WorldWideScience

Sample records for fermentation-derived organic acids

  1. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Fermentation process for the production of organic acids

    Science.gov (United States)

    Hermann, Theron; Reinhardt, James; Yu, Xiaohui; Udani, Russell; Staples, Lauren

    2018-05-01

    This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.

  3. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    Science.gov (United States)

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of fermentation period on the organic acid and amino acid contents of Ogiri from castor oil bean seeds

    Directory of Open Access Journals (Sweden)

    Ojinnaka, M-T. C.

    2013-01-01

    Full Text Available Aims: To monitor the changes in the concentration of organic acid and amino acid contents during the fermentation of castor oil bean seed into ogiri.Methodology and results: In this study, ogiri, a Nigerian fermented food condiment was prepared from castor oil bean using Bacillus subtilis as a monoculture starter for the production of three different fermented castor oil bean condiment samples: B1 (0% NaCl/lime, B2 (2% NaCl, B3 (3% lime. Variations in the composition of the castor oil bean with fermentation over 96 h periods were evaluated for organic acid and amino acid contents using High Performance Liquid Chromatography. Organic acids were detected in the fermented castor oil bean samples as fermentation period increased to 96 h. Organic acids identified were oxalic, citric, tartaric, malic, succinic, lactic, formic, acetic, propionic and butyric acids. The lactic acid contents in sample B1 (0% NaCl/lime decreased initially and then increased as the fermentation period progressed. The value at 96 h fermentation was 1.336 µg/mL as against 0.775 µg/mL at 0 h fermentation. Sample B3 (3% lime had lactic acid content that increased as fermentation period increased with lactic acid content of 1.298 µg/mL at 96 h fermentation. The acetic acid content of sample B1 increased as fermentation progressed and at 96 h fermentation, its value was 1.204 µg/mL while those of B2 and B3 were 0.677 µg/mL and 1.401 µg/mL respectively. The three fermented castor oil bean samples also contained sufficient amount of amino acids. Sample B1 had the highest values in isoleucine glycine and histidine with values 1.382 µg/mL, 0.814 µg/mL and 1.022 µg/mL respectively while sample B2 had the highest value in leucine content with 0.915 µg/mL at 96 h fermentation, closely followed by sample B3 and B1 with 0.798 µg/mL and 0.205 µg/mL respectively. The results of amino acid analysis indicated a high concentration of all amino acids at 96 h of fermentation

  5. Organic acid production from starchy waste by rumen derived microbial communities

    OpenAIRE

    Ayudthaya, S. P. N.; Van De Weijer, Antonius H. P.; Van Gelder, Antonie H.; Stams, Alfons Johannes Maria; De Vos, Willem M.; Plugge, Caroline M.

    2017-01-01

    Microbiology Centennial Symposium 2017 - Exploring Microbes for the Quality of Life (Book of Abstracts) Converting organic waste to energy carriers and valuable products such as organic acids (OA) using microbial fermentation is one of the sustainable options of renewable energy. Substrate and inoculum are important factors in optimizing the fermentation. In this study, we investigated organic acid production and microbial composition shift during the fermentation of starchy (p...

  6. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  7. Whey-derived valuable products obtained by microbial fermentation.

    Science.gov (United States)

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.

  8. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.

    Science.gov (United States)

    Zhang, Yixing; Vadlani, Praveen V

    2013-12-01

    Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly L-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-L and D-lactic acid and has a higher melting temperature. To date, several studies have explored the production of L-lactic acid, but information on biosynthesis of D-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of D-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to D-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L(-1) of D-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g(-1) and 1.01 g L(-1) h(-1), respectively. Luedeking-Piret model described the mixed growth-associated production of D-lactic acid with a maximum specific growth rate 0.2 h(-1) and product formation rate 0.026 h(-1), obtained for this strain. The efficient synthesis of D-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.

  9. The effect of cocoa fermentation and weak organic acids on growth and ochratoxin A production by Aspergillus species

    DEFF Research Database (Denmark)

    Copetti, Marina V.; Iamanaka, Beatriz T.; Mororó, Raimundo C.

    2012-01-01

    The acidic characteristics of cocoa beans have influence on flavor development in chocolate. Cocoa cotyledons are not naturally acidic, the acidity comes from organic acids produced by the fermentative microorganisms which grow during the processing of cocoa. Different concentrations of these met...... by Aspergillus carbonarius in cocoa, and the effect of weak organic acids such as acetic, lactic and citric at different pH values on growth and ochratoxin A production by A. carbonarius and Aspergillus niger in culture media. A statistical difference (ρ......The acidic characteristics of cocoa beans have influence on flavor development in chocolate. Cocoa cotyledons are not naturally acidic, the acidity comes from organic acids produced by the fermentative microorganisms which grow during the processing of cocoa. Different concentrations...... of these metabolites can be produced according to the fermentation practices adopted in the farms, which could affect the growth and ochratoxin A production by fungi. This work presents two independent experiments carried out to investigate the effect of some fermentation practices on ochratoxin A production...

  10. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.

    Science.gov (United States)

    Ouyang, Jia; Cai, Cong; Chen, Hai; Jiang, Ting; Zheng, Zhaojuan

    2012-12-01

    Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

  11. Diversity of lactic acid bacteria on organic flours and application of isolates in sourdough fermentation

    OpenAIRE

    Stanzer, Damir; Ivanuša, Ines; Kazazić, Snježana; Hanousek Čiča, Karla; Mrvčić, Jasna

    2017-01-01

    Organic farming preserves biodiversity and organic products can be the source of many microbial species. The species diversity in organically grown wheat, spelt and rye was investigated in order to find strains suitable for sourdough fermentation. Colonies representing various morphological appearances were isolated and catalase-negative colonies were identified by mass spectrometer Microflex LT ™ MALDI-TOF. The fermentation products (lactic, acetic, formic and phenyllactic acid) were determi...

  12. An accurate description of Aspergillus niger organic acid batch fermentation through dynamic metabolic modelling.

    Science.gov (United States)

    Upton, Daniel J; McQueen-Mason, Simon J; Wood, A Jamie

    2017-01-01

    Aspergillus niger fermentation has provided the chief source of industrial citric acid for over 50 years. Traditional strain development of this organism was achieved through random mutagenesis, but advances in genomics have enabled the development of genome-scale metabolic modelling that can be used to make predictive improvements in fermentation performance. The parent citric acid-producing strain of A. niger , ATCC 1015, has been described previously by a genome-scale metabolic model that encapsulates its response to ambient pH. Here, we report the development of a novel double optimisation modelling approach that generates time-dependent citric acid fermentation using dynamic flux balance analysis. The output from this model shows a good match with empirical fermentation data. Our studies suggest that citric acid production commences upon a switch to phosphate-limited growth and this is validated by fitting to empirical data, which confirms the diauxic growth behaviour and the role of phosphate storage as polyphosphate. The calibrated time-course model reflects observed metabolic events and generates reliable in silico data for industrially relevant fermentative time series, and for the behaviour of engineered strains suggesting that our approach can be used as a powerful tool for predictive metabolic engineering.

  13. Direct fermentation of sweet sorghum juice by Clostridium acetobutylicum and Clostridium tetanomorphum to produce bio-butanol and organic acids

    Directory of Open Access Journals (Sweden)

    B. Ndaba

    2015-06-01

    Full Text Available Single- and co-culture clostridial fermentation was conducted to obtain organic alcohols and acids from sweet sorghum juice as a low cost feedstock. Different inoculum concentrations of single cultures (3, 5, 10 v/v % as well as different ratios of C. acetobutylicum to C. tetanomorphum (3:10, 10:3, 6.5:6.5, 3:3, and 10:10 v/v %, respectively were utilized for the fermentation. The maximum butanol concentration of 6.49 g/L was obtained after 96 h fermentation with 10 % v/v C. acetobutylicum as a single culture. The fermentation with 10% v/v C. tetanomorphum resulted in more than 5 g/l butyric acid production. Major organic acid concentration (lactic acid of 2.7 g/L was produced when an inoculum ratio of 6.5: 6.5 %v/v C. acetobutylicum to C. tetanomorphum was used.

  14. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  15. Content of sugar, organic acids and ethanol in fermented milk beverages obtained with different types of kombucha inoculum

    Directory of Open Access Journals (Sweden)

    Iličić Mirela D.

    2017-01-01

    Full Text Available The aim of this study was to examine the influence of different types and concentration of kombucha inoculum on content of sugar, organic acids and ethanol in the fermented beverages produced from milk of 0.9% fat content. Three different kombucha inoculums, cultivated on black tea with addition of sucrose: standard inoculum - 10% (w/w and 15% (w/w, concentrated by microfiltration- 10% (w/w and 15% (w/w, and concentrated by evaporation - 1.5% (w/w and 3.0% (w/w, were applied in the manufacture of fermented milk. Contents of lactose, galactose, glucose, fructose, organic acids, and ethanol in the kombuha fermented milk beverages were determined by the enzyme tests. It was found that the lactose content varied from 3.30 to 4.0 g/100g. All samples showed higher content glucose than fructose. The content of L-lactic acid in the samples ranged from 0.4 to 0.7 g/100g, while significantly lower level of D-lactic and acetic acid were determined in all samples of kombucha fermented milk (<0.06g/100g.[Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 46009

  16. A novel process for recovery of fermentation-derived succinic acid: process design and economic analysis.

    Science.gov (United States)

    Orjuela, Alvaro; Orjuela, Andrea; Lira, Carl T; Miller, Dennis J

    2013-07-01

    Recovery and purification of organic acids produced in fermentation constitutes a significant fraction of total production cost. In this paper, the design and economic analysis of a process to recover succinic acid (SA) via dissolution and acidification of succinate salts in ethanol, followed by reactive distillation to form succinate esters, is presented. Process simulation was performed for a range of plant capacities (13-55 million kg/yr SA) and SA fermentation titers (50-100 kg/m(3)). Economics were evaluated for a recovery system installed within an existing fermentation facility producing succinate salts at a cost of $0.66/kg SA. For a SA processing capacity of 54.9 million kg/yr and a titer of 100 kg/m(3) SA, the model predicts a capital investment of $75 million and a net processing cost of $1.85 per kg SA. Required selling price of diethyl succinate for a 30% annual return on investment is $1.57 per kg. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  18. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  19. Concentrating biomass of fermented broccoli (Brassica oleracea) and spinach (Amaranthus sp.) by ultrafiltration for source of organic acids and natural antioxidant

    Science.gov (United States)

    Aspiyanto, Susilowati, Agustine; Lotulung, Puspa D.; Maryati, Yati

    2017-11-01

    Organic acids and polyphenol from fermentation of green vegetables by Kombucha culture are novelty functional food to achieve prebiotic and natural antioxidant. Ultrafiltration (UF) mode was performed to concentrate biomass of fermented broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) at stirrer rotation speed of 200, 300 and 400 rpm, room temperature and trans membrane pressure 40 psia for 30 minutes. Based on total organic acids, experiment activity showed that the best treatment on biomass of fermented broccoli and spinach were reached at stirrer rotation speed of 400 rpm and 300 rpm, respectively. In this condition, fermented broccoli and spinach concentrates gave total acids 0.83 % and 0.81 %, total polyphenol 0.06 % and 0.11 %, reducing sugar 63.95 mg/mL and 20.54 mg/mL, total sugars 2.43 ug/mL and 2.28 ug/mL, total solids 6.42 % and 7.17 %, respectively. Compared with feed, the optimum condition on fermented spinach and broccoli concentrates increased total acids 13.33 % and 10 %, however decreased total polyphenol 34.1 % and 41 %. Identification on monomer from fermented spinach and broccoli at optimum condition on lactic acid were dominated by monomers with molecular weights (MWs) 252.19 and 252.36 Dalton (Da.), and monomer of polyphenol dominated by monomer with MWs 193.17 and 193.22 Da. and relative intensity 100 %. Fermented broccoli has potency as prebiotic, meanwhile fermented spinach has potency as anti oxidant.

  20. Downstream extraction process development for recovery of organic acids from a fermentation broth.

    Science.gov (United States)

    Bekatorou, Argyro; Dima, Agapi; Tsafrakidou, Panagiotia; Boura, Konstantina; Lappa, Katerina; Kandylis, Panagiotis; Pissaridi, Katerina; Kanellaki, Maria; Koutinas, Athanasios A

    2016-11-01

    The present study focused on organic acids (OAs) recovery from an acidogenic fermentation broth, which is the main problem regarding the use of OAs for production of ester-based new generation biofuels or other applications. Specifically, 10 solvents were evaluated for OAs recovery from aqueous media and fermentation broths. The effects of pH, solvent/OAs solution ratios and application of successive extractions were studied. The 1:1 solvent/OAs ratio showed the best recovery rates in most cases. Butyric and isobutyric acids showed the highest recovery rates (80-90%), while lactic, succinic, and acetic acids were poorly recovered (up to 45%). The OAs recovery was significantly improved by successive 10-min extractions. Alcohols presented the best extraction performance. The process using repeated extractions with 3-methyl-1-butanol led to the highest OAs recovery. However, 1-butanol can be considered as the most cost-effective option taking into account its price and availability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation

    NARCIS (Netherlands)

    Khiewwijit, R.; Keesman, K.J.; Rijnaarts, H.H.M.; Temmink, B.G.

    2014-01-01

    This work aims at exploring the feasibility of a combined process bioflocculation to concentrate sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at an HRT of 1 h and an SRT

  2. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  3. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  4. Fatty acid profile, color and lipid oxidation of organic fermented sausage during chilling storage as influenced by acid whey and probiotic strains addition

    Directory of Open Access Journals (Sweden)

    Karolina Maria Wójciak

    2015-02-01

    Full Text Available Organic fermented sausages typically spoil during long-term storage due to oxidative rancidity. The application of natural antioxidants to meat stuffing is a major practice intended to inhibit the oxidation process and color changes. This study aimed to assess the effect of two unusual starter cultures: three probiotic strains (Lactobacillus casei LOCK 0900, Lactobacillus casei LOCK 0908 and Lactobacillus paracasei LOCK 0919 and lactic acid bacteria from acid whey on model fermented sausage type products focusing on oxidative stability by measuring instrumental color (L*, a*, b* values, conjugated dienes (CD, TBARS immediately after 21 days of ripening (0 and after 90 and 180 days of refrigerated storage (4 ºC. Determination of fatty acid composition, in meat product was performed after ripening and after 180 days of storage. At the end of the storage period, the salted sausages were characterized by the same content of polyunsaturated fatty acids (PUFA compared to cured samples. The addition of acid whey and a mixture of probiotic strains to nitrite-free sausage formulation was barely able to protect lipids against oxidation in comparison to nitrite during vacuum storage. Surprisingly, the use of acid whey has an influence on the desired red-pinkish color of organic fermented sausage after ripening and after 180 days of storage period.

  5. ORGANIC ACIDS CONCENTRATION IN WINE STOCKS AFTER Saccharomyces cerevisiae FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. N. Bayraktar

    2013-04-01

    Full Text Available The biochemical constituents in wine stocks that influence the flavor and quality of wine are investigated in the paper. The tested parameters consist of volume fraction of ethanol, residual sugar, phenolic compounds, tartaric, malic, citric, lactic, acetic acids, titratable acidity and volatile acids. The wine stocks that were received from white and red grape varieties Tairov`s selection were tested. There was a correlation between titratable acidity and volatile acids in the wine stocks from white and red grape varieties. High correlation was also found between lactic and acetic acids, between volatile acids, acetic acid and sugar. It was determined that wine stocks with a high concentration of ethanol originated from those yeast strains of Saccharomyces cerevisiae, in a fermented grape must of high speed of enzyme activity. The taste of wine stocks correlated with the ratio of tartaric to malic acid. Analysis showed significant differences between the varieties of white and red wine stocks in concentrations of organic acids, phenolic compounds, residual sugar, and volume fraction of ethanol. Positive correlation was indicated for both studied groups for volatile acids and acetic acid, tartaric, malic, lactic acids and total sugar. Prospective yeast cultures with high productivity of alcohol (ethanol were selected for winemaking biotechnology.

  6. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Du, Jianjun; McGraw, Amy; Hestekin, Jamie

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function ...

  7. Modeling of Clostridium t yrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Jianjun Du; Amy McGraw; Jamie A. Hestekin

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum . A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function...

  8. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids.

    Science.gov (United States)

    Tang, A L; Shah, N P; Wilcox, G; Walker, K Z; Stojanovska, L

    2007-11-01

    The objective of this study was to enhance calcium solubility and bioavailability from calcium-fortified soymilk by fermentation with 7 strains of Lactobacillus, namely, L. acidophilus ATCC 4962, ATCC33200, ATCC 4356, ATCC 4461, L. casei ASCC 290, L. plantarum ASCC 276, and L. fermentum VRI-003. The parameters that were used are viability, pH, calcium solubility, organic acid, and biologically active isoflavone aglycone content. Calcium-fortified soymilk made from soy protein isolate was inoculated with these probiotic strains, incubated for 24 h at 37 degrees C, then stored for 14 d at 4 degrees C. Soluble calcium was measured using atomic absorption spectrophotometry (AA). Organic acids and bioactive isoflavone aglycones, including diadzein, genistein, and glycetein, were measured using HPLC. Viability of the strains in the fermented calcium-fortified soymilk was > 8.5 log(10) CFU/g after 24 h fermentation and this was maintained for 14-d storage at 4 degrees C. After 24 h, there was a significant increase (P casei ASCC 290 demonstrated the highest increase with 89.3% and 87.0% soluble calcium after 24 h, respectively. The increase in calcium solubility observed was related to lowered pH associated with production of lactic and acetic acids. Fermentation significantly increased (P < 0.05) the level of conversion of isoflavones into biologically active aglycones, including diadzein, genistein, and glycetein. Our results show that fermenting calcium-fortified soymilk with the selected probiotics can potentially enhance the calcium bioavailability of calcium-fortified soymilk due to increased calcium solubility and bioactive isoflavone aglycone enrichment.

  9. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Jianjun Du

    2014-04-01

    Full Text Available A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function of cell mass, while acetic acid production was a function of cell growth rate. Further, it was found that at high acetic acid concentrations, acetic acid was metabolized to butyric acid and that this conversion could be modeled. In batch fermentation, high butyric acid selectivity occurred at high initial cell or glucose concentrations. In continuous fermentation, decreased dilution rate improved selectivity; at a dilution rate of 0.028 h−1, the selectivity reached 95.8%. The model and experimental data showed that at total cell recycle, the butyric acid selectivity could reach 97.3%. This model could be used to optimize butyric acid production using C. tyrobutyricum in a continuous fermentation scheme. This is the first study that mathematically describes batch, steady state, and dynamic behavior of C. tyrobutyricum for butyric acid production.

  10. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    Science.gov (United States)

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  11. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L. Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    Directory of Open Access Journals (Sweden)

    Pasquale Filannino

    Full Text Available Cactus pear (Opuntia ficus-indica L. is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05 on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05 of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05 higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The

  12. Methane and organic fertilizers from wood waste and manure fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Romashkevich, I F; Karelina, G N

    1961-01-01

    Fermentation of sawdust of foliate trees by mesophyllic microflora is feasible, producing CH/sub 4/; the yield of gas is 500 cu m/ton, which surpasses that from manure and other agricultural wastes. Preliminary acid hydrolysis is unnecessary. At 5% organic matter, sawdust fermentation proceeds normally and with good yield, but 10% initial concentration of organic matter results in poor performance. Fermentation of common manure, that of sawdust and manure, or that of sawdust alone yields essentially the same gases. Fir sawdust does not ferment, but it does not stop manure or ash sawdust from fermenting if mixed with these. Fermented sawdust behaves like a fertilizer; it is beneficial to plants and crops. Nonfermented sawdust does not. Lupine N content is increased by both fermented and nonfermented sawdusts.

  13. 21 CFR 184.1685 - Rennet (animal-derived) and chymosin preparation (fermentation-derived).

    Science.gov (United States)

    2010-04-01

    ... (fermentation-derived). 184.1685 Section 184.1685 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... (animal-derived) and chymosin preparation (fermentation-derived). (a)(1) Rennet and bovine rennet are... clear solution containing the active enzyme chymosin (E.C. 3.4.23.4). It is derived, via fermentation...

  14. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation.

    Science.gov (United States)

    De Filippis, Francesca; Troise, Antonio Dario; Vitaglione, Paola; Ercolini, Danilo

    2018-08-01

    Kombucha is a traditional beverage produced by tea fermentation, carried out by a symbiotic consortium of bacteria and yeasts. Acetic Acid Bacteria (AAB) usually dominate the bacterial community of Kombucha, driving the fermentative process. The consumption of this beverage was often associated to beneficial effects for the health, due to its antioxidant and detoxifying properties. We characterized bacterial populations of Kombucha tea fermented at 20 or 30 °C by using culture-dependent and -independent methods and monitored the concentration of gluconic and glucuronic acids, as well as of total polyphenols. We found significant differences in the microbiota at the two temperatures. Moreover, different species of Gluconacetobacter were selected, leading to a differential abundance of gluconic and glucuronic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Discovery and History of Amino Acid Fermentation.

    Science.gov (United States)

    Hashimoto, Shin-Ichi

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  16. Simultaneous analysis of carbohydrates and organic acids by HPLC-DAD-RI for monitoring goat's milk yogurts fermentation.

    Science.gov (United States)

    da Costa, Marion Pereira; Frasao, Beatriz da Silva; Lima, Bruno Reis Carneiro da Costa; Rodrigues, Bruna Leal; Conte Junior, Carlos Adam

    2016-05-15

    During yogurt manufacture, the lactose fermentation and organic acid production can be used to monitor the fermentation process by starter cultures and probiotic bacteria. In the present work, a simple, sensitive and reproducible high-performance liquid chromatography with dual detectors, diode array detector and refractive index was validated by simultaneous analysis of carbohydrates and organic acids in goat milk yogurts. In addition, pH and bacterial analysis were performed. Separation of all the compounds was performed on an Aminex HPX-87H column (300×7.8 mm, 9 µm) utilizing a 3 mmol L(-1) sulfuric acid aqueous mobile phase under isocratic conditions. Lactose, glucose, galactose, citric, lactic and formic acids were used to evaluate the following performance parameters: selectivity, linearity, precision, limit of detection (LOD), limit of quantification (LOQ), decision limits (CCα), detection capabilities (CCβ), recovery and robustness. For the method application a six goat milk yogurts were elaborated: natural, probiotic, prebiotic, symbiotic, cupuassu fruit pulp, and probiotic with cupuassu fruit pulp. The validated method presented an excellent selectivity with no significant matrix effect, and a broad linear study range with coefficients of determination higher than 0.995. The relative standard deviation was lower than 10% under repeatability and within-laboratory reproducibility conditions for the studied analytes. The LOD of the method was defined from 0.001 to 0.003 µg g(-1), and the LOQ from 0.003 to 0.013 µg g(-1). The CCα was ranged from 0.032 to 0.943 µg g(-1), and the CCβ from 0.053 to 1.604 µg g(-1). The obtained recovery values were from 78% to 119%. In addition, the method exhibited an appropriate robustness for all parameter evaluated. Base in our data, it was concluded that the performance parameters demonstrated total method adequacy for the detection and quantification of carbohydrates and organic acids in goat milk yogurts. The

  17. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    Science.gov (United States)

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  18. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  19. Electron donation characteristics and interplays of major volatile fatty acids from anaerobically fermented organic matters in bioelectrochemical systems.

    Science.gov (United States)

    Zhang, Zhiqiang; Li, Jiamiao; Hao, Xiaoxuan; Gu, Zaoli; Xia, Siqing

    2018-02-23

    Anaerobic fermentation liquid of waste organic matters (WOMs) is rich in volatile fatty acids (VFAs), which can be treated with bioelectrochemical systems for both electrical energy recovery and organics removal. In this work, four major VFAs in the fermented WOMs supernatant were selected to examine their electron donation characteristics for power output and their complicated interplays in microbial fuel cells (MFCs). Results indicated a priority sequence of acetate, propionate, n-butyrate and i-valerate when served as the sole electron donor for electricity generation. The MFC solely fed with acetate showed the highest coulombic efficiency and power density, and the longest period for electricity production. When two of the VFAs were added with equal proportion, both acids contributed positively to electricity generation, while the selective or competitive use of substrates by diverse microorganisms behaved as an antagonism effect to prolong the degradation time of each VFA. When acetate and propionate, the preferable substrates for electricity generation, were mixed in various proportions, their large concentration difference led to improved electrical performance but decreased organic removal rate.

  20. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Surahmanto

    2012-09-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermented with some types of microorganisms at different temperatures. The experiment was designed as Split Plot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and the sub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis, Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productions was in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L. fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Control treatment at 35°C (0.37 g/kg DM.

  1. SOLID AND LIQUID PINEAPPLE WASTE UTILIZATION FOR LACTIC ACID FERMENTATION USING Lactobacillus delbrueckii

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2012-01-01

    Full Text Available The liquid and solid  pineapple wastes contain mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for fermentation to produce organic acid. Recently, lactic acid has been considered to be an important raw material for production of biodegradable lactate polymer. The experiments were  carried out in batch fermentation using  the  liquid and solid pineapple wastes to produce lactic acid. The anaerobic fermentation of lactic acid were performed at 40 oC, pH 6, 5% inocolum and  50 rpm. Initially  results show that the liquid pineapple waste by  using Lactobacillus delbrueckii can be used as carbon source  for lactic acid fermentation. The production of lactic acid  are found to be 79 % yield, while only  56% yield was produced by using solid waste. 

  2. Isolation of a lactic acid bacterium and yeast consortium from a fermented material of Ulva spp. (Chlorophyta).

    Science.gov (United States)

    Uchida, M; Murata, M

    2004-01-01

    Microbiota in a fermented culture of Ulva spp. was examined with the objective to characterize the type of fermentation and to obtain starter microbes for performing seaweed fermentation. Fermented Ulva spp. cultures which were obtained and transferred in a laboratory were examined for their microbiota. With phenotypic characterization and phylogenetic analysis based on rRNA gene nucleotide sequences, the predominant micro-organisms were identified as Lactobacillus brevis, Debaryomyces hanseni var. hansenii, and a Candida zeylanoides-related specimen, suggesting that the observed fermentation can be categorized to lactic acid and ethanol fermentation. Inoculating the individually cultured cell suspensions of the three kinds of micro-organisms with cellulase induced the fermentation in various kinds of seaweed. A microbial consortium composed of a lactic acid bacterium, L. brevis, and yeasts, D. hansenii and a C. zeylanoides-related specimen, were predominant in a fermented culture of Ulva spp. Lactic acid and ethanol fermentation could be induced in various kinds of seaweed by adding this microbial consortium along with cellulase. This is the first report of lactic acid and ethanol fermentation in seaweed, which is expected to provide a new material for food and dietary applications.

  3. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  4. Novel Method of Lactic Acid Production by Electrodialysis Fermentation

    OpenAIRE

    Hongo, Motoyoshi; Nomura, Yoshiyuki; Iwahara, Masayoshi

    1986-01-01

    In lactic acid fermentation by Lactobacillus delbrueckii, the produced lactic acid affected the lactic acid productivity. Therefore, for the purpose of alleviating this inhibitory effect, an electrodialysis fermentation method which can continuously remove produced lactic acid from the fermentation broth was applied to this fermentation process. As a result, the continuation of fermentation activity was obtained, and the productivity was three times higher than in non-pH-controlled fermentati...

  5. Volatile Organic Compounds in Naturally Fermented Milk and Milk Fermented Using Yeasts, Lactic Acid Bacteria and Their Combinations As Starter Cultures

    Directory of Open Access Journals (Sweden)

    Bennie C. Viljoen

    2007-01-01

    Full Text Available The volatile organic compounds present in 18 Zimbabwean naturally fermented milk (amasi samples and those produced by various yeasts, lactic acid bacteria (LAB and yeast/ LAB combinations were determined using headspace gas chromatography. The yeast strains used were: Candida kefyr 23, C. lipolytica 57, Saccharomyces cerevisiae 71, C. lusitaniae 68, C. tropicalis 78, C. lusitaniae 63, C. colliculosa 41, S. dairenensis 32, and Dekkera bruxellensis 43, and were coded Y1 to Y9, respectively. The LAB strains used were Lactococcus lactis subsp. lactis Lc39, L. lactis subsp. lactis Lc261, Lactobacillus paracasei Lb11, and L. lactis subsp. lactis biovar. diacetylactis C1, and were coded B1 to B4, respectively. Some of the volatile organic compounds found in amasi were acetaldehyde, ethanol, acetone, 2-methyl propanal, 2-methyl-1-propanol and 3-methyl-1-butanol. However, the levels of volatile organic compounds in the naturally fermented milk (NFM samples varied from one sample to another, with acetaldehyde ranging from 0.1–18.4 ppm, 3-methyl butanal from <0.1–0.47 ppm and ethanol from 39.3–656 ppm. The LAB/C. kefyr 23 (B/Y1 co-cultures produced significantly (p<0.05 higher levels of acetaldehyde and ethanol than the levels found in the NFM. The acetaldehyde levels in the B/Y1 samples ranged from 26.7–87.7 ppm, with L. lactis subsp. lactis biovar. diacetylactis C1 (B4 producing the highest level of acetaldehyde in combination with C. kefyr 23 (Y1. Using principal component analysis (PCA, most of the NFM samples were grouped together with single and co-cultures of Lc261, Lb11 and the non-lactose fermenting yeasts, mainly because of the low levels of ethanol and similar levels of 3-methyl butanal. Chromatograms of amasi showed prominent peak of methyl aldehydes and their alcohols including 3-methyl-butanal and 3-methyl-butanol, suggesting that these compounds are important attributes of Zimbabwean naturally fermented milk.

  6. The effect of SO2 on the production of ethanol, acetaldehyde, organic acids, and flavor volatiles during industrial cider fermentation.

    Science.gov (United States)

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-05-21

    SO(2) is widely used in cider fermentation but also in other alcoholic beverages such as wine. Although the authorized limit is 200 ppm total SO(2), the International Organizations recommend its total elimination or at least reduction due to health concerns. Addition of SO(2) to apple juice at levels frequently used in industrial cidermaking (100 mg/L) induced significantly higher acetaldehyde production by yeast than that obtained without SO(2). Although the practical implications of acetaldehyde evolution under cidermaking conditions has been overcome by research and few data are available, this compound reached levels in two 2000 L bioreactors that may have prevented the occurrence of simultaneous alcoholic and malolactic fermentation. It was observed that malolactic fermentation had a positive effect promoting reduction of acetaldehyde levels in cider fermented with juice, SO(2)-treated or not. The addition of SO(2) clearly delayed malolactic fermentation comparing to the control, affecting not the onset of the malolactic fermentation but the rate of malic acid degradation. This compound, however, had a stimulatory effect on alcoholic fermentation.

  7. Lactic acid fermentation of crude sorghum extract

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, W.A.; Lee, Y.Y.; Anthony, W.B.

    1980-04-01

    Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7% (w/v) total sugar was completed in 60-80 hours by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g/liter per hour. Under limited medium supplementation the lactic acid yield was lowered to 67%. The fermented ammoniated product contained over eight times as much equivalent crude protein (N x 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately described the fermentation process. 15 references.

  8. Aeration-Controlled Formation of Acid in Heterolactic Fermentations

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens

    1994-01-01

    fermentation processes should be analyzed as fed-batch fermentations with oxygen as the limiting substrate. Addition of fructose in limited amounts leads to the formation of one half mole of acetic acid for each mole fructose, thus offering an alternative mechanism for controlling acetic acid formation.......Controlled aeration of Leuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid, a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited...... by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen...

  9. Production of organic acids in an immobilized cell reactor using ...

    African Journals Online (AJOL)

    Immobilized cell reactor (ICR) was developed as a novel bioreactor to convert hydrolyzed sugars to organic acids. Sugar fermentation by Propionibacterium acid-propionici entraped by calcium alginate was carried out in continuous mode to produce propionic and acetic acids. In continuous fermentation, more than 90 ...

  10. Lactic acid fermentation of cassava dough into agbelima.

    Science.gov (United States)

    Amoa-Awua, W K; Appoh, F E; Jakobsen, M

    1996-08-01

    The souring of cassava dough during fermentation into the fermented cassava meal, agbelima, was investigated. Four different types of traditional inocula were used to ferment the dough and increases in titrable acidity expressed as lactic acid from 0.31-0.38 to 0.78-0.91% (w/w) confirmed the fermentation to be a process of acidification. The microflora of all inocula and fermenting dough contained high counts of lactic acid bacteria, 10(8)-10(9) cfu/g in all inocula and 10(7)-10(8), 10(8)-10(9) and 10(9) cfu/g at 0, 24 and 48 h in all fermentations. Lactobacillus plantarum was the dominant species of lactic acid bacteria during all types of fermentation accounting for 51% of 171 representative isolates taken from various stages of fermentation. Other major lactic acid bacteria found were Lactobacillus brevis, 16%, Leuconostoc mesenteroides, 15% and some cocci including Streptococcus spp. whose numbers decreased with fermentation time. The lactic acid bacteria were responsible for the souring of agbelima through the production of lactic acid. All L. plantarum, L. brevis and L. mesenteroides isolates examined demonstrated linamarase as well as other enzymatic activities but did not possess tissue degrading enzymes like cellulase, pectin esterase and polygalacturonase. The aroma profile of agbelima did not vary with the type of inoculum used and in all samples the build-up of aroma compounds were dominated by a non-identified low molecular weight alcohol, 1-propanol, isoamyl alcohol, ethyl acetate, 3-methyl-1-butanol and acetoin. Substantial reductions occurred in the levels of cyanogenic compounds present in cassava during fermentation into agbelima and detoxification was enhanced by the use of inoculum.

  11. Yeast Derived LysA2 Can Control Bacterial Contamination in Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Jun-Seob Kim

    2018-05-01

    Full Text Available Contamination of fuel-ethanol fermentations continues to be a significant problem for the corn and sugarcane-based ethanol industries. In particular, members of the Lactobacillaceae family are the primary bacteria of concern. Currently, antibiotics and acid washing are two major means of controlling contaminants. However, antibiotic use could lead to increased antibiotic resistance, and the acid wash step stresses the fermenting yeast and has limited effectiveness. Bacteriophage endolysins such as LysA2 are lytic enzymes with the potential to contribute as antimicrobials to the fuel ethanol industries. Our goal was to evaluate the potential of yeast-derived LysA2 as a means of controlling Lactobacillaceae contamination. LysA2 intracellularly produced by Pichia pastoris showed activity comparable to Escherichia coli produced LysA2. Lactic Acid Bacteria (LAB with the A4α peptidoglycan chemotype (L-Lys-D-Asp crosslinkage were the most sensitive to LysA2, though a few from that chemotype were insensitive. Pichia-expressed LysA2, both secreted and intracellularly produced, successfully improved ethanol productivity and yields in glucose (YPD60 and sucrose-based (sugarcane juice ethanol fermentations in the presence of a LysA2 susceptible LAB contaminant. LysA2 secreting Sacharomyces cerevisiae did not notably improve production in sugarcane juice, but it did control bacterial contamination during fermentation in YPD60. Secretion of LysA2 by the fermenting yeast, or adding it in purified form, are promising alternative tools to control LAB contamination during ethanol fermentation. Endolysins with much broader lytic spectrums than LysA2 could supplement or replace the currently used antibiotics or the acidic wash.

  12. Improving bioavailability of fruit wastes using organic acid: An exploratory study of biomass pretreatment for fermentation

    International Nuclear Information System (INIS)

    Saha, Shouvik; Kurade, Mayur B.; El-Dalatony, Marwa M.; Chatterjee, Pradip K.; Lee, Dae Sung; Jeon, Byong-Hun

    2016-01-01

    Highlights: • Maximum sugar recovery was achieved with 100 °C/1 h treatment in 0.2 M acetic acid. • C/N ratios (41–47) were retained in all FPWs after the acetic acid treatment. • Combined severity (−0.83) of acetic acid enhanced the bioavailability of the FPWs. • Acetic acid pretreatment is advantageous over mineral acid to curtail sugar loss. • Estimated methane yields are promising for the industrial feasibility. - Abstract: Maximizing the bioavailability of fermentable biomass components is a key challenge in biomass pretreatment due to the loss of sugars during conventional pretreatment approaches. Pretreatment of fruit peels and wastes (FPWs) with dilute acetic acid assisted in maximizing sugar recovery. Optimized conditions (0.2 M acetic acid, 100 °C, 1 h) at 10% substrate loading resulted in enhanced sugar recovery from banana peels (99.9%), pineapple wastes (99.1%), grape pomace (98.8%), and orange peels (97.9%). These high sugar recoveries retained the high C/N ratios (41–47) suitable for effective bioenergy production through the fermentation of these pretreated biomasses. Scanning electron microscopy (SEM) indicated considerable disruption of biomass structural integrity during acetic acid treatment, enhancing the surface area available for better microbial attachment. Fourier transform infrared spectroscopy (FTIR) showed that the acetic acid pretreatment yielded only minor changes to the functional groups in the biomasses, strongly suggesting minimal loss of fermentable sugars. Thus, acetic acid pretreatment aids in enhancing the bioavailability of fermentable sugars from these FPWs biomass, enabling improvements in bioenergy production.

  13. Investigating on the fermentation behavior of six lactic acid bacteria strains in barley malt wort reveals limitation in key amino acids and buffer capacity.

    Science.gov (United States)

    Nsogning, Sorelle Dongmo; Fischer, Susann; Becker, Thomas

    2018-08-01

    Understanding lactic acid bacteria (LAB) fermentation behavior in malt wort is a milestone towards flavor improvement of lactic acid fermented malt beverages. Therefore, this study aims to outline deficiencies that may exist in malt wort fermentation. First, based on six LAB strains, cell viability and vitality were evaluated. Second, sugars, organic acids, amino acids, pH value and buffering capacity (BC) were monitored. Finally, the implication of key amino acids, fructose and wort BC on LAB growth was determined. Short growth phase coupled with prompt cell death and a decrease in metabolic activity was observed. Low wort BC caused rapid pH drop with lactic acid accumulation, which conversely increased the BC leading to less pH change at late-stage fermentation. Lactic acid content (≤3.9 g/L) was higher than the reported inhibitory concentration (1.8 g/L). Furthermore, sugars were still available but fructose and key amino acids lysine, arginine and glutamic acid were considerably exhausted (≤98%). Wort supplementations improved cell growth and viability leading to conclude that key amino acid depletion coupled with low BC limits LAB growth in malt wort. Then, a further increase in organic acid reduces LAB viability. This knowledge opens doors for LAB fermentation process optimization in malt wort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of micro-organism and particle size on fermentation of ...

    African Journals Online (AJOL)

    Aziwo Niba

    2013-06-26

    Jun 26, 2013 ... fermentation for pH, sugar and organic acids analysis. .... performance liquid chromatography (HPLC) according to the ... are the sums of maltose, glucose and fructose concentrations. n=number of observations per mean.

  15. Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice.

    Science.gov (United States)

    Cerrillo, I; Fernández-Pachón, M S; Collado-González, J; Escudero-López, B; Berná, G; Herrero-Martín, G; Martín, F; Ferreres, F; Gil-Izquierdo, A

    2015-06-01

    The fermentation of fruit produces significant changes in their nutritional composition. An orange beverage has been obtained from the controlled alcoholic fermentation and thermal pasteurization of orange juice. A study was performed to determine the influence of both processes on its amino acid profile. UHPLC-QqQ-MS/MS was used for the first time for analysis of orange juice samples. Out of 29 amino acids and derivatives identified, eight (ethanolamine, ornithine, phosphoethanolamine, α-amino-n-butyric acid, hydroxyproline, methylhistidine, citrulline, and cystathionine) have not previously been detected in orange juice. The amino acid profile of the orange juice was not modified by its processing, but total amino acid content of the juice (8194 mg/L) was significantly increased at 9 days of fermentation (13,324 mg/L). Although the pasteurization process produced partial amino acid degradation, the total amino acid content was higher in the final product (9265 mg/L) than in the original juice, enhancing its nutritional value.

  16. Metabolic Engineering of Yeast to Produce Fatty Acid-derived Biofuels: Bottlenecks and Solutions

    Directory of Open Access Journals (Sweden)

    Jiayuan eSheng

    2015-06-01

    Full Text Available Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles.

  17. Ultrasonic Monitoring of the Progress of Lactic Acid Fermentation

    Science.gov (United States)

    Masuzawa, Nobuyoshi; Kimura, Akihiro; Ohdaira, Etsuzo

    2003-05-01

    Promotion of lactic acid fermentation by ultrasonic irradiation has been attempted. It is possible to determine the progress of fermentation and production of a curd, i.e., yoghurt and or kefir, by measuring acidity using a pH meter. However, this method is inconvenient and indirect for the evaluation of the progress of lactic acid fermentation under anaerobic condition. In this study, an ultrasonic monitoring method for evaluating the progress of lactic acid fermentation was examined.

  18. Acidic organic compounds in beverage, food, and feed production.

    Science.gov (United States)

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  19. Effect of micro-organism and particle size on fermentation of ...

    African Journals Online (AJOL)

    Aziwo Niba

    2013-06-26

    Jun 26, 2013 ... Full Length Research Paper. Effect of micro-organism and particle size on ... fermentation for pH, sugar and organic acids analysis. Significant reductions in the pH of maize and sorghum .... Raw sorghum was milled in a hammer mill to pass through a 3 mm screen while equal quantities of raw maize were ...

  20. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    Science.gov (United States)

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    Science.gov (United States)

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Characterization of Phytochemicals and Antioxidant Activities of Red Radish Brines during Lactic Acid Fermentation

    Directory of Open Access Journals (Sweden)

    Pu Jing

    2014-07-01

    Full Text Available Red radish (Raphanus L. pickles are popular appetizers or spices in Asian-style cuisine. However, tons of radish brines are generated as wastes from industrial radish pickle production. In this study, we evaluated the dynamic changes in colour properties, phenolics, anthocyanin profiles, phenolic acid composition, flavonoids, and antioxidant properties in radish brines during lactic acid fermentation. The results showed that five flavonoids detected were four anthocyanins and one kaempferol derivative, including pelargonidin-3-digluoside-5-glucoside derivatives acylated with p-coumaric acid, ferulic acid, p-coumaric and manolic acids, or ferulic and malonic acids. Amounts ranged from 15.5–19.3 µg/mL in total monomeric anthocyanins, and kaempferol-3,7-diglycoside (15–30 µg/mL. 4-Hydroxy-benzoic, gentisic, vanillic, syringic, p-coumaric, ferulic, sinapic and salicylic acids were detected in amounts that varied from 70.2–92.2 µg/mL, whereas the total phenolic content was 206–220 µg/mL. The change in colour of the brine was associated with the accumulation of lactic acid and anthocyanins. The ORAC and Fe2+ chelation capacity of radish brines generally decreased, whereas the reducing power measured as FRAP values was increased during the fermentation from day 5 to day 14. This study provided information on the phytochemicals and the antioxidative activities of red radish fermentation waste that might lead to further utilization as nutraceuticals or natural colorants.

  3. Fermentation of Agave tequilana juice by Kloeckera africana: influence of amino-acid supplementations.

    Science.gov (United States)

    Valle-Rodríguez, Juan Octavio; Hernández-Cortés, Guillermo; Córdova, Jesús; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María

    2012-02-01

    This study aimed to improve the fermentation efficiency of Kloeckera africana K1, in tequila fermentations. We investigated organic and inorganic nitrogen source requirements in continuous K. africana fermentations fed with Agave tequilana juice. The addition of a mixture of 20 amino-acids greatly improved the fermentation efficiency of this yeast, increasing the consumption of reducing sugars and production of ethanol, compared with fermentations supplemented with ammonium sulfate. The preference of K. africana for each of the 20 amino-acids was further determined in batch fermentations and we found that asparagine supplementation increased K. africana biomass production, reducing sugar consumption and ethanol production (by 30, 36.7 and 45%, respectively) over fermentations supplemented with ammonium sulfate. Therefore, asparagine appears to overcome K. africana nutritional limitation in Agave juice. Surprisingly, K. africana produced a high concentration of ethanol. This contrasts to poor ethanol productivities reported for other non-Saccharomyces yeasts indicating a relatively high ethanol tolerance for the K. africana K1 strain. Kloeckera spp. strains are known to synthesize a wide variety of volatile compounds and we have shown that amino-acid supplements influenced the synthesis by K. africana of important metabolites involved in the bouquet of tequila. The findings of this study have revealed important nutritional limitations of non-Saccharomyces yeasts fermenting Agave tequilana juice, and have highlighted the potential of K. africana in tequila production processes.

  4. [Modeling of lactic acid fermentation of leguminous plant juices].

    Science.gov (United States)

    Shurkhno, R A; Validov, Sh Z; Boronin, A M; Naumova, R P

    2006-01-01

    Lactic acid fermentation of leguminous plant juices was modeled to provide a comparative efficiency assessment of the previously selected strains of lactic acid bacteria as potential components of starter cultures. Juices of the legumes fodder galega, red clover, and alfalfa were subjected to lactic acid fermentation in 27 variants of experiment. Local strains (Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, and Lactobacillus sp. RS 4) and the collection strain Lactobacillus plantarum BS 933 appeared the most efficient (with reference to the rate and degree of acidogenesis, ratio of lactic and acetic acids, and dynamics of microflora) in fermenting fodder galega juice; Lactobacillus sp. RS 1, Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, Lactobacillus sp. RS 4, and L. plantarum BS 933 were the most efficient for red clover juice. Correction of alfalfa juice fermentation using the tested lactic acid bacterial strains appeared inefficient, which is explainable by its increased protein content and a low level of the acids produced during fermentation.

  5. Energy densification of biomass-derived organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  6. Fumaric acid production by fermentation

    NARCIS (Netherlands)

    Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Van Gulik, W.M.; Van der Wielen, L.A.M.

    2008-01-01

    Abstract The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid

  7. Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains.

    Science.gov (United States)

    Ricci, Annalisa; Cirlini, Martina; Levante, Alessia; Dall'Asta, Chiara; Galaverna, Gianni; Lazzi, Camilla

    2018-03-01

    In this study we explored, for the first time, the lactic acid fermentation of elderberry juice (EJ). A total of 15 strains isolated from dairy and plant matrices, belonging to L. plantarum, L. rhamnosus and L. casei, were used for fermentations. The volatile profile of started and unstarted EJ was characterized by HS-SPME/GC-MS technique after 48h of fermentation and 12days of storage at 4°C. All L. plantarum and L. rhamnosus strains exhibited a good capacity of growth while not all L. casei strains showed the same ability. The aromatic profile of fermented juices was characterized by the presence of 82 volatile compounds pertaining to different classes: alcohols, terpenes and norisoprenoids, organic acids, ketones and esters. Elderberry juice fermented with L. plantarum strains showed an increase of total volatile compounds after 48h while the juices fermented with L. rhamnosus and L. casei exhibited a larger increase after the storage. The highest concentration of total volatile compounds were observed in EJ fermented with L. plantarum 285 isolated from dairy product. Ketones increased in all fermented juices both after fermentation and storage and the most concentrated were acetoin and diacetyl. The organic acids were also affected by lactic acid fermentation and the most abundant acids detected in fermented juices were acetic acid and isovaleric acid. Hexanol, 3-hexen-1-ol (Z) and 2-hexen-1-ol (E) were positively influenced during dairy lactic acid bacteria strains fermentation. The most represented esters were ethyl acetate, methyl isovalerate, isoamyl isovalerate and methyl salicylate, all correlated with fruit notes. Among terpenes and norisoprenoids, β-damascenone resulted the main representative with its typical note of elderberry. Furthermore, coupling obtained data with multivariate statistical analyses, as Principal Component Analysis (PCA) and Classification Trees (CT), it was possible to relate the characteristic volatile profile of samples with

  8. Improvement of Xylose Fermentation Ability under Heat and Acid Co-Stress in Saccharomyces cerevisiae Using Genome Shuffling Technique

    Directory of Open Access Journals (Sweden)

    Kentaro Inokuma

    2017-12-01

    Full Text Available Xylose-assimilating yeasts with tolerance to both fermentation inhibitors (such as weak organic acids and high temperature are required for cost-effective simultaneous saccharification and cofermentation (SSCF of lignocellulosic materials. Here, we demonstrate the construction of a novel xylose-utilizing Saccharomyces cerevisiae strain with improved fermentation ability under heat and acid co-stress using the drug resistance marker-aided genome shuffling technique. The mutagenized genome pools derived from xylose-utilizing diploid yeasts with thermotolerance or acid tolerance were shuffled by sporulation and mating. The shuffled strains were then subjected to screening under co-stress conditions of heat and acids, and the hybrid strain Hyb-8 was isolated. The hybrid strain displayed enhanced xylose fermentation ability in comparison to both parental strains under co-stress conditions of heat and acids. Hyb-8 consumed 33.1 ± 0.6 g/L xylose and produced 11.1 ± 0.4 g/L ethanol after 72 h of fermentation at 38°C with 20 mM acetic acid and 15 mM formic acid. We also performed transcriptomic analysis of the hybrid strain and its parental strains to screen for key genes for multiple stress tolerances. We found that 13 genes, including 5 associated with cellular transition metal ion homeostasis, were significantly upregulated in Hyb-8 compared to levels in both parental strains under co-stress conditions. The hybrid strain Hyb-8 has strong potential for cost-effective SSCF of lignocellulosic materials. Moreover, the transcriptome data gathered in this study will be useful for understanding the mechanisms of multiple tolerance to high temperature and acids in yeast and facilitate the development of robust yeast strains for SSCF.

  9. Plant-based Paste Fermented by Lactic Acid Bacteria and Yeast: Functional Analysis and Possibility of Application to Functional Foods

    Directory of Open Access Journals (Sweden)

    Shinsuke Kuwaki

    2012-01-01

    Full Text Available A plant-based paste fermented by lactic acid bacteria and yeast (fermented paste was made from various plant materials. The paste was made of fermented food by applying traditional food-preservation techniques, that is, fermentation and sugaring. The fermented paste contained major nutrients (carbohydrates, proteins, and lipids, 18 kinds of amino acids, and vitamins (vitamin A, B 1 B 2 , B 6 , B 12 , E, K, niacin, biotin, pantothenic acid, and folic acid. It contained five kinds of organic acids, and a large amount of dietary fiber and plant phytochemicals. Sucrose from brown sugar, used as a material, was completely resolved into glucose and fructose. Some physiological functions of the fermented paste were examined in vitro. It was demonstrated that the paste possessed antioxidant, antihypertensive, antibacterial, anti-inflammatory, anti-allergy and anti-tyrosinase activities in vitro. It was thought that the fermented paste would be a helpful functional food with various nutrients to help prevent lifestyle diseases.

  10. Separation and recovery of organic acids from fermented kitchen ...

    African Journals Online (AJOL)

    Organic acids produced from anaerobic digestion of kitchen waste were recovered using a new integrated method which consisted of freezing and thawing, centrifugation, filtration and evaporation. The main organic acid produced was lactic acid (98%). After the freezing and thawing process, 73% of the total suspended ...

  11. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development...... of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode....... At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net...

  12. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes.

    Science.gov (United States)

    Wu, Yuanyuan; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-09-01

    This work focused on the lactic acid production from acidogenic fermentation of fruit and vegetable wastes treatment. A long term completely stirred tank reactor (CSTR) lasting for 50 days was operated at organic loading rate (OLR) of 11 gVS/(L d) and sludge retention time (SRT) of 3 days with pH controlled at 4.0 (1-24 day) and 5.0 (25-50 day). The results indicated that high amount of approximately 10-20 g/L lactic acid was produced at pH of 4.0 and the fermentation type converted from coexistence of homofermentation and heterofermentation into heterofermentation. At pH of 5.0, the hydrolysis reaction was improved and the total concentration of fermentation products increased up to 29.5 g COD/L. The heterofermentation was maintained, however, bifidus pathway by Bifidobacterium played an important role. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age

    DEFF Research Database (Denmark)

    Bering, S.; Suchdev, S.; Sjoltov, L.

    2006-01-01

    Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, and formation of soluble complexes of Fe and organic acids. We tested the effect of an oat gruel fermented with Lactobacillus plantarum 299v on non-haem Fe...... absorption from a low-Fe bioavailability meal compared with a pasteurised, fermented oat gruel and non-fermented oat gruels. In a cross-over trial twenty-four healthy women with a mean age of 25 (sd 4) years were served (A) fermented gruel, (B) pasteurised fermented gruel, (C) pH-adjusted non-fermented gruel......, and (D) non-fermented gruel with added organic acids. The meals were extrinsically labelled with Fe-55 or Fe-59 and consumed on 4 consecutive days, for example, in the order ABBA or BAAB followed by CDDC or DCCD in a second period. Fe absorption was determined from isotope activities in blood samples...

  14. Production of L(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy

    NARCIS (Netherlands)

    Pol, van der Edwin C.; Eggink, Gerrit; Weusthuis, Ruud A.

    2016-01-01

    Background: Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of L(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate

  15. Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

    International Nuclear Information System (INIS)

    Pham, Thi Thu Huong; Kim, Tae Hyun; Um, Byung Hwan

    2015-01-01

    Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l -1 acetic acid and 5.0 g l -1 ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

  16. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    Directory of Open Access Journals (Sweden)

    Octavian BASTON

    2012-12-01

    Full Text Available Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regarding lactic acid yields andproductivity. After 48 hours of chicory and Jerusalem artichhoke hydrolysates fermentation, from all the studied strains, Lb2 produced the highest lactic acid yield (0.97%. Lb2 produced after 48 hours of fermentation the lowest pH value of 3.45±0.01. Lb2 showed greater lactic acid productivity compared to the other studied lactic acid bacteria, the highest values, 0.13 g·L-1·h-1fromJerusalem artichoke hydrolysate and 0.11g·L-1·h-1 from chicory hydrolysate, being produced after 24 hours of fermentation.

  17. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    Four different pretreatments with and without addition of low concentration organic acids were carried out on corn stover at 195 °C for 15 min. The highest xylan recovery of 81.08% was obtained after pretreatment without acid catalyst and the lowest of 58.78% after pretreatment with both acetic a...... material was obtained following pretreatment at 195 °C for 15 min with acetic acid employed. The estimated total ethanol production was 241.1 kg/ton raw material by assuming fermentation of both C-6 and C-5, and 0.51 g ethanol/g sugar....... were performed on liquors obtained from all pretreatments and there were no inhibition effect found in any of the liquors. Simultaneous saccharification and fermentation (SSF) of water-insoluble solids (WIS) showed that a high ethanol yield of 88.7% of the theoretical based on glucose in the raw...

  18. Batch tests of a microbial fuel cell for electricity generation from spent organic extracts from hydrogenogenic fermentation of organic solid wastes

    International Nuclear Information System (INIS)

    Carmona-Martinez, A.; Solorza-Feria, O.; Poggi-Varaldo, H. M.

    2009-01-01

    Hydrogenogenic fermentative processes of organic solid wastes produce spent solids that contain substantial concentrations of low molecular weight organic acids and solvents. The spent solids can be extracted with wastewater to give a stream containing concentrated, degradable organic compounds. (Author)

  19. The possibility of lactic acid fermentation in the triticale stillage

    Directory of Open Access Journals (Sweden)

    MILICA MARKOVIĆ

    2011-06-01

    Full Text Available Triticale stillage is a by-product of bioethanol production. A research study was conducted in order to see if triticale stillage is adequate for lactic acid bacteria growth and lactic acid fermentation. Three Lactobacillus strains: Lactobacillus fermentum NRRL-B-75624, Lactobacillus fermentum PL-1, and Lactobacillus plantarum PL-4 were taken into consideration. Lactic acid fermentation was monitored by measuring pH value and titratable acidity. Lactobacillus fermentum PL-1 had the greatest decrease of pH values and increase of titratable acidity so it was chosen for future work. During the research, it was investigated how nutrient composition of triticale stillage and CaCO3 can influence lactic acid fermentation and CaCO3 role in cell protection. The nutrient composition of triticale stillage was satisfactory for lactic acid fermentation. The addition of CaCO3 helped in lactic acid fermentation. Although the titratable acidity in the samples with CaCO3 was lower than in the samples without CaCO3, the number of viable cells was higher for the samples with CaCO3, which showed that CaCO3 protected lactic acid cells from inhibition by lactic acid.

  20. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  1. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows.

    Science.gov (United States)

    Palakawong Na Ayudthaya, Susakul; van de Weijer, Antonius H P; van Gelder, Antonie H; Stams, Alfons J M; de Vos, Willem M; Plugge, Caroline M

    2018-01-01

    Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial communities were compared using 16S ribosomal ribonucleic acid gene amplicon pyrosequencing. In both reactors, lactate was the main initial product and was associated with growth of Streptococcus spp. (86% average relative abundance). Subsequently, lactate served as a substrate for secondary fermentations. In the reactor inoculated with rumen fluid from the Dutch cow, the relative abundance of Bacillus and Streptococcus increased from the start, and lactate, acetate, formate and ethanol were produced. From day 1.33 to 2, lactate and acetate were degraded, resulting in butyrate production. Butyrate production coincided with a decrease in relative abundance of Streptococcus spp. and increased relative abundances of bacteria of other groups, including Parabacteroides , Sporanaerobacter , Helicobacteraceae, Peptostreptococcaceae and Porphyromonadaceae. In the reactor with the Thai cow inoculum, Streptococcus spp. also increased from the start. When lactate was consumed, acetate, propionate and butyrate were produced (day 3-4). After day 3, bacteria belonging to five dominant groups, Bacteroides, Pseudoramibacter _ Eubacterium , Dysgonomonas , Enterobacteriaceae and Porphyromonadaceae, were detected and these showed significant positive correlations with acetate, propionate and butyrate levels. The complexity of rumen microorganisms with high adaptation capacity makes rumen fluid a suitable source to convert organic waste into valuable products without the addition of hydrolytic enzymes. Starch waste is a source for organic acid production, especially lactate.

  2. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    Science.gov (United States)

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  3. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    Science.gov (United States)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  4. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    Science.gov (United States)

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  5. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste.

    Science.gov (United States)

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.

  6. Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation.

    Science.gov (United States)

    Dai, Jian-Ying; Ma, Lin-Hui; Wang, Zhuang-Fei; Guan, Wen-Tian; Xiu, Zhi-Long

    2017-03-01

    Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.

  7. Lactic acid fermentation from refectory waste: Factorial design analysis

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... method. At the end of the fermentation process, lactic acid exists in the complex medium of fermentation broth that contains whey proteins, biomass, salts and other impurities. Lactic acid is then recovered from this complex medium. Since the high cost of lactic acid purification process limits the utilization of ...

  8. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  9. Statistical Optimisation of Fermentation Conditions for Citric Acid ...

    African Journals Online (AJOL)

    This study investigated the optimisation of fermentation conditions during citric acid production via solid state fermentation (SSF) of pineapple peels using Aspergillus niger. A three-variable, three-level Box-Behnken design (BBD) comprising 17 experimental runs was used to develop a statistical model for the fermentation ...

  10. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Lagrain, Bert; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2013-01-15

    Fermenting yeast does not merely cause dough leavening, but also contributes to the bread aroma and might alter dough rheology. Here, the yeast carbon metabolism was mapped during bread straight-dough fermentation. The concentration of most metabolites changed quasi linearly as a function of fermentation time. Ethanol and carbon dioxide concentrations reached up to 60 mmol/100g flour. Interestingly, high levels of glycerol (up to 10 mmol/100g flour) and succinic acid (up to 1.6 mmol/100g flour) were produced during dough fermentation. Further tests showed that, contrary to current belief, the pH decrease in fermenting dough is primarily caused by the production of succinic acid by the yeast instead of carbon dioxide dissolution or bacterial organic acids. Together, our results provide a comprehensive overview of metabolite production during dough fermentation and yield insight into the importance of some of these metabolites for dough properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    Science.gov (United States)

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Aggregation behavior of cholic acid derivatives in organic solvents and in water

    NARCIS (Netherlands)

    Willemen, H.M.

    2002-01-01

    In this thesis various cholic acid derivatives are reported that display aggregation in water or in organic solvents. Spontaneous aggregation of single molecules into larger, ordered structures occurs at the borderline of solubility. Amphiphilic compounds, or surfactants, which possess a

  13. Reducing the acidity of Arabica coffee beans by ohmic fermentation technology

    Directory of Open Access Journals (Sweden)

    Reta

    2017-07-01

    Full Text Available Coffee is widely consumed not only because of its typical taste, but coffee has antioxidant properties because of its polygons, and it stimulates brain performance. The main problem with the consumption of coffee is its content of caffeine. Caffeine when consumed in excess, can increase muscle tension, stimulate the heart, and increase the secretion of gastric acid. In this research, we applied ohmic fermentation technology, which is specially designed to mimic the stomach. Arabica coffee has high acidity that needs to be reduced than Luwak coffee, although it is cheaper. Hence, the ohmic technology with a time and temperature variation were applied to measure the total acidity of the coffee to determine optimum fermentation conditions. Results revealed that the total acidity of the coffee varied with fermentation conditions (0.18% – 0.73%. Generally, the longer the fermentation and the higher the temperature, the lower the total acidity. The acidity of the Luwak coffee through natural fermentation was 2.34%, which is substantially higher than the total acidity from the ohmic samples. Ohmic-based fermentation technology, therefore, offers improvements in coffee quality.

  14. DEVELOPMENT OF VEGETABLE PUREES AND DRINKS BY LACTIC ACID FERMENTATION

    Directory of Open Access Journals (Sweden)

    At. Kraevska

    2014-03-01

    Full Text Available The object of this work was to investigate the possibility for development of vegetable purees and drinks by lactic acid fermentation. It was found that by the direct lactic acid fermentation of Lb.plantarum strain 226/1 the vitamin composition of vegetable purees is preserved and the biological value is increased. Drinks, prepared from fermented vegetable purees were remarkable with the pleasant lactic acid taste, the sucrose-acid composition was stable and balanced and they can be used both in the rational and in the dietary nutrition.

  15. Exploitation of vegetables and fruits through lactic acid fermentation.

    Science.gov (United States)

    Di Cagno, Raffaella; Coda, Rossana; De Angelis, Maria; Gobbetti, Marco

    2013-02-01

    Lactic acid fermentation represents the easiest and the most suitable way for increasing the daily consumption of fresh-like vegetables and fruits. Literature data are accumulating, and this review aims at describing the main features of the lactic acid bacteria to be used for fermentation. Lactic acid bacteria are a small part of the autochthonous microbiota of vegetables and fruits. The diversity of the microbiota markedly depends on the intrinsic and extrinsic parameters of the plant matrix. Notwithstanding the reliable value of the spontaneous fermentation to stabilize and preserve raw vegetables and fruits, a number of factors are in favour of using selected starters. Two main options may be pursued for the controlled lactic acid fermentation of vegetables and fruits: the use of commercial/allochthonous and the use of autochthonous starters. Several evidences were described in favour of the use of selected autochthonous starters, which are tailored for the specific plant matrix. Pro-technological, sensory and nutritional criteria for selecting starters were reported as well as several functional properties, which were recently ascribed to autochthonous lactic acid bacteria. The main features of the protocols used for the manufacture of traditional, emerging and innovative fermented vegetables and fruits were reviewed. Tailored lactic acid bacteria starters completely exploit the potential of vegetables and fruits, which enhances the hygiene, sensory, nutritional and shelf life properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean–maize blends

    Science.gov (United States)

    Ng'ong'ola-Manani, Tinna Austen; Østlie, Hilde Marit; Mwangwela, Agnes Mbachi; Wicklund, Trude

    2014-01-01

    The effect of natural and lactic acid bacteria (LAB) fermentation processes on metabolite changes in pastes of soybeans and soybean–maize blends was studied. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and were fermented by lactic acid bacteria (LFP). LAB fermentation processes were facilitated through back-slopping using a traditional fermented gruel, thobwa as an inoculum. Naturally fermented pastes were designated 100S, 90S, and 75S, while LFP were designated 100SBS, 90SBS, and 75SBS. All samples, except 75SBS, showed highest increase in soluble protein content at 48 h and this was highest in 100S (49%) followed by 90SBS (15%), while increases in 100SBS, 90S, and 75S were about 12%. Significant (P acids throughout fermentation were attributed to cysteine in 100S and 90S; and methionine in 100S and 90SBS. A 3.2% increase in sum of total amino acids was observed in 75SBS at 72 h, while decreases up to 7.4% in 100SBS at 48 and 72 h, 6.8% in 100S at 48 h and 4.7% in 75S at 72 h were observed. Increases in free amino acids throughout fermentation were observed in glutamate (NFP and 75SBS), GABA and alanine (LFP). Lactic acid was 2.5- to 3.5-fold higher in LFP than in NFP, and other organic acids detected were acetate and succinate. Maltose levels were the highest among the reducing sugars and were two to four times higher in LFP than in NFP at the beginning of the fermentation, but at 72 h, only fructose levels were significantly (P acid solubility and degradation of phytic acid (85% in NFP and 49% in LFP by 72 h). PMID:25493196

  17. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    Science.gov (United States)

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  18. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice.

    Science.gov (United States)

    Minnaar, P P; Jolly, N P; Paulsen, V; Du Plessis, H W; Van Der Rijst, M

    2017-09-18

    Kei-apple (Dovyalis caffra) is an evergreen tree indigenous to Southern Africa. The fruit contains high concentrations of l-malic acid, ascorbic acid, and phenolic acids. Kei-apple juice was sequentially inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts. A reference fermentation using only S. cerevisiae was included. The fermentation was monitored by recording mass loss. At the end of fermentation, twelve untrained judges conducted free choice aroma profiling on the fruit wines. The Kei-apple juice and wines were analysed for total titratable acidity, total soluble solids, pH, alcohol, l-malic acid, and phenolic acids. Total titratable acidity was ca. 70% lower in Kei-apple wines produced with S. pombe+S. cerevisiae than in Kei-apple juice. Kei-apple wines produced with S. pombe+S. cerevisiae showed substantially lower concentrations of l-malic acid than Kei-apple wines produced with S. cerevisiae only. Wines produced with S. cerevisiae only proved higher in phenolic acid concentrations than wines produced with S. pombe+S. cerevisiae. Chlorogenic acid was the most abundant phenolic acid measured in the Kei-apple wines, followed by protocatechuic acid. Judges described the Kei-apple wines produced with S. pombe+S. cerevisiae as having noticeable off-odours, while wines produced with S. cerevisiae were described as fresh and fruity. Kei-apple wines (S. pombe+S. cerevisiae and S. cerevisiae) were of comparable vegetative and organic character. Saccharomyces cerevisiae produced Kei-apple wine with increased caffeic, chlorogenic, protocatechuic, and sinapic acids, whereas S. pombe+S. cerevisiae produced Kei-apple wines with increased ferulic, and p-coumaric acids and low l-malic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Preparation of lactic acid bacteria fermented wheat-yoghurt mixtures.

    Science.gov (United States)

    Magala, Michal; Kohajdová, Zlatica; Karovičová, Jolana

    2013-01-01

    Tarhana, a wheat-yoghurt fermented mixture, is considered as a good source of saccharides, proteins, some vitamins and minerals. Moreover, their preparation is inexpensive and lactic acid fermentation offers benefits like product preservation, enhancement of nutritive value and sensory properties improvement. The aim of this work was to evaluate changes of some chemical parameters during fermentation of tarhana, when the level of salt and amount of yoghurt used were varied. Some functional and sensory characteristics of the fi nal product were also determined. Chemical analysis included determination of pH, titrable acidity, content of reducing saccharides, lactic, acetic and citric acid. Measured functional properties of tarhana powder were foaming capacity, foam stability, water absorption capacity, oil absorption capacity and emulsifying activity. Tarhana soups samples were evaluated for their sensory characteristics (colour, odor, taste, consistency and overall acceptability). Fermentation of tarhana by lactic acid bacteria and yeasts led to decrease in pH, content of reducing saccharides and citric acid, while titrable acidity and concentration of lactic and acetic acid increased. Determination of functional properties of tarhana powder showed, that salt absence and increased amount of yoghurt in tarhana recipe reduced foaming capacity and oil absorption capacity, whereas foam stability and water absorption capacity were improved. Sensory evaluation of tarhana soups showed that variations in tarhana recipe adversly affected sensory parameters of fi nal products. Variations in tarhana recipe (salt absence, increased proportion of yoghurt) led to changes in some chemical parameters (pH, titrable acidity, reducing saccharides, content of lactic, acetic and citric acid). Functional properties were also affected with changed tarhana recipe. Sensory characteristics determination showed, that standard tarhana fermented for 144 h had the highest overall acceptability.

  20. 77 FR 14022 - Guidance for Industry on Chemistry, Manufacturing, and Controls Information-Fermentation-Derived...

    Science.gov (United States)

    2012-03-08

    ...] Guidance for Industry on Chemistry, Manufacturing, and Controls Information--Fermentation-Derived... (CMC) Information-- Fermentation-Derived Intermediates, Drug Substances, and Related Drug Products for... to submit to support the CMC information for fermentation-derived intermediates, drug substances, and...

  1. Comparison of the effect of benzoic acid addition on the fermentation process quality with untreated silages

    Directory of Open Access Journals (Sweden)

    Petr Doležal

    2004-01-01

    Full Text Available The influence of benzoic acid and formic acid (positive control of ensilaged maize and pressed sugar beet pulp on quality fermentation processes was studied in a laboratory experiment. The effect of additive on the quality of fermentation process during maize ensiling was studied in a first model experiment. Preservatives such as formic acid and benzoic acid were added to ensiled maize at the concentration of 1L/t and 1 kg/t, respectively. When benzoic acid was used as a preservative, the pH and the N-NH3/ N total ratio decreased statistically (PSugar beet pulp silages with benzoic acid or formic acid after 32 days of storage had a better sensuous evaluation than the control silage. The most intensive decrease of pH value was observed after formic acid addition as compared with control silage. The statistically significantly (P<0.05 highest lactic acid content (49.64 ± 0.28 as well as the highest ratio of LA/VFA were found in the sugar beet pulp silage with benzoic acid. Lactic acid constituted the highest percentage (P<0.05 of all fermentation acids in the silage with benzoic acid additive (65.12 ± 0.80. Undesirable butyric acid (BA was not found in any variant of silages. The positive correlation between the titration acidity and acids sum in dry matter of silage conserved with formic acid was found. The additive of organic acids reduced significantly TA and fermentation acids content. Between the pH value and lactic acid content, no correlation was found.

  2. Stability of monacolin K and citrinin and biochemical characterization of red-koji vinegar during fermentation.

    Science.gov (United States)

    Hsieh, Chia-Wen; Lu, Yi-Ru; Lin, Shu-Mei; Lai, Tzu-Yuan; Chiou, Robin Y-Y

    2013-07-31

    Red-koji vinegar is a Monascus -involved and acetic acid fermentation-derived traditional product, in which the presence of monacolin K and citrinin has attracted public attention. In this study, red-koji wine was prepared as the substrate and artificially supplemented with monacolin K and citrinin and subjected to vinegar fermentation with Acetobacter starter. After 30 days of fermentation, 43.0 and 98.1% of the initial supplements of monacolin K and citrinin were decreased, respectively. During fermentation, acetic acid contents increased, accompanied by decreases of ethanol and lactic acid contents and pH values. The contents of free amino acids increased while the contents of other organic acids, including fumaric acid, citric acid, succinic acid, and tartaric acid, changed limitedly. Besides, increased levels of total phenolics in accordance with increased antioxidative potency, α,α-diphenyl-β-picrylhydrazyl scavenging, and xanthine oxidase inhibitory (XOI) activities were detected. It is of merit that most citrinin was eliminated and >50% of the monacolin K was retained; contents of free amino acids and total phenolics along with antioxidant and XOI activities of the red-koji vinegar were increased after fermentation.

  3. Acetone-butanol fermentation of blackstrap molasses. An effective factor of some symbiotic organisms against an abnormal fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, A; Kinoshita, S; Okumura, T

    1954-01-01

    There were three types of abnormal fermentation in the industrial acetone-butanol fermentation of blackstrap molasses; one of them called B type, was characterized by the extremely prolonged acidity peak, and sluggishness experiments were carried out to find some symbiotic organisms among various aerobic bacteria and yeasts for several strains of Clostridium acetobutylicum. Torula utilis showed an outstanding effectiveness for a rapid completion of the fermentation, and the yields of solvents was much increased. Culture filtrate of T. utilis contained a soluble and thermolabile effective factor, and showed high invertase activity. A close relation was found between high yields of solvents and the degree of inversion of molasses medium. Thus, the effective factor against sluggishness was ascribed to the invertase activity of the yeast. Some inhibiting factors to invertase of C. acetobutylicum were presumed to be present in molasses as the principal cause of the sluggishness.

  4. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava.

    Science.gov (United States)

    Dietrich, Diane; Illman, Barbara; Crooks, Casey

    2013-06-04

    The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides arabinose, xylose, glucose and mannose. We examined the sensitivity of seven polyhydroxyalkanoate producing bacteria: Azohydromonas lata, Bacillus megaterium, Bacillus cereus, Burkholderia cepacia, Pseudomonas olevorans, Pseudomonas pseudoflava and Ralstonia eutropha, against seven fermentation inhibitors produced by the saccharification of lignocellulose: acetic acid, levulinic acid, coumaric acid, ferulic acid, syringaldehyde, furfural, and hyroxymethyfurfural. There was significant variation in the sensitivity of these microbes to representative phenolics ranging from 0.25-1.5 g/L coumaric and ferulic acid and between 0.5-6.0 g/L syringaldehyde. Inhibition ranged from 0.37-4 g/L and 0.75-6 g/L with acetic acid and levulinic acid, respectively. B. cepacia and P. pseudoflava were selected for further analysis of polyhydroxyalkanoate production. We find significant differences in sensitivity to the fermentation inhibitors tested and find these variations to be over a relevant concentration range given the concentrations of inhibitors typically found in lignocellulosic hydrolysates. Of the seven bacteria tested, B. cepacia demonstrated the greatest inhibitor tolerance. Similarly, of two organisms examined for polyhydroxybutyrate production, B. cepacia was notably more efficient when fermenting pentose substrates.

  5. Changes of Raffinose and Stachyose in Soy Milk Fermentation by Lactic Acid Bacteria From Local Fermented Foods of Indonesian

    Directory of Open Access Journals (Sweden)

    Sumarna

    2008-01-01

    Full Text Available The objective of this study was to evaluate the fermentative characteristics of lactic acid bacteria isolated from local fermented foods and consume raffinose and stachyose during fermentation soymilk. Lactobacillus plantarum pentosus SMN, 01, Lactobacillus casei subsp rhamnosus FNCC, 098, Lactobacillus casei subsp rhamnosus FNCC, 099, Streptococcus thermofilus, 001, Lactobacillus delbrueckii subsp. bulgaricus FNCC, 0045, Lactobacillus plantarum SMN, 25, and Lactobacillus plantarum pentosus FNCC, 235 exhibited variable α-galactosidase activity with Lactobacillus plantarum SMN, 25, showing the highest activity in MRS supplemented media. However, all organisms reached the desired therapeutic level (10^8 cfu/mL likely due to their ability to metabolize oligosaccharides during fermentation in soymilk at 41 °C. The oligosaccharide metabolism depended on α-galactosidase activity. Lactobacillus plantarum SMN, 25, L. plantarum pentosus SMN, 01 and Lactobacillus plantarum pentosus FNCC, 235 reduced raffinose and stachyose by 81.5, 73.0, 67.0 %, and 78.0, 72.5, 66.0 % respectively in soymilk.

  6. Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid.

    Science.gov (United States)

    Liang, Shaobo; Gliniewicz, Karol; Gerritsen, Alida T; McDonald, Armando G

    2016-05-01

    Mixed cultures fermentation can be used to convert organic wastes into various chemicals and fuels. This study examined the fermentation performance of four batch reactors fed with different agricultural (orange, banana, and potato (mechanical and steam)) peel wastes using mixed cultures, and monitored the interval variation of reactor microbial communities with 16S rRNA genes using Illumina sequencing. All four reactors produced similar chemical profile with lactic acid (LA) as dominant compound. Acetic acid and ethanol were also observed with small fractions. The Illumina sequencing results revealed the diversity of microbial community decreased during fermentation and a community of largely lactic acid producing bacteria dominated by species of Lactobacillus developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Hydrogen gas production by fermentation from various organic wastewater using Clostridium butyricum NCIB 9576 and Rhodopseudomonas sphaeroides E15-1

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young Sue; Kim, Hyun Kyung; Rye, Hye Yeon; Lee, In Gu; Kim, Mi Sun [Biomass Research Team, Korea Institute of Energy Research, Taejeon (Korea)

    2000-03-01

    Anaerobic fermentation using Clostidium butyricum NCIB 9576, and phto-fermentation using Rhodopseudomonas sphaeroides E15-1 were studied for the production of hydrogen from Makkoli, fruits (orange and apple, watermelon and melon) and Tofu wastewaters. From the Makkoli wastewater, which contained 0.94 g/liter sugars and 2.74 g/liter solubel starch, approximately 49 mM H{sub 2}/liter wastewater was produced during the initial 18h of the anaerobic fermentation with pH control between 6.5-7.0. Several organic acids such as butyric acid, acetic acid, propionic acid, lactic acid and ethanol were also produced. From watermelon and melon wastewater, which contained 43 g/liter sugars, generated about approximately 71 mM H{sub 2}/liter wastewater was produced during the initial 24h of the anaerobic fermentation. Tofu wastewater, pH 6.5, containing 12.6 g/liter soluble starch and 0.74 g/liter sugars, generated about 30mM H{sub 2}/liter wastewater, along with some organic acids, during the initial 24 h of anaerobic fermentation. Makkoli and Tofu wastewaters as substrates for the photo-fermentation by Rhodopseudomonas sphaeroides E15-1 produced approximately 37.9 and 22.2 {mu}M H{sub 2}/ml wastewaters, respectively for 9 days of incubation under the average of 9,000010,000 lux illumination at the surface of reactor using tungsten halogen lamps. Orange and apple wastewater, which contained 93.4 g/l produced approximately 13.1 {mu}M H{sub 2}/ml wastewater only for 2 days of photo-fermentation and the growth of Rhodopseudomonas spnaeroides E15-1 and hydrogen production were stopped. 22 refs, 4 figs., 2 tabs.

  8. Fermentative preparation of functional drink from Punica granatum using lactic acid bacteria and exploring its anti-tumor potential

    Science.gov (United States)

    Murthy, Shruthi N.; Patnaik, Amie; Srinivasan, Nandini; Selvarajan, E.; Nivetha, A.; Mohanasrinivasan, V.

    2017-11-01

    In the present research work probiotic pomegranate juice production by fermentation was carried out using two different strains such as Lactobacillus plantarum VITES07 and Lactobacillus acidophilus NCIM2903 (Lactic acid bacteria). Fermented pomegranate juice was carried out at room temperature for 72h. During the fermentation period at regular intervals viable cells was determined. Efficiency of the fermented juice was analysed for 4 weeks under refrigerated condition at 4˚C. Total phenolics, sugar concentration, antioxidant potential, and antibacterial activity were determined. Organic acid concentration was determined by HPLC with retention time of a compound at 9.1 can be suspected to be Kaempferol hexoside and functional group was determined by FTIR also LCMS analysis was carried out to enumerate the chemical composition of the fermented juice.

  9. Effects of Fermentation on the Fatty Acids, Sterols and ...

    African Journals Online (AJOL)

    Walnut contains fatty acids that are essential for infants' growth and development. This study explored the possibility of fermenting walnuts for use as a complementary food. Raw fermented (RF), cooked fermented (CF), raw unfermented (RUF) and cooked unfermented (CUF) samples of walnuts products were analyzed for ...

  10. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...... of continuous fermentation mode and in-situ acids removal by Reverse Enhanced Electro Dialysis (REED) resulted to enhanced sugars consumption rates when 60% PHWS was fermented. Specifically, glucose and xylose consumption rate increased by a factor of 6 and 39, respectively, while butyric acid productivity...

  11. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet.

    Science.gov (United States)

    Wambacq, Wendy; Rybachuk, Galena; Jeusette, Isabelle; Rochus, Kristel; Wuyts, Brigitte; Fievez, Veerle; Nguyen, Patrick; Hesta, Myriam

    2016-06-28

    Research in cats has shown that increased fermentation-derived propionic acid and its metabolites can be used as alternative substrates for gluconeogenesis, thus sparing amino acids for other purposes. This amino acid sparing effect could be of particular interest in patients with kidney or liver disease, where this could reduce the kidneys'/liver's burden of N-waste removal. Since dogs are known to have a different metabolism than the obligatory carnivorous cat, the main objective of this study was to assess the possibility of altering amino acid metabolism through intestinal fermentation in healthy dogs. This was studied by supplementing a low-protein diet with fermentable fibres, hereby providing an initial model for future studies in dogs suffering from renal/liver disease. Eight healthy dogs were randomly assigned to one of two treatment groups: sugar beet pulp and guar gum mix (SF: soluble fibre, estimated to mainly stimulate propionic acid production) or cellulose (IF: insoluble fibre). Treatments were incorporated into a low-protein (17 %) extruded dry diet in amounts to obtain similar total dietary fibre (TDF) contents for both diets (9.4 % and 8.2 % for the SF and IF diet, respectively) and were tested in a 4-week crossover feeding trial. Apparent faecal nitrogen digestibility and post-prandial fermentation metabolites in faeces and plasma were evaluated. Dogs fed the SF diet showed significantly higher faecal excretion of acetic and propionic acid, resulting in a higher total SCFA excretion compared to IF. SF affected the three to six-hour postprandial plasma acylcarnitine profile by significantly increasing AUC of acetyl-, propionyl-, butyryl- + isobutyryl-, 3-OH-butyryl-, 3-OH-isovaleryl- and malonyl-L-carnitine. Moreover, the amino acid plasma profile at that time was modified as leucine + isoleucine concentrations were significantly increased by SF, and a similar trend for phenylalanine and tyrosine's AUC was found. These results indicate

  12. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations.

    Science.gov (United States)

    Plengvidhya, Vethachai; Breidt, Fredrick; Lu, Zhongjing; Fleming, Henry P

    2007-12-01

    Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics.

  13. Batch fermentative production of lactic acid from green- sugarcane juices

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2004-07-01

    Full Text Available Juice from the CC85-92 variety of green (unburned sugar cane was tested as a suitable substrate in lactic-acid production. Fermentations were carried out with a homo-fermentative strain isolated from crops of the same variety of cane. Both the centrifugation pre-treatment and concentrated-nitrogen effects on substrate conversion, lactic-acid concentration and yield were evaluated. After a fermentation time of 48 h at 32° C with 5% of yeast extract as nitrogen source, 40,78 g/L of lactic-acid concentration, 0.58 g/g of product yield and 33% of substrate conversion were obtained. Centrifugation did not affect lactic acid production. Key words: Lactic acid, green sugar cane, Lactococcus lactis subs. lactis.

  14. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats

    Directory of Open Access Journals (Sweden)

    Banjoko Immaculata

    2012-12-01

    Full Text Available Abstract Background The objectives of the present study were to investigate the efficacy of the mixed culture of Lactobacillus acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lactobacillus helveticus (CK60 in the fermentation of maize and the evaluation of the effect of the fermented meal on the lipid profile of rats. Methods Rats were randomly assigned to 3 groups and each group placed on a Diet A (high fat diet into which a maize meal fermented with a mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 was incorporated, B (unfermented high fat diet or C (commercial rat chow respectively after the first group of 7 rats randomly selected were sacrificed to obtain the baseline data. Thereafter 7 rats each from the experimental and control groups were sacrificed weekly for 4 weeks and the plasma, erythrocytes, lipoproteins and organs of the rats were assessed for cholesterol, triglyceride and phospholipids. Results Our results revealed that the mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 were able to grow and ferment maize meal into ‘ogi’ of acceptable flavour. In addition to plasma and hepatic hypercholesterolemia and hypertriglyceridemia, phospholipidosis in plasma, as well as cholesterogenesis, triglyceride constipation and phospholipidosis in extra-hepatic tissues characterized the consumption of unfermented hyperlipidemic diets. However, feeding the animals with the fermented maize diet reversed the dyslipidemia. Conclusion The findings of this study indicate that consumption of mixed culture lactic acid bacteria (Lb acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lb helveticus (CK 60 fermented food results in the inhibition of fat absorption. It also inhibits the activity of HMG CoA reductase. This inhibition may be by feedback inhibition or repression of the transcription of the gene encoding the enzyme via activation of the

  15. Antagonism Between Osmophilic Lactic Acid Bacteria and Yeasts in Brine Fermentation of Soy Sauce

    OpenAIRE

    Noda, Fumio; Hayashi, Kazuya; Mizunuma, Takeji

    1980-01-01

    Brine fermentation by osmophilic lactic acid bacteria and yeasts for long periods of time is essential to produce a good quality of shoyu (Japanese fermented soy sauce). It is well known that lactic acid fermentation by osmophilic lactic acid bacteria results in the depression of alcoholic fermentation by osmophilic yeasts, but the nature of the interaction between osmophilic lactic acid bacteria and yeasts in brine fermentation of shoyu has not been revealed. The inhibitory effect of osmophi...

  16. Amino acids and volatile compounds in wines from Cabernet Sauvignon and Tempranillo varieties subjected to malolactic fermentation in barrels.

    Science.gov (United States)

    Hernández-Orte, P; Peña, A; Pardo, I; Cacho, J; Ferreira, V

    2012-04-01

    The aim of the present paper is to compare the behaviour of industrial lactic bacteria and indigenous bacteria of the cellar when malolactic fermentation was carried out in barrels. The effects of these bacteria on the concentration of metabolised amino acids during malolactic fermentation and on the composition of volatile compounds both before and after malolactic fermentation are studied. The experiment was performed with wines of the Tempranillo and Cabernet Sauvignon varieties. An analysis has been made of the easily extractable volatile compounds of the wood and the compounds from the grapes, and the action of the yeasts during the alcoholic fermentation. Acetoin and diacetyl decreased during the malolactic fermentation in barrels and the concentrations of furfural and its derivatives were up to 100 times higher in wines not subjected to malolactic fermentation. Most of the volatile phenols increased during the malolactic fermentation in wines of the Tempranillo variety, while only guaiacol (p < 0.05) and t-isoeugenol increased in the Cabernet Sauvignon wines. The decrease in amino acids during the malolactic fermentation depends much more on the variety than on the bacterial strain which carries out the malolactic fermentation.

  17. Application of the Response Surface Methodology to Optimize the Fermentation Parameters for Enhanced Docosahexaenoic Acid (DHA) Production by Thraustochytrium sp. ATCC 26185.

    Science.gov (United States)

    Wu, Kang; Ding, Lijian; Zhu, Peng; Li, Shuang; He, Shan

    2018-04-22

    The aim of this study was to determine the cumulative effect of fermentation parameters and enhance the production of docosahexaenoic acid (DHA) by Thraustochytrium sp. ATCC 26185 using response surface methodology (RSM). Among the eight variables screened for effects of fermentation parameters on DHA production by Plackett-Burman design (PBD), the initial pH, inoculum volume, and fermentation volume were found to be most significant. The Box-Behnken design was applied to derive a statistical model for optimizing these three fermentation parameters for DHA production. The optimal parameters for maximum DHA production were initial pH: 6.89, inoculum volume: 4.16%, and fermentation volume: 140.47 mL, respectively. The maximum yield of DHA production was 1.68 g/L, which was in agreement with predicted values. An increase in DHA production was achieved by optimizing the initial pH, fermentation, and inoculum volume parameters. This optimization strategy led to a significant increase in the amount of DHA produced, from 1.16 g/L to 1.68 g/L. Thraustochytrium sp. ATCC 26185 is a promising resource for microbial DHA production due to the high-level yield of DHA that it produces, and the capacity for large-scale fermentation of this organism.

  18. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work...

  19. Sensory properties and fatty acids profiles of fermented dry sausages made of pork meat from various breeds

    Science.gov (United States)

    Parunović, N.; Radović, Č.; Savić, R.

    2017-09-01

    In this study, the parallel examinations on fatty acid profiles and sensory properties of fermented dry sausages are presented. Three types of kulen and sremska sausages were made, which varied depending on the percentage of meat and fat derived from different pig breeds: autochthonous (Swallow-Belly Mangalitsa and Moravka) and commercial (Swedish Landrace). In sausages made from meat of commercial pig breed, the highest cholesterol content was detected. However, sausage made from the Mangalitsa pork meat contained higher levels of monounsaturated fatty acid (MUFA) and unsaturated fatty acid (USFA), and lower saturated fatty acid levels (SFA).The level of polyunsaturated (PUFA) in sausage made of Landrace pork meat was significantly higher than levels in other types. These differences between fatty acids were mostly deriving by higher total n-6 PUFA content. In a sausage made of Mangulitsa meat, the values of atherogenic (IA) and thrombogenic (IT) health lipid indexes are lower. Kulen and sremska sausages made from the Mangalitsa pork meat was superior in terms of colour, odour, taste, after taste and overall acceptability. This study demonstrate that pig breed have an effect on the chemical content, fatty acids profiles and sensory properties of dry fermented sausages.

  20. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage

    Science.gov (United States)

    Vieira, C. P.; Álvares, T. S.; Gomes, L. S.; Torres, A. G.; Paschoalin, V. M. F.; Conte-Junior, C. A.

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when pkefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality. PMID:26444286

  1. Nutritional and amino acid analysis of raw, partially fermented and ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... The nutritional and amino acid analysis of raw and fermented seeds of Parkia ... between 4.27 and 8.33 % for the fully fermented and the partially fermented seeds, respectively.

  2. In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds.

    Science.gov (United States)

    Ramnani, Priya; Chitarrari, Roberto; Tuohy, Kieran; Grant, John; Hotchkiss, Sarah; Philp, Kevin; Campbell, Ross; Gill, Chris; Rowland, Ian

    2012-02-01

    Fermentation properties and prebiotic potential of novel low molecular weight polysaccharides (LMWPs) derived from agar and alginate bearing seaweeds was investigated. Ten LMWPs were supplemented to pH, temperature controlled anaerobic batch cultures inoculated with human feces from three donors, in triplicate. Microbiota changes were monitored using Fluorescent in-situ hybridization and short chain fatty acids, the fermentation end products were analysed using gas chromatography. Of the ten LMWPs tested, Gelidium seaweed CC2253 of molecular weight 64.64 KDa showed a significant increase in bifidobacterial populations from log(10) 8.06 at 0 h to log(10) 8.55 at 24 h (p = 0.018). For total bacterial populations, alginate powder CC2238 produced a significant increase from log(10) 9.01 at 0 h to log(10) 9.58 at 24 h (p = 0.032). No changes were observed in the other bacterial groups tested viz. Bacteroides, Lactobacilli/Enterococci, Eubacterium rectale/Clostridium coccoides and Clostridium histolyticum. The polysaccharides also showed significant increases in total SCFA production, particularly acetic and propionic acids, indicating that they were readily fermented. In conclusion, some LMWPs derived from agar and alginate bearing seaweeds were fermented by gut bacteria and exhibited potential to be used a novel source of prebiotics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Separation and recovery of organic acids from fermented kitchen ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Figure 1 shows the recovery process of organic acids from fermen- ted kitchen waste. ... freezing process was carried out using a deep freezer at -30°C for overnight. .... few factors which affect the production of lactic acid in the.

  4. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    Science.gov (United States)

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter. Copyright © 2013. Published by Elsevier Ltd.

  5. The impact of lactic acid bacteria on sourdough fermentation

    Directory of Open Access Journals (Sweden)

    Savić Dragiša S.

    2005-01-01

    Full Text Available The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.

  6. Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.

    Science.gov (United States)

    Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens

    2010-05-01

    Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.

  7. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes.

    Science.gov (United States)

    Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E

    2012-09-01

    An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre-treatment, achieving 83-99% biowaste destruction. The selective separation of organic acids from waste-fed fermentations provided suitable substrate for photofermentative hydrogen production, which enhanced the gross energy generation up to 11-fold. Therefore, electrodialysis provides the key link in an IBHR for 'waste to energy'. The IBHR compares favourably to 'renewables' (photovoltaics, on-shore wind, crop-derived biofuels) and also emerging biotechnological options (microbial electrolysis) and anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment.

    Science.gov (United States)

    Wu, Liang; Zhang, Cheng; Hu, Hui; Liu, Jianyong; Duan, Tengfei; Luo, Jinghuan; Qian, Guangren

    2017-09-01

    Waste activated sludge (WAS) was pretreated by acid or alkali to enhance the anaerobic fermentation (AF) for phosphorus (P) and short-chain fatty acids (SCFAs) release into the liquid simultaneously. With acid pretreatment, the released total P concentration achieved 120mg/L, which was 71.4% higher than that with alkali pretreatment. In addition, alkali pretreatment enhanced organic P release with about 35.3% of organic P in the solid being converted to inorganic P, while little had changed with acid pretreatment. The results also showed that acid and alkali pretreatment enhanced SCFAs production by 15.3 and 12.5times, respectively. Acid pretreatment could be preferred for simultaneous recovery of P and SCFAs by AF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparison of cultivable acetic acid bacterial microbiota in organic and conventional apple cider vinegar

    OpenAIRE

    Mori Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2017-01-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable ...

  10. Induction of simultaneous and sequential malolactic fermentation in durian wine.

    Science.gov (United States)

    Taniasuri, Fransisca; Lee, Pin-Rou; Liu, Shao-Quan

    2016-08-02

    This study represented for the first time the impact of malolactic fermentation (MLF) induced by Oenococcus oeni and its inoculation strategies (simultaneous vs. sequential) on the fermentation performance as well as aroma compound profile of durian wine. There was no negative impact of simultaneous inoculation of O. oeni and Saccharomyces cerevisiae on the growth and fermentation kinetics of S. cerevisiae as compared to sequential fermentation. Simultaneous MLF did not lead to an excessive increase in volatile acidity as compared to sequential MLF. The kinetic changes of organic acids (i.e. malic, lactic, succinic, acetic and α-ketoglutaric acids) varied with simultaneous and sequential MLF relative to yeast alone. MLF, regardless of inoculation mode, resulted in higher production of fermentation-derived volatiles as compared to control (alcoholic fermentation only), including esters, volatile fatty acids, and terpenes, except for higher alcohols. Most indigenous volatile sulphur compounds in durian were decreased to trace levels with little differences among the control, simultaneous and sequential MLF. Among the different wines, the wine with simultaneous MLF had higher concentrations of terpenes and acetate esters while sequential MLF had increased concentrations of medium- and long-chain ethyl esters. Relative to alcoholic fermentation only, both simultaneous and sequential MLF reduced acetaldehyde substantially with sequential MLF being more effective. These findings illustrate that MLF is an effective and novel way of modulating the volatile and aroma compound profile of durian wine. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Optimisation of lactic acid fermentation for improved vinegar flavour during rosy vinegar brewing.

    Science.gov (United States)

    Jiang, Yujian; Guo, Jianna; Li, Yudong; Lin, Sen; Wang, Li; Li, Jianrong

    2010-06-01

    Rosy vinegar is a well-known traditional Chinese product whose flavour is affected by its lactic acid content. In this study, Lactobacillus bacteria were employed to increase the content of lactic acid during the ethanol fermentation stage. The optimised fermentation parameters were determined as an inoculation amount of 3% (v/v), a temperature of 30 degrees C and an initial pH value of 4.0. Fermentation under these optimal conditions resulted in an alcohol degree of 6.2% (v/v), a total acidity of 49.5 g L(-1) and a lactic acid content of 4.14 g L(-1). The content of lactic acid (4.14 g L(-1)), which approached the level achieved by solid state fermentation, was 3.56-fold higher than that in vinegar fermented without lactic acid bacteria (1.16 g L(-1)). The results indicate that mixed fermentation with Lactobacillus plantarum and Saccharomyces cerevisiae strains greatly increases the lactic acid content and improves the flavour of rosy vinegar. Copyright (c) 2010 Society of Chemical Industry.

  12. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.

    Science.gov (United States)

    Müller, Gerdt; Kalyani, Dayanand Chandrahas; Horn, Svein Jarle

    2017-03-01

    Enzymatic catalysis plays a key role in the conversion of lignocellulosic biomass to fuels and chemicals such as lactic acid. In the last decade, the efficiency of commercial cellulase cocktails has increased significantly, in part due to the inclusion of lytic polysaccharide monooxygenases (LPMOs). However, the LPMOs' need for molecular oxygen to break down cellulose demands reinvestigations of process conditions. In this study, we evaluate the efficiency of lactic acid production from steam-exploded birch using an LPMO-containing cellulase cocktail in combination with lactic acid bacteria, investigating both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). While the SSF set up generally has been considered to be more efficient because it avoids sugar accumulation which may inhibit the cellulases, the SHF set up in our study yielded 26-32% more lactic acid than the SSF. This was mainly due to competition for oxygen between LPMOs and the fermenting organisms in the SSF process, which resulted in reduced LPMO activity and thus less efficient saccharification of the lignocellulosic substrate. By means of aeration it was possible to activate the LPMOs in the SSF, but less lactic acid was produced due to a shift in metabolic pathways toward production of acetic acid. Overall, this study shows that lactic acid can be produced efficiently from lignocellulosic biomass, but that the use of LPMO-containing cellulase cocktails in fermentation processes demands re-thinking of traditional process set ups due to the requirement of oxygen in the saccharification step. Biotechnol. Bioeng. 2017;114: 552-559. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage.

    Science.gov (United States)

    Vieira, C P; Álvares, T S; Gomes, L S; Torres, A G; Paschoalin, V M F; Conte-Junior, C A

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8 g/100g fatty acids) and lower saturated fatty acid (72.7 g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0 g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.

  14. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  15. Amino acid fermentation at the origin of the genetic code.

    Science.gov (United States)

    de Vladar, Harold P

    2012-02-10

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  16. Acetic acid bacteria in fermented foods and beverages.

    Science.gov (United States)

    De Roos, Jonas; De Vuyst, Luc

    2018-02-01

    Although acetic acid bacteria (AAB) are commonly found in spontaneous or backslopped fermented foods and beverages, rather limited knowledge about their occurrence and functional role in natural food fermentation ecosystems is available. Not only is their cultivation, isolation, and identification difficult, their cells are often present in a viable but not culturable state. Yet, they are promising starter cultures either to better control known food fermentation processes or to produce novel fermented foods and beverages. This review summarizes the most recent findings on the occurrence and functional role of AAB in natural food fermentation processes such as lambic beer, water kefir, kombucha, and cocoa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Lactic acid fermentation of dahlia tuber starch and waste using Lactobacillus bulgaricus: A comparative study

    Science.gov (United States)

    Praputri, E.; Sundari, E.; Martynis, M.; Agenta, P.

    2018-03-01

    Lactic acid fermentation of dahlia tuber starch and waste was performed by means of Lactobacillus bulgaricus through enzymatic hydrolysis followed by fermentation process. The effect of pH condition on lactic acid production was investigated during the process. The selected bacteria produced lactic acid after 24 hours of fermentation and the productivity was increase after 24 hours of fermentation. After 120 hours of fermentation, it was found that dahlia tuber starch can produce up to 16.18% of lactic acid, whereas lactic acid produced from dahlia tuber waste was only 0.40% at pH of 4. The lactic acid production increase significantly for pH 3.5 and 4 until 96 hours of fermentation, then slowed down. On the other hand, for pH 4.5 the lactic acid production increase until 48 hours of fermentation and then slowed down. The identification of fermentation product indicated that the lactic acid produced in this study was 16.20%, acidic, yellow and cloudy with pH 3.4 – 4.2. The density of lactic acid produced ranged between 1.21 to 1.25 gr/ml.

  18. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    Science.gov (United States)

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. © 2015 Wiley Periodicals, Inc.

  19. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations.

    Science.gov (United States)

    Ceccato-Antonini, Sandra Regina

    2018-05-25

    Ethanol bio-production in Brazil has some unique characteristics that inevitably lead to bacterial contamination, which results in the production of organic acids and biofilms and flocculation that impair the fermentation yield by affecting yeast viability and diverting sugars to metabolites other than ethanol. The ethanol-producing units commonly give an acid treatment to the cells after each fermentative cycle to decrease the bacterial number, which is not always effective. An alternative strategy must be employed to avoid bacterial multiplication but must be compatible with economic, health and environmental aspects. This review analyzes the issue of bacterial contamination in sugarcane-based fuel ethanol fermentation, and the potential strategies that may be utilized to control bacterial growth besides acid treatment and antibiotics. We have emphasized the efficiency and suitability of chemical products other than acids and those derived from natural sources in industrial conditions. In addition, we have also presented bacteriocins, bacteriophages, and beneficial bacteria as non-conventional antimicrobial agents to mitigate bacterial contamination in the bioethanol industry.

  20. Response surface optimization of ethanol production from banana peels by organic acid hydrolysis and fermentation

    Directory of Open Access Journals (Sweden)

    Sininart Chongkhong

    2017-04-01

    Full Text Available The production of ethanol from banana peels was optimized by response surface methodology in a two-step process. The steps were vinegar hydrolysis of banana peels using microwave heating, and fermentation of the peel hydrolysate by commercial baker’s yeast. The sugar (glucose content in the hydrolysate was maximized over ranges of vinegar concentration, microwave power and hydrolysis time. The maximal 15.3 g/L glucose content was reached using 1.47 %w/w vinegar and 465 W microwave power for 10 min, and was used in maximizing the ethanol content from the second step. The maximal 9.2 %v/v ethanol was obtained with 4 %w/w yeast, an initial pH of 4.8, at 28°C for 192 hrs. The results suggest that a combination of microwave application and organic acid hydrolysis might contribute cost-efficiently in the production of ethanol from biological waste.

  1. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation.

    Science.gov (United States)

    Su, Marcia S; Schlicht, Sabine; Gänzle, Michael G

    2011-08-30

    Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates.

  3. Identification and quantitation of new glutamic acid derivatives in soy sauce by UPLC/MS/MS.

    Science.gov (United States)

    Frerot, Eric; Chen, Ting

    2013-10-01

    Glutamic acid is an abundant amino acid that lends a characteristic umami taste to foods. In fermented foods, glutamic acid can be found as a free amino acid formed by proteolysis or as a non-proteolytic derivative formed by microorganisms. The aim of the present study was to identify different structures of glutamic acid derivatives in a typical fermented protein-based food product, soy sauce. An acidic fraction was prepared with anion-exchange solid-phase extraction (SPE) and analyzed by UPLC/MS/MS and UPLC/TOF-MS. α-Glutamyl, γ-glutamyl, and pyroglutamyl dipeptides, as well as lactoyl amino acids, were identified in the acidic fraction of soy sauce. They were chemically synthesized for confirmation of their occurrence and quantified in the selected reaction monitoring (SRM) mode. Pyroglutamyl dipeptides accounted for 770 mg/kg of soy sauce, followed by lactoyl amino acids (135 mg/kg) and γ-glutamyl dipeptides (70 mg/kg). In addition, N-succinoylglutamic acid was identified for the first time in food as a minor compound in soy sauce (5 mg/kg). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Amino acids production focusing on fermentation technologies - A review.

    Science.gov (United States)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Organic amendments derived from a pharmaceutical by-product: benefits and risks

    Science.gov (United States)

    Gigliotti, Giovanni; Cucina, Mirko; Zadra, Claudia; Pezzolla, Daniela; Sordi, Simone; Carla Marcotullio, Maria; Curini, Massimo

    2015-04-01

    The application of organic amendments to soils, such as sewage sludge, anaerobic digestate and compost is considered a tool for improving soil fertility and enhancing C stocks. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of CO2 emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve the soil C sequestration and decreasing at the same time CO2 emissions. Moreover, the quality of organic matter added to the soil will play an important role in these dynamics. Based on these considerations, the aim of the present work was to investigate the effect of the application to an arable soil of different organic materials derived from a pharmaceutical by-product which results from the fermentative biomass after the separation of the lipopolypeptidic antibiotic produced. A microcosm soil experiment was carried out using three different materials: a sewage sludge derived from the stabilization process of the by-product, a digestate obtained from the anaerobic treatment of the by-product and a compost produced by the aerobic treatment of the same digestate. To achieve this aim, the short-term variations of CO2 emissions, enzymatic soil activities (Dehydrogenase total activity and Fluoresceine diacetate hydrolysis), SOM quantity and quality were studied. In addition, process-related residues of antibiotic and decanoic acid (a precursor added during the fermentation) were analyzed on the organic materials to assess their possible presence. Through these analyses it was possible to state that the application to the soil of sewage sludge and anaerobic digestate may have a strong influence on the short-term variations of the

  6. Integration of fermentation and cooling crystallisation to produce organic acids

    NARCIS (Netherlands)

    Roa Engel, C.A.

    2010-01-01

    Fermentation products are gaining more attention in the last years due to the fact that the metabolic and genetic engineering field has been developing techniques to enhance fermentation yields and make biochemical processes competitive compared to traditional chemical production. However, as

  7. Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean.

    Science.gov (United States)

    Bartkiene, Elena; Krungleviciute, Vita; Juodeikiene, Grazina; Vidmantiene, Daiva; Maknickiene, Zita

    2015-04-01

    The ability of bacteriocin-like inhibitory substance (BLIS)-producing lactic acid bacteria (LAB) to degrade biogenic amines as well as to produce L(+) and D(-)-lactic acid during solid state fermentation (SSF) of lupin and soya bean was investigated. In addition, the protein digestibility and formation of organic acids during SSF of legume were investigated. Protein digestibility of fermented lupin and soya bean was found higher on average by 18.3% and 15.9%, respectively, compared to untreated samples. Tested LAB produced mainly L-lactic acid in soya bean and lupin (D/L ratio 0.38-0.42 and 0.35-0.54, respectively), while spontaneous fermentation gave almost equal amounts of both lactic acid isomers (D/L ratio 0.82-0.98 and 0.92, respectively). Tested LAB strains were able to degrade phenylethylamine, spermine and spermidine, whereas they were able to produce putrescine, histamine and tyramine. SSF improved lupin and soya bean protein digestibility. BLIS-producing LAB in lupin and soya bean medium produced a mixture of D- and L-lactic acid with a major excess of the latter isomer. Most toxic histamine and tyramine in fermented lupin and soya bean were found at levels lower those causing adverse health effects. Selection of biogenic amines non-producing bacteria is essential in the food industry to avoid the risk of amine formation. © 2014 Society of Chemical Industry.

  8. Probiotic potential of noni juice fermented with lactic acid bacteria and bifidobacteria.

    Science.gov (United States)

    Wang, Chung-Yi; Ng, Chang-Chai; Su, Hsuan; Tzeng, Wen-Sheng; Shyu, Yuan-Tay

    2009-01-01

    The present study assesses the feasibility of noni as a raw substrate for the production of probiotic noni juice by lactic acid bacteria (Lactobacilluscasei and Lactobacillus plantarum) and bifidobacteria (Bifidobacteriumlongum). Changes in pH, acidity, sugar content, cell survival and antioxidant properties during fermentation were monitored. All tested strains grew well on noni juice, reaching nearly 10⁹ colony-forming units/ml after 48 h fermentation. L.casei produced less lactic acid than B.longum and L. plantarum. After 4 weeks of cold storage at 4°C, B.longum and L. plantarum survived under low-pH conditions in fermented noni juice. In contrast, L.casei exhibited no cell viability after 3 weeks. Moreover, noni juice fermented with B.longum had a high antioxidant capacity that did not differ significantly (P <0.05) from that of lactic acid bacteria. Finally, we found that B.longum and L. plantarum are optimal probiotics for fermentation with noni juice.

  9. Effect of biogenic fermentation impurities on lactic acid hydrogenation to propylene glycol.

    Science.gov (United States)

    Zhang, Zhigang; Jackson, James E; Miller, Dennis J

    2008-09-01

    The effect of residual impurities from glucose fermentation to lactic acid (LA) on subsequent ruthenium-catalyzed hydrogenation of LA to propylene glycol (PG) is examined. Whereas refined LA feed exhibits stable conversion to PG over carbon-supported ruthenium catalyst in a trickle bed reactor, partially refined LA from fermentation shows a steep decline in PG production over short (<40 h) reaction times followed by a further slow decay in performance. Addition of model impurities to refined LA has varying effects: organic acids, sugars, or inorganic salts have little effect on conversion; alanine, a model amino acid, results in a strong but reversible decline in conversion via competitive adsorption between alanine and LA on the Ru surface. The sulfur-containing amino acids cysteine and methionine irreversibly poison the catalyst for LA conversion. Addition of 0.1 wt% albumin as a model protein leads to slow decline in rate, consistent with pore plugging or combined pore plugging and poisoning of the Ru surface. This study points to the need for integrated design and operation of biological processes and chemical processes in the biorefinery in order to make efficient conversion schemes viable.

  10. Is Lactate an undervalued functional component of lactic acid bacteria-fermented food products?

    Directory of Open Access Journals (Sweden)

    Graciela eGarrote

    2015-06-01

    Full Text Available Although it has been traditionally regarded as an intermediate of carbon metabolism and major component of fermented dairy products contributing to organoleptic and antimicrobial properties of food, there is evidence gathered in recent years that lactate has bioactive properties that may be responsible of broader properties of functional foods. Lactate can regulate critical functions of several key players of the immune system such as macrophages and dendritic cells, being able to modulate inflammatory activation of epithelial cells as well. Intraluminal levels of lactate derived from fermentative metabolism of lactobacilli have been shown to modulate inflammatory environment in intestinal mucosa. The molecular mechanisms responsible to these functions, including histone deacetylase dependent-modulation of gene expression and signalling through G-protein coupled receptors have started to be described. Since lactate is a major fermentation product of several bacterial families with probiotic properties, we here propose that it may contribute to some of the properties attributed to these microorganisms and in a larger view, to the properties of food products fermented by lactic acid bacteria.

  11. Intraspecies cellular fatty acids heterogeneity of Lactobacillus plantarum strains isolated from fermented foods in Ukraine.

    Science.gov (United States)

    Garmasheva, I; Vasyliuk, O; Kovalenko, N; Ostapchuk, A; Oleschenko, L

    2015-09-01

    The intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains isolated from Ukrainian traditional fermented foods was examined. Seven cellular fatty acids were identified. All Lact. plantarum strains investigated contained C16:0 (from 7·54 to 49·83% of total fatty acids), cC18:1 (3·23-38·67% of total fatty acids) and cycC19:0 acids (9·03-67·68% of total fatty acids) as the major fatty acids. The tC18:1 acid made up 1·47-22·0% of the total fatty acids. The C14:0 and C16:1 acids were present in small amounts (0·22-6·96% and 0·66-7·42% respectively) in most Lact. plantarum strains. Differences in relative contents of some fatty acids between Lact. plantarum strains depending on the source isolation were found. Isolates of dairy origin contained slightly greater levels of the C16:0 and tC18:1 fatty acids and lower levels of the cC18:1 than strains obtained from fermented vegetables. The origin of Lact. plantarum strains affects their fatty acids composition, which in turn, appears to be related to their ability to growth under stress factors. Cellular fatty acids composition is an important chemotaxonomic characteristic of bacterial cells. At the same time cellular fatty acids play a key role in maintaining the viability of micro-organisms in different environmental conditions. In this study, intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains was examined. This work provides novel and important information about a relationship between cellular fatty acids composition of Lact. plantarum strains and source of isolation or stress resistance profile. Our results showed that cellular fatty acids composition is quite diverse among Lact. plantarum strains derived from different sources and may reflect previous cell's history. Our findings should be considered in chemotaxonomic studies of lactic acid bacteria and its ecology. © 2015 The Society for Applied Microbiology.

  12. Kinetics and adsorption isotherm of lactic acid from fermentation broth onto activated charcoal

    Directory of Open Access Journals (Sweden)

    Seankham Soraya

    2017-01-01

    Full Text Available Activated charcoal was applied for the recovery of lactic acid in undissociated form from fermentation broth. Lactic acid was obtained from the fermentation of Lactobacillus casei TISTR 1340 using acid hydrolyzed Jerusalem artichoke as a carbon source. The equilibrium adsorption isotherm and kinetics for the lactic acid separation were investigated. The experimental data for lactic acid adsorption from fermentation broth were best described by the Freundlich isotherm and the pseudo-second order kinetics with R2 values of 0.99. The initial adsorption rate was 41.32 mg/g⋅min at the initial lactic acid concentration of 40 g/L.

  13. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    Science.gov (United States)

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Amino acid fermentation at the origin of the genetic code

    Science.gov (United States)

    2012-01-01

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  15. Amino acid fermentation at the origin of the genetic code

    Directory of Open Access Journals (Sweden)

    de Vladar Harold P

    2012-02-01

    Full Text Available Abstract There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can

  16. Acyl Meldrum's acid derivatives: application in organic synthesis

    Science.gov (United States)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  17. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava

    Science.gov (United States)

    Diane Dietrich; Barbara Illman; Casey Crooks

    2013-01-01

    The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides...

  18. Production of rennin-like acid protease by Mucor pusillus through submerged fermentation

    International Nuclear Information System (INIS)

    Daudi, S.; Mukhtar, H.; Rehman, A.U.; Haq, I.U.

    2015-01-01

    The present study is concerned with the isolation and screening of Mucor species for the production of acid protease in shake flasks. Out of eight mould cultures evaluated, five were isolated from soil and three were provided from the Institute of Industrial Biotechnology, Government College University, Lahore. Of all the isolates tested, Mucor pusillus IHS6 was found to be the best producer of rennin-like acid protease producing 75 U/ml of the enzyme. Different agricultural byproducts were evaluated as fermentation substrates and maximum enzyme synthesis (61 U/ml) was obtained when rapeseed meal was used as a substrate. Optimum pH and fermentation period for the production of protease were 5.5 (56U/ml) and 72 hrs (55U/ml), respectively. The production of protease by Mucor pusillus IHS6 was also studied by adding different carbon and nitrogen sources to the fermentation medium. Fructose at a concentration of 1.5% (66 U/ml) and yeast extract at a concentration of 2% (68.2 U/ml) and ammonium chloride at a concentration of 0.1% (67U/ml) were found to be the best carbon and nitrogen (organic and inorganic) sources respectively. Spore inoculum at a concentration of 1% (68.4 U/ml) was found to be the best for protease production by Mucor pusillus. The fermentation broth was found to have strong milk clotting activity with 200 RU. (author)

  19. PERUBAHAN KOMPONEN VOLATIL SELAMA FERMENTASI KECAP [Change Volatile Components During Soy Sauce Fermentation

    Directory of Open Access Journals (Sweden)

    Anton Apriyantono1

    2004-08-01

    Full Text Available A study has been conducted to investigate changes of volatile components during soy sauce fermentation. During the fermentation, many volatile components produced may contribute to soy sauce flavor. THe volatile identified by GC-MS werw classified into hydrocarbon (15, alcohol (15, aldehyde (14, ester (14, ketone (9, benzene derivative (11, fatty acid (9, furan (5, terpenoid (18, pyrazine (3, thiazole (1, pyridine (1 and sulfur containing compound (2.Concentration of compounds found in almost all fermentation steps, such as hexanal and benzaldehyde did. These compounds may be derived from raw soybean, since they were all present in raw soybean and their concentration did not change during fermentation. Concentration of palmitic acid and benzeneacetaldehyde, in general, increased during all fermentation steps. They are probably derived from lipid degradation or microorganism activities. Concentrations of some fatty acids, esters and hydrocarbons, such as linoleic acid, methyl palmitate and heptadecane increased during salt fermentation only. Concentration of some other compounds, such as 2,4 decadienal decreased or undetected during fermentation.The absence of some volatile compounds, e.g. (E-nerolidol and (E,E-famesol in boiled soybean which were previously present in raw soybean may be due to evaporation of these compounds during boiling. Some volatile compounds such as, methyl heptadecanoate and few aromatic alcohols are likely derived from Aspergillus sojae, since these compounds were identified only in 0 day koji

  20. The cocoa bean fermentation process: from ecosystem analysis to starter culture development.

    Science.gov (United States)

    De Vuyst, L; Weckx, S

    2016-07-01

    Cocoa bean fermentation is still a spontaneous curing process to facilitate drying of nongerminating cocoa beans by pulp removal as well as to stimulate colour and flavour development of fermented dry cocoa beans. As it is carried out on farm, cocoa bean fermentation is subjected to various agricultural and operational practices and hence fermented dry cocoa beans of variable quality are obtained. Spontaneous cocoa bean fermentations carried out with care for approximate four days are characterized by a succession of particular microbial activities of three groups of micro-organisms, namely yeasts, lactic acid bacteria (LAB) and acetic acid bacteria (AAB), which results in well-fermented fully brown cocoa beans. This has been shown through a plethora of studies, often using a multiphasic experimental approach. Selected strains of several of the prevailing microbial species have been tested in appropriate cocoa pulp simulation media to unravel their functional roles and interactions as well as in small plastic vessels containing fresh cocoa pulp-bean mass to evaluate their capacity to dominate the cocoa bean fermentation process. Various starter cultures have been proposed for successful fermentation, encompassing both cocoa-derived and cocoa nonspecific strains of (hybrid) yeasts, LAB and AAB, some of which have been implemented on farms successfully. © 2016 The Society for Applied Microbiology.

  1. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation.

    Science.gov (United States)

    Zhu, Yuchen; Luo, Yinghua; Wang, Pengpu; Zhao, Mengyao; Li, Lei; Hu, Xiaosong; Chen, Fang

    2016-03-01

    Pu-erh ripened tea is produced through a unique microbial fermentation process from the sun-dried leaves of large-leaf tea species (Camellia sinensis (Linn.) var. assamica (Masters) Kitamura) in Yunnan province of China. In this study, the changes of amino acid profiles during fermentation of Pu-erh tea were investigated, based on the improved HPLC-UV method with PITC pre-column derivatization for the simultaneous determination of twenty free amino acids. Results showed that aspartic acid, glutamic acid, arginine, alanine, theanine and tyrosine were the major amino acids in tea samples. Fermentation significantly influenced on the amino acid profiles. The total free amino acid contents significantly decreased during fermentation (pfermentation and then decreased gradually. The results provided the useful information for the manipulation of fermentation process according to the changes of amino acids and acrylamide contents in Pu-erh ripened tea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain.

    Science.gov (United States)

    Song, Hyohak; Huh, Yun Suk; Lee, Sang Yup; Hong, Won Hi; Hong, Yeon Ki

    2007-12-01

    There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.

  3. The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact

    Science.gov (United States)

    Rindelaub, Joel D.; Borca, Carlos H.; Hostetler, Matthew A.; Slade, Jonathan H.; Lipton, Mark A.; Slipchenko, Lyudmila V.; Shepson, Paul B.

    2016-12-01

    The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant

  4. Fermented probiotic beverages based on acid whey.

    Science.gov (United States)

    Skryplonek, Katarzyna; Jasińska, Małgorzata

    2015-01-01

    Production of fermented probiotic beverages can be a good method for acid whey usage. The obtained products combine a high nutritional value of whey with health benefits claimed for probiotic bacteria. The aim of the study was to define quality properties of beverages based on fresh acid whey and milk with addition of buttermilk powder or sweet whey powder. Samples were inoculated with two strains of commercial probiotic cultures: Lactobacillus acidophilus La-5 or Bifidobacterium animalis Bb-12. After fermentation, samples were stored at refrigerated conditions. After 1, 4, 7, 14 and 21 days sensory characteristics, hardness, acetaldehyde content, titratable acidity, pH acidity and count of bacteria cells were evaluated. Throughout all storage period, the number of bacteria was higher than 8 log cfu/ml in the all samples. Beverages with La-5 strain had higher hardness and acidity, whilst samples with Bb-12 contained more acetaldehyde. Samples with buttermilk powder had better sensory properties than with sweet whey powder. Obtained products made of acid whey combined with milk and fortified with buttermilk powder or sweet whey powder, are good medium for growth and survival of examined probiotic bacteria strains. The level of bacteria was sufficient to provide health benefits to consumers.

  5. Integration of Fermentation and Organic Synthesis: Studies of Roquefortine C and Biosynthetic Derivatives

    Science.gov (United States)

    Gober, Claire Marie

    Roquefortine C is one of the most ubiquitous indoline alkaloids of fungal origin. It has been isolated from over 30 different species of Penicillium fungi and has garnered attention in recent years for its role as a biosynthetic precursor to the triazaspirocyclic natural products glandicoline B, meleagrin, and oxaline. The triazaspirocyclic motif, which encompasses three nitrogen atoms attached to one quaternary carbon forming a spirocyclic scaffold, is a unique chemical moiety that has been shown to impart a wide array of biological activity, from anti-bacterial activity and antiproliferative activity against cancer cell lines to anti-biofouling against marine organisms. Despite the promise of these compounds in the pharmaceutical and materials industries, few syntheses of triazaspirocycles exist in the literature. The biosynthesis of roquefortine C-derived triazaspirocycles, however, provides inspiration for the synthesis of these compounds, namely through a nitrone-promoted transannular rearrangement. This type of internal rearrangement has never been carried out synthetically and would provide an efficient stereoselective synthesis of triazaspirocycles. This work encompasses efforts towards elucidating the biosynthetic pathway of roquefortine C-derived triazaspirocycles as well as synthetic efforts towards the construction of triazaspirocycles. Chapter 1 will discuss a large-scale fermentation procedure for the production of roquefortine C from Penicillium crustosum. Chapters 2 and 3 explore (through enzymatic and synthetic means, respectively) the formation of the key indoline nitrone moiety required for the proposed transannular rearrangement. Finally, chapter 4 will discuss synthetic efforts towards the synthesis of triazaspirocycles. This work has considerably enhanced our understanding of the roquefortine C biosynthetic pathway and the unique chemistry of this natural product, and our efforts towards the synthesis of triazaspirocycles will facilitate the

  6. Volatile Compounds and Lactic Acid Bacteria in Spontaneous Fermented Sourdough

    International Nuclear Information System (INIS)

    Kam, W.Y.; Aida, W.M.W.; Sahilah, A.M.; Maskat, M.Y.

    2011-01-01

    The aim of this study is to identify the predominating lactic acid bacteria (LAB) in a spontaneous fermented wheat sourdough. At the same time, an investigation towards volatile compounds that were produced was also carried out. Lactobacillus plantarum has been identified as the dominant species of lactobacilli with characters of a facultative heterofermentative strain. The generated volatile compounds that were produced during spontaneous fermentation were isolated by solvent extraction method, analysed by gas chromatography (GC), and identified by mass spectrophotometer (MS). Butyric acid has been found to be the main volatile compound with relative abundance of 6.75 % and acetic acid at relative abundance of 3.60 %. Esters that were formed at relatively low amount were butyl formate (1.23 %) and cis 3 hexenyl propionate (0.05 %). Butanol was also found at low amount with relative abundance of 0.60 %. The carbohydrate metabolism of Lactobacillus plantarum may contributed to the production of acetic acid in this study via further catabolism activity on lactic acid that was produced. However, butyric acid was not the major product via fermentation by LAB but mostly carried out by the genus Clostridium via carbohydrate metabolism which needs further investigation. (author)

  7. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    Science.gov (United States)

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  8. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  9. Effect of Formic Acid on In Vitro Ruminal Fermentation and Methane Emission

    Directory of Open Access Journals (Sweden)

    Kanber Kara

    2015-10-01

    Full Text Available In this study, it was aimed to investigate the effects of formic acid on the in vitro methane production and in vitro ruminal fermentation of alfalfa hay. Effect of 0.0 (control group: YF0, 0.1, 0.2, 0.3, 0.4 and 0.5 ml/L (experimental groups: YF1, YF2, YF3, YF4, and YF5 respectively formic acid (Amasil85-liquid addition to rumen fluid on ruminal fermentation parameters of alfalfa hay were determined by using in vitro gas production techniques. Methane production of in vitro incubation increased (to about 20% with addition of linearly increased formic acid. Linearly increased levels of formic acid addition to rumen fluid has significantly changed the production of in vitro total gas production, metabolic energy (ME and organic matter digestibility (OMD at linear, quadratic and cubic. The addition of 0.1 ml/L and 0.2 ml/L formic acid to rumen fluid significantly decreased in vitro total gas production, ME and OMD however addition of 0.3 ml/L and 0.4 ml/L formic acid was not changed in vitro gas production, ME and OMD levels and 0.5 ml/L formic acid was significantly increased all these parameters. Ruminal pH was not changed by addition of formic acid. Formic acid is a safe feed additive because of its properties antibacterial and flavorings and also is used as a fermentation promoter in silage. In this study it has been observed that all doses of formic acid increased in vitro enteric methane production and low doses decreased in vitro total gas production, ME and OMD and high doses have increased all these parameters. High doses have a positive effect on ME and OMD; however formic acid should be used at limited levels in diets due to the negative effect of increasing greenhouse gases. The effect of formic acid addition to the feed raw matter and rations of all livestock would be beneficial to investigate in terms of digestive system parameters and global warming, further in vitro and in vivo studies.

  10. Production of citric acid from whey permeate by fermentation using Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M; Brooks, J D

    1983-08-01

    The use of lactic casein whey permeate as a substrate for citric acid production by fermentation has been investigated. Using a mutant strain of Aspergillus niger IMI 41874 in fermenter culture, a citric acid concentration of 8.3 g/l, representing a yield of 19% (w/w) based on lactose utilized, has been observed. Supplementation of the permeate with lactose (final concentration 140 g/l) increased the production to 14.8 g/l (yield 23%). The natural pH of the permeate (pH 4.5) was the most suitable initial pH for the process, and pH control during the fermentation was unnecessary. The addition of methanol (final concentration 3% v/v) to the fermentation increased the citric acid production to 25 g/l (yield 33%, based on lactose utilized). 13 references.

  11. Phenolic profile and fermentation patterns of different commercial gluten-free pasta during in vitro large intestine fermentation.

    Science.gov (United States)

    Rocchetti, Gabriele; Lucini, Luigi; Chiodelli, Giulia; Giuberti, Gianluca; Gallo, Antonio; Masoero, Francesco; Trevisan, Marco

    2017-07-01

    The fate of phenolic compounds, along with short-chain fatty acids (SCFAs) production kinetics, was evaluated on six different commercial gluten-free (GF) pasta samples varying in ingredient compositions, focussing on the in vitro faecal fermentation after the gastrointestinal digestion. A general reduction of both total phenolics and reducing power was observed in all samples, together with a substantial change in phenolic profile over 24h of faecal fermentation, with differences among GF pasta samples. Flavonoids, hydroxycinnamics and lignans degraded over time, with a concurrent increase in low-molecular-weight phenolic acids (hydroxybenzoic acids), alkylphenols, hydroxybenzoketones and tyrosols. Interestingly, discriminant analysis also identified several alkyl derivatives of resorcinol as markers of the changes in phenolic profile during in vitro fermentation. Furthermore, degradation pathways of phenolics by intestinal microbiota have been proposed. Considering the total SCFAs and butyrate production during the in vitro fermentation, different fermentation kinetics were observed among GF pasta post-hydrolysis residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    Science.gov (United States)

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli.

    Science.gov (United States)

    Kawaguchi, Hideo; Katsuyama, Yohei; Danyao, Du; Kahar, Prihardi; Nakamura-Tsuruta, Sachiko; Teramura, Hiroshi; Wakai, Keiko; Yoshihara, Kumiko; Minami, Hiromichi; Ogino, Chiaki; Ohnishi, Yasuo; Kondo, Ahikiko

    2017-07-01

    Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.

  14. Hierarchical amino acid utilization and its influence on fermentation dynamics: rifamycin B fermentation using Amycolatopsis mediterranei S699, a case study

    DEFF Research Database (Denmark)

    Bapat, Prashant Madhusudhan; Das, D.; Sohoni, Sujata Vijay

    2006-01-01

    Background: Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake are not availa......Background: Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake...... predicted simultaneous uptake of amino acids at low cas concentrations and sequential uptake at high cas concentrations. The simulated profile of the key enzymes implies the presence of specific transporters for small groups of amino acids. Conclusion: The work demonstrates utility of the cybernetic model...... unravels formation and utilization of ammonia as well as its inhibitory role during amino acid uptake. Our results have implications for model based optimization and monitoring of other industrial fermentation processes involving complex nitrogen substrate....

  15. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fermentation reactions of Erysipelothrix rhusiopathiae.

    Science.gov (United States)

    WHITE, T G; SHUMAN, R D

    1961-10-01

    White, Thomas G. (U. S. Department of Agriculture, Ames, Iowa), and Richard D. Shuman. Fermentation reactions of Erysipelothrix rhusiopathiae. J. Bacteriol. 82:595-599. 1961.-A study was made to determine the effect of four different basal media, to which fermentable carbon compounds had been added, upon 22 selected strains of Erysipelothrix rhusiopathiae (insidiosa). Acid production was measured by (i) chemical indicator, (ii) change in pH, and (iii) production of titrable acidity. At least two determinations, usually four, were made for each test on each strain. The fermentation pattern varied according to the medium, the indicator, and the method of measuring acid production. Andrade's base plus serum was the most dependable medium because it permitted the least variation in the total number of different patterns. Of the three methods used to measure acid production, the chemical indicator gave the most valid and reproducible results. The within-strain variation was not extreme and most strains persisted in a given fermentation pattern under like conditions of growth and acid production. Results of the study indicated that, regardless of the medium and indicator routinely used, one should be familiar with the fermentation pattern of known strains of the erysipelas organism.

  17. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    Science.gov (United States)

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  18. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling.

    Science.gov (United States)

    Papagianni, Maria

    2007-01-01

    Citric acid is regarded as a metabolite of energy metabolism, of which the concentration will rise to appreciable amounts only under conditions of substantive metabolic imbalances. Citric acid fermentation conditions were established during the 1930s and 1940s, when the effects of various medium components were evaluated. The biochemical mechanism by which Aspergillus niger accumulates citric acid has continued to attract interest even though its commercial production by fermentation has been established for decades. Although extensive basic biochemical research has been carried out with A. niger, the understanding of the events relevant for citric acid accumulation is not completely understood. This review is focused on citric acid fermentation by A. niger. Emphasis is given to aspects of fermentation biochemistry, membrane transport in A. niger and modeling of the production process.

  19. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    Science.gov (United States)

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  20. Influence of choice of yeasts on volatile fermentation-derived compounds, colour and phenolics composition in Cabernet Sauvignon wine.

    Science.gov (United States)

    Blazquez Rojas, Inmaculada; Smith, Paul A; Bartowsky, Eveline J

    2012-12-01

    Wine colour, phenolics and volatile fermentation-derived composition are the quintessential elements of a red wine. Many viticultural and winemaking factors contribute to wine aroma and colour with choice of yeast strain being a crucial factor. Besides the traditional Saccharomyces species S. cerevisiae, S. bayanus and several Saccharomyces interspecific hybrids are able to ferment grape juice to completion. This study examined the diversity in chemical composition, including phenolics and fermentation-derived volatile compounds, of an Australian Cabernet Sauvignon due to the use of different Saccharomyces strains. Eleven commercially available Saccharomyces strains were used in this study; S. cerevisiae (7), S. bayanus (2) and interspecific Saccharomyces hybrids (2). The eleven Cabernet Sauvignon wines varied greatly in their chemical composition. Nine yeast strains completed alcoholic fermentation in 19 days; S. bayanus AWRI 1375 in 26 days, and S. cerevisiae AWRI 1554 required 32 days. Ethanol concentrations varied in the final wines (12.7-14.2 %). The two S. bayanus strains produced the most distinct wines, with the ability to metabolise malic acid, generate high glycerol concentrations and distinctive phenolic composition. Saccharomyces hybrid AWRI 1501 and S. cerevisiae AWRI 1554 and AWRI 1493 also generated distinctive wines. This work demonstrates that the style of a Cabernet Sauvignon can be clearly modulated by choice of commercially available wine yeast.

  1. Batch fermentation of whey ultra filtrate by Lactobacillus helveticus for lactic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D; Goulet, J; Le Duy, Q

    1986-06-01

    Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 revolutions per minute and under conditions of controlled temperature (42 degrees C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). 27 references.

  2. Potential of bacterial fermentation as a biosafe method of improving ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... the organic acid content of fermented feeds has been reported to improve ..... fatty acid and ethanol concentration resulting from the natural fermentation of ..... energy in Atlantic salmon (Salmo salar L.) diets. Aquaculture 210:.

  3. Utilization of Encapsulated CaCO_3 in Liquid Core Capsules for Improving Lactic Acid Fermentation

    International Nuclear Information System (INIS)

    Boon-Beng, Lee; Nurul Ainina Zulkifli

    2016-01-01

    Lactic acid bacteria (LAB) have been used for food fermentation due to its fermentative ability to improve and enhance the quality of the end food products. However, the performance of LAB is affected as fermentation time elapsed because the microbial growth is inhibited by its end product, for example lactic acid. In this study, a new approach was introduced to reduce the product inhibition effect using CaCO_3 which is encapsulated in spherical liquid core capsules of diameter 3.5 mm and 3.6 mm produced through extrusion dripping method. The results showed that the pH and lactic acid concentration of LAB fermentation was well maintained by the capsules. The results of the fermentation conducted to control pH and lactic acid concentration using the capsules were better than those of the control set and comparable with that of the free CaCO_3 set. In addition, the viable cell concentration of L. casei shirota was high at the end of fermentation when the fermentation was conducted using the capsules. The results of this study suggested that the capsules have high potential to be applied for pH and lactic acid level control in LAB fermentation for various productions. (author)

  4. Gluconic Acid: Properties, Applications and Microbial Production

    Directory of Open Access Journals (Sweden)

    Sumitra Ramachandran

    2006-01-01

    Full Text Available Gluconic acid is a mild organic acid derived from glucose by a simple oxidation reaction. The reaction is facilitated by the enzyme glucose oxidase (fungi and glucose dehydrogenase (bacteria such as Gluconobacter. Microbial production of gluconic acid is the preferred method and it dates back to several decades. The most studied and widely used fermentation process involves the fungus Aspergillus niger. Gluconic acid and its derivatives, the principal being sodium gluconate, have wide applications in food and pharmaceutical industry. This article gives a review of microbial gluconic acid production, its properties and applications.

  5. Separation of viable lactic acid bacteria from fermented milk

    Directory of Open Access Journals (Sweden)

    Tomohiko Nishino

    2018-04-01

    Full Text Available Probiotics are live microorganisms that provide health benefits to humans. Some lactic acid bacteria (LAB are probiotic organisms used in the production of fermented foods, such as yogurt, cheese, and pickles. Given their widespread consumption, it is important to understand the physiological state of LAB in foods such as yogurt. However, this analysis is complicated, as it is difficult to separate the LAB from milk components such as solid curds, which prevent cell separation by dilution or centrifugation. In this study, we successfully separated viable LAB from yogurt by density gradient centrifugation. The recovery rate was >90 %, and separation was performed until the stationary phase. Recovered cells were observable by microscopy, meaning that morphological changes and cell viability could be directly detected at the single-cell level. The results indicate that viable LAB can be easily purified from fermented milk. We expect that this method will be a useful tool for the analysis of various aspects of probiotic cells, including their enzyme activity and protein expression. Keywords: Food analysis, Microbiology

  6. Optimal design and experimental validation of a simulated moving bed chromatography for continuous recovery of formic acid in a model mixture of three organic acids from Actinobacillus bacteria fermentation.

    Science.gov (United States)

    Park, Chanhun; Nam, Hee-Geun; Lee, Ki Bong; Mun, Sungyong

    2014-10-24

    The economically-efficient separation of formic acid from acetic acid and succinic acid has been a key issue in the production of formic acid with the Actinobacillus bacteria fermentation. To address this issue, an optimal three-zone simulated moving bed (SMB) chromatography for continuous separation of formic acid from acetic acid and succinic acid was developed in this study. As a first step for this task, the adsorption isotherm and mass-transfer parameters of each organic acid on the qualified adsorbent (Amberchrom-CG300C) were determined through a series of multiple frontal experiments. The determined parameters were then used in optimizing the SMB process for the considered separation. During such optimization, the additional investigation for selecting a proper SMB port configuration, which could be more advantageous for attaining better process performances, was carried out between two possible configurations. It was found that if the properly selected port configuration was adopted in the SMB of interest, the throughout and the formic-acid product concentration could be increased by 82% and 181% respectively. Finally, the optimized SMB process based on the properly selected port configuration was tested experimentally using a self-assembled SMB unit with three zones. The SMB experimental results and the relevant computer simulation verified that the developed process in this study was successful in continuous recovery of formic acid from a ternary organic-acid mixture of interest with high throughput, high purity, high yield, and high product concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Vinegar rice (Oryza sativa L. produced by a submerged fermentation process from alcoholic fermented rice

    Directory of Open Access Journals (Sweden)

    Wilma Aparecida Spinosa

    2015-03-01

    Full Text Available Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L. for vinegar production. An alcoholic solution with 6.28% (w/v ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany for the production of vinegar and was followed through 10 cycles. The vinegar had a total acidity of 6.85% (w/v, 0.17% alcohol (w/v, 1.26% (w/v minerals and 1.78% (w/v dry extract. The composition of organic acids present in rice vinegar was: cis-aconitic acid (6 mg/L, maleic acid (3 mg/L, trans-aconitic acid (3 mg/L, shikimic + succinic acid (4 mg/L, lactic acid (300 mg/L, formic acid (180 mg/L, oxalic acid (3 mg/L, fumaric acid (3 mg/L and itaconic acid (1 mg/L.

  8. Acetone-butanol fermentation of blackstrap molasses. An effective factor of some symbiotic organisms against an abnormal fermentation. [Torula utilis

    Energy Technology Data Exchange (ETDEWEB)

    Shige, A; Kinoshita, S; Okumura, T

    1954-01-01

    There were three types of industrial acetone-butanol fermentation of blackstrap molasses; one of them, called B type, was characterized by the extremely prolonged acidity peak, and sluggishness experiments were carried out to find some symbiotic organisms among various aerobic bacteria and yeasts for several strains of Clostridium acetobutylicum. Torula utilis showed an outstanding effectiveness for a rapid completion of the fermentation, and the yields of solvents was much increased. Culture filtrate of T. utilis contained a soluble and invertase activity. A close relation was found between high yields of solvents and the degree of inversion of molasses medium. Thus, the effective factor against sluggishness was ascribed to the invertase activity of the yeast. Some inhibiting factors to invertase of C. acetobutylicum were presumed to be present in molasses as the principal cause of the sluggishness.

  9. Emulsion Liquid Membrane Technology in Organic Acid Purification

    International Nuclear Information System (INIS)

    Norela Jusoh; Norasikin Othman; Nur Alina Nasruddin

    2016-01-01

    Emulsion Liquid Membrane (ELM) process have shown a great potential in wide application of industrial separations such as in removal of many chemicals, organic compounds, metal ions, pollutants and biomolecules. This system promote many advantages including simple operation, high selectivity, low energy requirement, and single stage extraction and stripping process. One potential application of ELM is in the purification of succinic acid from fermentation broth. This study outline steps for developing emulsion liquid membrane process in purification of succinic acid. The steps include liquid membrane formulation, ELM stability and ELM extraction of succinic acid. Several carrier, diluent and stripping agent was screened to find appropriate membrane formulation. After that, ELM stability was investigated to enhance the recovery of succinic acid. Finally, the performance of ELM was evaluated in the extraction process. Results show that formulated liquid membrane using Amberlite LA2 as carrier, palm oil as diluent and sodium carbonate, Na_2CO_3 as stripping agent provide good performance in purification. On the other hand, the prepared emulsion was observed to be stable up to 1 hour and sufficient for extraction process. In conclusion, ELM has high potential to purify succinic acid from fermentation broth. (author)

  10. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid.

    Science.gov (United States)

    Wu, Zhen; Wu, Jing; Cao, Pei; Jin, Yifeng; Pan, Daodong; Zeng, Xiaoqun; Guo, Yuxing

    2017-06-01

    Yogurt products fermented with probiotic bacteria are a consumer trend and a challenge for functional food development. So far, limited research has focused on the behavior of the various probiotic strains used in milk fermentation. In the present study, we characterized folic acid production and the sensory and textural characteristics of yogurt products fermented with probiotic bacteria. Yogurt fermented with Lactobacillus plantarum had improved nutrient content and sensory and textural characteristics, but the presence of L. plantarum significantly impaired the growth and survival of Lactobacillus delbrueckii ssp. bulgaricus during refrigerated storage. Overall, L. plantarum was a good candidate for probiotic yogurt fermentation; further studies are needed to understand the major metabolite path of lactic acid bacteria in complex fermentation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L. Assisted by Corynebacterium variabile.

    Directory of Open Access Journals (Sweden)

    Sen Yang

    Full Text Available The accumulation of a considerable quantity of gibberellin fermentation residue (GFR during gibberellic acid A3 (GA3 production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL and microbes (Corynebacterium variabile to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26 °C. A total of 371 g housefly larvae meal and 2,064 g digested residue were bio-converted from 3,500 g raw GFR mixture contaning1, 400 g rice straw in the unit of (calculated dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources.

  12. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L.) Assisted by Corynebacterium variabile

    Science.gov (United States)

    Yang, Sen; Xie, Jiufeng; Hu, Nan; Liu, Yixiong; Zhang, Jiner; Ye, Xiaobin; Liu, Ziduo

    2015-01-01

    The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26°C. A total of 371g housefly larvae meal and 2,064g digested residue were bio-converted from 3,500g raw GFR mixture contaning1, 400g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources. PMID:25992605

  13. Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2016-04-01

    Full Text Available The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO, from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g. olive oil, corn oil could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.. Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  14. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Science.gov (United States)

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  15. Pretreatment and fermentation strategies to overcome the toxicity of acetic acid in hemicellulosic hydrolysates

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Acetic acid is one of the most important toxic compounds present in hemicellulosic hydrolysates. In order to overcome this problem, several strategies were studied for both biomass pretreatment and fermentation steps. Biomass deacetylation by mild alkaline pretreatment or using high pressure CO2...... where acetic acid can also be integrated as a valuable final product. For the fermentation step, it is well known that hemicellulosic hydrolysates usually need to be detoxified prior use as fermentation medium in order to improve the performance of the microorganism to convert sugars in the product...... of interest. Although detoxification improves the fermentability of hydrolysates, this additional step adds cost and complexity to the process and generates extra waste products. In this sense, the adaptation of the fermenting microorganism to increased concentrations of acetic acid can be considered...

  16. Amino acids production focusing on fermentation technologies – A review

    DEFF Research Database (Denmark)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    2018-01-01

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives...... an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium...... glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although...

  17. Effects of restriction of silage fermentation with formic acid on milk production

    Directory of Open Access Journals (Sweden)

    S. JAAKKOLA

    2008-12-01

    Full Text Available The study was conducted to evaluate the effects of silage fermentation quality and type of supplementation on milk production. Thirty two Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and 4 × 2 × 2 factorial arrangement of treatments. Silage fermentation was modified with formic acid (FA, which was applied at the rates equivalent to 0 (FA0, 2 (FA2, 4 (FA4 or 6 (FA6 litres t-1 grass of pure formic acid (as 100% FA. Dietary treatments consisted of four silages, a protein supplementation (no supplement or rapeseed meal 1.8 kg d-1 and a glucogenic substrate (no supplement or propylene glycol 225 g d-1. Increasing the application rate of FA restricted silage fermentation curvilinearly, as evidenced by higher concentrations of ammonia N and butyric acid in FA4 than FA2 silage. Similarly the use of FA resulted in curvilinear changes in the silage dry matter intake and milk yield. The highest milk and protein yields were achieved with FA6, while the milk yield with FA2 was higher than with FA4. Interactions were observed between silage type and supplementation. Rapeseed meal increased milk yield irrespective of the extent of silage fermentation, but the magnitude of response was variable. Propylene glycol was most beneficial with restrictively fermented silages FA4 and FA6. In conclusion, restriction of silage fermentation with a high rate of formic acid is beneficial in milk production. Interactions between silage composition and concentrate types suggest that the responses to supplementary feeding depend on silage fermentation characteristics.;

  18. Fermentation of Prefermented and Extruded Rice Flour by Lactic Acid Bacteria from Sikhae

    DEFF Research Database (Denmark)

    Lee, C. H.; Min, K. C.; Souane, M.

    1992-01-01

    of prefermentation of rice flour in solid-state with Bacillus laevolacticus and Saccharomyces cerevisiae, extrusion cooking and addition of soymilk as the substrate of lactic acid fermentation were tested. Extrusion cooking and prefermentation of rice increased the soluble solid and sugar contents before malt......The acid- and flavor-forming properties of Lactobacillus plantarum and Leuconostoc mesenteroides isolated from Sikhae, a Korean traditional lactic acid fermented fish product, were examined and compared to those of Lactobacillus casei and Lactococcus lactis subsp. diacetylactis DRC3. The effects...... digestion. The amount of sugar consumption during lactic fermentation varied with the type of bacteria. Leuconostoc mesenteroides(sikhae) and Lactobacillus plantarum(sikhae) increased up to 6 times of original cell number by 24 hrs of fermentation in rice + soymilk substrate, but Lactococcus lactis...

  19. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study.

    Science.gov (United States)

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  20. Mass transfer behavior in lactic acid fermentation using immobilized lactobacillus delbrueckii

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Seki, M.; Furusaki, S. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1995-08-20

    We performed simulation studies on mass transfer behavior for immobilized cells in lactic acid fermentation using the mathematical model developed previously. The simulations pointed to an unusual result; that lactate ion diffuses into the bead center from outside during the batch fermentation and the startup period of the continuous fermentation, whereas free lactic acid and protons diffuse in the opposite direction. This phenomenon is caused by the addition of base to keep pH constant in the broth. Also, using an appropriate buffer to control pH in the broth can reduce the inward diffusion of lactate ion and improve the productivity of lactic acid. A singular mass transfer phenomenon is expected to take place in other production processes using immobilized cells (or enzyme), where alkali solution is added to broth to keep pH constant. 9 refs., 6 figs.

  1. Attempts at improving citric acid fermentation by Aspergillus niger in beet-molasses medium

    Energy Technology Data Exchange (ETDEWEB)

    Adham, N.Z. [National Research Centre, Cairo (Egypt). Products Dept.

    2002-08-01

    Natural oils with high unsaturated fatty acids content when added at concentrations of 2% and 4% (v/v) to beet molasses (BM) medium caused a considerable increase in citric acid yield from Aspergillus niger. The fermentation capacities were also examined for production of citric acid using BM-oil media under different fermentation conditions. Maximum citric acid yield was achieved in surface culture in the presence of 4% olive oil after 12 days incubation. (author)

  2. Carrot Juice Fermentations as Man-Made Microbial Ecosystems Dominated by Lactic Acid Bacteria.

    Science.gov (United States)

    Wuyts, Sander; Van Beeck, Wannes; Oerlemans, Eline F M; Wittouck, Stijn; Claes, Ingmar J J; De Boeck, Ilke; Weckx, Stefan; Lievens, Bart; De Vuyst, Luc; Lebeer, Sarah

    2018-06-15

    Spontaneous vegetable fermentations, with their rich flavors and postulated health benefits, are regaining popularity. However, their microbiology is still poorly understood, therefore raising concerns about food safety. In addition, such spontaneous fermentations form interesting cases of man-made microbial ecosystems. Here, samples from 38 carrot juice fermentations were collected through a citizen science initiative, in addition to three laboratory fermentations. Culturing showed that Enterobacteriaceae were outcompeted by lactic acid bacteria (LAB) between 3 and 13 days of fermentation. Metabolite-target analysis showed that lactic acid and mannitol were highly produced, as well as the biogenic amine cadaverine. High-throughput 16S rRNA gene sequencing revealed that mainly species of Leuconostoc and Lactobacillus (as identified by 8 and 20 amplicon sequence variants [ASVs], respectively) mediated the fermentations in subsequent order. The analyses at the DNA level still detected a high number of Enterobacteriaceae , but their relative abundance was low when RNA-based sequencing was performed to detect presumptive metabolically active bacterial cells. In addition, this method greatly reduced host read contamination. Phylogenetic placement indicated a high LAB diversity, with ASVs from nine different phylogenetic groups of the Lactobacillus genus complex. However, fermentation experiments with isolates showed that only strains belonging to the most prevalent phylogenetic groups preserved the fermentation dynamics. The carrot juice fermentation thus forms a robust man-made microbial ecosystem suitable for studies on LAB diversity and niche specificity. IMPORTANCE The usage of fermented food products by professional chefs is steadily growing worldwide. Meanwhile, this interest has also increased at the household level. However, many of these artisanal food products remain understudied. Here, an extensive microbial analysis was performed of spontaneous fermented

  3. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli.

    Science.gov (United States)

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-09-22

    Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.

  4. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    Science.gov (United States)

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Combined enzymatic hydrolysis and fermentation of aspenwood using enzymes derived from Trichoderma harzianum E58

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    A project was initiated to study the conversion of aspenwood to ethanol, butanol or butanediol. The conversion method consisted of steam explosion pretreatment, followed by the enzymatic hydrolysis of the carbohydrate polymers, cellulose and hemicellulose. The enzyme was derived from a wild strain of the fungus Trichoderma harzianum E58, chosen because it produces a cellulose system that can degrade crystalline cellulose to glucose. The aspenwood was steamed at 240{degree}C for 80 seconds and then water and alkali extracted. The insoluble residue was 84% cellulose and was used for both enzyme production and the production of glucose, which was fermented to ethanol. Before fermentation of the water-soluble fraction was possible, the acetylxylan had to be hydrolyzed and the inhibitors (glucose, galactose, acetic and uronic acids, and lignin- and sugar-degradation products) removed. Enzymatic hydrolysis was found to generate less fermentation inhibitors than sulfuric acid hydrolysis. Due to market factors, fermentation research centred on the production of ethanol from hemicellulose, using the yeast Pichia stipitis. Although lignin had no effect on hydrolysis, it increased the bulk to be handled, in combination with small amounts of cellulose was found to strongly adsorb the cellulose enzymes, and broke down to produce inhibitors of the cellulose complex of T. harzanium and the enzyme production phase. Thus, it was advantageous to remove the lignin prior to enzyme production and cellular hydrolysis. None of the strategies were successful in decreasing the amount of cellulose required for enzyme production. It was concluded that T. harzianum E58 is unsuitable for use in a commercial bioconversion project. 59 refs., 31 figs., 31 tabs.

  6. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    Science.gov (United States)

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    Science.gov (United States)

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-02

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Lactic acid bacteria population dynamics during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine.

    Science.gov (United States)

    Pardali, Eleni; Paramithiotis, Spiros; Papadelli, Marina; Mataragas, Marios; Drosinos, Eleftherios H

    2017-06-01

    The aim of the present study was to assess the microecosystem development and the dynamics of the lactic acid bacteria population during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine at 20 and 30 °C. In both temperatures, lactic acid bacteria prevailed the fermentation; as a result, the pH value was reduced to ca. 3.6 and total titrable acidity increased to ca. 0.4% lactic acid. Enterococci population increased and formed a secondary microbiota while pseudomonads, Enterobacteriaceae and yeasts/molds populations were below enumeration limit already before the middle of fermentation. Pediococcus pentosaceus dominated during the first days, followed by Lactobacillus plantarum that prevailed the fermentation until the end. Lactobacillus brevis was also detected during the final days of fermentation. A succession at sub-species level was revealed by the combination of RAPD-PCR and rep-PCR analyses. Glucose and fructose were the main carbohydrates detected in brine and were metabolized into lactic acid, acetic acid and ethanol.

  9. Production of lactic acid from corn cobs through fermentation lactobacillus delbruekii

    International Nuclear Information System (INIS)

    Ali, Z.; Anjum, M.; Zahoor, T.

    2007-01-01

    Corn cobs were used as the source of reducing sugars for conversion into lactic acid through fermentation by a local strain of Lactobacillus delbruekii, under varying parameters of time, temperature, pH and glucose concentration, The production of lactic acid significantly increased with increase in Ph, fermentation time and glucose concentration (1-5%) and was significantly high (8.40 g/1) at pH 6, while significantly low (7.67 g/1) at pH 5. (author)

  10. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis.

    Science.gov (United States)

    Wu, Xuefeng; Yao, Hongli; Liu, Qing; Zheng, Zhi; Cao, Lili; Mu, Dongdong; Wang, Hualin; Jiang, Shaotong; Li, Xingjiang

    2018-03-19

    The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.

  11. Effect of lactic acid bacteria starter culture fermentation of cassava ...

    African Journals Online (AJOL)

    The effects of lactic acid fermentation of cassava on the chemical and sensory characteristic of fufu flour were investigated. Two strains of Lactobacillus plantarum were used as starter cultures for the fermentation of cassava to fufu for 96 h. The resultant wet fufu samples were dried at 65oC in a cabinet dryer for 48 h and ...

  12. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli

    Science.gov (United States)

    2013-01-01

    Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID

  13. Purification of Polymer-Grade Fumaric Acid from Fermented Spent Sulfite Liquor

    Directory of Open Access Journals (Sweden)

    Diogo Figueira

    2017-04-01

    Full Text Available Fumaric acid is a chemical building block with many applications, namely in the polymer industry. The fermentative production of fumaric acid from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. The use of existing industrial side-streams as raw-materials within biorefineries potentially enables production costs competitive against current chemical processes, while preventing the use of refined sugars competing with food and feed uses and avoiding purposely grown crops requiring large areas of arable land. However, most industrial side streams contain a diversity of molecules that will add complexity to the purification of fumaric acid from the fermentation broth. A process for the recovery and purification of fumaric acid from a complex fermentation medium containing spent sulfite liquor (SSL as a carbon source was developed and is herein described. A simple two-stage precipitation procedure, involving separation unit operations, pH and temperature manipulation and polishing through the removal of contaminants with activated carbon, allowed for the recovery of fumaric acid with 68.3% recovery yield with specifications meeting the requirements of the polymer industry. Further, process integration opportunities were implemented that allowed minimizing the generation of waste streams containing fumaric acid, which enabled increasing the yield to 81.4% while keeping the product specifications.

  14. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis.

    Science.gov (United States)

    Hasegawa, Momoko; Yamane, Daisuke; Funato, Kouichi; Yoshida, Atsushi; Sambongi, Yoshihiro

    2018-03-01

    Dates are commercially consumed as semi-dried fruit or processed into juice and puree for further food production. However, the date residue after juice and puree production is not used, although it appears to be nutrient enriched. Here, date residue was fermented by a lactic acid bacterium, Lactobacillus brevis, which has been generally recognized as safe. Through degradation of sodium glutamate added to the residue during the fermentation, γ-aminobutyric acid (GABA), which reduces neuronal excitability, was produced at the conversion rate of 80-90% from glutamate. In order to achieve this GABA production level, pretreatment of the date residue with carbohydrate-degrading enzymes, i.e., cellulase and pectinase, was necessary. All ingredients used for this GABA fermentation were known as being edible. These results provide us with a solution for the increasing commercial demand for GABA in food industry with the use of date residue that has been often discarded. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation

    Directory of Open Access Journals (Sweden)

    Yun-Cheng Li

    Full Text Available ABSTRACT Lignocellulose-derived inhibitors have negative effects on the ethanol fermentation capacity of Saccharomyces cerevisiae. In this study, the effects of eight typical inhibitors, including weak acids, furans, and phenols, on glucose and xylose co-fermentation of the recombinant xylose-fermenting flocculating industrial S. cerevisiae strain NAPX37 were evaluated by batch fermentation. Inhibition on glucose fermentation, not that on xylose fermentation, correlated with delayed cell growth. The weak acids and the phenols showed additive effects. The effect of inhibitors on glucose fermentation was as follows (from strongest to weakest: vanillin > phenol > syringaldehyde > 5-HMF > furfural > levulinic acid > acetic acid > formic acid. The effect of inhibitors on xylose fermentation was as follows (from strongest to weakest: phenol > vanillin > syringaldehyde > furfural > 5-HMF > formic acid > levulinic acid > acetic acid. The NAPX37 strain showed substantial tolerance to typical inhibitors and showed good fermentation characteristics, when a medium with inhibitor cocktail or rape straw hydrolysate was used. This research provides important clues for inhibitors tolerance of recombinant industrial xylose-fermenting S. cerevisiae.

  16. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  17. Influence of physiological state of inoculum on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation

    Directory of Open Access Journals (Sweden)

    Marina Bely

    2005-12-01

    Full Text Available An approach consisting of controlling yeast inoculum to minimize volatile acidity production by Saccharomyces cerevisiae during the alcoholic fermentation of botrytized must was investigated. Direct inoculation of rehydrated active dry yeasts produced the most volatile acidity, while a yeast preparation pre-cultured for 24 hours reduced the final production by up to 23 %. Using yeasts collected from a fermenting wine as a starter must also reduced volatile acidity production. The conditions for preparing the inoculum affected the fermentation capacity of the first generation yeasts: fermentation duration, sugar to ethanol ratio, and wine composition. A pre-culture medium with a low sugar concentration (< 220 g/L is essential to limit volatile acidity production in high sugar fermentations.

  18. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    Science.gov (United States)

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Use of Titrimetric, Nelson Somogyi and Hplc Methods for the Analysis of Cashew Apple Juice Fermentation Broths

    OpenAIRE

    Kantasubrata, Julia; T. Karossi, A; S. Pramudi, A

    1993-01-01

    In cashew apple juice fermentation to produce wine and vinegar, analysis of organic acids and sugars in fermentation broths is very important, due to the fact that optimum conditions of fermentation could only be established from results obtained on monitoring the concentrations of those components during the fermentation process. Analysis of organic acids by tiirimetric method and analysis of sugars by Nelson-Somogyi method only give a total amount of acids and sugars. HPLC is one of the pro...

  20. Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus.

    Science.gov (United States)

    Xu, Qianqian; Zang, Ying; Zhou, Jie; Liu, Peng; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-11-01

    Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of D-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for D-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of D-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest D-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of D-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of D-lactic acid production from inulin by SSF represents a high-yield method for D-lactic acid production from non-food grains.

  1. Lactic acid production from unmatured banana peel and flesh through simultaneous saccharification and fermentation

    Directory of Open Access Journals (Sweden)

    Mohammed BELMAKKI

    2016-07-01

    Full Text Available The aim of this study was to establish a process of lactic acid (LA production from two different kinds of african organic waste i.e. peel and flesh of un-matured banana by using as model strain Lactobacillus bp Pentosus AH 239. The bioconversion of glucose contained in the biomass to LA was performed following the Simultaneous Saccharification and Fermentation (SSF process. The Separated Hydrolysis and Fermentation (SHF was also applied in this study to compare the efficiency of both process. The results showed that the enzymatic hydrolysis yield was significantly improved in case of SSF recording a rate of hydrolysis in the range of 82%-90% against 52%-61% under SHF conditions. The results showed also that SSF give more efficient lactic acid production with a yield above of 90%, and a high concentration up to 50 g/L. Due to its performance, the SSF process for the lactic acid production could be an important way of bioconversion for lignocellulosic residues in Africa. The optimization of this process need to be adapted for African context and for its development on an industrial scale.

  2. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  3. Comparative studies of citric acid, acetone-butanol, and alcohol fermentation processes in beet molasses from several sugar factories

    Energy Technology Data Exchange (ETDEWEB)

    Kovats, J; Zuckerind, Z

    1963-01-01

    Citric acid (I) fermentation is the most sensitive to volatile acids and coloring matter contents of molasses, and butanol fermentation, the least. Citric acid and alcohol production decrease as volatile acids and coloring matter increase, but this last factor has a favorable effect on the acetone-butanol fermentation. Molasses which are suitable for citric acid production are also suitable for alcohol but not always for acetone-butanol.

  4. Effects of soya fatty acids on cassava ethanol fermentation.

    Science.gov (United States)

    Xiao, Dongguang; Wu, Shuai; Zhu, Xudong; Chen, Yefu; Guo, Xuewu

    2010-01-01

    Ethanol tolerance is a key trait of microbes in bioethanol production. Previous studies have shown that soya flour contributed to the increase of ethanol tolerance of yeast cells. In this paper, the mechanism of this ethanol tolerance improvement was investigated in cassava ethanol fermentation supplemented with soya flour or defatted soya flour, respectively. Experiment results showed that ethanol tolerance of cells from soya flour supplemented medium increased by 4-6% (v/v) than the control with defatted soya flour. Microscopic observation found that soya flour can retain the cell shape while dramatic elongations of cells were observed with the defatted soya flour supplemented medium. Unsaturated fatty acids (UFAs) compositions of cell membrane were analyzed and the UFAs amounts increased significantly in all tested strains grown in soya flour supplemented medium. Growth study also showed that soya flour stimulated the cell growth rate by approximately tenfolds at 72-h fermentation. All these results suggested that soya fatty acids play an important role to protect yeast cells from ethanol stress during fermentation process.

  5. [Physiological response to acetic acid stress of Acetobacter pasteuranus during vinegar fermentation].

    Science.gov (United States)

    Qi, Zhengliang; Yang, Hailin; Xia, Xiaole; Wang, Wu; Leng, Yunwei; Yu, Xiaobin; Quan, Wu

    2014-03-04

    The aim of the study is to propose a dynamic acetic acid resistance mechanism through analysis on response of cellular morphology, physiology and metabolism of A. pasteurianus CICIM B7003 during vinegar fermentation. Vinegar fermentation was carried out in a Frings 9 L acetator by strain B7003 and cultures were sampled at different cellular growth phases. Simultaneously, percentage of capsular polysaccharide versus dry cells weight, ratio of unsaturated fatty acids to saturated fatty acids, transcription of acetic acid resistance genes, activity of alcohol respiratory chain enzymes and ATPase were detected for these samples to assay the responses of bacterial morphology, physiology and metabolism. When acetic acid was existed, no obvious capsular polysaccharide was secreted by cells. As vinegar fermentation proceeding, percentage of capsular polysaccharide versus dry cells weight was reduced from 2.5% to 0.89%. Ratio of unsaturated fatty acids to saturated fatty acids was increased obviously which can improve membrane fluidity. Also transcription level of acetic acid resistance genes was promoted. Interestingly, activity of alcohol respiratory chain and ATPase was not inhibited but promoted obviously with acetic acid accumulation which could provide enough energy for acetic acid resistance mechanism. On the basis of the results obtained from the experiment, A. pasteurianus CICIM B7003 relies mainly on the cooperation of changes of extracellular capsular polysaccharide and membrane fatty acids, activation of acid resistance genes transcription, enhancement of activity of alcohol respiratory chain and rapid energy production to tolerate acidic environment.

  6. Culture-independent analysis of lactic acid bacteria diversity associated with mezcal fermentation.

    Science.gov (United States)

    Narváez-Zapata, J A; Rojas-Herrera, R A; Rodríguez-Luna, I C; Larralde-Corona, C P

    2010-11-01

    Mezcal is an alcoholic beverage obtained from the distillation of fermented juices of cooked Agave spp. plant stalks (agave must), and each region in Mexico with denomination of origin uses defined Agave species to prepare mezcal with unique organoleptic characteristics. During fermentation to produce mezcal in the state of Tamaulipas, not only alcohol-producing yeasts are involved, but also a lactic acid bacterial community that has not been characterized yet. In order to address this lack of knowledge on this traditional Mexican beverage, we performed a DGGE-16S rRNA analysis of the lactic acid bacterial diversity and metabolite accumulation during the fermentation of a typical agave must that is rustically produced in San Carlos County (Tamaulipas, Mexico). The analysis of metabolite production indicated a short but important malolactic fermentation stage not previously described for mezcal. The denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes showed a distinctive lactic acid bacterial community composed mainly of Pediococcus parvulus, Lactobacillus brevis, Lactobacillus composti, Lactobacillus parabuchneri, and Lactobacillus plantarum. Some atypical genera such as Weissella and Bacillus were also found in the residual must. Our results suggest that the lactic acid bacteria could strongly be implicated in the organoleptic attributes of this traditional Mexican distilled beverage.

  7. Recovering folic acid and its identification on mixed pastes of tempeh and fermented vegetable as natural source of folic acid

    Science.gov (United States)

    Susilowati, Agustine; Aspiyanto, Maryati, Yati; Melanie, Hakiki; Lotulung, Puspa D.

    2017-11-01

    Mixing between tempeh and both fermented broccoli (Brassica oleracea) and spinach (Amaranthus sp.) were conducted to achieve mixed pastes as natural source of folic acid for 'smart food'. Mixing was performed on soy, mung bean, and kidney bean tempehs with both fermented broccoli and spinach at ratio of 1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 5 and 1 : 6, respectively. Result of experimental activity showed that pulverizing ratio becoming more and more low will decrease total solids, soluble protein and N-Amino, but fluctuates on folic acid in mixed paste. Based on folic acid equivalent and the best fermented vegetable efficiency, optimization condition was reached in paste with combination between mung beans tempeh and fermented spinach at ratio of 1 : 2 by increasing folic acid concentration of 83.18 % (0.83 times), dissolved protein 432.29 % (4.32 times) and N-amino 55.36 % (0,55 times). While, it is occurred a lowering total solids 22.16 % (0.22 times) when compared with folic acid, soluble protein, N-amino, and total solids on initial materials of mung bean tempeh. In this condition, it is achieved folic acid monomer with molecular weight (MW) 148.14 Da. with relative intensity 100 %, and glutamic acid monomer 443.50 Da.with relative intensity 0.07 %.

  8. Mathematical model of gluconic acid fermentation by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, T.; Shioya, S.; Furuya, T.

    1981-11-01

    A mathematical model for the study of gluconic acid fermentation by Aspergillus niger has been developed. The model has been deduced from the basic biological concept of multicellular filamentous microorganisms, i.e. cell population balance. It can be used to explain the behaviour of both batch and continuous cultures, even when in a lag phase. A new characteristic, involving the existence of dual equilibrium stages during fermentation, has been predicted using this mathematical model. (Refs. 6).

  9. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    Science.gov (United States)

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  10. Characteristics of cassava starch fermentation wastewater based on structural degradation of starch granules

    Directory of Open Access Journals (Sweden)

    Juliane Mascarenhas Pereira

    2016-01-01

    Full Text Available ABSTRACT: Sour cassava starch is a naturally modified starch produced by fermentation and sun drying, achieving the property of expansion upon baking. Sour cassava starch' bakery products can be prepared without the addition of yeast and it is gluten free. The fermentation process associated with this product has been well studied, but the wastewater, with high acidity and richness in other organic compounds derived from starch degradation, requires further investigation. In this study, the structure of solids present in this residue was studied, seeking to future applications for new materials. The solids of the wastewater were spray dried with maltodextrin (MD with dextrose equivalent (DE of 5 and 15 and the structure of the powder was evaluated by scanning electron microscopy. A regular structure with a network arrangement was observed for the dried material with MD of 5 DE, in contrast to the original and fermented starches structure, which suggests a regular organization of this new material, to be studied in future applications.

  11. Lactic acid fermentation of human urine to improve its fertilizing value and reduce odour emissions.

    Science.gov (United States)

    Andreev, N; Ronteltap, M; Boincean, B; Wernli, M; Zubcov, E; Bagrin, N; Borodin, N; Lens, P N L

    2017-08-01

    During storage of urine, urea is biologically decomposed to ammonia, which can be lost through volatilization and in turn causes significant unpleasant smell. In response, lactic acid fermentation of urine is a cost-effective technique to decrease nitrogen volatilization and reduce odour emissions. Fresh urine (pH = 5.2-5.3 and NH 4 + -N = 1.2-1.3 g L -1 ) was lacto-fermented for 36 days in closed glass jars with a lactic acid bacterial inoculum from sauerkraut juice and compared to untreated, stored urine. In the lacto-fermented urine, the pH was reduced to 3.8-4.7 and the ammonium content by 22-30%, while the pH of the untreated urine rose to 6.1 and its ammonium content increased by 32% due to urea hydrolysis. The concentration of lactic acid bacteria in lacto-fermented urine was 7.3 CFU ml -1 , suggesting that urine is a suitable growth medium for lactic acid bacteria. The odour of the stored urine was subjectively perceived by four people to be twice as strong as that of lacto-fermented samples. Lacto-fermented urine induced increased radish germination compared to stored urine (74-86% versus 2-31%). Adding a lactic acid bacterial inoculum to one week old urine in the storage tanks in a urine-diverting dry toilet reduced the pH from 8.9 to 7.7 after one month, while the ammonium content increased by 35%, probably due to the high initial pH of the urine. Given that the hydrolyzed stale urine has a high buffering capacity, the lactic acid bacterial inoculum should be added to the urine storage tank of a UDDT before urine starts to accumulate there to increase the efficiency of the lactic acid fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy.

    Science.gov (United States)

    van der Pol, Edwin C; Eggink, Gerrit; Weusthuis, Ruud A

    2016-01-01

    Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of l(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate thermophilic bacterium Bacillus coagulans DSM2314. Saccharification and fermentation were performed simultaneously (SSF), adding acid-pretreated bagasse either in one batch or in two stages. SSF was performed at low enzyme dosages of 10.5-15.8 FPU/g DW bagasse. The first batch SSF resulted in an average productivity of 0.78 g/l/h, which is not sufficient to compete with lactic acid production processes using high-grade sugars. Addition of 1 g/l furfural to precultures can increase B. coagulans resistance towards by-products present in pretreated lignocellulose. Using furfural-containing precultures, productivity increased to 0.92 g/l/h, with a total lactic acid production of 91.7 g in a 1-l reactor containing 20% W/W DW bagasse. To increase sugar concentrations, bagasse was solubilized with a liquid fraction, obtained directly after acid pretreatment. Solubilizing the bagasse fibres with water increased the average productivity to 1.14 g/l/h, with a total lactic acid production of 84.2 g in a 1-l reactor. Addition of bagasse in two stages reduced viscosity during SSF, resulting in an average productivity in the first 23 h of 2.54 g/l/h, similar to productivities obtained in fermentations using high-grade sugars. Due to fast accumulation of lactic acid, enzyme activity was repressed during two-stage SSF, resulting in a decrease in productivity and a slightly lower total lactic acid production of 75.6 g. In this study, it is shown that an adequate production of lactic acid from lignocellulose was successfully accomplished by a two-stage SSF process, which combines acid-pretreated bagasse, B. coagulans precultivated in the presence of furfural as microorganism, and GC220 as enzyme

  13. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Hasunuma, Tomohisa; Yoshimura, Kazuya; Matsuda, Fumio [Kobe Univ., Hyogo (Japan). Organization of Advanced Science and Technology; Sung, Kyung-mo; Sanda, Tomoya; Kondo, Akihiko [Kobe Univ., Hyogo (Japan). Dept. of Chemical Science and Engineering

    2011-05-15

    Recombinant yeast strains highly tolerant to formic acid during xylose fermentation were constructed. Microarray analysis of xylose-fermenting Saccharomyces cerevisiae strain overexpressing endogenous xylulokinase in addition to xylose reductase and xylitol dehydrogenase from Pichia stipitis revealed that upregulation of formate dehydrogenase genes (FDH1 and FDH2) was one of the most prominent transcriptional events against excess formic acid. The quantification of formic acid in medium indicated that the innate activity of FDH was too weak to detoxify formic acid. To reinforce the capability for formic acid breakdown, the FDH1 gene was additionally overexpressed in the xylose-metabolizing recombinant yeast. This modification allowed the yeast to rapidly decompose excess formic acid. The yield and final ethanol concentration in the presence of 20 mM formic acid is as essentially same as that of control. The fermentation profile also indicated that the production of xylitol and glycerol, major by-products in xylose fermentation, was not affected by the upregulation of FDH activity. (orig.)

  14. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava

    OpenAIRE

    Dietrich, Diane; Illman, Barbara; Crooks, Casey

    2013-01-01

    Background The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides arabinose, xylose, glucose and mannose. Findings We examined the sensitivity of seven polyhydroxyalkanoate producing ba...

  15. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  16. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study

    Directory of Open Access Journals (Sweden)

    Tiziana Di Renzo

    2018-03-01

    Full Text Available This study identified the odor-active compounds and the qualitative characteristics of doughs from “ancient” grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones

  17. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study

    Science.gov (United States)

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C.

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from “ancient” grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  18. Citric acid fermentation medium from sugar waste

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Yarita, K.; Uchio, R.; Kikuchi, K.

    1977-11-02

    Wastes from a sugar refinery are hydrolyzed to yield fructose and glucose; a part of the fructose is removed from the hydrolyzate by treating with lime and the remaining hydrolyzate is used as a C source for citric acid fermentation. Thus, 1 kg beet molasses was dissolved in 2.5 L water, adjusted to pH 1.5, hydrolyzed at 60/sup 0/ for 4 h, neutralized with Ca(OH)/sub 2/, and the precipitate was removed. The hydrolyzate was cooled to 0/sup 0/, mixed with a solution containing 205 g Ca(OH)/sub 2/, seeded with fructose, and allowed to stand. The precipitate was suspended in cold water, neutralized with H/sub 2/SO/sub 4/, and filtered to obtain a solution containing 169 g fructose and 6.3 g glucose. The filtrate from the Ca(OH)/sub 2/ precipitation was neutralized with H/sub 2/SO/sub 4/ and removal of precipitate yielded a solution containing 87 g fructose and 220 g glucose, which was used as a C source for citric acid fermentation with Aspergillus niger AJ7015.

  19. Screening and identification of lactic acid bacteria strains with high acid-producing from traditional fermented yak yogurt

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyong

    2017-01-01

    Full Text Available A total of 57 strains of lactic acid bacteria (LAB were isolated and purified from traditional fermented Yak Yogurt in Hongyuan-Sichuan and Yangbajing-Tibet. The strains with high acid-produced were screened by soluble calcium circle and titratable acidity determination. The five strains, 7-1, 22-1, 28-1, 34-1 and 62-1, possessed the high acid-producing and the value of titratable acidity is 196.2, 191.1, 192.2, 194.8 and 200.2 T respectively. Based on 16S rDNA sequence analysis, 22-1 was identified as Lactococcus lactis subsp. lactis, 28-1 as Lactobacillus casei, 34-1 as Lactobacillus fermentium, 7-1 and 62-1 as Enterococcus durans. This study could provide the evidence for researching fermentation strains to improve yogurt quality.

  20. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Directory of Open Access Journals (Sweden)

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  1. Increases in Phenolic, Fatty Acid, and Phytosterol Contents and Anticancer Activities of Sweet Potato after Fermentation by Lactobacillus acidophilus.

    Science.gov (United States)

    Shen, Yixiao; Sun, Haiyan; Zeng, Haiying; Prinyawiwatukul, Witoon; Xu, Wenqing; Xu, Zhimin

    2018-03-21

    Phenolic, fatty acid, and phytosterol contents in sweet potato (SP) fermented by Lactobacillus acidophilus were evaluated and compared with those of raw and boiled SPs. The differences in the profiles and levels of phenolics between the raw and boiled SPs were not as significant as the differences between those and the fermented SP. The levels of caffeic acid and 3,5-dicaffeoylquinic acid in fermented SP were more than 4 times higher than those in raw and boiled SPs. Two phenolics, p-coumaric acid and ferulic acid, which were not detected in either raw or boiled SP, were found in fermented SP. The level of each fatty acid or phytosterol increased in fermented SP and decreased in boiled SP. Among the hydrophilic and lipophilic extracts obtained from raw and fermented SPs, the hydrophilic extract of fermented SP exhibited the highest capability of inhibiting cancer-cell PC-12 proliferation. However, each of the extracts had very low cytotoxicities to normal-monkey-kidney-cell growth. The results indicated that SP fermented by L. acidophilus significantly increased free antioxidant-rich phenolics and inhibited cancer-cell-proliferation activity without cytotoxicity to normal cells.

  2. Production of Citric Acid from Solid State Fermentation of Sugarcane ...

    African Journals Online (AJOL)

    Aspergillus niger is the leading microorganism of choice for citric acid production. Sugarcane waste was used as substrate under solid state fermentation to comparatively evaluate the citric acid production capacity of Aspergillus niger isolates and the indigenous microflora in the sugarcane waste. Known optimal cultural ...

  3. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    Science.gov (United States)

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  4. Influence of fermentation temperature on the content of fatty acids in low energy milk-based kombucha products

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2011-01-01

    Full Text Available The aim of this study was to investigate the influence of fermentation temperature on the fatty acids content in low energy milk-based products obtained by kombucha inoculums with herbal teas. In this investigation low energy milk-based kombucha products were produced from milk with 0.8% milk fat using 10% (v/v kombucha inoculums cultivated on winter savory, peppermint, stinging nettle and wild thyme. The process of fermentation was conducted at two temperatures: 40°C and 43°C. Fermentation was stopped after the pH value of 4.5 was reached. Duration of the fermentation process was shorter by applying higher fermentation temperature. Fatty acids content was determined by gas chromatography-mass spectrometry. Predominant fatty acids in all obtained products were saturated fatty acids, first of all the monounsaturated ones. The higher temperature resulted in the formation of lower amount of saturated fatty acids in the obtained milk-based kombucha products.

  5. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  6. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  7. Antimicrobial potential of triticale stillage after lactic acid fermentation with Lactobacillus fermentum PL-1

    Directory of Open Access Journals (Sweden)

    Kujundžić Žužana

    2013-01-01

    Full Text Available This study is concerned with the testing of antimicrobial activity of triticale stillage obtained after lactic fermentation by Lactobacillus fermentum PL-1. The antimicrobial tests were performed using the disc-diffusion and agar well diffusion methods. It was found that fermented triticale stillage after lactic acid fermentation exhibited an inhibitory effect towards tested Gram positive and Gram negative bacteria: Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, and Enterococcus faecalis. The triticale stillage without addition of CaCO3 before fermentation showed a stronger antimicrobial effect in comparison with the triticale stillage with added CaCO3. Triticale stillage after lactic acid fermentation did not show any antifungal effect on the growth of tested moulds (Alternaria alternata, Aspergillus versicolor, Penicillium brevicompactum, and Fusarium subglutinans. [Projekat Ministarstva nauke Republike Srbije, br. TR-31017

  8. Stillage reflux in food waste ethanol fermentation and its by-product accumulation.

    Science.gov (United States)

    Ma, Hongzhi; Yang, Jian; Jia, Yan; Wang, Qunhui; Tashiro, Yukihiro; Sonomoto, Kenji

    2016-06-01

    Raw materials and pollution control are key issues for the ethanol fermentation industry. To address these concerns, food waste was selected as fermentation substrate, and stillage reflux was carried out in this study. Reflux was used seven times during fermentation. Corresponding ethanol and reducing sugar were detected. Accumulation of by-products, such as organic acid, sodium chloride, and glycerol, was investigated. Lactic acid was observed to accumulate up to 120g/L, and sodium chloride reached 0.14mol/L. Other by-products did not accumulate. The first five cycles of reflux increased ethanol concentration, which prolonged fermentation time. Further increases in reflux time negatively influenced ethanol fermentation. Single-factor analysis with lactic acid and sodium chloride demonstrated that both factors affected ethanol fermentation, but lactic acid induced more effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation.

    Science.gov (United States)

    Esquivel-Elizondo, Sofia; Miceli, Joseph; Torres, Cesar I; Krajmalnik-Brown, Rosa

    2018-02-01

    Medium-chain fatty acids (MCFA) are important biofuel precursors. Carbon monoxide (CO) is a sustainable electron and carbon donor for fatty acid elongation, since it is metabolized to MCFA precursors, it is toxic to most methanogens, and it is a waste product generated in the gasification of waste biomass. The main objective of this work was to determine if the inhibition of methanogenesis through the continuous addition of CO would lead to increased acetate or MCFA production during fermentation of ethanol. The effects of CO partial pressures (P CO ; 0.08-0.3 atm) on methanogenesis, fatty acids production, and the associated microbial communities were studied in batch cultures fed with CO and ethanol. Methanogenesis was partially inhibited at P CO  ≥ 0.11 atm. This inhibition led to increased acetate production during the first phase of fermentation (0-19 days). However, a second addition of ethanol (day 19) triggered MCFA production only at P CO  ≥ 0.11 atm, which probably occurred through the elongation of acetate with CO-derived ethanol and H 2 :CO 2 . Accordingly, during the second phase of fermentation (days 20-36), the distribution of electrons to acetate decreased at higher P CO , while electrons channeled to MCFA increased. Most probably, Acetobacterium, Clostridium, Pleomorphomonas, Oscillospira, and Blautia metabolized CO to H 2 :CO 2 , ethanol and/or fatty acids, while Peptostreptococcaceae, Lachnospiraceae, and other Clostridiales utilized these metabolites, along with the provided ethanol, for MCFA production. These results are important for biotechnological systems where fatty acids production are preferred over methanogenesis, such as in chain elongation systems and microbial fuel cells. © 2017 Wiley Periodicals, Inc.

  10. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    OpenAIRE

    Lin,Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxyl...

  11. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation

    NARCIS (Netherlands)

    Sieuwerts, Sander; Bron, Peter A.; Smid, Eddy J.

    2018-01-01

    Interactions between microorganisms are key to their performance in food habitats. Improved understanding of these interactions supports rational improvement of food fermentations. This study aimed at identifying interactions between lactic acid bacteria and yeast during sourdough fermentation.

  12. Acyl Meldrum's acid derivatives: application in organic synthesis

    International Nuclear Information System (INIS)

    Janikowska, K; Rachoń, J; Makowiec, S

    2014-01-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references

  13. Bactéries lactiques de la pâte fermentée de maïs au Congo

    Directory of Open Access Journals (Sweden)

    Louembé, D.

    2003-01-01

    Full Text Available Lactic Acid Bacteria Involved in the Processing of Poto-Poto, a Fermented Maize Dough Congolese. Lactic acid bacteria and yeast involved in natural fermentation of "poto-poto" were investigated during fermentation period. The dominant micro-organisms involved in poto-poto are a mixed population of lactic acid bacteria and yeasts. The association of these two category of organisms responsible for the development of sensory qualities has been noticed in spontaneous fermentation. From a total of 131 strains of lactic acid bacteria isolated from product, four main lactic acid bacteria genus were identified: Lactobacillus (mainly Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus cellobiosus, Lactobacillus brevis, Lactococcus (with Lactococcus lactis sp. lactis, Leuconostoc (mainly Leuconostoc mesenteroïdes, Leuconostoc citreum and Pediococcus (with Pediococcus acidilactici. Lactobacillus constitued the predominant genus. Leuconostoc were only isolated at the early stage of fermentation, confirming the fact that they are initiating flora as generally repoted. This presumably a result of the low pH. The micro-organisms composition compared with ogi, uji are similar. Howewer, some differences exist particulary with mawe, beninese traditional product. Quantitatively, lactic acid bacteria and yeasts are more numerous in natural fermentation of germinated grains maize than non germinated grains.

  14. Fermentation of D-Tagatose by Human Intestinal Bacteria and Dairy Lactic Acid Bacteria

    OpenAIRE

    Bertelsen, Hans; Andersen, Hans; Tvede, Michael

    2011-01-01

    A number of 174 normal or pathogenic human enteric bacteria and dairy lactic acid bacteria were screened for D-tagatose fermentation by incubation for 48 hours. Selection criteria for fermentation employed included a drop in pH below 5.5 and a distance to controls of more than 0.5. Only a few of the normal occurring enteric human bacteria were able to ferment D-tagatose, among those Enterococcus faecalis, Enterococcus faecium and Lactobacillus strains. D-Tagatose fermentation seems to be comm...

  15. Fermentation to short-chain fatty acids and lactate in human faecal batch cultures. Intra- and inter-individual variations versus variations caused by changes in fermented saccharides

    DEFF Research Database (Denmark)

    Mortensen, P B; Hove, H; Clausen, M R

    1991-01-01

    in homogenates pooled from three individuals increased short-chain fatty acid production linearly. Amounts and ratios of short-chain fatty acids formed were highly dependent on the type of substrate fermented. Fermentable saccharides increased ammonia assimilation, in contrast to the metabolic inert cellulose...

  16. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    Science.gov (United States)

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates

  17. Chirality of meteoritic free and IOM-derived monocarboxylic acids and implications for prebiotic organic synthesis

    Science.gov (United States)

    Aponte, José C.; Tarozo, Rafael; Alexandre, Marcelo R.; Alexander, Conel M. O.'D.; Charnley, Steven B.; Hallmann, Christian; Summons, Roger E.; Huang, Yongsong

    2014-04-01

    The origin of homochirality and its role in the development of life on Earth are among the most intriguing questions in science. It has been suggested that carbonaceous chondrites seeded primitive Earth with the initial organic compounds necessary for the origin of life. One of the strongest pieces of evidence supporting this theory is that certain amino acids in carbonaceous chondrites display a significant L-enantiomeric excess (ee), similar to those use by terrestrial life. Analyses of ee in meteoritic molecules other than amino acids would shed more light on the origins of homochirality. In this study we investigated the stereochemistry of two groups of compounds: (1) free monocarboxylic acids (MCAs) from CM2 meteorites LON 94101 and Murchison; and (2) the aliphatic side chains present in the insoluble organic matter (IOM) and extracted in the form of monocarboxylic acids (MCAs) from EET 87770 (CR2) and Orgueil (CI1). Contrary to the well-known ee observed for amino acids in meteorites, we found that meteoritic branched free and IOM-derived MCAs with 5-8 carbon atoms are essentially racemic. The racemic nature of these compounds is used to discuss the possible influence of ultraviolet circularly polarized light (UVCPL) and aqueous alterations on the parent body on chirality observed in in carbonaceous chondrites.

  18. Evaluation of soymilk fermentation with a lactic culture

    Directory of Open Access Journals (Sweden)

    Martha Cecilia Quicazán

    2001-07-01

    Full Text Available Soymilk, the protein slurry extracted in water from soybeans, obtained by means of a process tested previously at ICTA (the National University of Colombia's Institute of Food Science and Technology, was fermented by using a thermophyllic lactic culture consisting of L delbrueckii ss. bulgaricus, L. delbrueckii ss. lactis and S. salivarius ss. thermophilus. The soymilk composition was standardised (before fermentation, regarding solids and protein contení, by means of Brix0 as process variable. Soymilk was fermented by applying those same basic operations followed in cow milk fermentation. Acidification was assessed by evaluating pH, titrable acidity and organic acid production during the process by HPLC in an ionic exclusion column. Reologyc property modification was studied and compared with that for cow milk. It was proved that, despite the absence of lactose as substrate, soymilk acidification during this process can be explained by lactic acid production and that soymilk solid content influences acid production and changes in viscosity.

  19. High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation.

    Science.gov (United States)

    Chen, Liyan; Vadlani, Praveen V; Madl, Ronald L

    2014-01-15

    Phytic acid of soy meal (SM) could influence protein and important mineral digestion of monogastric animals. Aspergillus oryzae (ATCC 9362) solid-state fermentation was applied to degrade phytic acid in SM. Two-stage temperature fermentation protocol was investigated to increase the degradation rate. The first stage was to maximize phytase production and the second stage was to realize the maximum enzymatic degradation. In the first stage, a combination of 41% moisture, a temperature of 37 °C and inoculum size of 1.7 mL in 5 g substrate (dry matter basis) favored maximum phytase production, yielding phytase activity of 58.7 U, optimized via central composite design. By the end of second-stage fermentation, 57% phytic acid was degraded from SM fermented at 50 °C, compared with 39% of that fermented at 37 °C. The nutritional profile of fermented SM was also studied. Oligosaccharides were totally removed after fermentation and 67% of total non-reducing polysaccharides were decreased. Protein content increased by 9.5%. Two-stage temperature protocol achieved better phytic acid degradation during A. oryzae solid state fermentation. The fermented SM has lower antinutritional factors (phytic acid, oligosaccharides and non-reducing polysaccharides) and higher nutritional value for animal feed. © 2013 Society of Chemical Industry.

  20. Non-Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation

    Directory of Open Access Journals (Sweden)

    Aitor Balmaseda

    2018-03-01

    Full Text Available This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB, especially Oenococcus oeni, the main species carrying out the malolactic fermentation (MLF. The emphasis has been placed on non-Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non-Saccharomyces. Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae, but non-Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non-Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non-Saccharomyces. According to the stimulatory effects, the use of non-Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non-Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.

  1. Non-Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation.

    Science.gov (United States)

    Balmaseda, Aitor; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín

    2018-01-01

    This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB), especially Oenococcus oeni , the main species carrying out the malolactic fermentation (MLF). The emphasis has been placed on non- Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non- Saccharomyces . Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae , but non- Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs) produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non- Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non- Saccharomyces . According to the stimulatory effects, the use of non- Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non- Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.

  2. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  3. The drying method affects the organic acid content of alfalfa forages

    Directory of Open Access Journals (Sweden)

    P. Pezzi

    2011-03-01

    Full Text Available Malic acid (the main organic acid contained in alfalfa; Callaway et al., 1997 is an important metabolite for ruminal microbial population since it improves the uptake of lactic acid by Selenomonas ruminantium (Evans and Martin, 1997 and Megasphaera elsdenii (Rossi and Piva, 1999. Several studies have shown the effect of adding malic acid to the diet of steers and dairy cows on ruminal fermentation (Martin et al., 1999; Martin et al., 2000 and animal performances (Krummrey et al., 1979; Stallcup, 1979; Kung et al., 1982. Aim of this study was the evaluation of the influence of drying method.......

  4. The influence of brewers' yeast addition on lactic acid fermentation of brewers' spent grain hydrolysate by Lactobacillus rhamnosus

    OpenAIRE

    Pejin, Jelena; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Đukić-Vuković, Aleksandra; Mladenović, Dragana; Mojović, Ljiljana

    2015-01-01

    In this study brewers' spent grain (BSG) hydrolysate was produced using optimal conditions. Hydrolysates were used for lactic acid fermentation by Lactobacillus rhamnosus ATCC 7469. The aim of this study was to evaluate possibilities of the BSG hydrolysate utilization as a substrate for lactic acid fermentation as well as the effect of dry brewers' yeast (1.0, 3.0, and 5.0 %) addition in hydrolysate on lactic acid fermentation parameters (L-(+)-lactic acid and reducing sugars concentration an...

  5. The influence of humic acids derived from earthworm-processed organic wastes on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. [Ohio State University, Columbus, OH (United States). Soil Ecology Lab.

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1000, 2000 and 4000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1000 and 4000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates. (author)

  6. Genomic and in Situ Analyses Reveal the Micropruina spp. as Abundant Fermentative Glycogen Accumulating Organisms in Enhanced Biological Phosphorus Removal Systems

    Directory of Open Access Journals (Sweden)

    Simon J. McIlroy

    2018-05-01

    Full Text Available Enhanced biological phosphorus removal (EBPR involves the cycling of biomass through carbon-rich (feast and carbon-deficient (famine conditions, promoting the activity of polyphosphate accumulating organisms (PAOs. However, several alternate metabolic strategies, without polyphosphate storage, are possessed by other organisms, which can compete with the PAO for carbon at the potential expense of EBPR efficiency. The most studied are the glycogen accumulating organisms (GAOs, which utilize aerobically stored glycogen to energize anaerobic substrate uptake and storage. In full-scale systems the Micropruina spp. are among the most abundant of the proposed GAO, yet little is known about their ecophysiology. In the current study, genomic and metabolomic studies were performed on Micropruina glycogenica str. Lg2T and compared to the in situ physiology of members of the genus in EBPR plants using state-of-the-art single cell techniques. The Micropruina spp. were observed to take up carbon, including sugars and amino acids, under anaerobic conditions, which were partly fermented to lactic acid, acetate, propionate, and ethanol, and partly stored as glycogen for potential aerobic use. Fermentation was not directly demonstrated for the abundant members of the genus in situ, but was strongly supported by the confirmation of anaerobic uptake of carbon and glycogen storage in the absence of detectable polyhydroxyalkanoates or polyphosphate reserves. This physiology is markedly different from the classical GAO model. The amount of carbon stored by fermentative organisms has potentially important implications for phosphorus removal – as they compete for substrates with the Tetrasphaera PAO and stored carbon is not made available to the “Candidatus Accumulibacter” PAO under anaerobic conditions. This study shows that the current models of the competition between PAO and GAO are too simplistic and may need to be revised to take into account the impact of

  7. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired

  8. Sustainable carbon sources for microbial organic acid production with filamentous fungi.

    Science.gov (United States)

    Dörsam, Stefan; Fesseler, Jana; Gorte, Olga; Hahn, Thomas; Zibek, Susanne; Syldatk, Christoph; Ochsenreither, Katrin

    2017-01-01

    The organic acid producer Aspergillus oryzae and Rhizopus delemar are able to convert several alternative carbon sources to malic and fumaric acid. Thus, carbohydrate hydrolysates from lignocellulose separation are likely suitable as substrate for organic acid production with these fungi. Before lignocellulose hydrolysate fractions were tested as substrates, experiments with several mono- and disaccharides, possibly present in pretreated biomass, were conducted for their suitability for malic acid production with A. oryzae. This includes levoglucosan, glucose, galactose, mannose, arabinose, xylose, ribose, and cellobiose as well as cheap and easy available sugars, e.g., fructose and maltose. A. oryzae is able to convert every sugar investigated to malate, albeit with different yields. Based on the promising results from the pure sugar conversion experiments, fractions of the organosolv process from beechwood ( Fagus sylvatica ) and Miscanthus giganteus were further analyzed as carbon source for cultivation and fermentation with A. oryzae for malic acid and R. delemar for fumaric acid production. The highest malic acid concentration of 37.9 ± 2.6 g/L could be reached using beechwood cellulose fraction as carbon source in bioreactor fermentation with A. oryzae and 16.2 ± 0.2 g/L fumaric acid with R. delemar . We showed in this study that the range of convertible sugars for A. oryzae is even higher than known before. We approved the suitability of fiber/cellulose hydrolysate obtained from the organosolv process as carbon source for A. oryzae in shake flasks as well as in a small-scale bioreactor. The more challenging hemicellulose fraction of F. sylvatica was also positively evaluated for malic acid production with A. oryzae .

  9. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  10. Real-Time Monitoring of Chemical Changes in Three Kinds of Fermented Milk Products during Fermentation Using Quantitative Difference Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Lu, Yi; Ishikawa, Hiroto; Kwon, Yeondae; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2018-02-14

    Fermented milk products are rising in popularity throughout the world as a result of their health benefits, including improving digestion, normalizing the function of the immune system, and aiding in weight management. This study applies an in situ quantitative nuclear magnetic resonance method to monitor chemical changes in three kinds of fermented milk products, Bulgarian yogurt, Caspian Sea yogurt, and kefir, during fermentation. As a result, the concentration changes in nine organic compounds, α/β-lactose, α/β-galactose, lactic acid, citrate, ethanol, lecithin, and creatine, were monitored in real time. This revealed three distinct metabolic processes in the three fermented milk products. Moreover, pH changes were also determined by variations in the chemical shift of citric acid during the fermentation processes. These results can be applied to estimate microbial metabolism in various flora and help guide the fermentation and storage of various fermented milk products to improve their quality, which may directly influence human health.

  11. Investigation of nutrient feeding strategies in a countercurrent mixed-acid multi-staged fermentation: experimental data.

    Science.gov (United States)

    Smith, Aaron Douglas; Lockman, Nur Ain; Holtzapple, Mark T

    2011-06-01

    Nutrients are essential for microbial growth and metabolism in mixed-culture acid fermentations. Understanding the influence of nutrient feeding strategies on fermentation performance is necessary for optimization. For a four-bottle fermentation train, five nutrient contacting patterns (single-point nutrient addition to fermentors F1, F2, F3, and F4 and multi-point parallel addition) were investigated. Compared to the traditional nutrient contacting method (all nutrients fed to F1), the near-optimal feeding strategies improved exit yield, culture yield, process yield, exit acetate-equivalent yield, conversion, and total acid productivity by approximately 31%, 39%, 46%, 31%, 100%, and 19%, respectively. There was no statistical improvement in total acid concentration. The traditional nutrient feeding strategy had the highest selectivity and acetate-equivalent selectivity. Total acid productivity depends on carbon-nitrogen ratio.

  12. Genotypic and phenotypic characterization of garlic-fermenting lactic acid bacteria isolated from som-fak, a Thai low-salt fermented fish product

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Valyasevi, R.; Huss, Hans Henrik

    2002-01-01

    AIMS: To evaluate the importance of garlic for fermentation of a Thai fish product, and to differentiate among garlic-/inulin-fermenting lactic acid bacteria (LAB) at strain level. METHODS AND RESULTS: Som-fak was prepared by fermentation of a mixture of fish, salt, rice, sucrose and garlic. p......H decreased to 4.5 in 2 days, but omitting garlic resulted in a lack of acidification. LAB were predominant and approximately one third of 234 isolated strains fermented garlic and inulin (the carbohydrate reserve in garlic). These strains were identified as Lactobacillus pentosus and Lact. plantarum...... AND IMPACT OF THE STUDY: The present study indicates the role of fructans (garlic/inulin) as carbohydrate sources for LAB. Fructan fermenters may have several biotechnological applications, for example, as probiotics....

  13. Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures.

    Science.gov (United States)

    Liang, Shaobo; Gliniewicz, Karol; Mendes-Soares, Helena; Settles, Matthew L; Forney, Larry J; Coats, Erik R; McDonald, Armando G

    2015-03-01

    Three undefined mixed cultures (activated sludge) from different municipal wastewater treatment plants were used as seeds in a novel lactic acid fermentation process fed with potato peel waste (PPW). Anaerobic sequencing batch fermenters were run under identical conditions to produce predominantly lactic acid. Illumina sequencing was used to examine the 16S rRNA genes of bacteria in the three seeds and fermenters. Results showed that the structure of microbial communities of three seeds were different. All three fermentation products had unique community structures that were dominated (>96%) by species of the genus Lactobacillus, while members of this genus constituted undefined mixed cultures were robust and resilient, which provided engineering prospects for the microbial utilization of carbohydrate wastes to produce lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ethanol from lignocellulose - Fermentation inhibitors, detoxification and genetic engineering of Saccharomyces cerevisiae for enhanced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Simona

    2000-07-01

    Ethanol can be produced from lignocellulose by first hydrolysing the material to sugars, and then fermenting the hydrolysate with the yeast Saccharomyces cerevisiae. Hydrolysis using dilute sulphuric acid has advantages over other methods, however, compounds which inhibit fermentation are generated during this kind of hydrolysis. The inhibitory effect of aliphatic acids, furans, and phenolic compounds was investigated. The generation of inhibitors during hydrolysis was studied using Norway spruce as raw material. It was concluded that the decrease in the fermentability coincided with increasing harshness of the hydrolysis conditions. The decrease in fermentability was not correlated solely to the content of aliphatic acids or furan derivatives. To increase the fermentability, detoxification is often employed. Twelve detoxification methods were compared with respect to the chemical composition of the hydrolysate and the fermentability after treatment. The most efficient detoxification methods were anion-exchange at pH 10.0, overliming and enzymatic detoxification with the phenol-oxidase laccase. Detailed analyses of ion exchange revealed that anion exchange and unspecific hydrophobic interactions greatly contributed to the detoxification effect, while cation exchange did not. The comparison of detoxification methods also showed that phenolic compounds are very important fermentation inhibitors, as their selective removal with laccase had a major positive effect on the fermentability. Selected compounds; aliphatic acids, furans and phenolic compounds, were characterised with respect to their inhibitory effect on ethanolic fermentation by S. cerevisiae. When aliphatic acids or furans were compared, the inhibitory effects were found to be in the same range, but the phenolic compounds displayed widely different inhibitory effects. The possibility of genetically engineering S. cerevisiae to achieve increased inhibitor resistance was explored by heterologous expression of

  15. CHANGES IN VOLATILE COMPOSITION OF KRALJEVINA WINES BY CONTROLLED MALOLACTIC FERMENTATION

    Directory of Open Access Journals (Sweden)

    Ana JEROMEL

    2008-11-01

    Full Text Available The effect of malolactic fermentation (MLF on the volatile composition of white wines made from autochtonous grape variety Kraljevina was studied by inoculation with selected lactic acid bacteria. At the end of malolactic fermentation, after the decomposition of the malic acid present in wine the non volatile compounds were analyzed by HPLC, while volatile compounds were analyzed by gas chromatography. All wines were also sensory analyzed. Results showed changes in acetaldehyde, some higher alcohols, ethyl esters, free and bound monoterpenes and some organic acids that contribute to enhance the sensory properties and quality of Kraljevina wines that underwent malolactic fermentation.

  16. The effect of diet supplemented with vegetable oils and/or monensin on the vaccenic acid production in continuous culture fermenters

    Directory of Open Access Journals (Sweden)

    Mostafa Sayed A. Khattab

    2015-12-01

    Full Text Available Studies have shown that supplementing ruminant diets with vegetable oils modulated the rumen biohydrogenation and increased polyunsaturated fatty acid in their products. These positive values are often accompanied by a marginal loss of supplemented unsaturated fatty acids and rise in the concentrations of saturated fatty acids. This study were carried out mainly to investigate the effect of supplementing diets with sunflower oil, olive oil with or without monensin on the production and accumulation of vaccenic acid (VA in continuous culture fermenters as a long term in vitro rumen simulation technique. Eight dual-flow continuous culture fermenters were used in an 8 replication experiment lasted 10 days each (first 7 days for adaptation and last 3 days for samples collection. Supplementing diets with plant oils and monensin in the present experiment increased VA and conjugated linoleic acids (P > 0.05 in ruminal cultures. The results suggest that supplementing diets with both olive oil and sunflower oil and monensin increased VA accumulation compared to plant oils supplemented alone without affecting the rumen dry matter and organic matter digestibility.

  17. Antimicrobial potential of triticale stillage after lactic acid fermentation with Lactobacillus fermentum PL-1

    OpenAIRE

    Kujundžić Žužana; Dimić Gordana R.; Markov Siniša L.; Kocić-Tanackov Sunčica D.; Mojović Ljiljana V.; Pejin Jelena D.; Marković Milica N.

    2013-01-01

    This study is concerned with the testing of antimicrobial activity of triticale stillage obtained after lactic fermentation by Lactobacillus fermentum PL-1. The antimicrobial tests were performed using the disc-diffusion and agar well diffusion methods. It was found that fermented triticale stillage after lactic acid fermentation exhibited an inhibitory effect towards tested Gram positive and Gram negative bacteria: Escherichia coli, Salmonella enteritidis,...

  18. Reactive Distillation for Esterification of Bio-based Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  19. A new p-hydroxybenzoic acid derivative from an endophytic fungus Penicillium sp. of Nerium indicum.

    Science.gov (United States)

    Ma, Yang-Min; Qiao, Ke; Kong, Yang; Guo, Lin-Xin; Li, Meng-Yun; Fan, Chao

    2017-12-01

    A new p-hydroxybenzoic acid derivative named 4-(2'R, 4'-dihydroxybutoxy) benzoic acid (1) was isolated from the fermentation of Penicillium sp. R22 in Nerium indicum. The structure was elucidated by means of spectroscopic (HR-ESI-MS, NMR, IR, UV) and X-ray crystallographic methods. The antibacterial and antifungal activity of compound 1 was tested, and the results showed that compound 1 revealed potent antifungal activity against Colletotrichum gloeosporioides, Alternaria alternata, and Alteranria brassicae with MIC value of 31.2 μg/ml.

  20. Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production.

    Science.gov (United States)

    Costa, M A S; Cerri, B C; Ceccato-Antonini, S R

    2018-01-01

    Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water-diluted sulphuric acid, adjusted to pH 2·0-2·5) between the fermentation cycles is not always effective to combat the bacterial contamination. In this context, this study aimed to evaluate the effect of ethanol addition to the acid treatment to control the bacterial growth in a fed-batch system with cell recycling, using the industrial yeast strain Saccharomyces cerevisiae PE-2. When only the acid treatment was used, the population of Lactobacillus fermentum had a 3-log reduction at the end of the sixth fermentation cycle; however, when 5% of ethanol was added to the acid solution, the viability of the bacterium was completely lost even after the first round of cell treatment. The acid treatment +5% ethanol was able to kill L. fermentum cells without affecting the ethanol yield and with a low residual sugar concentration in the fermented must. In Brazilian ethanol-producing industry, water-diluted sulphuric acid is used to treat the cell mass at low pH (2·0) between the fermentative cycles. This procedure reduces the number of Lactobacillus fermentum from 10 7 to 10 4  CFU per ml. However, the addition of 5% ethanol to the acid treatment causes the complete loss of bacterial cell viability in fed-batch fermentation with six cell recycles. The ethanol yield and yeast cell viability are not affected. These data indicate the feasibility of adding ethanol to the acid solution replacing the antibiotic use, offering a low cost and a low amount of residue in the biomass. © 2017 The Society for Applied Microbiology.

  1. Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent.

    Science.gov (United States)

    Zhang, Hongjiao; Gao, Yuntao; Xiong, Huabin

    2017-04-01

    The citric acid fermentation broth was prepared and it was employed to washing remediation of heavy metal-polluted soil. A well-defined washing effect was obtained, the removal percentages using citric acid fermentation broth are that 48.2% for Pb, 30.6% for Cu, 43.7% for Cr, and 58.4% for Cd and higher than that using citric acid solution. The kinetics of heavy metals desorption can be described by the double constant equation and Elovich equation and is a heterogeneous diffusion process. The speciation analysis shows that the citric acid fermentation broth can effectively reduce bioavailability and environmental risk of heavy metals. Spectroscopy characteristics analysis suggests that the washing method has only a small effect on the mineral composition and does not destroy the framework of soil system. Therefore, the citric acid fermentation broth is a promising washing agent and possesses a potential practical application value in the field of remediation of soils with a good washing performance.

  2. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    Science.gov (United States)

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter.

  3. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement.

    Science.gov (United States)

    Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai

    2017-06-01

    Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.

  4. Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol

    International Nuclear Information System (INIS)

    Boucher, Jérémy; Chirat, Christine; Lachenal, Dominique

    2014-01-01

    Highlights: • Hemicellulosic ethanol from softwood hemicelluloses in a pulp mill. • Comparison of acid hydrolysis and autohydrolysis to extract hemicelluloses. • Effects of the extraction process conditions on inhibitors concentrations. • Effects of inhibitors on fermentation. - Abstract: This study deals with the production of ethanol and paper pulp in a kraft pulp mill. The use of an acid hydrolysis or a two-step treatment composed of an autohydrolysis followed by a secondary acid hydrolysis was studied. Acid hydrolysis allowed the extraction of higher quantities of sugars but led also to higher degradations of these sugars into inhibitors of fermentation. The direct fermentation of a hydrolysate resulting from an acid hydrolysis gave excellent yields after 24 h. However, the fermentation of hydrolysates after their concentration proved to be impossible. The study of the impact of the inhibitors on the fermentations showed that organic acids, and more specifically formic acid and acetic acid were greatly involved in the inhibition

  5. Peptide (Lys-Leu) and amino acids (Lys and Leu) supplementations improve physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation.

    Science.gov (United States)

    Yang, Huirong; Zong, Xuyan; Cui, Chun; Mu, Lixia; Zhao, Haifeng

    2017-12-22

    Lys and Leu were generally considered as the key amino acids for brewer's yeast during beer brewing. In the present study, peptide Lys-Leu and a free amino acid (FAA) mixture of Lys and Leu (Lys + Leu) were supplemented in 24 °P wort to examine their effects on physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation. Results showed that although both peptide Lys-Leu and their FAA mixture supplementations could increase the growth and viability, intracellular trehalose and glycerol content, wort fermentability, and ethanol content for brewer's yeast during VHG wort fermentation, and peptide was better than their FAA mixture at promoting growth and fermentation for brewer's yeast when the same dose was kept. Moreover, peptide Lys-Leu supplementation significantly increased the assimilation of Asp, but decreased the assimilation of Gly, Ala, Val, (Cys)2, Ile, Leu, Tyr, Phe, Lys, Arg, and Pro. However, the FAA mixture supplementation only promoted the assimilation of Lys and Leu, while reduced the absorption of total amino acids to a greater extent. Thus, the peptide Lys-Leu was more effective than their FAA mixture on the improvement of physiological activity, fermentation performance, and nitrogen metabolism of brewer's yeast during VHG wort fermentation. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  6. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R. (ed.)

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  7. Efficient production of succinic acid in immobilized fermentation with crude glycerol from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nik Nor Aziati, A.A.

    2017-10-01

    Full Text Available The increase in the price of commercial succinic acid has necessitated the need for its synthesis from waste materials such as glycerol. Glycerol residue is a waste product of Oleochemical production which is cheaply available and a very good source of carbon. The use of immobilized cells can further reduce the overall cost of the production process. This study primarily aims to produce succinic acid from glycerol residue through the use of immobilized Escherichia coli in a batch fermentation process. The parameters which affect bacterial fermentation process such as the mass substrate, temperature, inoculum size and duration of fermentation were screened using One-Factor-At-a-Time (OFAT method. The result of the screening process shows that a substrate (glycerol concentration of 30 g, inoculum size 20% v/v, and time 4 h produced the maximum succinic acid concentration of 117.99 g/L. The immobilized cells were found to be stable as well as retain their fermentative ability up to the 6th cycle of recycling, thereby presenting as an advantage over the free cell system. Therefore, conclude that using immobilized cells can contribute immensely to the cost-effective production of succinic acid from glycerol residue.

  8. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter

    Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development...... strain could grow in up to 80% pre-treated wheat straw and can ferment both glucose and xylose. The yield of butyric acid without optimization was 0,37±0,051 g butyric acid/g sugar monomers and the acetate yield was 0,06±0,021 g acetic acid/g sugar monomers. Moreover, the strain could grow without...... addition of yeast extract. Further optimization of yield and productivity is under investigation....

  9. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    Science.gov (United States)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  10. The examination of parameters for lactic acid fermentation and nutritive value of fermented juice of beetroot, carrot and brewer’s yeast autolysate

    Directory of Open Access Journals (Sweden)

    MILAN MAKSIMOVIC

    2004-09-01

    Full Text Available The conditions for lactic acid fermentation based on a mixture of beetoot juice (Beta vulgaris L. and carrot juice (Daucus carota L. and different content of brewer’s yeast autolysate with Lactobacillus plantarum A112 and with Lactobacillus acidophilus NCDO 1748 has been studied. Both cultures showed good biochemical activity in these mixtures. The production of lactic acid has been stimulated using a higher content of brewer’s yeast autolysate. In these mixtures, L. plantarum A112 showed better growth and lactic acid production than L. acidophilus NCDO 1748. From the data obtained through chemical analyses of the fermented products, it can be seen that the mixture of beetroot and carrot juice and brewer’s yeast autolysate is richer in minerals (Ca, P, Fe and b-carotene than fermented beetroot juice with the same content of brewer’s yeast autolysate.

  11. Modeling cereal starch hydrolysis during simultaneous saccharification and lactic acid fermentation; case of a sorghum-based fermented beverage, gowé.

    Science.gov (United States)

    Mestres, Christian; Bettencourt, Munanga de J C; Loiseau, Gérard; Matignon, Brigitte; Grabulos, Joël; Achir, Nawel

    2017-10-01

    Gowé is an acidic beverage obtained after simultaneous saccharification and fermentation (SSF) of sorghum. A previous paper focused on modeling the growth of lactic acid bacteria during gowé processing. This paper focuses on modeling starch amylolysis to build an aggregated SSF model. The activity of α-amylase was modeled as a function of temperature and pH, and the hydrolysis rates of both native and soluble starch were modeled via a Michaelis-Menten equation taking into account the maltose and glucose inhibition constants. The robustness of the parameter estimators was ensured by step by step identification in sets of experiments conducted with different proportions of native and gelatinized starch by modifying the pre-cooking temperature. The aggregated model was validated on experimental data and showed that both the pre-cooking and fermentation parameters, particularly temperature, are significant levers for controlling not only acid and sugar contents but also the expected viscosity of the final product. This generic approach could be used as a tool to optimize the sanitary and sensory quality of fermentation of other starchy products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

    Directory of Open Access Journals (Sweden)

    Hongbin Lin

    2018-05-01

    Full Text Available Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC. Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln, glutamic acid (Glu, aspartic acid (Asp and asparagines (Asn were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  13. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    Science.gov (United States)

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  14. Co-fermentation of sewage sludge and organic waste; CO-Vergaerung von Klaerschlamm und Bioabfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, K.G. [Emschergenossenschaft und Lippeverband, Essen (Germany)

    1999-07-01

    The processes taking place in sewage sludge digestion and organic waste fermentation are identical. It therefore seems obvious to treat organic waste and sewage sludge jointly. In contrast to organic waste fermentation plants to be newly erected, co-fermentation permits making use of anaerobic treatment systems that are already installed at sewage treatment plants. At these plants, in principle only the sections responsible for acceptance and conditioning of organic waste need to be retrofitted. Apart from the possibility to treat organic waste very inexpensively, the co-fermentation process offers a number of other advantages. For this reason, the Emschergenossenschaft and Lippeverband carried out extensive semi-technical scale tests in co-fermentation of organic waste and sewage sludge. (orig.) [German] Die ablaufenden biologischen Prozesse sind bei der Klaerschlammfaulung und der Bioabfallvergaerung gleich. Es liegt daher nahe, Bioabfaelle und Klaerschlaemme gemeinsam zu behandeln. Gegenueber neu zu errichtenden Bioabfall-Vergaerungsanlagen kann bei der Co-Vergaerung auf die bereits installierte Anaerobtechnik auf den Klaeranlagen zurueckgegriffen werden. Dort muss im wesentlichen nur der Annahme- und Aufbereitungsbereich fuer die Bioabfaelle nachgeruestet werden. Das Verfahren der Co-Vergaerung bietet ausser einer sehr kostenguenstigen Behandlungsmoeglichkeit fuer Bioabfaelle eine Reihe weiterer Vorteile. Aus diesem Grund wurden bei Emschergenossenschaft und Lippeverband umfangreiche halbtechnische Versuche zur Co-Vergaerung von Bioabfaellen und Klaerschlamm durchgefuehrt. (orig.)

  15. Effects of dietary supplementation of rumen-protected folic acid on rumen fermentation, degradability and excretion of urinary purine derivatives in growing steers.

    Science.gov (United States)

    Wang, Cong; Liu, Qiang; Guo, Gang; Huo, WenJie; Ma, Le; Zhang, YanLi; Pei, CaiXia; Zhang, ShuanLin; Wang, Hao

    2016-12-01

    The present experiment was undertaken to determine the effects of dietary addition of rumen-protected folic acid (RPFA) on ruminal fermentation, nutrient degradability, enzyme activity and the relative quantity of ruminal cellulolytic bacteria in growing beef steers. Eight rumen-cannulated Jinnan beef steers averaging 2.5 years of age and 419 ± 1.9 kg body weight were used in a replicated 4 × 4 Latin square design. The four treatments comprised supplementation levels of 0 (Control), 70, 140 and 210 mg RPFA/kg dietary dry matter (DM). On DM basis, the ration consisted of 50% corn silage, 47% concentrate and 3% soybean oil. The DM intake (averaged 8.5 kg/d) was restricted to 95% of ad libitum intake. The intake of DM, crude protein (CP) and net energy for growth was not affected by treatments. In contrast, increasing RPFA supplementation increased average daily gain and the concentration of total volatile fatty acid and reduced ruminal pH linearly. Furthermore, increasing RPFA supplementation enhanced the acetate to propionate ratio and reduced the ruminal ammonia N content linearly. The ruminal effective degradability of neutral detergent fibre from corn silage and CP from concentrate improved linearly and was highest for the highest supplementation levels. The activities of cellobiase, xylanase, pectinase and α-amylase linearly increased, but carboxymethyl-cellulase and protease were not affected by the addition of RPFA. The relative quantities of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes increased linearly. With increasing RPFA supplementation levels, the excretion of urinary purine derivatives was also increased linearly. The present results indicated that the supplementation of RPFA improved ruminal fermentation, nutrient degradability, activities of microbial enzymes and the relative quantity of the ruminal cellulolytic bacteria in a dose-dependent manner. According to the conditions of this

  16. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures.

    Science.gov (United States)

    Elkhtab, Ebrahim; El-Alfy, Mohamed; Shenana, Mohamed; Mohamed, Abdelaty; Yousef, Ahmed E

    2017-12-01

    Compounds with the ability to inhibit angiotensin-converting enzyme (ACE) are used medically to treat human hypertension. The presence of such compounds naturally in food is potentially useful for treating the disease state. The goal of this study was to screen lactic acid bacteria, including species commonly used as dairy starter cultures, for the ability to produce new potent ACE-inhibiting peptides during milk fermentation. Strains of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus, Lactobacillus paracasei, Lactococcus lactis, Leuconostoc mesenteroides, and Pediococcus acidilactici were tested in this study. Additionally, a symbiotic consortium of yeast and bacteria, used commercially to produce kombucha tea, was tested. Commercially sterile milk was inoculated with lactic acid bacteria strains and kombucha culture and incubated at 37°C for up to 72 h, and the liberation of ACE-inhibiting compounds during fermentation was monitored. Fermented milk was centrifuged and the supernatant (crude extract) was subjected to ultrafiltration using 3- and 10-kDa cut-off filters. Crude and ultrafiltered extracts were tested for ACE-inhibitory activity. The 10-kDa filtrate resulting from L. casei ATCC 7469 and kombucha culture fermentations (72 h) showed the highest ACE-inhibitory activity. Two-step purification of these filtrates was done using HPLC equipped with a reverse-phase column. Analysis of HPLC-purified fractions by liquid chromatography-mass spectrometry/mass spectrometry identified several new peptides with potent ACE-inhibitory activities. Some of these peptides were synthesized, and their ACE-inhibitory activities were confirmed. Use of organisms producing these unique peptides in food fermentations could contribute positively to human health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt.

    Science.gov (United States)

    Jia, Ru; Chen, Han; Chen, Hui; Ding, Wu

    2016-01-01

    The effect of fermentation with Lactobacillus rhamnosus GG on the product quality of goat milk yogurt using traditional yogurt starter was studied through single-factor experiments and orthogonal experiments. The optimum fermentation condition was evaluated by the titratable acidity of goat milk yogurt, water-retaining capability, sensory score, and texture properties; the fatty acids of the fermented goat milk were determined by a gas chromatograph. Results indicate that high product quality of goat milk yogurt can be obtained and the content of short-chain and medium-chain fatty acids can be decreased significantly when amount of sugar added was 7%, inoculation amount was 3%, the ratio of 3 lactic acid bacteria--Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, and L. rhamnosus GG--was 1:1:3, and fermentation temperature was 42°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Synthesis and stability of strongly acidic benzamide derivatives

    DEFF Research Database (Denmark)

    Diness, Frederik; Bjerrum, Niels J.; Begtrup, Mikael

    2018-01-01

    Reactivity studies of strong organic acids based on the replacement of one or both of the oxygens in benzoic acids with the trifluoromethanesulfonamide group are reported. Novel derivatives of these types of acids were synthesized in good yields. The generated N-triflylbenzamides were further...... functionalized through cross-coupling and nucleophilic aromatic substitution reactions. All compounds were stable in dilute aqueous solutions. Studies of stability under acidic and basic conditions are also reported....

  19. Quality and Composition of Red Wine Fermented with Schizosaccharomyces pombe as Sole Fermentative Yeast, and in Mixed and Sequential Fermentations with Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Felipe Palomero

    2014-01-01

    Full Text Available This work examines the physiology of Schizosaccharomyces pombe (represented by strain 938 in the production of red wine, as the sole fermentative yeast, and in mixed and sequential fermentations with Saccharomyces cerevisiae 796. For further comparison, fermentations in which Saccharomyces cerevisiae was the sole fermentative yeast were also performed; in these fermentations a commercial lactic acid bacterium was used to perform malolactic fermentation once alcoholic fermentation was complete (unlike S. cerevisiae, the Sc. pombe performs maloalcoholic fermentation and therefore removes malic acid without such help. Relative density, acetic, malic and pyruvic acid concentrations, primary amino nitrogen and urea concentrations, and pH of the musts were measured over the entire fermentation period. In all fermentations in which Sc. pombe 938 was involved, nearly all the malic acid was consumed from an initial concentration of 5.5 g/L, and moderate acetic acid concentrations below 0.4 g/L were formed. The urea content of these wines was notably lower, showing a tenfold reduction when compared with those that were made with S. cerevisiae 796 alone. The sensorial properties of the different final wines varied widely. The wines fermented with Sc. pombe 938 had maximum aroma intensity and quality, and they were preferred by the tasters.

  20. Vegetable milks and their fermented derivative products

    Directory of Open Access Journals (Sweden)

    Neus Bernat

    2014-04-01

    Full Text Available The so-called vegetable milks are in the spotlight thanks to their lactose-free, animal protein-free and cholesterol-free features which fit well with the current demand for healthy food products. Nevertheless, and with the exception of soya, little information is available about these types of milks and their derivatives. The aims of this review, therefore, are to: highlight the main nutritional benefits of the nut and cereal vegetable milks available on the market, fermented or not; describe the basic processing steps involved in their manufacturing process; and analyze the major problems affecting their overall quality, together with the current feasible solutions. On the basis of the information gathered, vegetable milks and their derivatives have excellent nutritional properties which provide them a high potential and positive market expectation. Nevertheless, optimal processing conditions for each raw material or the application of new technologies have to be researched in order to improve the quality of the products. Hence, further studies need to be developed to ensure the physical stability of the products throughout their whole shelf-life. These studies would also allow for a reduction in the amount of additives (hydrocolloids and/or emulsifiers and thus reduce the cost of the products. In the particular case of fermented products, the use of starters which are able to both improve the quality (by synthesizing enhanced flavors and providing optimal textures and exert health benefits for consumers (i.e. probiotics is the main challenge to be faced in future studies.

  1. Fermentation Results in Quantitative Changes in Milk-Derived Exosomes and Different Effects on Cell Growth and Survival.

    Science.gov (United States)

    Yu, Siran; Zhao, Zhehao; Sun, Liming; Li, Ping

    2017-02-15

    The discovery of microRNAs encapsulated in milk-derived exosomes has revealed stability under extreme conditions reflecting the protection of membranes. We attempted to determine the variations in nanoparticles derived from milk after fermentation, and provide evidence to determine the effects of these exosomes on cells with potential bioactivity. Using scanning electron microscopy and dynamic light scattering, we compared the morphology and particle size distribution of exosomes from yogurt fermented with three different combinations of strains with those from raw milk. The protein content of the exosome was significantly reduced in fermented milk. The cycle threshold showed that the expression of miR-29b and miR-21 was relatively high in raw milk, indicating a loss of microRNA after fermentation. Milk-derived exosomes could promote cell growth and activate the mitogen-activated protein kinase pathway. These findings demonstrated biological functions in milk exosomes and provided new insight into the nutrient composition of dairy products.

  2. Lactic acid fermentation of two sorghum varieties is not affected by ...

    African Journals Online (AJOL)

    The study was conducted to investigate sorghum grain variety differences in lactic acid fermentation based on their differences in phenolic contents. The study wa s conductedas a 2 x 5 x 4 factorial design with three factors: Factor 1: Sorghum variety (white and red sorghum); Factor 2: Control treatment without lactic acid ...

  3. Immunomodulatory properties of fermented soy and dairy milks prepared with lactic acid bacteria.

    Science.gov (United States)

    Wagar, L E; Champagne, C P; Buckley, N D; Raymond, Y; Green-Johnson, J M

    2009-10-01

    Fermented soy and dairy milk preparations provide a means for delivering lactic acid bacteria and their fermentation products into the diet. Our aims were to test immunomodulatory bioactivity of fermented soy beverage (SB) and dairy milk blend (MB) preparations on human intestinal epithelial cells (IEC) and to determine the impact of freezing medium on culture survival prior to bioactivity analyses. Fermented SB and MB were prepared using pure or mixed cultures of Streptococcus thermophilus ST5, Bifidobacterium longum R0175, and Lactobacillus helveticus R0052. Immunomodulatory bioactivity was assessed by testing selected SB and MB ferments on tumor necrosis factor alpha (TNFalpha)-treated IEC and measuring effects on Interleukin-8 (IL-8) production. Impact of timing of ferment administration relative to this pro-inflammatory challenge was investigated. The most pronounced reductions in IEC IL-8 production were observed when IEC were treated with either SB or MB ferment preparations prior to TNFalpha challenge. These results indicate that freezing-stable MB and SB ferments prepared with selected strains can modulate IEC IL-8 production in vitro, and suggest that yogurt-like fermented soy formulations could provide a functional food alternative to milk-based fermented products.

  4. Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin.

    Science.gov (United States)

    Xu, Qiuxiang; Liu, Xuran; Zhao, Jianwei; Wang, Dongbo; Wang, Qilin; Li, Xiaoming; Yang, Qi; Zeng, Guangming

    2018-04-01

    Short-chain fatty acids (SCFA), raw substrates for biodegradable plastic production and preferred carbon source for biological nutrients removal, can be produced from anaerobic fermentation of waste activated sludge (WAS). This paper reports a new, high-efficient and eco-friendly strategy, i.e., using free nitrous acid (FNA) pretreatment combined with Tea saponin (TS), to enhance SCFA production. Experimental results showed 0.90 mg/L FNA pretreatment and 0.05 g/g total suspended solids TS addition (FNA + TS) not only significantly increased SCFA production to 315.3 ± 8.8 mg COD/g VSS (5.52, 1.76 and 1.93 times higher than that from blank, solo FNA and solo TS, respectively) but also shortened fermentation time to 4 days. Mechanism investigations revealed that FNA pretreatment combined with TS cause a positive synergetic effect on sludge solubilization, resulting in more release of organics. It was also found that the combination benefited hydrolysis and acidogenesis processes but inhibited the methanogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. AKTIVITAS PROTEOLITIK BAKTERI ASAM LAKTAT DALAM FERMENTASI SUSU KEDELAI [Proteolytic Activities of Lactic Acid Bacteria in Fermentation of Soymilk

    Directory of Open Access Journals (Sweden)

    Yusmarini1,2*

    2010-12-01

    Full Text Available Some lactic acid bacteria (LAB strains had been isolated from spontaneously fermented soymilk which have proteolytic system. The purpose of this research was to study ability of isolates in fermentation of soymilk. The changes in bacterial growth, pH, titrable acidity, and proteolytic activities during fermentation were examined. Isolates of Lactobacillus plantarum 1 R.1.3.2; L. plantarum 1 R.11.1.2 and L. acidophilus FNCC 0051 (as a control were capable growing in soymilk. The results indicated that initial pH of soymilk was 6,6 and decreased to 4,6 after fermentation and titrable acidity of 0.11 increased to 0.34 after fermentation. The proteolytic activities were 0.352 U/ml – 0.468 U/ml. The electrophoretic pattern of the proteins showed changes during fermentation of soymilk.

  6. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Czarnotta, Eik; Dianat, Mariam; Korf, Marcel

    2017-01-01

    from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into S. cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling...... a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg...

  7. RNA:DNA Ratio and Other Nucleic Acid Derived Indices in Marine Ecology

    Directory of Open Access Journals (Sweden)

    Luis Chícharo

    2008-08-01

    Full Text Available Some of most used indicators in marine ecology are nucleic acid-derived indices. They can be divided by target levels in three groups: 1 at the organism level as ecophysiologic indicators, indicators such as RNA:DNA ratios, DNA:dry weight and RNA:protein, 2 at the population level, indicators such as growth rate, starvation incidence or fisheries impact indicators, and 3 at the community level, indicators such as trophic interactions, exergy indices and prey identification. The nucleic acids derived indices, especially RNA:DNA ratio, have been applied with success as indicators of nutritional condition, well been and growth in marine organisms. They are also useful as indicators of natural or anthropogenic impacts in marine population and communities, such as upwelling or dredge fisheries, respectively. They can help in understanding important issues of marine ecology such as trophic interactions in marine environment, fish and invertebrate recruitment failure and biodiversity changes, without laborious work of counting, measuring and identification of small marine organisms. Besides the objective of integrate nucleic acid derived indices across levels of organization, the paper will also include a general characterization of most used nucleic acid derived indices in marine ecology and also advantages and limitations of them. We can conclude that using indicators, such RNA:DNA ratios and other nucleic acids derived indices concomitantly with organism and ecosystems measures of responses to climate change (distribution, abundance, activity, metabolic rate, survival will allow for the development of more rigorous and realistic predictions of the effects of anthropogenic climate change on marine systems.

  8. In Vitro Rumen Fermentation Characteristics and Fatty Acid Profiles Added with Calcium Soap of Canola/Flaxseed Oil

    Directory of Open Access Journals (Sweden)

    S. Suharti

    2017-12-01

    Full Text Available This research aimed to assess the effect of adding canola oil and flaxseed oil which were protected with calcium soap (Ca-soap on the fermentation characteristics, rumen microbial population, and the profile of fatty acids in the rumen during 4 and 8 hours in the in vitro fermentation. The research design used in this study was a completely randomized block design with 3 treatments and 4 replications. The treatments consisted of control ration (Napier grass and concentrate at the ratio of 60 : 40, control + 6% of Ca-soap of canola oil, and control + 6% of Ca-soap of flaxseed oil. Variables observed were pH value, NH3 concentration, volatile fatty acid (VFA, dry matter and organic matter digestibility, and fatty acid profile.  The results showed that the addition of Ca-soap of canola or flaxseed oil did not affect the pH value, NH3 concentration, dry matter digestibility, organic matter digestibility, total population of bacteria and protozoa in the rumen. However, the total production of ruminal VFA was increased (P<0.05 with the addition of Ca soap of canola oil/flaxseed oil. The use of Ca-soap of flaxseed oil increased (P<0.05 the content of unsaturated fatty acids in the rumen at 4 h incubation. The addition of Ca-soap of flaxseed oil resulted the lowest (P<0.05 level of unsaturated fatty acids biohydrogenation compared to the other treatments at 4 h incubation. In conclusion, the addition of Ca soap of canola/flaxseed oil could improve VFA total production. Vegetable oils protected using calcium soap could inhibit unsaturated fatty acid biohidrogenation by rumen microbes. Ca-soap of flaxseed oil could survive from rumen biohydrogenation in the rumen better than Ca-soap of canola oil.

  9. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation.

    Science.gov (United States)

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-12-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes.

  10. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  11. An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydrolysate

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Jeppsson, H. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Olsson, L. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Mohagheghi, A. (Bioprocess and Fuels Engineering Research Branch, National Renewable Energy Lab., Golden, CO (United States))

    1994-03-01

    A xylose-rich, dilute-acid-pretreated corn-cob hydrolysate was fermented by Escherichia coli ATCC 11303, recombinant (rec) E. coli B (pLOI 297 and KO11), Pichia stipitis (CBS 5773, 6054 and R), Saccharomyces cerevisiae isolate 3 in combination with xylose isomerase, rec S. cerevisiae (TJ1, H550 and H477) and Fusarium oxysporum VTT-D-80134 in an interlaboratory comparison. The micro-organisms were studied according to three different options: (A) fermentation under consistent conditions. (B) fermentation under optimal conditions for the organism, and (C) fermentation under optimal conditions for the organism with detoxification of the hydrolysate. The highest yields of ethanol, 0.24 g/g (A), 0.36 g/g (B) and 0.54 g/g (C), were obtained from rec E. coli B, KO11. P. stipitis and F. oxysporum were sensitive to the inhibitors present in the hydrolysate and produced a maximum yield of 0.34 g/g (C) and 0.04 g/g (B), respectively. The analysis of the corn-cob hydrolysate and aspects of process economy of the different fermentation options (pH, sterilization, nutrient supplementation, adaptation, detoxification) are discussed. (orig.)

  12. Capillary electrophoresis method for the analysis of organic acids and amino acids in the presence of strongly alternating concentrations of aqueous lactic acid.

    Science.gov (United States)

    Laube, Hendrik; Boden, Jana; Schneider, Roland

    2017-07-01

    During the production of bio-based bulk chemicals, such as lactic acid (LA), organic impurities have to be removed to produce a ready-to-market product. A capillary electrophoresis method for the simultaneous detection of LA and organic impurities in less than 10 min was developed. LA and organic impurities were detected using a direct UV detection method with micellar background electrolyte, which consisted of borate and sodium dodecyl sulfate. We investigated the effects of electrolyte composition and temperature on the speed, sensitivity, and robustness of the separation. A few validation parameters, such as linearity, limit of detection, and internal and external standards, were evaluated under optimized conditions. The method was applied for the detection of LA and organic impurities, including tyrosine, phenylalanine, and pyroglutamic acid, in samples from a continuous LA fermentation process from post-extraction tapioca starch and yeast extract.

  13. An OmpA family protein, a target of the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius, controls acetic acid fermentation.

    Science.gov (United States)

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-07-01

    Via N-acylhomoserine lactones, the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, represses acetic acid and gluconic acid fermentation. Two-dimensional polyacrylamide gel electrophoretic analysis of protein profiles of strain NCI1051 and ginI and ginR mutants identified a protein that was produced in response to the GinI/GinR regulatory system. Cloning and nucleotide sequencing of the gene encoding this protein revealed that it encoded an OmpA family protein, named GmpA. gmpA was a member of the gene cluster containing three adjacent homologous genes, gmpA to gmpC, the organization of which appeared to be unique to vinegar producers, including "Gluconacetobacter polyoxogenes." In addition, GmpA was unique among the OmpA family proteins in that its N-terminal membrane domain forming eight antiparallel transmembrane beta-strands contained an extra sequence in one of the surface-exposed loops. Transcriptional analysis showed that only gmpA of the three adjacent gmp genes was activated by the GinI/GinR quorum-sensing system. However, gmpA was not controlled directly by GinR but was controlled by an 89-amino-acid protein, GinA, a target of this quorum-sensing system. A gmpA mutant grew more rapidly in the presence of 2% (vol/vol) ethanol and accumulated acetic acid and gluconic acid in greater final yields than strain NCI1051. Thus, GmpA plays a role in repressing oxidative fermentation, including acetic acid fermentation, which is unique to acetic acid bacteria and allows ATP synthesis via ethanol oxidation. Consistent with the involvement of gmpA in oxidative fermentation, its transcription was also enhanced by ethanol and acetic acid.

  14. Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: Species diversity and citrate lyase production.

    Science.gov (United States)

    Ouattara, Hadja D; Ouattara, Honoré G; Droux, Michel; Reverchon, Sylvie; Nasser, William; Niamke, Sébastien L

    2017-09-01

    Microbial fermentation is an indispensable process for high quality chocolate from cocoa bean raw material. lactic acid bacteria (LAB) are among the major microorganisms responsible for cocoa fermentation but their exact role remains to be elucidated. In this study, we analyzed the diversity of LAB in six cocoa producing regions of Ivory Coast. Ribosomal 16S gene sequence analysis showed that Lactobacillus plantarum and Leuconostoc mesenteroides are the dominant LAB species in these six regions. In addition, other species were identified as the minor microbial population, namely Lactobacillus curieae, Enterococcus faecium, Fructobacillus pseudoficulneus, Lactobacillus casei, Weissella paramesenteroides and Weissella cibaria. However, in each region, the LAB microbial population was composed of a restricted number of species (maximum 5 species), which varied between the different regions. LAB implication in the breakdown of citric acid was investigated as a fundamental property for a successful cocoa fermentation process. High citrate lyase producer strains were characterized by rapid citric acid consumption, as revealed by a 4-fold decrease in citric acid concentration in the growth medium within 12h, concomitant with an increase in acetic acid and lactic acid concentration. The production of citrate lyase was strongly dependent on environmental conditions, with optimum production at acidic pH (pHfermentation. This study reveals that one of the major roles of LAB in the cocoa fermentation process involves the breakdown of citric acid during the early stage of cocoa fermentation through the activity of citrate lyase. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lactic acid production with undefined mixed culture fermentation of potato peel waste.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2014-11-01

    Potato peel waste (PPW) as zero value byproduct generated from food processing plant contains a large quantity of starch, non-starch polysaccharide, lignin, protein, and lipid. PPW as one promising carbon source can be managed and utilized to value added bioproducts through a simple fermentation process using undefined mixed cultures inoculated from wastewater treatment plant sludge. A series of non-pH controlled batch fermentations under different conditions such as pretreatment process, enzymatic hydrolysis, temperature, and solids loading were studied. Lactic acid (LA) was the major product, followed by acetic acid (AA) and ethanol under fermentation conditions without the presence of added hydrolytic enzymes. The maximum yields of LA, AA, and ethanol were respectively, 0.22 g g(-1), 0.06 g g(-1), and 0.05 g g(-1). The highest LA concentration of 14.7 g L(-1) was obtained from a bioreactor with initial solids loading of 60 g L(-1) at 35°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Changes in biochemical constituent of some organic waste materials under anaerobic methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, C R; Gulati, K C; Idnani, M A

    1970-10-01

    Changes in the percentage composition of holocellulose, cellulose, hemicellulose, lignin, pentosans and methoxyl contents of organic materials after fermentation of various systems like cow dung alone, cowdung-gum arabic, cowdung-wheat straw, cowdung-groundnut shells and cowdung-sugarcane bagasse by methane organisms indicated that the systems which had holocellulose (lignin in a ratio of 3 : 1 or less before fermentation) showed a greater decrease of hemicellulose fraction than of cellulose fraction. The percentage of lignin (18.41-22.03) and pentosans (0.292-5.129) increased after fermentation, except in cowdung-gum arabic which showed decrease of pentosans content. Methoxyl contents also decreased after fermentation, indicating a positive role of methyl group of methoxyls in the formation of methane by methane formers.

  17. Direct Succinic Acid Production from Minimally Pretreated Biomass Using Sequential Solid-State and Slurry Fermentation with Mixed Fungal Cultures

    Directory of Open Access Journals (Sweden)

    Jerico Alcantara

    2017-06-01

    Full Text Available Conventional bio-based succinic acid production involves anaerobic bacterial fermentation of pure sugars. This study explored a new route for directly producing succinic acid from minimally-pretreated lignocellulosic biomass via a consolidated bioprocessing technology employing a mixed lignocellulolytic and acidogenic fungal co-culture. The process involved a solid-state pre-fermentation stage followed by a two-phase slurry fermentation stage. During the solid-state pre-fermentation stage, Aspergillus niger and Trichoderma reesei were co-cultured in a nitrogen-rich substrate (e.g., soybean hull to induce cellulolytic enzyme activity. The ligninolytic fungus Phanerochaete chrysosporium was grown separately on carbon-rich birch wood chips to induce ligninolytic enzymes, rendering the biomass more susceptible to cellulase attack. The solid-state pre-cultures were then combined in a slurry fermentation culture to achieve simultaneous enzymatic cellulolysis and succinic acid production. This approach generated succinic acid at maximum titers of 32.43 g/L after 72 h of batch slurry fermentation (~10 g/L production, and 61.12 g/L after 36 h of addition of fresh birch wood chips at the onset of the slurry fermentation stage (~26 g/L production. Based on this result, this approach is a promising alternative to current bacterial succinic acid production due to its minimal substrate pretreatment requirements, which could reduce production costs.

  18. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    Science.gov (United States)

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  19. Succinic acid production by escherichia coli under anaerobic fermentation

    International Nuclear Information System (INIS)

    El Shafey, H.M.; Meleigy, S.A.

    2009-01-01

    The effect of alteration of growth conditions, addition of different sodium salts, and irradiation by gamma rays on succinic acid production by E. coli was studied. Twenty one isolates were obtained from buffalo's rumen, and anaerobic screening of the isolated bacterial strains showed the abilities of seventeen strains to produce succinic acid. The two bacterial strains having highest succinic acid production were identified as escherichia coli SP9 and SP16, and were selected for further studies. Results showed that growth conditions yielded highest succinic acid production for the two isolates were: 72 hours incubation, 37 degree c incubation temperature, initial ph of the fermentation medium 6.0,and 3% (v/v)inoculum size. Addition of 5 mm of nine different sodium salts to the fermentation medium showed stimulating effect on succinic acid production of the nine tried sodium salts, sodium carbonate was found to have the highest enhancing effect, especially if used at 15 mm concentration. Gamma irradiation doses tried were in the range of (0.25-1.50 kGy). An enhancing effect on succinic acid production was shown in the range of 0.25-0.75 kGy with a maximal production at 0.75 kGy (giving 8.36% increase) for e.coli SP9, and in the range of 0.25-1.00 kGy with a maximal production at 1.0 kGy (7.60% increase) for e.coli SP16. higher gamma doses led to a decrease in the enhancing effect. An overall increase in the succinic acid yield of 79.45% and 94.26% for e. coli SP9 and SP16, respectively, was achieved in implicating all optimized factors for succinic acid production in one time

  20. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation.

    Science.gov (United States)

    Anderson, Catherine; Malambo, Dennis Hanjalika; Perez, Maria Eliette Gonzalez; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; de Vossenberg, Jack van; Greya, Wilson; Thole, Bernard; van Lier, Jules B; Brdjanovic, Damir

    2015-10-29

    In this research, three faecal sludge sanitizing methods-lactic acid fermentation, urea treatment and lime treatment-were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m³ of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment.

  1. The impact of yeast fermentation on dough matrix properties.

    Science.gov (United States)

    Rezaei, Mohammad N; Jayaram, Vinay B; Verstrepen, Kevin J; Courtin, Christophe M

    2016-08-01

    Most studies on dough properties are performed on yeastless dough to exclude the complicating, time-dependent effect of yeast. Baker's yeast, however, impacts dough matrix properties during fermentation, probably through the production of primary (CO2 and ethanol) and secondary (glycerol, acetic acid and succinic acid) metabolites. The aim of this study is to obtain a better understanding of the changes in yeasted dough behavior introduced by fermentation, by investigating the impact of yeast fermentation on Farinograph dough consistency, dough spread, Kieffer rig dough extensibility and gluten agglomeration behavior in a fermented dough-batter gluten starch separation system. Results show that fermentation leads to a dough with less flow and lower extensibility that breaks more easily under stress and strain. The dough showed less elastic and more plastic deformation behavior. Gluten agglomerates were smaller for yeasted dough than for the unyeasted control. These changes probably have to be attributed to metabolites generated during fermentation. Indeed, organic acids and also ethanol in concentrations produced by yeast were previously shown to have similar effects in yeastless dough. These findings imply the high importance of yeast fermentation metabolites on dough matrix properties in industrial bread production. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Effects of Lactic Acid Fermentation on the Retention of Β-Carotene Content in Orange Fleshed Sweet Potatoes

    Directory of Open Access Journals (Sweden)

    Benard O. Oloo

    2014-04-01

    Full Text Available This study aimed to establish the effects of lactic fermentation on the levels of β-carotene in selected  orange fleshed sweet potato (OFSP varieties from Kenya.  Furthermore,it sought to demonstrate fermentation as a potential process for making new products from sweet potato with enhanced nutraceutical attributes. The varieties (Zapallo, Nyathiodiewo and SPK004/06 were fermented with Lactobacillus plantarum MTCC 1407 at 25 ± 2°C for 48 h and kept for 28 days to make lacto-pickles. During fermentation both analytical [pH, titratable acidity (TA, lactic acid (LA, starch, total sugar, reducing sugar (g/kg roots, texture (N/m2, β-carotene (mg/kg roots] and sensory (texture, taste, flavour and after taste attributes of sweet potato lacto-juice were evaluated. Process conditions were optimized by varying brine levels, with fermentation time. A UV-visible spectrophotometer was used to identify and quantify β-carotene. Any significant variations (p < 0.05 in analytical attributes between the fermented and unfermented samples (pH, LA, TA and β-carotene concentration of lacto-pickles, prepared from the potato roots, were assessed. The study reported a final composition of 156.49mg/kg, 0.53mg/kg, 0.3N/m2, 1.3g/kg, 5.86g/kg, 0.5g/kg and 5.86g/kg for β-carotene, Ascorbic acid, texture; Starch, total sugars, LA and TA respectively, and a pH of 3.27. The fermented products were subjected to flavour profiling by a panel. The product sensory scores were 1.5 to 2.5 on a 5 point hedonic scale, ranging from dislike slightly to like much. The products with brine levels at 4 and 6% were most preferred. The retention of β-carotene was 93.97%. This demonstrated lactic acid fermentation as a better method for processing OFSP as the main nutritional attributes are retained. The final product was resistant to spoilage microorganisms after 28 days of fermentation. Further preservation could be obtained by addition of sodium metabisulphite. In conclusion, Lactic

  3. Metabolite profile of koji amazake and its lactic acid fermentation product by Lactobacillus sakei UONUMA.

    Science.gov (United States)

    Oguro, Yoshifumi; Nishiwaki, Toshikazu; Shinada, Ryota; Kobayashi, Kazuya; Kurahashi, Atsushi

    2017-08-01

    The koji amazake is a traditional sweet Japanese beverage. It has been consumed for over a thousand years in Japan; nonetheless, little is yet known of the ingredients in koji amazake. Therefore, this study aimed to analyze the metabolites of koji amazake using a metabolomics approach. Additionally, we reformed the flavor of koji amazake by lactic acid fermentation (LAF-amazake) using Lactobacillus sakei UONUMA, which was isolated from snow caverns. The purpose of this article is to identify the ingredients in these beverages. In LAF-amazake and koji amazake, sugars, amino acids, organic acids, and vitamin B complex were determined in the two beverages, and over 300 compounds were detected in total. Thirteen saccharides were identified including two unknown trisaccharides, and there were no differences in these between the two beverages. In LAF-amazake, lactic acid, vitamin B2 (riboflavin), B3 (nicotinic acid and nicotinamide), and B6 (pyridoxine) were significantly increased as compared to koji amazake, whereas malate and glutamine decreased. These results suggested that LAF, malolactic fermentation, and glutamine deamidation occurred simultaneously in LAF-amazake. L. sakei UONUMA strains produced these vitamins. Moreover, it was surprising that acetylcholine, a well-known neurotransmitter, was newly generated in LAF-amazake. Here, we have succeeded in reforming the flavor of koji amazake and obtained these metabolic data on the two beverages. The present study could provide useful basic information for promoting functional analyses of koji amazake and LAF-amazake for human health. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    Science.gov (United States)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  5. [Isolation, identification and characterization of acid-producing strains from psychrotolerant biogas fermentation].

    Science.gov (United States)

    Wan, Yongqing; Zhang, Wei; Mandlaa; Tian, Ruihua; Wang, Ruigang; Duan, Kaihong

    2015-11-04

    The aim of this study was to screen acid-producing strains from the broth of psychrotolerant biogas fermentation and evaluate the acid-producing character of them. Acid-producing strains were isolated by a medium with methyl red at 4 degrees C in Petri dishes and identified by morphology observation and 16S rRNA sequencing. Moreover, the ability of hydrolysis of starch, fermentation of carbohydrates, liquefaction of gelatin and production of catalase were studied. Two acid-producing strains (FJ-8 and FJ-15) were isolated. The result of the 16S rRNA phylogenetic tree shows that FJ-8 and FJ-15 belong to Pseudomonas sp. and Shewanella sp., respectively. Both FJ-8 and FJ-15 could hydrolyze starch, liquidize gelatin and produce catalase. The optimum temperature for acid-producing of FJ-8 and FJ-15 is 15 degrees C and 20 degrees C, respectively. After 10 days cultivation at 4 degrees C, the concentration of acetic acid was 792 mg/L and 966 mg/L of FJ-8 and FJ-15, respectively. The selected strains, FJ-8 and FJ-15, have the potential to produce acids at low temperature.

  6. Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities.

    Science.gov (United States)

    Huang, Yu-Lian; Tan, Li; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-01-01

    Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH 4 + and acetic acid, which inhibited thermophilic dry methane fermentation.

  7. Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger.

    Science.gov (United States)

    Hou, Weiliang; Bao, Jie

    2018-04-01

    Simultaneous saccharification and fermentation (SSF) is the most efficient operation in biorefining conversion, but aerobic SSF under high solids loading significantly faces the serious oxygen transfer limitation. This study took the first insight into an aerobic SSF by high oxygen demanding filamentous fungi in highly viscous lignocellulose hydrolysate. The results show that oxygen requirement in the aerobic SSF by Aspergillus niger was well satisfied for production of cellulosic citric acid. The record high citric acid titer of 136.3 g/L and the overall conversion yield of 74.9% of cellulose were obtained by the aerobic SSF. The advantage of SSF to the separate hydrolysis and fermentation (SHF) on citric acid fermentation was compared based on the rigorous Aspen Plus modeling. The techno-economic analysis indicates that the minimum citric acid selling price (MCSP) of $0.603 per kilogram by SSF was highly competitive with the commercial citric acid from starch feedstock. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Pd(II)-catalysed meta-C–H functionalizations of benzoic acid derivatives

    Science.gov (United States)

    Li, Shangda; Cai, Lei; Ji, Huafang; Yang, Long; Li, Gang

    2016-01-01

    Benzoic acids are highly important structural motifs in drug molecules and natural products. Selective C–H bond functionalization of benzoic acids will provide synthetically useful tools for step-economical organic synthesis. Although direct ortho-C–H functionalizations of benzoic acids or their derivatives have been intensely studied, the ability to activate meta-C–H bond of benzoic acids or their derivatives in a general manner via transition-metal catalysis has been largely unsuccessful. Although chelation-assisted meta-C–H functionalization of electron-rich arenes was reported, chelation-assisted meta-C–H activation of electron-poor arenes such as benzoic acid derivatives remains a formidable challenge. Herein, we report a general protocol for meta-C–H olefination of benzoic acid derivatives using a nitrile-based sulfonamide template. A broad range of benzoic acid derivatives are meta-selectively olefinated using molecular oxygen as the terminal oxidant. The meta-C–H acetoxylation, product of which is further transformed at the meta-position, is also reported. PMID:26813919

  9. Microbiological and Biochemical Characterization of Cassava Retting, a Traditional Lactic Acid Fermentation for Foo-Foo (Cassava Flour) Production

    OpenAIRE

    Brauman, A.; Keleke, S.; Malonga, M.; Miambi, E.; Ampe, F.

    1996-01-01

    The overall kinetics of retting, a spontaneous fermentation of cassava roots performed in central Africa, was investigated in terms of microbial-population evolution and biochemical and physicochemical parameters. During the traditional process, endogenous cyanogens were almost totally degraded, plant cell walls were lysed by the simultaneous action of pectin methylesterase and pectate lysate, and organic acids (C2 to C4) were produced. Most microorganisms identified were found to be facultat...

  10. Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis.

    Science.gov (United States)

    Wang, Xiahui; Tsang, Yiu Fai; Li, Yuhao; Ma, Xiubing; Cui, Shouqing; Zhang, Tian-Ao; Hu, Jiajun; Gao, Min-Tian

    2017-11-01

    In this study, it was found that the type of phenolic acids derived from rice straw was the major factor affecting ethanol fermentation by Pichia stipitis. The aim of this study was to investigate the inhibitory effect of phenolic acids on ethanol fermentation with rice straw. Different cellulases produced different ratios of free phenolic acids to soluble conjugated phenolic acids, resulting in different fermentation efficiencies. Free phenolic acids exhibited much higher inhibitory effect than conjugated phenolic acids. The flow cytometry results indicated that the damage to cell membranes was the primary mechanism of inhibition of ethanol fermentation by phenolic acids. The removal of free phenolic acids from the hydrolysates increased ethanol productivity by 2.0-fold, indicating that the free phenolic acids would be the major inhibitors formed during saccharification. The integrated process for ethanol and phenolic acids may constitute a new strategy for the production of low-cost ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation

    Science.gov (United States)

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-01-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes. PMID:20889778

  12. Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method

    NARCIS (Netherlands)

    Zhang, H.; Zhou, F.; Ji, B.; Nout, M.J.R.; Fang, Q.; Zhang, Z.

    2008-01-01

    An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer

  13. Comparative Proteome of Acetobacter pasteurianus Ab3 During the High Acidity Rice Vinegar Fermentation.

    Science.gov (United States)

    Wang, Zhe; Zang, Ning; Shi, Jieyan; Feng, Wei; Liu, Ye; Liang, Xinle

    2015-12-01

    As a traditional Asian food for several centuries, vinegar is known to be produced by acetic acid bacteria. The Acetobacter species is the primary starter for vinegar fermentation and has evolutionarily acquired acetic acid resistance, in which Acetobacter pasteurianus Ab3 is routinely used for industrial production of rice vinegar with a high acidity (9 %, w/v). In contrast to the documented short-term and low acetic acid effects on A. pasteurianus, here we investigated the molecular and cellular signatures of long-term and high acetic acid responses by proteomic profiling with bidimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS) analyses. Protein spots of interest were selected based on the threshold ANOVA p value of 0.05 and minimal twofold of differential expression, leading to the identification of 26 proteins that are functionally enriched in oxidoreductase activity, cell membrane, and metabolism. The alterations in protein functioning in respiratory chain and protein denaturation may underlay cellular modifications at the outer membrane. Significantly, we found that at higher acidity fermentation phase, the A. pasteurianus Ab3 cells would adapt to distinct physiological processes from that of an ordinary vinegar fermentation with intermediate acidity, indicating increasing energy requirement and dependency of membrane integrity during the transition of acetic acid production. Together, our study provided new insights into the adaptation mechanisms in A. pasteurianus to high acetic acid environments and yield novel regulators and key pathways during the development of acetic acid resistance.

  14. Evaluation of different approaches to quantify strong organic acidity and acid-base buffering of organic-rich surface waters in Sweden.

    Science.gov (United States)

    Köhler, Stephan; Hruska, Jakub; Jönsson, Jörgen; Lövgren, Lars; Lofts, Stephen

    2002-11-01

    The role of organic acids in buffering pH in surface waters has been studied using a small brownwater stream (26mg L(-1) TOC) draining a forested catchment in Northern Sweden. Under the conditions of elevated pressure of CO2 stream field pH was changed between 3.5 and 6.1 during the acidification and alkalinization experiment. Acid-base characteristics of the natural organic matter were also determined using a high precision potentiometric method for a concentrated sample from the same stream. We compared the predictions from the Windermere Humic Aqueous Model (WHAM Model V), a model derived from the potentiometric titration (diprotic/monoprotic acid model) and a previously derived triprotic acid model which only uses alkalinity and TOC as input variables. The predicted buffering characteristics of all three models are very similar in the pH range 4.5-7 which suggests that during routine analysis alkalinity and TOC are sufficient to give a good estimate of organic acid anion charge contribution in a large range of surface waters. A slightly adjusted version of WHAM V successfully describes the organic charge contribution in a large number of sampled surface water lakes, which were previously used to calibrate the triprotic model.

  15. Sensory evaluation and consumer acceptance of naturally and lactic acid bacteria-fermented pastes of soybeans and soybean–maize blends

    Science.gov (United States)

    Ng'ong'ola-Manani, Tinna A; Mwangwela, Agnes M; Schüller, Reidar B; Østlie, Hilde M; Wicklund, Trude

    2014-01-01

    Fermented pastes of soybeans and soybean–maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans. PMID:24804070

  16. Characterisation of lactic acid bacteria in spontaneously fermented camel milk and selection of strains for fermentation of camel milk

    DEFF Research Database (Denmark)

    Fugl, Angelina June Brandt; Berhe, Tesfemariam; Kiran, Anil

    2017-01-01

    The microbial communities in spontaneously fermented camel milk from Ethiopia were characterised through metagenomic 16S rRNA sequencing and lactic acid bacteria were isolated with the goal of selecting strains suitable as starter cultures. The fermented camel milk microbiota was dominated either...... by Lactobacillales or by Enterobacteriaceae, depending on incubation temperature and the provider of the milk. Strains of species with a potential use as starter cultures i.e., Lactococcus lactis, Lactobacillus plantarum, and Pediococcus acidilactici, were isolated. Fast acidifiers of camel milk have been isolated...

  17. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Science.gov (United States)

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Technological and economic potential of poly(lactic acid) and lactic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Datta, R.; Tsai, S.P.; Bonsignore, P.; Moon, S.H.; Frank, J.R.

    1993-10-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}40,000 tons/yr) used in a wide range of food processing and industrial applications. lactic acid h,as the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly ``green`` solvents, and specially chemical intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of tactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. In this paper, the recent technical advances in tactic and polylactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed.

  19. Crystal structures of seven molecular salts derived from benzylamine and organic acidic components

    Science.gov (United States)

    Wen, Xianhong; Jin, Xiunan; Lv, Chengcai; Jin, Shouwen; Zheng, Xiuqing; Liu, Bin; Wang, Daqi; Guo, Ming; Xu, Weiqiang

    2017-07-01

    Cocrystallization of the commonly available organic amine, benzylamine, with a series of organic acids gave a total of seven molecular salts with the compositions: (benzylamine): (p-toluenesulfonic acid) (1) [(HL)+ · (tsa-)], (benzylamine): (o-nitrobenzoic acid) (2) [(HL+) · (onba)-], (benzylamine): (3,4-methylenedioxybenzoic acid) (3) [(HL+) · (mdba-)], (benzylamine): (mandelic acid) (4) [(HL+) · (mda-)], (benzylamine): (5-bromosalicylic acid)2(5) [(HL+) · (bsac-) · (Hbsac)], (benzylamine): (m-phthalic acid) (6) [(HL+) · (Hmpta-)], and (benzylamine)2: (trimesic acid) (7) [(HL+)2 · (Htma2-)]. The seven salts have been characterised by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the seven investigated crystals the NH2 groups in the benzylamine moieties are protonated when the organic acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted Nsbnd H⋯O hydrogen bond formation between the ammonium and the deprotonated acidic groups. Except the Nsbnd H⋯O hydrogen bond, the Osbnd H⋯O hydrogen bonds (charge assisted or neutral) were also found at the salts 4-7. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O/CH2sbnd O, CHsbnd π/CH2sbnd π, Osbnd O, and Osbnd Cπ associations contribute to the stabilization and expansion of the total high-dimensional (2D-3D) framework structures. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R42(8), R43(10) and R44(12), usually observed in organic solids of organic acids with amine, were again shown to be involved in constructing most of these hydrogen bonding networks.

  20. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    Science.gov (United States)

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Amino acid profiles of sufu, a Chinese fermented soybean food

    NARCIS (Netherlands)

    Han, B.; Rombouts, F.M.; Nout, M.J.R.

    2004-01-01

    Sufu is a Chinese soybean cheese-like product obtained by solid-state fungal fermentation and ripening of tofu. The resulting "pehtze" is salted, followed by maturation in brine. Total (TAA) and free amino acid (FAA) profiles were determined during consecutive stages of sufu manufacture, i.e., tofu,

  2. Metabolomic Profiles of Aspergillus oryzae and Bacillus amyloliquefaciens During Rice Koji Fermentation

    Directory of Open Access Journals (Sweden)

    Da Eun Lee

    2016-06-01

    Full Text Available Rice koji, used early in the manufacturing process for many fermented foods, produces diverse metabolites and enzymes during fermentation. Using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS, ultrahigh-performance liquid chromatography linear trap quadrupole ion trap tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS, and multivariate analysis we generated the metabolite profiles of rice koji produced by fermentation with Aspergillus oryzae (RK_AO or Bacillus amyloliquefaciens (RK_BA for different durations. Two principal components of the metabolomic data distinguished the rice koji samples according to their fermenter species and fermentation time. Several enzymes secreted by the fermenter species, including α-amylase, protease, and β-glucosidase, were assayed to identify differences in expression levels. This approach revealed that carbohydrate metabolism, serine-derived amino acids, and fatty acids were associated with rice koji fermentation by A. oryzae, whereas aromatic and branched chain amino acids, flavonoids, and lysophospholipids were more typical in rice koji fermentation by B. amyloliquefaciens. Antioxidant activity was significantly higher for RK_BA than for RK_AO, as were the abundances of flavonoids, including tricin, tricin glycosides, apigenin glycosides, and chrysoeriol glycosides. In summary, we have used MS-based metabolomics and enzyme activity assays to evaluate the effects of using different microbial species and fermentation times on the nutritional profile of rice koji.

  3. Core Fluxome and Metafluxome of Lactic Acid Bacteria under Simulated Cocoa Pulp Fermentation Conditions

    Science.gov (United States)

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik

    2013-01-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive 13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel 13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity. PMID:23851099

  4. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    Science.gov (United States)

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  5. Some microbiological aspects of cassava fermentation with emphasis on detoxification of the fermented end-product

    International Nuclear Information System (INIS)

    Okafor, N.

    1990-01-01

    The search undertaken in this study was for microbial strains able to produce amylase and linamarase simultaneously. A total of 46 organisms (mainly yeasts) were isolated from garri production environments and eighteen more representative isolates were selected for screening. The highest production fo the above enzymes has been found with the yeast strain identified as Saccharomyces sp. Inoculation of this into the cassava mash led to a dramatic reduction of cyanide in the fermenting pulp: 73,4% and 69,2% reduction when compared with controls after 24 and 48 hours of fermentation respectively. The cyanide content of the fermented end-product derived from the inoculated mash was 60,8% and 24% less than in the control after 24 and 48 hours. Preliminary experiments with X-ray radiation of the yeast did not show a sufficient increase in the enzymatic activities of the mutants obtained but only a slight increase in the linamarase production was noticed in mutants derived from irradiation. (author). 27 refs, 9 tabs

  6. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    Science.gov (United States)

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L

  7. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  8. Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation.

    Science.gov (United States)

    Patel, Gopal; Patil, Mahesh D; Soni, Surbhi; Chisti, Yusuf; Banerjee, Uttam Chand

    2017-05-01

    Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH 2 PO 4 8.0, MgSO4⋅7H 2 O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.

  9. Invited review: Fermented milk as antihypertensive functional food.

    Science.gov (United States)

    Beltrán-Barrientos, L M; Hernández-Mendoza, A; Torres-Llanez, M J; González-Córdova, A F; Vallejo-Córdoba, B

    2016-06-01

    Over the past decade, interest has risen in fermented dairy foods that promote health and could prevent diseases such as hypertension. This biological effect has mainly been attributed to bioactive peptides encrypted within dairy proteins that can be released during fermentation with specific lactic acid bacteria or during gastrointestinal digestion. The most studied bioactive peptides derived from dairy proteins are antihypertensive peptides; however, a need exists to review the different studies dealing with the evaluation of antihypertensive fermented milk before a health claim may be associated with the product. Thus, the objective of this overview was to present available information related to the evaluation of fermented milk containing antihypertensive peptides by in vitro and in vivo studies, which are required before a fermented functional dairy product may be introduced to the market. Although commercial fermented milks with antihypertensive effects exist, these are scarce and most are based on Lactobacillus helveticus. Thus, a great opportunity is available for the development of functional dairy products with new lactic acid bacteria that support heart health through blood pressure- and heart rate-lowering effects. Hence, the consumer may be willing to pay a premium for foods with important functional benefits. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Science.gov (United States)

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effect of short-chain fatty acids on human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Candela, Marco; Bonefeld, Charlotte Menné

    2015-01-01

    negligible effects, while both butyrate and propionate strongly modulated gene expression in both immature and mature human monocyte-derived DC. An Ingenuity pathway analysis based on the differentially expressed genes suggested that propionate and butyrate modulate leukocyte trafficking, as SCFA strongly......The gut microbiota is essential for human health and plays an important role in the pathogenesis of several diseases. Short-chain fatty acids (SCFA), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients that distribute systemically via the blood....... The aim of this study was to investigate the transcriptional response of immature and LPS-matured human monocyte-derived DC to SCFA. Our data revealed distinct effects exerted by each individual SCFA on gene expression in human monocyte-derived DC, especially in the mature ones. Acetate only exerted...

  12. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows

    NARCIS (Netherlands)

    Palakawong Na Ayudthaya, Susakul; De Weijer, Van Antonius H.P.; Gelder, Van Antonie H.; Stams, Alfons J.M.; Vos, De Willem M.; Plugge, Caroline M.

    2018-01-01

    Background: Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial

  13. Nitric Acid-Treated Carbon Fibers with Enhanced Hydrophilicity for Candida tropicalis Immobilization in Xylitol Fermentation

    Directory of Open Access Journals (Sweden)

    Le Wang

    2016-03-01

    Full Text Available Nitric acid (HNO3-treated carbon fiber (CF rich in hydrophilic groups was applied as a cell-immobilized carrier for xylitol fermentation. Using scanning electron microscopy, we characterized the morphology of the HNO3-treated CF. Additionally, we evaluated the immobilized efficiency (IE of Candida tropicalis and xylitol fermentation yield by investigating the surface properties of nitric acid treated CF, specifically, the acidic group content, zero charge point, degree of moisture and contact angle. We found that adhesion is the major mechanism for cell immobilization and that it is greatly affected by the hydrophilic–hydrophilic surface properties. In our experiments, we found 3 hto be the optimal time for treating CF with nitric acid, resulting in an improved IE of Candida tropicalis of 0.98 g∙g−1 and the highest xylitol yield and volumetric productivity (70.13% and 1.22 g∙L−1∙h−1, respectively. The HNO3-treated CF represents a promising method for preparing biocompatible biocarriers for multi-batch fermentation.

  14. Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177.

    Science.gov (United States)

    Chang, Dongdong; Yu, Zhisheng; Islam, Zia Ul; Zhang, Hongxun

    2015-05-01

    Pyrolysate from waste cotton was acid hydrolyzed and detoxified to yield pyrolytic sugars, which were fermented to ethanol by the strain Escherichia coli ACCC 11177. Mathematical models based on the fermentation data were also constructed. Pyrolysate containing an initial levoglucosan concentration of 146.34 g/L gave a glucose yield of 150 % after hydrolysis, suggesting that other compounds were hydrolyzed to glucose as well. Ethyl acetate-based extraction of bacterial growth inhibitors with an ethyl acetate/hydrolysate ratio of 1:0.5 enabled hydrolysate fermentation by E. coli ACCC 11177, without a standard absorption treatment. Batch processing in a fermenter exhibited a maximum ethanol yield and productivity of 0.41 g/g and 0.93 g/L·h(-1), respectively. The cell growth rate (r x ) was consistent with a logistic equation [Formula: see text], which was determined as a function of cell growth (X). Glucose consumption rate (r s ) and ethanol formation rate (r p ) were accurately validated by the equations [Formula: see text] and [Formula: see text], respectively. Together, our results suggest that combining mathematical models with fermenter fermentation processes can enable optimized ethanol production from cellulosic pyrolysate with E. coli. Similar approaches may facilitate the production of other commercially important organic substances.

  15. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].

    Science.gov (United States)

    Zhang, Shuang; Zhang, Lanwei; Han, Xue

    2015-12-04

    Lactic acid bacteria (LAB) could synthesize cell envelope proteinase with weak activity, which primarily degrades casein. In addition to its crucial role in the rapid growth of LAB in milk, LAB proteinases are also of industrial importance due to their contribution to the formation of texture and flavor of many fermented dairy products. The proteolytic system, properties of proteinase, the degradation product of casein and its effect on the quality of fermented dairy products were reviewed in this manuscript.

  16. Analysis of Bacterial Diversity During Acetic Acid Fermentation of Tianjin Duliu Aged Vinegar by 454 Pyrosequencing.

    Science.gov (United States)

    Peng, Qian; Yang, Yanping; Guo, Yanyun; Han, Ye

    2015-08-01

    The vinegar pei harbors complex bacterial communities. Prior studies revealing the bacterial diversity involved were mainly conducted by culture-dependent methods and PCR-DGGE. In this study, 454 pyrosequencing was used to investigate the bacterial communities in vinegar pei during the acetic acid fermentation (AAF) of Tianjin Duliu aged vinegar (TDAV). The results showed that there were 7 phyla and 24 families existing in the vinegar pei, with 2 phyla (Firmicutes, Protebacteria) and 4 families (Lactobacillaceae, Acetobacteracae, Enterobacteriaceae, Chloroplast) predominating. The genus-level identification revealed that 9 genera were the relatively stable, consistent components in different stages of AAF, including the most abundant genus Lactobacillus followed by Acetobacter and Serratia. Additionally, the bacterial community in the early fermentation stage was more complex than those in the later stages, indicating that the accumulation of organic acids provided an appropriate environment to filter unwanted bacteria and to accelerate the growth of required ones. This study provided basic information of bacterial patterns in vinegar pei and relevant changes during AAF of TDAV, and could be used as references in the following study on the implementation of starter culture as well as the improvement of AAF process.

  17. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA production

    Directory of Open Access Journals (Sweden)

    Qian Lin

    2013-01-01

    Full Text Available γ-Aminobutyric acid (GABA is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 µM of pyridoxal phosphate (PLP, produced 187 mM of GABA.

  18. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    Science.gov (United States)

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  19. Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste.

    Science.gov (United States)

    Muñoz-Páez, Karla M; Ríos-Leal, Elvira; Valdez-Vazquez, Idania; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M

    2012-03-01

    In the first batch solid substrate anaerobic hydrogenogenic fermentation with intermittent venting (SSAHF-IV) of the organic fraction of municipal solid waste (OFMSW), a cumulative production of 16.6 mmol H(2)/reactor was obtained. Releases of hydrogen partial pressure first by intermittent venting and afterward by flushing headspace of reactors with inert gas N(2) allowed for further hydrogen production in a second to fourth incubation cycle, with no new inoculum nor substrate nor inhibitor added. After the fourth cycle, no more H(2) could be harvested. Interestingly, accumulated hydrogen in 4 cycles was 100% higher than that produced in the first cycle alone. At the end of incubation, partial pressure of H(2) was near zero whereas high concentrations of organic acids and solvents remained in the spent solids. So, since approximate mass balances indicated that there was still a moderate amount of biodegradable matter in the spent solids we hypothesized that the organic metabolites imposed some kind of inhibition on further fermentation of digestates. Spent solids were washed to eliminate organic metabolites and they were used in a second SSAHF-IV. Two more cycles of H(2) production were obtained, with a cumulative production of ca. 2.4 mmol H(2)/mini-reactor. As a conclusion, washing of spent solids of a previous SSAHF-IV allowed for an increase of hydrogen production by 15% in a second run of SSAHF-IV, leading to the validation of our hypothesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process.

    Science.gov (United States)

    Laureys, D; De Vuyst, L

    2017-03-01

    To investigate the influence of the water kefir grain inoculum on the characteristics of the water kefir fermentation process. Three water kefir fermentation processes were started with different water kefir grain inocula and followed as a function of time regarding microbial species diversity, community dynamics, substrate consumption profile and metabolite production course. The inoculum determined the water kefir grain growth, the viable counts on the grains, the time until total carbohydrate exhaustion, the final metabolite concentrations and the microbial species diversity. There were always 2-10 lactic acid bacterial cells for every yeast cell and the majority of these micro-organisms was always present on the grains. Lactobacillus paracasei, Lactobacillus hilgardii, Lactobacillus nagelii and Saccharomyces cerevisiae were always present and may be the key micro-organisms during water kefir fermentation. Low water kefir grain growth was associated with small grains with high viable counts of micro-organisms, fast fermentation and low pH values, and was not caused by the absence of exopolysaccharide-producing lactic acid bacteria. The water kefir grain inoculum influences the microbial species diversity and characteristics of the fermentation process. A select group of key micro-organisms was always present during fermentation. This study allows a rational selection of a water kefir grain inoculum. © 2016 The Society for Applied Microbiology.

  1. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices.

    Science.gov (United States)

    Ong, Yien Yien; Tan, Wen Siang; Rosfarizan, Mohamad; Chan, Eng Seng; Tey, Beng Ti

    2012-10-01

    Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans. Current research revealed the use of biochemical analyses and molecular approaches to identify the microbial population particularly lactic acid bacteria from fermented red dragon fruit juices. © 2012 Institute of Food Technologists®

  2. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol.

    Science.gov (United States)

    Darwin; Charles, Wipa; Cord-Ruwisch, Ralf

    2018-05-03

    Anaerobic acidification of sugars can produce some useful end-products such as alcohol, volatile fatty acids (e.g. acetate, propionate, and butyrate) and lactic acid. The production of end-products is highly dependent on factors including pH, temperature, hydraulic retention time and the types of sugar being fermented. Results of this current study indicate that the pH and hydraulic retention time played significant roles in determining the end products from the anaerobic acidification of maltose and glucose. Under uncontrolled pH, the anaerobic acidification of maltose ceased when pH in the reactor dropped below 5 while anaerobic acidification of glucose continued and produced ethanol as the main end-product. Under controlled pH, lactic acid was found to be the dominant end-product produced from both maltose and glucose at pH 5. Acetate was the main end-product from both maltose and glucose fermented at neutral pH (6 and 7). Short hydraulic retention time (HRT) of 2 days could induce the production of ethanol from the anaerobic acidification of glucose. However, the anaerobic acidification of maltose could stop when short HRT of 2 days was applied in the reactor. This finding is significant for industrial fermentation and waste management systems, and selective production of different types of organic acids could be achieved by managing pH and HRT in the reactor.

  3. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska

    2016-10-01

    Full Text Available Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  4. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption.

    Science.gov (United States)

    Jeong, So-Yeon; Trinh, Ly Thi Phi; Lee, Hong-Joo; Lee, Jae-Won

    2014-01-01

    A two-step detoxification process consisting of electrodialysis and adsorption was performed to improve the fermentability of oxalic acid hydrolysates. The constituents of the hydrolysate differed significantly between mixed hardwood and softwood. Acetic acid and furfural concentrations were high in the mixed hardwood, whereas 5-hydroxymethylfurfural (HMF) concentration was relatively low compared with that of the mixed softwood. The removal efficiency of acetic acid reached 100% by electrodialysis (ED) process in both hydrolysates, while those of furfural and HMF showed very low, due to non-ionizable properties. Most of the remaining inhibitors were removed by XAD-4 resin. In the mixed hardwood hydrolysate without removal of the inhibitors, ethanol fermentation was not completed. Meanwhile, both ED-treated hydrolysates successfully produced ethanol with 0.08 and 0.15 g/Lh ethanol productivity, respectively. The maximum ethanol productivity was attained after fermentation with 0.27 and 0.35 g/Lh of detoxified hydrolysates, which were treated by ED, followed by XAD-4 resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Amino Acid and Mineral Supplementation in Fermentation Process of Concentrate Protein of Jatropha Seed Cake (Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Titin Widiyastuti

    2016-09-01

    Full Text Available The purpose of this study is to assess the optimization of fermentation process by adding a minerals and amino acids so that the potential of protein  of Concentrate Protein-Jatropha seed cake (CP-JSC can be optimally used as a substitute for soybean meal. The method used was completely randomized design. The treatment consisted of F1: Fermentation CP-BBJ + methionine-lysine (0.25%: 0.25%, F2: Fermentation CP-JSC + methionine-lysine (0.5%: 0.5%, F3: F1 + 0.45% Dicalsium Phosphate, F4: F2 + 0.45% Dicalsium Phosphate. Each treatment was repeated four times, When treatment significantly continued by Least Significant Difference (LSD, variables observed are the levels of antinutrients (phorbolester, antitrypsin, the levels of nutrients (fat, protein, crude fiber, Ca, P and gross energy and amino acid. Results of analysis of variance showed that the addition of amino acids and minerals Ca, P in the fermentation process was highly significant effect on the levels of crude fiber and phosphorus (P 0.05. While the levels obtained phorbolester range of 0.055% - 0.08%. It was concluded that the optimization of fermentation can be done without adding the amino acid supplementation of minerals calcium and phosphorus. Supplementation significantly affect a significant increase or decrease in some nutrients (crude fiber, gross energy, phosphor and capable of suppressing a decrease in amino acids. Supplementation of amino acids Lysine and Methionin 0.05% is the best treatment.

  6. Lysine and Glutamic Acids as the End Products of Multi-response of Optimized Fermented Medium by Mucor mucedo KP736529.

    Science.gov (United States)

    El-Hersh, Mohammed S; Saber, WesamEldin I A; El-Fadaly, Husain A; Mahmoud, Mohammed K

    Amino acids are important for living organisms, they acting as crucial for metabolic activities and energy generation, wherein the deficiency in these amino acids cause various physiological defects. The aim of this study is to investigate the effect of some nutritional factors on the amino acids production by Mucor mucedo KP736529 during fermentation intervals. Mucor mucedo KP736529 was selected according to proteolytic activity. Corn steep liquor and olive cake were used in the fermented medium during Placket-Burman and central composite design to maximize the production of lysine and glutamic acids. During the screening by Plackett-Burman design, olive cake and Corn Steep Liquor (CSL) had potential importance for the higher production of amino acids. The individual fractionation of total amino acids showed both lysine and glutamic as the major amino acids associated with the fermentation process. Moreover, the Central Composite Design (CCD) has been adopted to explain the interaction between olive cake and CSL on the production of lysine and glutamic acids. The model recorded significant F-value, with high values of R 2, adjusted R 2 and predicted R 2 for both lysine and glutamic, indicating the validity of the data. Solving equation for maximum production of lysine recorded theoretical levels of olive cake and CSL, being 2.58 and 1.83 g L -1, respectively, with predicting value of lysine at 1.470 μg mL -1, whereas the predicting value of glutamic acid reached 0.805 mg mL -1 at levels of 2.49 and 1.93 g L -1 from olive cake and CSL, respectively. The desirability function (D) showed the actual responses being 1.473±0.009 and 0.801±0.004 μg mL -1 for lysine and glutamic acids, respectively. The model showed adequate validity to be applied in a large-scale production of both lysine and glutamic acids.

  7. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation

    Science.gov (United States)

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-01-01

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water. PMID:27853308

  8. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation.

    Science.gov (United States)

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-11-17

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH 3 -H 2 O 2 -pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH 3 -H 2 O 2 -pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.

  9. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    Science.gov (United States)

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  10. Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans.

    Science.gov (United States)

    Yao, Ruimiao; Hou, Weiliang; Bao, Jie

    2017-11-01

    Non-glucose sugars derived from lignocellulose cover approximately 40% of the total carbohydrates of lignocellulose biomass. The conversion of the non-glucose sugars to the target products is an important task of lignocellulose biorefining research. Here we report a fast and complete conversion of the total non-glucose sugars from corn stover into the corresponding sugar acids by whole cell catalysis and aerobic fermentation of Gluconobacter oxydans. The conversions include xylose to xylonate, arabinose to arabonate, mannose to mannonate, and galactose to galactonate, as well as with glucose into gluconate. These cellulosic non-glucose sugar acids showed the excellent cement retard setting property. The mixed cellulosic sugar acids could be used as cement retard additives without separation. The conversion of the non-glucose sugars not only makes full use of lignocellulose derived sugars, but also effectively reduces the wastewater treatment burden by removal of residual sugars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Traditional Turkish Fermented Non-Alcoholic Grape-Based Beverage, “Hardaliye”

    Directory of Open Access Journals (Sweden)

    Fatma Coskun

    2017-01-01

    Full Text Available Hardaliye is a non-alcoholic fermented beverage produced in a traditional way in Thrace, the European part of Turkey. The nutritional value of hardaliye is derived from the grapes and the fermentation process. Health benefits of hardaliye are also related to etheric oils present in mustard seeds. Hardaliye is a lactic acid fermented traditional beverage produced from grape juice and crushed grapes with the addition of different concentrations of whole/ground or heat-treated mustard seeds and sour cherry leaves. The color of hardaliye reflects the original color of the grapes and has a characteristic aroma. Dark red grape is preferred. Benzoic acid is used as preservative during production. Benzoic acid inhibits or decreases alcohol production by affecting the yeast. Fermentation occurs at room temperature for 7–10 days. If the ambient temperature is low, fermentation process can be extended until 20 days. Once fermented, the hardaliye is stored at 4 °C for three to four months. The hardaliye is consumed either fresh or aged. If it is aged, hardaliye may contain alcohol. The industrial production is just in small-scale and it must be developed. More studies are required to determine characteristic properties of hardaliye. Identification of the product properties will supply improvement for industrial production.

  12. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  13. Vinegar production from post-distillation slurry deriving from rice shochu production with the addition of caproic acid-producing bacteria consortium and lactic acid bacterium.

    Science.gov (United States)

    Yuan, Hua-Wei; Tan, Li; Chen, Hao; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-12-01

    To establish a zero emission process, the post-distillation slurry of a new type of rice shochu (NTRS) was used for the production of health promoting vinegar. Since the NTRS post-distillation slurry contained caproic acid and lactic acid, the effect of these two organic acids on acetic acid fermentation was first evaluated. Based on these results, Acetobacter aceti CICC 21684 was selected as a suitable strain for subsequent production of vinegar. At the laboratory scale, acetic acid fermentation of the NTRS post-distillation slurry in batch mode resulted in an acetic acid concentration of 41.9 g/L, with an initial ethanol concentration of 40 g/L, and the acetic acid concentration was improved to 44.5 g/L in fed-batch mode. Compared to the NTRS post-distillation slurry, the vinegar product had higher concentrations of free amino acids and inhibition of angiotensin I converting enzyme activity. By controlling the volumetric oxygen transfer coefficient to be similar to that of the laboratory scale production, 45 g/L of acetic acid was obtained at the pilot scale, using a 75-L fermentor with a working volume of 40 L, indicating that vinegar production can be successfully scaled up. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485

    Energy Technology Data Exchange (ETDEWEB)

    Dowe, N.

    2014-05-01

    This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

  15. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice.

    Directory of Open Access Journals (Sweden)

    Satoru Tomita

    Full Text Available In this study, we investigated the applicability of NMR-based metabolomics to discriminate strain-dependent fermentation characteristics of lactic acid bacteria (LAB, which are important microorganisms for fermented food production. To evaluate the discrimination capability, six type strains of Lactobacillus species and six additional L. brevis strains were used focusing on i the difference between homo- and hetero-lactic fermentative species and ii strain-dependent characteristics within L. brevis. Based on the differences in the metabolite profiles of fermented vegetable juices, non-targeted principal component analysis (PCA clearly separated the samples into those inoculated with homo- and hetero-lactic fermentative species. The separation was primarily explained by the different levels of dominant metabolites (lactic acid, acetic acid, ethanol, and mannitol. Orthogonal partial least squares discrimination analysis, based on a regions-of-interest (ROIs approach, revealed the contribution of low-abundance metabolites: acetoin, phenyllactic acid, p-hydroxyphenyllactic acid, glycerophosphocholine, and succinic acid for homolactic fermentation; and ornithine, tyramine, and γ-aminobutyric acid (GABA for heterolactic fermentation. Furthermore, ROIs-based PCA of seven L. brevis strains separated their strain-dependent fermentation characteristics primarily based on their ability to utilize sucrose and citric acid, and convert glutamic acid and tyrosine into GABA and tyramine, respectively. In conclusion, NMR metabolomics successfully discriminated the fermentation characteristics of the tested strains and provided further information on metabolites responsible for these characteristics, which may impact the taste, aroma, and functional properties of fermented foods.

  16. Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products

    DEFF Research Database (Denmark)

    Østergaard, Anya; Embarek, Peter Karim Ben; Wedell-Neergaard, C.

    1998-01-01

    Thai fermented fish products were screened for lactic acid bacteria capable of inhibiting Listeria sp. (Listeria innocua). Of 4150 assumed lactic acid bacteria colonies from MRS agar plates that were screened by an agar-overlay method 58 (1.4%) were positive. Forty four of these strains were...

  17. Identification of Bacillus species occurring in Kantong, an acid fermented seed condiment produced in Ghana

    DEFF Research Database (Denmark)

    Kpikpi, Elmer Nayra; Thorsen, Line; Glover, Richard

    2014-01-01

    Kantong is a condiment produced in Ghana by the spontaneous fermentation of kapok tree (Ceiba pentandra) seeds with cassava flour as an additive. Fermentation is over a 48h period followed by a drying and a kneading process. Although lactic acid bacteria (LAB) have previously been identified other...

  18. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    Science.gov (United States)

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  19. Study and management of atmospheric exhaust gas in acetic acid fermentation developing a new process for alcohol vinegar production; Etude et maitrise des rejets atmospheriques en vinaigrerie, developpement d'un procede nouveau de conduite de la fermentation acetique

    Energy Technology Data Exchange (ETDEWEB)

    Pochat Bohatier, C

    1999-12-06

    The aim of the study was to examine emissions of volatile organic compounds (VOCs) during acetic (acid) fermentation. The first part of the study presents the methodology developed to reproduce production cycles for spirit vinegar and to analyse gas effluents. The second part describes the origin and quantification of the emissions (ethanol, acetic acid, acetaldehyde and ethyl acetate). The acetic acid is produced by bacterial metabolism while the ethyl acetate is a result of the chemical reaction of esterification. By modelling the emissions during batch processing we were able to identify the various parameters involved when VOCs are carried along by the fermentation gases. The quantities of ethyl acetate depend on the length of time the diluted alcohol is stored, and on its composition. By using a fed-batch method with a continuous supply of ethanol we could reduce alcohol emissions. The third part of the study develops the kinetics studies carried out to adapt the fed-batch process to acetic acid fermentation. The influence of ethanol, either in terms of deficiency or inhibition, is minimized between 8 and 16 g.1-1. A study of the growth rate of bacteria in relation to the amount of acetic acid showed that the latter was highly inhibitive. There is a critical concentration of acetic acid at which the growth of bacteria stops, and the death rate of the culture increases rapidly. The latter depends on the composition of the culture's medium; the corresponding pH of the concentration is between 2.25 and 2.28. By limiting the formation of ethyl acetate in the diluted alcohol and by controlling the concentration of ethanol at 16 g.l -1 per fermentation, the VOC emissions are reduced by 30% and the yield increases as a result. (author)

  20. Simultaneous saccharification and co-fermentation of peracetic acid pretreated sugar cane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.C. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte (Brazil); Linden, J.C.; Schroeder, H.A. [Colorado State University, Fort Collins, CO (United States)

    1999-07-01

    Previous work in our laboratory has demonstrated that peracetic acid improves the enzymatic digestibility of lignocellulosic materials. From the same studies, use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increases sugar conversion yields in a synergistic, not additive, manner. Deacetylation of xylan is conducted easily by use of dilute alkali solutions at mild conditions. In this paper, the effectiveness of peracetic acid pretreatment of sugar cane bagasse combined with an alkaline pre-pretreatment, is evaluated through simultaneous saccharification and co-fermentation (SSCF) procedures. A practical 92% of theoretical ethanol yield using recombinant Zymomonas mobilis CP4/pZB5 is achieved using 6% NaOH/I5% peracetic acid pretreated substrate. No sugar accumulation is observed during SSCF; the recombinant microorganism exhibits greater glucose utilization rates than those of xylose. Acetate levels at the end of the co-fermentations are less than 0.2% (w/v). Based on demonstrated reduction of acetyl groups of the biomass, alkaline pre-pretreatments help to reduce peracetic acid requirements. The influence of deacetylation is more pronounced in combined pretreatments using lower peracetic acid loadings. Stereochemical impediments of the acetyl groups in hemicellulase on the activity of specific enzymes may be involved. (author)

  1. Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Dang Lelamurni Abd Razak

    2017-04-01

    Full Text Available In the present study, rice bran, one of the most abundant agricultural by-products in Malaysia, was fermented with single and mixed cultures of Aspergillus oryzae and Rhizopus oryzae. The fermented rice bran extracts were tested for their functional properties and compared to the non-fermented counterparts. Antioxidant activities as well as phenolics and organic acid contents were evaluated. Skincare-related functionalities were also tested by evaluating tyrosinase and elastase inhibition activities. Tyrosinase inhibition activity, measured to determine the anti-pigmentation effect of extracts, was found to be the highest in the extract of rice bran fermented with A. oryzae (56.18% compared to other extracts. In determining the anti-aging effect of fermented rice bran extracts, the same extract showed the highest elastase inhibition activity with a value of 60.52%. Antioxidant activities were found to be highest in the mix-cultured rice bran extract. The results of phenolic and organic acid content were varied; the major phenolic acid detected was ferulic acid with a value of 43.19 μg/ml in the mix-cultured rice bran extract. On the other hand, citric acid was the major organic acid detected, with the highest content found in the same extract (214.6 mg/g. The results of this study suggest that the fermented rice bran extracts may have the potential to be further exploited as ingredients in cosmetics as well as in antioxidant-rich products.

  2. Effect of pulp preconditioning on acidification, proteolysis, sugars and free fatty acids concentration during fermentation of cocoa (Theobroma cacao) beans.

    Science.gov (United States)

    Afoakwa, Emmanuel Ohene; Quao, Jennifer; Budu, Agnes Simpson; Takrama, Jemmy; Saalia, Firibu Kwesi

    2011-11-01

    Changes in acidification, proteolysis, sugars and free fatty acids (FFAs) concentrations of Ghanaian cocoa beans as affected by pulp preconditioning (pod storage or PS) and fermentation were investigated. Non-volatile acidity, pH, proteolysis, sugars (total, reducing and non-reducing) and FFAs concentrations were analysed using standard methods. Increasing PS consistently decreased the non-volatile acidity with concomitant increase in pH during fermentation of the beans. Fermentation decreased the pH of the unstored beans from 6.7 to 4.9 within the first 4 days and then increased slightly again to 5.3 by the sixth day. Protein, total sugars and non-reducing sugars decreased significantly (p cocoa beans was largely affected by fermentation than by PS.

  3. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.

    Science.gov (United States)

    Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z

    2014-04-01

    The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Fig Juice Fermented with Lactic Acid Bacteria as a Nutraceutical Product

    Directory of Open Access Journals (Sweden)

    Sima Khezri 1, Parvin Dehghan 2 * , Razzagh Mahmoudi 3, Mahdi Jafarlou 4

    2016-12-01

    Full Text Available Background: Probiotics are live microorganisms bringing useful effects to the host through balancing intestine microbiota. This research was undertaken to determine the suitability of fig juice as raw material for production of probiotic juice by three species of lactic acid bacteria (Lactobacillus casei, Lactobacillus plantarum and Lactobacillus delbrueckii. Methods: Heat treated fig juices were inoculated (6 log CFU/ml by three species inocula separately and incubated at 30 °C for 72 h. Changes in the pH, acidity, reducing sugar content and viable cell counts during the fermentation were monitored. Sensory characteristics of probiotic fig juice were also evaluated. Results: L. delbrueckii grew well on fig juice; reached nearly 9 log CFU/ml after 48 h of fermentation at 30 °C. After 4 weeks of cold storage at 4 °C, the viable cell counts of L. delbrueckii and L. plantarum were still 6 and 5 log CFU/ml, respectively, in fermented fig juice; but L. casei was just survived until 2th week of cold storage time, reduced from 9 to 3 log CFU/ml. The results of the sensory evaluation showed that fermented fig juice samples were significantly different (P<0.05 from the control sample in taste, odor, consistency and overall acceptability. L. casei was more acceptable comparing to the others. Conclusion: L. delbrueckii was the most suitable strain from the point of survivability among other species at the consumption time. Therefore, probiotic fig juice can serve as healthy beverage for vegetarians and consumers with lactose-allergy.

  5. Starch conversion of ganyong (Canna edulis Ker. to bioethanol using acid hydrolysis and fermentation

    Directory of Open Access Journals (Sweden)

    LILY SURAYYA EKA PUTRI

    2008-04-01

    Full Text Available Starch of ganyong is one of the sources of ethanol which is able to be produced by acid hydrolysis and fermentation process. It had high concentration of carbohydrate that is 80%, so it could produce glucose highly within acid hydrolysis process. The result showed that the optimal amount of reducing sugar had been produced by nitrate acid 7% (dextrose equivalent, DE = 28.4. Nevertheless, type and concentration of acid had no significantly correlation to reducing sugar yielded. The total amount of glucose had correlation to amount of ethanol, in fermentation process. The optimal amount of ethanol was yielded from 4.81% of glucose and it produced about 4.84% ethanol. The more amount of glucose was yielded the more ethanol was produced. Controlling pH every 12 hours did not affected to production of ethanol significantly.

  6. 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation.

    Science.gov (United States)

    Jeon, Sangjun; Kim, Duk-Ki; Song, Hyohak; Lee, Hee Jong; Park, Sunghoon; Seung, Doyoung; Chang, Yong Keun

    2014-04-01

    This study presents a new and effective downstream process to recover 2,3-butanediol (2,3-BD) from fermentation broth which is produced by a recombinant Klebsiella pneumoniae strain. The ldhA-deficient K. pneumoniae strain yielded about 90 g/L of 2,3-BD, along with a number of by-products, such as organic acids and alcohols, in a 65 h fed-batch fermentation. The pH-adjusted cell-free fermentation broth was firstly concentrated until 2,3-BD reached around 500 g/L by vacuum evaporation at 50°C and 50 mbar vacuum pressure. The concentrated solution was further treated using light alcohols, including methanol, ethanol, and isopropanol, for the precipitation of organic acids and inorganic salts. Isopropanol showed the highest removal efficiency, in which 92.5% and 99.8% of organic acids and inorganic salts were precipitated, respectively. At a final step, a vacuum distillation process enabled the recovery of 76.2% of the treated 2,3-BD, with 96.1% purity, indicating that fermentatively produced 2,3-BD is effectively recovered by a simple alcohol precipitation and vacuum distillation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2017-01-01

    Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...... of parameters was performed in order to get a good model fit to the data. However, not all parameters are identifiable with the given data set and model structure. Sensitivity, identifiability, and uncertainty analysis were completed and a relevant identifiable subset of parameters was determined for a new...

  8. Effect of Fermentation Broths on Performance of Hydrophobic Zeolite-Silicone Rubber Mixed Matrix Pervaporation Membranes

    Science.gov (United States)

    Fermentative organisms produce a range of compounds in addition to the desired product. For example, in addition to ethanol, standard yeast produce longer straight-chained and branched alcohols and organic acids. Additionally, biomass pretreatment process, particularly acid-bas...

  9. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    Science.gov (United States)

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  10. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.

    Science.gov (United States)

    Zhou, Jie; Ouyang, Jia; Xu, Qianqian; Zheng, Zhaojuan

    2016-12-01

    The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous β-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Changes in the protein fraction of Merluccius bilinearis muscle under lactic acid bacterial fermentation using a Lactobacillus Acidophilus starter culture (ESP

    Directory of Open Access Journals (Sweden)

    Luis J. Elizondo

    2016-03-01

    Full Text Available The effect of lactic acid bacterial fermentation on the protein fraction of Merluccius bilinearis muscle was evaluated. The non-protein fraction increased progressively with corresponding decreases in the percentage protein (dry weight indicating proteolytic activity during fermentation. Significant increases in the percentages of the amino acids cystine, isoleucine, phenylalanine and tyrosine were observed after two months of fermentation. Percentages of arginine decreased significantly after one week and again after two months of fermentation.

  12. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Russo, Vito; Pinto, Daniela; Marzani, Barbara; Gobbetti, Marco

    2017-01-16

    Lactic acid bacteria strains, previously isolated from the same matrix, were used to ferment quinoa flour aiming at exploiting the antioxidant potential. As in vitro determined on DPPH and ABTS radicals, the scavenging activity of water/salt-soluble extracts (WSE) from fermented doughs was significantly (Pquinoa dough fermented with Lactobacillus plantarum T0A10. The corresponding WSE was subjected to Reverse Phase Fast Protein Liquid Chromatography, and 32 fractions were collected and subjected to in vitro assays. The most active fraction was resistant to further hydrolysis by digestive enzymes. Five peptides, having sizes from 5 to 9 amino acid residues, were identified by nano-Liquid Chromatography-Electrospray Ionisation-Mass Spectra/Mass Spectra. The sequences shared compositional features which are typical of antioxidant peptides. As shown by determining cell viability and radical scavenging activity (MTT and DCFH-DA assays, respectively), the purified fraction showed antioxidant activity on human keratinocytes NCTC 2544 artificially subjected to oxidative stress. This study demonstrated the capacity of autochthonous lactic acid bacteria to release peptides with antioxidant activity through proteolysis of native quinoa proteins. Fermentation of the quinoa flour with a selected starter might be considered suitable for novel applications as functional food ingredient, dietary supplement or pharmaceutical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Metabolic Footprinting of Fermented Milk Consumption in Serum of Healthy Men

    Science.gov (United States)

    Pimentel, Grégory; Burton, Kathryn J; von Ah, Ueli; Bütikofer, Ueli; Pralong, François P; Vionnet, Nathalie; Portmann, Reto; Vergères, Guy

    2018-01-01

    Abstract Background Fermentation is a widely used method of natural food preservation that has consequences on the nutritional value of the transformed food. Fermented dairy products are increasingly investigated in view of their ability to exert health benefits beyond their nutritional qualities. Objective To explore the mechanisms underpinning the health benefits of fermented dairy intake, the present study followed the effects of milk fermentation, from changes in the product metabolome to consequences on the human serum metabolome after its ingestion. Methods A randomized crossover study design was conducted in 14 healthy men [mean age: 24.6 y; mean body mass index (in kg/m2): 21.8]. At the beginning of each test phase, serum samples were taken 6 h postprandially after the ingestion of 800 g of a nonfermented milk or a probiotic yogurt. During the 2-wk test phases, subjects consumed 400 g of the assigned test product daily (200 g, 2 times/d). Serum samples were taken from fasting participants at the end of each test phase. The serum metabolome was assessed through the use of LC-MS–based untargeted metabolomics. Results Postprandial serum metabolomes after milk or yogurt intake could be differentiated [orthogonal projections to latent structures discriminant analysis (OPLS-DA) Q2 = 0.74]. Yogurt intake was characterized by higher concentrations of 7 free amino acids (including proline, P = 0.03), reduced concentrations of 5 bile acids (including glycocholic acid, P = 0.04), and modulation of 4 indole derivative compounds (including indole lactic acid, P = 0.01). Fasting serum samples after 2 wk of daily intake of milk or yogurt could also be differentiated based on their metabolic profiles (OPLS-DA Q2 = 0.56) and were discussed in light of the postprandial results. Conclusion Metabolic pathways related to amino acids, indole derivatives, and bile acids were modulated in healthy men by the intake of yogurt. Further investigation to explore novel

  14. Corrected: The influence of brewers' yeast addition on lactic acid fermentation of brewers' spent grain hydrolysate by Lactobacillus rhamnosus

    OpenAIRE

    Pejin, Jelena; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Đukić-Vuković, Aleksandra; Mladenović, Dragana; Mojović, Ljiljana

    2016-01-01

    Brewers' spent grain (BSG) hydrolysates were used for lactic acid (LA) fermentation by Lactobacillus rhamnosus ATCC 7469. The aim of this study was to evaluate possibilities of the BSG hydrolysate utilization as a substrate for LA fermentation as well as the effect of dry brewers' yeast addition in hydrolysate on lactic acid fermentation parameters (L-(+)-LA and reducing sugar concentration and number of viable cell-viability). Very high L. rhamnosus ATCC 7469 cell viability was achieved in a...

  15. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, A M; Lauritsen, F R

    2004-01-01

    Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from the correspo......Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from...

  16. Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions.

    Science.gov (United States)

    Bhanja Dey, T; Kuhad, R C

    2014-11-01

    Solid-state fermentation (SSF) at 30°C for 72 h with four generally recognized as safe (GRAS) filamentous fungi (Aspergillus oryzae NCIM 1212, Aspergillus awamori MTCC No. 548, Rhizopus oligosporus NCIM 1215 and Rhizopus oryzae RCK2012) showed high efficiency for the improvement of water-soluble total phenolic content (TPC) and antioxidant properties including ABTS(●+) [2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)] and DPPH(●) (2,2'-diphenyl-1-picrylhydrazyl) scavenging capacities of four whole grain cereals, namely wheat, brown rice, maize and oat. A maximum 14-fold improvement in TPC (11·61 mg gallic acid equivalent g(-1) grain) was observed in A. oryzae fermented wheat, while extract of R. oryzae fermented wheat (ROFW) showed maximum of 6·6-fold and fivefold enhancement of DPPH(●) scavenging property (8·54 μmol Trolox equivalent g(-1) grain) and ABTS(●+) scavenging activity (19·5 μmol Trolox equivalent g(-1) grain), respectively. The study demonstrates that SSF is an efficient method for the improvement of antioxidant potentials of cereals and R. oryzae RCK2012 fermented wheat can be a powerful source of natural antioxidants. Antioxidant-rich food products are getting popularity day by day. In this study, potential of solid-state fermentation (SSF) has been studied for the improvement of antioxidant potential of different cereals by GRAS micro-organisms. The comparative evaluation of the antioxidant potential of various fungal fermented products derived from whole grain cereals, such as wheat, brown rice, oat and maize, has been carried out. Among these, Rhizopus oryzae RCK2012-fermented wheat was observed as a potent source of natural antioxidants. A diet containing fermented cereals would be useful for the prevention of free radical-mediated diseases. © 2014 The Society for Applied Microbiology.

  17. Physicochemical Characteristic of Fermented Goat Milk Added with Different Starters Lactic Acid Bacteria

    OpenAIRE

    Anif Mukaromah Wati; Mei Jen Lin; Lilik Eka Radiati

    2018-01-01

    Development of traditional food including dadih to be commercial fermented milk was needed to achieve efficiency and effective of products. Dadih with natural starter needs to be changed with starters because starters can be produced commercially. This study aims to evaluate physicochemical characteristic of fermented goat milk that added with different starters Lactic Acid Bacteria (LAB) isolated from dadih. The materials used for this research were starters LAB that isolated from dadih. In ...

  18. Study and management of atmospheric exhaust gas in acetic acid fermentation developing a new process for alcohol vinegar production; Etude et maitrise des rejets atmospheriques en vinaigrerie, developpement d'un procede nouveau de conduite de la fermentation acetique

    Energy Technology Data Exchange (ETDEWEB)

    Pochat Bohatier, C.

    1999-12-06

    The aim of the study was to examine emissions of volatile organic compounds (VOCs) during acetic (acid) fermentation. The first part of the study presents the methodology developed to reproduce production cycles for spirit vinegar and to analyse gas effluents. The second part describes the origin and quantification of the emissions (ethanol, acetic acid, acetaldehyde and ethyl acetate). The acetic acid is produced by bacterial metabolism while the ethyl acetate is a result of the chemical reaction of esterification. By modelling the emissions during batch processing we were able to identify the various parameters involved when VOCs are carried along by the fermentation gases. The quantities of ethyl acetate depend on the length of time the diluted alcohol is stored, and on its composition. By using a fed-batch method with a continuous supply of ethanol we could reduce alcohol emissions. The third part of the study develops the kinetics studies carried out to adapt the fed-batch process to acetic acid fermentation. The influence of ethanol, either in terms of deficiency or inhibition, is minimized between 8 and 16 g.1-1. A study of the growth rate of bacteria in relation to the amount of acetic acid showed that the latter was highly inhibitive. There is a critical concentration of acetic acid at which the growth of bacteria stops, and the death rate of the culture increases rapidly. The latter depends on the composition of the culture's medium; the corresponding pH of the concentration is between 2.25 and 2.28. By limiting the formation of ethyl acetate in the diluted alcohol and by controlling the concentration of ethanol at 16 g.l -1 per fermentation, the VOC emissions are reduced by 30% and the yield increases as a result. (author)

  19. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    NARCIS (Netherlands)

    Maas, R.H.W.; Bakker, R.R.; Jansen, M.L.A.; Visser, D.; Jong, de E.; Eggink, G.; Weusthuis, R.A.

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314.

  20. Modeling of pretreatment and acidogenic fermentation of the organic fraction of municipal solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Beccari, M; Longo, G; Majone, M; Rolle, E; Scarinci, A [Rome ' ' La Sapienza' ' Univ. (Italy). Dept. of Chemistry

    1993-01-01

    The organic fraction of municipal solid waste represents a potential feedstock to be treated through biorefining. However, the process feasibility strongly depends on the effectiveness of a chemical pretreatment. Consequently, experimentation aimed at choosing the optimal type of reagent (alkali or acids) and optimal operating conditions was carried out. The best results were obtained using NaOH at room temperature. Solubilization data are in good agreement with a kinetics based on two competing reactions. Simulation of the overall process (pretreatment and acidogenic fermentation) taking place in two CFSTR reactors shows that an optimum ratio exists between the hydraulic residence times of the two stages of the process. (author)

  1. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2012-03-01

    Full Text Available The organic volatile flavor compounds in fermented stinky tofu (FST were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  2. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    International Nuclear Information System (INIS)

    Rodrigues, J.E.A.; Erny, G.L.; Barros, A.S.; Esteves, V.I.; Brandao, T.; Ferreira, A.A.; Cabrita, E.; Gil, A.M.

    2010-01-01

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  3. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.E.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Erny, G.L. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNAA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Esteves, V.I. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Brandao, T.; Ferreira, A.A. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955 S. Mamede de Infesta (Portugal); Cabrita, E. [Department of Chemistry, New University of Lisbon, 2825-114 Caparica (Portugal); Gil, A.M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2010-08-03

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  4. AKTIVITAS PROTEOLITIK BAKTERI ASAM LAKTAT DALAM FERMENTASI SUSU KEDELAI [Proteolytic Activities of Lactic Acid Bacteria in Fermentation of Soymilk

    OpenAIRE

    Yusmarini1,2)*; R. Indrati1); T. Utami1); Y. Marsono1)

    2010-01-01

    Some lactic acid bacteria (LAB) strains had been isolated from spontaneously fermented soymilk which have proteolytic system. The purpose of this research was to study ability of isolates in fermentation of soymilk. The changes in bacterial growth, pH, titrable acidity, and proteolytic activities during fermentation were examined. Isolates of Lactobacillus plantarum 1 R.1.3.2; L. plantarum 1 R.11.1.2 and L. acidophilus FNCC 0051 (as a control) were capable growing in soymilk. The results indi...

  5. The Solubility of Cr-Organic Produced by Hydrolysis, Bioprocess and Bioremediation and its Effect on Fermented Rate, Digestibility and Rumen Microbe Population (in vitro

    Directory of Open Access Journals (Sweden)

    UH Tanuwiria

    2010-09-01

    Full Text Available The research was conducted to study the production of organic chromium from the leather tanning waste and its effect on in vitro rumen fermentation activities. The research was divided into two phases. The first phase was production of organic chromium by alkali hydrolysis, S cereviceae bioprocess, and duckweed bioremediation that perceived solubility in neutral and acid solution. The second phase was the supplementation of organic-Cr in ration seen from in-vitro fermented rate, digestibility and microbe rumen population. Research was conducted experimentally using 4x4 factorial patterns, on the basis of Completely Randomized Design (CRD with three replications in each experimental unit. The first factor was the type of organic-Cr and the second factor was the supplement in ration at four levels, 1, 2, 3 and 4 ppm. The results of this research indicated that organic chromium can be synthesized by alkali hydrolysis, S cereviseae bioprocess and the activity of duckweed bioremediation. Among the three of processes referred, the highest level of Cr was obtained from S cereviseae bioprocess that was originated from leather-tanning waste. The levels of organic-Cr that was resulted from alkali hydrolysis, bioprocess from Cl3Cr.6H2O, bioprocess from Cr leather-tanning waste, and from duckweed bioremediation were 354, 1011, 3833 and 310 mg/kg, respectively. Organic-Cr characteristic of each product has relatively similar in ferment ability, dry matter and organic matter digestibility and rumen ecosystem. There is an indication that dry matter and organic matter digestibility and rumen microbe population in ration that was added with organic Cr from alkali hydrolysis was higher than other supplements. (Animal Production 12(3: 175-183 (2010Key Words: organic-Cr, rumen fermentation activities, rumen microbe population

  6. Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column

    Directory of Open Access Journals (Sweden)

    Nampoothiri K. Madhavan

    1999-01-01

    Full Text Available Investigations were carried out with the aim of producing L-glutamic acid from Brevibacterium sp. by utilizing a locally available starchy substrate, cassava (Manihot esculenta Crantz. Initial studies were carried out in shake flasks, which showed that even though the yield was high with 85-90 DE (Dextrose Equivalent value, the maximum conversion yield (~34% was obtained by using only partially digested starch hydrolysate, i.e. 45-50 DE. Fermentations were carried out in batch mode in a 5 L fermenter, using suitably diluted cassava starch hydrolysate, using a 85-90 DE value hydrolysate. Media supplemented with nutrients resulted in an accumulation of 21 g/L glutamic acid with a fairly high (66.3% conversation yield of glucose to glutamic acid (based on glucose consumed and on 81.74% theoretical conversion rate. The bioreactor conditions most conducive for maximum production were pH 7.5, temperature 30°C and an agitation of 180 rpm. When fermentation was conducted in fed-batch mode by keeping the residual reducing sugar concentration at 5% w/v, 25.0 g/L of glutamate was obtained after 40 h fermentation (16% more the batch mode. Chromatographic separation by ion-exchange resin was used for the recovery and purification of glutamic acid. It was further crystallized and separated by making use of its low solubility at the isoelectric point (pH 3.2.

  7. Acid Fermentation Process Combined with Post Denitrification for the Treatment of Primary Sludge and Wastewater with High Strength Nitrate

    Directory of Open Access Journals (Sweden)

    Allen Kurniawan

    2016-03-01

    Full Text Available In this study, an anaerobic baffled reactor (ABR, combined with a post denitrification process, was applied to treat primary sludge from a municipal wastewater treatment plant and wastewater with a high concentration of nitrate. The production of volatile fatty acids (VFAs was maximized with a short hydraulic retention time in the acid fermentation of the ABR process, and then the produced VFAs were supplied as an external carbon source for the post denitrification process. The laboratory scale experiment was operated for 160 days to evaluate the VFAs’ production rate, sludge reduction in the ABR type-acid fermentation process, and the specific denitrification rate of the post denitrification process. As results, the overall removal rate of total chemical oxygen demand (TCOD, total suspended solids (TSS, and total nitrogen (TN were found to be 97%, 92%, 73%, respectively, when considering the influent into ABR type-acid fermentation and effluent from post denitrification. We observed the specific VFAs production rate of 0.074 gVFAs/gVSS/day for the ABR type-acid fermentation, and an average specific denitrification rate of 0.166 gNO3−-N/gVSS/day for the post denitrification. Consequently, we observed that a high production of VFAs from a primary sludge, using application of the ABR type acid fermentation process and the produced VFAs were then successfully utilized as an external carbon source for the post denitrification process, with a high removal rate of nitrogen.

  8. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    Science.gov (United States)

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. CHANGES IN SELECTIVITY OF GAMMA-AMINOBUTYRIC ACID FORMATION EFFECTED BY FERMENTATION CONDITIONS AND MICROORGANISMS RESOURCES

    Directory of Open Access Journals (Sweden)

    Kamila Kovalovská

    2011-10-01

    Full Text Available In this study we observe the effect of fermentation conditions and resources of microorganisms for production of γ-aminobutyric acid (GABA. The content of produced GABA depends on various conditions such as the amount of precursor, an addition of salt, enzyme and the effect of pH. The highest selectivity of GABA (74.0 % from the precursor (L-monosodium glutamate has been determinate in the follow conditions: in the presence of pre-cultured microorganisms from Encián cheese in amount 1.66 % (w/v the source of microorganisms/volume of the fermentation mixture, after the addition of 0.028 % (w/v of CaCl2/volume of the fermentation mixture, 100 μM of pyridoxal-5-phosphate (P-5-P and the GABA precursor concentration in the fermentation mixture 2.6 mg ml-1 in an atmosphere of gas nitrogen. Pure cultures of lactic acid bacteria increased the selectivity of GABA by an average of 20 % compared with bacteria from the path of Encián.

  10. Evaluation of two-phase thermophilic anaerobic methane fermentation for the treatment of garbage

    International Nuclear Information System (INIS)

    Park, Y.J.; Hong, F.; Japan Science and Technology Agency, Tokyo; Tsuno, H.; Hidaka, T.; Cheon, J.H.; Japan Science and Technology Agency, Tokyo

    2004-01-01

    Municipal solid wastes (MSW) in Japan are generally incinerated. However, in recent years, garbage has been recognized as a renewable energy source. This has resulted in an increase in the use of biological processes, such as anaerobic digestion, to treat organic waste such as sewage sludge and garbage. The two phases of anaerobic digestion are the acidogenic phase and the methane producing phase. Both differ significantly in their nutritional and physiological requirements. This study evaluated the effectiveness of treating garbage with the two-phase thermophilic methane fermentation system (TPS). The performance of the acid fermentation phase in TPS was examined with particular reference to operational parameters such as pH, hydraulic retention time and organic loading rate on volatile fatty acid fermentation. It was shown that TPS was more efficient than the single-phase thermophilic methane fermentation system (SPS). Acidification control in the first stage resulted in better stability of methane fermentation in the second stage. VFA formation was optimized at a pH of 6. The recovery ratios of VFAs and methane were achieved in the range of 42 to 44 per cent and 88 to 91 per cent of garbage by high organic loading rate respectively. 12 refs., 6 tabs., 4 figs

  11. Real-Time DNP NMR Observations of Acetic Acid Uptake, Intracellular Acidification, and of Consequences for Glycolysis and Alcoholic Fermentation in Yeast

    DEFF Research Database (Denmark)

    Jensen, Pernille Rose; Karlsson, Magnus; Lerche, Mathilde Hauge

    2013-01-01

    Uptake and upshot in vivo: Straightforward methods that permit the real-time observation of organic acid influx, intracellular acidification, and concomitant effects on cellular-reaction networks are crucial for improved bioprocess monitoring and control (see scheme). Herein, dynamic nuclear pola...... polarization (DNP) NMR is used to observe acetate influx, ensuing intracellular acidification and the metabolic consequences on alcoholic fermentation and glycolysis in living cells....

  12. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    Science.gov (United States)

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  13. Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions.

    Science.gov (United States)

    Huang, Liang; Pan, Xin-Rong; Wang, Ya-Zhou; Li, Chen-Xuan; Chen, Chang-Bin; Zhao, Quan-Bao; Mu, Yang; Yu, Han-Qing; Li, Wen-Wei

    2018-01-01

    In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Changes in the protein fraction of Merluccius bilinearis muscle under lactic acid bacterial fermentation using a Lactobacillus Acidophilus starter culture (ESP)

    OpenAIRE

    Elizondo, Luis J.

    2016-01-01

    The effect of lactic acid bacterial fermentation on the protein fraction of Merluccius bilinearis muscle was evaluated. The non-protein fraction increased progressively with corresponding decreases in the percentage protein (dry weight) indicating proteolytic activity during fermentation. Significant increases in the percentages of the amino acids cystine, isoleucine, phenylalanine and tyrosine were observed after two months of fermentation. Percentages of arginine decreased significantly aft...

  15. Complexing of vanadium(3) with chromotropic acid derivatives

    International Nuclear Information System (INIS)

    Babenko, N.L.; Busev, A.I.; Sukhorukova, N.V.; Frolova, O.S.

    1976-01-01

    A spectrophotometric study has been made of the complex formation of vanadium (3) with arsenazo(1), arsenazo(3) and some monosubstituted derivatives of chromotropic acid and sulphanylamides. In acid medium vanadium (3) reacts with each of these reagents to produce a 1:1 complex. Optimum conditions of the complex formation was found. The effect of H + on the complex formation of vanadium (3) with chromotropic acid derivatives was established. It was found by the graphical method that the formation of the complex is accompanied by the elimination of one proton. Patterns were found of the influence of the nature of substituents in the organic compound on the ionization constants of acid groups and stability of complexes. Molar extinction coefficients, equilibrium constants of the formation reactions and instability constants for the complexes were calculated. The structure of complexes was suggested. Similar behaviour of all the reagents was established in the complex formation with vanadium (3)

  16. Fate of acid-resistant and non-acid resistant Shiga toxin-producing Escherichia coli strains in experimentally contaminated French fermented raw meat sausages.

    Science.gov (United States)

    Montet, M P; Christieans, S; Thevenot, D; Coppet, V; Ganet, S; Muller, M L Delignette; Dunière, L; Miszczycha, S; Vernozy-Rozand, C

    2009-02-28

    Both pathogenic and nonpathogenic E. coli exhibit a stress response to sublethal environmental stresses. Several studies have reported acid tolerance and survival characteristics of E. coli O157:H7 in foodstuffs, but there are few reports about the tolerance of non-O157 serogroups (STEC) to organic acids in foods. The purpose of this study was to examine the effect of the manufacturing process of French fermented raw meat sausages on the growth and survival of acid-resistant (AR) and non-acid resistant (NAR) STEC strains. The six strains, 3 AR and 3 NAR, were inoculated separately into raw sausage mixture at a level of 10(4)-10(5) CFU/g. A total of 19 batches of sausages were manufactured. A rapid and similar decrease in the number of both AR and NAR STEC strains, from less than 1 to 1.5 log(10) CFU/g, was observed during the first 5 days of fermentation at 20-24 degrees C. This rapid decrease was followed by a more gradual but continuous decrease in STEC counts after drying at 13-14 degrees C, up to day 35. The STEC counts were <10 CFU/g after 35 days for the NAR strains and the same concentration for the AR strains on the best before date (day 60). It was not possible to detect any NAR STEC after 60 days. The present study shows that the process used in the manufacture of French sausages results in a complete destruction of NAR STEC strains after 60 days, but it does not have the same effect on the AR STEC strains.

  17. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    Science.gov (United States)

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  18. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    Soy sauce is a Japanese traditional seasoning composed of various constituents that are produced by various microbes during a long-term fermentation process. Due to the complexity of the process, the investigation of the constituent profile during fermentation is difficult. Metabolomics, the comprehensive study of low molecular weight compounds in biological samples, is thought to be a promising strategy for deep understanding of the constituent contribution to food flavor characteristics. Therefore, metabolomics is suitable for the analysis of soy sauce fermentation. Unfortunately, only few and unrefined studies of soy sauce fermentation using metabolomics approach have been reported. Therefore, we investigated changes in low molecular weight hydrophilic and volatile compounds of soy sauce using gas chromatography/mass spectrometry (GC/MS)-based non-targeted metabolic profiling. The data were analyzed by statistical analysis to evaluate influences of yeast and lactic acid bacterium on the constituent profile. Consequently, our results suggested a novel finding that lactic acid bacterium affected the production of several constituents such as cyclotene, furfural, furfuryl alcohol and methional in the soy sauce fermentation process. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    Science.gov (United States)

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  20. Gamma radiation in some microbiological and biochemical parameters of ethanolic fermentation

    International Nuclear Information System (INIS)

    Alcarde, Andre Ricardo

    2000-01-01

    The objective of this work was to evaluate the effect of gamma radiation in reducing the bacterial population of the sugar cane must and verify its influence in the ethanolic fermentation. For this purpose, some microbiological and biochemical parameters of the ethanolic fermentation were analyzed, such as bacterial count; viability, replication and living replicates of the yeast; p H, acidity (total and volatile), glycerol and production of organic acids (acetic, lactic and succinic) during the fermentation; and fermentative yield. Bacteria of the genera Bacillus and Lactobacillus are the most common contaminants of the ethanolic fermentation and they might cause a decrease in the fermentative yield. The ionizing radiations may affect the microorganisms altering the DNA of the cells, which lose the ability to reproduce themselves and die. The experimental design was in randomized blocks (three) with one replicate in each block. The must was sugar-cane juice with approximately 5% of total reducing sugar. Bacteria of the following species were tested: Bacillus subtilis, Bacillus coagulans, Lactobacillus plantarum and Lactobacillus fermentum. The experiments were the inoculation of each bacteria separately in the must, the inoculation of the mixture of the four bacteria in the must and the use of natural sugar-cane juice with its own contaminating microorganisms. The contaminated must was irradiated with the doses of 0.0 (control), 2.0,4.0, 6.0, 8.0 and 10.0 kGy of gamma radiation (60-Cobalt) at an average rate of 2.0 kGy/h. After the irradiation, the fermentation of the must was carried out using the yeast Saccharomyces cerevisiae (Fleischmann). It was also accomplished an experiment with the inoculation of the mixture of the four bacteria in the must and, instead of using gamma radiation to decontaminate the must, it was used the antimicrobial Kamoran ID in the concentration of 3 ppm. The effects of the irradiation of the must were: reduction of the bacterial

  1. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1997-10-14

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  2. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    Science.gov (United States)

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Fermentative utilization of glycerol residue for the production of acetic acid

    Science.gov (United States)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  4. Fermentation of Acid-pretreated Corn Stover to Ethanol Without Detoxification Using Pichia stipitis

    Science.gov (United States)

    Agbogbo, Frank K.; Haagensen, Frank D.; Milam, David; Wenger, Kevin S.

    In this work, the effect of adaptation on P. stipitis fermentation using acidpretreated corn stover hydrolyzates without detoxification was examined. Two different types of adaptation were employed, liquid hydrolyzate and solid state agar adaptation. Fermentation of 12.5% total solids undetoxified acid-pretreated corn stover was performed in shake flasks at different rotation speeds. At low rotation speed (100 rpm), both liquid hydrolyzate and solid agar adaptation highly improved the sugar consumption rate as well as ethanol production rate compared to the wild-type strains. The fermentation rate was higher for solid agar-adapted strains compared to liquid hydrolyzate-adapted strains. At a higher rotation speed (150 rpm), there was a faster sugar consumption and ethanol production for both the liquid-adapted and the wild-type strains. However, improvements in the fermentation rate between the liquid-adapted and wild strains were less pronounced at the high rotation speed.

  5. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  6. Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage.

    Science.gov (United States)

    Ghosh, Kuntal; Ray, Mousumi; Adak, Atanu; Halder, Suman K; Das, Arpan; Jana, Arijit; Parua Mondal, Saswati; Vágvölgyi, Csaba; Das Mohapatra, Pradeep K; Pati, Bikas R; Mondal, Keshab C

    2015-01-01

    A dominant lactic acid bacteria, Lactobacillus fermentum KKL1 was isolated from an Indian rice based fermented beverage and its fermentative behavior on rice was evaluated. The isolate grown well in rice and decreased the pH, with an increase of total titratable acidity on account of high yield in lactic acid and acetic acid. The production of α-amylase and glucoamylase by the strain reached plateau on 1st and 2nd day of fermentation respectively. The accumulation of malto-oligosaccharides of different degrees of polymerization was also found highest on 4th day. Besides, phytase activity along with accumulation of free minerals also unremittingly increased throughout the fermentation. The fermented materials showed free radical scavenging activity against DPPH radicals. In-vitro characteristics revealed the suitability of the isolate as probiotic organism. The above profiling revealed that probiotic L. fermentum KKL1 have the significant impact in preparation of rice beer and improves its functional characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Isotope-labelled folic acid derivatives

    International Nuclear Information System (INIS)

    Lewin, N.; Wong, E.T.

    1976-01-01

    The suggestion deals with the production of folic acid derivatives suitable as indicators or tracers for analyses of serum folates. These folic acid derivatives contain folic acid which is bound by one or both carboxyl groups to the amino nitrogen of compounds such as, e.g., tyramine, glycyl tyrosine, tyrosine, or the methyl ester of tyrosine. The derivative obtained can be substituted by a gamma emitter, e.g. the iodine isotope I 125. The radioactive derivative is used in the method for the competitive protein bonding to determine endogenic folates in the serum. (UWI) [de

  8. Fermentation of cereals - Influence on digestibility of nutrients in growing pigs

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Sholly, Danielle; Pedersen, Anni Øyan

    2010-01-01

    ) at a ratio of 1:2.75 (wt/wt). Four experimental diets consisting of either dry or fermented barley or wheat, supplemented with a protein mixture (not fermented) were formulated to contain recommended levels of nutrients. Eight pigs from two litters were surgically fitted with a T-cannula anterior to the ileo......-cecal junction and fed one of the four experimental diets according to a repeated 4 × 4 Latin-square design. The fermentation process was followed by measuring the changes in the major nutrients, microbial composition and organic acid concentrations. Fermentation caused a reduced concentration of carbohydrates...

  9. Use of a biparticle fluidized-bed bioreactor for the continuous and simultaneous fermentation and purification of lactic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E. N.; Cooper, S. P.; Clement, S. L.; Little, M. H.

    1994-05-01

    A continuous biparticle fluidized bed reactor is developed for the simultaneous fermentation and purification of lactic acid. In this processing scheme, bacteria are immobilized in gelatin beads and are fluidized in a columnar reactor. Solid particles with sorbent capacity for the product are introduced at the top of the reactor, and fall counter currently to the biocatalyst, effecting in situ removal of the inhibitory product, while also controlling reactor pH at optimal levels. Initial long-term fermentation trials using immobilized Lactobacillus delbreuckii have demonstrated a 12 fold increase in volumetric productivity during adsorbent addition as opposed to control fermentations in the same reactor. Unoptimized regeneration of the loaded sorbent has effected at least an 8 fold concentration of lactic acid, and a 68 fold enhancement in separation from glucose compared to original levels in the fermentation broth. The benefits of this reactor system as opposed to conventional batch fermentation are discussed in terms of productivity and process economics.

  10. Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production.

    Science.gov (United States)

    Cheng, Ningning; Yamamoto, Yoko; Koda, Keiichi; Tamai, Yutaka; Uraki, Yasumitsu

    2014-12-01

    Amphipathic lignin derivatives (A-LDs) were already demonstrated to improve enzymatic saccharification of lignocellulose. Based on this knowledge, two kinds of A-LDs prepared from black liquor of soda pulping of Japanese cedar were applied to a fed-batch simultaneous saccharification and fermentation (SSF) process for unbleached soda pulp of Japanese cedar to produce bioethanol. Both lignin derivatives slightly accelerated yeast fermentation of glucose but not inhibited it. In addition, ethanol yields based on the theoretical maximum ethanol production in the fed-batch SSF process was increased from 49% without A-LDs to 64% in the presence of A-LDs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Molecular diversity of lactic acid bacteria on ileum broiler chicken fed by bran and bran fermentation

    Science.gov (United States)

    Baniyah, Laelatul; Nur Jannah, Siti; Rukmi, Isworo; Sugiharto

    2018-05-01

    Lactic Acid Bacteria (LAB) is a digestive tract microflora that have a positive role in poultry health. The number and diversity of LAB in the digestive tract affected by several factors, among them was the kind of feed. The purpose of this research was to know diversity of Lactic Acid Bacteria (LAB) ileum broiler’s after feeding with prebiotic bran and Rhizopus oryzae fermented bran which was added to commercial feed. As much as 15 broilers were used to determine the diversity of LAB. All broilers were fed using commercial feed. The control used commercial feed no addition of bran or fermented bran, and commercial feed with fermented bran and nonfermented bran were as a treatment. To determine the diversity of LAB, T-RFLP method was applied. The Hae III and Msp I were used as restriction enzymes. The number of phylotype, relative abundance, Shannon diversity index (H '), evenness (E), and Dominance (D) were examined. The results indicated that the addition of prebiotic bran on commercial feed showed a higher diversity of lactic acid bacteria on broiler’s ileum, compared with control and addition of Rhizopus oryzae fermented bran. LAB group that dominates in the ileum is Lactobacillus sp. and L. delbruecii subs bulgaricus.

  12. Contribution of Fermentation Yeast to Final Amino Acid Profile in DDGS

    Science.gov (United States)

    One major factor affecting DDGS quality and market values is amino acid (AA) composition. DDGS proteins come from corn and yeast. Yet, the effect of fermentation yeast on DDGS protein quantity and quality (AA profile) has not been well documented. Based on literature review, there are at least 4 met...

  13. Determination Amylolitic Characteristic of Predominant Lactic Acid Bacteria Isolated during Growol Fermentation, in a Different Starch Medium Composition

    Directory of Open Access Journals (Sweden)

    Widya Dwi Rukmi Putri

    2018-04-01

    Full Text Available In order to achieve efficient lactic acid production from starch, fermentation of avarious composition starch medium by lactic acid bacteriawas examined in this study. Many strains of Lactobacillus plantarum isolated from growol fermentation, Lactobacillus plantarumsubsp. plantarum NBRC 15891 and Lactobacillus amylophyllus NBRC 15881 were used as starter cultures in starch basis medium, i.e, basal, basal-starch, enriched basal-starch with polypeptone and yeast extract. Lactobacillus plantarum UA3, AA2, AA11 showed the highest cells growth compare to both reference strains, but Lactobacillus amylophyllus NBRC 15881 showed a greater ability to degrade starch indicated by decreasing of pH and starch content of the fermented substrate. Enriched medium with peptone and yeast extract could generate the growth and starch degradation capabilities for all types of lactic acid bacteria were used.

  14. Research in fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A K

    1966-01-01

    The following aspects of the biochemistry of fermentation were discussed: carbohydrate, amino acid, S, and phosphate metabolisms in the yeast cell; pantothenic acid and biotin as the essential growth factors in yeast metabolisms; effects of different aeration conditions on yeast growth, mitochondria development, and lipid contents. Gas chromatographic studies of fermentation products are also discussed.

  15. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  16. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    Science.gov (United States)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  17. Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats.

    Science.gov (United States)

    Lu, Qi; Wu, Jian; Wang, Min; Zhou, Chuanshe; Han, Xuefeng; Odongo, Edwin Nicholas; Tan, Zhiliang; Tang, Shaoxun

    2016-01-01

    This study was designed to assess the effectiveness of dietary cellulase (243 U/g, derived from Neocallimastix patriciarum) and a Saccharomyces cerevisiae fermentation product (yeast product) on ruminal fermentation characteristics, enteric methane (CH4) emissions and methanogenic community in growing goats. The experiment was conducted in a 5 × 5 Latin square design using five Xiangdong black wether goats. The treatments included a Control and two levels of cellulase (0.8 g and 1.6 g/kg dry matter intake (DMI), i.e. 194 U/kg and 389 U/kg DMI, respectively) crossed over with two levels (6 g or 12 g/kg DMI) of the yeast product. There were no significant differences regarding feed intake, apparent digestibility of organic matter, neutral detergent fibre and acid detergent fibre among all the treatments. In comparison with the Control, the ruminal ammonia N concentration was decreased (p = 0.001) by cellulase and yeast product addition. The activities of carboxymethylcellulase and xylanase were decreased after cellulase addition. Moreover, dietary cellulase and yeast product addition led to a significant reduction (p cellulase and yeast fermentation product can reduce the production of CH4 energy and mitigate the enteric CH4 emissions to a certain degree.

  18. Application of Baechu-Kimchi Powder and GABA-Producing Lactic Acid Bacteria for the Production of Functional Fermented Sausages

    Science.gov (United States)

    Choi, Ji Hun; Kang, Ki Moon

    2017-01-01

    This study was carried out to determine the physicochemical, microbiological, and quality characteristics of a new type of fermented sausage manufactured by incorporating Baechu-kimchi powder and gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB). The LAB count was at the maximum level by day nine of ripening in inoculated sausages, accompanied by a rapid decrease in the pH. The addition of kimchi powder decreased the lightness (L*) and increased the redness (a*) and, yellowness (b*) values, while also significantly increasing the hardness and chewiness of the sausage (p<0.05). Moreover, although the thiobarbituric acid reactive substances values increased in all samples during the study period, this increase was lower in the kimchi-treated samples, indicating a reduction in lipid oxidation. Overall, our results show that the addition of Baechu-kimchi powder to sausages reduced the off-flavor properties and improved the taste profile of the fermented sausage in sensory evaluations. The GABA content of all fermented sausages increased from 17.42-25.14 mg/kg on the third day of fermentation to 60.95-61.47 mg/kg on the thirtieth day. These results demonstrate that Baechu-kimchi powder and GABA-producing LAB could be functional materials in fermented sausage to improve quality characteristics. PMID:29725201

  19. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production.

    Science.gov (United States)

    Neu, Anna-Katrin; Pleissner, Daniel; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-07-01

    In this study, mucilage, a residue from coffee production, was investigated as substrate in fermentative l(+)-lactic acid production. Mucilage was provided as liquid suspension consisting glucose, galactose, fructose, xylose and sucrose as free sugars (up to 60gL(-1)), and used directly as medium in Bacillus coagulans batch fermentations carried out at 2 and 50L scales. Using mucilage and 5gL(-1) yeast extract as additional nitrogen source, more than 40gL(-1) lactic acid was obtained. Productivity and yield were 4-5gL(-1)h(-1) and 0.70-0.77g lactic acid per g of free sugars, respectively, irrespective the scale. Similar yield was found when no yeast extract was supplied, the productivity, however, was 1.5gL(-1)h(-1). Down-stream processing of culture broth, including filtration, electrodialysis, ion exchange chromatography and distillation, resulted in a pure lactic acid formulation containing 930gL(-1)l(+)-lactic acid. Optical purity was 99.8%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. New generation biofuel from whey: Successive acidogenesis and alcoholic fermentation using immobilized cultures on γ-alumina

    International Nuclear Information System (INIS)

    Boura, Konstantina; Kandylis, Panagiotis; Bekatorou, Argyro; Kolliopoulos, Dionysios; Vasileiou, Dimitrios; Panas, Panayiotis; Kanellaki, Maria; Koutinas, Athanasios A.

    2017-01-01

    Highlights: • Successive continuous alcoholic fermentation and acidogenesis of whey. • UASB culture (acidogenesis) and kefir (alcoholic fermentation) fixed on γ-alumina. • Alcoholic fermentation-acidogenesis process led to 10-fold higher ethanol content. • Organic acids production was increased by 2.5-fold. • The process is promising for new generation ester-based biofuels from whey. - Abstract: Cheese whey exploitation in a biorefinery manner is proposed involving anaerobic acidogenesis by a UASB mixed anaerobic culture and alcoholic fermentation by kefir. Both cultures were immobilized on γ-alumina. The produced organic acids (OAs) and ethanol could be esterified to obtain a novel ester-based biofuel similar to biodiesel. During acidogenesis, lactic acid-type fermentation occurred leading to 12 g L"−"1 total OAs and 0.2 g L"−"1 ethanol. The fermented substrate was subsequently supplied to a second bioreactor with immobilized kefir, which increased the OAs content (15 g L"−"1), especially lactic acid, and slightly the ethanol concentration (0.3–0.4 g L"−"1). To further increase ethanol concentration, a second experiment was conducted supplying whey firstly to the immobilized kefir bioreactor and then pumping the effluent into the acidogenesis bioreactor, resulting in 40% increase of OAs and 10-fold higher ethanol content. The residual sugar was ∼50% of the initial whey lactose; consequently, future research could result to further increase of ethanol and OAs.

  1. Direct fermentation of Jerusalem artichoke tuber powder for production of l-lactic acid and d-lactic acid by metabolically engineered Kluyveromyces marxianus.

    Science.gov (United States)

    Bae, Jung-Hoon; Kim, Hyun-Jin; Kim, Mi-Jin; Sung, Bong Hyun; Jeon, Jae-Heung; Kim, Hyun-Soon; Jin, Yong-Su; Kweon, Dae-Hyuk; Sohn, Jung-Hoon

    2018-01-20

    An efficient production system for optically pure l- and d-lactic acid (LA) from Jerusalem artichoke tuber powder (JAP) was developed by metabolic engineering of Kluyveromyces marxianus. To construct LA-producing strains, the ethanol fermentation pathway of K. marxianus was redirected to LA production by disruption of KmPDC1 and expression of l- and d-lactate dehydrogenase (LDH) genes derived from Lactobacillus plantarum under the control of the K. marxianus translation elongation factor 1α promoter. To further increase the LA titer, the l-LA and d-LA consumption pathway of host strains was blocked by deletion of the oxidative LDH genes KmCYB2 and KmDLD1. The recombinant strains produced 130g/L l-LA and 122g/L d-LA by direct fermentation from 230g/L JAP containing 140g/L inulin, without pretreatment or nutrient supplementation. The conversion efficiency and optical purity were ≫>95% and ≫>99%, respectively. This system using JAP and the inulin-assimilating yeast K. marxianus could lead to a cost-effective process for the production of LA. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Exploring the Degradation of Gallotannins Catalyzed by Tannase Produced by Aspergillus niger GH1 for Ellagic Acid Production in Submerged and Solid-State Fermentation.

    Science.gov (United States)

    Chávez-González, Mónica L; Guyot, Sylvain; Rodríguez-Herrera, Raul; Prado-Barragán, Arely; Aguilar, Cristóbal N

    2018-06-01

    Due to great interest on producing bioactive compounds for functional foods and biopharmaceuticals, it is important to explore the microbial degradation of potential sources of target biomolecules. Gallotannins are polyphenols present in nature, an example of them is tannic acid which is susceptible to enzymatic hydrolysis. This hydrolysis is performed by tannase or tannin acyl hydrolase, releasing in this way, biomolecules with high-added value. In the present study, chemical profiles obtained after fungal degradation of tannic acid under two bioprocesses (submerged fermentation (SmF) and solid state fermentation (SSF)) were determined. In both fermentation systems (SmF and SSF), Aspergillus niger GH1 strain and tannic acid as a sole carbon source and inducer were used (the presence of tannic acid promotes production of enzyme tannase). In case of SSF, polyurethane foam (PUF) was used like as support of fermentation; culture medium only was used in case of submerged fermentation. Fermentation processes were monitored during 72 h; samples were taken kinetically every 8 h; and all extracts obtained were partially purified to obtain polyphenolic fraction and then were analyzed by liquid chromatography-mass spectrometry (LC-MS). Molecules like gallic acid and n-galloyl glucose were identified as intermediates in degradation of tannic acid; during SSF was identified ellagic acid production. The results obtained in this study will contribute to biotechnological production of ellagic acid.

  3. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.

    Science.gov (United States)

    Do Carmo, A P; De Oliveira, M N V; Da Silva, D F; Castro, S B; Borges, A C; De Carvalho, A F; De Moraes, C A

    2012-03-01

    There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh - lactate dehydrogenase, adhE - Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 - catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property

  4. Fermentative production of butyric acid from wheat straw: Economic evaluation

    DEFF Research Database (Denmark)

    Baroi, G. N.; Gavala, Hariklia N.; Westermann, P.

    2017-01-01

    2014) at 3.50 and 3.95 $ per kg product (for S1 and S2 respectively) and a plant capacity of 10,000 tonnes indicated an internal rate of return of 14.92% and 12.42% and payback time of 4.28 and 4.70 years for S1 and S2 respectively. Sensitivity analysis showed that under the assumptions of the present......The economic feasibility of biochemical conversion of wheat straw to butyric acid was studied in this work. Basic process steps included physicochemical pretreatment, enzymatic hydrolysis and saccharification, fermentation with in-situ acids separation by electrodialysis and product purification...

  5. Characterization of lactic acid bacteria isolated from Bosnian artisanal dry fermented sausage (sudžuk during fermentation

    Directory of Open Access Journals (Sweden)

    Čolo Josip

    2015-01-01

    Full Text Available Bosnian sudžuk is a dry fermented sausage produced in a rural household near the town of Visoko in central Bosnia and Herzegovina. This kind of sausage was manufactured only from beef and spices in a traditional way without the addition of a starter cultures. To identify lactic acid bacteria (LAB, a total number of 160 Lstrains were isolated from five samples of Bosnian sudžuk collected over 28 days of fermentation. Preliminary identification by phenotypic tests and 16S rDNA sequencing were performed for all 160 of the Lisolates. Identification of Lstrains from traditionally produced Bosnian sausage at the species level revealed the presence of six genera: Lactococcus sp., Enterococcus sp., Leuconostoc sp., Lactobacillus sp., Pediococcus sp. and Weissella sp.. Among the 15 distinct species identified, the species Lactobacillus plantarum, Leuconostoc mesenteroides, Lactococcus lactis, Enterococcus faecalis and Enterococcus durans were present throughout the entire process of fermentation. Leuconostoc mesenteroides, Lactobacillus plantarum and Lactococcus lactis prevailed, with 21.8%, 19.3% and 13.1%, respectively, of total Lstrains during the entire fermentation process. Significant negative correlations (r = 0.892 and r = 0.829, respectively between the presence of Weissella sp. and Lactobacillus sp., and between the presence of Weissella sp. and Lactococcus sp. were recorded. Lactobacillus plantarum, Enterococcus durans and Leuconostoc mesenteroides were the best producers of aromogenic compounds while 32.3% of Lactobacillus plantarum and 28.6% of Leuconostoc mesenteroides were produced exopolysaccharides. [Projekat Ministarstva nauke Republike Srbije, br. 173019

  6. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar

    Directory of Open Access Journals (Sweden)

    Aleksandra Štornik

    2016-01-01

    Full Text Available Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplifi ed 16S-23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90 %, Acetobacter ghanensis (12.50 %, Komagataeibacter oboediens (9.35 % and Komagataeibacter saccharivorans (6.25 %. Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70 % and Komagataeibacter oboediens (33.30 %. Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the

  7. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar.

    Science.gov (United States)

    Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2016-03-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different Hae III and five different Hpa II restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different Hae III and two different Hpa II restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica , Pichia membranifaciens and Saccharomycodes ludwigii . This study has shown for the first time that the bacterial microbiota for the industrial production of

  8. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    Science.gov (United States)

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  10. Inhibition of fructan-fermenting equine fecal bacteria and Streptococcus bovis by hops (Humulus lupulus L.) ß-acid

    Science.gov (United States)

    Aims: The goals were to determine if the '-acid from hops (Humulus lupulus L.) could be used to control fructan fermentation by equine hindgut microorganisms, and to verify the antimicrobial mode of action on the Streptococcus bovis, which has been implicated in fructan fermentation, hindgut acidos...

  11. Silage fermentation and ruminal degradation of stylo prepared with lactic acid bacteria and cellulase.

    Science.gov (United States)

    Li, Mao; Zhou, Hanlin; Zi, Xuejuan; Cai, Yimin

    2017-10-01

    In order to improve the silage fermentation of stylo (Stylosanthes guianensis) in tropical areas, stylo silages were prepared with commercial additives Lactobacillus plantarum Chikuso-1 (CH1), L. rhamnasus Snow Lact L (SN), Acremonium cellulase (CE) and their combination as SN+CE or CH1 + CE, and the fermentation quality, chemical composition and ruminal degradation of these silages were studied. Stylo silages treated with lactic acid bacteria (LAB) or cellulase, the pH value and NH 3 -N ⁄ total-N were significantly (P fermentation and ruminal degradation than SN+CE treatment. The results confirmed that LAB or LAB plus cellulase treatment could improve the fermentation quality, chemical composition and ruminal degradation of stylo silage. Moreover, the combined treatment with LAB and cellulase may have beneficial synergistic effects on ruminal degradation. © 2017 Japanese Society of Animal Science.

  12. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO 3 supplementation condition. From the medium containing 50 g sugars l -1 and 0.5 g formic acid l -1 , only 0.75 g ABE l -1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l -1 was produced when pH was adjusted by 4 g CaCO 3 l -1 . The beneficial effect can be ascribed to the buffering capacity of CaCO 3 . Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO 3 . Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO 3 supplementation due to its buffering capacity.

  13. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013

    Energy Technology Data Exchange (ETDEWEB)

    Venkataramanan, Keerthi P.; Boatman, Judy J.; Taconi, Katherine A. [Alabama Univ., Huntsville, AL (United States). Dept. of Chemical and Materials Engineering; Kurniawan, Yogi; Bothun, Geoffrey D. [Rhode Island Univ., Kingston, RI (United States). Dept. of Chemical Engineering; Scholz, Carmen [Alabama Univ., Huntsville, AL (United States). Dept. of Chemistry

    2012-02-15

    During the production of biodiesel, crude glycerol is produced as a byproduct at 10% (w/w). Clostridium pasteurianum has the inherent potential to grow on glycerol and produce 1,3-propanediol and butanol as the major products. Growth and product yields on crude glycerol were reported to be slower and lower, respectively, in comparison to the results obtained from pure glycerol. In this study, we analyzed the effect of each impurity present in the biodiesel-derived crude glycerol on the growth and metabolism of glycerol by C. pasteurianum. The crude glycerol contains methanol, salts (in the form of potassium chloride or sulfate), and fatty acids that were not transesterified. Salt and methanol were found to have no negative effects on the growth and metabolism of the bacteria on glycerol. The fatty acid with a higher degree of unsaturation, linoleic acid, was found to have strong inhibitory effect on the utilization of glycerol by the bacteria. The fatty acid with lower or no degrees of unsaturation such as stearic and oleic acid were found to be less detrimental to substrate utilization. The removal of fatty acids from crude glycerol by acid precipitation resulted in a fermentation behavior that is comparable to the one on pure glycerol. These results show that the fatty acids in the crude glycerol have a negative effect by directly affecting the utilization of glycerol as the carbon source, and hence their removal from crude glycerol is an essential step towards the utilization of crude glycerol. (orig.)

  14. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  15. L-Cysteine Metabolism and Fermentation in Microorganisms.

    Science.gov (United States)

    Takagi, Hiroshi; Ohtsu, Iwao

    L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are industrially produced by microbial fermentation, L-cysteine has been mainly produced by protein hydrolysis. Due to environmental and safety problems, synthetic or biotechnological products have been preferred in the market. Here, we reviewed L-cysteine metabolism, including biosynthesis, degradation, and transport, and biotechnological production (including both enzymatic and fermentation processes) of L-cysteine. The metabolic regulation of L-cysteine including novel sulfur metabolic pathways found in microorganisms is also discussed. Recent advancement in biochemical studies, genome sequencing, structural biology, and metabolome analysis has enabled us to use various approaches to achieve direct fermentation of L-cysteine from glucose. For example, worldwide companies began to supply L-cysteine and its derivatives produced by bacterial fermentation. These companies successfully optimized the original metabolism of their private strains. Basically, a combination of three factors should be required for improving L-cysteine fermentation: that is, (1) enhancing biosynthesis: overexpression of the altered cysE gene encoding feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening degradation: knockout of the genes encoding L-cysteine desulfhydrases, and (3) exploiting export system: overexpression of the gene involved in L-cysteine transport. Moreover, we found that "thiosulfate" is much more effective sulfur source than commonly used "sulfate" for L-cysteine production in Escherichia coli, because thiosulfate is advantageous for saving consumption of NADPH and relating energy molecules.

  16. Amino acid content in red wines obtained from grapevine nitrogen foliar treatments: consumption during the alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Javier Portu

    2014-12-01

    Full Text Available Nitrogen is an important element for grapevine and winemaking which affects the development of the plant and yeast, and therefore it is important for wine quality. The aim of this work was to study the influence of foliar application to vineyard of proline, phenylalanine and urea and two commercial nitrogen fertilizers, without and with amino acids in their formulation, on the wine amino acid content and their consumption during the alcoholic fermentation. The results showed that these treatments did not affect the amino acid composition in wines. The differences observed for certain amino acids were so small that the concentration of total amino acids was not significantly different among wines. Moreover, it was observed that the higher the content of amino acids in the medium, the greater their consumption during the alcoholic fermentation.

  17. Screening and kinetics of glutaminase and glutamate decarboxylase producing lactic acid bacteria from fermented Thai foods

    Directory of Open Access Journals (Sweden)

    Sasimar Woraharn

    2014-12-01

    Full Text Available L-glutaminase and glutamic acid decarboxylase (GAD catalyzes the hydrolysis of L-glutamine and glutamate, respectively. L-glutaminase widely used in cancer therapy along with a combination of other enzymes and most importantly these enzymes were used in food industries, as a major catalyst of bioconversion. The current investigation was aimed to screen and select L-glutaminase, and GAD producing lactic acid bacteria (LAB. A total of 338 LAB were isolated from fermented meat, fermented fish, fermented soya bean, fermented vegetables and fruits. Among 338 isolates, 22 and 237 LAB has been found to be positive for L-glutaminase and GAD, respectively. We found that 30 days of incubation at 35 ºC and pH 6.0 was the optimum condition for glutaminase activity by G507/1. G254/2 was found to be the best for GAD activity with the optimum condition of pH 6.5, temperature 40 ºC and ten days of incubation. These LAB strains, G507/1 and G254/2, were identified as close relative of Lactobacillus brevis ATCC 14869 and Lactobacillus fermentum NBRC 3956, respectively by 16S rRNA sequencing. Further, improvements in up-stream of the fermentation process with these LAB strains are currently under development.

  18. Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage.

    Science.gov (United States)

    Dorđević, Tijana M; Šiler-Marinković, Slavica S; Ðurović, Rada D; Dimitrijević-Branković, Suzana I; Gajić Umiljendić, Jelena S

    2013-10-01

    Pesticide residues have become an unavoidable part of food commodities. In the context of increased interest for food processing techniques as a tool for reducing pesticide residues, it is interesting to study the potential loss of pesticides during lactic acid and yeast fermentation. In the present paper the effect of fermentation by Lactobacillus plantarum and Saccharomyces cerevisiae and storage on 23 °C on bifenthrin in wheat was investigated. In addition, the effect of sterilisation (applied in order to avoid contamination with wild microorganism strains, i.e. to determine the individual effects of used strains) on bifenthrin degradation was tested as well. No significant loss of bifenthrin was observed during storage, or after the sterilisation. During the lactic acid fermentation, reduction within wheat fortified with 0.5 mg kg(-1) was 42%, while quite lower within samples fortified with 2.5 mg kg(-1) , maximum 18%. In contrast, bifenthrin concentration was not reduced during yeast fermentation, as the reduction in fortified samples was in the range of spontaneous chemical degradation during incubation period. Possible bifenthrin contamination in wheat, in amounts over the maximum residue limits, could not be reduced by sterilisation or by yeast fermentation, but lactic acid fermentation could be an effective tool for minimising residual contamination. © 2013 Society of Chemical Industry.

  19. The Effect of Fermentation Broth Components on Performance of High Silica ZSM-5/Silicone Rubber Mixed Matrix Membranes

    Science.gov (United States)

    Fermentative organisms produce a range of compounds in addition to the desired product. For example, in addition to ethanol, standard yeast produces longer straight-chained and branched alcohols and organic acids. Additionally, biomass pretreatment process, particularly acid-base...

  20. The influence of fermented deffated flaxseed with difference lactic acid bacteria's on asparagine and acrylamide content in biscuits.

    OpenAIRE

    Bukauskienė, Gintarė

    2016-01-01

    It was evaluated the influence of solid state (SSF) and traditional (TF) fermentation with different lactobacillus (LAB) defatted flaxseeds on asparagine and acrylamide content in biscuits, and analysed correlation between fermented supplements physico chemical indicators and biscuits color and their sensory properties on acrylamide and asparagine content in biscuits. Correliations betweem acrylamide and asparagine content in biscuits and fermented supplements acidity parameters (pH, total t...

  1. Fermentative Extraction of Coconut Oil to Maintain a Quality of Medium Chain Fatty Acid

    OpenAIRE

    Salahudin, Farid; Supriyatna, Nana

    2014-01-01

    Coconut oil is healthy vegetable oil because it contains Medium Chain Fatty Acid (MCFA). The used of bleaching agent and excessive heating in coconut oil process will produce low quality oil (rancid). Therefore, it is necessary to processing that does not use chemicals and excessive heating such as fermentation using microbe and enzyme. The aim of this study was to find out the effect of bromelin enzyme concentration and Saccharomyces cereviceae fermentation to MCFA content in coconut oil. Th...

  2. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  3. Relative contributions of natural and waste-derived organics to the subsurface transport of radionuclides

    International Nuclear Information System (INIS)

    Toste, A.P.; Myers, R.B.

    1985-06-01

    Our laboratory is studying the role of organic compounds in the subsurface transport of radionuclides at shallow-land burial sites of low-level nuclear waste, including a commercial site at Maxey Flats, Kentucky, and an aqueous waste disposal site. At the Maxey Flats site, several radionuclides, notably Pu and 60 Co, appear to exist as anionic, organic complexes. Waste-derived organics, particularly chelating agents such as EDTA, HEDTA and associated degradation products (e.g., ED3A), are abundant in aqueous waste leachates and appear to account for the complexation. EDTA, and probably other waste-derived chelating agents as well, are chelated to the Pu and 60 Co in the leachates, potentially mobilizing these radionuclides. In contrast, at the low-level aqueous waste disposal site, naturally-occurring organics, ranging from low molecular weight (MW) acids to high MW humic acids, account for the bulk of the groundwater's organic content. Certain radionuclides, notably 60 Co, 103 Ru and 125 Sb, are mobile as anionic complexes. These radionuclides are clearly associated with higher MW organics, presumably humic and fulvic acids with nominal MW's > 1000. It is clear, therefore, that naturally-occurring organics may play an important role in radionuclide transport, particularly at nuclear waste burial sites containing little in the way of waste-derived organics

  4. Succinic Acid: Technology Development and Commercialization

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2017-06-01

    Full Text Available Succinic acid is a precursor of many important, large-volume industrial chemicals and consumer products. It was once common knowledge that many ruminant microorganisms accumulated succinic acid under anaerobic conditions. However, it was not until the discovery of Anaerobiospirillum succiniciproducens at the Michigan Biotechnology Institute (MBI, which was capable of producing succinic acid up to about 50 g/L under optimum conditions, that the commercial feasibility of producing the compound by biological processes was realized. Other microbial strains capable of producing succinic acid to high final concentrations subsequently were isolated and engineered, followed by development of fermentation processes for their uses. Processes for recovery and purification of succinic acid from fermentation broths were simultaneously established along with new applications of succinic acid, e.g., production of biodegradable deicing compounds and solvents. Several technologies for the fermentation-based production of succinic acid and the subsequent conversion to useful products are currently commercialized. This review gives a summary of the development of microbial strains, their fermentation, and the importance of the down-stream recovery and purification efforts to suit various applications in the context of their current commercialization status for biologically derived succinic acid.

  5. Meat and fermented meat products as a source of bioactive peptides.

    Science.gov (United States)

    Stadnik, Joanna; Kęska, Paulina

    2015-01-01

    Bioactive peptides are short amino acid sequences, that upon release from the parent protein may play different physiological roles, including antioxidant, antihypertensive, antimicrobial, and other bioactivities. They have been identified from a range of foods, including those of animal origin, e.g., milk and muscle sources (with pork, beef, or chicken and various species of fish and marine organism). Bioactive peptides are encrypted within the sequence of the parent protein molecule and latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. Bioactive peptides derived from food sources have the potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an overview of the muscle-derived bioactive peptides, especially those of fermented meats and the potential benefits of these bioactive compounds to human health.

  6. The Use of Lactic Acid Bacteria Starter Culture in the Production of Nunu, a Spontaneously Fermented Milk Product in Ghana

    Directory of Open Access Journals (Sweden)

    Fortune Akabanda

    2014-01-01

    Full Text Available Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities. Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures.

  7. Characterization of Acetic Acid Bacteria in Traditional Acetic Acid Fermentation of Rice Vinegar (Komesu) and Unpolished Rice Vinegar (Kurosu) Produced in Japan

    Science.gov (United States)

    Nanda, Kumiko; Taniguchi, Mariko; Ujike, Satoshi; Ishihara, Nobuhiro; Mori, Hirotaka; Ono, Hisayo; Murooka, Yoshikatsu

    2001-01-01

    Bacterial strains were isolated from samples of Japanese rice vinegar (komesu) and unpolished rice vinegar (kurosu) fermented by the traditional static method. Fermentations have never been inoculated with a pure culture since they were started in 1907. A total of 178 isolates were divided into groups A and B on the basis of enterobacterial repetitive intergenic consensus-PCR and random amplified polymorphic DNA fingerprinting analyses. The 16S ribosomal DNA sequences of strains belonging to each group showed similarities of more than 99% with Acetobacter pasteurianus. Group A strains overwhelmingly dominated all stages of fermentation of both types of vinegar. Our results indicate that appropriate strains of acetic acid bacteria have spontaneously established almost pure cultures during nearly a century of komesu and kurosu fermentation. PMID:11157275

  8. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.

    Science.gov (United States)

    Dewan, Sailendra; Tamang, Jyoti Prakash

    2007-10-01

    Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

  9. Screening of lactic acid bacteria and bifidobacteria for potential probiotic use in Iberian dry fermented sausages.

    Science.gov (United States)

    Ruiz-Moyano, Santiago; Martín, Alberto; Benito, María José; Nevado, Francisco Pérez; de Guía Córdoba, María

    2008-11-01

    The purpose of this study was to select lactic acid bacteria and bifibobacteria strains as potential probiotic cultures during the processing of Iberian dry fermented sausages. A total of 1000 strains were isolated from Iberian dry fermented sausages (363), and human (337) and pig faeces (300) in different culture media. Around 30% of these strains, mainly isolated from Iberian dry fermented sausages in LAMVAB agar, were pre-selected for testing as potential probiotics by their ability to grow adequately at the pH values and NaCl concentrations of these meat products during the ripening process. Of the in vitro investigations used to predict the survival of a strain in conditions present in the gastro intestinal tract, exposure to pH 2.5 showed itself to be a highly discriminating factor with only 51 out of 312 pre-selected strains resisting adequately after 1.5h of exposure. All acid-resistant isolates identified as lactobacilli originated from human faeces (Lactobacillus casei and Lactobacillus fermentum) and pig faeces (Lactobacillus reuteri, Lactobacillus animalis, Lactobacillus murinus, and Lactobacillus vaginalis). Pediococcus acidilactici strains were isolated from Iberian dry fermented sausages and pig faeces, whereas the greatest number of Enterococcus strains were identified as Enterococcus faecium, with this species being isolated from Iberian dry fermented sausages, and human and pig faeces. Most of these strains are promising probiotic meat culture candidates suitable for Iberian dry fermented sausages.

  10. Evaluation of the microbial community, acidity and proximate composition of akamu, a fermented maize food.

    Science.gov (United States)

    Obinna-Echem, Patience C; Kuri, Victor; Beal, Jane

    2014-01-30

    Akamu is a lactic acid-fermented cereal-based food that constitutes a major infant complementary food in most West African countries. The identities of LAB populations from DGGE analysis and conventionally isolated LAB and yeasts from traditionally fermented akamu were confirmed by PCR sequencing analysis. The relationships between pH, acidity and lactic acid levels and proximate composition of the akamu samples were investigated. The LAB communities in the akamu samples comprised mainly Lactobacillus species, including Lb. fermentum, Lb. plantarum, Lb. delbrueckii ssp. bulgaricus and Lb. helveticus, as well as Lactococcus lactis ssp. cremoris. Identified yeasts were Candida tropicalis, Candida albicans, Clavispora lusitaniae and Saccharomyces paradoxus. Low pH (3.22-3.95) was accompanied by high lactic acid concentrations (43.10-84.29 mmol kg⁻¹). Protein (31.88-74.32 g kg⁻¹) and lipid (17.74-36.83 g kg⁻¹ contents were negatively correlated with carbohydrate content (897.48-926.20 g kg⁻¹, of which ≤1 g kg⁻¹ was sugars). Ash was either not detected or present only in trace amounts (≤4 g kg⁻¹). Energy levels ranged from 17.29 to 18.37 kJ g⁻¹. The akamu samples were predominantly starchy foods and had pH < 4.0 owing to the activities of fermentative LAB. © 2013 Society of Chemical Industry.

  11. Characterization of the fermentation process by gas chromatography Lasiodiplodia theobromae and gas chromatography coupled with mass spectrometry

    International Nuclear Information System (INIS)

    Castillo Portela, Grolamys; Eng Sanchez, Felipe; Nogueiras Lima, Clara

    2014-01-01

    Lasiodiplodia theobromae is a fungus, which has been reported by some authors as a high yield producer of the phytohormone jasmonic acid (JA). An indigenous strain of this fungus has been used for producing a fermentation broth with a high JA concentration by the Cuban Research Institute for Sugar Cane Derivatives (ICIDCA), registered as BIOJAS. The broth has been applied to some agricultural crops and demonstrated its economic feasibility as plant growth regulator and biological control of various phytopathogenic microorganisms and pests. Both fermentation broth and biomass from this fungus contain some other metabolites having bioactive properties, for instance, fatty acids. This paper shows the composition and quantification of fatty acids in the biomass using Gas Chromatography (GC) and the identification of substances profile in fermentation broth by Gas Chromatography coupled to Mass Spectrometry (GC-MS). The most fatty acids in the biomass are palmitic, stearic, oleic, linoleic and linolenic acids, being oleic acid the major component. On the other hand, 2,32 % of fatty acid esters; 2,47 % of alkenes; 14,40 % of alcohols; 30,15 % of aldehydes and 21,73 % of paraffins were detected in the composition of fermentation broth

  12. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    Full Text Available Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  13. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Science.gov (United States)

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  14. [Effect of products of thermophilous methane fermentation on the fermentation of fruit must by Saccharomyces vini].

    Science.gov (United States)

    Mikhlin, E D; Kotomina, E N; Pisarnitsky

    1975-01-01

    Experiments were carried out to study the effect of extracts from products of thermophilous methane fermentation at a dose of 0.7+2.0 ml/100 ml on the proliferation and fermentation activity of yeast Saccharomyces vini of the Yablochnaya-7 and Vishnevaya-33 race during their cultivation in the Hansen medium and in the apple and cranberry must with a normal and elevated content of sugar and acid. In some experiments the must was enriched in (NH4)2HPO4 at a dose of 0.3 g/l. Additions of small amounts of products of thermophilous methane fermentation accelerated fermentation of fruit musts with a normal sugar content and to a greater extent musts with an increased sugar content (27%). In the must enriched in (NH4)2HPO4 an almost complete (over 98%) fermentation of sugar developed for 27 days. In the must with an increased acidity (due to citric acid added to bring titrable acidity to 25 g/l) additions of the preparation also accerlerated the begining of the fermentation and increased its intensity.

  15. Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile

    Directory of Open Access Journals (Sweden)

    Julio E. Vargas

    2017-06-01

    Full Text Available This study using the rumen simulation technique (RUSITEC investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2% only, or sunflower oil (2% in combination with fish oil (1% or algae oil (1%. Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia, and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant (P = 0.132, but the contrast comparing oil–supplemented diets with the control was significant (P = 0.039. Methane production was reduced (P < 0.05 with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 c9c12c15 in rumen digesta, and that of C18:2 c9t11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of protozoa, methanogens, Selenomonas ruminantium

  16. Influence of thermally processed carbohydrate/amino acid mixtures on the fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Tauer, Andreas; Elss, Sandra; Frischmann, Matthias; Tellez, Patricia; Pischetsrieder, Monika

    2004-04-07

    The production of alcoholic beverages such as Tequila, Mezcal, whiskey, or beer includes the fermentation of a mash containing Maillard reaction products. Because excessive heating of the mash can lead to complications during the following fermentation step, the impact of Maillard products on the metabolism of Saccharomyces cerevisiae was investigated. For this purpose, fermentation was carried out in a model system in the presence and absence of Maillard reaction products and formation of ethanol served as a marker for the progression of fermentation. We found that increasing amounts of Maillard products reduced the formation of ethanol up to 80%. This effect was dependent on the pH value during the Maillard reaction, reaction time, as well as the carbohydrate and amino acid component used for the generation of Maillard reaction products. Another important factor is the pH value during fermentation: The inhibitory effect of Maillard products was not detectable at a pH of 4 and increased with higher pH-values. These findings might be of relevance for the production of above-mentioned beverages.

  17. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.

    Science.gov (United States)

    Ma, Kedong; Maeda, Toshinari; You, Huiyan; Shirai, Yoshihito

    2014-01-01

    The development of a low-cost polymer-grade L-lactic acid production process was achieved in this study. Excess sludge hydrolyzate (ESH) was chosen as nutrient source for the objective of reducing nutrient cost in lactic acid production. 1% of ESH had high performance in lactic acid production relative to 2g/l yeast extract (YE) while the production cost of ESH was much lower than that of YE, indicating ESH was a promising substitute of YE. By employing a thermophilic strain of Bacillus coagulans (NBRC 12583), non-sterilized batch and repeated batch L-lactic acid fermentation was successfully performed, and the optical purity of L-lactic acid accumulated was more than 99%. Moreover, the factors associated with cell growth and lactic acid fermentation was investigated through a two-stage lactic acid production strategy. Oxygen played an important role in cell growth, and the optimal condition for cell growth and fermentation was pH 7.0 and 50°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Studies on cytotoxic and clot lysis activity of probiotically fermented cocktail juice prepared using Camellia sinensis and Punica grantum

    Science.gov (United States)

    Biswas, Ananya; Deori, Meenakshi; Nivetha, A.; Mohansrinivasan, V.

    2017-11-01

    In the current research the effect of probiotic microorganisms viz; Lactococcus lactis and Lactobacillus plantarum on fermentation of Camellia sinensis and Punica grantum was studied. In vitro test were done to analyze the anticancer, antioxidant and atherosclerosis (clot lysis) properties of fermented juice. The juice was fermented for 48 and 96h, during which concentration of phenolic content, total acid content and free radical scavenging activity of the sample was analyzed by DPPH assay (α, α-diphenyl-β-picrylhydrazyl). Dropping of pH was observed after 48 h of fermentation. The clot lysis activity was found to be 80 % in 100μl concentration of fermented cocktail juice. The 96 h fermented sample has shown around 70% inhibition against colon cancer cell lines. Analytical study of HPLC proves the organic acid production such as ascorbic acid in superior amount for 96h of fermented sample, Based on the retention time, the corresponding peaks were detected at 4.919 and 4.831 min.

  19. Effect of organic fertilizer and its residual on cowpea and soybean in acid soils

    Directory of Open Access Journals (Sweden)

    Henny Kuntyastuty

    2017-10-01

    Full Text Available The expansion of planting areas on acid soils is one of the strategies to achieve Indonesian self-sufficiency program on food. Acidic soil has low pH that causes contents of Al, Fe, and Mn are high. In addition, acidic soil also only has low microbial population. These conditions make soybean growth is not optimal. This research consisted of two phases i.e., the first and second planting. The first planting was aimed to study the effectiveness of fertilizer treatment, with three replications, using cowpea commodity. The second planting was done without additional fertilizer that consisted of three replicates (continued from the first planting using soybean. This research that was carried out at Iletri’s greenhouse Malang in 2014 was arranged in a randomized block design consisting of eight treatments, namely: (a control/without fertilizer; (B 300 kg/ha (15% N, 15% P2O5, 15% K2O, 10% S; (C 1500 kg/ha cow manure; (D 3000 kg/ha cow manure; (E 5000 kg/ha cow manure; (F 1500 kg/ha fermented chicken + cow manures; (G 3000 kg/ha fermented chicken + cow manures; and (H 5000 kg/ha fermented chicken + cow manures. The results showed that organic fertilizer (cow manure 5000 kg/ha had higher yields both in the first planting and second planting compared to inorganic fertilizer 300 kg/ha (15% N, 15% P2O5, 15% K2O, 10% S

  20. Plant amino acid-derived vitamins: biosynthesis and function.

    Science.gov (United States)

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  1. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation.

    Science.gov (United States)

    Andersen, Stephen J; Candry, Pieter; Basadre, Thais; Khor, Way Cern; Roume, Hugo; Hernandez-Sanabria, Emma; Coma, Marta; Rabaey, Korneel

    2015-01-01

    Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e(-) → ½ H2 + OH(-)) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e(-) + 2 H(+) + O2). In this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation. VFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH(-) is used for pH control without added chemicals, and H2 is

  2. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves.

    Science.gov (United States)

    Tamura, Takayoshi; Noda, Masafumi; Ozaki, Moeko; Maruyama, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    In the present study, we successfully isolated a carrot leaf-derived lactic acid bacterium that produces gamma-aminobutyric acid (GABA) from monosodium L-glutamate (L-MSG) at a hyper conversion rate. The GABA-producing bacterium, identified as Enterococcus (E.) avium G-15, produced 115.7±6.4 g/l GABA at a conversion rate of 86.0±5.0% from the added L-MSG under the optimum culture condition by a continuous L-MSG feeding method using a jar-fermentor, suggesting that the bacterium displays a great potential ability for the commercial-level fermentation production of GABA. Using the reverse transcription polymerase chain reaction (RT-PCR) method, we analyzed the expression of genes for the GABA transporter and glutamate decarboxylase, designated gadT and gadG, respectively, which were cloned from the E. avium G-15 chromosome. Both genes were expressed even without the added L-MSG, but their expression was enhanced by the addition of L-MSG.

  3. The Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen

    Directory of Open Access Journals (Sweden)

    Wan Heo

    2016-03-01

    Full Text Available This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05. Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.

  4. Optimization Technology of the LHS-1 Strain for Degrading Gallnut Water Extract and Appraisal of Benzene Ring Derivatives from Fermented Gallnut Water Extract Pyrolysis by Py-GC/MS

    Directory of Open Access Journals (Sweden)

    Chengzhang Wang

    2017-12-01

    Full Text Available Gallnut water extract (GWE enriches 80~90% of gallnut tannic acid (TA. In order to study the biodegradation of GWE into gallic acid (GA, the LHS-1 strain, a variant of Aspergillus niger, was chosen to determine the optimal degradation parameters for maximum production of GA by the response surface method. Pyrolysis–gas chromatography–mass spectrometry (Py-GC/MS was first applied to appraise benzene ring derivatives of fermented GWE (FGWE pyrolysis by comparison with the pyrolytic products of a tannic acid standard sample (TAS and GWE. The results showed that optimum conditions were at 31 °C and pH of 5, with a 50-h incubation period and 0.1 g·L−1 of TA as substrate. The maximum yields of GA and tannase were 63~65 mg·mL−1 and 1.17 U·mL−1, respectively. Over 20 kinds of compounds were identified as linear hydrocarbons and benzene ring derivatives based on GA and glucose. The key benzene ring derivatives were 3,4,5-trimethoxybenzoic acid methyl ester, 3-methoxy-1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzoic acid hydrazide.

  5. Optimization Technology of the LHS-1 Strain for Degrading Gallnut Water Extract and Appraisal of Benzene Ring Derivatives from Fermented Gallnut Water Extract Pyrolysis by Py-GC/MS.

    Science.gov (United States)

    Wang, Chengzhang; Li, Wenjun

    2017-12-20

    Gallnut water extract (GWE) enriches 80~90% of gallnut tannic acid (TA). In order to study the biodegradation of GWE into gallic acid (GA), the LHS-1 strain, a variant of Aspergillus niger , was chosen to determine the optimal degradation parameters for maximum production of GA by the response surface method. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) was first applied to appraise benzene ring derivatives of fermented GWE (FGWE) pyrolysis by comparison with the pyrolytic products of a tannic acid standard sample (TAS) and GWE. The results showed that optimum conditions were at 31 °C and pH of 5, with a 50-h incubation period and 0.1 g·L -1 of TA as substrate. The maximum yields of GA and tannase were 63~65 mg·mL -1 and 1.17 U·mL -1 , respectively. Over 20 kinds of compounds were identified as linear hydrocarbons and benzene ring derivatives based on GA and glucose. The key benzene ring derivatives were 3,4,5-trimethoxybenzoic acid methyl ester, 3-methoxy-1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzoic acid hydrazide.

  6. Fermentation and antimicrobial characteristics of Lactobacillus plantarum and Candida tropicalis from Nigerian fermented maize (akamu

    Directory of Open Access Journals (Sweden)

    Patience Chisa Obinna-Echem

    2014-10-01

    Full Text Available This study investigated the ability of Lactobacillus plantarum strains (NGL5 and NGL7 and Candida tropicalis (NGY1 previously identified from akamu-a Nigerian fermented maize food with probiotic L. plantarum LpTx and Saccharomyces boulardii SB20 to ferment ground maize slurries based on pH, acidity, microbial biomass, levels of sugars and organic acids, and their antimicrobial activity against Salmonella enterica serovar Enteritidis NCTC 5188, Escherichia coli NCTC 11560, Bacillus cereus NCIMB 11925, Staphylococcus aureus NCTC 3750 and Listeria monocytogenes NCTC 7973 using an agar spot assay. L. plantarum strains either as single or mixed starter cultures with the yeasts had growth rates ≥0.15 h-1,with pH significantly (p≤0.05 decreased to ≤3.93 after 12 h and then to ≤3.52 after 72 h and lactic acid >84 mmol L-1. The yeasts had growth rates ≥0.18 h-1 but pH was ≥4.57 with lactic acid levels ≤20.23 mmol L-1 after 72 h in the single culture fermentation. There was no inhibition in modified MRS agar: 0.2% glucose and 0.2% glucose without Tween 80. Inhibition halos in MRS agar varied from 10.6 to 23.9 mm. S. bourladii was more inhibitory towards L. monocytogenes (8.6 mm and B. cereus (5.4 mm than was C. tropicalis (1.1 and 3.3 mm for L. monocytogenes NCTC 7973 and B. cereus NCIMB 11925 respectively (0.9 mm in malt extract agar. This study showed that C. tropicalis was less inhibitory to the pathogens while antimicrobial activities of the L. plantarum strains were mainly due to acidity and the L. plantarum strains either as single or mixed cultures with the yeasts demonstrated strong fermentation ability, with significant decrease in pH which is vital in the choice of starter for product safety.

  7. Reverse osmosis influence over the content of metals and organic acids in low alcoholic beverages

    Directory of Open Access Journals (Sweden)

    Andrieş Mitică Tiberiu

    2017-01-01

    Full Text Available Wine is defined as an alcoholic beverage resulted from fermentation of grape must, having ethanol content higher than 8.5% (v/v. Wine consumption has health benefits related to the high concentration of polyphenolic compounds with antioxidant activity and cardiovascular protection effects. However, the alcohol content restricts wine consumption, but wines with low-alcohol content can be obtained with the help of the dealcoholisation process, after it was produced through alcoholic fermentation. The purpose of this work is to evaluate the organic acid concentration, metal content and other physical-chemical parameters of low alcoholic beverages obtained from grape must by a process which involves reverse osmosis, mixing in a variable ratio the permeate and concentrate and then fermentation. For the experiments, a Muscat Ottonel grape must from Iaşi vineyard was used. There were ten variants of beverages (wines with low alcoholic concentration, by mixing known quantities of the two phases resulting from the reverse osmosis process. These beverages (wines had an alcoholic concentration starting from 2.5% (v/v in the first variant, up to 7% (v/v in the tenth variant. Alcoholic concentration varies for each variant by 0.5% (v/v. After fermentation in 50 L stainless steel tanks, the samples were filtered with 0.45μm sterile membrane and bottled in 0.75 L glass bottles. After 2 months of storage at constant temperature, the beverage samples were analyzed to determine the metal content (AAS method, organic acids concentration (HPLC method, and other physical-chemical characteristics (OIV standard methods. The results obtained indicate that the very complex physical-chemical composition of the low alcoholic beverages analyzed is influenced by the specific chemical composition of a given grape must, as well as by the use of products obtained from reverse osmosis.

  8. Recovery of fermented inulin fiber by lactic acid bacteria (LAB) from inulin hydrolysate using fungi inulinase enzymes of Scopulariopsis sp.-CBS1 and class of Deuteromycetes-CBS4 as cholesterol binder

    Science.gov (United States)

    Susilowati, Agustine; Melanie, Hakiki; Maryati, Yati; Aspiyanto

    2017-01-01

    Fermentation of Lactobacillus Acid Bacteria (LAB) which are mixtures of Lactobacillus acidophilus, Bifidobacteriumbifidum, Lactobacillus bulgaricus and Streptococcus thermophillus on hydrolysate as a result of inulin hydrolysis using inulinase enzymes obtained from endophytic fungi ofScopulariopsis sp.-CBS1 (inulin hydrolysate of S) and Class of Deuteromycetes-CBS4 (inulin hydrolysate of D) generate potential fermented inulin fiber as cholesterol binder. Fermentation process was conducted under concentrations of inulin hydrolysate 50% (w/v), LAB 15% (v/v) and skim milk 12.5% (w/v) at room temperature and 40°C for 0, 12, 24, 36 and 48 hours, respectively. Result of experimental work showed that longer time of LAB fermentation increased total acids, TPC and CBC at pH 2, but decreased total sugar, reducing, IDF, SDF, CBC pH 2 and CBC pH 7. Based on Cholesterol Binding Capacity (CBC), optimization of fermentation process on inulin hydrolysate of S was achieved by combining treatment at 40°C for 24 hours resulted in CBC pH 2 of 19.11 mg/g TDF and inulin hydrolysate of D was achieved by fermentation at 40 °C for 48 hours resulted in CBC pH 2 of 24.28 mg/g TDF. Inulin hydrolysate of class of Deutrymecetes CBS4 fermented by LAB had better functional property as cholesterol binder than that inulin hydrolysate of S fermented by LAB. This is due to cholesterol binder and cholesterol derivatives as a result of degradation of LAB on digestive system (stomach) when compared to higher colon under optimal process condition.

  9. Microbe participation in aroma production during soy sauce fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2018-06-01

    Soy sauce is a traditional Japanese fermented seasoning that contains various constituents such as amino acids, organic acids, and volatiles that are produced during the long fermentation process. Although studies regarding the correlation between microbes and aroma constituents have been performed, there are no reports about the influences of the microbial products, such as lactic acid, acetic acid, and ethanol, during fermentation. Because it is known that these compounds contribute to microbial growth and to changes in the constituent profile by altering the moromi environment, understanding the influence of these compounds is important. Metabolomics, the comprehensive study of low molecular weight metabolites, is a promising strategy for the deep understanding of constituent contributions to food characteristics. Therefore, the influences of microbes and their products such as lactic acid, acetic acid, and ethanol on aroma profiles were investigated using gas chromatography/mass spectrometry (GC/MS)-based metabolic profiling. The presence of aroma constituents influenced by microbes and chemically influenced by lactic acid, acetic acid, and ethanol were proposed. Most of the aroma constituents were not produced by adding ethanol alone, confirming the participation of yeast in aroma production. It was suggested that lactic acid bacterium relates to a key aromatic compound, 2,5-dimethyl-4-hydroxy-3(2H)-furanone. However, most of the measured aroma constituents changed similarly in both samples with lactic acid bacterium and acids. Thus, it was clear that the effect of lactic acid and acetic acid on the aroma profile was significant. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKCδ Activation: In Vitro and in Silico Studies.

    Science.gov (United States)

    Kongpichitchoke, Teeradate; Chiu, Ming-Tzu; Huang, Tzou-Chi; Hsu, Jue-Liang

    2016-10-12

    Teas can be classified according to their degree of fermentation, which has been reported to affect both the bioactive components in the teas and their antioxidative activity. In this study, four kinds of commercial Taiwanese tea at different degrees of fermentation, which include green (non-fermented), oolong (semi-fermented), black (fully fermented), and Pu-erh (post-fermented) tea, were profiled for catechin levels by using high performance liquid chromatography (HPLC). The result indicated that the gallic acid content in tea was directly proportional to the degree of fermentation in which the lowest and highest gallic acid content were 1.67 and 21.98 mg/g from green and Pu-erh tea, respectively. The antioxidative mechanism of the gallic acid was further determined by in vitro and in silico analyses. In vitro assays included the use of phorbol ester-induced macrophage RAW264.7 cell model for determining the inhibition of reactive oxygen species (ROS) production, and PKCδ and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit (p47) activations. The results showed that only at a concentration of 5.00 μM could gallic acid significantly ( p gallic acid could block PKCδ activation by occupying the phorbol ester binding sites of the protein.

  11. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Chyi-How; Lin, Chiu-Yue [Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724 (China); Wu, Jou-Hsien; Hsiao, Chin-Lang [Department of Water Resource Engineering, Feng Chia University (China); Chang, Jui-Jen [Department of Life Sciences, National Chung Hsing University (China); Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology (China)

    2010-12-15

    Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp. A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3-24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H{sub 2}/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess. (author)

  12. Production of itaconic acid by Ustilago maydis from agro wastes in solid state fermentation

    Directory of Open Access Journals (Sweden)

    MOKULA MD. RAFI

    2014-08-01

    Full Text Available Itaconic acid (IA is one of the hopeful substances within the cluster of organic acids. IA is used in artificial glass, bioactive compounds in pharmacy, medicine, agriculture, for the synthesis of fiber, resin, plastic, rubber, paints, surfactant, ion-exchange resins and lubricant. Most recurrently used microorganism for commercial production of IA is Aspergillus terreus. Some filamentous fungi belonging to Ustilaginales also produce IA. In the present work, an attempt was made to produce IA by Ustilago maydis employing Solid State Fermentation (SSF from various agro wastes like ground nut shells, rice bran, rice husk, orange pulp, ground nut oil cake, orange pulp and sugarcane bagasse as carbon substrates, which were used after pretreatment. 10 g of each substrate was taken in a 500 ml conical flasks separately and supplemented with 20 mL nutrient solution containing glucose, at pH 3. One milliliter inoculum containing 1×107 spores was added and moisture was maintained at 60%. After incubation at 32°C for 5 days, the acid production was estimated by spectrophotometric method and by HPLC analysis. Interestingly, the yield of itaconic acid was promising with all the above substrates, where orange pulp, sugarcane bagasse and rice bran supported higher yields.

  13. Evaluation of chemical changes during Myrciaria cauliflora (jabuticaba fruit) fermentation by {sup 1}H NMR spectroscopy and chemometric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Gilmara A.C.; Naves, Sara S.; Ferri, Pedro H.; Santos, Suzana C., E-mail: suzana.quimica.ufg@hotmail.com [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica. Lab. de Bioatividade Molecular

    2012-10-15

    Organic acids, sugars, alcohols, phenolic compounds, color properties, pH and titratable acidity were monitored during the commercial fermentation of jabuticaba (Myrciaria cauliflora) by {sup 1}H nuclear magnetic resonance (NMR) spectroscopy, spectrophotometric assays and standard methods of analysis. Data collected was analyzed by principal component (PCA), hierarchical cluster (HCA) and canonical correlation (CCA) analyses. Two sample groups were distinguished and the variables responsible for separation were sugars, anthocyanins, alcohols, hue and acetic and succinic acids. The canonical correlation analysis confirmed the influence of alcohols (ethanol, methanol and glycerol), organic acids (citric, succinic and acetic acids), pH and titratable acidity on the extraction and stability of anthocyanins and co pigments. As a result, color properties were also affected by phenolic variation throughout the fermentative process. (author)

  14. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  15. KINETIKA FERMENTASI ASAM ASETAT (VINEGAR OLEH BAKTERI Acetobacter aceti B 127 DARI ETANOL HASIL FERMENTASI LIMBAH CAIR PULP KAKAO [Kinetics of Acetic Acid (Vinegar Fermentation By Acetobacter aceti B127 from Ethanol Produced by Fermentation of Liquid Waste of Cacao Pulp

    Directory of Open Access Journals (Sweden)

    M. Supli Effendi

    2002-08-01

    Full Text Available Acetic acid concentration is one of vinegar’s quality parameter. Acetic acid concentration in vinegar is influenced by the activity of acetic acid bacteria. This research studied the kinetics of anaerobic fermentation of liquid waste of cacao pulp by Saccharomyces cerevisiae R60 to produce ethanol and the kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127. The kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127 can be used as a basic of bioprocess design for aerobic fermentation in general and acetic acid fermentation from ethanol by Acetobacter aceti B127 in particular. Fermentation medium used was liquid waste of cocoa pulp with sugar content of 12.85%, and the addition of sucrosa and urea. The parameter observed was growth of Saccharomyces cerevisiae R60 and Acetobacter aceti B127, and chemical analysis including concentration of ethanol, total sugar and acetic acid, content. The research result showed that the  value was 0.048 hour-1, Y P was 0.676, Qp value was 0.033 hour-, and KLa value was 0.344, QO2.Cx value was 0.125 (mgO2L-1jam-1, Y X was s O2 0.378 (x 108selmL-1g-1¬¬O2, and dCT was 0.150 mgL-1hour-1. Concentration of acetic acid in the product was 4.24% or 42.4 gL-1

  16. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  17. Production of freeze-dried lactic acid bacteria starter culture for cassava fermentation into gari

    CSIR Research Space (South Africa)

    Yao, AA

    2009-10-01

    Full Text Available Sixteen lactic acid bacteria, eight Lactobacillus plantarum, three L. pentosus, two Weissella paramesenteroides, two L. fermemtum and one Leuconostoc mesenteroides ssp. mesenteroides were previously isolated from cassava fermentation and selected...

  18. Acetic acid production from marine algae. Progress report No. 3, January 1, 1978--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Wise, D.L.

    1978-06-01

    The program for acetic acid production from marine algae has made significant progress in the current quarter. Some of the significant developments during this period are: (1) conversion of the available reducing equivalents in Chondrus crispus to organic acids has been carried to better than 80% completion; (2) thermophilic fermentations produce higher ratios of acetic acid to total acid than is the case for mesophilic fermentations (80% vs. 50%); (3) a membrane extraction process for removing organic acid products has been developed which has potential for commercial use; (4) a large scale fermentation was shown to convert over 50% of the available carbon in five days; (5) a reducing equivalents balance on the large scale fermentation was closed to with 96% of theoretical.

  19. Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Kunikazu Moribe

    2011-01-01

    Full Text Available Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs or carrier components. Ascorbyl n-alkyl fatty acid derivatives have been formulated as antioxidants or anticancer drugs for nanoparticle formulations such as micelles, microemulsions, and liposomes. ASC-P vesicles called aspasomes are submicron-sized particles that can encapsulate hydrophilic drugs. Several transdermal and injectable formulations of ascorbyl n-alkyl fatty acid derivatives were used, including ascorbyl palmitate.

  20. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    Directory of Open Access Journals (Sweden)

    Wen Li

    2016-08-01

    Full Text Available In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.