index (LDI; Rampen et al., 2012) values were converted to SSTs by using the calibrations reported by Rampen et al. (2012) and Sawada et al. (unpublished data). The LDI values were estimated to be 7 - 30 C and 12 - 27 C by the Rampen et al. and Sawada et al. calibrations, respectively. The decreasing spikes of SSTs in U1337 core are observed in the horizons of 12.5Ma, 11Ma

  12. Novel fusion for hybrid optical/microcomputed tomography imaging based on natural light surface reconstruction and iterated closest point

    Science.gov (United States)

    Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo

    2014-02-01

    In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.

  13. Qualitative and quantitative reconstructions of surface water characteristics and recent hydrographical changes in the Trondheimsfjord, central Norway

    Science.gov (United States)

    Milzer, G.; Giraudeau, J.; Schmidt, S.; Eynaud, F.; Faust, J.

    2014-02-01

    In the present study we investigated dinocyst assemblages in the Trondheimsfjord over the last 25 to 50 yr from three well-dated multi-cores (210Pb and 137Cs) retrieved along the fjord axis. The downcore distribution of the dinocysts is discussed in view of changes in key hydrographic parameters of the surface waters (sea-surface temperatures (SSTs), sea-surface salinities (SSSs), and river discharges) monitored in the fjord. We examine the impact of the North Atlantic Oscillation pattern and of waste water supply from the local industry and agriculture on the fjord ecological state and thus dinocyst species diversity. Our results show that dinocyst production and diversity in the fjord is not evidently affected by human-induced eutrophication. Instead the assemblages appear to be mainly controlled by the NAO-related changes in nutrient availability and the physico-chemical characteristics of the surface mixed layer. Still, discharges of major rivers have been modulated since 1985 by the implementation of hydropower plants, which certainly influences the amounts of nutrients supplied to the fjord. The impact, however, is variable according to the local geographical setting, and barely differentiated from natural changes in river run off. We ultimately test the use of the modern analogue technique (MAT) for the reconstruction of winter and summer SSTs and SSSs and annual primary productivity (PP) in this particular fjord setting. The reconstructed data are compared with time series of summer and winter SSTs and SSSs measured at 10 m water depth, as well as with mean annual PPs along the Norwegian coast and in Scandinavian fjords. The reconstructions are generally in good agreement with the instrumental measurements and observations from other fjords. Major deviations can be attributed to peculiarities in the assemblages linked to the particular fjord setting and the related hydrological structure.

  14. Qualitative and quantitative reconstruction of surface water characteristics and recent hydrographic changes in the Trondheimsfjord, central Norway

    Science.gov (United States)

    Milzer, G.; Giraudeau, J.; Schmidt, S.; Eynaud, F.; Faust, J.

    2013-08-01

    In the present study we investigate dinocyst assemblages in the Trondheimsfjord over the last 25 to 50 yr from three well-dated multi-cores (210Pb and 137Cs) retrieved along the fjord axis. The downcore distribution of the cysts is discussed in view of changes of the key surface water parameters sea-surface temperatures (SSTs) and sea-surface salinities (SSSs) monitored in the fjord, as well as river discharges. We examine the impact of the North Atlantic Oscillation pattern and of waste water supply from the local industry and agriculture on the fjord ecological state and hence dinocyst species diversity. Our results show that dinocyst production and diversity in the fjord is not evidently affected by human-induced eutrophication. Instead the assemblages appear to be mainly controlled by the NAO-related changes in physico-chemical characteristics of the surface mixed layer. Still, discharges of major rivers were modulated, since 1985 by the implementation of hydropower plants which certainly influences the freshwater and nutrient supply into the fjord. The impact, however, is variable according to the local geographical setting, and barely differentiated from natural changes in river run off. We ultimately test the use of the modern analogue technique (MAT) for the reconstruction of winter and summer SSTs and SSSs and annual primary productivity (PP) in this particular fjord setting. The reconstructed data are compared with time-series of SSTs and SSSs measured at 10 m water depth, as well as with mean annual PPs along the Norwegian coast and within Scandinavian fjords. The reconstructions are in general good agreement with the instrumental measurements and observations from other fjords. Major deviations can be addressed to peculiarities in the assemblages linked to the particular fjord setting and the related hydrological structure.

  15. Fermi, Heisenberg y Lawrence

    Directory of Open Access Journals (Sweden)

    Ynduráin, Francisco J.

    2002-01-01

    Full Text Available Not available

    Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.

  16. High-resolution angle-resolved photoemission study of the Fermi surface and the normal-state electronic structure of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.G.; Liu, R.; Lynch, D.W. (Ames Laboratory, Ames, IA (USA) Physics Department, Iowa State University, Ames, IA (USA)); List, R.S.; Arko, A.J. (Los Alamos National Laboratory, Los Alamos, NM (USA)); Veal, B.W.; Chang, Y.C.; Jiang, P.Z.; Paulikas, A.P. (Argonne National Laboratory, Argonne, IL (USA))

    1990-07-01

    High-resolution angle-resolved photoelectron spectroscopic measurements were made of the Fermi edge of a single crystal of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} at 90 K along several directions in the Brillouin zone. The resultant Fermi-level crossings are consistent with local-density band calculations, including a point calculated to be of Bi-O character. Additional measurements were made where bands crossed the Fermi level between 100 and 250 K, along with measurements on an adjacent Pt foil. The Fermi edges of both materials agree to within the noise. Below the Fermi level the spectra show correlation effects in the form of an increased effective mass, but the essence of the single-particle band structure is retained. The shape of the spectra can be explained by a lifetime-broadened photohole and secondary electrons. The effective inverse photohole lifetime is linear in energy.

  17. The basis of the Fermi liquid theory

    CERN Document Server

    Apostol, M

    2001-01-01

    Interaction may affect drastically the many-particle ensembles; for instance an attraction, even weak, between electrons, binds them up in pairs, leading to superconductivity; interacting fermions in one dimension get bosonized; anisotropic fermions with 'nested' Fermi surfaces become non-homogeneous, when interacting, and develop charge- or spin- density waves. All these are different phases, and appear as symmetry breakings, spontaneous or induced; they are also termed as instabilities of the many-body systems, under interaction. Hints toward their nature are often obtained through studying the interacting two-particle problem, scattering included. In this paper the basis of the Fermi liquid theory is shown, and electronic liquid is briefly discussed. (author)

  18. Quantitative reconstruction of Holocene sea ice and sea surface temperature off West Greenland from the first regional diatom data set

    Science.gov (United States)

    Krawczyk, D. W.; Witkowski, A.; Moros, M.; Lloyd, J. M.; Høyer, J. L.; Miettinen, A.; Kuijpers, A.

    2017-01-01

    Holocene oceanographic conditions in Disko Bay, West Greenland, were reconstructed from high-resolution diatom records derived from two marine sediment cores. A modern data set composed of 35 dated surface sediment samples collected along the West Greenland coast accompanied by remote sensing data was used to develop a diatom transfer function to reconstruct April sea ice concentration (SIC) supported by July sea surface temperature (SST) in the area. Our quantitative reconstruction shows that oceanographic changes recorded throughout the last 11,000 years reflect seasonal interplay between spring (April SIC) and summer (July SST) conditions. Our records show clear correlation with climate patterns identified from ice core data from GISP2 and Agassiz-Renland for the early to middle Holocene. The early Holocene deglaciation of western Greenland Ice Sheet was characterized in Disko Bay by initial strong centennial-scale fluctuations in April SIC with amplitude of over 40%, followed by high April SIC and July SST. These conditions correspond to a general warming of the climate in the Northern Hemisphere. A decrease in April SIC and July SST was recorded during the Holocene Thermal Optimum reflecting more stable spring-summer conditions in Disko Bay. During the late Holocene, high April SIC characterized the Medieval Climate Anomaly, while high July SST prevailed during the Little Ice Age, supporting previously identified antiphase relationship between surface waters in West Greenland and climate in NW Europe. This antiphase pattern might reflect seasonal variations in regional oceanographic conditions and large-scale fluctuations within the North Atlantic Oscillation and Atlantic Meridional Overturning Circulation.

  19. Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean

    Science.gov (United States)

    Liu, Na; Liu, Yu; Bao, Guang; Bao, Ming; Wang, Yanchao; Zhang, Lizhi; Ge, Yuxiang; Bao, Wurigen; Tian, Heng

    2016-01-01

    A tree-ring width chronology covering the period 1780-2013 AD was developed from Pinus sylvestris var. mongolica for the eastern Hulun Buir steppe, a region located on the edge of the eastern Mongolian Plateau, China. Climate-growth response analysis revealed drought stress to be the primary limiting factor for tree growth. Therefore, the mean February-July standardized precipitation evapotranspiration index (SPEI) was reconstructed over the period 1819-2013, where the reconstruction could account for 32.8% of the variance in the instrumental record over the calibration period 1953-2011. Comparison with other tree-ring-based moisture sequences from nearby areas confirmed a high degree of confidence in our reconstruction. Severe drought intervals since the late 1970s in our study area consisted with the weakening East Asian summer monsoon, which modulating regional moisture conditions in semi-arid zone over northern China. Drought variations in the study area significantly correlated with sea surface temperatures (SSTs) in North Pacific Ocean, suggesting a possible connection of regional hydroclimatic variations to the Pacific Decadal Oscillation (PDO). The potential influence associated with El Niño-Southern Oscillation (ENSO) was primarily analyzed.

  20. The modeling of quadratic B-splines surfaces for the tomographic reconstruction in the FCC- type-riser

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Geovane Vitor; Dantas, Carlos Costa, E-mail: geovitor@bol.com.b, E-mail: ccd@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Radioquimica; Melo, Silvio de Barros; Pires, Renan Ferraz, E-mail: sbm@cin.ufpe.b, E-mail: rfp@cin.ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Informatica

    2009-07-01

    The 3D tomography reconstruction has been a profitable alternative in the analysis of the FCC-type- riser (Fluid Catalytic Cracking), for appropriately keeping track of the sectional catalyst concentration distribution in the process of oil refining. The method of tomography reconstruction proposed by M. Azzi and colleagues (1991) uses a relatively small amount of trajectories (from 3 to 5) and projections (from 5 to 7) of gamma rays, a desirable feature in the industrial process tomography. Compared to more popular methods, such as the FBP (Filtered Back Projection), which demands a much higher amount of gamma rays projections, the method by Azzi et al. is more appropriate for the industrial process, where the physical limitations and the cost of the process require more economical arrangements. The use of few projections and trajectories facilitates the diagnosis in the flow dynamical process. This article proposes an improvement in the basis functions introduced by Azzi et al., through the use of quadratic B-splines functions. The use of B-splines functions makes possible a smoother surface reconstruction of the density distribution, since the functions are continuous and smooth. This work describes how the modeling can be done. (author)