WorldWideScience

Sample records for fenton oxidation process

  1. Doxycycline Degradation by the Oxidative Fenton Process

    Directory of Open Access Journals (Sweden)

    Alexandre A. Borghi

    2015-01-01

    Full Text Available Doxycycline is a broad-spectrum tetracycline occurring in domestic, industrial, and rural effluents, whose main drawback is the increasing emergence of resistant bacteria. This antibiotic could be degraded by the so-called Fenton process, consisting in the oxidation of organic pollutants by oxygen peroxide (H2O2 in the presence of Fe2+. Experiments were performed according to an experimental Rotational Central Composite Design to investigate the influence of temperature (0–40.0°C, H2O2 concentration (100–900 mg/L, and Fe2+ concentration (5–120 mg/L on residual doxycycline and total organic carbon concentrations. Whereas the final residual doxycycline concentration ranged from 0 to 55.8 mg/L, the oxidation process proved unable to reduce the total organic carbon by more than 30%. The best operating conditions were concentrations of H2O2 and Fe2+ of 611 and 25 mg/L, respectively, and temperature of 35.0°C, but the analysis of variance revealed that only the first variable exerted a statistically significant effect on the residual doxycycline concentration. These results suggest possible application of this process in the treatment of doxycycline-containing effluents and may be used as starting basis to treat tetracycline-contaminated effluents.

  2. SIMULTANEOUS DEGRADATION OF SOME PHTHALATE ESTERS UNDER FENTON AND PHOTO-FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    BELDEAN-GALEA M.S.

    2015-03-01

    Full Text Available In this study the assessment of the degradation efficiency of five phthalates, DEP, BBP, DEHP, DINP and DIDP, found in a mixture in a liquid phase, using the Fenton and Photo Fenton oxidation processes, was conducted. It was observed that the main parameters that influence the Fenton oxidative processes of phthalates were the concentration of the oxidizing agent, H2O2, the concentration of the catalyst used, Fe2+, the pH value, UV irradiation and the reaction time. For the Fenton oxidative process, the highest degradation efficiencies were 19% for DEP, 50% for BBP, 84% for DEHP, 90% for DINP and 48% for DIDP, when the experiments were carried out using concentrations of 20 mg L-1 phthalate mixture, 100 mg L-1 H2O2, 10 mg L-1 Fe2+ at a pH value of 3, with a total reaction time of 30 minutes. For the Photo-Fenton oxidative process carried out in the same conditions as Fenton oxidative process, it was observed that after an irradiation time of 90 minutes under UV radiation the degradation efficiencies of phthalates were improved, being 22% for DEP, 71% for BBP, 97% for DEHP, 97% for DINP and 81% for DIDP.

  3. Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes.

    Science.gov (United States)

    Cañizares, Pablo; Paz, Rubén; Sáez, Cristina; Rodrigo, Manuel A

    2009-01-01

    In the work described here the technical and economic feasibilities of three Advanced Oxidation Processes (AOPs) have been studied: Conductive-Diamond Electrochemical Oxidation (CDEO), Ozonation and Fenton oxidation. The comparison was made by assessing the three technologies with synthetic wastewaters polluted with different types of organic compounds and also with actual wastes (from olive oil mills and from a fine-chemical manufacturing plant). All three technologies were able to treat the wastes, but very different results were obtained in terms of efficiency and mineralization. Only CDEO could achieve complete mineralization of the pollutants for all the wastes. However, the efficiencies were found to depend on the concentration of pollutant (mass transfer control of the oxidation rate). Results obtained in the oxidation with ozone (at pH 12) or by Fenton's reagent were found to depend on the nature of the pollutants, and significant concentrations of oxidation-refractory compounds were usually accumulated during the treatment. Within the discharge limits that all of the technologies can reach, the economic analysis shows that the operating cost of Fenton oxidation is lower than either CDEO or ozonation, although CD\\EO can compete satisfactorily with the Fenton process in the treatment of several kinds of wastes. Likewise, the investment cost for the ozonation process seems to be higher than either CDEO or Fenton oxidation, regardless of the pollutant treated.

  4. Kinetic studies on the degradation of crystal violet by the Fenton oxidation process.

    Science.gov (United States)

    Wu, H; Fan, M M; Li, C F; Peng, M; Sheng, L J; Pan, Q; Song, G W

    2010-01-01

    The degradation of dye crystal violet (CV) by Fenton oxidation process was investigated. The UV-Vis spectrogram has shown that CV can be degraded effectively by Fenton oxidation process. Different system variables namely initial H(2)O(2) concentration, initial Fe(2 + ) concentration and reaction temperature, which have effect on the degradation of CV by Fenton oxidation process, have been studied systematically. The degradation kinetics of CV was also elucidated based on the experimental data. The degradation of CV obeys the first-order reaction kinetics. The kinetic model can be described as k=1.5 exp(-(7.5)/(RT))[H(2)O(2)](0)(0.8718)[Fe(2+)](0)(0.5062). According to the IR spectrogram, it is concluded that the benzene ring of crystal violet has been destroyed by Fenton oxidation. The result will be useful in treating dyeing wastewater containing CV by Fenton oxidation process.

  5. Advanced treatment of pharmaceutical wastewater by Fenton reagent oxidation process

    Directory of Open Access Journals (Sweden)

    Yanan YANG

    2015-12-01

    Full Text Available Avermectin-salinomycin waster is hard to be further biodegraded after treated by anaerobic-aerobiotic process, so Fenton oxidation process is studied for its advanced treatment. Influencing factors of pH, reaction time, H2O2 dosage and H2O2/Fe2+ on COD removal are investigated, respectively. When pH value is 3.0, the dosage of H2O2 is 1.5 mL/L, and the mole ratio of H2O2/Fe2+ is 5∶1, the effluent COD mass concentrations decreases from 224 to 64.3 mg/L, namely the COD removal efficiency reaches 71.3%.

  6. Comparing Fenton Oxidation with Conventional Coagulation Process for RR198 Dye Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Behnaz Esrafili

    2017-10-01

    Discussion: Although under optimal conditions, the efficiency of coagulation process with coagulant aid was only 4% less than the efficiency of Fenton process, considering the advantages of Fenton oxidation including lack of production of excessive sludge, a higher efficiency was gained at large doses of dye.

  7. Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton

    International Nuclear Information System (INIS)

    Huang Yaohui; Huang Yifong; Chang Poshun; Chen Chuhyung

    2008-01-01

    This study makes a comparison between photo-Fenton and a novel electro-Fenton called Fered-Fenton to study the mineralization of 10,000 mg/L of dye-Reactive Black B (RBB) aqueous solution, which was chosen as the model dye contaminant. Results indicate that the traditional Fenton process only yields 70% mineralization. This result can be improved by using Fered-Fenton to yield 93% mineralization resulting from the action of ferrous ion regenerated on the cathode. Furthermore, photo-Fenton allows a fast and more complete destruction of dye solutions and as a result of the action of ferrous ion regenerated by UV irradiation yields more than 98% mineralization. In all treatments, the RBB is rapidly decayed to some carboxylic acid intermediates. The major intermediates found are formic acid and oxalic acid. This study finds that formic acid can be completely mineralized by photo-Fenton, but its destruction is problematic using the Fenton method. Oxalic acid is much more difficult to treat than other organic acids. It could get further mineralization with the use of the Fered-Fenton process

  8. Degradation of phthalate in aqueous solution by advanced oxidation process, photo-fenton

    International Nuclear Information System (INIS)

    Trabelsi, S.; Bellakhal, N.; Oturan, N.; Oturan, M.A.

    2009-01-01

    A photochemical method for degradation of persistent organic pollutants present in liquid effluents from the plastic industry and in the leaching described. This method, called P hoto-Fenton i nvolves the generation of radicals hydroxyl coupling between the Fenton reaction and photochemistry, OH radicals. Thus formed react with very high speeds, organic substances pollutants leading to their oxidation to total mineralization. In this study, we applied the process photo-Fenton treatment Plasticizers, Phthalates. For this, optimization of experimental parameters (namely the relationship between the concentrations of hydrogen peroxide and iron concentration catalyst) was performed. Under optimal conditions and determined the kinetics mineralization of phthalic anhydride by OH was studied. The overall results confirm the effectiveness of photo-Fenton process for the decontamination of liquid effluents responsible for persistent organic pollutants (Pop's).

  9. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate

    International Nuclear Information System (INIS)

    Wang Xiaojun; Song Yang; Mai Junsheng

    2008-01-01

    The present study is to investigate the treatment of a surfactant wastewater containing abundant sulfate by Fenton oxidation and aerobic biological processes. The operating conditions have been optimized. Working at an initial pH value of 8, a Fe 2+ dosage of 600 mg L -1 and a H 2 O 2 dosage of 120 mg L -1 , the chemical oxidation demand (COD) and linear alkylbenzene sulfonate (LAS) were decreased from 1500 and 490 mg L -1 to 230 and 23 mg L -1 after 40 min of Fenton oxidation, respectively. Advanced oxidation pretreatment using Fenton reagent was very effective at enhancing the biodegradability of this kind of wastewater. The wastewater was further treated by a bio-chemical treatment process based on an immobilized biomass reactor with a hydraulic detention time (HRT) of 20 h after Fenton oxidation pretreatment under the optimal operating conditions. It was found that the COD and LAS of the final effluent were less than 100 and 5 mg L -1 , corresponding to a removal efficiencies of over 94% and 99%, respectively

  10. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    Science.gov (United States)

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China

  11. Treating leachate by Fenton oxidation

    Directory of Open Access Journals (Sweden)

    Roger Iván Méndez Novelo

    2010-01-01

    Full Text Available Leachates are formed from liquids, mainly rainwater, percolating through solid wastes during stabilisation. Their composition is variable and highly toxic; leachate treatment is therefore a complex task. Leachates represent a high risk to health due to the Yucatan Peninsula’s highly permeable soil. The results are presented from applying the Fenton process to treating leachate from the sanitary Merida landfill, Yucatan, Mexico. The Fenton process consists of treating the contaminant load with an H2O2 and FeSO4 combination in acidic conditions. Optimal reaction time, pH value, Fenton reagent dose, post treatment coagulation – flocculation doses and increased biodegradability index were all determined. Optimal oxidation conditions and doses were 202+ minute contact time, 4 pH, 600 mg/L H2O2 concentration and 1,000 mg/L Fe. Average organic matter removal rate, measured as CODS and TOC, were 78% and 87% respectively. The biodegradability index increased from 0.07 to 0.11 during the Fenton process and up to 0.13 when the Fenton process was followed by coagulation-flocculation.

  12. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  13. Fenton Process Coupled to Ultrasound and UV Light Irradiation for the Oxidation of a Model Pollutant

    Directory of Open Access Journals (Sweden)

    Karen E. Barrera-Salgado

    2016-01-01

    Full Text Available The Fenton process coupled to photosonolysis (UV light and Us, using Fe2O3 catalyst supported on Al2O3, was used to oxidize a model pollutant like acid green 50 textile dye (AG50. Dye degradation was followed by AG50 concentration decay analyses. It was observed that parameters like iron content on a fixed amount of catalyst supporting material, catalyst annealing temperature, initial dye concentration, and the solution pH influence the overall treatment efficiency. High removal efficiencies of the model pollutant are achieved. The stability and reusability tests of the Fe2O3 catalyst show that the catalyst can be used up to three cycles achieving high discoloration. Thus, this catalyst is highly efficient for the degradation of AG50 in the Fenton process.

  14. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables

    Directory of Open Access Journals (Sweden)

    Zazouli Mohammad

    2012-08-01

    Full Text Available Abstract Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different variables, by setting up a pilot system. The used leachate was collected from a municipal unsanitary landfill in Qaem-Shahr in the north of Iran. Fenton and Fenton-like processes were conducted by Jar-test method. Photo-Fenton process was performed in a glass photo-reactor. In all processes, H2O2 was used as the oxidant. FeSO4.7H2O and FeCl3.6H2O were used as reagents. All parameters were measured based on standard methods. The results showed that the optimum concentration of H2O2 was equal to 5 g/L for the Fenton-like process and 3 g/L for the Fenton and photo-Fenton processes. The optimum ratio of H2O2: Fe+2/Fe+3 were equal to 8:1 in all processes. At optimum conditions, the amount of COD removal was 69.6%, 65.9% and 83.2% in Fenton, Fenton-like and photo–Fenton processes, respectively. In addition, optimum pH were 3, 5 and 3 and the optimum contact time were 150, 90 and 120 minutes, for Fenton, Fenton-like and photo–Fenton processes, respectively. After all processes, the biodegradability (BOD5/COD ratio of the treated leachate was increased compared to that of the raw leachate and the highest increase in BOD5/COD ratio was observed in the photo-Fenton process. The efficiency of the Fenton-like process was overally less than Fenton and photo-Fenton processes, meanwhile the Fenton-like process was at higher pH and did not show problems.

  15. Decomposition of nitrotoluenes from trinitrotoluene manufacturing process by Electro-Fenton oxidation.

    Science.gov (United States)

    Chen, Wen-Shing; Liang, Jing-Song

    2008-06-01

    Oxidative degradation of dinitrotoluene (DNT) isomers and 2,4,6-trinitrotoluene (TNT) in spent acid was conducted by Electro-Fenton's reagents. The electrolytic experiments were carried out to elucidate the influence of various operating parameters on the performance of mineralization of total organic compounds (TOC) in spent acid, including reaction temperature, dosage of oxygen, sulfuric acid concentration and dosage of ferrous ions. It deserves to note that organic compounds could be completely destructed by Electro-Fenton's reagent with in situ electrogenerated hydrogen peroxide obtained from cathodic reduction of oxygen, which was mainly supplied by anodic oxidation of water. Based on the spectra analyzed by gas chromatograph/mass spectrometer, it is proposed that initial denitration of 2,4,6-TNT gives rise to formation of 2,4-DNT and/or 2,6-DNT, which undergo the cleavage of nitro group into o-mononitrotoluene, followed by denitration to toluene and subsequent oxidation of the methyl group. Owing to the removal of both TOC and partial amounts of water simultaneously, the electrolytic method established is potentially applied to regenerate spent acid from toluene nitration processes in practice.

  16. Removal of Acid Yellow 17 Dye by Fenton Oxidation Process

    Science.gov (United States)

    Khan, Jehangeer; Sayed, Murtaza; Ali, Fayaz; Khan, Hasan Mahmood

    2018-05-01

    In the present research work the degradation of acid yellow 17 (AY 17) by H2O2/Fe2+ was investigated. The effect of various conditions such as pH value, temperature, conc. of H2O2, Fe2+, conc. of AY 17 were studied. Additionally the scavenging effects of various anions such as Cl-, SO42-, CO32- and HCO3-, on percent degradation of AY 17 were examined. It was found that these anions decrease percent degradation as well as rate of degradation reaction. The optimum conditions were determined as [AY 17]=[Fe2+]=0.06 mM [H2O2]=0.9 mM, and pH 3.0 for 60 min of reaction time. It was found that at optimum conditions 89% degradation of AY17 was achieved. The degradation kinetics of AY17 followed pseudo-first-order reaction kinetics. Thermodynamic studies under natural conditions showed positive value of ΔH (enthalpy) which indicates the degradation process is endothermic.

  17. Investigation the Efficiency of Combined Coagulation and Advanced Oxidation by Fenton Process in the Removal of Clarithromycin Antibiotic COD

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2012-07-01

    Full Text Available Antibiotics are considered among the major pollutants in water environments. In this study, removal of Claritromycine antibiotic has been studied from synthetic wastewater by combined coagulation and advanced oxidation processes. This study, was done in laboratory scale .  Samples of synthetic wastewater  were prepared from Claritromycin antibiotic. Concentration of samples were 200 mg/l. COD index was selected as a parameter evaluated in this study. In the first stage, coagulation process was done on synthetic wastewater and the proper condition was achieved (proper coagulant, optimum pH, dosage of coagulant. After that, Fenton oxidation process was done, on the effluent of coagulation process. In Fenton process the influence of pH, Fe2+ and hydrogen peroxide were studied on the removal efficiency of Claritromycin antibiotic and the optimum values for each parameter were determined. According to the results of this study, Poly Aluminum Chloride (PAC  is the proper coagulant. With pH equal to 7 and 100 mg/l PAC, 84.37% removal of Claritromycine was achieved.  For fenton process, optimum parameters for the removal of Claritromycin were determined. The optimum condition for fenton process were, pH= 7, Fe2+ equal to 0.45 mmol/ l , hydrogen proxide equal to 0. 16 mmol/l, ratio of H2O2/Fe2+ equal to 0.4 and detention time of 1hour .With Applying of optimum conditions for combined coagulation and Fenton processes, 96.3% removal of Claritromycin was obtained.

  18. Oxidation of microcystin-LR by the Fenton process : Kinetics, degradation intermediates, water quality and toxicity assessment

    NARCIS (Netherlands)

    Park, Jeong-Ann; Yang, Boram; Park, Chanhyuk; Choi, Jae-Woo; van Genuchten, Case M.; Lee, Sang-Hyup

    2017-01-01

    The Fenton process was assessed as a cost-effective technology for the removal of Microcystin-LR (MC-LR) among UV, UV/H2O2, and Fenton process according to efficiency and electrical energy per order (EE/O). The determined practical concentrations of the Fenton reagents were 5 mg/L Fe(II) and 5 mg/L

  19. Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process

    International Nuclear Information System (INIS)

    Shen, Jinyou; Ou, Changjin; Zhou, Zongyuan; Chen, Jun; Fang, Kexiong; Sun, Xiuyun; Li, Jiansheng; Zhou, Lin; Wang, Lianjun

    2013-01-01

    Highlights: • ZVI-Fenton process was conducted for DNAN producing wastewater pretreatment. • Transformation of nitro to amino group by ZVI overcomes the oxidative hindrance. • Subsequent Fenton process is efficient for the removal of aromatic compounds. • ABR-MBBR process is efficient for the polishing of ZVI-Fenton effluent. -- Abstract: A combined zero-valent iron (ZVI) reduction and Fenton oxidation process was tested for the pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater. Operating conditions were optimized and overall performance of the combined process was evaluated. For ZVI process, almost complete reduction of nitroaromatic compounds was observed at empty bed contact time (EBCT) of 8 h. For Fenton process, the optimal pH, H 2 O 2 to Fe(II) molar ratio, H 2 O 2 dosage and hydraulic retention time (HRT) were found to be 3.0, 15, 0.216 mol/L and 5 h, respectively. After pretreatment by the combined ZVI-Fenton process under the optimal conditions, aromatic organic compound removal was as high as 77.2%, while the majority of COD remained to be further treated by sequent biological process. The combined anaerobic-aerobic process consisted of an anaerobic baffled reactor (ABR) and a moving-bed biofilm reactor (MBBR) was operated for 3 months, fed with ZVI-Fenton effluent. The results revealed that the coupled ZVI-Fenton-ABR-MBBR system was significantly efficient in terms of correcting the effluent's main parameters of relevance, mainly aromatic compounds concentration, COD concentration, color and acute toxicity. These results indicate that the combined ZVI-Fenton process offers bright prospects for the pretreatment of wastewater containing nitroaromatic compounds

  20. Sequential application of Fenton and ozone-based oxidation process for the abatement of Ni-EDTA containing nickel plating effluents.

    Science.gov (United States)

    Zhao, Zilong; Liu, Zekun; Wang, Hongjie; Dong, Wenyi; Wang, Wei

    2018-07-01

    Treatment of Ni-EDTA in industrial nickel plating effluents was investigated by integrated application of Fenton and ozone-based oxidation processes. Determination of integrated sequence found that Fenton oxidation presented higher apparent kinetic rate constant of Ni-EDTA oxidation and capacity for contamination load than ozone-based oxidation process, the latter, however, was favorable to guarantee the further mineralization of organic substances, especially at a low concentration. Serial-connection mode of two oxidation processes was appraised, Fenton effluent after treated by hydroxide precipitation and filtration negatively affected the overall performance of the sequential system, as evidenced by the removal efficiencies of Ni 2+ and TOC dropping from 99.8% to 98.7%, and from 74.8% to 66.6%, respectively. As a comparison, O 3 /Fe 2+ oxidation process was proved to be more effective than other processes (e.g. O 3 -Fe 2+ , O 3 /H 2 O 2 /Fe 2+ , O 3 /H 2 O 2 -Fe 2+ ), and the final effluent Ni 2+ concentration could satisfied the discharge standard (nickel plating effluent, revealing the effective removal of some other co-existence contaminations. And Fenton reaction has contributed most, with the percentage ranging from 72.41% to 93.76%. The economic cost advantage made it a promising alternative to the continuous Fenton oxidation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Fuzzy-logic modeling of Fenton's strong chemical oxidation process treating three types of landfill leachates.

    Science.gov (United States)

    Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer

    2013-06-01

    Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.

  2. Removal of multi-dye wastewater by the novel integrated adsorption and Fenton oxidation process in a fluidized bed reactor.

    Science.gov (United States)

    Lyu, Cong; Zhou, Dandan; Wang, Jun

    2016-10-01

    Traditionally, a few processes have to be employed in sequence for multi-dye removal, due to the different physical and chemical characteristics of the dyes. In this study, we innovatively developed an integrated adsorption and Fenton oxidation fluidized bed reactor (FBR) based on the hydraulic classification theory, which could efficiently remove dispersed red, acid yellow, and reactive brilliant dyes. The fluidized solids such as ceramsite and activated carbon could be separately fluidized at the bottom and the top part of the FBR, respectively. As a result, Fenton oxidization of dyes was promoted by the fluidization of ceramsite and activated carbon. Besides, adsorption of activated carbon could synergistically act on the dyes. The results showed that the removal efficiencies of acid yellow 2G, disperse red 60, and reactive brilliant blue X-BR could reach 100, 79.8, and 84.9 % in 10 min, respectively. Lots of intermediates with unsaturated bonds were generated during Fenton reaction, which was further removed by adsorption of activated carbon. Consequently, a high COD removal of 93 % was obtained. Interestingly, some of Fe 3+ produced during Fenton reaction was further precipitated and crystallized as FeO(OH) or Fe(OH) 3 on the surface of activated carbon and ceramsite, which could be potentially recycled for further utilization as a heterogeneous catalyst. Meanwhile, the other Fe 3+ might be removed in the form of ferro-organic complexes by adsorption onto the activated carbon. Thus, only a little iron hydroxide sludge was generated in the FBR. This novel FBR gave us an effective clue to realize multi-reactions for textile wastewater treatment by employing hydraulic classification fluidization.

  3. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes

    International Nuclear Information System (INIS)

    Hermosilla, Daphne; Cortijo, Manuel; Huang, Chin Pao

    2009-01-01

    Landfill, a matured and economically appealing technology, is the ultimate approach for the management of municipal solid wastes. However, the inevitable generation of leachate from landfill requires further treatment. Among the various leachate treatment technologies available, advanced oxidation processes (AOPs) are among powerful methods to deal with the refractory organic constituents, and the Fenton reagent has evolved as one promising AOPs for the treatment of leachates. Particularly, the combination of UV-radiation with Fenton's reagent has been reported to be a method that allows both the photo-regeneration of Fe 2+ and photo-decarboxylation of ferric carboxylates. In this study, Fenton and photo-Fenton processes were fine tuned for the treatment of leachates from the Colmenar Viejo (Madrid, Spain) Landfill. Results showed that it is possible to define a set of conditions under which the same COD and TOC removals (approx 70%) could be achieved with both the conventional and photo-Fenton processes. But Fenton process generated an important quantity of iron sludge, which will require further disposal, when performed under optimal COD removal conditions. Furthermore conventional Fenton process was able to achieve slightly over an 80% COD removal from a 'young' leachate, while for 'old' and 'mixed' leachates was close to a 70%. The main advantage showed by the photo-assisted Fenton treatment of landfill leachate was that it consumed 32 times less iron and produced 25 times less sludge volume yielding the same COD removal results than a conventional Fenton treatment.

  4. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes

    International Nuclear Information System (INIS)

    Schwingel de Oliveira, Isadora; Viana, Lilian; Verona, Cenira; Fallavena, Vera Lucia Vargas; Azevedo, Carla Maria Nunes; Pires, Marcal

    2007-01-01

    Advanced oxidation processes are an emerging option to treatment of the painting industry effluents. The aim of this study was to compare the effectiveness of the Fenton and photo-Fenton processes in chemical oxygen demand (COD), total organic carbon (TOC) and phenolic compounds removal from wastewaters generated during alkydic resins manufacture. The optimized treatment conditions are the following: pH 3.0, 15.15 x 10 -3 mol L -1 FeSO 4 and 0.30 mol L -1 H 2 O 2 for a reaction time of 6 h. photo-Fenton experiments were carried out in the presence of sunlight or artificial radiation and complementary additions of H 2 O 2 were made for all experiments. The best results were obtained with photo-Fenton process assisted with solar radiation, with reductions of 99.5 and 99.1% of COD and TOC levels, respectively. Fenton and photo-Fenton (with artificial irradiation) processes presented lower but not insignificant removals, within 60-80% reduction for both COD and TOC. In addition, an excellent removal (95%) of total phenols was obtained using photo-Fenton process assisted with artificial irradiation. This study demonstrated that the use of photo-Fenton process on alkydic resins wastewater treatment is very promising especially when solar light is used

  5. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes.

    Science.gov (United States)

    de Oliveira, Isadora Schwingel; Viana, Lilian; Verona, Cenira; Fallavena, Vera Lúcia Vargas; Azevedo, Carla Maria Nunes; Pires, Marçal

    2007-07-31

    Advanced oxidation processes are an emerging option to treatment of the painting industry effluents. The aim of this study was to compare the effectiveness of the Fenton and photo-Fenton processes in chemical oxygen demand (COD), total organic carbon (TOC) and phenolic compounds removal from wastewaters generated during alkydic resins manufacture. The optimized treatment conditions are the following: pH 3.0, 15.15x10(-3)molL(-1) FeSO(4) and 0.30molL(-1) H(2)O(2) for a reaction time of 6h. photo-Fenton experiments were carried out in the presence of sunlight or artificial radiation and complementary additions of H(2)O(2) were made for all experiments. The best results were obtained with photo-Fenton process assisted with solar radiation, with reductions of 99.5 and 99.1% of COD and TOC levels, respectively. Fenton and photo-Fenton (with artificial irradiation) processes presented lower but not insignificant removals, within 60-80% reduction for both COD and TOC. In addition, an excellent removal (95%) of total phenols was obtained using photo-Fenton process assisted with artificial irradiation. This study demonstrated that the use of photo-Fenton process on alkydic resins wastewater treatment is very promising especially when solar light is used.

  6. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes

    Energy Technology Data Exchange (ETDEWEB)

    Schwingel de Oliveira, Isadora [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil); Viana, Lilian [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil); Verona, Cenira [Killing Tintas e Adesivos SA, Av. 1o Marco 3430, 90619-900-Novo Hamburg, oRS (Brazil); Fallavena, Vera Lucia Vargas [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil); Azevedo, Carla Maria Nunes [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil); Pires, Marcal [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS (Brazil)]. E-mail: mpires@pucrs.br

    2007-07-31

    Advanced oxidation processes are an emerging option to treatment of the painting industry effluents. The aim of this study was to compare the effectiveness of the Fenton and photo-Fenton processes in chemical oxygen demand (COD), total organic carbon (TOC) and phenolic compounds removal from wastewaters generated during alkydic resins manufacture. The optimized treatment conditions are the following: pH 3.0, 15.15 x 10{sup -3} mol L{sup -1} FeSO{sub 4} and 0.30 mol L{sup -1} H{sub 2}O{sub 2} for a reaction time of 6 h. photo-Fenton experiments were carried out in the presence of sunlight or artificial radiation and complementary additions of H{sub 2}O{sub 2} were made for all experiments. The best results were obtained with photo-Fenton process assisted with solar radiation, with reductions of 99.5 and 99.1% of COD and TOC levels, respectively. Fenton and photo-Fenton (with artificial irradiation) processes presented lower but not insignificant removals, within 60-80% reduction for both COD and TOC. In addition, an excellent removal (95%) of total phenols was obtained using photo-Fenton process assisted with artificial irradiation. This study demonstrated that the use of photo-Fenton process on alkydic resins wastewater treatment is very promising especially when solar light is used.

  7. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fundamentos e aplicações ambientais dos processos fenton e foto-fenton Fundaments and environmental applications of fenton and photo-fenton processes

    Directory of Open Access Journals (Sweden)

    Raquel F. Pupo Nogueira

    2007-04-01

    Full Text Available Wastewater and soil treatment processes based on Fenton's reagent have gained great attention in recent years due to its high oxidation power. This review describes the fundaments of the Fenton and photo-Fenton processes and discusses the main aspects related to the degradation of organic contaminants in water such as the complexation of iron, the use of solar light as the source of irradiation and the most important reactor types used. An overview of the main applications of the process to a variety of industrial wastewater and soil remediations is presented.

  9. Photo-Fenton and Fenton Oxidation of Recalcitrant Industrial Wastewater Using Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Henrik Hansson

    2012-01-01

    Full Text Available There is a need for the development of on-site wastewater treatment technologies suitable for “dry-process industries,” such as the wood-floor sector. Due to the nature of their activities, these industries generate lower volumes of highly polluted wastewaters after cleaning activities. Advanced oxidation processes such as Fenton and photo-Fenton, are potentially feasible options for treatment of these wastewaters. One of the disadvantages of the Fenton process is the formation of large amounts of ferrous iron sludge, a constraint that might be overcome with the use of nanoscale zero-valent iron (nZVI powder. Wastewater from a wood-floor industry with initial COD of 4956 mg/L and TOC of 2730 mg/L was treated with dark-Fenton (nZVI/H2O2 and photo-Fenton (nZVI/H2O2/UV applying a 2-level full-factorial experimental design. The highest removal of COD and TOC (80% and 60%, resp. was achieved using photo-Fenton. The supply of the reactants in more than one dose during the reaction time had significant and positive effects on the treatment efficiency. According to the results, Fenton and mostly photo-Fenton are promising treatment options for these highly recalcitrant wastewaters. Future investigations should focus on optimizing treatment processes and assessing toxic effects that residual pollutants and the nZVI might have. The feasibility of combining advanced oxidation processes with biological treatment is also recommended.

  10. DI-(2-ETHYLHEXYL PHTHALATE OXIDATIVE DEGRADATION BY FENTON PROCESS IN SYNTHETIC AND REAL PETROCHEMICAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    R. Esmaeli

    2011-09-01

    Full Text Available Di-(2-Ethylhexyl phthalate (DEHP belongs to the class of phthalate esters and is used as an additive in many products including plastics, paints and inks or as a solvent in industrial formulations. The degradation of DEHP in aqueous solution using oxidative Fenton reaction (H2O2/Fe2+ was carried out in this study. It was found that H2O2 concentration, Fe2+ concentration, and pH were the three main factors that could significantly influence the degradation rates of DEHP. The highest degradation percentage (85.6 % of DEHP was observed within 60 min at pH 3 in H2O2/Fe2+ system. The results of our study suggested that the concentration with 90 mg/L H2O2, 5 mg/L Fe2+, and 20 mg/L DEHP in the solution at pH 3 were the optimal conditions. The optimized reaction parameters were preceded for treatment of real wastewater obtained from a petrochemical plant.

  11. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla, Daphne, E-mail: dhermosilla@quim.ucm.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Cortijo, Manuel [U.D. Operaciones Basicas, Departamento de Ingenieria Forestal, E.T.S.I. Montes, Universidad Politecnica de Madrid, Avda. Ramiro de Maeztu s/n, 28040 Madrid (Spain); Huang, Chin Pao [Department of Civil and Environmental Engineering, 352C DuPont Hall, University of Delaware, Newark, DE 19716 (United States)

    2009-05-15

    Landfill, a matured and economically appealing technology, is the ultimate approach for the management of municipal solid wastes. However, the inevitable generation of leachate from landfill requires further treatment. Among the various leachate treatment technologies available, advanced oxidation processes (AOPs) are among powerful methods to deal with the refractory organic constituents, and the Fenton reagent has evolved as one promising AOPs for the treatment of leachates. Particularly, the combination of UV-radiation with Fenton's reagent has been reported to be a method that allows both the photo-regeneration of Fe{sup 2+} and photo-decarboxylation of ferric carboxylates. In this study, Fenton and photo-Fenton processes were fine tuned for the treatment of leachates from the Colmenar Viejo (Madrid, Spain) Landfill. Results showed that it is possible to define a set of conditions under which the same COD and TOC removals (approx 70%) could be achieved with both the conventional and photo-Fenton processes. But Fenton process generated an important quantity of iron sludge, which will require further disposal, when performed under optimal COD removal conditions. Furthermore conventional Fenton process was able to achieve slightly over an 80% COD removal from a 'young' leachate, while for 'old' and 'mixed' leachates was close to a 70%. The main advantage showed by the photo-assisted Fenton treatment of landfill leachate was that it consumed 32 times less iron and produced 25 times less sludge volume yielding the same COD removal results than a conventional Fenton treatment.

  12. Imidacloprid oxidation by photo-Fenton reaction.

    Science.gov (United States)

    Segura, Cristina; Zaror, Claudio; Mansilla, Héctor D; Mondaca, María Angélica

    2008-02-11

    This paper presents experimental results on the imidacloprid removal from wastewater using homogeneous photo-Fenton reactions illuminated with black light lamps. Multivariate experimental design was used to identify the effect of initial Fe(II) and H(2)O(2) concentrations on process performance. The initial iron concentration played a key role in the process kinetics, whereas hydrogen peroxide concentration directly affected the extent of the oxidation process. Imidacloprid degradation proceeded via two distinctive kinetics regimes, an initial stage of rapid imidacloprid reduction, followed by a slower oxidation process until complete removal. Under optimal conditions, more than 50% imidacloprid degradation was observed after less than 1 min treatment, and TOC and COD removal up to 65% and 80%, respectively, were measured after all hydrogen peroxide was consumed. Raw imidacloprid samples presented significant acute toxicity to Daphnia magna and genotoxic effects on Bacillus subtilis sp. Such toxic effects remained detectable even after significant pesticide removal had been achieved, due to the presence of toxic by-products. Both acute toxicity and genotoxicity disappeared after considerable mineralization resulting in final low molecular weight by-products. Results obtained here confirm that design and operation of photo-Fenton processes should focus on toxicity removal rather than on specific target pollutants.

  13. Aplikasi Metode Advance Oxidation Process (AOP Fenton pada Pengolahan Limbah Cair Pabrik Kelapa Sawit

    Directory of Open Access Journals (Sweden)

    Ruka Yulia

    2016-06-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui kemampuan proses Fenton dalam menurunkan kadar chemical oxygen demand (COD dan kadar total suspended solid (TSS dari limbah cair pabrik kelapa sawit (PKS dan menentukan kondisi optimum dari parameter yang digunakan dengan Response Surface Methodology menurut Box- Behnken design. Sampel diambil pada keluaran pertama kolam anaerobik ketiga dari instalasi pengolahan limbah cair kelapa sawit yang mengandung nilai COD berkisar antara 8.000 hingga 12.000 ppm. Pada penelitian ini, dilakukan pengujian pada berbagai pH, konsentrasi FeSO4.7H2O dan konsentrasi hidrogen peroksida. Hasil  penelitian menunjukkan bahwa kemampuan proses AOP dengan metode Fenton dapat menurunkan konsentrasi COD dan TSS masing-masing adalah 70,7704% dan 88,3897% pada konsentrasi FeSO4.7H2O 3703,52 ppm, konsentrasi H2O2 5586,43 ppm, dan pH 3.

  14. Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment.

    Science.gov (United States)

    Barhoumi, Natija; Oturan, Nihal; Olvera-Vargas, Hugo; Brillas, Enric; Gadri, Abdellatif; Ammar, Salah; Oturan, Mehmet A

    2016-05-01

    The degradation of 0.20 mM sulfamethazine (SMT) solutions was investigated by heterogeneous electro-Fenton (EF) process using pyrite as source of Fe(2+) (catalyst) and pH regulator in an undivided electrochemical cell equipped either with a Pt or a BDD anode and carbon-felt as cathode. Effect of pyrite concentration and applied current on the oxidative degradation kinetics and mineralization efficiency has been studied. The higher oxidation power of the process, named "Pyrite-EF″ using BDD anode was demonstrated. Pyrite-EF showed a better performance for the oxidation/mineralization of the drug SMT in comparison to the classic EF process: 95% and 87% TOC removal by Pyrite-EF with BDD and Pt anodes, respectively, versus 90% and 83% by classical EF with BDD and Pt anodes, respectively. The rate constant of the oxidation of SMT by OH was determined by the competition kinetics method and found to be 1.87 × 10(9) mol(-1) L s(-1). Based on the identified reaction intermediates by HPLC and GS-MS, as well as released SO4(2-), NH4(+) and NO3(-) ions, a plausible reaction pathway was proposed for the mineralization of SMT during Pyrite-EF process. Toxicity assessment by means of Microtox method revealed the formation of some toxic intermediates during the treatment. However, toxicity of the solution was removed at the end of treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Review of iron-free Fenton-like systems for activating H{sub 2}O{sub 2} in advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Bokare, Alok D.; Choi, Wonyong, E-mail: wchoi@postech.edu

    2014-06-30

    Graphical abstract: - Highlights: • Elements with multiple redox states efficiently decompose H{sub 2}O{sub 2} at neutral pH. • Activation of H{sub 2}O{sub 2} is entirely governed by solution pH and catalyst composition. • Metal leaching and toxicity is an important factor for practical applications. • Iron-free Fenton systems work only in specialized reaction conditions. - Abstract: Iron-catalyzed hydrogen peroxide decomposition for in situ generation of hydroxyl radicals (HO{sup •} ) has been extensively developed as advanced oxidation processes (AOPs) for environmental applications. A variety of catalytic iron species constituting metal salts (in Fe{sup 2+} or Fe{sup 3+} form), metal oxides (e.g., Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}), and zero-valent metal (Fe{sup 0}) have been exploited for chemical (classical Fenton), photochemical (photo-Fenton) and electrochemical (electro-Fenton) degradation pathways. However, the requirement of strict acidic conditions to prevent iron precipitation still remains the bottleneck for iron-based AOPs. In this article, we present a thorough review of alternative non-iron Fenton catalysts and their reactivity towards hydrogen peroxide activation. Elements with multiple redox states (like chromium, cerium, copper, cobalt, manganese and ruthenium) all directly decompose H{sub 2}O{sub 2} into HO{sup •} through conventional Fenton-like pathways. The in situ formation of H{sub 2}O{sub 2} and decomposition into HO{sup •} can be also achieved using electron transfer mechanism in zero-valent aluminum/O{sub 2} system. Although these Fenton systems (except aluminum) work efficiently even at neutral pH, the H{sub 2}O{sub 2} activation mechanism is very specific to the nature of the catalyst and critically depends on its composition. This review describes in detail the complex mechanisms and emphasizes on practical limitations influencing their environmental applications.

  16. Fenton and solar photo-Fenton processes for the removal of ...

    African Journals Online (AJOL)

    Fenton (H2O2/Fe2+/solar light) processes was investigated. A laboratory-scale reactor was designed to evaluate and select the optimal oxidation condition. The degradation rate is strongly dependent on pH, temperature, H2O2 dosing rate, ...

  17. Evaluation of Fenton Oxidation Process Coupled with Biological Treatment for the Removal of Reactive Black 5 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Pegah Bahmani

    2013-06-01

    Full Text Available Biodegradation of azo dyes is difficult due to their complex structures and low BOD to COD ratios. In the present study, the efficiency of using Fenton’s reagent (H2O2 + Fe2+ as a pretreatment process to enhance microbial transformation of reactive black 5 (RB5 in an aqueous system was evaluated. The RB5 with an initial concentration of 250 mg/L was decolorized up to 90% in 60 h by using a bacterial consortium. Fenton’s reagent at a Fe2+ concentration of 0.5 mM and H2O2 concentration of 2.9 mM (molar ratio, 1:5.8 was most effective for decolorization at pH = 3.0. The extent of RB5 removal by the combined Fenton–biotreatment was about 2 times higher than that of biotreatment alone. The production of some aromatic amines intermediates implied partial mineralization of the RB5 in Fenton treatment alone; in addition, decreasing of GC-MS peaks suggested that dearomatization occurred in Fenton-biological process. Fenton pretreatment seems to be a cost–effective option for the biotreatment of azo dyes, due mainly to the lower doses of chemicals, lower sludge generation, and saving of time. Our results demonstrated positive effects of inoculating bacterial consortium which was capable of dye biodegradation with a Fenton’s pretreatment step as well as the benefits of low time required for the biological process. In addition, the potential of field performance of Fenton-biological process because of using bacterial consortium is an other positive effect of it.

  18. Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huifang, E-mail: whfkhl@sina.com [College of Environment, Jiangsu Key Laboratory of Industrial Water-Conservation and Emission Reduction, Nanjing University of Technology, Nanjing 210009 (China); Wang, Shihe [Department of Municipal Engineering, Southeast University, Nanjing 210096 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A real printing and dyeing wastewater was pretreated by Fenton process. Black-Right-Pointing-Pointer We investigated impacts of operating parameters on ORP and pretreatment efficacy. Black-Right-Pointing-Pointer Relationship among ORP, operating parameters and treatment efficacy was established. Black-Right-Pointing-Pointer Pretreatment efficacy was in proportion to the exponent of temperature reciprocal. Black-Right-Pointing-Pointer We investigated kinetics of color and COD removal and BOD{sub 5}/COD ratio in solution. - Abstract: An experiment was conducted in a batch reactor for a real printing and dyeing wastewater pretreatment using Fenton process in this study. The results showed that original pH, hydrogen peroxide concentration and ferrous sulfate concentration affected ORP value and pretreatment efficacy greatly. Under experimental conditions, the optimal original pH was 6.61, and the optimal hydrogen peroxide and ferrous sulfate concentrations were 1.50 and 0.75 g L{sup -1}, respectively. The relationship among ORP, original pH, hydrogen peroxide concentration, ferrous sulfate concentration, and color (COD or BOD{sub 5}/COD) was established, which would be instructive in on-line monitoring and control of Fenton process using ORP. In addition, the effects of wastewater temperature and oxidation time on pretreatment efficacy were also investigated. With an increase of temperature, color and COD removal efficiencies and BOD{sub 5}/COD ratio increased, and they were in proportion to the exponent of temperature reciprocal. Similarly, color and COD removal efficiencies increased with increasing oxidation time, and both color and COD removal obeyed the first-order kinetics. The BOD{sub 5}/COD ratio could be expressed by a second-degree polynomial with respect to oxidation time, and the best biodegradability of wastewater was present at the oxidation time of 6.10 h.

  19. Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process.

    Science.gov (United States)

    Wu, Huifang; Wang, Shihe

    2012-12-01

    An experiment was conducted in a batch reactor for a real printing and dyeing wastewater pretreatment using Fenton process in this study. The results showed that original pH, hydrogen peroxide concentration and ferrous sulfate concentration affected ORP value and pretreatment efficacy greatly. Under experimental conditions, the optimal original pH was 6.61, and the optimal hydrogen peroxide and ferrous sulfate concentrations were 1.50 and 0.75 gL(-1), respectively. The relationship among ORP, original pH, hydrogen peroxide concentration, ferrous sulfate concentration, and color (COD or BOD(5)/COD) was established, which would be instructive in on-line monitoring and control of Fenton process using ORP. In addition, the effects of wastewater temperature and oxidation time on pretreatment efficacy were also investigated. With an increase of temperature, color and COD removal efficiencies and BOD(5)/COD ratio increased, and they were in proportion to the exponent of temperature reciprocal. Similarly, color and COD removal efficiencies increased with increasing oxidation time, and both color and COD removal obeyed the first-order kinetics. The BOD(5)/COD ratio could be expressed by a second-degree polynomial with respect to oxidation time, and the best biodegradability of wastewater was present at the oxidation time of 6.10h. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Simultaneous Removal of Thallium and EDTA by Fenton Process

    Science.gov (United States)

    Xu, Ruibing; Huang, Xuexia; Li, Huosheng; Su, Minhua; Chen, Diyun

    2018-01-01

    The wastewater containing heavy metals and organic pollutants is widely discharged from industries. Because of the coexistence of heavy metals and organic pollutants, the treatment of such wastewater is very difficult. Fenton process is considered to be one of the most effective approaches for the degradation of organic pollutants in aqueous solution due to the strong oxidative ability of hydroxyl radical which generated from the Fenton process. Apart from this, heavy metals are able to be removed during Fenton process owning to the synergic effect of coagulation and precipitation. In this work, pollutants of thallium and EDTA were successfully removed via the Fenton process. A series of single-factor experiments were designed and performed to achieve an optimal reaction conditions for the removal of both thallium and EDTA. Results showed that the removal efficiencies of thallium and TOC could be as high as 96.54% and 70.42%, respectively. The outcomes from our study demonstrate that Fenton process is a promising method for the purification of wastewater containing thallium and EDTA.

  1. Degradation of dyes from aqueous solution by Fenton processes: a review.

    Science.gov (United States)

    Nidheesh, Puthiya Veetil; Gandhimathi, Rajan; Ramesh, Srikrishnaperumal Thanga

    2013-04-01

    Several industries are using dyes as coloring agents. The effluents from these industries are increasingly becoming an environmental problem. The removal of dyes from aqueous solution has a great potential in the field of environmental engineering. This paper reviews the classification, characteristics, and problems of dyes in detail. Advantages and disadvantages of different methods used for dye removal are also analyzed. Among these methods, Fenton process-based advanced oxidation processes are an emerging prospect in the field of dye removal. Fenton processes have been classified and represented as "Fenton circle". This paper analyzes the recent studies on Fenton processes. The studies include analyzing different configurations of reactors used for dye removal, its efficiency, and the effects of various operating parameters such as pH, catalyst concentration, H2O2 concentration, initial dye concentration, and temperature of Fenton processes. From the present study, it can be conclude that Fenton processes are very effective and environmentally friendly methods for dye removal.

  2. A two-stage pretreatment process using dilute hydrochloric acid followed by Fenton oxidation to improve sugar recovery from corn stover.

    Science.gov (United States)

    Li, Wenzhi; Liu, Qiyu; Ma, Qiaozhi; Zhang, Tingwei; Ma, Longlong; Jameel, Hasan; Chang, Hou-Min

    2016-11-01

    A two-stage pretreatment process is proposed in this research in order to improve sugar recovery from corn stover. In the proposed process, corn stover is hydrolyzed by dilute hydrochloric acid to recover xylose, which is followed by a Fenton reagent oxidation to remove lignin. 0.7wt% dilute hydrochloric acid is applied in the first stage pretreatment at 120°C for 40min, resulting in 81.0% xylose removal. Fenton reagent oxidation (1g/L FeSO4·7H2O and 30g/L H2O2) is performed at room temperature (about 20°C) for 12 has a second stage which resulted in 32.9% lignin removal. The glucose yield in the subsequent enzymatic hydrolysis was 71.3% with a very low cellulase dosage (3FPU/g). This two-stage pretreatment is effective due to the hydrolysis of hemicelluloses in the first stage and the removal of lignin in the second stage, resulting in a very high sugar recovery with a low enzyme loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fenton and solar photo-Fenton processes for the removal of ...

    African Journals Online (AJOL)

    2011-10-10

    Oct 10, 2011 ... AOPs are based on the generation and subsequent reactions of hydroxyl radicals .... gen peroxide interference was performed to COD analysis. ..... y = 0.50 x. R2 = 0.9948. Time (min). Figure 9. Trend of COD/COD0 ratio during the oxidation of chlorpyrifos solution by Fenton and solar phto-Fenton reactions.

  4. Treatment of real paracetamol wastewater by fenton process

    Directory of Open Access Journals (Sweden)

    Dalgic Gamze

    2017-01-01

    Full Text Available The study investigated the pretreatment of real paracetamol (PCT wastewater of a pharmaceutical industry by Fenton process. At the best experimental conditions (COD/H2O2 = 1/1, Fe+2/H2O2 = 1/70, settling method:centrifuging, pH 6 at settling step, 92.7, 92.7, 95.5, 99.1, 99.9 and 99.4% of chemical oxygen demand (COD, total organic carbon (TOC, 5-day biological oxygen demand (BOD5, PCT, para-amino phenol (PAP and aniline were removed, respectively. Changes in the concentrations of these parameters were also investigated for both oxidation and settling steps of Fenton process. It was found that COD and TOC were removed at the settling step (precipitation whereas PCT, PAP and aniline were removed at the oxidation step. Mass balance calculations were also studied to show the mass distributions of COD in different phases (gas + foam, effluent and sludge. Fenton process was found as an effective method for the pretreatment of real PCT wastewater for discharging in a determined collective treatment plant.

  5. Iron crystallization in a fluidized-bed Fenton process.

    Science.gov (United States)

    Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin

    2011-05-01

    The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes.

    Science.gov (United States)

    Rosales, Emilio; Anasie, Delia; Pazos, Marta; Lazar, Iuliana; Sanromán, M Angeles

    2018-05-01

    The regeneration and reuse of adsorbents is a subject of interest nowadays in order to reduce the pollution and the wastes generated in the adsorption wastewater treatment. In this work, the regeneration of the spent kaolinite by different advanced oxidation processes (Fenton, electro-Fenton and electrokinetic-Fenton) was evaluated. Initially, it was confirmed the ability of a low cost clayey material, kaolinite, for the adsorption of model dye such as Rhodamine B showing Freundlich isotherm fitting. Then, the regeneration and consequent degradation of the pollutant in the adsorbent by Fenton based processes was carried out. The role of different parameters affecting the regeneration process (H 2 O 2 :Fe 2+ ratio, liquid:solid ratio) were evaluated. Working at 100:1 H 2 O 2 :Fe 2+ ratio and 30min near complete dye removal (around 97%) from kaolinite was obtained by Fenton treatment. After that, a two-stage treatment for adsorption-regeneration was evaluated during five treatment cycles demonstrating its viability for regeneration of the adsorbent through dye degradation. Based on the successful application of Fenton technique, the improvement of the treatment by electro-Fenton and electrokinetic-Fenton were studied for different solid:liquid ratios achieving satisfactory regeneration values. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Destruction of nitrotoluenes in wastewater by Electro-Fenton oxidation.

    Science.gov (United States)

    Chen, Wen-Shing; Lin, Sheng-Zhi

    2009-09-15

    Electrolytic degradation of dinitrotoluenes (DNTs) and 2,4,6-trinitrotoluene (TNT) in wastewater was conducted by Electro-Fenton's reagents. The batch-wise experiments were carried out to elucidate the influence of various operating variables on the electrolytic behavior, including electrode potential, oxygen dosage, electrolytic temperature, acidity of wastewater and dosage of ferrous ions. It deserves to note that the nitrotoluenes contained could be completely decomposed by Electro-Fenton's reagents, wherein hydrogen peroxide was in situ generated from cathodic reduction of oxygen, supplied mainly by anodic oxidation of water. During the electrochemical process, the influence of electrolytic temperature on the degradation of nitrotoluenes is the most significant, followed by electrode potential, acidity of wastewater and oxygen dosage. Based on the spectra analyzed by gas chromatograph/mass spectrometer (GC/MS), it is proposed that initial denitration of 2,4-DNT and/or 2,6-DNT gives rise to formation of o-mononitrotoluene, which undergoes the cleavage of nitro group into toluene, followed by oxidation of methyl group to benzoic acid and subsequent decarboxylation. It is believed that the electrolytic method established is potentially applied to dispose wastewater from toluene nitration processes in practice.

  8. For the Fenton process in a sequential downflow and upflow system to treat textile dyeing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Bae, W.K.; Ko, G.B.; Cho, S.J. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Kyounggi (Korea); Lee, S.H. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea)

    2003-07-01

    Wastewater from textile dyeing industry is characterized by high temperature, pH, pollution loading such as color and COD which are containing refractory, toxic and high molecular weight compounds. It is therefore, presumed to be very resistant to microbial degradation. Textile dyeing wastewater is therefore, presumed to be very resistant to microbial degradation. Combined processes are usually applied, which are chemical oxidation and biological process for textile dyeing wastewater in order to satisfy water quality standards. Fenton process as advanced oxidation process is well known as effective process for the removal of color and recalcitrant organics. However, the exactly predominant reaction mechanisms during Fenton process are not well explained among coagulation, oxidation and sedimentation so far. This research attempts to evaluate the predominant reaction with comparable results of ferric coagulation and oxidation for the Fenton process. (orig.)

  9. Sono-photo-Fenton oxidation of bisphenol-A over a LaFeO3 perovskite catalyst.

    Science.gov (United States)

    Dükkancı, Meral

    2018-01-01

    In this study, oxidation of bisphenol-A (IUPAC name - 2,2-(4,4-dihydroxyphenyl, BPA), which is an endocrine disrupting phenolic compound used in the polycarbonate plastic and epoxy resin industry, was investigated using sono-photo-Fenton process under visible light irradiation in the presence of an iron containing perovskite catalyst, LaFeO 3 . The catalyst prepared by sol-gel method, calcined at 500°C showed a catalytic activity in BPA oxidation using sono-photo-Fenton process with a degradation degree and a chemical oxygen demand (COD) reduction of 21.8% and 11.2%, respectively. Degradation of BPA was studied by using individual and combined advanced oxidation techniques including sonication, heterogeneous Fenton reaction and photo oxidation over this catalyst to understand the effect of each process on degradation of BPA. It was seen, the role of sonication was very important in hybrid sono-photo-Fenton process due to the pyrolysis and sonoluminescence effects caused by ultrasonic irradiation. The prepared LaFeO 3 perovskite catalyst was a good sonocatalyst rather than a photocatalyst. Sonication was not only the effective process to degrade BPA but also it was the cost effective process in terms of energy consumption. The studies show that the energy consumption is lower in the sono-Fenton process than those in the photo-Fenton and sono-photo- Fenton processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comparison of ultraviolet radiation/hydrogen peroxide, Fenton and photo-Fenton processes for the decolorization of reactive dyes

    Directory of Open Access Journals (Sweden)

    Radović Miljana D.

    2015-01-01

    Full Text Available The effectivness of UV/H2O2 process, Fenton and photo-Fenton process at decolorization of commercially important textile dyes Reactive Orange 4 (RO4 and Reactive Blue 19 (RB19 was evaluated. The effect of operational condition such as initial pH, initial H2O2 concentration, initial Fe2+ concentration and initial dye concentration on decolorization of RO4 and RB19 was studied. The photo-Fenton process is found to be more efficient than UV/H2O2 and Fenton process for decolorization of simulated dye bath effluent and solutions of the dyes in water alone under optimum conditions. In simulated dye bath the removal efficiency was slightly lower than for the solutions of the dyes in water alone for both dyes types. The results revealed that the tested advanced oxidation processes were very effective for decolorization of RO4 and RB19 in aqueous solution. [Projekat Ministarstva nauke Republike Srbije, br. TR34008

  11. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment.

    Science.gov (United States)

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2017-04-15

    In this study, the industrial textile wastewater was treated using a chemical-based technique (coagulation-flocculation, C-F) sequential with an advanced oxidation process (AOP: Fenton or Photo-Fenton). During the C-F, Al 2 (SO 4 ) 3 was used as coagulant and its optimal dose was determined using the jar test. The following operational conditions of C-F, maximizing the organic matter removal, were determined: 700 mg/L of Al 2 (SO 4 ) 3  at pH = 9.96. Thus, the C-F allowed to remove 98% of turbidity, 48% of Chemical Oxygen Demand (COD), and let to increase in the BOD 5 /COD ratio from 0.137 to 0.212. Subsequently, the C-F effluent was treated using each of AOPs. Their performances were optimized by the Response Surface Methodology (RSM) coupled with a Box-Behnken experimental design (BBD). The following optimal conditions of both Fenton (Fe 2+ /H 2 O 2 ) and Photo-Fenton (Fe 2+ /H 2 O 2 /UV) processes were found: Fe 2+ concentration = 1 mM, H 2 O 2 dose = 2 mL/L (19.6 mM), and pH = 3. The combination of C-F pre-treatment with the Fenton reagent, at optimized conditions, let to remove 74% of COD during 90 min of the process. The C-F sequential with Photo-Fenton process let to reach 87% of COD removal, in the same time. Moreover, the BOD 5 /COD ratio increased from 0.212 to 0.68 and from 0.212 to 0.74 using Fenton and Photo-Fenton processes, respectively. Thus, the enhancement of biodegradability with the physico-chemical treatment was proved. The depletion of H 2 O 2 was monitored during kinetic study. Strategies for improving the reaction efficiency, based on the H 2 O 2 evolution, were also tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Performance of Fluidized bed Fenton process in Degrading Acid Blue 113

    Science.gov (United States)

    Bello, M. M.; Raman, A. A.

    2017-06-01

    The performance of a fluidized bed Fenton process in degrading Acid Blue 113 (AB 113) was investigated. Fluidized bed Fenton process is a modification of conventional Fenton oxidation, aimed at reducing sludge generation and improving process performance. Response surface methodology was used to study the effects of operational parameter on the color removal from the dye. Dimensionless factors, Dye/Fe2+, H2O2/Fe2+ and pH were used as the independent variables in Box-Behnken Design (BDD). Reduced quadratic model was developed to predict the color removal. The process could remove up to 99 % of the initial color. The most significant factor for color removal was found to be Dye/Fe2+, followed by H2O2/Fe2+. Unlike conventional Fenton, the initial pH of the solution does not have a significant effect on the color removal.

  13. Electrochemical treatment of Acid Red 1 by electro-Fenton and photoelectro-Fenton processes

    Directory of Open Access Journals (Sweden)

    Camilo González-Vargas

    2014-12-01

    Full Text Available Small volumes (100 mL of acidic aqueous solutions with 30-200 mg L-1 TOC of the toxic azo dye Acid Red 1 (AR1 have been comparatively treated by various electrochemical advanced oxidation processes (EAOPs. The electrolytic system consisted of a BDD anode able to produce ·OH and an air-diffusion cathode that generated H2O2, which subsequently reacted with added Fe2+ to yield additional ·OH from Fenton’s reaction. Under optimized conditions (i.e., 1.0 mM Fe2+, 60 mA cm-2, pH 3.0, 35 ºC, the analysis of the initial rates for decolourization and AR1 decay assuming a pseudo-first-order kinetics revealed a much higher rate constant for photoelectro-Fenton (PEF, ~ 2.7x10-3 s-1 compared to electro-Fenton (EF, ~ 0.6x10-3 s-1. Mineralization after 180 min was also greater in the former treatment (90 % vs 63 %. The use of UV radiation in PEF contributed to Fe(III photoreduction as well as to photodecarboxylation of refractory intermediates, yielding a mineralization current efficiency as high as 85% during the treatment of solutions of 200 mg L-1 TOC. Primary reaction intermediates included three aromatic derivatives with the initial naphthalenic structure and four molecules only featuring benzenic rings, which were totally mineralized in PEF. 

  14. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity

    International Nuclear Information System (INIS)

    Rodrigues-Silva, Caio; Maniero, Milena Guedes; Rath, Susanne; Guimarães, José Roberto

    2013-01-01

    Flumequine is a broad-spectrum antimicrobial agent of the quinolone class, and it is widely used as a veterinary drug in food-producing animals. The presence of flumequine in the environment may contribute to the development of drug resistant bacterial strains. In this study, water samples fortified with flumequine (500 μg L −1 ) were degraded using the Fenton and photo-Fenton processes. The maximum degradation efficiency for flumequine by the Fenton process was approximately 40% (0.5 mmol L −1 Fe(II), 2.0 mmol L −1 H 2 O 2 and 15 min). By applying UV radiation (photo-Fenton process), the efficiency reached more than 94% in 60 min when 0.25 mmol L −1 Fe(II) and 10.0 mmol L −1 H 2 O 2 were used. Under these conditions, the Fenton process was able to reduce the biological activity, whereas the photo-Fenton process eliminated almost all of the antimicrobial activity because it was not detected. Four byproducts with an m/z of 244, 238, 220 and 202 were identified by mass spectrometry, and a degradation pathway for flumequine was proposed. The byproducts were derived from decarboxylation and defluorination reactions and from modifications in the alkylamino chain of the fluoroquinolone. - Highlights: ► Photo-Fenton process achieved the maximum performance, degrading 94% of flumequine. ► As the flumequine concentration decreased, antimicrobial activity also decreased. ► Four byproducts with m/z of 244, 238, 220 and 202 were identified. ► A degradation pathway for flumequine was proposed

  15. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues-Silva, Caio; Maniero, Milena Guedes [School of Civil Engineering, Architecture and Urbanism, University of Campinas — UNICAMP, P.O. Box 6021, CEP 13083-852, Campinas, SP (Brazil); Rath, Susanne [Chemistry Institute, University of Campinas — UNICAMP, P.O. Box 6154, CEP 13084-971, Campinas, SP (Brazil); Guimarães, José Roberto, E-mail: jorober@fec.unicamp.br [School of Civil Engineering, Architecture and Urbanism, University of Campinas — UNICAMP, P.O. Box 6021, CEP 13083-852, Campinas, SP (Brazil)

    2013-02-15

    Flumequine is a broad-spectrum antimicrobial agent of the quinolone class, and it is widely used as a veterinary drug in food-producing animals. The presence of flumequine in the environment may contribute to the development of drug resistant bacterial strains. In this study, water samples fortified with flumequine (500 μg L{sup −1}) were degraded using the Fenton and photo-Fenton processes. The maximum degradation efficiency for flumequine by the Fenton process was approximately 40% (0.5 mmol L{sup −1} Fe(II), 2.0 mmol L{sup −1} H{sub 2}O{sub 2} and 15 min). By applying UV radiation (photo-Fenton process), the efficiency reached more than 94% in 60 min when 0.25 mmol L{sup −1} Fe(II) and 10.0 mmol L{sup −1} H{sub 2}O{sub 2} were used. Under these conditions, the Fenton process was able to reduce the biological activity, whereas the photo-Fenton process eliminated almost all of the antimicrobial activity because it was not detected. Four byproducts with an m/z of 244, 238, 220 and 202 were identified by mass spectrometry, and a degradation pathway for flumequine was proposed. The byproducts were derived from decarboxylation and defluorination reactions and from modifications in the alkylamino chain of the fluoroquinolone. - Highlights: ► Photo-Fenton process achieved the maximum performance, degrading 94% of flumequine. ► As the flumequine concentration decreased, antimicrobial activity also decreased. ► Four byproducts with m/z of 244, 238, 220 and 202 were identified. ► A degradation pathway for flumequine was proposed.

  16. Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions.

    Science.gov (United States)

    Meijide, J; Gómez, J; Pazos, M; Sanromán, M A

    2016-12-05

    In this work, a comparative study using anodic oxidation, Fenton and electro-Fenton treatments was performed in order to determine the synergic effect for the removal of thiamethoxan. The results determined that electro-Fenton process showed high efficiency in comparison with Fenton or anodic oxidation. After that, this hybrid process was optimized and the influence of iron catalyst concentration and applied current intensity on the degradation and mineralization were evaluated. Degradation profiles were monitored by high performance liquid chromatography (HPLC) being satisfactorily described by pseudo-first order kinetic model. At the optimal experimental conditions (300mA and 0.2mM Fe(+2)), the complete degradation of thiamethoxam was achieved after 10min. On the other hand, mineralization of thiamethoxam was monitored by total organic carbon (TOC) decay reaching more than 92% of TOC removal after 8h. Furthermore, a plausible mineralization pathway for the thiamethoxam degradation was proposed based on the identification of by-products such as aromatic intermediates, carboxylic acids and inorganic ions released throughout electro-Fenton process. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2013-01-01

    Full Text Available Oxidation by Fenton-like (Fe3+/H2O2 reactions is proven to be an economically feasible process for destruction of a variety of hazardous pollutants in wastewater. In this study, the degradation and mineralization of malachite green dye are reported using Fenton-like reaction. The effects of different parameters like pH of the solution, the initial concentrations of Fe3+, H2O2, and dye, temperature, and added electrolytes (Cl− and on the oxidation of the dye were investigated. Optimized condition was determined. The efficiency of 95.5% degradation of MAG after 15 minutes of reaction at pH 3 was obtained. TOC removal indicates partial and insignificant mineralization of malachite green dye. The results of experiments showed that degradation of malachite green dye in Fenton-like oxidation process can be described with a pseudo-second-order kinetic model. The thermodynamic constants of the Fenton oxidation process were evaluated. The results implied that the oxidation process was feasible, spontaneous, and endothermic. The results will be useful for designing the treatment systems of various dye-containing wastewaters.

  18. Evaluation of Fenton Process in Removal of Direct Red 81

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2016-01-01

    Full Text Available Background: Dyes are visible materials and are considered as one of the hazardous components that make up the industrial waste. Dye compounds in natural water, even in very low concentrations, will lead to environmental problems. Azo dyes are compounds with one or more –N=N– groups and are used in textile industry. Because of its low price, solubility, and stability, azo dyes are widely used in the textile industry. Direct Red 81 (DR81 is one of the azo dyes, which is removed from bodies of water, using various methods. This study aimed to assess DR81 dye removal by Fenton oxidation and the effects of various parameters on this process. Methods: Decolorization tests by Fenton oxidation were performed at dye concentrations of 50, 500, 100 and 1000 mg/L; hydrogen peroxide concentrations of 0, 10, 30, 60 and 120 mg/L; iron (II sulfate heptahydrate concentrations of 0, 3, 5, 20 and 50 mg/L; and pH levels of 3, 5, 7 and 10 for durations of 5, 10, 20, 30, 60 and 180 minutes. Results: The optimal condition occurred at a dye concentration of 20 mg/L, hydrogen peroxide concentration of 120 mg/L, bivalent iron concentration of 100 mg/L, pH of 3, and duration of 30 minutes. Under such conditions, the maximum dye removal rate was 88.98%. Conclusion: The results showed that DR81 could be decomposed and removed by Fenton oxidation. In addition, the removal of Direct Red 81 (DR81 depends on several factors such as dye concentration, reaction time, concentrations of hydrogen peroxide and iron, and pH

  19. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity.

    Science.gov (United States)

    Serna-Galvis, Efraim A; Giraldo-Aguirre, Ana L; Silva-Agredo, Javier; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2017-03-01

    This study evaluates the treatment of the antibiotic cloxacillin (CLX) in water by means of electrochemical oxidation, TiO 2 photocatalysis, and the photo-Fenton system. The three treatments completely removed cloxacillin and eliminated the residual antimicrobial activity from synthetic pharmaceutical wastewater containing the antibiotic, commercial excipients, and inorganic ions. However, significant differences in the degradation routes were found. In the photo-Fenton process, the hydroxyl radical was involved in the antibiotic removal, while in the TiO 2 photocatalysis process, the action of both the holes and the adsorbed hydroxyl radicals degraded the pollutant. In the electrochemical treatment (using a Ti/IrO 2 anode in sodium chloride as supporting electrolyte), oxidation via HClO played the main role in the removal of CLX. The analysis of initial by-products showed five different mechanistic pathways: oxidation of the thioether group, opening of the central β-lactam ring, breakdown of the secondary amide, hydroxylation of the aromatic ring, and decarboxylation. All the oxidation processes exhibited the three first pathways. Moreover, the aromatic ring hydroxylation was found in both photochemical treatments, while the decarboxylation of the pollutant was only observed in the TiO 2 photocatalysis process. As a consequence of the degradation routes and mechanistic pathways, the elimination of organic carbon was different. After 480 and 240 min, the TiO 2 photocatalysis and photo-Fenton processes achieved ∼45 and ∼15 % of mineralization, respectively. During the electrochemical treatment, 100 % of the organic carbon remained even after the antibiotic was treated four times the time needed to degrade it. In contrast, in all processes, a natural matrix (mineral water) did not considerably inhibit pollutant elimination. However, the presence of glucose in the water significantly affected the degradation of CLX by means of TiO 2 photocatalysis.

  20. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes - A review.

    Science.gov (United States)

    Mirzaei, Amir; Chen, Zhi; Haghighat, Fariborz; Yerushalmi, Laleh

    2017-05-01

    The presence of emerging contaminants such as pharmaceuticals in natural waters has raised increasing concern due to their frequent appearance and persistence in the aquatic ecosystem and the threat to health and safety of aquatic life, even at trace concentrations. Conventional water treatment processes are known to be generally inadequate for the elimination of these persistent contaminants. Therefore, the use of advanced oxidation processes (AOPs) which are able to efficiently oxidize organic pollutants has attracted a great amount of attention. The main limitation of AOPs lies in their high operating costs associated with the consumption of energy and chemicals. Fenton-based processes, which utilize nontoxic and common reagents and potentially can exploit solar energy, will considerably reduce the removal cost of recalcitrant contaminants. The disadvantages of homogeneous Fenton processes, such as the generation of high amounts of iron-containing sludge and limited operational range of pH, have prompted much attention to the use of heterogeneous Fenton processes. In this review, the impacts of some controlling parameters including the H 2 O 2 and catalyst dosage, solution pH, initial contaminants concentrations, temperature, type of catalyst, intensity of irradiation, reaction time and feeding mode on the removal efficiencies of hetero/homogeneous Fenton processes are discussed. In addition, the combination of Fenton-type processes with biological systems as the pre/post treatment stages in pilot-scale operations is considered. The reported experimental results obtained by using Fenton and photo-Fenton processes for the elimination of pharmaceutical contaminants are also compiled and evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Degradation of malachite green in aqueous solution by Fenton process.

    Science.gov (United States)

    Hameed, B H; Lee, T W

    2009-05-30

    In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration=0.50mM and initial ferrous concentration=0.10mM for initial MG concentration of 20mg/L at 30 degrees C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.

  2. Removal of organic pollutants from produced water using Fenton oxidation

    Science.gov (United States)

    Afzal, Talia; Hasnain Isa, Mohamed; Mustafa, Muhammad Raza ul

    2018-03-01

    Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  3. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    International Nuclear Information System (INIS)

    Elmolla, Emad S.; Chaudhuri, Malay

    2011-01-01

    Highlights: · The work focused on hazardous wastewater (antibiotic wastewater) treatment. · Complete degradation of the antibiotics achieved by the treatment process. · The SBR performance was found to be very sensitive to BOD 5 /COD ratio below 0.40. · Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio). The SBR performance was found to be very sensitive to BOD 5 /COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe 2+ dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H 2 O 2 /COD molar ratio 2, H 2 O 2 /Fe 2+ molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  4. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  5. Degradation of dyestuff materials by fenton oxidation, Part 4

    International Nuclear Information System (INIS)

    Shahrour, Kh.; Hachem, Ch.; Karabet, F.

    2008-01-01

    The oxidative degradation of various kinds of dyes (Azo carmine B, Tartrazine, Calcon, Methyle Orange, and Coomassie Brilliant Blue G 250, Methylene Blue, Bismark Brown Y(G) and Black 5) have been studied using Fenton's reagent (Fe 2+ and H 2 O 2 ). Many experiments were carried out on Azo carmine B as a model with initial concentration of 10 -4 to investigate the process's optimal conditions, pH, H 2 O 2 dosage, Fe 2+ dosage , temperature. The optimal conditions found were: pH=3, [H 2 O 2 ]=3 x 10 -3 M, [Fe 2+ ]=10 -4 M, t=60 Centigrade. under these contritions it was observed that Azo carmine B can be degraded at high extent (96.46%) after 50 min, however, the mineralization reached only (31.2%) in term of TOC and (41.1%) in term of COD. Results show that dyes are decomposed in two-stage reaction. In the first stage (Fe 2= /H 2 O 2 ) dyes decomposes rapidly within 0.5-5 min and the reaction obeys the pseudo-first-order. In the second stage (Fe 3+ /H 2 O 2 ) the dye decomposition is somewhat less rapidly, and the reaction follows the first order rate kinetic with respect to the dye concentration. (author)

  6. Assessment of the advanced oxidation process , photo-fenton, on the degradation of polyaromatics hydrocarbons contained on the aqueous part of oil in superficial sea water; Avaliacao do processo oxidativo avancado, foto-fenton, na degradacao dos hidrocarbonetos poliaromaticos contidos na fracao soluvel do petroleo em agua superficial salina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rita C.R. da; Silva, Valdinete L. da; Paim, Ana Paula Silveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Rocha, Otidene R.S. da; Duarte, Marcia M.L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The pollution for oil has been one of the main ambient problems of the last decades. It exists an increasing interest in the study of the destination and forms of disappearance of the constituent hydrocarbons of the oil aiming at the development of more efficient methods of removal of the same ones of the environment. With objective to evaluate the process photo-fenton, in the treatment of the contaminated saline superficial water with polyaromatics hydrocarbons (HPAs) contained in the crude oil, mounted an experiment using reactor of black light, the hydrogen peroxide as oxidant agent. After the degradation the samples had been submitted to the analysis in the GC-MS, and for the 31 specters it was observed that the best ones resulted had been gotten when mmol of H{sub 2}O{sub 2} in 8 was used h of exposition to the irradiation and with pH of the equal system the 4. In the specter of this assay the characteristic peaks of the HPAs disappear completely or appear in a lowly intensities, proving that it had rupture of aromatical rings consequently and the degradation of the same ones or that its concentrations meet below of the limit of detention of the equipment. Soon, with the gotten results it can be concluded that the POAs, in special the process photo-fenton, is presented as a viable alternative in the contaminated saline superficial water treatment with the HPAs contained in the rude oil. (author)

  7. Effect of ethylenediamine-N,N'-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol A degradation.

    Science.gov (United States)

    Huang, Wenyu; Brigante, Marcello; Wu, Feng; Hanna, Khalil; Mailhot, Gilles

    2013-01-01

    The main disadvantage of using iron mineral in Fenton-like reactions is that the decomposition rate of organic contaminants is slower than in classic Fenton reaction using ferrous ions at acidic pH. In order to overcome these drawbacks of the Fenton process, chelating agents have been used in the investigation of Fenton heterogeneous reaction with some Fe-bearing minerals. In this work, the effect of new iron complexing agent, ethylenediamine-N,N'-disuccinic acid (EDDS), on heterogeneous Fenton and photo-Fenton system using goethite as an iron source was tested at circumneutral pH. Batch experiments including adsorption of EDDS and bisphenol A (BPA) on goethite, H(2)O(2) decomposition, dissolved iron measurement, and BPA degradation were conducted. The effects of pH, H(2)O(2) concentration, EDDS concentration, and goethite dose were studied, and the production of hydroxyl radical ((•)OH) was detected. The addition of EDDS inhibited the heterogeneous Fenton degradation of BPA but also the formation of (•)OH. The presence of EDDS decreases the reactivity of goethite toward H(2)O(2) because EDDS adsorbs strongly onto the goethite surface and alters catalytic sites. However, the addition of EDDS can improve the heterogeneous photo-Fenton degradation of BPA through the propagation into homogeneous reaction and formation of photochemically efficient Fe-EDDS complex. The overall effect of EDDS is dependent on the H(2)O(2) and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O (2) (•-) to generate Fe(II) species from Fe(III) reduction. Low concentrations of H(2)O(2) (0.1 mM) and EDDS (0.1 mM) were required as optimal conditions for complete BPA removal. These findings regarding the capability of EDDS/goethite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

  8. Pretreatment of furfural industrial wastewater by Fenton, electro-Fenton and Fe(II)-activated peroxydisulfate processes: a comparative study.

    Science.gov (United States)

    Yang, C W; Wang, D; Tang, Q

    2014-01-01

    The Fenton, electro-Fenton and Fe(II)-activated peroxydisulfate (PDS) processes have been applied for the treatment of actual furfural industrial wastewater in this paper. Through the comparative study of the three processes, a suitable pretreatment technology for actual furfural wastewater treatment was obtained, and the mechanism and dynamics process of this technology is discussed. The experimental results show that Fenton technology has a good and stable effect without adjusting pH of furfural wastewater. At optimal conditions, which were 40 mmol/L H₂O₂ initial concentration and 10 mmol/L Fe²⁺ initial concentration, the chemical oxygen demand (COD) removal rate can reach 81.2% after 90 min reaction at 80 °C temperature. The PDS process also has a good performance. The COD removal rate could attain 80.3% when Na₂S₂O₈ initial concentration was 4.2 mmol/L, Fe²⁺ initial concentration was 0.1 mol/L, the temperature remained at 70 °C, and pH value remained at 2.0. The electro-Fenton process was not competent to deal with the high-temperature furfural industrial wastewater and only 10.2% COD was degraded at 80 °C temperature in the optimal conditions (2.25 mA/cm² current density, 4 mg/L Na₂SO₄, 0.3 m³/h aeration rate). For the Fenton, electro-Fenton and PDS processes in pretreatment of furfural wastewater, their kinetic processes follow the pseudo first order kinetics law. The pretreatment pathways of furfural wastewater degradation are also investigated in this study. The results show that furfural and furan formic acid in furfural wastewater were preferentially degraded by Fenton technology. Furfural can be degraded into low-toxicity or nontoxic compounds by Fenton pretreatment technology, which could make furfural wastewater harmless and even reusable.

  9. ADVANTAGES/DISADVANTAGES FOR ISCO METHODS IN-SITU FENTON OXIDATION IN-SITU PERMANGANATE OXIDATION

    Science.gov (United States)

    The advantages and disadvantages of in-situ Fenton oxidation and in-situ permanganate oxidation will be presented. This presentation will provide a brief overview of each technology and a detailed analysis of the advantages and disadvantages of each technology. Included in the ...

  10. Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals.

    Science.gov (United States)

    Zhang, Minmin; Jang, Chang-Hyun

    2015-08-01

    The lipid peroxidation process has attracted much attention because of the growing evidence of its involvement in the pathogenesis of age-related diseases. Herein, we report a simple, label-free method to study the oxidation of phospholipids by the Fenton reaction at the interface between an aqueous phase and immiscible liquid crystals (LCs). The different images produced by the orientation of 4-cyano-4'-pentylbiphenyl (5CB) corresponded to the presence or absence of oxidized 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG). The oxidation effects of the Fenton reaction on DOPG were evaluated by monitoring the orientational response of liquid crystals upon contact with the oxidized DOPG solutions. DOPG was oxidized into chain-changed products containing hydroxy, carbonyl, or aldehyde groups, resulting in the rearrangement of the phospholipid layer. This induced the orientational transition of LCs from homeotropic to planar states; therefore, a dark to bright optical shift was observed. This shift was due to the Fenton reaction preventing DOPG to induce the orientational alignment of LCs at the aqueous/LC interface. We also used an ultraviolet spectrophotometer to confirm the effects of oxidation on phospholipids by the Fenton reaction. Using this simple method, a new approach for investigating phospholipid oxidation was established with high resolution and easy accessibility. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads

    International Nuclear Information System (INIS)

    Rosales, E.; Iglesias, O.; Pazos, M.; Sanromán, M.A.

    2012-01-01

    Highlights: ► Catalytic activity of Fe alginate gel beads for the remediation of wastewater was tested. ► New electro-Fenton process for the remediation of polluted wastewater. ► Continuous dye treatment without operational problem with high removal. - Abstract: This study focuses on the application of electro-Fenton technique by use of catalytic activity of Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes. The Fe alginate gel beads were evaluated for decolourisation of two typical dyes, Lissamine Green B and Azure B under electro-Fenton process. After characterization of Fe alginate gel beads, the pH effect on the process with Fe alginate beads and a comparative study of the electro-Fenton process with free Fe and Fe alginate bead was done. The results showed that the use of Fe alginate beads increases the efficiency of the process; moreover the developed particles show a physical integrity in a wide range of pH (2–8). Around 98–100% of dye decolourisation was obtained for both dyes by electro-Fenton process in successive batches. Therefore, the process was performed with Fe alginate beads in a bubble continuous reactor. High color removal (87–98%) was attained for both dyes operating at a residence time of 30 min, without operational problems and maintaining particle shapes throughout the oxidation process. Consequently, the stable performance of Fe alginate beads opens promising perspectives for fast and economical treatment of wastewater polluted by dyes or similar organic contaminants.

  12. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, E.; Iglesias, O.; Pazos, M. [Department of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende 36310, Vigo (Spain); Sanroman, M.A., E-mail: sanroman@uvigo.es [Department of Chemical Engineering, University of Vigo, Isaac Newton Building, Campus As Lagoas, Marcosende 36310, Vigo (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Catalytic activity of Fe alginate gel beads for the remediation of wastewater was tested. Black-Right-Pointing-Pointer New electro-Fenton process for the remediation of polluted wastewater. Black-Right-Pointing-Pointer Continuous dye treatment without operational problem with high removal. - Abstract: This study focuses on the application of electro-Fenton technique by use of catalytic activity of Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes. The Fe alginate gel beads were evaluated for decolourisation of two typical dyes, Lissamine Green B and Azure B under electro-Fenton process. After characterization of Fe alginate gel beads, the pH effect on the process with Fe alginate beads and a comparative study of the electro-Fenton process with free Fe and Fe alginate bead was done. The results showed that the use of Fe alginate beads increases the efficiency of the process; moreover the developed particles show a physical integrity in a wide range of pH (2-8). Around 98-100% of dye decolourisation was obtained for both dyes by electro-Fenton process in successive batches. Therefore, the process was performed with Fe alginate beads in a bubble continuous reactor. High color removal (87-98%) was attained for both dyes operating at a residence time of 30 min, without operational problems and maintaining particle shapes throughout the oxidation process. Consequently, the stable performance of Fe alginate beads opens promising perspectives for fast and economical treatment of wastewater polluted by dyes or similar organic contaminants.

  13. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    Directory of Open Access Journals (Sweden)

    Maria Ángeles Fernández de Dios

    2014-01-01

    Full Text Available The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption.

  14. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    Science.gov (United States)

    Fernández de Dios, Maria Ángeles; Iglesias, Olaia; Pazos, Marta; Sanromán, Maria Ángeles

    2014-01-01

    The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs) were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption. PMID:24723828

  15. Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation.

    Science.gov (United States)

    Justino, Celine; Marques, Ana Gabriela; Duarte, Kátia Reis; Duarte, Armando Costa; Pereira, Ruth; Rocha-Santos, Teresa; Freitas, Ana Cristina

    2010-03-01

    Olive oil mill wastewater (OOMW) environmental impacts minimization have been attempted by developing more effective processes, but no chemical or biological treatments were found to be totally effective to mitigate their impact on receiving systems. This work is the first that reports simultaneously the efficiency of three different approaches: biological treatment by two fungal species (Trametes versicolor or Pleurotus sajor caju), enzymatic treatment by laccase, and chemical treatment by photo-Fenton oxidation on phenols removal. Those treatments were performed on OOMW with or without phenol supplement (p-coumaric, vanillin, guaiacol, vanillic acid, or tyrosol). OOMW samples resulted from treatments were extracted for phenols using liquid-liquid extraction and analyzed by gas chromatography coupled to mass spectrometry. Treatment with T. versicolor or P. sajor caju were able to remove between 22% and 74% and between 8% and 76% of phenols, respectively. Treatment by laccase was able to reduce 4% to 70% of phenols whereas treatment by photo-Fenton oxidation was responsible for 100% phenols reduction. Range of phenol degradation was equivalent between T. versicolor, P. sajor caju and laccase for p-coumaric, guaiacol, caffeic acid, and tyrosol in supplemented OOMW, which enhances this enzyme role in the biological treatment promoted by these two species. Phenols were removed more efficiently by photo-Fenton treatment than by biological or enzymatic treatments. Use of fungi, laccase, or photo-Fenton presents great potential for removing phenols from OOMW. This should be further assessed by increasing the application scale and the reactor configurations effect on the performance, besides a toxicity evaluation of treated wastewater in comparison to raw wastewater.

  16. Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review.

    Science.gov (United States)

    Poza-Nogueiras, Verónica; Rosales, Emilio; Pazos, Marta; Sanromán, M Ángeles

    2018-06-01

    Over the last decades, advanced oxidation processes have often been used alone, or combined with other techniques, for remediation of ground and surface water pollutants. The application of heterogeneous catalysis to electrochemical advanced oxidation processes is especially useful due to its efficiency and environmental safety. Among those processes, electro-Fenton stands out as the one in which heterogeneous catalysis has been broadly applied. Thus, this review has introduced an up-to-date collation of the current knowledge of the heterogeneous electro-Fenton process, highlighting recent advances in the use of different catalysts such as iron minerals (pyrite, magnetite or goethite), prepared catalysts by the load of metals in inorganic and organic materials, nanoparticles, and the inclusion of catalysts on the cathode. The effects of physical-chemical parameters as well as the mechanisms involved are critically assessed. Finally, although the utilization of this process to remediation of wastewater overwhelmingly outnumber other utilities, several applications have been described in the context of regeneration of adsorbent or the remediation of soils as clear examples of the feasibility of the electro-Fenton process to solve different environmental problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    Science.gov (United States)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  18. UV/Fenton photo-oxidation of Drimarene Dark Red (DDR) containing textile-dye wastewater

    Science.gov (United States)

    Hudaya, T.; Anthonios, J.; Septianto, E.

    2016-11-01

    Textile dye wastewater contains organic pollutants which are non-biodegradable, characterized by low BOD/COD ratio of typically Advanced Oxidation Processes (AOPs). One of the AOPs method which is the UV/H2O2/Fe2+ (or UV/Fenton) offers not only relatively low cost but also quite effective (in terms of color removal and reaction time) treatment. This particular research aimed to optimize the conditions of UV/Fenton photo-oxidation process for Drimarene Dark Red containing textile- dye wastewater. The two main operating conditions to be optimized were the initial concentration of H2O2 ranged between 0.022-0.078 %-w and the mol ratio of Fe2+: H2O2 was varied from 1: 13 up to 1: 45, using the Central Composite Design experimental matrix. The photo-oxidation was carried out at the optimum pH of 3 from some previous experiments. The best processing conditions of the photo-oxidation of Drimarene Dark Red (DDR) were found at the initial concentration of H2O2 at 0.050%-w and the mole ratio Fe2+: H2O2 of 1: 22. Under these conditions, the measured 2nd order pseudo-rate constantwas 0.021 M-1.min-1. The DDR color removal of 90% was surprisingly achievable within only 10 minutes reaction time.

  19. Oxidative Degradation of Phenol containing Wastewater using Fenton Reagent, Permanganate and Ultraviolet Radiation

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.M.; Talaat, H.A.; Sorour, M.H.

    1999-01-01

    Phenol containing wastewaters are generated by numerous industrial units including integrated steel mills, textile mills, plastic production, etc. The present work is targeted to explore the viable oxidation techniques for degradation of phenolic wastewater. Three modes of treatment have been adopted in this study, namely, sole oxidant mode using Fenton reagent or permanganate, UV-assisted oxidation and two consequent chemical oxidation steps. Results indicated the superiority of fenton reagent over KMnO 4 oxidation in the sole oxidant mode. On the other hand, UV-assisted KMnO 4 oxidation enables almost complete COD reduction. Dual chemical oxidation mode employing KMnO 4 oxidation followed by Fenton reagent is also an efficient oxidative degradation system

  20. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    Science.gov (United States)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  1. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments

    International Nuclear Information System (INIS)

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-01-01

    Highlights: • Fe-C microelectrolysis-Fenton process is proposed to pretreat landfill leachate. • Operating variables are optimized by response surface methodology (RSM). • 3D-EEMs and MW distribution explain the mechanism of enhanced biodegradability. • Fixed-bed column experiments are performed at different flow rates. - Abstract: A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H 2 O 2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD 5 /COD) as the responses. The highest COD removal (74.59%) and BOD 5 /COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72 g/L, H 2 O 2 concentration 12.32 mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  2. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liqun, E-mail: 691127317@qq.com [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Wang, Dongbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Xiaoming, E-mail: xmli121x@hotmail.com [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-11-15

    Highlights: • Fe-C microelectrolysis-Fenton process is proposed to pretreat landfill leachate. • Operating variables are optimized by response surface methodology (RSM). • 3D-EEMs and MW distribution explain the mechanism of enhanced biodegradability. • Fixed-bed column experiments are performed at different flow rates. - Abstract: A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H{sub 2}O{sub 2} concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD{sub 5}/COD) as the responses. The highest COD removal (74.59%) and BOD{sub 5}/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72 g/L, H{sub 2}O{sub 2} concentration 12.32 mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  3. Optimization of the synthesis process of an iron oxide nanocatalyst supported on activated carbon for the inactivation of Ascaris eggs in water using the heterogeneous Fenton-like reaction.

    Science.gov (United States)

    Morales-Pérez, Ariadna A; Maravilla, Pablo; Solís-López, Myriam; Schouwenaars, Rafael; Durán-Moreno, Alfonso; Ramírez-Zamora, Rosa-María

    2016-01-01

    An experimental design methodology was used to optimize the synthesis of an iron-supported nanocatalyst as well as the inactivation process of Ascaris eggs (Ae) using this material. A factor screening design was used for identifying the significant experimental factors for nanocatalyst support (supported %Fe, (w/w), temperature and time of calcination) and for the inactivation process called the heterogeneous Fenton-like reaction (H2O2 dose, mass ratio Fe/H2O2, pH and reaction time). The optimization of the significant factors was carried out using a face-centered central composite design. The optimal operating conditions for both processes were estimated with a statistical model and implemented experimentally with five replicates. The predicted value of the Ae inactivation rate was close to the laboratory results. At the optimal operating conditions of the nanocatalyst production and Ae inactivation process, the Ascaris ova showed genomic damage to the point that no cell reparation was possible showing that this advanced oxidation process was highly efficient for inactivating this pathogen.

  4. Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Nelly; Sirés, Ignasi; Garrido, José Antonio; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Brillas, Enric, E-mail: brillas@ub.edu

    2016-12-05

    Highlights: • trans-Ferulic acid degradation by EAOPs using a stirred BDD/air-diffusion cell. • Slow substrate abatement and poor mineralization by AO-H{sub 2}O{sub 2}. • 98% Mineralization by PEF, but with rapid and similar substrate decay than by EF. • Quicker degradation by SPEF due to the more potent photolytic action of sunlight. • Reaction pathway with four primary aromatic products and three final carboxylic acids. - Abstract: Solutions of pH 3.0 containing trans-ferulic acid, a phenolic compound in olive oil mill wastewater, have been comparatively degraded by anodic oxidation with electrogenerated H{sub 2}O{sub 2} (AO-H{sub 2}O{sub 2}), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were performed with a BDD/air-diffusion cell, where oxidizing ·OH was produced from water discharge at the BDD anode and/or in the solution bulk from Fenton’s reaction between cathodically generated H{sub 2}O{sub 2} and added catalytic Fe{sup 2+}. The substrate was very slowly removed by AO-H{sub 2}O{sub 2}, whereas it was very rapidly abated by EF and PEF, at similar rate in both cases, due to its fast reaction with ·OH in the bulk. The AO-H{sub 2}O{sub 2} process yielded a slightly lower mineralization than EF, which promoted the accumulation of barely oxidizable products like Fe(III) complexes. In contrast, the fast photolysis of these latter species under irradiation with UVA light in PEF led to an almost total mineralization with 98% total organic carbon decay. The effect of current density and substrate concentration on the performance of all treatments was examined. Several solar PEF (SPEF) trials showed its viability for the treatment of wastewater containing trans-ferulic acid at larger scale. Four primary aromatic products were identified by GC–MS analysis of electrolyzed solutions, and final carboxylic acids like fumaric, acetic and oxalic were detected by ion-exclusion HPLC. A reaction sequence for trans-ferulic acid mineralization

  5. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    Directory of Open Access Journals (Sweden)

    Sohair I. Abou-Elela

    2016-07-01

    Full Text Available The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC. The effects of operating condition on Fenton oxidation process such as hydrogen peroxide and iron concentration were investigated. In addition, kinetic study of the adsorption process was elaborated. The obtained results indicated that degradation of organic matters follows a pseudo-first order reaction with regression coefficient of 0.98. The kinetic model suggested that the rate of reaction was highly affected by the concentration of hydrogen peroxide. Moreover, the results indicated that the treatment module was very efficient in removing the organic and inorganic pollutants. The average percentage removal of chemical oxygen demand (COD, total suspended solid (TSS, oil, and grease was 98.60%, 86.60%, and 94.22% with residual values of 44, 20, and 5 mg/L, respectively. The treated effluent was complying with the National Regulatory Standards for wastewater discharge into surface water or reuse in the retting process.

  6. Natural soil mediated photo Fenton-like processes in treatment of pharmaceuticals: Batch and continuous approach.

    Science.gov (United States)

    Changotra, Rahil; Rajput, Himadri; Dhir, Amit

    2017-12-01

    This paper manifests the potential viability of soil as a cost-free catalyst in photo-Fenton-like processes for treating pharmaceuticals at large scale. Naturally available soil without any cost intensive modification was utilized as a catalyst to degrade pharmaceuticals, specifically ornidazole (ORZ) and ofloxacin (OFX). Soil was characterized and found enriched with various iron oxides like hematite, magnetite, goethite, pyrite and wustite, which contributes toward enhanced dissolution of Fe 3+ than Fe 2+ in the aqueous solution resulting in augmented rate of photo-Fenton reaction. The leached iron concentration in solution was detected during the course of experiments. The degradation of ORZ and OFX was assessed in solar induced batch experiments using H 2 O 2 as oxidant and 95% ORZ and 92% OFX removal was achieved. Elevated efficiencies were achieved due to Fe 2+ /Fe 3+ cycling, producing more hydroxyl radical leading to the existence of homogeneous and heterogeneous reactions simultaneously. The removal efficiency of solar photo-Fenton like process was also compared to photo-Fenton process with different irradiation sources (UV-A and UV-B) and were statistically analysed. Continuous-scale studies were conducted employing soil either in the form of soil beads or as a thin layer spread on the surface of baffled reactor. Soil beads were found to have satisfactory reusability and stability. 84 and 79% degradation of ORZ and OFX was achieved using soil as thin layer while with soil beads 71 and 68% degradation, respectively. HPLC and TOC study confirmed the efficient removal of both the compounds. Toxicity assessment demonstrates the inexistence of toxic intermediates during the reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Treatment of amoxicillin by O3/Fenton process in a rotating packed bed.

    Science.gov (United States)

    Li, Mo; Zeng, Zequan; Li, Yingwen; Arowo, Moses; Chen, Jianfeng; Meng, Hong; Shao, Lei

    2015-03-01

    In this study, simulated amoxicillin wastewater was treated by the O3/Fenton process in a rotating packed bed (RPB) and the results were compared with the Fenton process and the O3 followed by Fenton (O3 + Fenton) process. The chemical oxygen demand (COD) removal rate and the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD5/COD) in the O3/Fenton process were approximately 17% and 26%, respectively, higher than those in the O3 + Fenton process with an initial pH of 3. The COD removal rate of the amoxicillin solution reached maximum at the Fe(II) concentration of 0.6 mM, temperature of 25 °C, rotation speed of 800 rpm and initial pH of 3. The BOD5/COD of the amoxicillin solution increased from 0 to 0.38 after the solution was treated by the O3/Fenton process. Analysis of the intermediates indicated that the pathway of amoxicillin degradation in the O3/Fenton process was similar to that in the O3 + Fenton process. Contrast experiment results showed that amoxicillin degradation was significantly intensified in the RPB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments.

    Science.gov (United States)

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-11-15

    A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H2O2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD5/COD) as the responses. The highest COD removal (74.59%) and BOD5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72g/L, H2O2 concentration 12.32mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Disilicate-Assisted Iron Electrolysis for Sequential Fenton-Oxidation and Coagulation of Aqueous Contaminants.

    Science.gov (United States)

    Cui, Jiaxin; Wang, Xu; Zhang, Jing; Qiu, Xiaoyu; Wang, Dihua; Zhao, Ying; Xi, Beidou; Alshawabkeh, Akram N; Mao, Xuhui

    2017-07-18

    Sodium disilicate (SD), an inorganic and environmentally friendly ligand, is introduced into the conventional iron electrolysis system to achieve an oxidizing Fenton process to degrade organic pollutants. Electrolytic ferrous ions, which are complexed by the disilicate ions, can chemically reduce dioxygen molecules via consecutive reduction steps, producing H 2 O 2 for the Fenton-oxidation of organics. At the near-neutral pH (from 6 to 8), the disilicate-Fe(II) complexes possess strong reducing capabilities; therefore, a near-neutral pH rather than an acid condition is preferable for the disilicate-assisted iron electrolysis (DAIE) process. Following the DAIE process, the different complexing capacities of disilicate for ferrous/ferric ions and calcium ions can be used to break the disilicate-iron complexes. The addition of CaO or CaCl 2 can precipitate ferrous/ferric ions, disilicates and possibly heavy metals in the wastewater. Compared to previously reported organic and phosphorus ligands, SD is a low-cost inorganic agent that does not lead to secondary pollution, and would not compete with the target organic pollutants for •OH; therefore, it would greatly expand the application fields of the O 2 activation process. The combination of DAIE and CaO treatments is envisioned to be a versatile and affordable method for treating wastewater with complicated pollutants (e.g., mixtures of biorefractory organics and heavy metals).

  10. Relevance of Toxicity Assessment in Wastewater Treatments: Case Study—Four Fenton Processes Applied to the Mineralization of C.I. Acid Red 14

    Directory of Open Access Journals (Sweden)

    Rajaa Idel-aouad

    2015-01-01

    Full Text Available Fenton and Fenton-like processes, both in homogeneous and heterogeneous phases, have been applied to an aqueous solution containing the dye AR 14 in order to study the mineralization and toxicity of the solutions generated after color elimination. The mineralization of AR 14 occurred slower than the decolorization. The Microtox analysis of the treated solutions showed low toxicity intrinsic to the chemicals used in the process rather than the degradation products obtained after the treatment of the dye solution. The dye degradation for the Fenton oxidation process was initially faster than for the Fenton-like process but after a short time, the four processes showed similar degradation yields. All processes have shown good results being the heterogeneous process the most convenient since the pH adjustment is not necessary, the catalyst is recovered and reused and the generation of contaminated sludge is avoided.

  11. Relevance of Toxicity Assessment in Wastewater Treatments: Case Study-Four Fenton Processes Applied to the Mineralization of C.I. Acid Red 14.

    Science.gov (United States)

    Idel-Aouad, Rajaa; Valiente, Manuel; Gutiérrez-Bouzán, Carmen; Vilaseca, Mercè; Yaacoubi, Abdlrani; Tanouti, Boumediene; López-Mesas, Montserrat

    2015-01-01

    Fenton and Fenton-like processes, both in homogeneous and heterogeneous phases, have been applied to an aqueous solution containing the dye AR 14 in order to study the mineralization and toxicity of the solutions generated after color elimination. The mineralization of AR 14 occurred slower than the decolorization. The Microtox analysis of the treated solutions showed low toxicity intrinsic to the chemicals used in the process rather than the degradation products obtained after the treatment of the dye solution. The dye degradation for the Fenton oxidation process was initially faster than for the Fenton-like process but after a short time, the four processes showed similar degradation yields. All processes have shown good results being the heterogeneous process the most convenient since the pH adjustment is not necessary, the catalyst is recovered and reused and the generation of contaminated sludge is avoided.

  12. Decomposition of nitrotoluenes in wastewater by sonoelectrochemical and sonoelectro-Fenton oxidation.

    Science.gov (United States)

    Chen, Wen-Shing; Huang, Chi-Pin

    2014-03-01

    Oxidative degradation of dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) in wastewater was conducted using electrochemical and electro-Fenton processes respectively, combined with ultrasonic irradiation, wherein a synergistic effect is observed. Experiments were carried out to elucidate the influence of various operating variables on the sonoelectrolytic behavior, such as electrode potential, sonoelectrolytic temperature, acidity of wastewater, oxygen dosage, and dosage of ferrous ions. It deserves to note that the nitrotoluene contaminants could be completely decomposed by sonoelectro-Fenton method, wherein hydrogen peroxide was in situ generated from cathodic reduction of oxygen, supplied partially by anodic oxidation of water. During the sonoelectrolytic process, in spite of existence of degassing phenomenon, the high yield of hydrogen peroxide was produced due to the significantly enhanced mass transfer rate of oxygen toward the cathode, caused by ultrasonic irradiation. Because higher removal efficiency of DNTs and TNT obtained at ambient conditions, it is believed that the sonoelectrolytic method is potentially applied to dispose wastewater from toluene nitration processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Electro-Fenton for control and removal of micropollutants - process optimization and energy efficiency.

    Science.gov (United States)

    Mousset, E; Wang, Z; Lefebvre, O

    2016-11-01

    The removal of micropollutants is an important environmental and health issue. Electro-Fenton offers an electrochemical advanced treatment that is particularly effective for the breakdown of aromatic contaminants. Due to the wide variety of chemicals, it is preferable to analyze model contaminants, such as phenol, when optimizing and assessing the efficacy of a novel treatment process. In this study, we therefore made use of innovative types of electrode material and optimized operating parameters (current density and aeration rate) for the removal of phenol by electro-Fenton, with a view to maximize the energy efficiency of the process. By determining the best current density (1.25 mA cm -2 ), frequency of aeration (continuous) and by using a boron-doped diamond (BDD) anode, it was possible to achieve over 98.5% phenol (1 mM) removal within 1.5 h. BDD further outcompeted platinum as anode material in terms of mineralization rate and yield, and displayed low energy consumption of 0.08 kWh (g-TOC) -1 , about one order of magnitude lower than other advanced oxidation processes, such as UV/TiO 2 and UV/O 3 . Furthermore, a carbon cloth anode proved even more cost-effective than BDD if the end goal is the removal of phenol by electro-Fenton instead of complete mineralization.

  14. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  15. Application of intensified Fenton oxidation to the treatment of sawmill wastewater.

    Science.gov (United States)

    Munoz, Macarena; Pliego, Gema; de Pedro, Zahara M; Casas, Jose A; Rodriguez, Juan J

    2014-08-01

    The application of the Fenton process for the treatment of sawmill wastewater has been investigated. The sawmill wastewater was characterized by a moderate COD load (≈3gL(-1)), high ecotoxicity (≈ 40 toxicity units) and almost negligible BOD/COD ratio (5×10(-3)) due to the presence of different fungicides such as propiconazole and 3-iodo-2-propynyl butyl carbamate, being the wastewater classified as non-biodegradable. The effect of the key Fenton variables (temperature (50-120°C), catalyst concentration (25-100 mg L(-1) Fe(3+)), H2O2 dose (1 and 2 times the stoichiometric dose) and the mode of H2O2 addition) on COD reduction and mineralization was investigated in order to fulfill the allowable local limits for industrial wastewater discharge and achieve an efficient consumption of H2O2 in short reaction times (1h). Increasing the temperature clearly improved the oxidation rate and mineralization degree, achieving 60% COD reduction and 50% mineralization at 120°C after 1h with the stoichiometric H2O2 dose and 25 mg L(-1) Fe(3+). The distribution of H2O2 in multiple additions throughout the reaction time was clearly beneficial avoiding competitive scavenging reactions and thus, achieving higher efficiencies of H2O2 consumption (XCOD ≈ 80%). The main by-products were non-toxic short-chain organic acids (acetic, oxalic and formic). Thus, the application of the Fenton process allowed reaching the local limits for industrial wastewater discharge into local sewer system at a relatively low cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation

    International Nuclear Information System (INIS)

    Ma, Liang; Zhou, Minghua; Ren, Gengbo; Yang, Weilu; Liang, Liang

    2016-01-01

    Highlights: • A highly energy-efficient flow-through electro-Fenton reactor was designed. • It had high H 2 O 2 yield and low energy consumption for organic pollutants degradation. • The effect of operational parameters was optimized and possible process mechanism was studied. • The novel system performed wide practicability and potential for organic pollutants degradation. - Abstract: A highly energy-efficient flow-through Electro-Fenton (E-Fenton) reactor for oxidation of methylene blue (MB) from aqueous solution was designed using a perforated DSA as anode and the graphite felt modified by carbon black and polytetrafluoroethylene (PTFE) as cathode for the in situ generation of H 2 O 2 . The modified cathode had a high H 2 O 2 production with low energy consumption, which was characterized by scanning electron microscopy (SEM), nitrogen adsorption-desorption study and contact angle. The flow-through E-Fenton system was compared to the flow-by and regular one, and confirmed to be best on MB removal and TOC degradation. The operational parameters such as current density, pH, Fe 2+ concentration and flow rate were optimized. The MB and TOC removal efficiency of the effluents could keep above 90% and 50%, respectively, and the energy consumption was 23.0 kWh/kgTOC at the current density of 50 mA, pH 3, 0.3 mM Fe 2+ , and the flow rate of 7 mL/min. ·OH was proved to be the main oxidizing species in this system. After 5 times operation, the system, especially cathode, still showed good stability. Five more organic pollutants including orange II (OG), tartrazine, acetylsalicylic acid (ASA), tetracycline (TC) and 2,4-dichlorophen (2,4-DCP) were investigated and the electric energy consumption (EEC) was compared with literatures. All results demonstrated that this flow-through E-Fenton system was energy-efficient and potential for degradation of organic pollutants.

  17. Improvement of biodegradability of oil wastewater contained PAM by pretreatment with Fenton oxidation

    International Nuclear Information System (INIS)

    Bao, M.; Wang, N.

    2008-01-01

    The use of polymer flooding in enhanced oil recovery operations has resulted in higher levels of polyacrylamide (PAM) found in oil wastewater. PAM is harmful to the environment, particularly the monomer acrylamide that is generated from PAM degradation. In this study, PAM derived from oil wastewater was pretreated by Fenton oxidation. This oxidation method is based on the use of a mixture of H 2 O 2 and iron salts which produce hydroxyl radicals in acidic conditions. The method offers a cost-effective source of hydroxyl radicals, using easy-to-handle reagents. The purpose of this study was to transform PAM to biodegradable intermediums. The optimal conditions for the Fenton reactions were also determined and described. Under optimal conditions, the removal ratios of PAM and chemical oxygen demand (COD) were 83.8 and 77 per cent respectively. It was concluded that Fenton's oxidation is an effective treatment to improved the biodegradability of PAM. 14 refs., 1 tab., 7 figs

  18. Enhanced sonochemical degradation of azure B dye by the electroFenton process.

    Science.gov (United States)

    Martínez, Susana Silva; Uribe, Edgar Velasco

    2012-01-01

    The degradation of azure B dye (C15H16ClN3S; AB) has been studied by Fenton, sonolysis and sono-electroFenton processes employing ultrasound at 23 kHz and the electrogeneration of H2O2 at the reticulated vitreous carbon electrode. It was found that the dye degradation followed apparent first-order kinetics in all the degradation processes tested. The rate constant was affected by both the pH of the solution and initial concentration of Fe2+, with the highest degradation obtained at pH between 2.6 and 3. The first-order rate constant decreased in the following order: sono-electroFenton>Fenton>sonolysis. The rate constant for AB degradation by sono-electroFenton is ∼10-fold that of sonolysis and ∼2-fold the one obtained by Fenton under silent conditions. The chemical oxygen demand was abated ∼68% and ∼85% by Fenton and sono-electroFenton respectively, achieving AB concentration removal over 90% with both processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    Science.gov (United States)

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  20. Efficient degradation of solid yeast biomass from ethanol industry by Fenton and UV-Fenton processes applying multivariate analysis

    Directory of Open Access Journals (Sweden)

    Geórgia Labuto

    2017-12-01

    Full Text Available Organic agro-industrial residues have been successfully used as biosorbents and promoting new uses from agricultural wastes benefits the economy. However, the allocation of a solid waste biosorbent after the sorption of contaminants has limited their effective application on a large scale as an alternative treatment of water and wastewaters. One solution could be degradation to convert the biosorbent material and adsorbed organic contaminants into environmental friendly compounds suitable for discharge. This study used an experimental design to evaluate the Fenton degradation of yeast biomass (YB from the alcohol industry as a potential biosorbent. The efficiency of degradation was monitored according to the degraded mass (DM and total organic carbon (TOC remaining in the solution. The ANOVA showed an error of 9.7% for the effects and the media of interaction for the employed model for DM. Conducting the experiments with the best-predicted conditions (60 min, 25 g of YB, pH 3, 8,000 mg L-1 H2O2 and 40 mg L-1 Fe2+ with 30 W UV irradiation resulted in a YB reduction of 72  2% with a TOC of 30  2%. This suggests that an advanced oxidative process is an alternative for degradation of a biosorbent after sorption.

  1. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology

    Directory of Open Access Journals (Sweden)

    Ebrahiem E. Ebrahiem

    2017-05-01

    Full Text Available The general strategy of this study was based on evaluation of the possibility of applying advanced photo-oxidation technique (Fenton oxidation process for removal of the residuals organic pollutants present in cosmetic wastewater. The different parameters that affect the chemical oxidation process for dyes in their aqueous solutions were studied by using Fenton’s reaction. These parameters are pH, hydrogen peroxide (H2O2 dose, ferrous sulfate (FeSO4·7H2O dose, Initial dye concentration, and time. The optimum conditions were found to be: pH 3, the dose of 1 ml/l H2O2 and 0.75 g/l for Fe(II and Fe(III and reaction time 40 min. Finally, chemical oxygen demands (COD, before and after oxidation process was measured to ensure the entire destruction of organic dyes during their removal from wastewater. The experimental results show that Fenton’s oxidation process successfully achieved very good removal efficiency over 95%.

  2. Treatment of a wastewater from a pesticide manufacture by combined coagulation and Fenton oxidation.

    Science.gov (United States)

    Pliego, G; Zazo, J A; Pariente, M I; Rodríguez, I; Petre, A L; Leton, P; García, J

    2014-11-01

    The treatment of a non-biodegradable agrochemical wastewater has been studied by coupling of preliminary coagulation-flocculation step and further Fenton oxidation. High percentages of chemical oxygen demand (COD) removal (up to 58 %) were achieved in a first step using polyferric chloride as coagulant. This reduced significantly the amount of H2O2 required in the further Fenton oxidation. Using the stoichiometric amount relative to COD around 80 % of the remaining organic load was mineralized. The combined treatment allowed achieving the regional discharge limits of ecotoxicity at a cost substantially lower than the solution used so far where these wastewaters are managed as hazardous wastes.

  3. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation

    International Nuclear Information System (INIS)

    Yetilmezsoy, Kaan; Sakar, Suleyman

    2008-01-01

    The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 (±0.2) and a total COD of 12,100 (±910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32 ± 2 deg. C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m 3 day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe 2+ and H 2 O 2 solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H 2 O 2 and Fe 2+ dosages, and the ratio of H 2 O 2 /Fe 2+ . Preliminary tests conducted with the dosages of 100 mg Fe 2+ /L and 200 mg H 2 O 2 /L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe 2+ and H 2 O 2 were investigated. Under the condition of 400 mg Fe 2+ /L and 200 mg H 2 O 2 /L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe 2+ /L and 1200 mg H 2 O 2 /L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a UASB process followed by Fenton's oxidation technology used as a post-treatment unit

  4. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation.

    Science.gov (United States)

    Yetilmezsoy, Kaan; Sakar, Suleyman

    2008-03-01

    The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 (+/-0.2) and a total COD of 12,100 (+/-910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32+/-2 degrees C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m3day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe2+ and H2O2 solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H2O2 and Fe2+ dosages, and the ratio of H2O2/Fe2+. Preliminary tests conducted with the dosages of 100 mg Fe2+/L and 200 mg H2O2/L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe2+ and H2O2 were investigated. Under the condition of 400 mg Fe2+/L and 200 mg H2O2/L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe2+/L and 1200 mg H2O2/L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a UASB process followed by Fenton's oxidation technology used as a post-treatment unit.

  5. Coupling Fenton and biological oxidation for the removal of nitrochlorinated herbicides from water.

    Science.gov (United States)

    Sanchis, S; Polo, A M; Tobajas, M; Rodriguez, J J; Mohedano, A F

    2014-02-01

    The combination of Fenton and biological oxidation for the removal of the nitrochlorinated herbicides alachlor, atrazine and diuron in aqueous solution has been studied. The H2O2 dose was varied from 20 to 100% of the stoichiometric amount related to the initial chemical oxygen demand (COD). The effluents from Fenton oxidation were analyzed for ecotoxicity, biodegradability, total organic carbon (TOC), COD and intermediate byproducts. The chemical step resulted in a significant improvement of the biodegradability in spite of its negligible or even slightly negative effect on the ecotoxicity. Working at 60% of the stoichiometric H2O2 dose allowed obtaining highly biodegradable effluents in the cases of alachlor and atrazine. That dose was even lower (40% of the stoichiometric) for diuron. The subsequent biological treatment was carried out in a sequencing batch reactor (SBR) and the combined Fenton-biological treatment allowed up to around 80% of COD reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system.

    Science.gov (United States)

    Ismail, Sherif; Tawfik, Ahmed

    2016-01-01

    Fenton process for pre-treatment of hazardous landfill leachate (HLL) was investigated. Total, particulate and soluble chemical oxygen demand (CODt, CODp and CODs) removal efficiency amounted to 67%, 47% and 64%, respectively, at pH value of 3.5, molar ratio (H2O2/Fe(2+)) of 5, H2O2 dosage of 25 ml/L and contact time of 15 min. Various treatment scenarios were attempted and focused on studying the effect of pre-catalytic oxidation process on the performance of up-flow anaerobic sludge blanket (UASB), UASB/down-flow hanging sponge (DHS) and DHS system. The results obtained indicated that pre-catalytic oxidation process improved the CODt removal efficiency in the UASB reactor by a value of 51.4%. Overall removal efficiencies of CODt, CODs and CODp were 80 ± 6%, 80 ± 7% and 78 ± 16% for UASB/DHS treating pre-catalytic oxidation effluent, respectively. The removal efficiencies of CODt, CODs and CODp were, respectively, decreased to 54 ± 2%, 49 ± 2% and 71 ± 16% for UASB/DHS system without pre-treatment. However, the results for the combined process (UASB/DHS) system is almost similar to those obtained for UASB reactor treating pre-catalytic oxidation effluent. The DHS system achieved average removal efficiencies of 52 ± 4% for CODt, 51 ± 4% for CODs and 52 ± 15% for CODp. A higher COD fractions removal was obtained when HLL was pre-treated by Fenton reagent. The combined processes provided a removal efficiency of 85 ± 1% for CODt, 85 ± 1% for CODs and 83 ± 8% for CODp. The DHS system is not only effective for organics degradation but also for ammonia oxidation. Almost complete ammonia (NH4-N) removal (92 ± 3.6%) was occurred and the nitrate production amounted to 37 ± 6 mg/L in the treated effluent. This study strongly recommends applying Fenton process followed by DHS system for treatment of HLL.

  7. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Shi, Shao-Hui; Lee, Yi-Fan

    2009-01-01

    In this paper, the application of Fenton oxidation process for the decolorization of an azo dye Direct Blue 15 (DB15) in aqueous solution was investigated. The effect of initial pH, dosage of H2O2, H2O2/Fe2+ and H2O2/dye ratios and the reaction temperature on the decolorization efficiency...... and kinetic of the DB15 were studied, the operating parameters were preferred by changing one factor at one time while the other parameters were kept constant. The optimal conditions for the decolorization of DB15 were determined as pH=4.0, [H2O2] = 2.8x10(-3) mol/L, H2O2/Fe2+ ratio = 100: 1, H2O2/dye ratio...

  8. Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes

    Science.gov (United States)

    Herney-Ramírez, J.; Madeira, Luis M.

    Clays, both natural and physical-chemically modified, are attractive materials for the preparation of supported catalysts. In this chapter, a review is made regarding the use of pillared interlayered clays (PILCs) in heterogeneous Fenton-like advanced oxidation processes. Their applications in pollutants degradation is summarized, with particular emphasis on the effect of the main operating conditions (e.g., initial H2O2 or parent compound concentration, catalyst load, pH, or temperature) on oxidation efficiency. Special attention is also given to the type of catalyst or precursor used, to the importance and advantages of the heterogeneous versus homogeneous process, and to significant aspects like catalyst stability. Among the technological issues that are of concern, the importance of using continuous flow reactors (e.g., fixed-bed) is discussed. Finally, some mechanistic studies are reviewed as well as modeling works, based on phenomenological or semi-empiric models (e.g., using statistic tools like design of experiments).

  9. Using Fenton Oxidation to Simultaneously Remove Different Estrogens from Cow Manure

    Directory of Open Access Journals (Sweden)

    Minxia Sun

    2016-09-01

    Full Text Available The presence of estrogens in livestock excrement has raised concerns about their potential negative influence on animals and the overall food cycle. This is the first investigation to simultaneously remove estrogens, including estriol (E3, bisphenol A (BPA, diethylstilbestrol (DES, estradiol (E2, and ethinyl estradiol (EE2, from cow manure using a Fenton oxidation technique. Based on the residual concentrations and removal efficiency of estrogens, the Fenton oxidation reaction conditions were optimized as follows: a H2O2 dosage of 2.56 mmol/g, a Fe(II to H2O2 molar ratio of 0.125 M/M, a solid to water mass ratio of 2 g/mL, an initial pH of 3, and a reaction time of 24 h. Under these conditions, the simultaneous removal efficiencies of E3, BPA, DES, E2, and EE2, with initial concentrations in cow manure of 97.40, 96.54, 100.22, 95.01, and 72.49 mg/kg, were 84.9%, 99.5%, 99.1%, 97.8%, and 84.5%, respectively. We clarified the possible Fenton oxidation reaction mechanisms that governed the degradation of estrogens. We concluded that Fenton oxidation technique could be effective for efficient removal of estrogens in livestock excrement. Results are of great importance for cow manure reuse in agricultural management, and can be used to reduce the threat of environmental estrogens to human health and ecological safety.

  10. Using Fenton Oxidation to Simultaneously Remove Different Estrogens from Cow Manure.

    Science.gov (United States)

    Sun, Minxia; Xu, Defu; Ji, Yuefei; Liu, Juan; Ling, Wanting; Li, Shunyao; Chen, Mindong

    2016-09-15

    The presence of estrogens in livestock excrement has raised concerns about their potential negative influence on animals and the overall food cycle. This is the first investigation to simultaneously remove estrogens, including estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), estradiol (E2), and ethinyl estradiol (EE2), from cow manure using a Fenton oxidation technique. Based on the residual concentrations and removal efficiency of estrogens, the Fenton oxidation reaction conditions were optimized as follows: a H₂O₂ dosage of 2.56 mmol/g, a Fe(II) to H₂O₂ molar ratio of 0.125 M/M, a solid to water mass ratio of 2 g/mL, an initial pH of 3, and a reaction time of 24 h. Under these conditions, the simultaneous removal efficiencies of E3, BPA, DES, E2, and EE2, with initial concentrations in cow manure of 97.40, 96.54, 100.22, 95.01, and 72.49 mg/kg, were 84.9%, 99.5%, 99.1%, 97.8%, and 84.5%, respectively. We clarified the possible Fenton oxidation reaction mechanisms that governed the degradation of estrogens. We concluded that Fenton oxidation technique could be effective for efficient removal of estrogens in livestock excrement. Results are of great importance for cow manure reuse in agricultural management, and can be used to reduce the threat of environmental estrogens to human health and ecological safety.

  11. Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation.

    Science.gov (United States)

    Pérez, J F; Llanos, J; Sáez, C; López, C; Cañizares, P; Rodrigo, M A

    2017-06-15

    Wastewater produced in pharmaceutical manufacturing plants (PMPs), especially the one coming from organic-synthesis facilities, is characterized by its large variability due to the wide range of solvents and chemical reagents used in the different stages of the production of medicines. Normally, the toxicity of the organic compounds prevent the utilization of biological processes and more powerful treatments are needed becoming advanced oxidation processes (AOPs) a valid alternative. In this work, the efficiency in abatement of pollution by Fenton oxidation (FO) and conductive-diamond electro-oxidation (CDEO) are compared in the treatment of 60 real effluents coming from different processes carried out in a pharmaceutical facility, using standardized tests. In 80% of the samples, CDEO was found to be more efficient than FO and in the remaining 20%, coagulation was found to exhibit a great significance in the COD abatement mechanism during FO, pointing out the effectiveness of the oxidation promoted by the electrochemical technology. Mean oxidation state of carbon was found to be a relevant parameter to understand the behavior of the oxidation technologies. It varied inversely proportional to efficiency in FO and it showed practically no influence in the case of CDEO. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Influence of Fenton reagent oxidation on mineralization and decolorization of municipal landfill leachate.

    Science.gov (United States)

    Mohajeri, Soraya; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Bashir, Mohammed J K; Mohajeri, Leila; Adlan, Mohd Nordin

    2010-01-01

    This study evaluated the effectiveness of Fenton's technique for the treatment of semi-aerobic landfill leachate collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. The Fe2+ or Fe3+ as catalyst and H2O2 as oxidizing agent are commonly used for the classical Fenton's reaction. In present study, the effect of operating conditions such as pH, reaction time, molar ratio, agitation rate, feeding mode and Fenton reagent concentrations which are important parameters that affect the removal efficiencies of Fenton method were investigated. Under the most favorable conditions, the highest removals of 58.1 and 78.3% were observed for COD and color, respectively. In general, the best operating conditions were pH = 3, Fe = 560 mg L(-1), H2O2 = 1020 mg L(-1), H2O2/Fe2+ molar ratio = 3, agitation rate = 400 rpm and reaction time = 120 minutes. The results highlighted that stepwise addition of Fenton's reagent was more effective than adding the entire volume in a single step. Excessive hydrogen peroxide and iron have shown scavenging effects on hydroxyl radicals and reduced degradation of refractory organics in the landfill leachate.

  13. Photo oxidative degradation of azure-B by sono-photo-Fenton and photo-Fenton reagents

    Directory of Open Access Journals (Sweden)

    Prahlad Vaishnave

    2014-12-01

    Full Text Available A model for the decomposition of azure-B by photo-Fenton reagent in the presence of ultrasound in homogeneous aqueous solution has been described. The photochemical decomposition rate of azure-B is markedly increased in the presence of ultrasound. It is a rather inexpensive reagent for wastewater treatment. The effect of different variables like the concentration of ferric ion, concentration of dye, hydrogen peroxide, pH, light intensity etc. on the reaction rate has been observed. The progress of the sono-photochemical degradation was monitored spectrophotometrically. The optimum sono-photochemical degradation conditions were experimentally determined. The results showed that the dye was completely oxidized and degraded into CO2 and H2O. A suitable tentative mechanism for sono-photochemical bleaching of azure-B by sono-photo-Fenton’s reaction has been proposed.

  14. Fuzzy-logic modeling of Fenton's oxidation of anaerobically pretreated poultry manure wastewater.

    Science.gov (United States)

    Yetilmezsoy, Kaan

    2012-07-01

    A multiple inputs and multiple outputs (MIMO) fuzzy-logic-based model was proposed to estimate color and chemical oxygen demand (COD) removal efficiencies in the post-treatment of anaerobically pretreated poultry manure wastewater effluent using Fenton's oxidation process. Three main input variables including initial pH, Fe+2, and H2O2 dosages were fuzzified in a new numerical modeling scheme by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 70 rules in the IF-THEN format. The product (prod) and the center of gravity (centroid) methods were applied as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two first-order polynomial regression models derived in the scope of this study. Estimated results were also compared to the multiple regression approach by means of various descriptive statistical indicators, such as root mean-squared error, index of agreement, fractional variance, proportion of systematic error, etc. Results of the statistical analysis clearly revealed that, compared to conventional regression models, the proposed MIMO fuzzy-logic model produced very smaller deviations and demonstrated a superior predictive performance on forecasting of color and COD removal efficiencies with satisfactory determination coefficients over 0.98. Due to high capability of the fuzzy-logic methodology in capturing the non-linear interactions, it was demonstrated that a complex dynamic system, such as Fenton's oxidation, could be easily modeled.

  15. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate.

    Science.gov (United States)

    Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V

    2018-03-15

    Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Supported Nanosized α-FeOOH Improves Efficiency of Photoelectro-Fenton Process with Reaction-Controlled pH Adjustment for Sustainable Water Treatment

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2012-01-01

    Full Text Available The overall photoelectro-Fenton (PE-Fenton process for water treatment with neutral initial pH includes three steps of pH reduction, PE-Fenton reaction, and pH elevation. Reaction-controlled pH adjustment (RCpA, which utilizes the intrinsic electrochemical reactions instead of chemical addition, has been employed to lower the pH, maintain the lowered pH for the Fenton reaction, and recover the pH for final effluent discharge. This study demonstrated that the overall efficiency of this sustainable PE-Fenton process was improved by rapidly recycling the iron substance. Nanosized iron oxide was prepared and employed to ensure such rapid recycling. SEM and XRD results showed that the as-prepared iron oxide was α-FeOOH with 20 nm in size. The experimental results of dimethyl phthalate (DMP degradation showed that diatomite-supported α-FeOOH (N-α-FeOOH/diatomite could efficiently reduce the DMP concentration and total organic carbon. Furthermore, compared with Fe3+, the N-α-FeOOH/diatomite saved 160 min for iron settlement at 20 mg L−1 DMP concentration. Also, with the increment in the initial DMP concentration, extra energy consumed by the individual step of PE-Fenton reaction using the N-α-FeOOH/diatomite became negligible compared with that using free iron ions with the increment in the initial DMP concentration. This development is expected to be a major step of the PE-Fenton process with RCpA towards actual water treatment.

  18. Tratamento de águas contaminadas por diesel/biodiesel utilizando processo Fenton Treatment of water contaminated by diesel/biodiesel using Fenton process

    Directory of Open Access Journals (Sweden)

    Teofani Koslides Mitre

    2012-06-01

    Full Text Available A contaminação de águas por misturas diesel/biodiesel pode causar grandes impactos ambientais, relacionados à presença de compostos orgânicos recalcitrantes e tóxicos, inviabilizando o uso de processos biológicos de tratamento. A avaliação da biodegradabilidade, nas proporções B0, B25, B50, B75 e B100 (os números especificam o percentual em massa de biodiesel na mistura, indicou que a adição de biodiesel em teores acima de 50% aumenta a biodegradabilidade, alcançando 60 e 80% para B50 e B75, respectivamente. Na aplicação do processo Fenton, a remoção da matéria orgânica foi superior a 80% em todas as misturas, exceto para B0, que apresentou remoção máxima de 50%. A oxidação por Fenton se ajustou a um modelo cinético de pseudo-segunda ordem em relação à concentração de matéria orgânica, e resultou em aumento da biodegradabilidade de até 150%.Waters contaminated with diesel/biodiesel and their blends can cause major environmental impacts, due to the presence of toxic and recalcitrant organic compounds, which invalidate the use of biological treatment processes. Evaluation of biodegradability of the blends B0, B25, B50, B75 and B100 (the numbers specify the mass percentage of biodiesel in the blend indicated that the addition of biodiesel at concentrations above 50% increased biodegradation, reaching 60 and 80% for B50 and B75, respectively. When the Fenton process was used, removal of organic matter was greater than 80 % in all blends, except for B0, which showed maximum removal of 60%. Oxidation by Fenton was fitted with a pseudo-second order kinetic model in relation to the concentration of organic matter and resulted in increased biodegradation of up to 150%.

  19. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes.

    Science.gov (United States)

    de Oliveira, Dirce Martins; Cavalcante, Rodrigo Pereira; da Silva, Lucas de Melo; Sans, Carme; Esplugas, Santiago; de Oliveira, Silvio Cesar; Junior, Amilcar Machulek

    2018-02-09

    This paper reports the degradation of 10 mg L -1 Ametryn solution with different advanced oxidation processes and by ultraviolet (UV 254 ) irradiation alone with the main objective of reducing acute toxicity and increase biodegradability. The investigated factors included Fe 2+ and H 2 O 2 concentrations. The effectiveness of the UV 254 and UV 254 /H 2 O 2 processes were investigated using a low-pressure mercury UV lamp (254 nm). Photo-Fenton process was explored using a blacklight blue lamp (BLB, λ = 365 nm). The UV 254 irradiation process achieved complete degradation of Ametryn solution after 60 min. The degradation time of Ametryn was greatly improved by the addition of H 2 O 2 . It is worth pointing out that a high rate of Ametryn removal was attained even at low concentrations of H 2 O 2 . The kinetic constant of the reaction between Ametryn and HO ● for UV 254 /H 2 O 2 was 3.53 × 10 8  L mol -1  s -1 . The complete Ametryn degradation by the Fenton and photo-Fenton processes was observed following 10 min of reaction for various combinations of Fe 2+ and H 2 O 2 under investigation. Working with the highest concentration (150 mg L -1 H 2 O 2 and 10 mg L -1 Fe 2+ ), around 30 and 70% of TOC removal were reached within 120 min of treatment by Fenton and photo-Fenton processes, respectively. Although it did not obtain complete mineralization, the intermediates formed in the degradation processes were hydroxylated and did not promote acute toxicity of Vibrio fischeri. Furthermore, a substantial improvement of biodegradability was obtained for all studied processes.

  20. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    Science.gov (United States)

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Optimization of photo-Fenton process for the treatment of prednisolone.

    Science.gov (United States)

    Díez, Aida María; Ribeiro, Ana Sofia; Sanromán, Maria Angeles; Pazos, Marta

    2018-03-29

    Prednisolone is a widely prescribed synthetic glucocorticoid and stated to be toxic to a number of non-target aquatic organisms. Its extensive consumption generates environmental concern due to its detection in wastewater samples at concentrations ranged from ng/L to μg/L that requests the application of suitable degradation processes. Regarding the actual treatment options, advanced oxidation processes (AOPs) are presented as a viable alternative. In this work, the comparison in terms of pollutant removal and energetic efficiencies, between different AOPs such as Fenton (F), photo-Fenton (UV/F), photolysis (UV), and hydrogen peroxide/photolysis (UV/H 2 O 2 ), was carried out. Light diode emission (LED) was the selected source to provide the UV radiation. The UV/F process revealed the best performance, reaching high levels of both degradation and mineralization with low energy consumption. Its optimization was conducted and the operational parameters were iron and H 2 O 2 concentrations and the working volume. Using the response surface methodology with the Box-Behnken design, the effect of independent variables and their interactions on the process response were effectively evaluated. Different responses were analyzed taking into account the prednisolone removal (TOC and drug abatements) and the energy consumptions associated. The obtained model showed an improvement of the UV/F process when treating smaller volumes and when adding high concentrations of H 2 O 2 and Fe 2+ . The validation of this model was successfully carried out, having only 5% of discrepancy between the model and the experimental results. Finally, the performance of the process when having a real wastewater matrix was also tested, achieving complete mineralization and detoxification after 8 h. In addition, prednisolone degradation products were identified. Finally, the obtained low energy permitted to confirm the viability of the process.

  2. Fenton Coagulation/Oxidation Using Fe2+ and Fe3+ Íons and Peracetic Acid for the Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    Grasiele Soares Cavallini

    2015-09-01

    Full Text Available The Fenton coagulation/oxidation process is divided into two steps: coagulation, in alkaline pH and oxidation, in acid pH. This configuration provides a reduction in oxidant concentration, due to the pretreatment conducted in the coagulation step. This study proposes the substitution of hydrogen peroxide (HP by peracetic acid (PAA in a Fenton coagulation process to treat sanitary sewage and provide its disinfection. The new combination is proposed in a single step and presented good results in removing turbidity (98.5%, apparent color (95.4%, phosphorus (100% and COD (58.2% even at the effluent natural pH, besides demonstrating higher reduction in E. coli when compared with the process that employs hydrogen peroxide. The formation of Fe3+ ions was shown to be responsible for the removal of the particulate material. DOI: http://dx.doi.org/10.17807/orbital.v7i3.626 

  3. Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process.

    Science.gov (United States)

    Bocos, Elvira; Oturan, Nihal; Pazos, Marta; Sanromán, M Ángeles; Oturan, Mehmet A

    2016-10-01

    The removal of radiocontrast agent diatrizoic acid (DIA) from water was performed using photo-Fenton (PF) process. First, the effect of H2O2 dosage on mineralization efficiency was determined using ultraviolet (UV) irradiation. The system reached a maximum mineralization degree of 60 % total organic carbon (TOC) removal at 4 h with 20 mM initial H2O2 concentration while further concentration values led to a decrease in TOC abatement efficiency. Then, the effect of different concentrations of Fenton's reagents was studied for homogeneous Fenton process. Obtained results revealed that 0.25 mM Fe(3+) and 20 mM H2O2 were the best conditions, achieving 80 % TOC removal efficiency at 4 h treatment. Furthermore, heterogeneous PF treatment was developed using iron-activated carbon as catalyst. It was demonstrated that this catalyst is a promising option, reaching 67 % of TOC removal within 4 h treatment without formation of iron leachate in the medium. In addition, two strategies of enhancement for process efficiency are proposed: coupling of PF with electro-Fenton (EF) process in two ways: photoelectro-Fenton (PEF) or PF followed by EF (PF-EF) treatments, achieving in both cases the complete mineralization of DIA solution within only 2 h. Finally, the Microtox tests revealed the formation of more toxic compounds than the initial DIA during PF process, while, it was possible to reach total mineralization by both proposed alternatives (PEF or PF-EF) and thus to remove the toxicity of DIA solution.

  4. Oxidation by Fenton's reagent combined with biological treatment applied to a creosote-comtaminated soil.

    Science.gov (United States)

    Valderrama, C; Alessandri, R; Aunola, T; Cortina, J L; Gamisans, X; Tuhkanen, T

    2009-07-30

    In this study, we investigated the feasibility of using Fenton oxidation to remove sorbed polycyclic aromatic hydrocarbons (PAHs) in aged soil samples with creosote oil from a wood preserving site. The optimal dosage of reagents was determined by a statistical method, the central composite rotatable experimental design. The maximum PAH removal was 80% with a molar ratio of oxidant/catalyst equal to 90:1. In general low molecular weight PAHs (3 rings) were degraded more efficiently than higher molecular weight PAHs (4 and 5 rings). The hydrogen peroxide decomposition kinetic was studied in the presence of KH(2)PO(4) as stabilizer. The kinetic data were fitted to a simple model, the pseudo-first-order which describes the hydrogen peroxide decomposition. The PAH kinetic degradation was also studied, and demonstrated that non-stabilized hydrogen peroxide was consumed in less than 30 min, whilst PAH removal continued for up to 24h. In a second part of the work, a combined chemical and biological treatment of the soil was carried out and shown to be dependent on the pre-oxidation step. Different reagent doses (H(2)O(2):Fe) were used (10, 20, 40, 60:1) in the pre-treatment step. An excess of hydrogen peroxide resulted in a poor biological removal, thus the optimal molar ratio of H(2)O(2):Fe for the combined process was 20:1. The combined treatment resulted in a maximum total PAH removal of 75% with a 30% increase in removal due to the biodegradation step. The sample with highest PAH removal in the pre-oxidation step led to no further increase in removal by biological treatment. This suggests that the more aggressive chemical pre-oxidation does not favour biological treatment. The physico-chemical properties of the pollutants were an important factor in the PAH removal as they influenced chemical, biological and combined treatments.

  5. Removal of polyvinylamine sulfonate anthrapyridone dye by application of heterogeneous electro-Fenton process.

    Science.gov (United States)

    Bouzayani, Bakhta; Meijide, Jessica; Pazos, Marta; Elaoud, Sourour Chaâbane; Sanroman, Maria Angeles

    2017-08-01

    Diversity and rapidly multiplication of the pollutants incite as to improve the conventional treatments wastewater methods. One of the bottlenecks often faced is the presence into wastewater of organic pollutants with complex structures that requests the design of efficient processes. Thus, this work investigates the removal of polyvinylamine sulfonate anthrapyridone (PSA) dye which complex structure makes difficult its degradation by conventional technologies. For that, a heterogeneous oxidative process using pyrite as sustainable catalyst was designed. Initially, the performance of the system BBD-carbon felt as anode and cathode, respectively for the production of H 2 O 2 was determined in comparison with system boron-doped diamond nickel foam. The carbon felt electrode provided the highest oxidant production, and it was selected for the treatment of the polymeric dye. Several oxidative processes were evaluated, and the best degradation levels were obtained by application of electro-Fenton-pyrite process. In addition, it was determined that dye removal followed a kinetic model of pseudo-first-order achieving the highest efficiency by operation at optimum dosage of pyrite 2 g/L and 200 mA of current intensity. Depending on the optimal experimental conditions, these values lead to a nearly complete mineralization (total organic carbon removal of 95%) after 6 h. Furthermore, the reusability of pyrite was evaluated, by removal of PSA in four cycles.

  6. Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process

    International Nuclear Information System (INIS)

    Kurt, Ugur; Apaydin, Omer; Gonullu, M. Talha

    2007-01-01

    Advanced oxidation processes (AOPs) have led the way in the treatment of aqueous waste and are rapidly becoming the chosen technology for many applications. In this paper, COD reduction potential of leather tanning industry wastewaters by Electro-Fenton (EF) oxidation, as one of the AOPs, was experimentally evaluated. The wastewater sample was taken from an outlet of an equalization basin in a common treatment plant of an organized tannery industrial region in Istanbul, Turkey. Treatment of the wastewater was carried out by an electrochemical batch reactor equipped with two iron electrodes, which were connected parallel to each other. The oxidation process was studied for optimization of H 2 O 2 and the electricity consumptions were observed at different contact times under different pH conditions (3.0, 5.0 and 7.2). In each case, electricity consumption for decreased COD mass was estimated. In this process, COD was reduced by 60-70% within 10 min. By taking into consideration the local sewerage discharge limit, applicability of EF process for the tannery wastewaters was evaluated

  7. Efficiency of Photo-Fenton Process in Degradation of 2-Chlorophenol

    Directory of Open Access Journals (Sweden)

    Reza Moradi

    2017-10-01

    Full Text Available Background & Aims of the Study: Phenolic compounds have been extensively used in industries for applications such as petrochemical, oil refineries, papers, plastics, steel, pharmaceuticals, textiles, coal conversion, and so on. Specified amounts of Phenolic compounds are lost in the process of their manufacturing and utilization and often cause environmental pollution problems. So, removal these compounds of industrial wastewaters are necessary. The aim of this paper, is the photo-degradation environmental pollutant 2-Chlorophenol (2-CP using photo-Fenton process which was used a photo reactor for photo-catalytic degradation of 2-CP in aqueous solution. Materials & Methods: This is an experimental study on a laboratory scale. Fe2+ ions as a homogeneous catalyst applied for the degradation of 2-CP in aqueous solution. The study was performed on synthetic wastewaters that contain 2-CP pollutant. The effect of operational parameters such as: pH, initial concentration Fe2+, H2O2 concentration and temperature were studied. The effect of UV irradiation, UV/H2O2 and UV/Fe2+/H2O2 on photo-catalytic degradation of 2-CP were studied. The reaction kinetic was studied. In this paper, optimum conditions were determined for the photo-catalytic degradation of 2-CP using a factor at the time method. Results: The optimal conditions for this reaction were obtained at pH of 6, initial concentration Fe2+ at 20 ppm, H2O2 concentration at 14 ppm and temperature at 45 °C. A first order reaction with rate constant (k=0.0375 min−1 was observed for the photo-catalytic degradation reaction. These experiments demonstrated that UV radiation, Fe2+ ions and H2O2 oxidation process were needed for the effective degradation of 2-CP. Conclusion: The results showed that the photo-Fenton process can be suitable alternative to removal phenolic compounds from wastewaters.

  8. Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying, E-mail: yingwang@bnu.edu.cn [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China); Fang, Jiasheng, E-mail: fangfangcanfly@163.com [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China); School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189 (China); Crittenden, John C., E-mail: John.Crittenden@ce.gatech.edu [School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332-0595 (United States); Shen, Chanchan [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2017-05-05

    Graphical abstract: Schematic of the preparation of RF supported catalysts and the reaction mechanism for SLD Fenton catalytic degradation of aqueous phenol. - Highlights: • Novel SLD Fenton catalyst was synthesized via in-situ induced self-assembly process. • RGO improved light-harvesting capacity and enhanced electro-transport performance. • Visible light irradiation accelerated reaction and extended operating pHs (4.0–8.0). • H{sub 2}O{sub 2} reduction and H{sub 2}O oxidation yielded ·OH in Fe{sup Ⅱ}/Fe{sup Ⅲ} and Fe{sup Ⅲ}/Fe{sup Ⅳ} cycling process. - Abstract: A novel solar-light-driven (SLD) Fenton catalyst was developed by reducing the ferrous-ion onto graphene oxide (GO) and forming reduced graphene oxide/α-FeOOH composites (RF) via in-situ induced self-assembly process. The RF was supported on several mesoporous supports (i.e., Al-MCM-41, MCM-41 and γ-Al{sub 2}O{sub 3}). The activity, stability and energy use for phenol oxidation were systematically studied for a wide pH range. Furthermore, the catalytic mechanism at acid and alkaline aqueous conditions was also elucidated. The results showed that Fe(II) was reduced onto GO nanosheets and α-FeOOH crystals were formed during the self-assembly process. Compared with Fenton reaction without SLD irradiation, the visible light irradiation not only dramatically accelerated the rate of Fenton-based reactions, but also extended the operating pH for the Fenton reaction (from 4.0 to 8.0). The phenol oxidation on RF supported catalysts was fitting well with the pseudo-first-order kinetics, and needed low initiating energy, insensitive to the reacting temperature changes (273–318 K). The Al-MCM-41 supported RF was a more highly energy-efficient catalyst with the prominent catalytic activity at wide operating pHs. During the reaction, ·OH radicals were generated by the SLD irradiation from H{sub 2}O{sub 2} reduction and H{sub 2}O oxidation in the Fe{sup Ⅱ}/Fe{sup Ⅲ} and Fe{sup Ⅲ}/Fe{sup

  9. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment.

    Science.gov (United States)

    Feng, Chun-Hua; Li, Fang-Bai; Mai, Hong-Jian; Li, Xiang-Zhong

    2010-03-01

    In this study, we proposed a new concept of utilizing the biological electrons produced from a microbial fuel cell (MFC) to power an E-Fenton process to treat wastewater at neutral pH as a bioelectro-Fenton (Bio-E-Fenton) process. This process can be achieved in a dual-chamber MFC from which electrons were generated via the catalyzation of Shewanella decolorationis S12 in its anaerobic anode chamber and transferred to its aerated cathode chamber equipped with a carbon nanotube (CNT)/gamma-FeOOH composite cathode. In the cathode chamber, the Fenton's reagents including hydrogen peroxide (H(2)O(2)) and ferrous irons (Fe(2+)) were in situ generated. This Bio-E-Fenton process led to the complete decolorization and mineralization of Orange II at pH 7.0 with the apparent first-order rate constants, k(app) = 0.212 h(-1) and k(TOC) = 0.0827 h(-1), respectively, and simultaneously produced a maximum power output of 230 mW m(-2) (normalized to the cathode surface area). The apparent mineralization current efficiency was calculated to be as high as 89%. The cathode composition was an important factor in governing system performance. When the ratio of CNT to gamma-FeOOH in the composite cathode was 1:1, the system demonstrated the fastest rate of Orange II degradation, corresponding to the highest amount of H(2)O(2) formed.

  10. Winery wastewater treatment by heterogeneous Photo-Fenton process and activated sludges; Depuracion de efluentes vinicolas ediante tratamientos Foto-Fenton en fase heterogenea y lodos activos

    Energy Technology Data Exchange (ETDEWEB)

    Mosteo, R.; Lalinde, N.; Ormad, Maria O. M.; Ovelleiro, J. L.

    2007-07-01

    The system composed by heterogeneous Photon-Fenton assisted by solar light and biological treatment based on activated sludge process treats adequately real winery wastewaters. the previous stage based on heterogeneous Photo-Fenton process produces a partial degradation of winery wastewaters and achieves a yield of degradation of organic matter (measured as TOC) close to 50%. The activated sludge process in simple stage doesn't present any operation problems (bulking phenomenon) and achieves a yield of degradation of organic matter of 90%. (Author) 16 refs.

  11. Pyrene Removal from Contaminated Soils by Modified Fenton Oxidation Using Iron Nano Particles

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2013-07-01

    Full Text Available Background:The problems related to conventional Fenton oxidation, including low pH required and production of considerable amounts of sludge have led researchers to investigate chelating agents which might improve the operating range of pH and the use of nano iron particle to reduce the excess sludge. The pyrene removal from contaminated soils by modified Fenton oxidation at neutral pH was defined as the main objective of the current study.Methods:Varying concentrations of H2O2 (0-500 mM and iron nano oxide (0-60 mM, reaction times of 0.5-24 hours and variety of chelating agents including sodium pyrophosphate, sodium citrate, ethylene diamine tetraacetic, fulvic and humic acid were all investigated at pyrene concentration levels of 100 – 500 mg/kg.Results:By applying the following conditions (H2O2 concentration of 300 mM, iron nano oxide of 30 mM, sodium pyrophosphate as chelating agent, pH 3 and reaction time of 6 hours the pyrene removal efficiency at an initial concentration of 100 mg/kg was found to be 99%. As a result, the pyrene concentration was reduced from 100 to 93 mg/kg once the above optimum conditions are met.Conclusions:In this research, the modified Fenton oxidation using iron nano oxide at optimum conditions is introduced as an efficient alternative method in lab scale for chemical remediation or pre-treatment of soils contaminated by pyrene at neutral pH.

  12. Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure-oxygen activated sludge treatment.

    Science.gov (United States)

    Bae, Wookeun; Won, Hosik; Hwang, Byungho; de Toledo, Renata Alves; Chung, Jinwook; Kwon, Kiwook; Shim, Hojae

    2015-04-28

    Refractory pollutants in raw and treated dyeing wastewaters were characterized using fractional molecular weight cut-off, Ultraviolet-vis spectrophotometry, and high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI/MS). Significant organics and color compounds remained after biological (pure-oxygen activated sludge) and chemical (Fenton) treatments at a dyeing wastewater treatment plant (flow rate ∼100,000m(3)/d). HPLC-ESI/MS analysis revealed that some organic compounds disappeared after the biological treatment but reappeared after the chemical oxidation process, and some of that were originally absent in the raw dyeing wastewater was formed after the biological or chemical treatment. It appeared that the Fenton process merely impaired the color-imparting bonds in the dye materials instead of completely degrading them. Nevertheless, this process did significantly reduce the soluble chemical oxygen demand (SCOD, 66%) and color (73%) remaining after initial biological treatment which reduced SCOD by 53% and color by 13% in raw wastewater. Biological treatment decreased the degradable compounds substantially, in such a way that the following Fenton process could effectively remove recalcitrant compounds, making the overall hybrid system more economical. In addition, ferric ion inherent to the Fenton reaction effectively coagulated particulate matters not removed via biological and chemical oxidation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li

    2015-01-01

    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  14. Applying fenton process in acrylic fiber wastewater treatment and practice teaching

    Science.gov (United States)

    Zhang, Chunhui; Jiang, Shan

    2018-02-01

    Acrylic fiber manufacturing wastewater, containing a wider range of pollutants, high concentration of refractory organics, poisonous and harmful matters, was significant to treat from the effluents of wastewater treatment plants (WWTPs). In this work, a Fenton reactor was employed for advanced treatment of the WWTP effluents. An orthogonal test and a parametric study were carried out to determine the effect of the main operating conditions and the Fenton process attain excellent performance on the degradation of pollutants under an optimal condition of ferrous dosage was 6.25 mM, hydrogen peroxide was 75 mM and initial pH value was 3.0 in 90 min reaction time. The removal efficiency of COD, TOC, NH4 +-N and TN reached from 45% to 69%. Lastly, as a teaching advice, the Fenton reactor was used in practicing teaching nicely.

  15. Treatment of petroleum refinery sourwater by advanced oxidation processes

    International Nuclear Information System (INIS)

    Coelho, Alessandra; Castro, Antonio V.; Dezotti, Marcia; Sant'Anna, G.L.

    2006-01-01

    The performance of several oxidation processes to remove organic pollutants from sourwater was investigated. Sourwater is a specific stream of petroleum refineries, which contains slowly biodegradable compounds and toxic substances that impair the industrial biological wastewater treatment system. Preliminary experiments were conducted, using the following processes: H 2 O 2 , H 2 O 2 /UV, UV, photocatalysis, ozonation, Fenton and photo-Fenton. All processes, except Fenton and photo-Fenton, did not lead to satisfactory results, reducing at most 35% of the sourwater dissolved organic carbon (DOC). Thus, further experiments were performed with these two techniques to evaluate process conditions and organic matter removal kinetics. Batch experiments revealed that the Fenton reaction is very fast and reaches, in a few minutes, an ultimate DOC removal of 13-27%, due to the formation of iron complexes. Radiation for an additional period of 60 min can increase DOC removal up to 87%. Experiments were also conducted in a continuous mode, operating one 0.4 L Fenton stirred reactor and one 1.6 L photo-Fenton reactor in series. DOC removals above 75% were reached, when the reaction system was operated with hydraulic retention times (HRT) higher than 85 min. An empirical mathematical model was proposed to represent the DOC removal kinetics, allowing predicting process performance quite satisfactorily

  16. Fate of citalopram during water treatment with O3, ClO2, UV and fenton oxidation

    DEFF Research Database (Denmark)

    Hörsing, Maritha; Kosjek, Tina; Andersen, Henrik Rasmus

    2012-01-01

    In the present study we investigate the fate of citalopram (CIT) at neutral pH using advanced water treatment technologies that include O3, ClO2 oxidation, UV irradiation and Fenton oxidation. The ozonation resulted in 80% reduction after 30 min treatment. Oxidation with ClO2 removed >90% CIT...... at a dosage of 0.1 mg L−1. During UV irradiation 85% reduction was achieved after 5 min, while Fenton with addition of 14 mg L−1 (Fe2+) resulted in 90% reduction of CIT. During these treatment experiments transformation products (TPs) were formed from CIT, where five compounds were identified by using high...

  17. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene.

    Science.gov (United States)

    Sun, Hong-Wen; Yan, Qi-She

    2007-06-01

    The influences of Fenton oxidation on the content and composition of soil organic matter (SOM) and the consequent change of its sorption and desorption of pyrene were investigated using three soil samples. The results showed that both the content and the composition of the SOM changed, with total SOM content decreasing. The content of humic acid (HA) was reduced, while the content of humin did not change significantly, however the content of fulvic acid (FA) had a tendency to increase. Correlation analysis of soil-water distribution coefficient (K(d)) and different parts of the SOM reveals that humin and HA are the key factors controlling the sorption of pyrene. Organic carbon normalized K(d) (K(OC)) varied to different extents after Fenton oxidation due to the change of SOM composition. The reduction of K(OC) is significant in Soils 1 and 2 where large part of HA was reduced to FA, whose sorption ability is low. The change of K(OC) by oxidation in Soil 3 is not so significant due to that the percentage of humin and HA in Soil 3 did not change greatly after oxidation. Desorption was hysteretic in all cases, and humin percentage was found to be the key factor on the extent of desorption hystersis. Oxidation made desorption more hysteretic due to the elevated proportion of humin.

  18. Fenton-like initiation of a toluene transformation mechanism

    Science.gov (United States)

    In Fenton-driven oxidation treatment systems, reaction intermediates derived from parent compounds can play a significant role in the overall treatment process. Fenton-like reactions in the presence of toluene or benzene, involved a transformation mechanism that was highly effici...

  19. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.

    Science.gov (United States)

    Fischbacher, Alexandra; von Sonntag, Clemens; Schmidt, Torsten C

    2017-09-01

    The Fenton process, one of several advanced oxidation processes, describes the reaction of Fe(II) with hydrogen peroxide. Fe(II) is oxidized to Fe(III) that reacts with hydrogen peroxide to Fe(II) and again initiates the Fenton reaction. In the course of the reactions reactive species, e.g. hydroxyl radicals, are formed. Conditions such as pH, ligand concentrations and the hydrogen peroxide/Fe(II) ratio may influence the OH radical yield. It could be shown that at pH 3.5 the OH radical yield decreases significantly. Two ligands were investigated, pyrophosphate and sulfate. It was found that pyrophosphate forms a complex with Fe(III) that does not react with hydrogen peroxide and thus, the Fenton reaction is terminated and the OH radical yields do not further increase. The influence of sulfate is not as strong as that of pyrophosphate. The OH radical yield is decreased when sulfate is added but even at higher concentrations the Fenton reaction is not terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Activated sludge treatment by electro-Fenton process: Parameter optimization and degradation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Ali Reza; Azarian, Ghasem; Berizi, Zohreh [Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Nematollahi, Davood [Bu-Ali-Sina University, Hamadan (Iran, Islamic Republic of); Godini, Kazem [Ilam University of Medical Sciences, Ilam (Iran, Islamic Republic of)

    2015-08-15

    This study was conducted to evaluate the mineralization of activated sludge (MAS) by a facile and environmentally friendly electro-Fenton process (EFP). The effects of initial H{sub 2}O{sub 2} concentration, pH value, applied current density and operating time on MAS through determining the removal rate of chemical oxygen demand (COD) and total coliform (TC) were studied. 72% of COD was removed by indirect oxidation double-mediated based on the electro- generation of hydroxyl radical and active chlorine, under the following optimum conditions: 127mmol L{sup -}1 of hydrogen peroxide, pH=3.0, 10 mA cm{sup -}2 of DC current, 120min of operating time, and 0.22mol L{sup -}1 of NaCl as the supporting electrolyte. Only in 10 min and pH 3.0 approximately 100% of TC was removed. The findings indicated that EFP can be applied efficiently for MAS by selecting appropriate operating conditions. The bottom line is that the process is entirely effective owing to the application of green oxidants (hydroxyl radical and active chlorine) and lack of being influenced by environmental situations, which can be introduced as an alternative to current conventional methods.

  1. Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication.

    Science.gov (United States)

    Pulicharla, Rama; Brar, Satinder Kaur; Rouissi, Tarek; Auger, Serge; Drogui, Patrick; Verma, Mausam; Surampalli, Rao Y

    2017-01-01

    Residual emerging contaminants in wastewater sludge remain an obstacle for its wide and safe applications such as landfilling and bio-fertilizer. In this study, the feasibility of individual ultrasonication (UlS) and Fenton oxidation (FO) and combined, Ferro-sonication processes (FO) on the degradation of chlortetracycline (CTC) in wastewater sludge was investigated. UlS parameters such as amplitude and sonication time were optimized by response surface methodology (RSM) for further optimization of FS process. Generation of highly reactive hydroxyl radicals in FO and FS processes were compared to evaluate the degradation efficiency of CTC. Increasing in the ratio of hydrogen peroxide and iron concentration showed increased CTC degradation in FO process; whereas in FS, an increase in iron concentration did not show any significant effect (p>0.05) on CTC degradation in sludge. The estimated iron concentration in sludge (115mg/kg) was enough to degrade CTC without the addition of external iron. The only adjustment of sludge pH to 3 was enough to generate in-situ hydroxyl radicals by utilizing iron which is already present in the sludge. This observation was further supported by hydroxyl radical estimation with adjustment of water pH to 3 and with and without the addition of iron. The optimum operating UlS conditions were found to be 60% amplitude for 106min by using RSM. Compared to standalone UlS and FO at 1:1 ratio, FS showed 15% and 8% increased CTC degradation respectively. In addition, UlS of sludge increased estrogenic activity 1.5 times higher compared to FO. FS treated samples did not show any estrogenic activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Application of Fenton oxidation to reduce the toxicity of mixed parabens.

    Science.gov (United States)

    Martins, Rui C; Gmurek, Marta; Rossi, André F; Corceiro, Vanessa; Costa, Raquel; Quinta-Ferreira, M Emília; Ledakowicz, Stanislaw; Quinta-Ferreira, Rosa M

    2016-10-01

    The aims of the present work were to assess the application of a chemical process to degrade a mixture of parabens and determine the influence of a natural river water matrix on toxicity. Model effluents containing either a single compound, namely methylparaben, ethylparaben, propylparaben, butylparaben, benzylparaben or p-hydroxybenzoic acid, or to mimic realistic conditions a mixture of the six compounds was used. Fenton process was applied to reduce the organic charge and toxic properties of the model effluents. The efficiency of the decontamination has been investigated using a chemical as well as a toxicological approach. The potential reduction of the effluents' toxicity after Fenton treatment was evaluated by assessing (i) Vibrio fischeri luminescence inhibition, (ii) lethal effects amongst freshwater Asian clams (Corbicula fluminea), and (iii) the impact on mammalian neuronal activity using brain slices. From the environmental point of view such a broad toxicity analysis has been performed for the first time. The results indicate that Fenton reaction is an effective method for the reduction of chemical oxygen demand of a mixture of parabens and their toxicity to V. fischeri and C. fluminea. However, no important differences were found between raw and treated samples in regard to mammalian neuronal activity.

  3. Landfill leachate treatment by coagulation/flocculation combined with microelectrolysis-Fenton processes.

    Science.gov (United States)

    Luo, Kun; Pang, Ya; Li, Xue; Chen, Fei; Liao, Xingsheng; Lei, Min; Song, Yong

    2018-02-07

    Landfill leachate was pretreated by chemical flocculation with polyaluminum chloride (PAC) as a flocculant, and subsequently purified by the microelectrolysis-Fenton (MEF) process. Response surface methodology was employed to optimize the MEF process, and the optimal conditions were initial pH 3.20, H 2 O 2 concentration 3.57 g/L, and Fe-C dosage 104.52 g/L. The PAC coagulation combined with MEF processes obtained a superior decontamination performance, and the predicted chemical oxygen demand (COD) and humic acids (HA) removal were respectively 90.27% and 93.79%. The strong fluorescence peak at 425 nm and the trapping experiment showed that [Formula: see text] was generated during MEF, which had a strong oxidation ability to degrade organic recalcitrant pollutants. The ultraviolet-visible spectra and three-dimensional excitation-emission matrices spectra (3D-EEMs) indicated that PAC coagulation could preferentially remove protein-like substances, while the MEF process was effective in destructing organic recalcitrant pollutants, especially humic-like and fulvic-like substances.

  4. Integrating Fenton's process and ion exchange for olive mill wastewater treatment and iron recovery.

    Science.gov (United States)

    Reis, Patrícia M; Martins, Pedro J M; Martins, Rui C; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2018-02-01

    A novel integrated methodology involving Fenton's process followed by ion exchange (IE) was proposed for the treatment of olive mill wastewater. Fenton's process was optimized and it was able to remove up to 81% of chemical oxygen demand when pH 3.5, reaction time 1 h, [Fe 2+ ] = 50 mg L -1 and [Fe 2+ ]/[H 2 O 2 ] = 0.002 were applied. In spite of the potential of this treatment approach, final iron removal from the liquid typically entails pH increase and iron sludge production. The integration of an IE procedure using Lewatit TP 207 resin was found to be able to overcome this important environmental shortcoming. The resin showed higher affinity toward Fe 3+ than to Fe 2+ . However, the iron removal efficiency of an effluent coming from Fenton's was independent of the type of the initial iron used in the process. The presence of organic matter had no significant effect over the resin iron removal efficiency. Even if some efficiency decrease was observed when a high initial iron load was applied, the adsorbent mass quantity can be easily adapted to reach the desired iron removal. The use of IE is an interesting industrial approach able to surpass Fenton's peroxidation drawback and will surely boost its full-scale application in the treatment of bio-refractory effluents.

  5. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yetilmezsoy, Kaan [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)], E-mail: yetilmez@yildiz.edu.tr; Sakar, Suleyman [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)

    2008-03-01

    The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 ({+-}0.2) and a total COD of 12,100 ({+-}910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32 {+-} 2 deg. C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m{sup 3} day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe{sup 2+} and H{sub 2}O{sub 2} solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H{sub 2}O{sub 2} and Fe{sup 2+} dosages, and the ratio of H{sub 2}O{sub 2}/Fe{sup 2+}. Preliminary tests conducted with the dosages of 100 mg Fe{sup 2+}/L and 200 mg H{sub 2}O{sub 2}/L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe{sup 2+} and H{sub 2}O{sub 2} were investigated. Under the condition of 400 mg Fe{sup 2+}/L and 200 mg H{sub 2}O{sub 2}/L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe{sup 2+}/L and 1200 mg H{sub 2}O{sub 2}/L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a

  6. Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields.

    Science.gov (United States)

    Rodríguez-Chueca, J; Mediano, A; Ormad, M P; Mosteo, R; Ovelleiro, J L

    2014-09-01

    This research work is focused on the application and assessment of effectiveness of the Fenton-like processes induced by radiofrequency for the inactivation of faecal bacteria (Escherichia coli and Enterococcus sp.) present in treated urban wastewater effluents. Fenton processes were carried out at near neutral pH (pH 5) with different iron sources, such as iron salts (ferric chloride, 5, 50 and 100 mg/L Fe(3+)), magnetite (1 g/L) and clay (80 g/L), hydrogen peroxide (25 mg/L) and in absence and presence of radiofrequency. Two different electromagnetic field intensities (1.57 and 3.68 kA/m) were used in Fenton processes induced by radiofrequency. Different agents used in the Fenton processes induced by electromagnetic fields (iron source, hydrogen peroxide and RF) were analyzed individually and in combination under the same experimental conditions. First assays of ferromagnetic material/H2O2/radiofrequency processes achieved promising results in terms of bacterial inactivation. For instance, Fe(3+)/H2O2/Radiofrequency achieved a maximum level of E. coli inactivation of 3.55 log after 10 min of treatment. These results are higher than those obtained in absence of radiofrequency. The thermal activation of iron atoms allows the Fenton reaction to intensify, increasing the final yield of the treatment. On the other hand, different behavior was observed in the inactivation of E. coli and Enterococcus sp. due to the structural differences between Gram-negative and Gram-positive bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effect of deflocculation on the efficiency of sludge reduction by Fenton process.

    Science.gov (United States)

    Amudha, V; Kavitha, S; Fernandez, C; Adishkumar, S; Banu, J Rajesh

    2016-10-01

    A novel approach to improve the efficiency of Fenton treatment for sludge reduction through the implication of a deflocculating agent citric acid, for the exclusion of extracellular polymeric substances (EPS) from waste-activated sludge (WAS), was investigated. Deflocculation was achieved with 0.06 g/g suspended solids (SS) of citric acid dosage. Fenton optimization studies using response surface methodology (RSM) revealed that 0.5 and 0.0055 g/g SS were the optimal dosages of H2O2 and Fe(2+). The addition of a cation-binding agent set the pH value of sludge to 5 which did not affect the Fenton efficiency. The results presented in this study shows the advantage of deflocculating the sludge as SS and volatile suspended solids (VSS) reductions were found to be higher in the deflocculated (53 and 63 %, respectively) than in the flocculated (22 and 34 %, respectively) sludges. Kinetic investigation of the treatment showed that the rate of the reaction was four times higher in the deflocculated sludge than control. The methodology reported in this manuscript was successfully applied to a real case were the deflocculated mediated Fenton process reduced the sludge disposal cost from 297.8 to 61.9 US dollars/ton of sludge.

  8. Oxidative degradation of phenols in sono-Fenton-like systems upon high-frequency ultrasound irradiation

    Science.gov (United States)

    Aseev, D. G.; Sizykh, M. R.; Batoeva, A. A.

    2017-12-01

    The kinetics of oxidative degradation of phenol and chlorophenols upon acoustic cavitation in the megahertz range (1.7 MHz) is studied experimentally in model systems, and the involvement of in situ generated reactive oxygen species (ROSs) is demonstrated. The phenols subjected to high frequency ultrasound (HFUS) are ranked in terms of their rate of conversion: 2,4,6-trichlorophenol > 2,4-dichlorophenol 2-chlorophenol > 4-chlorophenol phenol. Oxidative degradation upon HFUS irradiation is most efficient at low concentrations of pollutants, due to the low steady-state concentrations of the in situ generated ROSs. A dramatic increase is observed in the efficiency of oxidation in several sonochemical oxidative systems (HFUS in combination with other chemical oxidative factors). The system with added Fe2+ (a sono-Fenton system) derives its efficiency from hydrogen peroxide generated in situ as a result of the recombination of OH radicals. The S2O8 2-/Fe2+/HFUS system has a synergetic effect on substrate oxidation that is attributed to a radical chain mechanism. In terms of the oxidation rates, degrees of conversion, and specific energy efficiencies of 4-chlorophenol oxidation based on the amount of oxidized substance per unit of expended energy the considered sonochemical oxidative systems form the series HFUS < S2O8 2-/HFUS < S2O8 2-/Fe2+/HFUS.

  9. Degradation of Amaranth azo dye in water by heterogeneous photo-Fenton process using FeWO4 catalyst prepared by microwave irradiation.

    Science.gov (United States)

    da Cruz Severo, Eric; Anchieta, Chayene Gonçalves; Foletto, Vitória Segabinazzi; Kuhn, Raquel Cristine; Collazzo, Gabriela Carvalho; Mazutti, Marcio Antonio; Foletto, Edson Luiz

    2016-01-01

    FeWO4 particles were synthesized by a simple, rapid and facile microwave technique and their catalytic properties in heterogeneous photo-Fenton reaction were evaluated. This material was employed in the degradation of Amaranth azo dye. Individual and interactive effects of operational parameters such as pH, dye concentration and H2O2 dosage on the decolorization efficiency of Amaranth dye were evaluated by 2(3) central composite design. According to characterization techniques, a porous material and a well-crystallized phase of FeWO4 oxide were obtained. Regarding the photo-Fenton reaction assays, up to 97% color and 58% organic carbon removal were achieved in the best experimental conditions. In addition, the photo-Fenton process maintained treatment efficiency over five catalyst reuse cycles to indicate the durability of the FeWO4 catalyst. In summary, the results reveal that the synthesized FeWO4 material is a promising catalyst for wastewater treatment by heterogeneous photo-Fenton process.

  10. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation.

    Science.gov (United States)

    Huang, Wenyu; Luo, Mengqi; Wei, Chaoshuai; Wang, Yinghui; Hanna, Khalil; Mailhot, Gilles

    2017-04-01

    In this research, magnetite and ethylenediamine-N,N'-disuccinic acid (EDDS) are used in a heterogeneous photo-Fenton system in order to find a new way to remove organic contaminants from water. Influence of different parameters including magnetite dosage, EDDS concentration, H 2 O 2 concentration, and pH value were evaluated. The effect of different radical species including HO · and HO 2 · /O 2 ·- was investigated by addition of different scavengers into the system. The addition of EDDS improved the heterogeneous photo-Fenton degradation of bisphenol A (BPA) through the formation of photochemically efficient Fe-EDDS complex. This effect is dependent on the H 2 O 2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O 2 ·- to generate Fe(II) from Fe(III) species reduction. GC-MS analysis suggested that the cleavage of the two benzene rings is the first degradation step followed by oxidation leading to the formation of the benzene derivatives. Then, the benzene ring was opened due to the attack of HO · radicals producing short-chain organic compounds of low molecular weight like glycerol and ethylene glycol. These findings regarding the capability of EDDS/magnetite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

  11. Reaction mechanisms and evaluation of effective process operation for catalytic oxidation and coagulation by ferrous solution and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Moon, H.J.; Kim, Y.M. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea); Bae, W.K. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Ansan, Kyounggi (Korea)

    2003-07-01

    This research was carried out to evaluate the removal efficiencies of COD{sub cr} and colour for the dyeing wastewater by ferrous solution and the different dosage of H{sub 2}O{sub 2} in Fenton process. In the case of H{sub 2}O{sub 2} divided dosage, 7:3 was more effective than 3:7 to remove COD{sub cr} and colour. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. This paper also aims at pursuing to investigate the effective removal mechanisms using ferrous ion coagulation, ferric ion coagulation and Fenton oxidation process. The removal mechanism of COD{sub cr} and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide. (orig.)

  12. Humic Acid Degradation via Solar Photo-Fenton Process in Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Seyed Ali Sajjadi

    2015-08-01

    Full Text Available Control of mutagenic and carcinogenic disinfection by-products, particularly Trihalomethanes (THMs and Halo Acetic Acids (HAAs in water treatment process is critical, due to their adverse effects on human health. Generally, reducing the toxicity of these by-products hinges on prior removal of the precursor materials, such as Humic Acid (HA in drinking water. This study was conducted to investigate the role of some parameters that could affect the removal of HA, including HA (5 and 10 ppm and H2O2 (20, 40, 60, and 80 ppm initial concentrations, Iron (II, sulfate heptahydrate dosage (4, 8, 12, and 16 ppm, pH (2, 3, 4 and 5, Oxidation time (5, 10, 15 and 30 min, and Sunlight levels (322±13 kWm-2. To accelerate the process of HA removal, the Solar Photo-Fenton (SPF process was employed by direct irradiation of converged sunlight in a Parabolic Trough Collectors (PTC, with 3m2 effective area. HA levels were measured via quantifying Dissolved Organic Carbon (DOC concentrations by means of a TOC Analyzer method. The results showed that the SPF process is under control of the Fe & H2O2 ratio, the Fe2+ dosage and especially the pH quantity. In optimal condition, (pH: 4, oxidation time: 30min, initial HA levels: 50 ppm, H2O2 concentrations: 20 ppm Fe+2 levels: 4 ppm, the study found more than 98% DOC removal. In conclusion, the SPF, as an economically effective technique, could be applied for the removal of HA in aqueous environments.

  13. Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater.

    Science.gov (United States)

    Badawy, Mohamed I; Wahaab, Rifaat A; El-Kalliny, A S

    2009-08-15

    A treatability study of pharmaceutical wastewater from El-Nasr Pharmaceutical and Chemical Company, South-East of Cairo, was carried out. The company discharges both industrial (6000 m(3)/d) and municipal wastewater (128 m(3)/d) into a nearby evaporation pond without any treatment. The generated raw wastewater is characterized by high values of COD (4100-13,023), TSS (20-330 mg/L), and oil grease (17.4-600 mg/L). In addition, the presence of refractory compounds decreases BOD/COD ratio (0.25-0.30). Analysis of raw wastewater confirmed that pre-treatment is required prior to discharge into public sewers to comply with the Egyptian Environmental laws and regulations. The obtained results indicated that the refractory compounds and their by-products cannot be readily removed by biological treatment and always remain in the treated effluent or adsorbed on the sludge flocs. The application of Fenton oxidation process as a pre-treatment improved the removal of pharmaceuticals from wastewater and appears to be an affective solution to achieve compliance with the law legislation with respect to discharge in a determined receptor medium.

  14. Degradation of phenol with using of Fenton-like Processes from water

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-08-01

    Full Text Available Phenol is one of the serious pollutants from the chemical and petrochemical industries. This pollutant due to its convoluted structure is resistant to biodegradation. One of the methods that are useful to remove this pollutant is advanced oxidation (AOP. A laboratory scale study was done on a synthetic wastewater containing phenol. All experiments were done in batch conditions and effect of variables pH, amount of hydrogen peroxide, iron dosage, contact time and an initial concentration on the phenol removal were tested. The remaining phenol concentration was evaluated using the DR-5000 device. In order to effect of these parameters, the experiment was performance at pH 2 to 6, 5 to 45 ml/ml of peroxide, and time of 5 to 60 minutes with 2 to 15 g/ml iron (Fe˚. The optimum pH, the ratio of hydrogen, Fe˚and time were 3, 15 ml, 8g and 5 minutes respectively. Chemical oxygen demand (COD index was chosen as the parameter for evaluation in this study. Result showed that mineralization of phenol was not complete. The COD removal efficiency was obtained 71%. According to the results of this study, Fenton-like process can be used for conversion organic resistant compounds to other compounds with lower toxicity.

  15. Optimization of the Parameters Affecting the Fenton Process for Decolorization of Reactive Red 198 (RR-198 from the Aqueous Phase

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2015-10-01

    Full Text Available Background: Recently, there has been a great concern about the consumption of dyes because of their toxicity, mutagenicity, carcinogenicity, and persistence in the aquatic environment. Reactive dyes are widely used in textile industry. Advanced oxidation processes are one of the cost-effective methods for the removal of these dyes. The main aims of this study were determining the feasibility of using Fenton process in removing Reactive Red 198 (RR-198 dye from aqueous solution and determining the optimal conditions. Methods: This is a cross-sectional study conducted at a laboratory scale. A total of 69 samples were considered and the effect of pH, Fe (II concentration, H2O2 concentration, initial dye concentration and reaction time were investigated. Results: According to the results, a maximum removal efficiency of 92% was obtained at pH of 3 and the reaction time of 90 min; also, the concentration of Fe (II, H2O2, initial dye concentration were 100 mg/L, 50 mg/L, and 100 mg/L, respectively. The results revealed that by increasing the concentration of Fe (II, H2O2 and initial dye, the removal efficiency was increased. Conclusions: The results showed that Fenton process could be used as a cost-effective method for removing RR-198 dye from textile wastewater efficiently.

  16. Degradation of 2-hydroxybenzoic acid by advanced oxidation processes

    Directory of Open Access Journals (Sweden)

    C. L. P. S. Zanta

    2009-09-01

    Full Text Available In this study, advanced oxidation processes (AOPs such as the UV/H2O2 and Fenton processes were investigated for the degradation of 2-hydroxybenzoic acid (2-HBA in lab-scale experiments. Different [H2O2]/[2-HBA] molar ratios and pH values were used in order to establish the most favorable experimental conditions for the Fenton process. For comparison purposes, degradation of 2-HBA was carried out by the UV/H2O2 process under Fenton experimental conditions. The study showed that the Fenton process (a mixture of hydrogen peroxide and Fe2+ ion was the most effective under acidic conditions, leading to the highest rate of 2-hydroxybenzoic acid degradation in a very short time interval. This same process led to a six-fold acceleration of the oxidation rate compared with the UV/H2O2 process. The degradation of 2-hydroxybenzoic acid was found to follow first-order kinetics and to be influenced by the type of process and the experimental conditions. The experimental results showed that the most favorable conditions for 2-HBA degradation by the Fenton process are pH around 4-5, [Fe2+] = 0.6 mmol.L-1, and [H2O2]/[2-HBA] molar ratio = 7. The hydroxylation route is explained here for the two processes, and the results are discussed in the light of literature information.

  17. Influence of anionic surfactant on the process of electro-Fenton decolorized methyl orange.

    Science.gov (United States)

    Ren, B X

    2010-01-01

    The electro-Fenton process has been shown to be very successful to remove dyes from water. However, the influence of other constituents in dyeing industry wastewater, such as Sodium Dodecyl Sulfate (SDS) surfactants, has not been investigated. In this study, the effect of SDS surfactant on the kinetics of Methyl Orange degradation undergoing Electro-Fenton process was investigated. Results show that Methyl Orange degradation rate decreased as SDS concentration (below Critical Micelle Concentration, CMC) increased, which was attributed to the consumption of hydroxyl radicals (( )OH) by surfactants. The kinetics modeling indicates the reaction was the first-order reaction to Methyl Orange even SDS existing. The pseudo first-order rate constants decreased as SDS concentration increased.

  18. Effect of anionic surfactants on the process of Fenton degradation of methyl orange.

    Science.gov (United States)

    Yang, C W; Wang, D

    2009-01-01

    Fenton process has been shown to be very successful to remove dyes from water. However, the influence of other constituents in dyeing industry wastewater, such as Sodium Dodecyl Sulphate (SDS) surfactants, has not been investigated. In this study, the effect of SDS surfactant on the kinetics of Methyl Orange degradation undergoing Fenton process was investigated. Results show that Methyl Orange degradation rate decreased as SDS concentration increased, which was attributed to the consumption of hydroxyl radicals (OH) by surfactants and the formation of Methyl Orange-SDS complex. No evidence was found that the Methyl Orange degradation pathway was affected by the presence of SDS. The kinetics modelling indicates the reaction was the first-order reaction to Methyl Orange.

  19. NATURAL IRON OXIDE AS A HETEROGENEOUS PHOTO-FENTON-LIKE CATALYST FOR THE DEGRADATION OF 1-NAPHTHOL UNDER ARTIFICIAL AND SOLAR LIGHT

    Directory of Open Access Journals (Sweden)

    L MAMMERI

    2014-07-01

    Full Text Available A heterogeneous photo-Fenton-like degradation process of 1-naphthol (1-NP promoted by natural iron oxide (NIO in the presence of H2O2 was studied under artificial (365 nm and solar irradiation. This is an important reaction for the environment since both H2O2 and iron oxides are common constituents of natural waters. Furthermore, iron oxides function as catalysts in chemical oxidation processes used with H2O2 for treatment of contaminated waters. The NIO used in this study was characterized by X-ray diffraction (XRD, X-ray fluorescence and Brunauer–Emmett–Teller (BET methods. The results show that the NIO is a composite material that contains predominantly crystalline hematite particales (Fe2O3. The Fe2O3 in NIO was able to initiate the Fenton-like and photo-Fenton-like reactions. The effects of initial pH, catalyst dosage, H2O2 concentration and the wavelength of the light source (UV and solar on the photodegradation of 1-NP were investigated. The optimal content of the NIO was 1 g L-1 and the optimal H2O2 concentration was 10 mM. The degradation could occur efficiently over a wide pH range of 3-8.3. Furthermore, an important effect of light was observed. The photo-oxidation of 1-NP in NIO-H2O2 system under solar light was significantly accelerated in comparison with artificial irradiation at 365 nm.

  20. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Xiao-Yu; Gu, Dong-Yan; Wu, Yuan-Dong [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Yan, Zhi-Ying [Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041 (China); Zhou, Jun; Wu, Xia-Yuan [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Wei, Ping [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Jia, Hong-Hua [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Zheng, Tao, E-mail: zhengtao@ms.giec.ac.cn [Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Nengyuan Road, Guangzhou 510640 (China); Yong, Yang-Chun, E-mail: ycyong@ujs.edu.cn [Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2017-02-15

    Graphical abstract: Schematic diagram of the Bio-Electron-Fenton (BEF) process for TPTC degradation. - Highlights: • A Bio-Electro-Fenton process was performed for TPTC degradation. • TPTC removal efficiency achieved 78.32 ± 2.07% within 100 h. • The TPTC degradation rate (0.775 ± 0.021 μmol L{sup −1} h{sup −1}) was much higher than previous reports. - Abstract: The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H{sub 2}O{sub 2} to a maximum of 135.96 μmol L{sup −1} at the Fe@Fe{sub 2}O{sub 3(*)}/graphite felt composite cathode, which further reacted with leached Fe{sup 2+} to produce hydroxyl radicals. While 100 μmol L{sup −1} TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32 ± 2.07%, with a rate of 0.775 ± 0.021 μmol L{sup −1} h{sup −1}. This Bio-Electron-Fenton driving TPTC degradation might involve in Sn−C bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO{sub 2}. This study provides an energy saving and efficient approach for TPTC degradation.

  1. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes.

    Science.gov (United States)

    da Costa, Fabio Moraes; Daflon, Sarah Dario Alves; Bila, Daniele Maia; da Fonseca, Fabiana Valeria; Campos, Juacyara Carbonelli

    2018-02-19

    Leachate from urban solid waste landfills is a complex mixture of organic and inorganic substances that cause damage to the environment, due to the high concentration of recalcitrant organic matter and toxicity. The objective of this study was to apply advanced oxidation processes (AOP), namely the dark Fenton and solar photo-Fenton processes, to young and old landfill leachates prior to biological treatment. The leachates were obtained from the Seropedica and Gramacho landfill sites, respectively, located in Rio de Janeiro State, Brazil. For the two Fenton processes, different conditions of pH (1.5, 3.0 and 5.0) and Fe 2+ : H 2 O 2 ratio (1:2, 1:5 and 1:10) were evaluated. Biodegradability was evaluated using the Zahn-Wellens methodology and Aliivibrio fischeri acute toxicity tests were conducted in order to predict the toxicity in the activated sludge. The best conditions for both Fenton processes were pH of 3.0 and Fe 2+ : H 2 O 2 and COD RAW :H 2 O 2 mass ratios of 1:5 and 1:1, respectively. The solar photo-Fenton process was more effective at improving the quality for both leachates, reaching COD, TOC and abs 254 nm reductions of 82%, 85% and 96.3%, respectively, for the Seropedica landfill leachate. In the case of the Gramacho landfill leachate, the corresponding reductions were 78.2, 80.7% and 91.1%, respectively. The biodegradability results for the untreated leachates from the Seropedica and Gramacho sites were 65% and 30% respectively. The biodegradability of both leachates was improved by the Fenton processes, especially the solar photo-Fenton process, which increased the leachate biodegradability to 89% (Seropedica) and 69% (Gramacho). For both leachates, a greater reduction in the acute toxicity was achieved with the solar photo-Fenton compared to the dark-Fenton process. The Seropedica landfill leachate showed high toxicity (EC50 = 33%, 15 min), after the dark Fenton and solar photo Fenton processes, with EC50 values of 81 and 91

  2. Fate of thiabendazole through the treatment of a simulated agro-food industrial effluent by combined MBR/Fenton processes at μg/L scale.

    Science.gov (United States)

    Sánchez Peréz, J A; Carra, I; Sirtori, C; Agüera, A; Esteban, B

    2014-03-15

    This study has been carried out to assess the performance of a combined system consisting of a membrane bioreactor (MBR) followed by an advanced oxidation process (Fenton/Photo-Fenton) for removing the fungicide thiabendazole (TBZ) in a simulated agro-food industrial wastewater. Previous studies have shown the presence of TBZ in the effluent of an agro-food industry treated by activated sludge in a sequencing batch reactor (SBR), thus reinforcing the need for alternative treatments for removal. In this study, a simulated agro-food industry effluent was enriched with 100 μg L(-1) TBZ and treated by combined MBR/Fenton and MBR/solar photo-Fenton systems. Samples were directly injected into a highly sensitive liquid chromatography-triple quadrupole-linear ion trap-mass spectrometer (LC-QqLiT-MS/MS) analytical system to monitor the degradation of TBZ even at low concentration levels (ng L(-1)). Results showed that the biological treatment applied was not effective in TBZ degradation, which remained almost unaltered; although most dissolved organic matter was biodegraded effectively. Fenton and solar photo-Fenton, were assayed as tertiary treatments. The experiments were run without any pH adjustment by using an iron dosage strategy in the presence of excess hydrogen peroxide. Both treatments resulted in a total degradation of TBZ, obtaining more than 99% removal in both cases. To assure the total elimination of contaminants in the treated waters, transformation products (TPs) of TBZ generated during Fenton degradation experiments were identified and monitored by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS). Up to four TPs could be identified. Two of them corresponded to mono-hydroxylated derivatives, typically generated under hydroxyl radicals driven processes. The other two corresponded with the hydrolysis of the TBZ molecule to yield benzoimidazole and thiazole-4-carboxamidine. All of them were also degraded during the

  3. Fenton process combined with coagulation for the treatment of black liquor from bioethanol wastewater

    Science.gov (United States)

    Muryanto, Muryanto; Hanifah, Ummu; Amriani, Feni; Ibadurrahman, Ahmad Faiz; Sari, Ajeng Arum

    2017-11-01

    High amounts of black liquor are generated from bioethanol production by using oil palm empty fruit bunches. The black liquor is waste from alkaline pretreatment, it contains high amount of an alkaline solution (NaOH). The black liquor wastewater was highly contaminated with organic materials, and quite toxic for aquatic ecosystems if discharged directly into waters. This study aimed to determine ability of Fenton process combined with coagulation to treat black liquor. The addition 5% of polyaluminium chloride (PAC) could decolorized black liquor, degraded lignin, and produced sludge 70.64%, 68.28%, and 2.76 gram, respectively. Decolorization of black liquor was in line with degradation of black liquor because lignin is the main compound in black liquor. SEM images after addition of PAC of 5% indicated fragmentation of structure. Fenton reagent consist of 0.7 M FeSO4+ 3M H2O2 has able to decolorize black liquor, degrade lignin, and produce sludge 51.67% and 25.44%, and 0.44 gram, respectively. It was concluded that black liquor wastewater from bioethanol can be treated by using Fenton process combined with coagulation. However, these methods still need improvement to obtain the higher degradation rate, and coagulation sludge needs further consideration.

  4. Degradação de benzeno, tolueno e xilenos em águas contaminadas por gasolina, utilizando-se processos foto-Fenton Degradation of benzene, toluene and xilenes in gasoline-contaminated waters by photo-Fenton processes

    Directory of Open Access Journals (Sweden)

    Elaine Regina Lopes Tiburtius

    2009-01-01

    Full Text Available In this work the potentiality of photo-Fenton processes were investigated toward the degradation of aromatic hydrocarbons (BTXs from water contaminated with gasoline. The main results demonstrated that BTXs can be quickly degraded by photo-Fenton process assisted by solar or artificial UV-A radiation, degradation that leads to generation of characteristic phenolic transient species (ie. phenol, hydroquinone and catechol. In the treatment of contaminated water by photo-Fenton processes assisted by solar light, complete BTXs removal was observed in reaction times of about 5 min. Mineralization of about 90% was also observed by applying a multiple H2O2 addition system.

  5. Changes of turbidity during the phenol oxidation by photo-Fenton treatment.

    Science.gov (United States)

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez, Jonatan

    2014-11-01

    Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R = 4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via "para" comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R = 6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R = 6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH = 3.0, whereas operating in stoichiometric conditions, R = 14.0, the residual turbidity of water results almost null.

  6. Treatment of Effluent from a Factory of Paints Using Solar Photo-Fenton Process

    Directory of Open Access Journals (Sweden)

    Alam Gustavo Trovó

    2013-01-01

    Full Text Available We evaluated the use of Fenton reactions induced by solar radiation in the treatment of effluent from a factory of paints for buildings, after prior removal of the suspended solids. The increase of H2O2 concentration from 100 to 2500 mg L−1 for a [Fe2+] = 105 mg L−1 contributed to the reduction of DOC, COD, and toxicity. Our best results were achieved using 1600 mg L−1 H2O2, with 90% of DOC and COD removal and a complete removal of the toxicity with respect to Artemia salina. Additionally, through increasing Fe2+ concentration from 15 to 45 mg L−1, the DOC removal rate increased 11 times, remaining almost constant in the range above 45 until 105 mg L−1. Under our best experimental conditions, 80% of DOC removal was achieved after an accumulated dose of 130 kJ m−2 of UVA radiation (82±17 min of solar irradiation under an average UVA irradiance of 34.1±7.3 W m−2, while 40% of DOC removal was reached after 150 min under only thermal Fenton reactions. The results suggest the effectiveness of implementation of solar photo-Fenton process in the decontamination and detoxification of effluents from factories of paints for buildings.

  7. Environmental application of millimetre-scale sponge iron (s-Fe0) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H2O2and RhB photosensitizers.

    Science.gov (United States)

    Ju, Yongming; Yu, Yunjiang; Wang, Xiaoyan; Xiang, Mingdeng; Li, Liangzhong; Deng, Dongyang; Dionysiou, Dionysios D

    2017-02-05

    In this study, we firstly develop the photo-Fenton-like system with millimetric sponge iron (s-Fe 0 ), H 2 O 2 , visible light (vis, λ≥420nm) and rhodamine B (RhB), and present a comprehensive study concerning the mechanism. Thus, we investigate (1) the adsorption of RhB onto s-Fe 0 , (2) the photo-Fenton-like removal of RhB over iron oxides generated from the corrosion of s-Fe 0 , (3) the homogeneous photo-Fenton removal of RhB over Fe 2+ or Fe 3+ , (4) the Fe 3+ -RhB complexes, and (5) the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). The results show that neither the adsorption process over s-Fe 0 nor the photo-Fenton-like process over FeOOH, Fe 3 O 4 and Fe 2 O 3 , achieved efficient removal of RhB. For comparison, in homogeneous photo-Fenton process, the presence of Fe 3+ ions, rather than Fe 2+ ions, effectively eliminated RhB. Furthermore, the UV-vis spectra showing new absorbance at∼285nm indicate the complexes of RhB and Fe 3+ ions, adopting vis photons to form excited state and further eject one electron via ligand-to-metal charge-transfer to activate H 2 O 2 . Additionally, efficient TBBPA removal was obtained only in the presence of RhB. Accordingly, the s-Fe 0 - based photo-Fenton-like process assisted with dyestuff wastewater is promising for removing a series of persistent organic pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Amine Oxidative N-Dealkylation via Cupric Hydroperoxide Cu–OOH Homolytic Cleavage Followed by Site-Specific Fenton Chemistry

    Science.gov (United States)

    Kim, Sunghee; Ginsbach, Jake W.; Lee, Jung Yoon; Peterson, Ryan L.; Liu, Jeffrey J.; Siegler, Maxime A.; Sarjeant, Amy A.; Solomon, Edward I.; Karlin, Kenneth D.

    2015-01-01

    Copper(II)-hydroperoxide species are significant intermediates in processes such as fuel cells and (bio)chemical oxidations, all involving stepwise reduction of molecular oxygen. We previously reported a CuII-OOH species that performs oxidative N-dealkylation on a dibenzylamino group that is appended to the 6-position of a pyridyl donor of a tripodal tetradentate ligand. To obtain insights into the mechanism of this process, reaction kinetics and products were determined employing ligand substrates with various para- substituent dibenzyl pairs (-H,-H; -H,-Cl; -H,-OMe and -Cl,-OMe), or with partially or fully deuterated dibenzyl N-(CH2Ph)2 moieties. A series of ligand-copper(II) bis-perchlorate complexes were synthesized, characterized, and the X-ray structures of the -H, -OMe analog was were determined. The corresponding metastable CuII-OOH species were generated by addition of H2O2/base in acetone at –90 °C. These convert (t1/2 ~ 53 s) to oxidatively N-dealkylated products, producing para-substituted benzaldehydes. Based on the experimental observations and supporting DFT calculations, a reaction mechanism involving dibenzylamine H-atom abstraction or electron-transfer oxidation by the CuII-OOH entity could be ruled out. It is concluded that the chemistry proceeds by rate limiting Cu–O homolytic cleavage of the CuII–(OOH) species, followed by site-specific copper Fenton chemistry. As a process of broad interest in copper as well as iron oxidative (bio)chemistries, a detailed computational analysis was performed, indicating that a CuIOOH species undergoes O–O homolytic cleavage to yield a hydroxyl radical and CuIIOH rather than heterolytic cleavage to yield water and a CuII-O•−. PMID:25706825

  9. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2007-01-01

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H 2 O 2 /Fe 2+ ), UV, UV/H 2 O 2 , photo-Fenton (UV/H 2 O 2 /Fe 2+ ), ozonation and peroxone (ozone/H 2 O 2 ) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H 2 O 2 /Fe 2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used

  10. Thin films containing oxalate-capped iron oxide nanomaterials deposited on glass substrate for fast Fenton degradation of some micropollutants.

    Science.gov (United States)

    Rambu, Alicia Petronela; Nadejde, Claudia; Schneider, Rudolf J; Neamtu, Mariana

    2018-03-01

    The main goal of the study was to evaluate the catalytic activity of two hybrid nanocatalysts consisting in Fe 3 O 4 nanoparticles modified with either chitosan (CS) or polyethylene glycol (PEG)/ferrous oxalate (FO), and further deposited on solid substrate as thin films. X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) were employed for the structural and morphological characterizations of the heterogeneous catalysts. The degradation kinetic studies of two reactive azo dye (Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84)) as well as Bisphenol A (BPA) solutions were carried out using Fenton-like oxidation, in the presence of different concentrations of H 2 O 2 , at initial near-neutral pH and room temperature. The results indicated that a low amount of catalytic material (0.15 g/L), deposited as thin film, was able to efficiently trigger dye degradation in solution in the presence of 6.5 mmol/L H 2 O 2 for RB5 and of only 1.6 mmol/L H 2 O 2 in the case of BPA and RY84. In the presence of complex matrices such as WWTP waters, the removal of BPA was low (only 24% for effluent samples). Our findings recommend the studied immobilized nanocatalysts as promising economical tools for the pre-treatment of wastewaters using advanced oxidation processes (AOPs).

  11. Degradation and mineralization of azo dye reactive blue 222 by sequential Photo-Fenton's oxidation followed by aerobic biological treatment using white rot fungi.

    Science.gov (United States)

    Kiran, Shumaila; Ali, Shaukat; Asgher, Muhammad

    2013-02-01

    A two stage sequential Photo-Fenton's oxidation followed by aerobic biological treatment using two white rot fungi P. ostreatus IBL-02 (PO) and P. chrysosporium IBL-03 (PC) was performed to check decolorization and to enhance mineralization of azo dye Reactive Blue 222 (RB222). In the first stage, selected dye was subjected to Photo-Fenton's oxidation with decolorization percentage ≈90 % which was further increased to 96.88 % and 95.23 % after aerobic treatment using two white rot fungi P. ostreatus IBL-02 (PO) and P. chrysosporium IBL-03 (PC), respectively. Mineralization efficiency was accessed by measuring the water quality assurance parameters like COD, TOC, TSS and Phenolics estimation. Reduction in COD, TOC, TSS and Phenolics were found to be 95.34 %, 90.11 %, 90.84 % and 92.22 %, respectively in two stage sequential processes. The degradation products were characterized by UV-visible and FTIR spectral techniques and their toxicity was measured. The results provide evidence that both fungal strains were able to oxidize and mineralize the selected azo dye into non-toxic metabolites.

  12. Iron oxides and their applications in catalytic processes: a review

    OpenAIRE

    Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.

    2013-01-01

    A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more...

  13. COD and Color Removal from Wastewaters: Optimization of Fenton Process

    Directory of Open Access Journals (Sweden)

    Elçin Güneş

    2015-12-01

    Full Text Available In this study, COD and color removal from wastewaters by Fenton’s oxidation were investigated. In the study the response variables of Y1 and Y2 were selected as COD removal rate (% and color removal rate(%, and efficacy variables of A, B, anc C were selected as H2O2 concentration (mmol/L, reaction time (h and H2O2/Fe2+. The experimental design was used as a two-level factorial design. In the corner points 23 = 8, in the center points 3 and a total of 3(8+3=33 experiments were conducted. Effect of H2O2 concentration (mmol/L, reaction time (h and H2O2/Fe2+ molar ratio on COD removal rate and color removal rate were investigated. The optimum conditions for maximum COD removal rate and color removal rate were at H2O2 concentration 8 mmol/L, reaction time 3 h and H2O2/Fe2+ molar ratio 2.6. At optimum conditions 82% COD removal rate and 93% color removal rate were achieved.

  14. Synergistic efficiency of the desilication of brackish underground water in Saudi Arabia by coupling γ-radiation and Fenton process: Membrane scaling prevention in reverse osmosis process

    Science.gov (United States)

    Aljohani, Mohammed S.

    2017-12-01

    One of the main water resources in arid Saudi Arabia is underground water. However, this brackish water has high silica content which can cause a recalcitrant deposit on the membrane in the reverse osmosis units during its desalination. In this study, we examined the synergistic efficiency of the removal of silica from the Buwaib water sample, when combining two advanced oxidation processes, γ-irradiation and the Fenton process, using hydrogen peroxide and zero valent metal iron as source of Fe3+. This latter adsorbs effectively on silica and co-precipitate. The influence of absorbed dose, iron dosage and pH effect were investigated. This preliminary study showed that these attractive and effective hybrid processes are very efficient in removing silica.

  15. Concomitant degradation of bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2011-09-01

    Degradation of bisphenol A (BPA), an endocrine disruptor, from wastewater sludge (WWS) has attracted great interest recently. In the present study, the effects of different pre-treatment methods, including ultrasonication (US), Fenton's oxidation (FO) and ferro-sonication (FS) was assessed in terms of increase in solubilization of WWS and simultaneous degradation of BPA. Among US, FO and FS pre-treatment, higher suspended solids (SS), volatile suspended solids (VSS), chemical oxygen demand (COD) and soluble organic carbon (SOC) solubilization (39.7%, 51.2%, 64.5% and 17.6%, respectively) was observed during a ferro-sonication pre-treatment process carried out for 180 min, resulting in higher degradation of BPA (82.7%). In addition, the effect of rheological parameters (viscosity and particle size) and zeta potential on the degradation of BPA in raw and different pre-treated sludges were also investigated. The results showed that a decrease in viscosity and particle size and an increase in zeta potential resulted in higher degradation of BPA. BPA degradation by laccases produced by Sinorhizobium meliloti in raw and pre-treated sludge was also determined. Higher activity of laccases (207.9 U L(-1)) was observed in ferro-sonicated pre-treated sludge (180 min ultrasonic time), resulting in higher removal of BPA (0.083 μg g(-1)), suggesting concomitant biological degradation of BPA. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A mechanistic kinetic model for phenol degradation by the Fenton process.

    Science.gov (United States)

    Pontes, Ricardo F F; Moraes, José E F; Machulek, Amilcar; Pinto, José M

    2010-04-15

    The objective of this paper is to develop and validate a mechanistic model for the degradation of phenol by the Fenton process. Experiments were performed in semi-batch operation, in which phenol, catechol and hydroquinone concentrations were measured. Using the methodology described in Pontes and Pinto [R.F.F. Pontes, J.M. Pinto, Analysis of integrated kinetic and flow models for anaerobic digesters, Chemical Engineering Journal 122 (1-2) (2006) 65-80], a stoichiometric model was first developed, with 53 reactions and 26 compounds, followed by the corresponding kinetic model. Sensitivity analysis was performed to determine the most influential kinetic parameters of the model that were estimated with the obtained experimental results. The adjusted model was used to analyze the impact of the initial concentration and flow rate of reactants on the efficiency of the Fenton process to degrade phenol. Moreover, the model was applied to evaluate the treatment cost of wastewater contaminated with phenol in order to meet environmental standards. 2009 Elsevier B.V. All rights reserved.

  17. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation.

    Science.gov (United States)

    Yong, Xiao-Yu; Gu, Dong-Yan; Wu, Yuan-Dong; Yan, Zhi-Ying; Zhou, Jun; Wu, Xia-Yuan; Wei, Ping; Jia, Hong-Hua; Zheng, Tao; Yong, Yang-Chun

    2017-02-15

    The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H 2 O 2 to a maximum of 135.96μmolL -1 at the Fe@Fe 2 O 3(*) /graphite felt composite cathode, which further reacted with leached Fe 2+ to produce hydroxyl radicals. While 100μmolL -1 TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32±2.07%, with a rate of 0.775±0.021μmolL -1 h -1 . This Bio-Electron-Fenton driving TPTC degradation might involve in SnC bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO 2 . This study provides an energy saving and efficient approach for TPTC degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization

    Science.gov (United States)

    Shaban, Mohamed; Abukhadra, Mostafa R.; Ibrahim, Suzan S.; Shahien, Mohamed. G.

    2017-12-01

    Refined natural Fe-chromite was characterized by XRD, FT-IR, reflected polarized microscope, XRF and UV spectrophotometer. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye by Fe-chromite was investigated using 1 mL H2O2. The degradation of dye was studied as a function of illumination time, chromite mass, initial dye concentration, and pH. Fe-chromite acts as binary oxide system from chromium oxide and ferrous oxide. Thus, it exhibits photocatalytic properties under UV illumination and photo-Fenton oxidation after addition of H2O2. The degradation in the presence of H2O2 reached the equilibrium stage after 8 h (59.4%) but in the absence of H2O2 continued to 12 h (54.6%). Photocatalytic degradation results fitted well with zero, first order and second order kinetic model but it represented by second order rather than by the other models. While the photo-Fenton oxidation show medium fitting with the second order kinetic model only. The values of kinetic rate constants for the photo-Fenton oxidation were greater than those for the photocatalytic degradation. Thus, degradation of Congo red dye using chromite as catalyst is more efficient by photo-Fenton oxidation. Based on the response surface analysis, the predicted optimal conditions for maximum removal of Congo red dye by photocatalytic degradation (100%) were 12 mg/l, 0.14 g, 3, and 11 h for dye concentration, chromite mass, pH, and illumination time, respectively. Moreover, the optimum condition for photo-Fenton oxidation of dye (100%) is 13.5 mg/l, 0.10 g, 4, and 10 h, respectively.

  19. Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process.

    Science.gov (United States)

    Hassani, Aydin; Karaca, Melike; Karaca, Semra; Khataee, Alireza; Açışlı, Özkan; Yılmaz, Bilal

    2018-04-01

    In this study, the heterogeneous Fenton oxidation of ciprofloxacin (CIP) in an aqueous solution was examined over the nano-sized magnetite (Fe 3 O 4 ) as a catalyst supplied through high-energy planetary ball milling process. To characterize the magnetite samples after and before ball milling operation, the X-ray diffraction (XRD), High-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FTIR) analysis were applied. The catalytic properties of the magnetite were considerably improved because of the enhancement in its physical properties, resulted from milling process. The findings also indicated that 6 h ball-milled magnetite demonstrated better properties for elimination of CIP of about 89% following 120 min reaction at optimal conditions of H 2 O 2 12 mM, Fe 3 O 4 1.75 g L -1 , CIP 10 mg L -1 and pH 3.0. The effects of various operational parameters, including the initial pH of the solution, H 2 O 2 initial concentration, catalyst dosage, milling time and CIP initial concentration was investigated. Application of organic and inorganic scavengers considerably decreased the CIP removal efficiency. Correspondingly, with respect to the leached iron values at pH 3, it was concluded that CIP elimination was mainly occurred through heterogeneous Fenton procedure. This process included the adsorption and oxidation phases in which the hydroxyl radicals (OH) played a significant role. GC-MS analysis was used for recording of the generated intermediates of the CIP removal in the course of heterogeneous Fenton process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: Effect of H2O2 dosage and temperature

    International Nuclear Information System (INIS)

    Santos, A.; Yustos, P.; Rodriguez, S.; Simon, E.; Garcia-Ochoa, F.

    2007-01-01

    Catalytic wet oxidation (CWO) of a phenolic mixture containing phenol, o-cresol and p-cresol (500 mg/L on each pollutant) has been carried out using a commercial activated carbon (AC) as catalyst, placed in a continuous three-phase reactor. Total pressure was 16 bar and temperature was 127 deg. C. Pollutant conversion, mineralization, intermediate distribution, and toxicity were measured at the reactor outlet. Under these conditions no detoxification of the inlet effluent was found even at the highest catalyst weight (W) to liquid flow rate (Q L ) ratio used. On the other hand, some Fenton Runs (FR) have been carried out in a batch way using the same phenolic aqueous mixture previously cited. The concentration of Fe 2+ was set to 10 mg/L. The influence of the H 2 O 2 amount (between 10 and 100% of the stoichiometric dose) and temperature (30, 50, and 70 deg. C) on phenols conversion, mineralization, and detoxification have been analyzed. Phenols conversion was near unity at low hydrogen peroxide dosage but mineralization and detoxification achieved an asymptotic value at each temperature conditions. The integration of Fenton reagent as pretreatment of the CWO process remarkably improves the efficiency of the CWO reactor and allows to obtain detoxified effluents at mild temperature conditions and relatively low W/Q L values. For a given phenolic mixture a temperature range of 30-50 deg. C in the Fenton pretreatment with a H 2 O 2 dosage between 20 and 40% of the stoichiometric amount required can be proposed

  1. Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation.

    Science.gov (United States)

    Wang, Aimin; Zhang, Yanyu; Zhong, Huihui; Chen, Yu; Tian, Xiujun; Li, Desheng; Li, Jiuyi

    2018-01-15

    In this study, a novel photoelectro-Fenton (PEF) process using microwave discharge electrodeless lamp (MDEL) as a UV irradiation source was developed for the removal of antibiotic ciprofloxacin (CIP) in water. Comparative degradation of 200mgL -1 CIP was studied by direct MDEL photolysis, anodic oxidation (AO), AO in presence of electrogenerated H 2 O 2 (AO-H 2 O 2 ), AO-H 2 O 2 under MDEL irradiation (MDEL-AO-H 2 O 2 ), electro-Fenton (EF) and MDEL-PEF processes. Higher oxidation power was found in the sequence: MDEL photolysis < AO < AO-H 2 O 2 < MDEL-AO-H 2 O 2 < EF < MDEL-PEF. Effects of current density, pH, initial Fe 2+ concentration and initial CIP concentration on TOC removal in MDEL-PEF process were examined, and the optimal conditions were ascertained. The releases of three inorganic ions (F - , NH 4 + and NO 3 - ) and two carboxylic acids (oxalic and formic acids) were qualified. Seven aromatic intermediates mainly generated from hydroxylation, dealkylation and defluorination of CIP were detected by UPLC-QTOF-MS/MS technology. Therefore, plausible degradation sequences for CIP degradation in MDEL-PEF process including all detected products were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Study of the degradation performance (TOC, BOD, and toxicity) of bisphenol A by the photo-Fenton process.

    Science.gov (United States)

    Pérez-Moya, M; Kaisto, T; Navarro, M; Del Valle, L J

    2017-03-01

    Degradation of bisphenol A (BPA, 0.5 L, 30 mg L -1 ) was studied by photo-Fenton treatment, while Fenton reagents were variables. The efficiency of the degradation process was evaluated by the reduction of total organic carbon (TOC), the biochemical oxygen demand (BOD), and toxicity. For toxicity analysis, bacterial methods were found infeasible, but the in vitro assay of VERO cells culture was successfully applied. Experiments according to a 2 2 design of experiments (DOE) with star points and three center points for statistical validity allowed selecting those process conditions (Fe(II) and H 2 O 2 load) that maximized the process performance. Photo-Fenton process effectively eliminated BPA and partly degraded its by-products (residual TOC TOC = 92 %) was attained. Toxicity was also detected to 50 % of cellular mortality even at long reaction times. However, 40.25 mg L -1 of H 2 O 2 decreased residual TOC to 70 % while cell mortality decreased down to 25 %. With more H 2 O 2 , the residual TOC decreased down to 15 % but cell mortality remained within the 20-25 % level. Photo-Fenton increased the biodegradability and reduced the toxicity of the studied sample.

  3. Recent Overview of Solar Photocatalysis and Solar Photo-Fenton Processes for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    A. G. Gutierrez-Mata

    2017-01-01

    Full Text Available This literature research, although not exhaustive, gives perspective to solar-driven photocatalysis, such as solar photo-Fenton and TiO2 solar photocatalysis, reported in the literature for the degradation of aqueous organic pollutants. Parameters that influence the degradation and mineralization of organics like catalyst preparation, type and load of catalyst, catalyst phase, pH, applied potential, and type of organic pollutant are addressed. Such parameters may also affect the photoactivity of the catalysts used in the studied solar processes. Solar irradiation is a renewable, abundant, and pollution-free energy source for low-cost commercial applications. Therefore, these solar processes represent an environmentally friendly alternative mainly because the use of electricity can be decreased/avoided.

  4. Effect of Fenton pre-oxidation on mobilization of nutrients and efficient subsequent bioremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Xu, Jinlan; Kong, Fanxing; Song, Shaohua; Cao, Qianqian; Huang, Tinglin; Cui, Yiwei

    2017-08-01

    Fenton pre-oxidation and a subsequent bioremediation phase of 80 days were used to investigate the importance of matching concentration of residual indigenous bacteria and nutrient levels on subsequent bioremediation of crude oil. Experiments were performed using either high (>10 7.7 ± 0.2  CFU/g soil) or low ( 9.8), moderate (C/N:5-9.8), and lacking nutrient level (C/N bioremediation of crude oil. In addition, the biodegradation of long chain molecules (C 26 C 30 ) required a high level of NH 4 + -N. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Removal of organic pollutants in tannery wastewater from wet-blue fur processing by integrated Anoxic/Oxic (A/O) and Fenton: Process optimization

    DEFF Research Database (Denmark)

    Wang, Yong; Li, Weiguang; Angelidaki, Irini

    2014-01-01

    performance than anaerobic degradation. Effect of hydraulic retention time on A/O performance in terms of COD removal efficiency was evaluated, excess HRT like 60h would reduce the effluent quality, and the appropriate organic load rate was at least up to 0.8kgCODm-3d-1 with corresponding COD removal of about...... the highest COD removal of 55.87%. GC-MS analysis was carried out to observe the change of organic composition during Fenton oxidation, and most of the residual organic pollutants resistant to Fenton treatment belonged to organosilanes and saturated alkanes. This study will provide useful information...

  6. Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater.

    Science.gov (United States)

    Badawy, M I; Ali, M E M

    2006-08-25

    As a consequence of the population growth, major efforts have been made by the Egyptian government to construct new industrial areas. Tenth of Ramadan City is one of the most important industrial cities in Egypt. The wastewater generated from various industrial activities was highly contaminated with organic matters as indicated by COD (1750-3323 mg/L), TSS (900-3000 mg/L) and oil and grease (13.2-95.5 mg/L). All overall appraisals of the analytical data from the industrial wastewater indicate that pretreatment is required for all industrial sectors to achieve compliance with the Egyptian Environmental law which requires effective pretreatment of industrial wastewater prior to its discharge into public sewers. Treatability studies via conventional and Fenton processes have been investigated. The efficiency of conventional treatment methods led to 63% COD and 44% color removal by using FeCl(3) as coagulant. Various coagulant aids and powdered activated carbon (PAC) were added to 400mg/L FeCl(3) in order to enhance the removal of color. It was found that polyacrylamide polymer, bentonite and PAC increased the efficiency of the treatments where the color removal increased to 79%, by cationic polymer, 73% by anionic polymer, 84.5% by bentonite and 95% for 0.4 g/L PAC. Fenton process was investigated which under the operating conditions (pH 3.0+/-0.2, Fe(2+) dose=400 mg/L and H(2)O(2)=550 mg/L), color removal up to 100% and more than 90% of COD removal were achieved.

  7. Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes

    International Nuclear Information System (INIS)

    Skoumal, Marcel; Rodriguez, Rosa Maria; Cabot, Pere Lluis; Centellas, Francesc; Garrido, Jose Antonio; Arias, Conchita; Brillas, Enric

    2009-01-01

    The degradation of a 41 mg dm -3 ibuprofen (2-(4-isobutylphenyl)propionic acid) solution of pH 3.0 has been comparatively studied by electrochemical advanced oxidation processes (EAOPs) like electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Experiments were performed in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and an O 2 -diffusion cathode. Heterogeneous hydroxyl radical (·OH) is generated at the anode surface from water oxidation, while homogeneous ·OH is formed from Fenton's reaction between Fe 2+ and H 2 O 2 generated at the cathode, being its production strongly enhanced from photo-Fenton reaction induced by sunlight. Higher mineralization is attained in all methods using BDD instead Pt, because the former produces greater quantity of ·OH enhancing the oxidation of pollutants. The mineralization rate increases under UVA and solar irradiation by the rapid photodecomposition of complexes of Fe(III) with acidic intermediates. The most potent method is solar photoelectro-Fenton with BDD giving 92% mineralization due to the formation of a small proportion of highly persistent final by-products. The effect of Fe 2+ content, pH and current density on photoelectro-Fenton degradation has been studied. The ibuprofen decay always follows a pseudo-first-order kinetics and its destruction rate is limited by current density and UV intensity. Aromatics such as 1-(1-hydroxyethyl)-4-isobutylbenzene, 4-isobutylacetophenone, 4-isobutylphenol and 4-ethylbenzaldehyde, and carboxylic acids such as pyruvic, acetic, formic and oxalic have been identified as oxidation by-products. Oxalic acid is the ultimate by-product and the fast photodecarboxylation of its complexes with Fe(III) under UVA or solar irradiation explains the higher oxidation power of photoelectro-Fenton methods in comparison to electro-Fenton procedures

  8. A fast and environment-friendly method for determination of chemical oxygen demand by using the heterogeneous Fenton-like process (H2O2/Fe(3-x)Co(x)O4 nanoparticles) as an oxidant.

    Science.gov (United States)

    Esteves, Lorena C R; Oliveira, Thaís R O; Souza, Elias C; Bomfeti, Cleide A; Gonçalves, Andrea M; Oliveira, Luiz C A; Barbosa, Fernando; Pereira, Márcio C; Rodrigues, Jairo L

    2015-04-01

    An easy, fast and environment-friendly method for COD determination in water is proposed. The procedure is based on the oxidation of organic matter by the H2O2/Fe(3-x)Co(x)O4 system. The Fe(3-x)Co(x)O4 nanoparticles activate the H2O2 molecule to produce hydroxyl radicals, which are highly reactive for oxidizing organic matter in an aqueous medium. After the oxidation step, the organic matter amounts can be quantified by comparing the quantity of H2O2 consumed. Moreover, the proposed COD method has several distinct advantages, since it does not use toxic reagents and the oxidation reaction of organic matter is conducted at room temperature and atmospheric pressure. Method detection limit is 2.0 mg L(-1) with intra- and inter-day precision lower than 1% (n=5). The calibration graph is linear in the range of 2.0-50 mg L(-1) with a sample throughput of 25 samples h(-1). Data are validated based on the analysis of six contaminated river water samples by the proposed method and by using a comparative method validated and marketed by Merck, with good agreement between the results (t test, 95%). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  10. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process.

    Science.gov (United States)

    Monteagudo, J M; Durán, A; Aguirre, M; San Martín, I

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H(2)O(2), Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H(2)O(2) and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k(TOC), increased as initial Fe(II) and H(2)O(2) concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. OH and O(2)(-) radicals were the main oxidative intermediate species in the process, although singlet oxygen ((1)O(2)) also played a role in the mineralization reaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. COMPARATIVE ANALYSIS USING DIPIRONA DEGRADATION PROCESS WITH PHOTO-FENTON UV-C LIGHT AND SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Daniella Carla Napoleão

    2015-01-01

    Full Text Available The contamination of water bodies is a major concern on the part of scientists from different parts of the world. Domestic and industrial activities are the cause of the daily pouring of various types of pollutants which are in most cases resistant to conventional treatments of waters. Among the contaminants, especially noteworthy are the drugs in which it is found that 50% to 90% are discarded without treatment. The concerns about these substances are the adverse effects to human health and animals, especially in aquatic environments. The advanced oxidation processes (AOP have been studied and applied as an efficient alternative treatment, in order that it can be applied to the degradation of the different pollutants, considering that can generate hydroxyl radicals, highly reactive even somewhat selective. This study evaluated the efficiency of the photo-Fenton process using UV-C radiation and sunlight to degradation of the drug dipyrone in aqueous solution contaminated with the active ingredient of the drug at a concentration of 20 mg.L-1. Assays were performed with 50 mL aliquots of the solution following 23 factorial designs with central point, and the variables studied: addition of H2O2, adding FeSO4.7H2O and time. The detection and quantification of dipyrone before and after the AOP was performed by high performance liquid chromatography (HPLC and verified that about DE100% degradation of the compound was obtained.

  12. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    Science.gov (United States)

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.

  13. Enzymatic in-situ generation of H2O2 for decolorization of Acid Blue 113 by fenton process

    Directory of Open Access Journals (Sweden)

    Karimi Afzal

    2012-01-01

    Full Text Available Decolorization of Acid Blue 113 in an aqueous medium by bio-Fenton process has been investigated in this research. Enzymatic oxidation of glucose was performed to in-situ generation of H2O2 which was employed to react with Fe2+ for producing hydroxyl radicals. The effect of various parameters include concentrations of 113, glucose, and FeSO4, activity of glucose oxidase (GOx and the effect of pH were assessed. The highest decolorization of AB 113 were achieved at Fe2+ concentration of 0.2 mmol/L, pH =4.0, glucose concentration of 0.018 mol/L, and glucose oxidase activity of 2500 U/L in the constant temperature (23 ±0.1ºC and constant shaking rate (160 r/min, while the concentration of 113 was 40 mg/L. In these conditions, 113 decolorization efficiency after 60 min was obtained about 95%.

  14. A Comparison of Central Composite Design and Taguchi Method for Optimizing Fenton Process

    Directory of Open Access Journals (Sweden)

    Anam Asghar

    2014-01-01

    Full Text Available In the present study, a comparison of central composite design (CCD and Taguchi method was established for Fenton oxidation. Dyeini, Dye : Fe+2, H2O2 : Fe+2, and pH were identified control variables while COD and decolorization efficiency were selected responses. L9 orthogonal array and face-centered CCD were used for the experimental design. Maximum 99% decolorization and 80% COD removal efficiency were obtained under optimum conditions. R squared values of 0.97 and 0.95 for CCD and Taguchi method, respectively, indicate that both models are statistically significant and are in well agreement with each other. Furthermore, Prob > F less than 0.0500 and ANOVA results indicate the good fitting of selected model with experimental results. Nevertheless, possibility of ranking of input variables in terms of percent contribution to the response value has made Taguchi method a suitable approach for scrutinizing the operating parameters. For present case, pH with percent contribution of 87.62% and 66.2% was ranked as the most contributing and significant factor. This finding of Taguchi method was also verified by 3D contour plots of CCD. Therefore, from this comparative study, it is concluded that Taguchi method with 9 experimental runs and simple interaction plots is a suitable alternative to CCD for several chemical engineering applications.

  15. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    Science.gov (United States)

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads.

    Science.gov (United States)

    Iglesias, O; Fernández de Dios, M A; Rosales, E; Pazos, M; Sanromán, M A

    2013-04-01

    The aim of this work was to improve the ability of the electro-Fenton process using Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes and using a model diazo dye such as Reactive Black 5 (RB5). Batch experiments were conducted to study the effects of main parameters, such as voltage, pH and iron concentration. Dye decolourisation, reduction of chemical oxygen demand (COD) and energy consumption were studied. Central composite face-centred experimental design matrix and response surface methodology were applied to design the experiments and to evaluate the interactive effects of the three studied parameters. A total of 20 experimental runs were set, and the kinetic data were analysed using first-order and second-order models. In all cases, the experimental data were fitted to the empirical second-order model with a suitable degree for the maximum decolourisation of RB5, COD reduction and energy consumption by electro-Fenton-Fe alginate gel beads treatment. Working with the obtained empirical model, the optimisation of the process was carried out. The second-order polynomial regression model suggests that the optimum conditions for attaining maximum decolourisation, COD reduction and energy consumption are voltage, 5.69 V; pH 2.24 and iron concentration, 2.68 mM. Moreover, the fixation of iron on alginate beads suggests that the degradation process can be developed under this electro-Fenton process in repeated batches and in a continuous mode.

  17. Synchronized methylene blue removal using Fenton-like reaction induced by phosphorous oxoanion and submerged plasma irradiation process.

    Science.gov (United States)

    Son, Guntae; Kim, Do-Hyung; Lee, Jung Seok; Kim, Hyoung-Il; Lee, Changha; Kim, Sang-Ryoung; Lee, Hongshin

    2018-01-15

    In this study, a combination of phosphorus (PP) oxoanions in a submerged plasma irradiation (SPI) system was used to enhance the removal efficiency of dyes from wastewater. The SPI system showed synergistic methylene blue removal efficiency, due to the plasma irradiation and Fenton-like oxidation. The ferrous ions released from the iron electrode in the SPI system under plasmonic conditions form complexes with the PP anions, which can then react with dissolved oxygen (O 2 ) or hydrogen peroxide (H 2 O 2 ) via Fenton-like reactions. The experimental results revealed that a sodium triphosphate (TPP) combined SPI system has a higher dye removal efficiency than a tetrasodium pyrophosphate (DP) or a sodium hexametaphosphate (HMP) combined SPI system under similar dissolved iron ion concentrations. To confirm the accuracy of the proposed removal mechanism via Fenton-like oxidation, it was compared to SPI systems under an oxygen environment (TPP/SPI/O 2 (k = 0.0182 s -1 )) and a nitrogen environment (TPP/SPI/N 2 (k = 0.0062 s -1 )). The results indicate that the hydroxyl radical (OH) in the TPP/SPI/O 2 system is the major oxidant in methylene blue removal, because the dye degradation rates dramatically decreased with the addition of radical scavengers such as tert-butanol (k = 0.0023 s -1 ) and methanol (k = 0.0021 s -1 ). On the other hand, no change was observed in the methylene blue removal efficiency of the TPP/SPI/O 2 system when it was subjected to a wide range of pHs (3-9). In addition, it was proved that this system could be used to eliminate six different commercial dyes. The results of this study indicated that the TPP/SPI/O 2 system is a promising advanced oxidation approach for dye wastewater treatment. Published by Elsevier Ltd.

  18. The Potential of Fe-exchanged Y Zeolite as a Heterogeneous Fenton-type Catalyst for Oxidative Degradation of Reactive Dye in Water

    OpenAIRE

    Aleksić, M.; Koprivanac, N.; Lončarić Božić, A.; Kušić, H.

    2010-01-01

    The study aimed to investigate the potential of Fe-exchanged zeolites of Y-type as a catalyst in heterogeneous Fenton-type processes for the degradation of model organic pollutant, reactive azo dye C.I. Reactive Blue 137, in water. The research work was directed to investigate the influence of process variables, such as FeY catalyst dosage, Fenton reagent ratio, and initial operating pH on the efficiency of the treatment process. The performance of the studied heterogeneous process was compar...

  19. Advanced oxidation processes for treatment of petroleum refinery sour waters; Processos oxidativos avancados para tratamento de aguas acidas de refinaria de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Antonio V.; Coelho, Alessandra D.; Sant' Anna Junior, Geraldo L.; Dezotti, Marcia [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Quimica

    2004-07-01

    The characteristics of the waste water generated by the petroleum refineries are related to the type and amount of processed oil, to the nature and the efficiency of the refining operation. The effluents are composed basically of oily waters, originating from of the contact with the oil. Among them, the current of sour water is one of the most preoccupying due to its composition: sulfide, ammonia, mercaptans, phenol, dissolved oil, basic pH, dissolved organic carbon (DOC) and chemical oxygen demand (COD) high. The aim of this work was to evaluate the advanced oxidation processes to degrade sour water (UV radiation, H{sub 2}O{sub 2} and H{sub 2}O{sub 2}/UV, photocatalysis, Fenton and photo-Fenton). All process, except Fenton and photo-Fenton, did not supply satisfactory results, reducing 25% of initial DOC, which it is of 450 mg/L. The results using the Fenton process reached removal of 50% of the initial COD, and when photo- Fenton process obtaining removal of 90%. The processes Fenton and photo-Fenton were shown capable to degrade this kind of waste water, minimizing the environmental problems and corrosion, operating as a pre-treatment for the biological system, or acting alone to degrade the organic matter contained, seeking the water reuse. The effluent used in this work came from Duque de Caxias Refinery (Reduc)/PETROBRAS. (author)

  20. Evaluation of herbicides photodegradation by photo-Fenton process using multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Paterlini, W.C.; Nogueira, R.F.P. [Inst. of Chemistry, Sao Paulo State Univ., R. Prof. Francisco Degni s/n, Araraquara, SP (Brazil)

    2003-07-01

    The photodegradation of herbicides in aqueous medium by photo-Fenton process using ferrioxalate complex (FeOx) as a source of Fe{sup 2+} was evaluated under blacklight irradiation. The commercial products of the herbicides tebuthiuron, 2,4-D and diuron were used. Multivariate analysis was used to evaluate the role of two variables in the photodegradation process, FeOx and hydrogen peroxide concentrations, and to define the concentration ranges that result in the most efficient photodegradation of the herbicides. The photodegradation of the herbicides was followed by monitoring the decrease of the original compounds concentration by HPLC, by the determination of remaining total organic carbon content (TOC), and by the chloride ion release. Under optimised conditions, 20 minutes irradiation was enough to remove 92.7% of TOC for 2,4 D and 89.5% for diuron. Complete dechlorination of these compounds was achieved after 10 minutes of irradiation. It was observed that the initial concentration of these compounds and tebuthiuron was reduced to less than 15% after only 1 minute of irradiation. (orig.)

  1. Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study

    Science.gov (United States)

    Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E.

    2016-11-01

    Reactive dyes contain a significant portion of colorants used in yarn dying process and also in textile industry. Since the COD content is usually high in such wastewater,we conducted a hybrid electrocoagulation-fenton method to treat the wastewater. This work describes the application of the hybrid system to the removal of chemical oxygen demand and color from the wastewater in a batch reactor. Having worked with initial pH of 3,0; temperature at 30°C, molar ratio of Fe2+/H2O2 =1/10 and the mol ratio H2O2/COD = 4, we got 88.3% COD conversion and 88.5% color removal. The COD degradation process can be explained in two phases, the first phase is instantaneous reaction and the second phase is first order reaction. The kinetic constant was 0.0053 minute-1 and the rate of COD degradation was 0.0053[COD] mg/L minute.

  2. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  3. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Science.gov (United States)

    Becelic-Tomin, Milena; Dalmacija, Bozo; Rajic, Ljiljana; Tomasevic, Dragana; Kerkez, Djurdja; Watson, Malcolm; Prica, Miljana

    2014-01-01

    Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH = 2.5; [PA]0 = 0.2 g L−1; [H2O2]0 = 5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes. PMID:24526885

  4. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    Science.gov (United States)

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  5. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo, J.M., E-mail: josemaria.monteagudo@uclm.es [University of Castilla-La Mancha, Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, Avda. Camilo Jose Cela, 1, 13071 Ciudad Real (Spain); Duran, A.; Aguirre, M.; San Martin, I. [University of Castilla-La Mancha, Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, Avda. Camilo Jose Cela, 1, 13071 Ciudad Real (Spain)

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H{sub 2}O{sub 2}, Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H{sub 2}O{sub 2} and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k{sub TOC}, increased as initial Fe(II) and H{sub 2}O{sub 2} concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. {center_dot}OH and O{sub 2}{center_dot}{sup -} radicals were the main oxidative intermediate species in the process, although singlet oxygen ({sup 1}O{sub 2}) also played a role in the mineralization reaction.

  6. Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process

    Directory of Open Access Journals (Sweden)

    A. Elhalil

    2016-09-01

    Full Text Available This work focuses on the optimization of the catalytic degradation of malachite green dye (MG by Fenton process “Fe2+/H2O2”. A 24 full factorial experimental design was used to evaluate the effects of four factors considered in the optimization of the oxidative process: concentration of MG (X1, concentration of Fe2+ (X2, concentration of H2O2 (X3 and temperature (X4. Individual and interaction effects of the factors that influenced the percentage of dye degradation were tested. The effect of interactions between the four parameters shows that there is a dependency between concentration of MG and concentration of Fe2+; concentration of Fe2+ and concentration of H2O2, expressed by the great values of the coefficient of interaction. The analysis of variance proved that, the concentration of MG, the concentration of Fe2+ and the concentration of H2O2 have an influence on the catalytic degradation while it is not the case for the temperature. In the optimization, the great dependence between observed and predicted degradation efficiency, the correlation coefficient for the model (R2=0.986 and the important value of F-ratio proved the validity of the model. The optimum degradation efficiency of malachite green was 93.83%, when the operational parameters were malachite green concentration of 10 mg/L, Fe2+ concentration of 10 mM, H2O2 concentration of 25.6 mM and temperature of 40 °C.

  7. Optimizing electrocoagulation and electro-Fenton process for treating car wash wastewater

    Directory of Open Access Journals (Sweden)

    Seyyedali Mirshahghassemi

    2017-02-01

    Full Text Available Background: Car wash wastewater contains several contaminants such as organic matter, oil, grease, detergents and phosphates, all of which are harmful for the environment. In this study, the application of electrocoagulation (EC to treat car wash wastewater has been studied, and the operating parameters optimized. The electro-Fenton (EF for further contaminant removal was also investigated. Methods: In EC process, the effect of pH, current density, and the reaction time of the removal efficiency of chemical oxygen demand (COD, phosphate, and turbidity were investigated using the response surface methodology (RSM. The electrochemical cell consisted of four iron electrodes that were connected to a power supply using a monopolar arrangement. In the EF process, the effect of pH, reaction time, and hydrogen peroxide concentration on COD removal efficiency were probed. Results: The optimum pH, current density, and the reaction time for the EC process were 7.3, 4.2 mA cm-2 and 20.3 minutes, respectively. Under these conditions, the COD, phosphate, and turbidity removal percentages were 80.8%, 94.9% and 85.5%, respectively, and the specific energy consumption was 1.5 kWh m-3. For the EF process, the optimum pH, reaction time, current and hydrogen peroxide dosage were 3, 10 minutes, 2 A and 500 mg L-1, respectively. The EF showed higher COD removal efficiency (85.6% with a lower specific energy consumption (0.5 kWh m-3 and reaction time compared to the EC. Conclusion: This study shows that both EC and EF can effectively treat car wash wastewater with high removal efficiency within a short reaction time.

  8. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    International Nuclear Information System (INIS)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-01-01

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe 2+ /H 2 O 2 ) and UV/H 2 O 2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H 2 O 2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H 2 O 2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe 2+ /H 2 O 2 had a molar ratio of 0.1 and a H 2 O 2 concentration of 0.01 mol L −1 with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H 2 O 2 process, when the pH was 3.5 with a H 2 O 2 concentration of 0.01 mol L −1 accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H 2 O 2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe 2+ /H 2 O 2 molar ratios, H 2 O 2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H 2 O 2 process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H 2 O 2 process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  9. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe{sup 2+}/H{sub 2}O{sub 2}) and UV/H{sub 2}O{sub 2} process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H{sub 2}O{sub 2} method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe{sup 2+}/H{sub 2}O{sub 2} had a molar ratio of 0.1 and a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H{sub 2}O{sub 2} process, when the pH was 3.5 with a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H{sub 2}O{sub 2} process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe{sup 2+}/H{sub 2}O{sub 2} molar ratios, H{sub 2}O{sub 2} concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H{sub 2}O{sub 2} process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  10. Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Isabel; Matos, Luis C. [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Duarte, Filipa [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal); Maldonado-Hodar, F.J. [Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada (Spain); Mendes, Adelio [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal); Madeira, Luis M., E-mail: mmadeira@fe.up.pt [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Oxidation with the Fenton's reagent was carried out in a packed-bed reactor. Black-Right-Pointing-Pointer The packed-bed was filled with iron-impregnated activated carbon. Black-Right-Pointing-Pointer The increment of temperature increases the Chicago Sky Blue removal and mineralization. Black-Right-Pointing-Pointer The values of iron leaching were below 0.4 ppm in the outlet effluent. Black-Right-Pointing-Pointer It was possible to reach a dye conversion of 88% in steady-state. - Abstract: In this work, oxidation with a Fenton-like process of a dye solution was carried out in a packed-bed reactor. Activated carbon Norit RX 3 Extra was impregnated with ferrous sulfate and used as catalyst (7 wt.% of iron). The effect of the main operating conditions in the Chicago Sky Blue (CSB) degradation was analyzed. It was found that the increase in temperature leads to a higher removal of the dye and an increased mineralization. However, it also increases the iron leaching, but the values observed were below 0.4 ppm (thus, far below European Union limits). It was possible to reach, at steady-state, a dye conversion of 88%, with a total organic carbon (TOC) removal of ca. 47%, being the reactor operated at 50 Degree-Sign C, pH 3, W{sub cat}/Q = 4.1 g min mL{sup -1} (W{sub cat} is the mass of catalyst and Q the total feed flow rate) and a H{sub 2}O{sub 2} feed concentration of 2.25 mM (for a CSB feed concentration of 0.012 mM). The same performance was reached in three consecutive cycles.

  11. Application of advanced oxidative process in treatment radioactive waste

    International Nuclear Information System (INIS)

    Kim, Catia; Sakata, Solange K.; Ferreira, Rafael V.P.; Marumo, Julio T.

    2009-01-01

    The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement, which is simple and low cost. However, its low capacity of immobilization and the increase volume of waste have been the challenges. The development of new technologies capable of destroying this waste completely by increasing its solidification is the main target due to the possibility of both volume and cost reduction. The objective of this work was to evaluate ion exchange resin degradation by Advanced Oxidative Process using Fenton's Reagent (H 2 O 2 / Fe +2 ) in different concentration and temperatures. One advantage of this process is that all additional organic compounds or inorganic solids produced are oxidized easily. The degradation experiments were conducted with IRA-400 resin and Fenton's Reagents, varying the H 2O 2 concentration (30% e 50%) and heat temperature (25, 60 and 100 deg C). The resin degradation was confirmed by the presence of BaCO 3 as a white precipitate resulting from the reaction between the Ba(OH) 2 and the CO 2 from the resin degradation. All experiments run in duplicate. Higher degradation was observed with Fenton's Reagent (Fe +2 /H 2 O 2 30%) at 100 deg C after 2 hours. (author)

  12. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    International Nuclear Information System (INIS)

    Fathinia, Siavash; Fathinia, Mehrangiz; Rahmani, Ali Akbar; Khataee, Alireza

    2015-01-01

    Graphical abstract: - Highlights: • Pyrite nanoparticles were successfully produced by planetary ball milling process. • The physical and chemical properties of pyrite nanoparticles were fully examined. • The degradation of AO7 was notably enhanced by pyrite nanoparticles Fenton system. • The influences of basic operational parameters were investigated using CCD. - Abstract: In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H 2 O 2 concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min

  13. Electro-Fenton oxidation of coking wastewater: optimization using the combination of central composite design and convex optimization method.

    Science.gov (United States)

    Zhang, Bo; Sun, Jiwei; Wang, Qin; Fan, Niansi; Ni, Jialing; Li, Weicheng; Gao, Yingxin; Li, Yu-You; Xu, Changyou

    2017-10-01

    The electro-Fenton treatment of coking wastewater was evaluated experimentally in a batch electrochemical reactor. Based on central composite design coupled with response surface methodology, a regression quadratic equation was developed to model the total organic carbon (TOC) removal efficiency. This model was further proved to accurately predict the optimization of process variables by means of analysis of variance. With the aid of the convex optimization method, which is a global optimization method, the optimal parameters were determined as current density of 30.9 mA/cm 2 , Fe 2+ concentration of 0.35 mg/L, and pH of 4.05. Under the optimized conditions, the corresponding TOC removal efficiency was up to 73.8%. The maximum TOC removal efficiency achieved can be further confirmed by the results of gas chromatography-mass spectrum analysis.

  14. Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry

    International Nuclear Information System (INIS)

    Pradhan, Amey A.; Gogate, Parag R.

    2010-01-01

    Due to increasing human requirements, newer chemical species are being observed in the effluent streams with higher loadings such that efficacy of conventional treatment techniques is decreased and a combination of advanced oxidation processes is implemented for enhanced treatment ability and better energy efficiency. In the present work, the efficacy of combination of sonochemistry and Fenton chemistry has been investigated for wastewater treatment considering p-nitrophenol as model pollutant at pilot scale operation. Degradation of p-nitrophenol has been investigated under various operating conditions based on the use of ultrasound, Fenton process, ultrasound and H 2 O 2 , ultrasound and Fe, ultrasound and FeSO 4 , ultrasound and conventional Fenton process and ultrasound and advanced Fenton process. Two different initial concentrations of 0.5 and 1% of p-nitrophenol have been used for the experiments. In conventional Fenton and advanced Fenton process, two loadings of FeSO 4 and Fe powder 0.5 and 1 g/l and three ratios of FeSO 4 :H 2 O 2 and Fe:H 2 O 2 (1:5, 1:7.5 and 1:10) were investigated respectively. In all the systems investigated, maximum extent of degradation (66.4%) was observed for 0.5% p-nitrophenol concentration (w/v) using a combination of ultrasound and advanced Fenton process. The novelty of the work is in terms of investigating the efficacies of combined advanced oxidation processes based on the use of cavitation and Fenton chemistry at pilot scale operation and tries to establish the missing design related information for large scale operation of wastewater treatment.

  15. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale.

    Science.gov (United States)

    Foteinis, Spyros; Monteagudo, Jose Maria; Durán, Antonio; Chatzisymeon, Efthalia

    2018-01-15

    The environmental sustainability of a semi-industrial solar photo-Fenton reactor, treating real effluents emanating from a pharmaceutical laboratory, is assessed herein. The life cycle assessment/analysis (LCA) methodology was employed and real life cycle inventory (LCI) data was collected from a ferrioxalate-assisted homogeneous solar photo-Fenton wastewater treatment plant (WWTP), at Ciudad Real, Spain. Electricity was provided by photovoltaic (PV) panels in tandem with a battery bank, making the plant autonomous from the local grid. The effective treatment of 1m 3 of secondary-treated pharmaceutical wastewater, containing antipyrine, was used as a functional unit. The main environmental hotspot was identified to be the chemical reagents used to enhance treatment efficiency, mainly hydrogen peroxide (H 2 O 2 ) and to a smaller degree oxalic acid. On the other hand, land use, PV panels, battery units, compound parabolic collectors (CPC), tanks, pipes and pumps, as materials, had a low contribution, ranging from as little as 0.06% up to about 2% on the total CO 2eq emissions. Overall, the solar photo-Fenton process was found to be a sustainable technology for treating wastewater containing micropollutants at semi-industrial level, since the total environmental footprint was found to be 2.71kgCO 2 m -3 or 272mPtm -3 , using IPCC 2013 and ReCiPe impact assessment methods, respectively. A sensitivity analysis revealed that if the excess of solar power is fed back into the grid then the total environmental footprint is reduced. Depending on the amount of solar power fed back into the grid the process could have a near zero total environmental footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Optimization of the Parameters Influencing the Photo-Fenton Process for the Decolorization of Reactive Red 198 (RR198

    Directory of Open Access Journals (Sweden)

    Dehghani

    2015-04-01

    Full Text Available Background Reactive dyes, anionic compounds with high water solubility, are widely used in textile industries. Objectives The present study aimed to assess the feasibility of the photo-Fenton process in removing Reactive Red 198 dye from aqueous solutions and determine the optimal conditions for maximum removal. Materials and Methods This study was performed on a laboratory scale using a 4-liter photochemical reactor. The spectrophotometer DR5000 (wavelength 520 nm was used to determine the dye concentration. The effect of the influencing parameters, including pH (3–9, Fe (II concentration (10–200 mg/L, H2O2 concentration (25 - 150 mg/L, initial dye concentration (50–200 mg/L, and reaction time (15 - 120 minutes were studied. Results According to the results, the photo-Fenton (UV/ H2O2/Fe (II process significantly removed dye from the aqueous solution. The Reactive Red 198 dye removal efficiency from aqueous solutions was more than 99% at optimal conditions (pH = 3, Fe (II = 10 mg/L, H2O2 = 75 mg/L, initial dye concentration = 50 mg/L, and reaction time = 120 minutes. Conclusions The present study demonstrated that the UV/ H2O2/Fe (II process could be used as an efficient, reliable method for removing Reactive Red 198 dye from textile wastewater.

  17. Applicability of Fenton Process for Treatment of Industrial Effluents: A Review

    OpenAIRE

    Mehali Mehta; Swati Parekh

    2014-01-01

    Wastewater and effluent treatment has undergone innovative changes over the years. Traditional wastewater treatment has yielded to modern and path-breaking procedures which are more efficient and effective. The world of difficulties and unknown has opened new avenues and paths to highly feasible effluent treatment procedures, so the vigorous importance of advanced oxidation procedures. This review paper will delineate the increasing importance of various advanced oxidation process...

  18. Impact of Pore Size on Fenton Oxidation of Methyl Orange Adsorbed on Magnetic Carbon Materials: Trade-Off between Capacity and Regenerability.

    Science.gov (United States)

    Xiao, Ye; Hill, Josephine M

    2017-04-18

    The economic cleanup of wastewater continues to be an active area of research. In this study, the influence of pore size on regeneration by Fenton oxidation for carbon materials with adsorbed methyl orange (MO) was investigated. More specifically three carbon supports, with pore sizes ranging from mainly microporous to half microporous-half mesoporous to mainly mesoporous, were impregnated with γ-Fe 2 O 3 to make them magnetic and easy to separate from solution. The carbon samples were characterized before adsorption and after regeneration with hydrogen peroxide at 20 °C. In addition, adsorption kinetics and isotherms were collected, and the Weber-Morris intraparticle diffusion model and Freundlich isotherm model fit to the data. The adsorption capacity increased with increasing microporosity while the regeneration efficiency increased with increasing mesoporosity. Further experiments with varying regeneration and adsorption conditions suggested that the regeneration process may be kinetically limited. The MO adsorbed in the micropores was strongly adsorbed and difficult to remove unlike the MO adsorbed in the mesopores, which could be reacted under relatively mild conditions. Thus, there was a trade-off between adsorption capacity and regeneration.

  19. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale.

    Science.gov (United States)

    Silva, Tânia F C V; Ferreira, Rui; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2015-12-01

    This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Degradation of methyl orange using Fenton catalytic reaction

    Directory of Open Access Journals (Sweden)

    Nadia A. Youssef

    2016-09-01

    Full Text Available Oxidation by Fenton reactions a proven and economically feasible process for destruction of a variety of hazardous pollutants in wastewater. We report herein the oxidation of methyl orange using a Fenton reaction at normal laboratory temperature and at atmospheric pressure. The effects of different parameters like the dosages of H2O2 and Fe2+, initial concentration of dye and pH of the solution, on the oxidation of the dye present in dilute aqueous solutions are found. The results indicate that the dye can be most effectively oxidized in aqueous solution at dye: Fe2+:H2O2 molar ratio of 1:3.5:54.2. It was found that more than 97.8% removal of the dye could be achieved in 15 min in the pH 2.79 at room temperature. The results will be useful for designing the treatment systems of the various dyes containing wastewater.

  1. Landfill Leachate Treatment Using Coupled, Sequential Coagulation-flocculation and Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    José L. Álvarez Cruz

    2017-11-01

    Full Text Available This study evaluated the efficiency of Fenton (Fe/H2O2 and photo-assisted Fenton (Fe2+/H2O2/UV reactions combined with coagulation-flocculation (C-F processes to remove the chemical oxygen demand (COD in a landfill leachate from Mexico at a laboratory scale. The C-F experiments were carried out in jar test equipment using different FeSO4 concentrations (0.0, 0.6, 1.0, 3, and 6 mM at pH = 3.0. The effluent from the C-F processes were then treated using the Fenton reaction. The experiments were carried out in a 500 mL glass reactor fillet with 250 mL of landfill leachate. Different molar ratio concentrations (Fe/H2O2 were tested (e.g., 1.6, 3.3, 30, 40 and 75, and the reaction was followed until COD analysis showed no significant further variation in concentration or until 90 min of reaction time were completed. The photo-assisted Fenton reaction was carried out using a UV lamp (365 nm, 5 mW with the same Fe/H2O2 molar ratio values described above. The results suggested that the photo-assisted Fenton process is the most efficient oxidation method for removing organic matter and color in the leachate. The photo-assisted Fenton process removed 68% of the COD and 90% of the color at pH = 3 over 30 minutes of reaction time using a H2O2/Fe molar ratio equal to 75 only using a third of the reaction time of the previous process.

  2. The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.

    Science.gov (United States)

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan

    2015-01-01

    This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.

  3. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H{sub 2}O{sub 2} and RhB photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Guangdong Key Laboratory of Agro-Environment Integrated Control, South China Institute of Environmental Sciences, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan; Xiang, Mingdeng; Li, Liangzhong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Deng, Dongyang [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Guangdong Key Laboratory of Agro-Environment Integrated Control, South China Institute of Environmental Sciences, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, Ohio, 45221-0012 (United States)

    2017-02-05

    Highlights: • Synergistic action of Rhodamine B (RhB), visible light, H{sub 2}O{sub 2} and s-Fe{sup 0} is essential. • The complexes of RhB and Fe{sup 3+} eject one electron via ligand-to-metal charge-transfer. • RhB assists the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). - Abstract: In this study, we firstly develop the photo-Fenton-like system with millimetric sponge iron (s-Fe{sup 0}), H{sub 2}O{sub 2}, visible light (vis, λ ≥ 420 nm) and rhodamine B (RhB), and present a comprehensive study concerning the mechanism. Thus, we investigate (1) the adsorption of RhB onto s-Fe{sup 0}, (2) the photo-Fenton-like removal of RhB over iron oxides generated from the corrosion of s-Fe{sup 0}, (3) the homogeneous photo-Fenton removal of RhB over Fe{sup 2+} or Fe{sup 3+}, (4) the Fe{sup 3+}-RhB complexes, and (5) the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). The results show that neither the adsorption process over s-Fe{sup 0} nor the photo-Fenton-like process over FeOOH, Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3}, achieved efficient removal of RhB. For comparison, in homogeneous photo-Fenton process, the presence of Fe{sup 3+} ions, rather than Fe{sup 2+} ions, effectively eliminated RhB. Furthermore, the UV–vis spectra showing new absorbance at ∼ 285 nm indicate the complexes of RhB and Fe{sup 3+} ions, adopting vis photons to form excited state and further eject one electron via ligand-to-metal charge-transfer to activate H{sub 2}O{sub 2}. Additionally, efficient TBBPA removal was obtained only in the presence of RhB. Accordingly, the s-Fe{sup 0}– based photo-Fenton-like process assisted with dyestuff wastewater is promising for removing a series of persistent organic pollutants.

  4. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: Intermediates and pathway.

    Science.gov (United States)

    Zhu, Zhexin; Chen, Yi; Gu, Yan; Wu, Fei; Lu, Wangyang; Xu, Tiefeng; Chen, Wenxing

    2016-04-15

    Iron (II) phthalocyanine (FePc) molecules were isolated in polyacrylonitrile (PAN) nanofibers by electrospinning to prevent the formation of dimers and oligomers. Carbamazepine (CBZ) and Rhodamine B (RhB) degradation was investigated during a Fenton-like process with FePc/PAN nanofibers. Classical quenching tests with isopropanol and electron paramagnetic resonance tests with 5,5-dimethyl-pyrroline-oxide as spin-trapping agent were performed to determine the formation of active species during hydrogen peroxide (H2O2) decomposition by FePc/PAN nanofibers. After eight recycles for CBZ degradation over the FePc/PAN nanofibers/H2O2 system, the removal ratios of CBZ remained at 99%. Seven by-products of RhB and twelve intermediates of CBZ were identified using ultra-performance liquid chromatography and high-resolution mass spectrometry. Pathways of CBZ and RhB degradation were proposed based on the identified intermediates. As the reaction proceeded, all CBZ and RhB aromatic nucleus intermediates decreased and were transformed to small acids, but also to potentially toxic epoxide-containing intermediates and acridine, because of the powerful oxidation ability of •OH in the catalytic system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review.

    Science.gov (United States)

    Bagal, Manisha V; Gogate, Parag R

    2014-01-01

    Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Optimizing stabilization of waste-activated sludge using Fered-Fenton process and artificial neural network modeling (KSOFM, MLP).

    Science.gov (United States)

    Badalians Gholikandi, Gagik; Masihi, Hamidreza; Azimipour, Mohammad; Abrishami, Ali; Mirabi, Maryam

    2014-01-01

    Sludge management is a fundamental activity in accordance with wastewater treatment aims. Sludge stabilization is always considered as a significant step of wastewater sludge handling. There has been a progressive development observed in the approach to the novel solutions in this regard. In this research, based on own initially experimental results in lab-scale regarding Fered-Fenton processes in view of organic loading (volatile-suspended solids, VSS) removal efficiency, a combination of both methods towards proper improving of excess biological sludge stabilization was investigated. Firstly, VSS removal efficiency has been experimentally studied in lab-scale under different operational conditions taking into consideration pH [Fe(2+)]/[H2O2], detention time [H2O2], and current density parameters. Therefore, the correlations of the same parameters have been determined by utilizing Kohonen self-organizing feature maps (KSOFM). In addition, multi-layer perceptron (MLP) has been employed afterwards for a comprehensive evaluation of investigating parameters correlation and prediction aims. The findings indicated that the best proportion of iron to hydrogen peroxide and the optimum pH were 0.58 and 3.1, respectively. Furthermore, maximum retention time about 6 h with a hydrogen peroxide concentration of 1,568 mg/l and a current density of 650-750 mA results to the optimum VSS removal (efficiency equals to 81 %). The performance of KSOFM and MLP models is found to be magnificent, with correlation ranging (R) from 0.873 to 0.998 for the process simulation and prediction. Finally, it can be concluded that the Fered-Fenton reactor is a suitable efficient process to reduce considerably sludge organic load and mathematical modeling tools as artificial neural networks are impressive methods of process simulation and prediction accordingly.

  7. Electro-Fenton oxidation of para-aminosalicylic acid: degradation kinetics and mineralization pathway using Pt/carbon-felt and BDD/carbon-felt cells.

    Science.gov (United States)

    Oturan, Nihal; Aravindakumar, Charuvila T; Olvera-Vargas, Hugo; Sunil Paul, Mathew M; Oturan, Mehmet A

    2017-05-31

    Degradation of a widely used antibiotic, the para-aminosalicylic acid (PAS), and mineralization of its aqueous solution was investigated by electro-Fenton process using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with applied currents in the range of 50-1000 mA. This process produces the highly oxidizing species, the hydroxyl radical ( • OH), which is mainly responsible for the oxidative degradation of PAS. An absolute rate constant of 4.17 × 10 9  M -1  s -1 for the oxidation of PAS by ● OH was determined from the competition kinetics method. Degradation rate of PAS increased with current reaching an optimal value of 500 mA with complete disappearance of 0.1 mM PAS at 7 min using Pt/carbon-felt cell. The optimum degradation rate was reached at 300 mA for BDD/carbon-felt. The latter cell was found more efficient in total organic carbon (TOC) removal where a complete mineralization was achieved within 240 min. A multi-step mineralization process was observed with the formation of a number of aromatic intermediates, short-chain carboxylic acids, and inorganic ions. Eight aromatic intermediate products were identified using both LC-Q-ToF-MS and GC-MS techniques. These products were the result of hydroxylation of PAS followed by multiple additions of hydroxyl radicals to form polyhydroxylated derivatives. HPLC and GC/MS analyses demonstrated that extended oxidation of these intermediate products conducted to the formation of various short-chain carboxylic acids. Prolonged electrolysis resulted in a complete mineralization of PAS with the evolution of inorganic ions such as NO 3 - and NH 4 + . Based on the identified intermediates, carboxylic acids and inorganic ions, a plausible mineralization pathway is also deduced. The remarkably high degree of mineralization (100%) achieved by the present EF process highlights the potential application of this technique to the complete removal of salicylic acid-based pharmaceuticals from

  8. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism.

    Science.gov (United States)

    Gomathi Devi, L; Girish Kumar, S; Mohan Reddy, K; Munikrishnappa, C

    2009-05-30

    Advanced Fenton process (AFP) using zero valent metallic iron (ZVMI) is studied as a potential technique to degrade the azo dye in the aqueous medium. The influence of various reaction parameters like effect of iron dosage, concentration of H(2)O(2)/ammonium per sulfate (APS), initial dye concentration, effect of pH and the influence of radical scavenger are studied and optimum conditions are reported. The degradation rate decreased at higher iron dosages and also at higher oxidant concentrations due to the surface precipitation which deactivates the iron surface. The rate constant for the processes Fe(0)/UV and Fe(0)/APS/UV is twice compared to their respective Fe(0)/dark and Fe(0)/APS/dark processes. The rate constant for Fe(0)/H(2)O(2)/UV process is four times higher than Fe(0)/H(2)O(2)/dark process. The increase in the efficiency of Fe(0)/UV process is attributed to the cleavage of stable iron complexes which produces Fe(2+) ions that participates in cyclic Fenton mechanism for the generation of hydroxyl radicals. The increase in the efficiency of Fe(0)/APS/UV or H(2)O(2) compared to dark process is due to continuous generation of hydroxyl radicals and also due to the frequent photo reduction of Fe(3+) ions to Fe(2+) ions. Though H(2)O(2) is a better oxidant than APS in all respects, but it is more susceptible to deactivation by hydroxyl radical scavengers. The decrease in the rate constant in the presence of hydroxyl radical scavenger is more for H(2)O(2) than APS. Iron powder retains its recycling efficiency better in the presence of H(2)O(2) than APS. The decrease in the degradation rate in the presence of APS as an oxidant is due to the fact that generation of free radicals on iron surface is slower compared to H(2)O(2). Also, the excess acidity provided by APS retards the degradation rate as excess H(+) ions acts as hydroxyl radical scavenger. The degradation of Methyl Orange (MO) using Fe(0) is an acid driven process shows higher efficiency at pH 3. The

  9. Degradation of ethylparaben under simulated sunlight using photo-Fenton.

    Science.gov (United States)

    Zúñiga-Benítez, Henry; Peñuela, Gustavo A

    2016-01-01

    Ethylparaben (EPB) has been classified by different research groups as a potential endocrine-disrupting chemical, implying that it can potentially interfere with the normal balance of the endocrine system of living beings, which with its presence in different effluents, including drinking water, generates the need to seek methods that allow its removal from different water bodies. Advanced oxidation processes have been employed widely to remove organic compounds from different matrices. In this way, Fenton technology (process based on the reaction between ferrous ions and hydrogen peroxide) has been able to degrade different substrates, but due to the Fe(2+) requirements to carry out the reaction optimally, combination of the conventional Fenton process with visible light radiation (photo-Fenton) is an alternative used in the treatment of pollution due to the presence of chemicals. In this way, the effectiveness of photo-Fenton on EPB degradation was assessed using a face-centered central composite experimental design that allowed assessment of the effects of Fe(2+) and H2O2 initial concentrations on process. In general, results indicated that after 180 min of reaction almost all EPB was eliminated, the dissolved organic carbon in solution was reduced and the sample biodegradability index was increased.

  10. Fenton's syndrome

    International Nuclear Information System (INIS)

    Rimondi, E.; Albasini, V.

    1989-01-01

    The authors report two recent cases of Fenton's syndrome, a very rare carpal fracture-dislocation. After some anatomophysiopathological considerations and a review of the literature, a wider nosographic frame is proposed in which the entity of the dislocation of the head of capitate bone is not essential. According to both the literature and personal findings, the authors remark that this syndrome is always found in the presence of two morphological variants of the distal radioulnar joint. Finally, the authors stress the importance of a corect diagnosis of this lesion to avoid unnecessary attempts of reduction

  11. Combination of ultrasonic and Fenton processes in the presence of magnetite nanostructures prepared by high energy planetary ball mill.

    Science.gov (United States)

    Acisli, Ozkan; Khataee, Alireza; Karaca, Semra; Karimi, Atefeh; Dogan, Ercan

    2017-01-01

    High energy planetary ball milling process was used to prepare magnetite nanostructures from natural magnetite. The natural and ball-milled magnetite samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR). The results of EDX indicated the presence of main elements including Fe and O in the structure of both unmodified and milled magnetite samples. The specific surface area of catalyst increased from 0.9116m 2 /g to 28.692m 2 /g after ball-milling process. The catalytic activity of prepared magnetite nanostructures was evaluated towards degradation of Acid Blue 185 (AB185) in ultrasonic assisted heterogeneous Fenton reaction. 6h ball-milled catalyst exhibited the higher catalytic activity in degradation of AB185. The high degradation efficiency was obtained at initial pH of 3. Increasing the concentration of H 2 O 2 from an optimum value of 15mM led to decrease in degradation efficiency because of scavenging effect of H 2 O 2 on hydroxyl radicals. The optimized catalyst concentration was obtained 1.5g/L. Increasing initial dye concentration from 20 to 120mg/L led to decrease in degradation efficiency from 99 to 88%. The prepared magnetite nanostructures exhibited good stability in repeated cycles. The produced intermediates of the degradation of AB185 in ultrasonic assisted heterogeneous Fenton process were monitored by GC-MS analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Degradação de poluentes emergentes por processos Fenton e foto-Fenton

    Directory of Open Access Journals (Sweden)

    Marco A. Benedetti Durigan

    2012-01-01

    Full Text Available A continuous photochemical treatment system was developed for aiming the treatment of aqueous solutions containing relevant micro-pollutants (microcystin-LR, sulfamethoxazole and 17-b estradiol. The continuous photo-Fenton process provided high degradation efficiency. However, contact time between samples and the irradiated region is short relative to total treatment time, indicating that observed changes are predominantly due to the Fenton process. Higher degradation efficiency was observed in systems operated using two treatment cycles, the first involving a batch Fenton process and the second a continuous photo-Fenton treatment.

  13. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.

    Science.gov (United States)

    Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica

    2016-01-01

    Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency.

  14. Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes.

    Science.gov (United States)

    Serna-Galvis, Efraim A; Silva-Agredo, Javier; Giraldo, Ana L; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2016-01-15

    Synthetic pharmaceutical effluents loaded with the β-lactam antibiotic oxacillin were treated using advanced oxidation processes (the photo-Fenton system and TiO2 photocatalysis) and chloride mediated electrochemical oxidation (with Ti/IrO2 anodes). Combinations of the antibiotic with excipients (mannitol or tartaric acid), an active ingredient (calcium carbonate, i.e. bicarbonate ions due to the pH) and a cleaning agent (sodium lauryl ether sulfate) were considered. Additionally, urban wastewater that had undergone biological treatment was doped with oxacillin and treated with the tested systems. The evolution of antimicrobial activity was monitored as a parameter of processes efficiency. Although the two advanced oxidation processes (AOPs) differ only in the way they produce OH, marked differences were observed between them. There were also differences between the AOPs and the electrochemical system. Interestingly, each additive had a different effect on each treatment. For water loaded with mannitol, electrochemical treatment was the most suitable option because the additive did not significantly affect the efficiency of the system. Due to the formation of a complex with Fe(3+), tartaric acid accelerated the elimination of antibiotic activity during the photo-Fenton process. For TiO2 photocatalysis, the presence of bicarbonate ions contributed to antibiotic activity elimination through the possible formation of carbonate and bicarbonate radicals. Sodium lauryl ether sulfate negatively affected all of the processes. However, due to the higher selectivity of HOCl compared with OH, electrochemical oxidation showed the least inhibited efficiency. For the urban wastewater doped with oxacillin, TiO2 photocatalysis was the most efficient process. These results will help select the most suitable technology for the treatment of water polluted with β-lactam antibiotics. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Evaluation of three reagent dosing strategies in a photo-Fenton process for the decolorization of azo dye mixtures

    International Nuclear Information System (INIS)

    Prato-Garcia, D.; Buitrón, Germán

    2012-01-01

    Highlights: ► Dosing strategies for a photo-Fenton process were evaluated. ► The dosing strategy had no effect of on the decolorization. ► The type of strategy influenced SUVA index, toxicity reduction and biodegradability. ► A continuous reagents supply was found to be the most adequate strategy. ► Decolorization as well as a less toxic and biodegradable effluent was produced. - Abstract: Three reagent dosing strategies used in the solar photo-assisted decolorization of a mixture of sulfonated dyes consisting of acid blue 113, acid orange 7 and acid red 151 were evaluated. Results demonstrated that the dosing strategy influenced both reagent consumption and the biodegradability and toxicity of the effluent. In one strategy (E 1 ), the Fenton's reactants were dosed in a punctual mode, while in the other two strategies (E 2 an E 3 ), the reactants were dosed continuously. In the E 2 strategy the reactants were dosed by varying the duration of the injection time. In the E 3 strategy, the reactants were dosed during 60 min at a constant rate, but with different concentrations. All cases showed that feeding the reactor between 40% and 60% of the maximal dose was sufficient to decolorize more than 90% of the mixture of azo dyes. The E 1 strategy was less effective for aromatic content reduction. Conversely, the continuous addition of the reagents (E 2 and E 3 strategies) improved the aromatic content removal. E 3 strategy was substantially more appropriate than E 1 strategy due to improved the effluent quality in two key areas: toxicity and biodegradability.

  16. Soil washing in combination with homogeneous Fenton-like oxidation for the removal of 2,4,4'-trichlorodiphenyl from soil contaminated with capacitor oil.

    Science.gov (United States)

    Ma, Xiao-Hong; Zhao, Ling; Lin, Zhi-Rong; Dong, Yuan-Hua

    2016-04-01

    Detoxification by chemical oxidation of polychlorinated biphenyls (PCBs) in contaminated soils is very difficult and inefficient because PCBs typically associate with the solid phase or exist as non-aqueous-phase liquids due to their low solubility and slow desorption rates, and thus, they are difficult to remove from soils by using traditional, water-based elution techniques. Surfactant can enhance washing efficiency of PCBs from contaminated soils. This study used Brij 58, Brij 30, Tween 80, and 2-hydroxypropyl-β-cyclodextrin (HPCD) to solubilize 2,4,4'-trichlorodiphenyl (PCB28) from soil contaminated with capacitor oil into solution. The feasibility of PCB28 oxidation in soil washing wastewater through a Fe(3+)-catalyzed Fenton-like reaction was subsequently examined. Washing with 10 g L(-1) Brij 58 solution showed the highest extraction efficiency (up to 61.5 %) compared with that of the three other surfactants. The total concentration of PCB28 in contaminated soil at 25 °C after 48-h extraction was 286 mg L(-1). In contrast to conditions in which no washing agent was added, addition of the four washing agents decreased the efficiency of PCB28 degradation by the Fenton-like reaction, with the decrease due to addition of 10 g L(-1) Brij 58 solution being the smallest. The optimal concentration of H2O2 for preventing its useless decomposition was found to be 50 mM. The efficiency of PCB28 removal was lower when the initial concentration of PCB28 treated in the Fenton-like reaction was higher. The degradation efficiencies of PCB28 at initial concentrations of 0.1, 10, and 176 mg L(-1) in 10 g L(-1) Brij 58 solution at 25 °C and pH 3.0 and 9 h of reaction using 50 mM H2O2 were 64.1, 42.0, and 34.6 %, respectively. This result indicates that soil washing combined with Fenton-like oxidation may be a practical approach for the remediation of PCB-contaminated soil.

  17. Fenton-like chemistry in water: Oxidation catalysis by Fe(III) and H2O2

    NARCIS (Netherlands)

    Ensing, B.; Buda, F.; Baerends, E.J.

    2003-01-01

    The formation of active intermediates from the Fenton-like reagent (a mixture of iron(III) ions and hydrogen peroxide) in aqueous solution has been investigated using static DFT calculations and Car-Parrinello molecular dynamics simulations. We show the spontaneous formation of the iron(III)

  18. Fenton-like oxidation of 4-chlorophenol using H2O2 in situ generated by Zn-Fe-CNTs composite.

    Science.gov (United States)

    Liu, Yong; Fan, Qing; Liu, Yanlan; Wang, Jianlong

    2018-05-15

    In this paper, a zinc-iron-carbon nanotubes (Zn-Fe-CNTs) composite was prepared, characterized and used to develop a Fenton-like system of Zn-Fe-CNTs/O 2 for the degradation of 4-chlorophenol (4-CP), in which H 2 O 2 was generated in situ from zinc-carbon galvanic cells and oxygen in aqueous solution was activated by iron attached on the surface of CNTs to produce ·OH radicals for the oxidation of 4-CP. The experimental results showed that the particles of Zn and Fe in Zn-Fe-CNTs composite were adhered to the surface of CNTs, which accelerated the electron transfer process. The BET area of Zn-Fe-CNTs composite was 32.9 m 2 /g. The contents of Zn and Fe (% w) in the composite were 44.7% and 4.2%, respectively. The removal efficiency of 4-CP and TOC in Zn-Fe-CNTs/O 2 system was 90.8% and 52.9%, respectively, with the initial pH of 2.0, O 2 flow rate of 800 mL/min, Zn-Fe-CNTs dosage of 1.0 g/L, 4-CP concentration of 50 mg/L and reaction time of 20 min. Based on the analysis of the degradation intermediate products with LC-MS and IC, a possible degradation pathway of 4-CP in Zn-Fe-CNTs/O 2 system was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Oxidation of disinfectants with Cl-substituted structure by a Fenton-like system Cu(2+)/H2O2 and analysis on their structure-reactivity relationship.

    Science.gov (United States)

    Peng, Jianbiao; Li, Jianhua; Shi, Huanhuan; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    As widely used chemicals intended to protect human being from infection of microorganisms, disinfectants are ubiquitous in the environment. Among them chlorine-substituted phenol is a basic structure in many disinfectant molecules. Removal of these pollutants from wastewater is of great concern. The oxidative degradation of antimicrobial agents such as triclosan, chlorofene, and dichlorofene by a Fenton-like system Cu(2+)/H2O2 was examined. Reaction conditions such as temperature, initial concentrations of H2O2 and Cu(2+), and pH were optimized using triclosan as a representative. The degradation kinetics of the above disinfectants followed pseudo-first-order kinetics under the investigated conditions. Fourteen chlorophenols (CPs) with different chlorine substitution were also studied to evaluate the influence of molecular structure on the degradation process in the Cu(2+)/H2O2 system. Fourteen structure-related parameters were calculated using Gaussian 09 program. A quantitative structure-activity relationship (QSAR) model was established using SPSS software with measured rate constant (k) as dependent variable and calculated molecular descriptors as independent variables. A three-parameter model including energy of HOMO (E homo), molar heat capacity at constant volume (Cv(θ)), and the most positive net charge of hydrogen atoms (qH(+)) was selected for k prediction, with correlation coefficient R(2) = 0.878. Analyses of the model demonstrated that the Cv(θ) was the most significant factor affecting the k of chlorophenols. Variance analysis and standard t-value test were used to validate the model.

  20. Evaluation of ethyl lactate as solvent in Fenton oxidation for the remediation of total petroleum hydrocarbon (TPH)-contaminated soil.

    Science.gov (United States)

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2017-07-01

    Due to the health and environmental risks posed by the presence of petroleum-contaminated areas around the world, remediation of petroleum-contaminated soil has drawn much attention from researchers. Combining Fenton reaction with a solvent has been proposed as a novel way to remediate contaminated soils. In this study, a green solvent, ethyl lactate (EL), has been used in conjunction with Fenton's reagents for the remediation of diesel-contaminated soil. The main aim of this research is to determine how the addition of EL affects Fenton reaction for the destruction of total petroleum hydrocarbons (TPHs) within the diesel range. Specifically, the effects of different parameters, including liquid phase volume-to-soil weight (L/S) ratio, hydrogen peroxide (H 2 O 2 ) concentration and EL% on the removal efficiency, have been studied in batch experiments. The results showed that an increase in H 2 O 2 resulted in an increase in removal efficiency of TPH from 68.41% at H 2 O 2  = 0.1 M to 90.21% at H 2 O 2  = 2 M. The lowest L/S, i.e. L/S = 1, had the highest TPH removal efficiency of 85.77%. An increase in EL% up to 10% increased the removal efficiency to 96.74% for TPH, and with further increase in EL%, the removal efficiency of TPH decreased to 89.6%. EL with an optimum value of 10% was found to be best for TPH removal in EL-based Fenton reaction. The power law and pseudo-first order equations fitted well to the experimental kinetic data of Fenton reactions.

  1. Determining the optimal dose of Fenton reagent in a leachate treatment by Fenton-adsorption; Determinacion de la dosis optima de reactivo Fenton en un tratamiento de lixiviados por Fenton-adsorcion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Novelo, Roger Ivan; Pietrogiovanna Bronca, Jose Alfredo; Santos Ocampo, Beatriz; Sauri Riancho, Maria Rosa; Giacoman Vallejos, German; Castillo Borges, Elba Rene [Universidad Autonoma de Yucatan, Facultad de Ingenieria, Merida, Yucatan (Mexico)]. E-mail: mnovelo@uady.mx

    2010-07-01

    Leachates are formed as a result of the percolation of liquids, through the solid wastes in stabilization process. Their composition is variable and highly toxic; therefore, leachates treatment is a complex task. Due to the high permeability of the soil of the Yucatan Peninsula leachates represent a high risk to health. Fenton type oxidation and adsorption treatment have been tested, and they have showed better results than other types of biological or physicochemical treatment. Fenton process consists in treating the contaminant load with a combination of H{sub 2}O{sub 2} and FeSO{sub 4} under acidic conditions. Experiments were conducted in order to determine if filtration was better than the sedimentation of the sludges. The optimum contact time and the best relations [Fe{sup 2+}]/[H{sub 2}O{sub 2}] and [COD]/[H{sub 2}O{sub 2}] were determined. Subsequently, the oxidized samples were filtered and the adsorption process was tested using two columns in series packed with activated carbon. It was concluded that the sludge generated by the Fenton process was removed more efficiently through filtration than sedimentation. Optimal contact times were 5 min for COD removal, and 1 hour for colour removal; process time was set to one hour in order to protect the activated carbon. The best relations for [Fe{sup 2+}]/[H{sub 2}O{sub 2}] and [COD]/[H{sub 2}O{sub 2}] were 0.6 and 9 respectively. The maximum removal efficiency after the adsorption process was 98.9% for COD and 100% for colour at zero time of the column. A final biodegradability index of 0.24 was reached after the Fenton-adsorption tests. [Spanish] Los lixiviados son el resultado de la percolacion de liquidos a traves de los desechos solidos en proceso de estabilizacion. La complejidad de su tratamiento se debe a que su composicion es altamente toxica y variable. Lo anterior y el suelo altamente permeable de la peninsula de Yucatan, representan un alto peligro a la salud. Se ensayo un tratamiento de oxidacion

  2. H2O2 Based Oxidation Processes for the Treatment of Real High Strength Aqueous Wastes

    Directory of Open Access Journals (Sweden)

    Maria Cristina Collivignarelli

    2017-02-01

    Full Text Available This work was aimed at studying the applicability of H2O2-based oxidation processes (namely H2O2/UV, photo-Fenton, and Fenton for the treatment of six real aqueous wastes. These wastes derived from chemical, pharmaceutical, and detergent production, and were characterised by high COD (chemical oxygen demand and, in four cases, surfactant concentrations: overall, about 100 tests were conducted. The H2O2/UV and photo-Fenton processes proved to be very effective in COD removal, the efficiency being greater than 70%. The optimal treatment conditions for the H2O2/UV process were: 120 min reaction, H2O2/CODinitial dosage ratio = 1/2; the radiation intensity (up to 2000 W·L−1 revealed to be a crucial factor, especially in the earlier stage of the process (about 40 min: this aspect can be exploited to reduce the costs related to energy consumption. For the photo-Fenton process the following conditions were chosen: Fe2+/H2O2 ratio = 1/30; specific power input = 125 W·L−1; H2O2/CODinitial = 1/2; reaction time = 240 min. Photolytic reactions and the presence of dissolved oxygen revealed to be crucial factors for COD removal. The Fenton process, while showing a moderate efficiency (25% COD removal in the treatment of high loaded wastewaters, provided excellent results in the treatment of aqueous wastes with high content of surfactants. An average yield removal of 70% for non-ionic surfactants (TAS and 95% for anionic surfactants (MBAS was obtained, under the following optimal conditions: Fe2+/H2O2 = 1/4, H2O2/CODinitial ratio = 1, and contact time = 30 min.

  3. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.

    Science.gov (United States)

    Dos Santos, Alexsandro Jhones; Costa, Emily Cintia Tossi de Araújo; da Silva, Djalma Ribeiro; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2018-03-01

    Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm -2 . Thus, electrochemical technologies emerge as promising water-sustainable approaches.

  4. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  5. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate.

    Science.gov (United States)

    Garkusheva, Natalya; Matafonova, Galina; Tsenter, Irina; Beck, Sara; Batoev, Valeriy; Linden, Karl

    2017-07-29

    This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe 2+ ) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (10 5 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (Q UV(A+B) , kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a Q UV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe 2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.

  6. Coupling coagulation, flocculation and decantation with photo-Fenton process for treatment of industrial wastewater containing fipronil: Biodegradability and toxicity assessment.

    Science.gov (United States)

    da Costa Filho, Batuira Martins; da Silva, Valdislaine Maria; Silva, Jader de Oliveira; da Hora Machado, Antonio Eduardo; Trovó, Alam Gustavo

    2016-06-01

    This work reports the treatment of wastewater containing the insecticide fipronil, integrating coagulation, flocculation and decantation in the photo-Fenton process. Under the best concentration of the coagulant - Fe(3+) (56 mg L(-1)), the suspended solids and total fipronil concentrations decreased respectively from 7000 and 20.9 mg L(-1) to 590 and 2.2 mg L(-1), but without reduction in dissolved organic carbon - DOC (1760 mg C L(-1)) and acute toxicity to Artemia salina (100%). Subsequently, the photo-Fenton process was applied as alternative of pre- or complete treatment, taking into account toxicity and biodegradability (given by biochemical oxygen demand after five days - BOD5/chemical oxygen demand - COD ratio) assessment. The best DOC and COD removal were reached with 60 and 6723 mg L(-1) of Fe(2+) and H2O2, respectively. Under these conditions, after 60 min of irradiation, 57% of DOC and 74% of COD were removed, with a decrease in acute toxicity to A. salina from 100% to 13% and an increase in the BOD5/COD ratio from 0.052 to 1.0. With these parameters, the integration of coagulation/flocculation/decantation and photo-Fenton processes may be an alternative to the pre- or complete treatment of wastewater containing fipronil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Enhancement the conditioning of waste activated sludge through a sequence of freeze/thaw-electro-Fenton process

    Directory of Open Access Journals (Sweden)

    Shahheidar Narjes

    2018-03-01

    Full Text Available Sludge conditioning is an important stage in sludge management. In the present study, a sequence of freeze/thaw-electro-Fenton process was designed and specific resistance filtration (SRF was monitored during sludge conditioning as an important factor in sludge dewaterability. Furthermore, protein and polysaccharide concentrations were measured during the experiments. Results showed that the lowest SRF value contributed to −10°C in freezing process which showed a reducing trend by decreasing solution pH. In addition, results revealed that solution pH less than 3 caused a significant improvement in sludge dewatering; so the lowest SRF has been registered at pH = 2. By increasing current intensity from 0.5 to 1A, SRF values were reduced and then followed by an enhancement with increasing current intensity to 3.2 A. The lowest SRF value (6.1 × 104 m/kg was obtained at H2O2 = 30 mg/L which was the best conditions for sludge dewatering.

  8. Degradation of 4-methylbenzylidene camphor (4-MBC Using Fenton, UV Light Irradiation and Photo-Fenton

    Directory of Open Access Journals (Sweden)

    Ji Chunmei

    2017-01-01

    Full Text Available As one of the most commonly employed UV-filters, 4-methylbenzylidene camphor (4-MBC has been shown to accumulate in the environment and have endocrine disrupting activity. 4-MBC cannot be degraded completely by common methods in wastewater treatment plants. To prevent the environmental problems caused by 4-MBC from being more serious, finding effective method to degrade 4-MBC is essential. In this research, Fenton reaction and photo-Fenton was employed to degrade the 4-MBC. Orthogonal experimental design was employed to evaluate the influence of factors (Fe2+, H2O2, pH and reaction time on the degradation of 4-MBC. The degradation rate reached to 66.01% in Fenton process and 96.71% in photo-Fenton process. UV light irradiation was also employed to degrade 4-MBC. After being irradiated by mercury lamp (300W 90 min, the concentration of the 4-MBC reduced 85.4%, but most of them translated to the isomeride. Compared with the Fenton, photo-Fenton and UV light irradiation processes, we deduces that photo-Fenton can get the better degradation efficiency of 4-MBC, and, Fenton reagents and light irradiation are synergistic.

  9. Central composite design optimization of pilot plant fluidized-bed heterogeneous Fenton process for degradation of an azo dye.

    Science.gov (United States)

    Aghdasinia, Hassan; Bagheri, Rasoul; Vahid, Behrouz; Khataee, Alireza

    2016-11-01

    Optimization of Acid Yellow 36 (AY36) degradation by heterogeneous Fenton process in a recirculated fluidized-bed reactor was studied using central composite design (CCD). Natural pyrite was applied as the catalyst characterized by X-ray diffraction and scanning electron microscopy. The CCD model was developed for the estimation of degradation efficiency as a function of independent operational parameters including hydrogen peroxide concentration (0.5-2.5 mmol/L), initial AY36 concentration (5-25 mg/L), pH (3-9) and catalyst dosage (0.4-1.2 mg/L). The obtained data from the model are in good agreement with the experimental data (R(2 )= 0.964). Moreover, this model is applicable not only to determine the optimized experimental conditions for maximum AY36 degradation, but also to find individual and interactive effects of the mentioned parameters. Finally, gas chromatography-mass spectroscopy (GC-MS) was utilized for the identification of some degradation intermediates and a plausible degradation pathway was proposed.

  10. Optimization of paper mill industry wastewater treatment by electrocoagulation and electro-Fenton processes using response surface methodology.

    Science.gov (United States)

    Guvenc, Senem Yazici; Erkan, Hanife Sari; Varank, Gamze; Bilgili, Mehmet Sinan; Engin, Guleda Onkal

    2017-10-01

    This study deals with chemical oxygen demand (COD), phenol and Ca +2 removal from paper mill industry wastewater by electrocoagulation (EC) and electro-Fenton (EF) processes. A response surface methodology (RSM) approach was employed to evaluate the effects and interactions of the process variables and to optimize the performance of both processes. Significant quadratic polynomial models were obtained (R 2 = 0.959, R 2 = 0.993 and R 2 = 0.969 for COD, phenol and Ca +2 removal, respectively, for EC and R 2 = 0.936, R 2 = 0.934 and R 2 = 0.890 for COD, phenol and Ca +2 removal, respectively). Numerical optimization based on desirability function was employed; in a 27.55 min trial, 34.7% of COD removal was achieved at pH 9 and current density 96 mA/cm 2 for EC, whereas in a 30 min trial, 74.31% of COD removal was achieved at pH 2 and current density 96 mA/cm 2 and H 2 O 2 /COD molar ratio 2.0 for EF. The operating costs were calculated to be 6.44 €/m 3 for EC and 7.02 €/m 3 for EF depending on energy and electrode consumption at optimum conditions. The results indicate that the RSM is suitable for the design and optimization of both of the processes. However, EF process was a more effective technology for paper mill industry wastewater treatment as compared with EC.

  11. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    Science.gov (United States)

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  12. Degradation of a commercial textile biocide with advanced oxidation processes and ozone.

    Science.gov (United States)

    Arslan-Alaton, Idil

    2007-01-01

    The occurrence of significant amounts of biocidal finishing agents in the environment as a consequence of intensive textile finishing activities has become a subject of major public health concern and scientific interest only recently. In the present study, the treatment efficiency of selected, well-known advanced oxidation processes (Fenton, Photo-Fenton, TiO(2)/UV-A, TiO(2)/UV-A/H(2)O(2)) and ozone was compared for the degradation and detoxification of a commercial textile biocide formulation containing a 2,4,4'-trichloro-2'-hydroxydiphenyl ether as the active ingredient. The aqueous biocide solution was prepared to mimic typical effluent originating from the antimicrobial finishing operation (BOD(5,o) Daphnia magna)=8% v/v). Ozonation experiments were conducted at different ozone doses (500-900 mg/h) and initial pH (7-12) to assess the effect of ozonation on degradation (COD, DOC removal), dearomatization (UV(280) and UV(254) abatement), dechlorination (AOX removal) and detoxification (changes in LC(50)). For the Fenton experiments, the effect of varying ferrous iron catalyst concentrations and UV-A light irradiation (the Photo-Fenton process) was examined. In the heterogenous photocatalytic experiments, Degussa P25-type TiO(2) was used as the catalyst and the effect of reaction pH (3, 7 and 12) and H(2)O(2) addition on the photocatalytic treatment efficiency was examined. Although in the photochemical (i.e. Photo-Fenton, TiO(2)/UV-A and TiO(2)/UV-A/H(2)O(2)) experiments appreciably higher COD and DOC removal efficiencies were obtained, ozonation appeared to be equally effective to achieve dearomatization (UV(280) abatement) at all studied reaction pH. During ozonation of the textile biocide effluent, AOX abatement proceeded significantly faster than dearomatization and was complete after 20 min ozonation (267 mg O(3)). On the other hand, for complete detoxification, ozonation had to be continued for at least 30 min (corresponding to 400mg O(3)). Effective AOX

  13. Application of the photo-Fenton process with solar radiation in treatment of produced water in petroleum fields of the Rio Grande do Norte (Brazil); Aplicacao do processo foto-fenton com radiacao solar no tratamento da agua produzida nos campos de petroleo do estado do Rio Grande do Norte

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Huganisa D.; Silva, Douglas N.; Chiavone-Filho, Osvaldo [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Engenharia Quimica]. E-mail: huganisa@eq.ufrn.br; Moraes, Jose Ermirio F.; Nascimento, Claudio Augusto Oller do [Sao Paulo Univ., SP (Brazil). Escola Politecnica]. E-mail: jefm@lscp.pqi.ep.usp.br

    2003-07-01

    In the present work, it was studied the development of new oxidation methods for the treatment of the produced waters in Rio Grande do Norte state petroleum fields. It was applied the photo-Fenton process, which is based on an oxidation/reduction reactions cycle (Fe{sup 2+}/Fe{sup 3+}), in presence of H{sub 2}O{sub 2} and UV/visible radiation, that it generates hydroxyl radicals (OH.), which are able to oxidize a great variety of toxic and/or refractory organic compounds. In these experiments, a solar falling film reactor was used, with an area of collection of 0.44m{sup 2}. During the experiments, some changes, of physical-chemical character, such as color and cloudiness, were observed, indicating a chemical transformation inside the system. A sensitive method of analysis, using gas chromatography, was applied to determine quantitatively the degradation of the residual oil in the produced water of petroleum along the reaction. (author)

  14. Fenton's reagent as a remediation process in water treatment: application to the degradation of polycyclic aromatic hydrocarbons in waters and sewage sludges; La reaction de fenton comme procede de rehabilitation dans le traitement des eaux: application a la degradation des hydrocarbures aromatiques polycycliques dans les eaux et les boues residuaires

    Energy Technology Data Exchange (ETDEWEB)

    Flotron, V.

    2004-05-15

    This study is related to the application of Fenton's reagent to remedy matrices contaminated by polycyclic aromatic hydrocarbons (PAHs). In aqueous solution, the choice of the reagent implementation is important, in order to generate enough radicals to oxidize pollutants. Degradation of the organic compounds is possible, but a large difference in reactivity is observed between 'alternant' and 'non-alternant' PAHs (with a five carbon atoms cycle). Besides, if a few specific precautions are omitted, the PAHs can sorb onto the flask inside surface, and therefore not undergo oxidation. The results on sewage sludges show that under certain conditions (high reagent concentrations), the pollutants can be oxidised although they are adsorbed. Moreover, it appears that the matrix itself plays an important role, as the iron oxides seem to be able to decompose hydrogen peroxide, and thus initiate Fenton reaction. Its application to contaminated soils and sediments is also possible. (author)

  15. Photo-Fenton treatment of water containing natural phenolic pollutants.

    Science.gov (United States)

    Gernjak, Wolfgang; Krutzler, Thomas; Glaser, Andreas; Malato, Sixto; Caceres, Julia; Bauer, Rupert; Fernández-Alba, A R

    2003-01-01

    Phenolic compounds are known to be present in high concentrations in various types of agro-industrial wastes. As they are highly biorecalcitrant, the possibility of treatment by advanced oxidation processes should be investigated. In this work, six model phenolic compounds (vanillin, protocatechuic acid, syringic acid, p-coumaric acid, gallic acid and L-tyrosine) were chosen for a demonstration of degradation by photo-Fenton reaction, under artificial light in laboratory experiments in Vienna and under sunlight in pilot-plant experiments at the Plataforma Solar de Almería in Spain. All compounds were completely mineralised. No non-degradable intermediates were produced, either in experiments with single substances or in a more complex matrix of a mixture of phenolic compounds. The expected selectivity of the photo-Fenton reaction for aromatic compounds was proven by comparison of the decrease in total organic carbon with the removal of total phenolic content.

  16. Sulfamethoxazole abatement by photo-Fenton

    International Nuclear Information System (INIS)

    Gonzalez, Oscar; Sans, Carme; Esplugas, Santiago

    2007-01-01

    The objective of this work was to study the abatement of 200 mg L -1 sulfamethoxazole (SMX) solution by means of photo-Fenton process. Biodegradability of the treated solutions was followed by the ratio biochemical oxygen demand at five days/chemical oxygen demand (BOD 5 /COD) and toxicity by Microtox[reg] and inhibition tests. Experiments with different initial concentration of H 2 O 2 were carried out. The initial amount of Fe 2+ and pH of the solution were set at 10 mg L -1 and 2.8 respectively. The temperature of the reactor was kept constant in all the experiments (25 ± 0.8 deg. C). Photo-Fenton process is thought to be a successful treatment step to improve the biodegradability of wastewater containing SMX. The complete antibiotic removal was achieved for a H 2 O 2 dose over 300 mg L -1 . Biodegradability (BOD 5 /COD) rose from zero (SMX solution) to values higher than 0.3 (treated solutions). Toxicity and inhibition tests pointed out in the same direction: oxidized intermediates for initial H 2 O 2 dose over 300 mg L -1 showed no toxicity effects on pure bacteria and no inhibition on activated sludge activity

  17. Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Augustine Chioma Affam

    2018-01-01

    Full Text Available The study compared the technical efficiency and economic cost of five advanced oxidation processes (Fenton, UV photo-Fenton, solar photo-Fenton, UV/TiO2/H2O2 and FeGAC/H2O2 for degradation of the pesticides chlorpyrifos cypermethrin and chlorothalonil in aqueous solution. The highest degradation in terms of COD and TOC removals and improvement of the biodegradability (BOD5/COD ratio index (BI were observed to be (i Fenton - 69.03% (COD, 55.61% (TOC, and 0.35 (BI; (ii UV photo-Fenton -78.56% (COD, 63.76% (TOC and 0.38 (BI;  (iii solar photo-Fenton - 74.19% (COD, 58.32% (TOC and 0.36 (BI; (iv UV/TiO2/H2O2 - 53.62% (COD, 21.54% (TOC, and 0.26 (BI; and  (v the most technical efficient and cost effective process was FeGAC/H2O2. At an optimum condition (FeGAC 5 g/L, H2O2 100 mg/L, and reaction time of 60 min at pH 3, the COD and TOC removal efficiency were 96.19 and 85.60%, respectively, and the biodegradation index was 0.40. The degradation rate constant and cost were 0.0246 min-1 and $0.74/kg TOC, respectively. The FeGAC/H2O2 process is the most technically efficient and cost effective for pretreatment of the pesticide wastewater before biological treatment. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 26nd September 2017; Accepted: 27th September 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Affam, A.C., Chaudhuri, M., Kutty, S.R.M. (2018. Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 179-186 (doi:10.9767/bcrec.13.1.1394.179-186

  18. Efficient removal of insecticide "imidacloprid" from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Turabik, Meral; Oturan, Nihal; Gözmen, Belgin; Oturan, Mehmet A

    2014-01-01

    The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP) = 1.23 × 10(9) L mol(-1) s(-1). The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94% total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71%. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl(-), NO₃(-), and NH₄(+).

  19. Preparative treatment with NaOH to selectively concentrate iron oxides of a Chilean volcanic soil material to produce effective heterogeneous Fenton catalyst

    International Nuclear Information System (INIS)

    Manzo, Valentina; Pizarro, Carmen; Rubio, María Angélica; Cavalcante, Luis Carlos Duarte; Garg, Vijayendra Kumar; Fabris, José Domingos

    2011-01-01

    A Chilean volcanic Ultisol material was first size-fractionated so as to obtain the fraction with mean particle sizes φ   − 1 NaOH, in an attempt to evaluate the effectiveness of the selective chemical dissolution to concentrate iron oxides, as a preparation procedure before using the materials as heterogeneous Fenton catalysts. The effects of those treatments on the iron oxides mineralogy were monitored with Mössbauer spectroscopy. The NaOH-treated samples were tested as catalysts towards the H 2 O 2 decomposition. Three or five sequential NaOH treatments were found to be comparably effective, by concentrating nearly the same proportion of iron oxides in the remaining solid phase (25.1 ± 0.4 and 23.3 ± 0.2 mass%, respectively). 298 K-Mössbauer patterns were similar for both samples, with a central (super)paramagnetic Fe 3 +  doublet and a broad sextet, assignable to several closely coexisting magnetically ordered forms of iron oxides. Despite of this nearly similar effect of the two treatments, the Ultisol material treated three times with NaOH presents higher heterogeneous catalytic efficiency and is more suitable to decompose H 2 O 2 than that with five treatments.

  20. Descoloração de efluentes aquosos sintéticos e têxtil contendo corantes índigo e azo via processos Fenton e foto-assistidos (UV e UV/H2O2 Decolorization of synthetic and laundry wastewater containing indigo and azo dyes by the Fenton, photolytic and UV/H2O2 processes

    Directory of Open Access Journals (Sweden)

    Bruno César Barroso Salgado

    2009-03-01

    Full Text Available No presente trabalho, processos de oxidação avançada, Fe2+/H2O2 e UV/H2O2, e de fotólise (UV foram empregados na descoloração de dois efluentes sintéticos, contendo corantes tipo índigo e azo, e de um efluente de lavanderia industrial. Experimentalmente, soluções em concentração de 20 mg/L dos corantes índigo carmim e vermelho congo, respectivamente 43 µmol/L e 29 µmol/L, e o efluente têxtil (pH = 3 foram submetidos a diferentes condições oxidantes sob temperatura ambiente (27 ºC. As remoções de cor e de DQO foram avaliadas em cada sistema oxidativo estudado. Em geral, os resultados obtidos mostraram que os processos utilizados são muito promissores na descoloração dos efluentes. A descoloração completa das soluções foi alcançada nos processos Fenton e com UV/H2O2. Estudos cinéticos revelam que a taxa de descoloração em meio aquoso segue uma cinética de pseudo-primeira ordem em relação à concentração do corante.In the present work, advanced oxidation processes, Fe2+/H2O2 and UV/H2O2, and direct photolysis (UV light have been applied in the decolorization of two synthetic wastewater containing indigo and azo dyes and laundry effluent. Individual aqueous solutions containing 20 mg/L indigo carmine and congo red dyes (43 µmol/L and 29 µmol/L, respectively and textile laundry wastewater at pH 3 were subjected to different experimental conditions in the oxidation reactions at room temperature (27 ºC. Color and COD removals were evaluated for each oxidation systems. The results showed that the utilized processes are able to successfully decolorize the wastewaters. Complete bleaching was achieved by Fenton and UV/H2O2. Also, kinetics investigations revealed that the decolorization follows pseudo-first order kinetic with respect to the dye concentration.

  1. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): An application of advanced Fenton process (AFP).

    Science.gov (United States)

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-09-15

    To investigate the leaching and recovery of heavy metals from low-grade automobile shredder residue (ASR), the effects of nitric acid (HNO3) and hydrogen peroxide (H2O2) concentrations, liquid/solid (L/S) ratio, leaching temperature and ASR particle size fractions on the heavy metal leaching rate were determined. The heavy metals were recovered by fractional precipitation and advanced Fenton process (AFP) at different pHs. The toxicity characteristic leaching procedure (TCLP) test was also performed in the residue remaining after heavy metal leaching to evaluate the potential toxicity of ASR. The heavy metal leaching efficiency was increased with increasing HNO3 and H2O2 concentrations, L/S ratio and temperature. The heavy metal leaching efficiencies were maximized in the lowest ASR size fraction at 303 K and L/S ratio of 100 mL/g. The kinetic study showed that the metal leaching was best represented by a second-order reaction model, with a value of R(2) > 0.99 for all selected heavy metals. The determined activation energy (kJ/mol) was 21.61, 17.10, 12.15, 34.50, 13.07 and 11.45 for Zn, Fe, Ni, Pb, Cd and Cr, respectively. In the final residue, the concentrations of Cd, Cr and Pb were under their threshold limits in all ASR size fractions. Hydrometallurgical metal recovery was greatly increased by AFP up to 99.96% for Zn, 99.97% for Fe, 95.62% for Ni, 99.62% for Pb, 94.11% for Cd and 96.79% for Cr. AFP is highly recommended for the recovery of leached metals from solution even at low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Vanillic and syringic acids from biomass burning: Behaviour during Fenton-like oxidation in atmospheric aqueous phase and in the absence of light

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gabriela T.A.D.; Santos, Patrícia S.M., E-mail: patricia.santos@ua.pt; Duarte, Armando C.

    2016-08-05

    Highlights: • The rate of oxidation of small aromatic acids increase with the pH decrease. • With the oxidation of aromatic acids are formed new small aromatic compounds. • The initial and formed compounds are not totally degraded during the night period. • The substituents and their positions in ring affect the oxidation of aromatic acids. • The OH radical attack to vanillic and syringic acids is different in atmospheric waters. - Abstract: Biomass combustion is a threat to the environment since it emits to the atmosphere organic compounds, which may react and originate others more aggressive. This work studied the behaviours of vanillic and syringic acids, small aromatic tracers of biomass burning, during Fenton-like oxidation in aqueous phase and absence of light. For both compounds, the extent of oxidation increased with pH decrease from neutral to acid in atmospheric waters, but for vanillic acid the neutral pH was not able of promoting the oxidation. With the oxidation of both acids were formed chromophoric compounds, and the formation rate increased with the degree of electron-donator substituents in benzene ring. The initial and produced compounds were not totally degraded up to 24 h of reaction at pH 4.5, suggesting that the night period may be not sufficient for their full degradation in atmospheric waters. The major compounds formed were the 3,4-dihydroxybenzoic acid for vanillic acid, and the 1,4-dihydroxy-2,6-dimethoxybenzene for syringic acid. These findings suggest the occurrence of an ipso attack by the hydroxyl radical preferential to the methoxy and carboxyl groups of vanillic and syringic acids, respectively. It is important to highlight that for both aromatic acids the main compounds produced are also small aromatic compounds.

  3. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A., E-mail: armina_84@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Alavi Moghaddam, M.R., E-mail: alavim@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Maknoon, R., E-mail: rmaknoon@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Kowsari, E., E-mail: kowsarie@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • Three combined advanced SBR and enhanced Fenton process as post treatment was compared. • Higher biomass concentration, dye, COD and metabolites removal was presented together. • Pseudo zero and pseudo first-order bio-decolorization kinetics were observed in all SBRs. • High reduction of AR18 to intermediate metabolites was monitored by HPLC. - Abstract: The purpose of this research was to compare three combined sequencing batch reactor (SBR) – Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200 mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273 mg/L and 95 mg/L (initial COD = 3270 mg/L) at the end of alternating anaerobic–aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500 mg/L was finally reduced to less than 10 mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV–vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater.

  4. Thimerosal-Derived Ethylmercury Is a Mitochondrial Toxin in Human Astrocytes: Possible Role of Fenton Chemistry in the Oxidation and Breakage of mtDNA

    Directory of Open Access Journals (Sweden)

    Martyn A. Sharpe

    2012-01-01

    Full Text Available Thimerosal generates ethylmercury in aqueous solution and is widely used as preservative. We have investigated the toxicology of Thimerosal in normal human astrocytes, paying particular attention to mitochondrial function and the generation of specific oxidants. We find that ethylmercury not only inhibits mitochondrial respiration leading to a drop in the steady state membrane potential, but also concurrent with these phenomena increases the formation of superoxide, hydrogen peroxide, and Fenton/Haber-Weiss generated hydroxyl radical. These oxidants increase the levels of cellular aldehyde/ketones. Additionally, we find a five-fold increase in the levels of oxidant damaged mitochondrial DNA bases and increases in the levels of mtDNA nicks and blunt-ended breaks. Highly damaged mitochondria are characterized by having very low membrane potentials, increased superoxide/hydrogen peroxide production, and extensively damaged mtDNA and proteins. These mitochondria appear to have undergone a permeability transition, an observation supported by the five-fold increase in Caspase-3 activity observed after Thimerosal treatment.

  5. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, Elena; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Cabot, Pere-Lluis; Arias, Conchita; Centellas, Francesc [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric, E-mail: brillas@ub.ed [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-02-15

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na{sub 2}SO{sub 4} of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H{sub 2}O{sub 2} (AO-H{sub 2}O{sub 2}), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H{sub 2}O{sub 2} from O{sub 2} reduction. In EF, PEF and SPEF, hydroxyl radical (centre dotOH) is formed from Fenton's reaction between added catalytic Fe{sup 2+} and generated H{sub 2}O{sub 2}. Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with centre dotOH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since centre dotOH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H{sub 2}O{sub 2} with BDD yields the poorest mineralization because pollutants are only removed with centre dotOH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of centre dotOH at its surface. Enrofloxacin

  6. Heterogeneous advanced photo-fenton oxidation of phenolic aqueous solutions over iron-containing SBA-15 catalyst

    Directory of Open Access Journals (Sweden)

    Bailiche Z.

    2013-09-01

    Full Text Available Iron-containing SBA15 catalysts have been prepared following different synthesisroutes, direct synthesis by adjusting pH at 3 and 6 and with post synthesis procedure. Activity and stability of these materials were assessed on the photo-Fenton degradation of phenolic aqueous solutions by H2O2 using near UV irradiation (254 nm at room temperature and initial neutral pH. Their catalytic performance was mentioned in terms of phenol and total organic carbon (TOC conversions. Several complementary techniques, including XRD, Nitrogen sorption isotherms, UV visible, were used to evaluate the final structural and textural properties of calcined Fe-SBA15 materials. These materials show a high activity and stability of iron species.

  7. Remediação de solos contaminados por processos fenton: uma revisão crítica

    Directory of Open Access Journals (Sweden)

    Alecsandra dos Santos

    Full Text Available The remediation of contaminated soils is probably one of the biggest environmental challenges, mainly due to the complex dynamics of the pollutants in this medium. Among a variety of treatment alternatives proposed for the in-situ remediation of contaminated soils, Fenton processes appear as the most cost-effective, particularly when catalyzed by native iron oxides. However, both the efficiency of the Fenton process and its effect on the treated soil, are largely dependent of the treatment conditions and the main characteristics of the soil, which implies the nonexistence of universal procedures. In this work, the use of Fenton processes in soil remediation routines is critically evaluated, emphasizing aspects related to the degradation efficiency, the influence of the soil properties, the degradation mechanisms and the impacts on the treated soil.

  8. Hydroxyl radical production by a heterogeneous Fenton reaction supported in insoluble tannin from bark of Pinus radiata.

    Science.gov (United States)

    Romero, Romina; Contreras, David; Segura, Cristina; Schwederski, Brigitte; Kaim, Wolfgang

    2017-03-01

    Fenton reactions driven by dihydroxybenzenes (DHBs) have been used for pollutant removal via advanced oxidation processes (AOPs), but such systems have the disadvantage of DHB release into the aqueous phase. In this work, insoluble tannins from bark can be used to drive Fenton reactions and as a heterogeneous support. This avoids the release of DHBs into the aqueous phase and can be used for AOPs. The production of ·OH was investigated using a spin-trapping electron paramagnetic resonance technique (5-dimethyl-1-pyrroline-N-oxide/·OH) in the first minute of the reaction and a high-performance liquid chromatography-fluorescence technique (coumarin/7-hydroxycoumarin) for 20 min. The ·OH yield achieved using insoluble tannins from Pinus radiata bark was higher than that achieved using catechin to drive the Fenton reaction. The Fenton-like system driven by insoluble tannins achieved 92.6 ± 0.3 % degradation of atrazine in 30 min. The degradation kinetics of atrazine was linearly correlated with ·OH production. The increased reactivity in ·OH production and insolubility of the ligand are promising for the development of a new technique for degradation of pollutants in wastewater using heterogeneous Fenton systems.

  9. Environmental assessment of different advanced oxidation processes applied to a bleaching Kraft mill effluent.

    Science.gov (United States)

    Muñoz, Iván; Rieradevall, Joan; Torrades, Francesc; Peral, José; Domènech, Xavier

    2006-01-01

    Different advanced oxidation processes (AOPs) have been applied to remove the organic carbon content of a paper mill effluent originating from the Kraft pulp bleaching process. The considered AOPs were: TiO(2)-mediated heterogeneous photocatalysis, TiO(2)-mediated heterogeneous photocatalysis assisted with H(2)O(2), TiO(2)-mediated heterogeneous photocatalysis coupled with Fenton, photo-Fenton, ozonation and ozonation with UV-A light irradiation. The application of the selected AOPs all resulted in a considerable decrease in dissolved organic carbon (DOC) content with variable treatment efficiencies depending upon the nature/type of the applied AOP. A Life Cycle Assessment (LCA) study was used as a tool to compare the different AOPs in terms of their environmental impact. Heterogeneous photocatalysis coupled with the Fenton's reagent proved to have the lowest environmental impact accompanied with a moderate-to-high DOC removal rate. On the other hand, heterogeneous photocatalysis appeared to be the worst AOP both in terms of DOC abatement rate and environmental impact. For the studied AOPs, LCA has indicated that the environmental impact was attributable to the high electrical energy (power) consumption necessary to run a UV-A lamp or to produce ozone.

  10. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment.

    Science.gov (United States)

    Zhang, He; Xue, Gang; Chen, Hong; Li, Xiang

    2018-01-01

    To solve sludge disposal and management problems during dyeing wastewater treatment, the produced excess biological sludge and ferric sludge were fabricated into a magnetic biochar composite (MBC) under the optimal hydrothermal carbonization (HTC) conditions. With ferric sludge mixing, the generated MBC contained paramagnetic Fe 3 O 4 , showed a smaller diameter of approximately 200 nm, a smaller pore size, a larger specific surface area and a higher carbonization degree than BC prepared using a single biological sludge process under the same HTC conditions. Additionally, biochar and Fe 3 O 4 in the MBC were found to be tightly combined through chemical bonding, imparting MBC with its own property of magnetic recycling. The stable high Methylene Blue (MB) degradation performance in a Fenton reaction after recycling designated it as a good catalyst. The MB degradation pathway was proposed based on GC-MS results. When the MBC was used to treat actual dyeing wastewater through a Fenton process, the chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies reached 47 ± 3.3% and 49 ± 2.7%, respectively. Therefore, MBC could be recycled as a catalyst in dyeing wastewater treatment. And a methodology is described that minimizes the produced sludge and enables sludge internal recycling in a dyeing wastewater treatment plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    OpenAIRE

    Cheng, Gong; Lin, Jing; Lu, Jian; Zhao, Xi; Cai, Zhengqing; Fu, Jie

    2015-01-01

    The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well desc...

  12. Oxidation process of cadmium sulfide

    International Nuclear Information System (INIS)

    Hashimoto, Koshiro; Toda, Yoshitomo; Sato, Takayori

    1977-01-01

    Complicated thermogravimetric curve was observed on oxidation process of cadmium sulfide precipitate in air. Phases of various oxidation stage were identified by X-ray diffraction method. Cadmium sulfide was first oxidized to cadmium oxide at 400 0 C, while the successive reaction with sulfur dioxide and oxygen gases gave rise to cadmium sulfate. The phases such as 2 CdS. CdSO 4 , Cd 3 SO 6 and β-CdSO 4 appeared during the oxidation process up to 1100 0 C, at which all the particles were converted into cadmium oxide at 1100 0 C. Cadmium sulfide kept in nitrogen gas above 700 0 C was directly converted into cadmium oxide when oxygen gas was introduced into the furnace. (auth.)

  13. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Mark Daniel G. de [Department of Chemical Engineering, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Environmental Engineering Graduate Program, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Veciana, Mersabel L. [Environmental Engineering Graduate Program, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Su, Chia-Chi [Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China); Lu, Ming-Chun, E-mail: mmclu@mail.chan.edu.tw [Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer The electro-Fenton reactor using a double cathode electrochemical cell was applied. Black-Right-Pointing-Pointer The initial Fe{sup 2+} concentration was the most significant parameter for the acetaminophen degradation. Black-Right-Pointing-Pointer Thirteen intermediates were identified and a degradation pathway was proposed. - Abstract: Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box-Behnken design was used to determine the effects of initial Fe{sup 2+} and H{sub 2}O{sub 2} concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe{sup 2+} concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed.

  14. Electrochemical advanced oxidation processes for Staphylococcus aureus disinfection in municipal WWTP effluents.

    Science.gov (United States)

    Valero, Pilar; Verbel, Martha; Silva-Agredo, Javier; Mosteo, Rosa; Ormad, Maria P; Torres-Palma, Ricardo A

    2017-08-01

    This paper presents the Staphylococcus aureus inactivation in a simulated wastewater treatment plant effluent by different electrochemical techniques, including the photo-electro-Fenton process. S. aureus, dissolved organic carbon (DOC), total oxidants and H 2 O 2 concentrations, as well as pH, were monitored during the assays. An electrolytic cell, including a UVA lamp, a gas diffusion electrode (GDE) as cathode and an IrO 2 anode, was used to conduct the experiments under galvanostatic conditions (20 mA). Low inactivation (-0.4) and low DOC removal were achieved within 120 min when applying the GDE-IrO 2 system, in which bacteria disinfection was caused by the generated H 2 O 2 . When light was combined with GDE-IrO 2 , the process efficiency noticeably increased (-3.7 log inactivation) due to the synergistic effect between UVA and H 2 O 2 . Introducing iron (5 mg L -1 Fe 2+ ) into the system also produced higher disinfection and DOC mineralization. The electro-Fenton process (GDE-IrO 2 +Fe 2+ ) led to a bacterial reduction of -0.9 log units and DOC reduction of 14%, while with the photo-electro-Fenton process (GDE-IrO 2 +UVA + Fe 2+ ) -5.2 units of bacteria and 26% of DOC were removed. Increasing the current intensity (20 mA, 30 mA and 40 mA) in the photo-electro-Fenton system increased H 2 O 2 production and, consequently, augmented the bacterial inactivation (-5.2 log, -6.2 log and -6.5 log, respectively). However, mineralization extent slightly increased or remained practically the same. When comparing the influence of Fe 2+ and Fe 3+ on photo-electro-Fenton, similar S. aureus inactivation was observed, while DOC removal was higher with Fe 2+ (31%) than with Fe 3+ (19%). Finally, by testing the system with a Ti anode, the direct anodic oxidation contribution of the IrO 2 anode was identified as negligible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Oxalate enhanced degradation of Orange II in heterogeneous UV-Fenton system catalyzed by Fe3O4@γ-Fe2O3composite.

    Science.gov (United States)

    Dai, Huiwang; Xu, Shuying; Chen, Jianxin; Miao, Xiaozeng; Zhu, Jianxi

    2018-05-01

    Oxalate enhanced mechanism of Fe 3 O 4 @γ-Fe 2 O 3 was developed to provide novel insight into catalytic process regulation of iron oxide catalysts in heterogeneous UV-Fenton system. And the iron oxide composite of Fe 3 O 4 @γ-Fe 2 O 3 was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FTIR) spectroscopy and nitrogen adsorption-desorption isotherms. The results showed that large amount of iron could be leached from catalyst in the presence of oxalate, which promoted the homogeneous UV-Fenton reactions in solution. Orange II degradation could be significantly enhanced with the increase of the ratio of homogeneous UV-Fenton process to heterogeneous UV-Fenton process. The optimum concentration of oxalate determined by experiment was 0.5 mM in oxalate enhanced heterogeneous UV-Fenton system. On this condition, the pseudo-first-order rate constant value of Orange II degradation was 0.314 min -1 , which was 2.3 times as high as that in heterogeneous UV-Fenton system. The removal rates of color and TOC were 100% and 86.6% after 20 min and 120 min treatment, respectively. In addition, the iron ions in solution could be almost completely adsorbed back to the catalyst surface in later degradation stages of Orange II. During the recycle experiments, the results showed that the increase of pH in solution and the sorption of intermediates on the catalyst surface would hinder oxalate enhanced process and lead to a decrease of degradation rate of Orange II in oxalate enhanced heterogeneous UV-Fenton system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Potencial de aplicação do processo foto-fenton/solar como pré-tratamento de efluente da indústria de laticínios Potential application of solar/photo-fenton process for the pre-treatment of wastewater from dairy industry

    Directory of Open Access Journals (Sweden)

    Ricardo Dalla Villa

    2007-01-01

    Full Text Available Dairy wastewater is characterized by frequent episodes of drastic increases of organic content, giving rise to bulking filamentous bacteria and compromising the biological treatment process. This study reports the reduction of organic content of such wastewater by the application of the solar photo-Fenton process. For a wastewater containing 335, 2627 or 5400 mg C L-1 between 90% and 50% of the organic carbon content were removed after 3.5 h irradiation. The results show that the solar photo-Fenton process can be a good alternative for the abatement of organic content of dairy wastewater, especially in cases of organic content fluctuation, allowing an efficient biological treatment.

  17. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    Science.gov (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total dissolved polyphenols content of 0.35 mg caffeic acid equivalent L(-1) was found. Respirometry tests revealed low biodegradability enhancement along the SPEF process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    Science.gov (United States)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  19. Sistema de injeção em fluxo espectrofotométrico para monitorar peróxido de hidrogênio em processo de fotodegradação por reação foto-Fenton Flow injection spectrophotometric system for hydrogen peroxide monitoring in photo-Fenton degradation processes

    Directory of Open Access Journals (Sweden)

    Mirela C. Oliveira

    2001-04-01

    Full Text Available A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV. Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.

  20. Treatment of olive oil mill wastewater by single electrocoagulation with different electrodes and sequential electrocoagulation/electrochemical Fenton-based processes.

    Science.gov (United States)

    Flores, Nelly; Brillas, Enric; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Garrido, José Antonio; Sirés, Ignasi

    2018-04-05

    The treatment of olive oil mill wastewater (OOMW) by novel sequential processes involving electrocoagulation (EC) followed by electro-Fenton (EF) or photoelectro-Fenton (PEF) under UVA irradiation has been studied using a boron-doped diamond anode and an air-diffusion cathode for H 2 O 2 electrogeneration. Their performance was monitored from the removal of total organic carbon (TOC), chemical oxygen demand, turbidity, total solids and total nitrogen, as well as from the energy consumption. Preliminary EC assays were performed with one pair of electrodes made of Al, Fe, AISI 304 or AISI 316L. The Fe/Fe cell showed the best performance, yielding 40% TOC decay in 20 min. Subsequent EF or PEF at natural pH 7.2 performed similarly, whereas PEF became superior at pH 3.0 due to the action of UVA photons. Comparison between EC/PEF and single EF or PEF at pH 3.0 and 25 mA cm -2 with 0.50 mM Fe 2+ revealed the positive outcome of the sequential process, attaining 97.1% TOC abatement after 600 min. GC-MS analysis of the raw wastewater allowed identifying 18 cyclic and 27 aliphatic compounds, most of which could not be removed by EC. The final solutions in EC/EF and EC/PEF contained a large plethora of persistent long-chain aliphatic acids and alkanes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Tantalum (oxy)nitrides nanotube arrays for the degradation of atrazine in vis-Fenton-like process.

    Science.gov (United States)

    Du, Yingxun; Zhao, Lu; Chang, Yuguang; Su, Yaling

    2012-07-30

    In order to overcome the limitation of the application of nanoparticles, tantalum (oxy)nitrides nanotube arrays on a Ta foil were synthesized and introduced in vis (visible light)-Fenton-like system to enhance the degradation of atrazine. At first, the anodization of tantalum foil in a mild electrolyte solution containing ethylene glycol and water (v:v=2:1) plus 0.5wt.% NH(4)F produced tantala nanotubes with an average diameter of 30nm and a length of approximately 1μm. Then the nitridation of tantala nanotube arrays resulted in the replacement of N atoms to O atoms to form tantalum (oxy)nitrides (TaON and Ta(3)N(5)), as testified by XRD and XPS analyses. The synthesized tantalum (oxy)nitrides nanotubes absorb well in the visible region up to 600nm. Under visible light, tantalum (oxy)nitrides nanotube arrays were catalytically active for Fe(3+) reduction. With tantalum (oxy)nitrides nanotube arrays, the degradation of atrazine and the formation of the intermediates in vis/Fe(3+)/H(2)O(2) system were significantly accelerated. This was explained by the higher concentration of Fe(2+) and thus the faster decomposition of H(2)O(2) with tantalum (oxy)nitrides nanotubes. In addition, tantalum (oxy)nitrides nanotubes exhibited stable performance during atrazine degradation for three runs. The good performance and stability of the tantalum (oxy)nitrides nanotubes film with the convenient separation, suggest that this film is a promising catalyst for vis-Fenton-like degradation. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Removal of azo dye C.I. acid red 14 from contaminated water using Fenton, UV/H(2)O(2), UV/H(2)O(2)/Fe(II), UV/H(2)O(2)/Fe(III) and UV/H(2)O(2)/Fe(III)/oxalate processes: a comparative study.

    Science.gov (United States)

    Daneshvar, N; Khataee, A R

    2006-01-01

    The decolorization of the solution containing a common textile and leather dye, C.I. Acid Red 14 (AR14), at pH 3 by hydrogen peroxide photolysis, Fenton, Fenton-like and photo-Fenton processes was studied. The dark and light reactions were carried out in stirred batch photoreactor equipped with an UV-C lamp (30 W) as UV light source. The experiments showed that the dye was resistant to the UV illumination, but was oxidized when one of Fe(II), Fe(III) and H(2)O(2) compounds was present. It was also found that UV light irradiation can accelerate significantly the rate of AR14 decolorization in the presence of Fe(III)/H(2)O(2) or Fe(II)/H(2)O(2), comparing to that in the dark. The effect of different system variables like initial concentration of the azo dye, effect of UV light irradiation, initial concentration of Fe(II) or Fe(III) and added oxalate ion has been investigated. The results showed that the decolorization efficiency of AR14 at the reaction time of 2 min follows the decreasing order: UV/H(2)O(2)/Fe(III)/oxalate > UV/H(2)O(2)/Fe(III) > UV/H(2)O(2)/Fe(II) > UV/H(2)O(2). Our results also showed that the UV/H(2)O(2)/Fe(III)/oxalate process was appropriate as the effective treatment method for decolorization of a real dyeing and finishing. The mechanism for each process is also discussed and linked together for understanding the observed differences in reactivity.

  3. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    Science.gov (United States)

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A microbial electro-fenton cell for removing carbamazepine in wastewater with electricity output.

    Science.gov (United States)

    Wang, Wei; Lu, Yaobin; Luo, Haiping; Liu, Guangli; Zhang, Renduo; Jin, Song

    2018-03-27

    High electrical energy is required for the electro-Fenton process to remove pharmaceuticals and personal care products (PPCPs) in wastewater. The aim of this study was to develop a novel and more cost-effective process, specifically a microbial electro-Fenton cell (MeFC), for treating PPCPs in wastewater. Acetylene black was selected as the catalyst for H 2 O 2 electrogeneration and Fe-Mn binary oxide for hydroxyl radical production. In addition to lowering energy needs, the MeFC produced a maximum power density of 112 ± 11 mW/m 2 with 1 g/L acetate as a representative substrate and 10 mg/L carbamazepine (CBZ) as a typical PPCP. Comparing with electro-Fenton process, the CBZ removal in the MeFC was 38% higher within 24 h operation (90% vs. 62%). Furthermore, the CBZ removal rate in the MeFC was 10-100 times faster than that in other biological treatment processes. Such enhanced degradation of CBZ in the MeFC was attributed to the synergistic reactions between radical oxidation of CBZ and biodegradation of degradative intermediates. The MeFC provides a promising method to remove PPCPs from wastewater coupling with efficient removal of other biodegradable organics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.

    Science.gov (United States)

    Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan

    2013-12-01

    The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Phenolic Content of Hypodaphnis Zenkeri and Its Antioxidant Effects against Fenton Reactions’ Mediated Oxidative Injuries on Liver Homogenate

    Directory of Open Access Journals (Sweden)

    Bruno Moukette Moukette

    2014-12-01

    Full Text Available Under oxidative stress conditions, endogenous antioxidant defenses are unable to completely inactivate the free radicals generated by an excessive production of reactive oxygen species (ROS. This state causes serious cell damage leading to a variety of human diseases. Natural antioxidants can protect cells against oxidative stress. Hypaodaphnis zenkeri (H. zenkiri is a plant consumed as a spice in the Cameroonian diet, and its bark has been used in traditional medicine for the treatment of several diseases. The present study aims at investigating the antioxidant activity, which includes free radical scavenging and protective properties of an extract from H. Zenkiri against oxidative damage on a liver homogenate. The free radical assays determined the scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH, hydroxyl (OH, nitrite oxide (NO and 2,2-azinobis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS radicals and the enzymes, whose protection was to be considered in the liver homogenate, including superoxide dismutase, catalase, and peroxidase. The antioxidative activities were studied using the ferric reducing antioxidant power (FRAP, reductive activity, and phosphomolybdenum antioxidant power (PAP methods. In addition, the phenolic contents of the extracts were examined. The results showed that these extracts demonstrated significant scavenging properties and antioxidant activities, with the hydro-ethanolic extract of the bark of H. zenkeri (EEH being the most potent. This extract had the highest total polyphenol (21.77 ± 0.05 mg caffeic acid (CAE/g dried extract (DE and flavonoids (3.34 ± 0.13 mg quercetin (QE/g dried extract content. The same extract had significantly greater protective effects on enzyme activities compared to other extracts. The high performance liquied chromatography (HPLC profile showed higher levels of caffeic acid, OH-tyrosol acid, and rutin in the leaves compared to the bark of H. zenkeri. In conclusion, the

  8. Advanced Heterogeneous Fenton Treatment of Coalbed Methane-Produced Water Containing Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2018-04-01

    Full Text Available This study investigated the heterogeneous Fenton treatment to process coalbed methane-produced water containing fracturing fluid and chose the development region of coalbed methane in the Southern Qinshui Basin as a research area. We synthesized the catalyst of Fe-Co/γ-Al2O3 by homogeneous precipitation method and characterized it by BET, XRD, SEM-EDS, FTIR, and XPS. Based on the degradation rate, we studied the influences of the heterogeneous Fenton method on the coalbed methane output water treatment process parameters, including initial pH, H2O2 concentration, and the catalyst concentration. We also investigated the impacts of overall reaction kinetics of heterogeneous catalytic oxidation on coalbed methane-produced water containing fracturing fluid. Results showed that Fe-Co/γ-Al2O3 as a Fenton catalyst has a good catalytic oxidation effect and can effectively process coalbed methane-produced water. This reaction also followed first-order kinetics. The optimal conditions were as follows: the initial pH of 3.5, a H2O2 concentration of 40 mol L−1, a catalyst concentration of 4 g/L, and an apparent reaction rate constant of 0.0172 min−1. Our results provided a basis to establish methods for treating coalbed methane-produced water.

  9. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

    Directory of Open Access Journals (Sweden)

    Carolina Gil-Lozano

    2014-06-01

    Full Text Available The Fenton reaction is the most widely used advanced oxidation process (AOP for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2 particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.

  10. Enhanced Fenton-like removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite.

    Science.gov (United States)

    Hu, Sihai; Wu, Yaoguo; Yao, Hairui; Lu, Cong; Zhang, Chengjun

    2016-01-01

    The efficiency of Fenton-like catalysis using nano zerovalent iron (nZVI) is limited by nZVI aggregation and activity loss due to inactive ferric oxide forming on the nZVI surface, which hinders electron transfer. A novel iron-carbon composite catalyst consisting of nZVI and granular activated carbon (GAC), which can undergo internal iron-carbon microelectrolysis spontaneously, was successfully fabricated by the adsorption-reduction method. The catalyst efficiency was evaluated in nitrobenzene (NB) removal via the Fenton-like process (H2O2-nZVI/GAC). The results showed that nZVI/GAC composite was good for dispersing nZVI on the surface of GAC, which permitted much better removal efficiency (93.0%) than nZVI (31.0%) or GAC (20.0%) alone. Moreover, iron leaching decreased from 1.28 to 0.58 mg/L after reaction of 240 min and the oxidation kinetic of the Fenton-like reaction can be described well by the second-order reaction kinetic model (R2=0.988). The composite catalyst showed sustainable catalytic ability and GAC performed as a medium for electron transfer in internal iron-carbon microelectrolysis to promote Fe2+ regeneration and Fe3+/Fe2+ cycles. Therefore, this study represents an important method to design a low cost and high efficiency Fenton-like catalyst in practical application.

  11. Performance Evaluation of Electro-Fenton Process (EFP in Removal of Hexavalent Chromium in the Presence of Cyanide, as an Interfering Agent, from Synthetic Wastewaters

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2014-06-01

    Full Text Available Background: Chromium (VI is a hazardous pollutant that enters into the environment through different industrial wastewater. Therefore, Choice a suitable method for removal of the pollutant before discharging into the environment is necessary. The aim of this work was performance evaluation of Electro-Fenton process (EFP in removal of hexavalent chromium in the presence of cyanide, as an interfering agent, from synthetic wastewaters. Methods: In this experimental study, a reactor with 1 L useful volume and 4 electrodes made ​​of iron was used. pH, initial concentration of  chromium (VI, voltage, hydrogen peroxide and cyanide concentration, as an interfering agent, were investigated in order to determine the process efficiency. Results: Results reveals that the considered parameters were affected on the efficiency of the process. In optimum condition, pH=3 and voltage=20 V, initial concentration=100 mg/L, concentration of hydrogen peroxide=50 mL/L the maximum efficiency was reached up to 97%. Cyanide Presence, in the same condition, reduced the efficiency under 50 % and also, the efficiency was decreased by changing the parameters level from optimum condition. Conclusion: Results indicate the proper efficiency of chromium (VI by EFP process; however presence of other pollutants such as cyanide can cause efficiency decrease which must be considered in the process application.

  12. Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate.

    Science.gov (United States)

    Ye, Zhihong; Zhang, Hui; Yang, Lin; Wu, Luxue; Qian, Yue; Geng, Jinyao; Chen, Mengmeng

    2016-12-05

    The effects of electrochemical oxidation (EO), Fered-Fenton and solar Fered-Fenton processes using a recirculation flow system containing an electrochemical cell and a solar photo-reactor on biochemically treated landfill leachate were investigated. The most successful method was solar Fered-Fenton which achieved 66.5% COD removal after 120min treatment utilizing the optimum operating conditions of 47mM H2O2, 0.29mM Fe(2+), pH0 of 3.0 and a current density of 60mA/cm(2). The generation of hydroxyl radicals (OH) are mainly from Fered-Fenton process, which is enhanced by the introduction of renewable solar energy. Moreover, Fe(2+)/chlorine and UV/chlorine processes taking place in this system also result in additional production of OH due to the relatively high concentration of chloride ions contained in the leachate. The energy consumption was 74.5kWh/kg COD and the current efficiency was 36.4% for 2h treatment. In addition, the molecular weight (MW) distribution analysis and PARAFAC analysis of excitation emission matrix (EEM) fluorescence spectroscopy for different leachate samples indicated that the organics in the leachate were significantly degraded into either small molecular weight species or inorganics. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods.

    Science.gov (United States)

    Giannakis, Stefanos; Gamarra Vives, Franco Alejandro; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2015-11-01

    In this study, wastewater from the output of three different secondary treatment facilities (Activated Sludge, Moving Bed Bioreactor and Coagulation-Flocculation) present in the municipal wastewater treatment plant of Vidy, Lausanne (Switzerland), was further treated with various oxidation processes (UV, UV/H2O2, solar irradiation, Fenton, solar photo-Fenton), at laboratory scale. For this assessment, 6 organic micropollutants in agreement with the new environmental legislation requirements in Switzerland were selected (Carbamazepine, Clarithromycin, Diclofenac, Metoprolol, Benzotriazole, Mecoprop) and monitored throughout the treatment. Also, the overall removal of the organic load was assessed. After each secondary treatment, the efficiency of the AOPs increased in the following order: Coagulation-Flocculation municipal wastewater subjected to biological treatment followed by UV/H2O2 resulted in the highest elimination levels. Wastewater previously treated by physicochemical treatment demonstrated considerably inhibited micropollutant degradation rates. The degradation kinetics were determined, yielding: k (UV) < k (UV/H2O2) and k (Fenton) < k (solar irradiation) < k (photo-Fenton). Finally, the evolution of global pollution parameters (COD & TOC elimination) was followed and the degradation pathways for the effluent organic matter are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    Science.gov (United States)

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  15. Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2for the degradation of cyclohexanoic acid.

    Science.gov (United States)

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2017-05-01

    The treatment of a naphthenic acid model compound, cyclohexanoic acid, with classical Fenton, UV-H 2 O 2 , UV-Fenton, nitrilotriacetic acid (NTA)-Fenton, UV-NTA-Fenton, and UV photolysis of Fe-NTA processes at pHs 3 and 8 was investigated. At 1.47 mM H 2 O 2 , 0.089 mM Fe, and 0.18 mM NTA, the UV-NTA-Fenton process at pH 3 exhibited the highest H 2 O 2 decomposition (100% in 25 min), CHA removal (100% in 12 min) with a rate constant of 0.27 ± 0.025 min -1 , and NTA degradation (100% in 6 min). Due to the formation of H 2 O 2 -Fe(III)NTA adduct, the total Fe concentration in the UV-NTA-Fenton system (0.063 mM at the end of the reaction) at pH 8 was much higher than that in the UV photolysis of Fe(III)NTA process (0.024 mM). The co-complexing effect of borate buffer helped to keep iron soluble; however, it imposed a negative influence on the CHA degradation in the UV-NTA-Fenton process (68% CHA removal in 60 min in the borate buffer compared to 92% in MilliQ water). The results demonstrated that the most efficient process for the CHA degradation under the experimental conditions was the UV-NTA-Fenton process at pH 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Degradation of direct yellow 9 by electro-Fenton: process study and optimization and, monitoring of treated water toxicity using catalase.

    Science.gov (United States)

    Kourdali, Sidali; Badis, Abdelmalek; Boucherit, Ahmed

    2014-12-01

    The present study was undertaken to investigate the degradation and removal of direct yellow 9 (DY9) by the electro-Fenton (EF) process in batch reactor using iron and stainless steel electrodes. DY9 removal decreased with the increase in pH (3 to 8) and increased with the increase in current intensity (0.05 to 0.2A) and [H2O2] (0 to 0.5gL(-1), but not with high doses which led to low rates of DY9 removal and OH(∙) uptake). The regression quadratic models describing DY9 degradation yield "R (percent)" and electrical energy consumption "EEC (kWhkg(-1))" were validated by the analysis of variance (ANOVA) and were both noted to fit well with the experimental data. The R(2) correlation coefficients (0.995, 0.978), those adjusted coefficients (0.986, 0.939), and F values (110.7, 24.9) obtained for the responses validated the efficiency of model. The results revealed that among several other parameters, EEC depended essentially on the degradation yield. The eco-toxicity tests showed a positive correlation between catalase activity and DY9 concentration, and catalase could be qualitatively identified to assess the effect of dye and its by-products generated during the EF process. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Pengolahan Limbah Cair Pabrik Pupuk Urea Menggunakan Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Darmadi Darmadi

    2014-06-01

    Full Text Available Limbah cair pabrik pupuk urea terdiri dari urea dan amonium yang masing-masing mempunyai konsentrasi berkisar antara 1500-10000 ppm dan 400-3000 ppm. Konsentrasi urea yang tinggi di dalam badan air dapat menyebabkan blooming algae dalam ekosistem tersebut yang dapat mengakibatkan kehidupan biota air lain terserang penyakit. Peristiwa ini terjadi karena kurangnya nutrisi bagi biota air dan sedikitnya sinar matahari yang dapat menembusi permukaan air. Disamping kedua hal tersebut di atas, algae juga dapat memproduksi senyawa beracun bagi biota air dan manusia. Penelitian ini bertujuan untuk mengolah urea menggunakan oksidasi konvensional (H2O2 dan Advanced Oxidation Processes (kombinasi H2O2-Fe2+ pada pH 5 dengan parameter yang digunakan adalah variasi konsen-trasi awal H2O2  dan konsentrasi Fe2+. Hasil percobaan menunjukkan bahwa penurunan konsentrasi urea tertinggi diperoleh pada penggunaan reagen fenton (8000 ppm H2O2 dan 500 ppm Fe2+, yaitu dapat menurunkan urea dari konsentrasi awal urea 2566,145 ppm menjadi 0 ppm. Kinetika reaksi dekomposisi urea menjadi amonium dan amonium menjadi nitrit dan nitrat yang diuji mengikuti laju kinetika reaksi orde 1 (satu terhadap urea dan orde satu terhadap amonium dengan konstanta laju reaksi masing-masing k1 = 0,019 dan k2 = 0,022 min-1.

  18. Investigations on the Synthesis and Properties of Fe2O3/Bi2O2CO3 in the Photocatalytic and Fenton-like Process

    Science.gov (United States)

    Sun, Dongxue; Shen, Tingting; Sun, Jing; Wang, Chen; Wang, Xikui

    2018-01-01

    Catalyst of Bi2O2CO3 and Fe2O3 modified Bi2O2CO3 (Fe2O3/Bi2O2CO3) were prepared by hydrothermal method and characterized by X-ray diffractions (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and UV-vis DRS. The catalytic activity of Bi2O2CO3 and Fe2O3/Bi2O2CO3 were comparatively investigated in the photodegradation and Fento-like process. Rhodamine B(RhB) was selected as the target pollutant under the irradiation of 300 W xenon lamp. The results indicated that Fe2O3 plays a great role in the enhancing the treatment efficiency and the and the maximum reaction rate was achieved at the Fe2O3 loading of 1.5%. The Fenton-like degradation rate constant of RhB with bare Bi2O2CO3 in dark is 0.4 min-1, while that with 1.5 Fe2O3/Bi2O2CO3 increases to 28.4 min-1 under visible light irradiation, a 71-fold improvement. It is expected to shed a new light for the constructing novel composite photocatalyst and also provide a potential method for the removal of dyes in the aqueous system.

  19. Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system.

    Science.gov (United States)

    Issa Hamoud, Houeida; Finqueneisel, Gisèle; Azambre, Bruno

    2017-06-15

    In this study, the removal of binary mixtures of dyes with similar (Orange II/Acid Green 25) or opposite charges (Orange II/Malachite Green) was investigated either by simple adsorption on ceria or by the heterogeneous Fenton reaction in presence of H 2 O 2 . First, the CeO 2 nanocatalyst with high specific surface area (269 m 2 /g) and small crystal size (5 nm) was characterized using XRD, Raman spectroscopy and N 2 physisorption at 77 K. The adsorption of single dyes was studied either from thermodynamic and kinetic viewpoints. It is shown that the adsorption of dyes on ceria surface is highly pH-dependent and followed a pseudo-second order kinetic model. Adsorption isotherms fit well the Langmuir model with a complete monolayer coverage and higher affinity towards Orange II at pH 3, compared to other dyes. For the (Orange II/Acid Green 25) mixture, both the amounts of dyes adsorbed on ceria surface and discoloration rates measured from Fenton experiments were decreased by comparison with single dyes. This is due to the adsorption competition existing onto the same surface Ce x+ sites and the reaction competition with hydroxyl radicals, respectively. The behavior of the (Orange II/Malachite Green) mixture is markedly different. Dyes with opposite charges undergo paired adsorption on ceria as well as homogeneous and heterogeneous coagulation/flocculation processes, but can also be removed by heterogeneous Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. New approach to solar photo-Fenton operation. Raceway ponds as tertiary treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Carra, Irene; Santos-Juanes, Lucas [Department of Chemical Engineering, University of Almería, 04120, Almería (Spain); CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería (Spain); Acién Fernández, Francisco Gabriel [Department of Chemical Engineering, University of Almería, 04120, Almería (Spain); Malato, Sixto [CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería (Spain); Plataforma Solar de Almería (CIEMAT), 04200, Tabernas, Almería (Spain); Sánchez Pérez, José Antonio, E-mail: jsanchez@ual.es [Department of Chemical Engineering, University of Almería, 04120, Almería (Spain); CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería (Spain)

    2014-08-30

    Graphical abstract: - Highlights: • Raceway ponds are used for the first time as photo-Fenton reactors. • Raceway ponds are effective and have high treatment capacity (48 mg/h m{sup 2} for 360 L). • The highest treatment capacity occurs with 5.5 mg Fe/L and 15 cm liquid depth. • Low iron concentrations are enough to oxidise the pesticide mixture. • Raceway ponds are a simple and low-cost alternative for micropollutant removal. - Abstract: The photo-Fenton process has proven its efficiency in the removal of micropollutants. However, the high costs usually associated with it prevent a spread of this technology. An important factor affecting costs is the kind of photoreactor used, usually tubular with a reflecting surface. Tubular reactors like compound parabolic collectors, CPCs, involve high capital costs. In comparison, the application of less costly reactors such as the extensive raceway ponds (RPRs) would help to spread the use of the photo-Fenton process as tertiary treatment at commercial scale. As far as the authors know, RPRs have never been used in advanced oxidation processes (AOPs) applications. This work is aimed at studying the applicability of RPRs to remove micropollutants with solar photo-Fenton. For this purpose, a pesticide mixture of commercial acetamiprid (ACTM) and thiabendazole (TBZ) (100 μg/L each) was used in simulated secondary effluent. Iron concentration (1, 5.5 and 10 mg/L) and liquid depth (5, 10 and 15 cm) were studied as process variables. TBZ was removed at the beginning of the treatment (less than 5 min), although ACTM removal times were longer (20–40 min for the highest iron concentrations). High treatment capacity per surface area was obtained (48 mg/h m{sup 2} with 5.5 mg Fe/L and 15 cm liquid depth), proving the feasibility of using RPRs for micropollutant removal.

  1. Application of Fenton's reagent as a pretreatment step in biological degradation of polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Kelley, R.L.; Gauger, W.K.; Srivastava, V.J.

    1991-01-01

    Fenton's reagent (H 2 O 2 and Fe ++ ) has been used for chemical oxidation of numerous organic compounds in water treatment schemes. In this study, the Institute of Gas Technology (IGT) applied Fenton's treatment to polynuclear aromatic hydrocarbons (PAHs) and PAH-contaminated soils. Fenton's treatment was very reactive with PAHs, causing rapid modification of the parental compounds to oxidized products and complete degradation to CO 2 . This treatment was more effective on chemically reactive PAHs, such as benzo(a)pyrene and phenanthrene. Important parameters and conditions for Fenton's treatment of PAHs in solution and soil matrices have been identified. As much as 99% of the PAHs on soil matrices can be removed by treatment with Fenton's reagent

  2. Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4Heterostructures under natural indoor light.

    Science.gov (United States)

    Yao, Yunjin; Wu, Guodong; Lu, Fang; Wang, Shaobin; Hu, Yi; Zhang, Jie; Huang, Wanzheng; Wei, Fengyu

    2016-11-01

    Low-cost catalysts with high activity and stability toward producing strongly oxidative species are extremely desirable, but their development still remains a big challenge. Here, we report a novel strategy for the synthesis of a magnetic CoFe 2 O 4 /C 3 N 4 hybrid via a simple self-assembly method. The CoFe 2 O 4 /C 3 N 4 was utilized as a photo-Fenton-like catalyst for degradation of organic dyes in the presence of H 2 O 2 under natural indoor light irradiation, a green and energy-saving approach for environmental cleaning. It was found the CoFe 2 O 4 /C 3 N 4 hybrid with a CoFe 2 O 4 : g-C 3 N 4 mass ratio of 2:1 can completely degrade Rhodamine B nearly 100 % within 210 min under room-light irradiation. The effects of the amount of H 2 O 2 (0.01-0.5 M), initial dye concentration (5-20 mg/L), solution pH (3.08-10.09), fulvic acid concentration (5-50 mg/L), different dyes and catalyst stability on the organic dye degradation were investigated. The introduction of CoFe 2 O 4 on g-C 3 N 4 produced an enhanced separation efficiency of photogenerated electron - hole pairs by a Z-scheme mechanism between the interfaces of g-C 3 N 4 and CoFe 2 O 4 , leading to an excellent activity as compared with either g-C 3 N 4 or CoFe 2 O 4 and their mixture. This study demonstrates an efficient way to construct the low-cost magnetic CoFe 2 O 4 /C 3 N 4 heterojunction as a typical Z-scheme system in environmental remediation.

  3. Electro-Fenton pretreatment for the improvement of tylosin biodegradability.

    Science.gov (United States)

    Ferrag-Siagh, Fatiha; Fourcade, Florence; Soutrel, Isabelle; Aït-Amar, Hamid; Djelal, Hayet; Amrane, Abdeltif

    2014-01-01

    The feasibility of an electro-Fenton process to treat tylosin (TYL), a non-biodegradable antibiotic, was examined in a discontinuous electrochemical cell with divided cathodic and anodic compartments. Only 15 min electrolysis was needed for total tylosin degradation using a carbon felt cathode and a platinum anode; while 6 h electrolysis was needed to achieve high oxidation and mineralization yields, 96 and 88 % respectively. Biodegradability improvement was shown since BOD₅/COD increased from 0 initially to 0.6 after 6 h electrolysis (for 100 mg L(-1) initial TYL). With the aim of combining electro-Fenton with a biological treatment, an oxidation time in the range 2 to 4 h has been however considered. Results of AOS (average oxidation state) and COD/TOC suggested that the pretreatment could be stopped after 2 h rather than 4 h; while in the same time, the increase of biodegradability between 2 and 4 h suggested that this latter duration seemed more appropriate. In order to conclude, biological cultures have been therefore carried out for various electrolysis times. TYL solutions electrolyzed during 2 and 4 h were then treated with activated sludge during 25 days, showing 57 and 67% total organic carbon (TOC) removal, respectively, namely 77 and 88% overall TOC removal if both processes were considered. Activated sludge cultures appeared, therefore, in agreement with the assessment made from the analysis of physico-chemical parameters (AOS and COD/TOC), since the gain in terms of mineralization expected from increasing electrolysis duration appeared too low to balance the additional energy consumption.

  4. Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV-Fenton and identification of reactive oxygen species

    DEFF Research Database (Denmark)

    Li, Weiguang; Wang, Yong; Angelidaki, Irini

    2014-01-01

    This laboratory scale batch study examined catechol oxidation by UV-Fenton with commercial nanosized Fe3O4 as catalyst, focusing on influence of initial pH and H2O2 dosage on oxidation efficiency (represented by COD removal) and H2O2 utilization efficiency. In a wide initial pH range (2...... and then increased, which was ascribed to the formation and destruction of some carboxylic acids. During the degradation, formic acid, acetic acid, oxalic acid, and maleic acid were detected. The values of H2O2 utilization efficiency at 240min near 1.30 in reactions with 11.80mM H2O2 under initial pH from 5.0 to 8.......0 indicated this process would consume 23% less H2O2 dosage than the theoretical value for obtaining the same oxidation efficiency. Increasing H2O2 dosage accelerated catechol oxidation rate, but decreased the H2O2 utilization efficiency when H2O2 dosage enhanced from 0.50×δH2O2 (δH2O2: theoretical H2O2...

  5. Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst.

    Science.gov (United States)

    Jinisha, R; Gandhimathi, R; Ramesh, S T; Nidheesh, P V; Velmathi, S

    2018-06-01

    In the current study, Rhodamine B (RhB) dye was removed by electro-Fenton (EF) process using iron-doped SBA-15 (Fe-SBA-15; SBA: Santa Barbara Amorphous) mesoporous silica as a heterogeneous catalyst. This catalyst was prepared with the help of ferric nitrate nonahydrate as a forerunner by wet impregnation method. Various techniques of characterization such as XRD and N 2 adsorption-desorption isotherms were performed to confirm the presence of iron particles in the pores of the catalyst. These characterization methods were also used to examine the morphological properties and textural arrangement of the synthesized material. In the batch study of EF process, 750 mL working volume of RhB dye was taken. Anode and cathode used in the process were graphite electrodes respectively with effective area of 25 cm 2 each. To maximise the process efficiency, the effect of initial pH, applied voltage, electrode spacing, the concentration of supporting electrolyte and Fe-SBA-15 dosage were investigated and optimized. The optimum conditions obtained were pH of 2, voltage of 8 V, an electrode spacing of 3 cm and Fe-SBA-15 dosage of 15 mg L -1 . At the end of 3 h electrolysis, maximum RhB removal of 97.7% and TOC removal of 35.1% were achieved for 10 mg L -1 RhB concentration. In a batch study with real wastewater, 97% of color and 39% of TOC were removed at optimum conditions. Utilization of EF heterogeneous catalyst Fe-SBA-15 is an alternative technique for the elimination of dyes from solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Impact of the Fenton process in meat digestion as assessed using an in vitro gastro-intestinal model.

    Science.gov (United States)

    Oueslati, Khaled; de La Pomélie, Diane; Santé-Lhoutellier, Véronique; Gatellier, Philippe

    2016-10-15

    The production of oxygen free radicals catalysed by non-haem iron was investigated in an in vitro mimetic model of the digestive tract using specific chemical traps. Superoxide radicals (O2(∗-)) and their protonated form (hydroperoxyl radicals, HO2(∗)) were detected by the reduction of nitroblue tetrazolium into formazan, and hydroxyl radicals (OH(∗)) were detected by the hydroxylation of terephthalate. Under gastric conditions, O2(∗-)/HO2(∗) were detected in higher quantity than OH(∗). Increasing the pH from 3.5 to 6.5 poorly affected the kinetics of free radical production. The oxidations generated by these free radicals were estimated on myofibrils prepared from pork rectus femoris muscle. Myofibrillar lipid and protein oxidation increased with time and oxidant concentration, with a negative impact on the digestibility of myofibrillar proteins. Plant food antioxidants considerably decreased free radical production and lipid oxidation but not protein oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Remediation of polluted soils contaminated with Linear Alkyl Benzenes using Fenton's reagent

    Directory of Open Access Journals (Sweden)

    Douglas do Nascimento Silva

    2005-06-01

    Full Text Available Linear Alkyl Benzenes (LABs are used as insulating oil for electric cables. When it happens a spill, LABs they are basically sorbed in the soil, because, these compounds have high hidrophobicity and low vapor pressure. The conventional methods of treatment of soils are not efficient. The Fenton's reaction (reaction between a solution of iron II and hydrogen peroxide it generates hydroxyl radicals, not selective, and capable of oxidize a great variety of organic compounds. A study was conducted to evaluate the viability of use of the Fenton's reagents to promote the remediation of polluted soils with Linear Alkyl Benzenes. A column was especially projected for these experiments, packed with a sandy and other soil loamy. The pH of the soil was not altered. The obtained results demonstrated the technical viability of the process of injection of the Fenton's reagents for the treatment of polluted areas with LABs.Os Linear Alquilbenzenos (LABs são usados como fluido refrigerante de cabos elétricos. Quando ocorre um vazamento, os LABs ficam basicamente adsorvidos no solo, pois, são compostos bastante hidrofóbicos e com baixa pressão de vapor. Os métodos convencionais de tratamento de solos não são eficientes. A reação de Fenton (solução de ferro II e peróxido de hidrogênio gera radicais hidroxila, não seletivos, e capazes de oxidar uma grande variedade de compostos orgânicos, chegando a mineralização dos mesmos. Neste trabalho foi estudada a viabilidade de utilização dos reagentes de Fenton para promover a remediação de solos contaminados com LABs. Utilizou-se uma coluna especialmente projetada para estes experimentos, empacotada com um solo arenoso e outro argiloso. O pH do solo não foi alterado. Os resultados obtidos demonstram a viabilidade técnica do processo de injeção dos reagentes de Fenton para o tratamento de áreas contaminadas com LABs.

  8. Chitosan/Fe spheres on the blue QR-19 dye degradation by photo Fenton processes using artificial or solar light; Esferas de quitosana/Fe na degradacao do corante azul QR-19 por processos foto-Fenton utilizando luz artificial ou solar

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Kely V. de; Zamora, Patricio G.P.; Zawadzki, Sonia F. [Universidade Federal do Parana (DQ/UFPR), Curitiba, PR (Brazil). Dept. de Quimica], E-mail: zawadzki@quimica.ufpr.br

    2010-07-15

    The contamination of water resources is one of the greatest environmental problems today. Among the polluting sources are the textile industries due to the production of large volumes of effluent, often treated inefficiently. The main reason for the environmental impact of the rejected materials is the presence of dyes such as azo reactive compounds that can generate by-products with carcinogenic and mutagenic effects. They may also include anthraquinone type compounds, which are highly resistant to degradation and persist in the effluent for a long time. The purpose of this study is the use of photo-Fenton processes assisted by artificial or solar light, using immobilized iron on chitosan beads, crosslinked with glutaraldehyde, for the anthraquinone type compound Blue QR-19 standard dye degradation in aqueous solutions. The obtained spheres showed a regular size and 4.0 mm diameter. The results showed 90% discoloration of the system within 180 minutes and a 60% total organic carbon (TOC)reduction for the photo-Fenton system using artificial light. For the system using sunlight, the total discoloration was achieved in 120 minutes and the TOC value decreased 70%. Also observed was that iron remained in the polymeric matrix after the treatment, thus allowing reuse. (author)

  9. Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis.

    Science.gov (United States)

    Colombo, Renata; Ferreira, Tanare C R; Ferreira, Renato A; Lanza, Marcos R V

    2016-02-01

    Mefenamic acid (MEF) is a non-steroidal anti-inflammatory drug indicated for relief of mild to moderate pain, and for the treatment of primary dysmenorrhea. The presence of MEF in raw and sewage waters has been detected worldwide at concentrations exceeding the predicted no-effect concentration. In this study, using experimental designs, different oxidative processes (H2O2, H2O2/UV, fenton and Photo-fenton) were simultaneously evaluated for MEF degradation efficiency. The influence and interaction effects of the most important variables in the oxidative process (concentration and addition mode of hydrogen peroxide, concentration and type of catalyst, pH, reaction period and presence/absence of light) were investigated. The parameters were determined based on the maximum efficiency to save time and minimize the consumption of reagents. According to the results, the photo-Fenton process is the best procedure to remove the drug from water. A reaction mixture containing 1.005 mmol L(-1) of ferrioxalate and 17.5 mmol L(-1) of hydrogen peroxide, added at the initial reaction period, pH of 6.1 and 60 min of degradation indicated the most efficient degradation, promoting 95% of MEF removal. The development and validation of a rapid and efficient qualitative and quantitative HPLC/UV methodology for detecting this pollutant in aqueous solution is also reported. The method can be applied in water quality control that is generated and/or treated in municipal or industrial wastewater treatment plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe{sup 0}/air treatment: THMFP and biotoxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ming-Chi [Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC (China); Wang, Kai-sung; Hsiao, Tung-En; Lin, I.-Chen; Wu, Hui-Ju [Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan, ROC (China); Wu, Yuh-Luan; Liu, Pey-Horng [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Taiwan, ROC (China); Chang, Shih-Hsien, E-mail: shchang@csmu.edu.tw [Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan, ROC (China); Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC (China)

    2011-11-15

    Highlights: {yields} Fe{sup 0}/air rapidly and effectively removed HA within 9 min and its COD, biotoxicity and THMFP were low. {yields} THMFP of ozonation-treated solution was much higher than those of Fenton-treated and Fe{sup 0}/air-treated solutions. {yields} UV irradiation during ozonation and Fenton oxidation enhanced HA removal, but did not reduce the THMFP of the treated solutions. {yields} Fe{sup 0}/air treatment with UV irradiation obviously increased the THMFP of the treated solution. {yields} The relationship between biotoxicity and chloroform in the chlorinated solution was insignificant. - Abstract: Effects of UV irradiation on humic acid (HA) removal by Fe{sup 0}/air, ozonation and Fenton oxidation were investigated. The trihalomethane forming potential (THMFP) and toxicity of treated solutions were also evaluated. The experimental conditions were ozone of 21 mg min{sup -1}, H{sub 2}O{sub 2} of 8 x 10{sup -4} M, Fe{sup 0} of 20 g L{sup -1}, air flow of 5 L min{sup -1}, and UVC of 9 W. Results indicated that Fe{sup 0}/air rapidly removed HA color (>99%) and COD (90%) within 9 min. 51-81% of color and 43-50% of COD were removed by ozonation and Fenton oxidation after 60 min. Both UV enhanced ozone and Fenton oxidation removed HA, but the Fe{sup 0}/air process did not. Spectrum results showed all processes effectively diminished UV-vis spectra, except for ozonation. The THMFP of Fe{sup 0}/air-treated solution (114 {mu}g L{sup -1}) was much lower than those of Fenton- (226 {mu}g L{sup -1}) and ozonation-treated solutions (499 {mu}g L{sup -1}). Fe{sup 0}/air with UV irradiation obviously increased the THMFP of treated solution (502 {mu}g L{sup -1}). The toxicity results obtained from Vibrio fischeri light inhibition test indicated that the toxicity of Fe{sup 0}/air-treated solution (5%) was much lower than that of ozonation- (33%) and Fenton-treated solutions (31%). Chlorination increased the solution toxicity. The correlation between biotoxicity and

  11. Oxidation catalysts and process for preparing same

    International Nuclear Information System (INIS)

    1980-01-01

    Compounds particularly suitable as oxidation catalysis are described, comprising specified amounts of uranium, antimony and tin as oxides. Processes for making and using the catalysts are described. (U.K.)

  12. Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2.

    Science.gov (United States)

    Santos, Lucilaine Valéria de Souza; Meireles, Alexandre Moreira; Lange, Liséte Celina

    2015-05-01

    This study aimed to evaluate the degradation of the antibiotic norfloxacin, using direct photolysis (UV), photolysis with hydrogen peroxide (UV/H2O2) and Fenton's oxidation processes. Initially, it was evaluated the behavior of the antibiotic norfloxacin on direct photolysis, in order to see if the process could be a pertinent way to eliminate the drug in water treatment stations. The results showed that the use of direct photolysis was not effective in the degradation of the antibiotic, reaching a degradation rate of 85% and a mineralization rate of 2% in 7 h of reaction; leading to the formation of intermediates products. To optimize the UV treatment, it was used the combined UV/H2O2 process. Several concentrations of hydrogen peroxide (0.7, 1.4, 2.1, 2.8, 3.5 and 4.2 mmol/L) at pH 7 were tested. The concentration of 2.1 mmol/L reached a degradation rate of 100% in 100 min of reaction. Based on this result, the speed of the reaction at pH 2, 3, 5, and 10 was evaluated for that same concentration of H2O2. The shortest reaction time (60 min) was verified at pH 2 and 3. For the treatment using Fenton oxidation, a degradation rate of 60% of the compound and a mineralization rate of 55% was obtained in 60 min. The study revealed that the Fenton oxidation and UV/H2O2 can be used for norfloxacin removal, reaching respectively degradation rates of 100% and 60%, and mineralization rates of 55% and 32%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Degradation of disperse azo dyes from waters by solar photoelectro-Fenton

    International Nuclear Information System (INIS)

    Salazar, Ricardo; Garcia-Segura, Sergi; Ureta-Zanartu, M.S.; Brillas, Enric

    2011-01-01

    Highlights: → Reactive azo dyes are almost totally mineralized by solar photoelectro-Fenton. → The process yields high current efficiencies and low energy consumptions. → It is more efficient and inexpensive by decreasing current and increasing dye content. → Nitrate ions are the main inorganic ions released during the mineralization process. → The process is also effective for the remediation of textile dyeing solutions. - Abstract: Solutions of the azo dyes Disperse Red 1 (DR1) and Disperse Yellow 3 (DY3), commonly used in the Chilean textile industry, in 0.1 mol dm -3 Na 2 SO 4 and 0.5 mmol dm -3 Fe 2+ of pH 3.0 were comparatively degraded by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF) using a 2.5 dm 3 recirculation flow plant containing a BDD/air-diffusion cell coupled with a solar photoreactor. Organics were oxidized in EF with hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between electrogenerated H 2 O 2 and added Fe 2+ . The oxidizing power of SPEF was enhanced by the additional production of hydroxyl radicals from the photolysis of Fe(III) hydrated species and the photodecomposition of Fe(III) complexes with intermediates by UV light of solar irradiation. Total decolorization, complete dye removal and almost overall mineralization for both dye solutions were only achieved using the most potent SPEF process, yielding higher current efficiencies and lower energy consumptions than EF. Final carboxylic acids like pyruvic, acetic, oxalic and oxamic were detected during the SPEF treatments. NO 3 - ion was released as inorganic ion. The use of a solution pH of 2.0-3.0 at 50 mA cm -2 was found preferable for SPEF. Synthetic textile dyeing solutions containing the dyes were treated under these conditions yielding lower decolorization rate, slower dye removal and smaller mineralization degree than only using 0.1 mol dm -3 Na 2 SO 4 due to the parallel oxidation of organic dyeing

  14. The fate of MtBE during Fenton-like treatments through laboratory scale column tests.

    Science.gov (United States)

    Piscitelli, Daniela; Zingaretti, Daniela; Verginelli, Iason; Gavasci, Renato; Baciocchi, Renato

    2015-12-01

    In Situ Chemical Oxidation (ISCO) based on the Fenton's process is a proven technology for the treatment of groundwater contaminated by organic compounds. Nevertheless, the application of this treatment process to methyl tert-butyl ether (MtBE) is questioned, as there are concerns about its capacity to achieve complete mineralization. Many existing studies have focused on water contaminated by MtBE and are thus not representative of in situ treatments since they do not consider the presence of soil. In this work, the effectiveness of a Fenton-like process for MtBE treatment was proven in soil column tests performed at operating conditions (i.e., oxidant and contaminant concentration and flow rates) resembling those typically used for in situ applications. No MtBE by-products were detected in any of the tested conditions, thus suggesting that the tert-butyl group of MtBE was completely degraded. A mass balance based on the CO2 produced was used as evidence that most of the MtBE removed was actually mineralized. Finally, the obtained results show that preconditioning of soil with a chelating agent (EDTA) significantly enhanced MtBE oxidation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Hsing, H.-J.; Chiang, P.-C.; Chang, E.-E.; Chen, M.-Y.

    2007-01-01

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO 2 , O 3 , O 3 /UV, O 3 /UV/TiO 2 , Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O 3 /UV and O 3 /UV/TiO 2 processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O 3 dose = 45 mg/L; (2) the optimum pH and ratio of [H 2 O 2 ]/[Fe 2+ ] found for the Fenton process, are pH 4 and [H 2 O 2 ]/[Fe 2+ ] = 6.58. The optimum [H 2 O 2 ] and [Fe 2+ ] under the same HF value are 58.82 and 8.93 mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80 V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O 3 3 /UV = O 3 /UV/TiO 2 3 = Fenton 3 /UV 3 /UV/TiO 2 for 30 min of reaction time

  16. Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH).

    Science.gov (United States)

    Zhang, Guangshan; Wang, Qiao; Zhang, Wen; Li, Tian; Yuan, Yixing; Wang, Peng

    2016-08-04

    This work investigated the effects of organic acids and initial solution pH on the photodegradation of BPA in a photo-Fenton-like process using α-FeOOH as a catalyst. The results showed that the addition of different organic acids affected the formation of the ferric-carboxylate complexes and free radicals, which in turn varied the photodegradation efficacy. Compared with the other acids, oxalic acid (OA) was found to be the most effective in enhancing the photodegradation of BPA, which strongly depends on the OA concentration. Particularly, the addition of OA could significantly extend the working pH from an acidic to a neutral range for the photocatalytic process and thus the acidification pretreatment may not be needed. A high photocatalytic degradation of BPA occurred at pH 6.0, due to the formation of ferric-oxalate complexes and ˙OH radicals in the synergistic interactions of OA and α-FeOOH. This finding highlights that the oxalate-promoted photo-Fenton-like process using the α-FeOOH catalyst may be used for wastewater treatment without pH adjustment.

  17. Depth treatment of coal-chemical engineering wastewater by a cost-effective sequential heterogeneous Fenton and biodegradation process.

    Science.gov (United States)

    Fang, Yili; Yin, Weizhao; Jiang, Yanbin; Ge, Hengjun; Li, Ping; Wu, Jinhua

    2018-02-27

    In this study, a sequential Fe 0 /H 2 O 2 reaction and biological process was employed as a low-cost depth treatment method to remove recalcitrant compounds from coal-chemical engineering wastewater after regular biological treatment. First of all, a chemical oxygen demand (COD) and color removal efficiency of 66 and 63% was achieved at initial pH of 6.8, 25 mmol L -1 of H 2 O 2 , and 2 g L -1 of Fe 0 in the Fe 0 /H 2 O 2 reaction. According to the gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID) analysis, the recalcitrant compounds were effectively decomposed into short-chain organic acids such as acetic, propionic, and butyric acids. Although these acids were resistant to the Fe 0 /H 2 O 2 reaction, they were effectively eliminated in the sequential air lift reactor (ALR) at a hydraulic retention time (HRT) of 2 h, resulting in a further decrease of COD and color from 120 to 51 mg L -1 and from 70 to 38 times, respectively. A low operational cost of 0.35 $ m -3 was achieved because pH adjustment and iron-containing sludge disposal could be avoided since a total COD and color removal efficiency of 85 and 79% could be achieved at an original pH of 6.8 by the above sequential process with a ferric ion concentration below 0.8 mg L -1 after the Fe 0 /H 2 O 2 reaction. It indicated that the above sequential process is a promising and cost-effective method for the depth treatment of coal-chemical engineering wastewaters to satisfy discharge requirements.

  18. PROCESSES OF CHLORINATION OF URANIUM OXIDES

    Science.gov (United States)

    Rosenfeld, S.

    1958-09-16

    An improvement is described in the process fur making UCl/sub 4/ from uranium oxide and carbon tetrachloride. In that process, oxides of uranium are contacted with carbon tetrachloride vapor at an elevated temperature. It has been fuund that the reaction product and yield are improved if the uranlum oxide charge is disposed in flat trays in the reaction zone, to a depth of not more than 1/2 centimeter.

  19. Plutonium Oxide Process Capability Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    Meier, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  20. Inactivation of Ascaris eggs in water using sequential solar driven photo-Fenton and free chlorine.

    Science.gov (United States)

    Bandala, Erick R; González, Liliana; Sanchez-Salas, Jose Luis; Castillo, Jordana H

    2012-03-01

    Sequential helminth egg inactivation using a solar driven advanced oxidation process (AOP) followed by chlorine was achieved. The photo-assisted Fenton process was tested alone under different H(2)O(2) and/or Fe(II) concentrations to assess its ability to inactivate Ascaris suum eggs. The effect of free chlorine alone was also tested. The lowest egg inactivation results were found using Fe(II) or H(2)O(2) separately (5 and 140 mmol L(-1), respectively) in dark conditions, which showed about 28% inactivation of helminth eggs. By combining Fe(II) and H(2)O(2) at the same concentrations described earlier, 55% of helminth egg inactivation was achieved. By increasing the reagent's concentration two-fold, 83% egg inactivation was achieved after 120 min of reaction time. Process efficiency was enhanced by solar excitation. Using solar disinfection only, the A. suum eggs inactivation reached was the lowest observed (58% egg inactivation after 120 min (120 kJ L(-1))), compared with tests using the photo-Fenton process. The use of the photo-Fenton reaction enhanced the process up to over 99% of egg inactivation after 120 kJ L(-1) when the highest Fe(II) and H(2)O(2) concentration was tested. Practically no effect on the helminth eggs was observed with free chlorine alone after 550 mg min L(-1) was used. Egg inactivation in the range of 25-30% was obtained for sequential processes (AOP then chlorine) using about 150 mg min L(-1).

  1. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment

    International Nuclear Information System (INIS)

    Chen Sheng; Sun Dezhi; Chung, J.-S.

    2007-01-01

    In order to treat pesticide wastewater having high chemical oxygen demand (COD) value and poor biodegradability, Fenton-coagulation process was first used to reduce COD and improve biodegradability and then was followed by biological treatment. Optimal experimental conditions for the Fenton process were determined to be Fe 2+ concentration of 40 mmol/L and H 2 O 2 dose of 97 mmol/L at initial pH 3. The interaction mechanism of organophosphorous pesticide and hydroxyl radicals was suggested to be the breakage of the P=S double bond and formation of sulfate ions and various organic intermediates, followed by formation of phosphate and consequent oxidation of intermediates. For the subsequent biological treatment, 3.2 g/L Ca(OH) 2 was added to adjust the pH and further coagulate the pollutants. The COD value could be evidently decreased from 33,700 to 9300 mg/L and the ratio of biological oxygen demand (BOD 5 ) to COD of the wastewater was enhanced to over 0.47 by Fenton oxidation and coagulation. The pre-treated wastewater was then subjected to biological oxidation by using moving-bed biofilm reactor (MBBR) inside which tube chip type bio-carriers were fluidized upon air bubbling. Higher than 85% of COD removal efficiency could be achieved when the bio-carrier volume fraction was kept more than 20% by feeding the pretreated wastewater containing 3000 mg/L of inlet COD at one day of hydraulic retention time (HRT), but a noticeable decrease in the COD removal efficiency when the carrier volume was decreased down to 10%, only 72% was observed. With the improvement of biodegradability by using Fenton pretreatment, also due to the high concentration of biomass and high biofilm activity using the fluidizing bio-carriers, high removal efficiency and stable operation could be achieved in the biological process even at a high COD loading of 37.5 gCOD/(m 2 carrier day)

  2. Microwave-Assisted Synthesis of Fe3O4Nanocrystals with Predominantly Exposed Facets and Their Heterogeneous UVA/Fenton Catalytic Activity.

    Science.gov (United States)

    Zhong, Yuanhong; Yu, Lin; Chen, Zhi-Feng; He, Hongping; Ye, Fei; Cheng, Gao; Zhang, Qianxin

    2017-08-30

    Fe 3 O 4 nanocrystals with five different morphologies (i.e., nanospheres, nanorods, nanocubes, nano-octahedrons, and nanoplates) were acquired using a simple, efficient, and economic microwave-assisted oxidation technique. The microstructure, morphology, predominant exposed facets, and iron atom local environment of Fe 3 O 4 were revealed by powder X-ray diffraction (PXRD), scanning transmission electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometer (XPS), and Mössbauer spectrum. We demonstrated that the heterogeneous UVA/Fenton catalytic activities of Fe 3 O 4 nanocrystals are morphology/facets dependent. Under UVA irradiation, the catalytic activity of the as-prepared Fe 3 O 4 was in the sequence of nanospheres > nanoplates > nano-octahedrons ≈ nanocubes > nanorods > nano-octahedrons (by coprecipitation). The dominating factor for the catalytic performance was the particle size and BET specific surface area; moreover, the exposed {111} facets, which contained more Fe 2+ species, on the nanocrystal surface led to a stronger UVA/Fenton catalytic activity. Both • OH and O 2 •- radicals participated in the UVA/Fenton degradation process, and • OH played the dominant role. These morphology-controlled nanomagnetites showed great potential in applications as heterogeneous UVA/Fenton catalysts for effectively treating nonbiodegradable organic pollutants.

  3. Esferas de quitosana/Fe na degradação do corante Azul QR-19 por processos foto-Fenton utilizando luz artificial ou solar Chitosan/Fe spheres on the Blue QR-19 dye degradation by photo Fenton processes using artificial or solar light

    Directory of Open Access Journals (Sweden)

    Kely V. de Souza

    2010-09-01

    long time. The purpose of this study is the use of photo-Fenton processes assisted by artificial or solar light, using immobilized iron on chitosan beads, crosslinked with glutaraldheyde, for the antraquinone type compound Blue QR-19 standard dye degradation in aqueous solutions. The obtained spheres showed a regular size and 4.0 mm diameter. The results showed 90% discolouration of the system within 180 minutes and a 60% total organic carbon (TOC reduction for the photo-Fenton system using artificial light. For the system using sunlight, the total discolouration was achieved in 120 minutes and the TOC value decreased 70%. Also observed was that iron remained in the polymeric matrix after the treatment, thus allowing reuse.

  4. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater.

    Science.gov (United States)

    Ioannou-Ttofa, L; Michael-Kordatou, I; Fattas, S C; Eusebio, A; Ribeiro, B; Rusan, M; Amer, A R B; Zuraiqi, S; Waismand, M; Linder, C; Wiesman, Z; Gilron, J; Fatta-Kassinos, D

    2017-05-01

    Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as

  5. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    International Nuclear Information System (INIS)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric

    2015-01-01

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H 2 O 2 < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO 4 2− , ClO 4 − and NO 3 − media. • In Cl − medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH 4 + , NO 3 − and SO 4 2− ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L −1 of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H 2 O 2 . The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H 2 O 2 and added Fe 2+ . The oxidation ability increased in the sequence EO-H 2 O 2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO 4 2− , ClO 4 − and NO 3 − media, whereas in Cl − medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO 4 2− medium and three chloroaromatics in Cl − solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH 4 + , NO 3 − and SO 4 2− ions were released during the mineralization

  6. Óxidos de ferro e suas aplicações em processos catalíticos: uma revisão Iron oxides and their applications in catalytic processes: a review

    Directory of Open Access Journals (Sweden)

    Luiz C. A. Oliveira

    2013-01-01

    Full Text Available A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more specifically hematite (α-Fe2O3, goethite (α-FeOOH, magnetite (Fe3O4 and maghemite (γ-Fe2O3, in heterogeneous catalysis.

  7. Degradation of 2,4-dichlorophenol in waste waters by photo-fenton treatment; Degradacion del 2,4-diclorofenol en aguas residuales mediante tratamiento foto-fenton

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, M. A.; Pardos, M.; Ormad, P.; Ovelleiro, J. L. [Universidad de Zaragoza (Spain)

    2000-07-01

    Photo-Fenton treatment (H{sub 2}O{sub 2}/Fe/UV) is an advanced oxidation process very studied as an application for the elimination of persistent contaminants in waters. It consists on the formation of OH. radicals, strong oxidizers that destroy almost all the organic substances present. In this work, it is applied to the study of 2-4 dichlorophenol degradation by means of the treatment of an aqueous synthetic sample. The results obtained include a 95% degradation of contaminant in 5 minutes of treatment with a decrease of the parameters total organic carbon (TOC) and adsorbable organic halogens (AOX)of the 30% and 60% respectively. (Author) 14 refs.

  8. Role of copper pyrovanadate as heterogeneous photo-Fenton like catalyst for the degradation of neutral red and azure-B: An eco-friendly approach

    International Nuclear Information System (INIS)

    Kalal, Sangeeta; Ameta, Noopur; Kumar, Sudhish; Punjabi, Pinki Bala; Chauhan, Narendra Pal Singh; Ameta, Rakshit

    2014-01-01

    The heterogeneous photo-Fenton like process is a green chemical pathway.. It has an edge over conventional Fenton and photo-Fenton processes as it does not require the removal of ferrous/ferric ions in the form of sludge. We prepared copper pyrovanadate or Volborthite (Cu 3 V 2 (OH) 2 O 7 ·2H 2 O) composite photocatalyst by wet chemical method. The photocatalyst was characterized by SEM, XRD, IR, TGA/DSC, EDX and BET. Experiments demonstrated that catalyst could effectively catalyze degradation of neutral red and azure-B in presence of H 2 O 2 in visible light. Moreover, the photo-Fenton-like catalytic activity of Cu 3 V 2 (OH) 2 O 7 ·2H 2 O was much higher than CuO and V 2 O 5 , when used alone as photocatalyst. The effect of variation of different parameters, i.e., pH, amount of photocatalyst, concentration of dye, amount of H 2 O 2 and light intensity was also investigated. The degradation was well fitted under pseudo-first-order reaction with a rate constant of 2.081x10 −4 sec −1 and 3.876x10 −4 sec −1 for neutral red and azure-B, respectively. Quality parameters of dye solutions before and after photo-Fenton degradation were also determined. A tentative mechanism involving •OH radical as an oxidant has been proposed. The high catalytic activity may be due to the Cu 3 V 2 (OH) 2 O 7 ·2H 2 O shell, which not only increased the surface hydroxyl groups, but also enhanced the interfacial electron transfer.. The catalyst has been found to possess good recyclability

  9. Evaluation of Fenton's Reagent and Activated Persulfate for Treatment of a Pharmaceutical Waste Mixture in Groundwater

    DEFF Research Database (Denmark)

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Kakarla, Prasad

    -going bench tests evaluating treatment of site groundwater and soil using modified Fenton's reagent and activated persulfate. These tests are investigating oxidant stability, oxidation efficiency, metals mobilization and, for the persulfate, different activating agents, including NaOH, chelated iron......, and modified Fenton's reagent. The stability of the oxidants will be determined under simulated aquifer conditions, with and without catalyst or activating agents. Once an optimal activation technique has been determined, oxidation efficiency towards the complex mix of contaminants will be measured in terms...

  10. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    Science.gov (United States)

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment.

  11. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g-1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  12. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    Directory of Open Access Journals (Sweden)

    Gong Cheng

    2015-01-01

    Full Text Available The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k was 0.0125 min−1. The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe2+ dosage of 0.8 mmol/L, and H2O2 dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions.

  13. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet.

    Science.gov (United States)

    Cheng, Gong; Lin, Jing; Lu, Jian; Zhao, Xi; Cai, Zhengqing; Fu, Jie

    2015-01-01

    The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k) was 0.0125 min(-1). The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe(2+) dosage of 0.8 mmol/L, and H2O2 dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC) concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions.

  14. Modeling and optimization of acid dye manufacturing wastewater treatment with Fenton's reagent: comparison with electrocoagulation treatment results and effects on activated sludge inhibition.

    Science.gov (United States)

    Arslan-Alaton, Idil; Gursoy, B Hande; Akyol, Abdurahman; Kobya, Mehmet; Bayramoglu, Mahmut

    2010-01-01

    In the present study, Fenton's oxidation of a chromium complex disazo dye (Acid Blue 193) synthesis wastewater was evaluated, modeled and optimized by employing Central Composite Design. Within this context, the individual and interactive effects of critical process parameters such as Fe(2 + ), H(2)O(2) concentrations, initial chemical oxygen demand (COD) and reaction time was assessed. The process response (output) variables were chosen as percent color, COD and total organic carbon (TOC) removal efficiencies. Optimum working conditions in terms of color and organic carbon removals were established to be Fe(2 + )=3 mM; H(2)O(2)=25 mM; reaction time = 10 min at pH 3 and an initial COD content of 245 mg/L. Under these conditions, 96% color, 82% COD and 51% TOC removals were obtained. The established polynomial regression models describing color, COD and TOC removals satisfactorily fitted the experimental data and could be used to predict Fenton's treatment results at statistically significant rates. Optimized treatment results were compared with those obtained via electrocoagulation treatment under optimized conditions (applied current = 50 A/m(2); reaction time = 15 min; initial pH = 7 for an initial COD content of 245 mg/L). The relative inhibition of heterotrophic oxygen uptake rate was measured to examine the inhibitory effect of azo dye synthesis effluent before and after Fenton's oxidation and electrocoagulation with respect to synthetic domestic wastewater. Untreated azo dye production wastewater exhibited a slightly inhibitory effect that was appreciably reduced but not entirely removed after Fenton's oxidation, whereas no inhibition of mixed bioculture was observed for azo dye synthesis effluent subjected to electrocoagulation treatment.

  15. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Scott [Univ of KY, dept of chemical and materials engineering; lynch, Andrew [Univ of KY, dept of chemical and materials engineering; Bachas, Leonidas [Univ of KY, Dept of Chemistry; hampson, Steve [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Ormsbee, Lindelle [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Bhattacharyya, Dibakar [Univ of KY, dept of chemical and materials engineering

    2008-06-01

    The Standard Fenton reaction has been used for In-Situ Chemical Oxidation (ISCO) of toxic organics in groundwater. However, it requires low pH operating conditions, and thus has limitations for in situ applications. In addition, hydroxyl radicals are rapidly consumed by hydroxyl scavengers found in the subsurface. These problems are alleviated through the chelate-modified Fenton (hydroxyl radical) reaction, which includes the addition of nontoxic chelate (L) such as citrate or gluconic acid. This chelate allows the reaction to take place at bear neutral pH and control hydrogen peroxide consumption by binding to Fe(II), forming an FeL complex. The chelate also binds to Fe(III), preventing its precipitation as ferric hydroxide and thus prevents problems associated with injection well plugging. The rate of TCE dechlorination in chelate-modified Fenton systems is a function of pH, H2O2 concentration, and FE:L ratio. The primary objective of this research is to model and apply this process to the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinates TCE in both the aqueous and organic phases at near-neutral pH. Other focuses of this work include determining the effect of [L]:[Fe] ratios on H2O2 and TCE degradation as well as reusability of the FE citrate solution under repeated H2O2 injections. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using established hydroxyl radial kinetics and mass transfer relationships.

  16. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    International Nuclear Information System (INIS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-01-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H 2 O 2 under UV irradiation (H 2 O 2 /UV) and Fenton system under visible light (Fenton/H 2 O 2 /Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H 2 O 2 /UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H 2 O 2 /Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  17. Decolorization and removal of cod and bodfrom raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPS

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2008-09-01

    Full Text Available In this paper, a comparative study of the treatment of raw and biotreated (upflow anaerobic sludge blanket, UASB textile dye bath effluent using advanced oxidation processes (AOPs is presented. The AOPs applied on raw and biotreated textile dye bath effluent, after characterization in terms of COD, colour, BOD and pH, were ozone, UV, UV/H2O2 and photo-Fenton. The decolorization of raw dye bath effluent was 58% in the case of ozonation. However it was 98% in the case of biotreated dye bath effluent when exposed to UV/H2O2. It is, therefore, suggested that a combination of biotreatment and AOPs be adopted to decolorize dye bath effluent in order to make the process more viable and effective. Biodegradability was also improved by applying AOPs after biotreatment of dye bath effluent.

  18. Electro-Fenton degradation of antimicrobials triclosan and triclocarban

    International Nuclear Information System (INIS)

    Sires, Ignasi; Oturan, Nihal; Oturan, Mehmet A.; Rodriguez, Rosa Maria; Garrido, Jose Antonio; Brillas, Enric

    2007-01-01

    The antimicrobials triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) and triclocarban (N-(4-chlorophenyl)-N'-(3,4-dichlorophenyl)urea) have been degraded by four electro-Fenton systems using undivided electrolytic cells with a Pt or boron-doped diamond (BDD) anode and a carbon felt or O 2 diffusion cathode. The main oxidant is hydroxyl radical (·OH) produced both on the anode surface from water oxidation and in the medium by Fenton's reaction, which takes place between electrogenerated H 2 O 2 and Fe 2+ coming from cathodic reduction of O 2 and Fe 3+ , respectively. Triclosan from saturated aqueous solutions of pH 3.0 is completely removed in all cells, decreasing its decay rate in the order: Pt/carbon felt > BDD/carbon felt > Pt/O 2 diffusion > BDD/O 2 diffusion, in agreement with their ·OH generation ability from Fenton's reaction. Glyoxylic, maleic and oxalic acids are identified as aliphatic intermediates. Complexes between oxalic acid and iron ions persist largely in solution, although Fe 2+ -oxalato complexes are mineralized by ·OH in the medium and Fe 3+ -oxalato complexes are destroyed by ·OH on BDD. Analogous treatments of more concentrated triclosan solutions using a 20:80 (v/v) acetonitrile/water mixture as solvent evidence the role of hydroxyl radicals along the degradation. In this hydroorganic medium hydroxylated derivatives such as 2,4-dichlorophenol, 4-chlorocatechol, chlorohydroquinone and chloro-p-benzoquinone, and carboxylic acids such as maleic, oxalic, formic and acetic acids are detected as products. Complete destruction of iron-oxalato complexes and released Cl - ion involves some oxidizing species coming from parallel acetonitrile oxidation. The same electro-Fenton systems also yield the overall removal of triclocarban in acetonitrile/water mixtures, giving rise to urea, hydroquinone, chlorohydroquinone, 1-chloro-4-nitrobenzene and 1,2-dichloro-4-nitrobenzene as primary intermediates

  19. Niobium substituted magnetite as a strong heterogeneous Fenton catalyst for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahim Pouran, Shima, E-mail: rahimpooran@yahoo.com [Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Abdul Aziz, A.R., E-mail: azizraman@um.edu.my [Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Wan Daud, Wan Mohd Ashri, E-mail: ashri@um.edu.my [Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Embong, Zaidi, E-mail: zembong@gmail.com [Faculty of Science, Technology and Human Development, University Tun Hussein Onn Malaysia, 86400 Johor (Malaysia)

    2015-10-01

    Highlights: • A series of Nb substituted magnetite samples were prepared and characterized. • Samples had inverse spinel structure, good magnetic property, and durability. • Increased surface area resulted in higher adsorption capacity of the samples. • Nb incorporation enhanced degradation of methylene blue through Fenton reaction. • The activity of the catalysts increased by increment in Nb content of the samples. - Abstract: In this study, a series of Nb substituted magnetites; Fe{sub 3−x}Nb{sub x}O{sub 4} (x = 0.0, 0.022, 0.049, 0.099, and 0.19) were prepared and characterized by XRD, BET surface area, TEM, VSM, XPS, and chemical experiments. The magnetite inverse spinel structure and magnetic property were maintained in all the synthetized samples. A significant decrease in crystal size (≈two times) and increase in specific surface area (≈three times) were observed with increased Nb content, resulting in higher adsorption capacity of the samples. In addition, the reactivity of the synthetized samples was examined through degradation of methylene blue solution using Fenton-like reaction. It was found that the incorporation of niobium significantly improved the degradation of methylene blue of which total MB removal was achieved within 180 min at higher molar ratios of Nb (x = 0.19). This could be attributed to the generated oxygen vacancies on the surface of catalysts, the contribution of the introduced Nb cations in Fenton oxidation cycle for regeneration of Fe{sup 2+} cations, and increase in adsorption capacity of the samples due to larger surface area. The MB degradation through Fe{sub 2.79}Nb{sub 0.19}O{sub 4}/H{sub 2}O{sub 2} system was well described by the pseudo-first-order equation in kinetics. All samples showed good stability under the studied pH conditions. The amount of niobium leached was not detectable in neutral and basic solutions and the samples could be reused in oxidation process for several times without a significant

  20. Removal of herbicidal ionic liquids by electrochemical advanced oxidation processes combined with biological treatment.

    Science.gov (United States)

    Pęziak-Kowalska, Daria; Fourcade, Florence; Niemczak, Michał; Amrane, Abdeltif; Chrzanowski, Łukasz; Lota, Grzegorz

    2017-05-01

    Recently a new group of ionic liquids (ILs) with herbicidal properties has been proposed for use in agriculture. Owing to the design of specific physicochemical properties, this group, referred to as herbicidal ionic liquids (HILs), allows for reducing herbicide field doses. Several ILs comprising phenoxy herbicides as anions and quaternary ammonium cations have been synthesized and tested under greenhouse and field conditions. However, since they are to be introduced into the environment, appropriate treatment technologies should be developed in order to ensure their proper removal and avoid possible contamination. In this study, didecyldimethylammonium (4-chloro-2-methylphenoxy) acetate was selected as a model HIL to evaluate the efficiency of a hybrid treatment method. Electrochemical oxidation or electro-Fenton was considered as a pretreatment step, whereas biodegradation was selected as the secondary treatment method. Both processes were carried out in current mode, at 10 mA with carbon felt as working electrode. The efficiency of degradation, oxidation and mineralization was evaluated after 6 h. Both processes decreased the total organic carbon and chemical oxygen demand (COD) values and increased the biochemical oxygen demand (BOD 5 ) on the COD ratio to a value close to 0.4, showing that the electrolyzed solutions can be considered as 'readily biodegradable.'

  1. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    International Nuclear Information System (INIS)

    Marković, Marijana; Jović, Milica; Stanković, Dalibor; Kovačević, Vesna; Roglić, Goran; Gojgić-Cvijović, Gordana; Manojlović, Dragan

    2015-01-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe 2+ ). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe 2+ was 99%). • In DBD/Fe 2+ only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions

  2. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Marijana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Jović, Milica; Stanković, Dalibor [Innovation Center, Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Kovačević, Vesna [Faculty of Physics, University of Belgrade, P.O. Box 44, 11000 Belgrade (Serbia); Roglić, Goran [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Gojgić-Cvijović, Gordana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Manojlović, Dragan, E-mail: manojlo@chem.bg.ac.rs [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia)

    2015-02-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe{sup 2+}). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe{sup 2+} was 99%). • In DBD/Fe{sup 2+} only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions.

  3. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs

    NARCIS (Netherlands)

    Ruokolainen, Miina; Gül, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-01-01

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and

  4. Hydrothermal synthesis of bismuth ferrite Fenton-like catalysts and their properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min; Li, Wenjuan, E-mail: liwenjuan2801@163.com; Du, Yong; Kong, Defen; Wang, Ze; Meng, Yi; Sun, Xiaolan; Yan, Tingjiang; Kong, Desheng; You, Jinmao [Qufu Normal University, Shandong Province Key Laboratory of Life-Organic Analysis (China)

    2016-11-15

    Bismuth ferrite, Fenton-like catalysts have been successfully synthesized via simple hydrothermal methods without any templates. Through changing the molar ratio of Bi/Fe, the two main phases BiFeO{sub 3} and Bi{sub 25}FeO{sub 40} can be synthesized under different temperatures. Furthermore, different morphologies of the BiFeO{sub 3} phase can be adjusted by changing different concentrations of HNO{sub 3} and NaOH which were used to dissolve the reactants and adjust the pH values in the prepared process. When the concentration of HNO{sub 3}/NaOH was 8/12 M, some uniform cylindrical bodies with equal height (1 μm) and width (0.6 μm) were obtained, which have not been reported before. The uniform structures exhibited better activities in the photoassisted Fenton-like oxidation process for the degradation of rhodamine B (RhB) under visible light irradiation (420 nm < λ < 800 nm). Through the detection of the degradation mechanism, it showed that the concerted effect of the catalysts and H{sub 2}O{sub 2} can increase the generation of the charge carriers and accelerate the photogenerated charge transfer between the catalysts and dyes. The BiFeO{sub 3} samples also showed magnetic properties at room temperature, which may have potential applications in multiferroic or magnetoelectric sensors and devices.

  5. Treatment of urban river contaminated sediment with ex situ advanced oxidation processes: technical feasibility, environmental discharges and cost-performance analysis.

    Science.gov (United States)

    Yan, Dickson Y S; Liu, Tongzhou; Lo, Irene M C

    2015-01-01

    The technical feasibility, environmental discharges and cost-performance of urban river contaminated sediment treatment with ex situ advanced oxidation processes were evaluated for the purpose of achieving an ideal treatment goal (for marine disposal) and a cost-performance treatment goal (for beneficially reusing as a filling material). Sediment samples were collected from a river located in southern China. To achieve the ideal treatment goal, sequential treatments (Fenton's reaction+activated persulphate oxidation) were carried out. One-step Fenton's reaction was applied to achieve the cost-performance treatment goal. The resulting effluent was treated and discharged, and sludge generated in wastewater treatment was characterized. The resources input throughout the treatment processes were recorded for cost estimation. After the treatment designed for achieving the ideal treatment goal, most pollutants fulfilled the treatment goal except Pb, Cd, Hg and Ag, probably because these four metals were present mainly in stable fractions of the sediment. The cost-performance treatment goal was achieved in view of low pollutant contents in the toxicity characteristic leaching procedure leachate of treated sediment. The cost for achieving the cost-performance treatment goal is much less than that for achieving the ideal treatment goal. The major cost difference is attributed to chemical cost. Stringent sediment treatment goals based on existing standards would lead to massive chemical use, complex treatment and hence huge cost. A simpler treatment with fewer chemicals is adequate for sediment beneficially reused as a filling material, and is economically more advantageous than handling sediment for marine disposal.

  6. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review.

    Science.gov (United States)

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu

    2018-02-15

    Natural organic matter (NOM), a key component in aquatic environments, is a complex matrix of organic substances characterized by its fluctuating amounts in water and variable molecular and chemical properties, leading to various interaction schemes with the biogeosphere and hydrologic cycle. These factors, along with the increasing amounts of NOM in surface and ground waters, make the effort of removing naturally-occurring organics from drinking water supplies, and also from municipal wastewater effluents, a challenging task requiring the development of highly efficient and versatile water treatment technologies. Advanced oxidation processes (AOPs) received an increasing amount of attention from researchers around the world, especially during the last decade. The related processes were frequently reported to be among the most suitable water treatment technologies to remove NOM from drinking water supplies and mitigate the formation of disinfection by products (DBPs). Thus, the present work overviews recent research and development studies conducted on the application of AOPs to degrade NOM including UV and/or ozone-based applications, different Fenton processes and various heterogeneous catalytic and photocatalytic oxidative processes. Other non-conventional AOPs such as ultrasonication, ionizing radiation and plasma technologies were also reported. Furthermore, since AOPs are unlikely to achieve complete oxidation of NOM, integration schemes with other water treatment technologies were presented including membrane filtration, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Decolourization of methyl orange using iron- immobilize MKSF in UV assisted Fenton-like reaction

    Science.gov (United States)

    Abdullah, N. H.; Zubir, N. A.; Hassan, H.

    2017-09-01

    In this work, montmorillonite KSF clay was used to immobilize iron species as a potential heterogeneous UV assisted Fenton-like reaction. Iron-immobilized MKSF (Fe-MKSF) was synthesized via hydrothermal method in an autoclave. Fe-MKSF was tested on methyl orange (MO) removal by adsorption (5%) and hydrogen peroxide (H2O2) activation (63%) and these prominent margins proved Fe-MKSF performance was attributed by UV assisted Fenton-like reaction. Fe-MKSF show superior performance with 63% color removal within 180 mins reaction in comparison to iron oxide and pristine MKSF. The Fe-MKSF increased in the surface area from 91.1 to 101.9 m2/g and pore volume from 0.13 to 0.45 cm3/g compared to pristine MKSF. The SEM images of Fe-MKSF show iron aggregates indicating successful immobilizing process and the elemental weight percent of iron which increase from 6.12% to 55.38% in Fe-MKSF. These findings prove Fe-MKSF as a promising alternative catalyst in dye contaminated wastewater treatment.

  8. Processing of effluent salt from the direct oxide reduction process

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon

  9. Degradation of organic contaminants in effluents-synthetic and from the textile industry-by Fenton, photocatalysis, and H2O2photolysis.

    Science.gov (United States)

    de Lima, L B; Pereira, L O; de Moura, S G; Magalhães, F

    2017-03-01

    In this study, the oxidation of the dye rhodamine B (RhB), present in a synthetic effluent, and the degradation of organic matter present in a textile effluent, were assessed by photolysis (H 2 O 2 , UV), homogeneous Fenton (Fe 2+ , H 2 O 2 ), and photocatalysis (TiO 2 , UV). The results showed that photolysis and Fenton had an efficiency of 100 % and photocatalysis, 96 %, to discoloration 10 mg L -1 RhB, present in the synthetic effluent. The best experimental conditions determined for these reactions showed that the one performed with 51 mg L -1 H 2 O 2 and UV light had the best results, where 100 % of RhB was discolored in only 6 min of reaction. The optimum conditions determined in the first part of this study for the RhB oxidation did not show satisfactory results for the degradation of organic matter present in the textile effluent sample, and it was necessary to increase the amount of reagents in the three processes. After resizing the concentration of the reagents for the reactions with the textile effluent, the following reductions of color, total organic carbon (TOC), and total soluble solids (SS) were obtained: photocatalysis 29, 25, and 32 %; photolysis 85, 69, and 35 %; Fenton 98, 90, and 23 %; and biological (followed by physicochemical) treatment carried out by the textile industry 96, 48, and 9 %. It is observed that the Fenton reaction showed the best result, followed by photolysis reaction, a treatment carried out by industry and, at last, photocatalysis.

  10. Degradation of ion spent resin using the Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro Goulart de

    2013-01-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  11. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism

    Science.gov (United States)

    Xu, Huan-Yan; Wang, Yuan; Shi, Tian-Nuo; Zhao, Hang; Tan, Qu; Zhao, Bo-Chao; He, Xiu-Lan; Qi, Shu-Yan

    2018-02-01

    The kinetics and Fenton-like mechanism are two challenging tasks for heterogeneous Fenton-like catalytic oxidation of organic pollutants. In this study, three kinetic models were used for the kinetic studies of Fe3O4/MWCNTs-H2O2 Fenton-like reaction for MO degradation. The results indicated that this reaction followed the first-order kinetic model. The relationship of reaction rate constant and temperature followed the Arrhenius equation. The activation energy and frequency factor of this system were calculated as 8.2 kJ·mol-1 and 2.72 s-1, respectively. The quantifications of Fe ions dissolution and •OH radicals generation confirmed that the homogeneous and heterogeneous catalyses were involved in Fe3O4/MWCNTs-H2O2 Fenton-like reaction. The reaction rate constant was closely related with Fe ions dissolution and •OH radicals generation. Fe3O4/MWCNTs nanocomposites had typical ferromagnetic property and could be easily separated from solution by an external magnet after being used. Furthermore, Fe3O4/MWCNTs nanocomposites exhibited good stability and recyclability. Finally, the Fenton-like mechanisms on homogeneous and heterogeneous catalyses were described.

  12. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism

    Science.gov (United States)

    Xu, Huan-Yan; Wang, Yuan; Shi, Tian-Nuo; Zhao, Hang; Tan, Qu; Zhao, Bo-Chao; He, Xiu-Lan; Qi, Shu-Yan

    2018-03-01

    The kinetics and Fenton-like mechanism are two challenging tasks for heterogeneous Fenton-like catalytic oxidation of organic pollutants. In this study, three kinetic models were used for the kinetic studies of Fe3O4/MWCNTs-H2O2 Fenton-like reaction for MO degradation. The results indicated that this reaction followed the first-order kinetic model. The relationship of reaction rate constant and temperature followed the Arrhenius equation. The activation energy and frequency factor of this system were calculated as 8.2 kJ·mol-1 and 2.72 s-1, respectively. The quantifications of Fe ions dissolution and •OH radicals generation confirmed that the homogeneous and heterogeneous catalyses were involved in Fe3O4/MWCNTs-H2O2 Fenton-like reaction. The reaction rate constant was closely related with Fe ions dissolution and •OH radicals generation. Fe3O4/MWCNTs nanocomposites had typical ferromagnetic property and could be easily separated from solution by an external magnet after being used. Furthermore, Fe3O4/MWCNTs nanocomposites exhibited good stability and recyclability. Finally, the Fenton-like mechanisms on homogeneous and heterogeneous catalyses were described.

  13. Fenton degradation of Cartap hydrochloride: identification of the main intermediates and the degradation pathway.

    Science.gov (United States)

    Tian, Kaixun; Ming, Cuixiang; Dai, Youzhi; Honore Ake, Kouassi Marius

    2015-01-01

    The advanced oxidation of Cartap hydrochloride (Cartap) promoted by the Fenton system in an aqueous medium was investigated. Based on total organic carbon, chemical oxygen demand and high-performance liquid chromatography, the oxidation of Cartap is quite efficient by the Fenton system. Its long chain is easily destroyed, but the reaction does not proceed to complete mineralization. Ion chromatography detection indicated the formation of acetic acid, propionic acid, formic acid, nitrous acid and sulfuric acid in the reaction mixtures. Further evidence of nitrogen monoxide and sulfur dioxide formation was obtained by using a flue gas analyzer. Monitoring by gas chromatograph-mass spectrometer demonstrated the formation of oxalic acid, ethanol, carbon dioxide, and L-alanine ethylamide. Based on these experimental results, plausible degradation pathways for Cartap mineralization in an aqueous medium by the Fenton system are proposed.

  14. Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution.

    Science.gov (United States)

    Park, Chang Min; Heo, Jiyong; Yoon, Yeomin

    2017-02-01

    Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag + ) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H 2 O 2 , assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H 2 O 2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6-7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. PARAMETRII FIZICO-CHIMICI CARE INFLUENȚEAZĂ RATA DE OXIDARE/MINERALIZARE A SĂRII DE NATRIU A ACIDULUI LIGNOSULFONIC CU REAGENTUL FENTON

    Directory of Open Access Journals (Sweden)

    Larisa MOCANU

    2018-03-01

    Full Text Available Sarea de natriu a acidului lignosulfonic (LSNa este un agent de dispersie utilizat pe larg în procesul de vopsire a fibrelor și a țesăturilor. Concentrația inițială a dispersantului LSNa în baia de vopsire este de 2000,0 -5000,0 mg/L. Deoarece sarea de natriu a acidului lignosulfonic are o structură complexă și o masă moleculară mare, înlăturarea lui s-a realizat prin metoda de oxidare cu reagentul Fenton.Au fost stabilite condițiile optime de oxidare catalitică. Pentru o eficiență sporită Astfel, s-a stabilit că valoarea optimă de pH este de 2,5. Experimental a fost determinat raportul dintre oxidant și reducător, astfel pentru a oxida/mineraliza 60,0 mg/L de dipersant este necesar ca raportul dintre peroxidul de hidrogen și ionii de fier (II să fie de 1:3,5. În aceste condiții, efectul de oxidare/mineralizare este, în medie, de 82,0%. Pentru o eficiență mai mare este necesar ca oxidarea cu reagentul Fenton să fie urmată de procesul de adsorbție pe cărbune activ.PARAMETRES AFFECTING THE OXIDATION/MINERALIZATION RATE OF LIGNOSULFONIC ACID SODIUM SALT USING FENTON’S REAGENTLignosulfonic acid sodium salt is a dispersing agent has used in the process of dyeing fibers and fabrics widely. The initial concentration of the dispersing agent is 2000,0-5000,0 mg/L in the dyeing bath. Whereas lignosulfonic acid sodium salt has a complex structure and a high molecular weight, its removal was achieved by the Fenton reagent oxidation method.The optimum catalytic oxidation conditions have been established. It has been determined that the optimal value of pH is 2.5 as a result of the research. Also experimentally, it determined oxidizing and reducing ratio so as to oxidise/ mineralise 60,0 mg L of dispersing agent is necessary that the ratio of hydrogen peroxide and iron ions (II is 1: 3,5.Under these conditions, the oxidation/ mineralization effect is on average 82.0%. For greater efficiency, oxidation with the Fenton

  16. Application of response surface methodology for optimization of azocarmine B removal by heterogeneous photo-Fenton process using hydroxy-iron–aluminum pillared bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianyuan, E-mail: xutianyuan1988@126.com; Liu, Yun, E-mail: liuyunscut@163.com; Ge, Fei, E-mail: gefei@xtu.edu.cn; Liu, Lin, E-mail: liulin861@163.com; Ouyang, Yuting, E-mail: oyt0225@126.com

    2013-09-01

    Hydroxy-iron–aluminum pillared bentonite (H-Fe–Al-B) was synthesized with ion exchange method, and its catalyst characteristics were analyzed by using X-ray diffraction (XRD) and X-ray photoelectron spectrometry (XPS). The photo-Fenton catalytic activity of H-Fe–Al-B was tested under different reaction condition using azocarmine B (ACB) as model pollutant under ultraviolet light (UV) irradiation. The effects of three operating variables, initial dye concentration, initial pH value and H{sub 2}O{sub 2} concentration on the decolorization efficiency of ACB were optimized by response surface methodology (RSM) based on Box–Behnken design. The results showed that hydroxy aluminum iron ions intercalated into the interlayer spaces of bentonite successfully and H-Fe–Al-B had high photocatalytic activity. Analysis of variance (ANOVA) indicated that the proposed quadratic model could be used to navigate the design space. The proposed model was approximately in accordance with the experimental case with correlation coefficients R{sup 2}, R{sub adj}{sup 2} and R{sub pred}{sup 2} correlation coefficients of 0.9996, 0.9991 and 0.9934, respectively. The optimum conditions for ACB decolorization were dye concentration of 143.7 mg/L, pH of 4.2 and H{sub 2}O{sub 2} concentration of 17.7 mM, respectively. The predicted decolorization rate under the optimum conditions determined by the proposed model was 99.6%. Confirmatory tests were carried out under the optimum conditions and the decolorization rate of 99.5% was observed, which closely agreed with the predicted value.

  17. Coupled Inverse Fluidized Bed Bioreactor with Advanced Oxidation Processes for Treatment of Vinasse

    Directory of Open Access Journals (Sweden)

    Karla E. Campos Díaz

    2017-11-01

    Full Text Available Vinasse is the wastewater generated from ethanol distillation; it is characterized by high levels of organic and inorganic matter, high exit temperature, dissolved salts and low pH. In this work the treatment of undiluted vinasse was achieved using sequentially-coupled biological and advanced oxidation processes. The initial characterization of vinasse showed a high Chemical Oxygen Demand (COD, 32 kg m-3, high Total Organic Carbon (TOC, 24.5 kg m-3 and low pH (2.5. The first stage of the biological treatment of the vinasse was carried out in an inverse fluidized bed bioreactor with a microbial consortium using polypropylene as support material. The fluidized bed bioreactor was kept at a constant temperature (37 ± 1ºC and pH (6.0 ± 0.5 for 90 days. After the biological process, the vinasse was continuously fed to the photoreactor using a peristaltic pump 2.8 × 10-3 kg of FeSO4•7H2O were added to the vinasse and allowed to dissolve in the dark for five minutes; after this time, 15.3 m3 of hydrogen peroxide (H2O2 (30% w/w were added, and subsequently, the UV radiation was allowed to reach the photoreactor to treat the effluent for 3600 s at pH = 3. Results showed that the maximum organic matter removed using the biological process, measured as COD, was 80% after 90 days. Additionally, 88% of COD removal was achieved using the photo-assisted Fenton oxidation. The overall COD removal after the sequentially-coupled processes reached a value as low as 0.194 kg m-3, achieving over 99% of COD removal as well as complete TOC removal.

  18. Characterization and detoxification of a mature landfill leachate using a combined coagulation–flocculation/photo Fenton treatment

    International Nuclear Information System (INIS)

    Vedrenne, Michel; Vasquez-Medrano, Ruben; Prato-Garcia, Dorian; Frontana-Uribe, Bernardo A.; Ibanez, Jorge G.

    2012-01-01

    Highlights: ► A mature landfill leachate was characterized in terms of its pollutants and toxicity. ► A toxicity bioassay revealed an antagonistic behavior among its pollutants. ► The coagulation stage produced good results for TC and lead at an acidic pH. ► The photo Fenton treatment yielded good COD, ammonia and lead removals. ► Arsenic and mercury showed low removal efficiencies throughout the treatment. - Abstract: The aim of the present work was to characterize and treat a mature landfill leachate using a coagulation/flocculation process followed by a photo-Fenton oxidation treatment. The leachate was obtained from a landfill in Tetlama, Morelos (Mexico) during the drought season and was characterized in terms of its major pollutants. Considerable levels of chemical oxygen demand (COD), total carbon (TC) and NH 4 + were identified, as well as high concentrations of Hg, Pb, and As. Other heavy metals such as Ni, Co, Zn, Cd, and Mn were detected at trace levels. The lethal concentration (LC 50 ) of the leachate, evaluated on Artemia salina, was 12,161 ± 11 mg/L of COD, demonstrating an antagonistic interaction among the leachate's components. The treatment of this effluent consisted of a coagulation–flocculation process using an optimal dose of FeCl 3 ·6H 2 O of 300 mg/L. The supernatant was treated using a photo-Fenton process mediated with FeCl 2 ·4H 2 O and H 2 O 2 in a compound parabolic concentrator (CPC) photo-reactor operating in batch mode using an R ratio (R = [H 2 O 2 ]/[Fe 2+ ]) of 114. The global removal efficiencies after treatment were 56% for the COD, 95% for TC, and 64% for NH 4 + . The removal efficiencies for As, Hg, and Pb were 46%, 9%, and 85%, respectively.

  19. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye

    International Nuclear Information System (INIS)

    Solano, Aline Maria Sales; Martínez-Huitle, Carlos Alberto; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif

    2016-01-01

    Highlights: • Degradation of Reactive Blue 15 solution at pH 3.0 by electrochemical oxidation, electro-Fenton and photoelectro-Fenton. • Hard destruction of the dye and its products by BDD(·OH) and much more rapidly by ·OH. • 94% mineralization by the most powerful photoelectro-Fenton at 66.7 mA cm −2 , with acetic acid accumulation. • 25 aromatics and heteroaromatics, 30 hydroxylated derivatives and 4 carboxylic acids as products. • Release of Cl − , SO 4 2− and pre-eminently NO 3 − during dye mineralization. - Abstract: The degradation of the copper-phthalocyanine dye Reactive Blue 15 dye in sulfate medium has been comparatively studied by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments with 100 cm 3 solutions of 0.203 mmol dm −3 dye were performed with a stirred tank reactor containing a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H 2 O 2 production. Experimental conditions of pH 3.0 and 0.50 mmol dm −3 Fe 2+ as catalyst were found optimal for the EF process by the predominant oxidation with hydroxyl radicals formed in the bulk from Fenton’s reaction between added Fe 2+ and generated H 2 O 2 . The kinetics of Reactive Blue 15 abatement was followed by reversed-phase HPLC and always obeyed a pseudo-first-order reaction. The decolorization rate in EO-H 2 O 2 was much lower than dye decay due to the formation of large quantities of colored intermediates under the action of hydroxyl radicals generated at the BDD anode from water oxidation. In contrast, the color and dye removals were much more rapid in EF and PEF by the most efficient oxidation of hydroxyl radicals produced from Fenton’s reaction. PEF was the most powerful treatment owing to the photolytic action of UVA irradiation, yielding 94% mineralization after 360 min at 66.7 mA cm −2 . The effect of current density over the performance of all methods was examined

  20. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system.

    Science.gov (United States)

    Guo, Ruixin; Xie, Xiaodan; Chen, Jianqiu

    2015-01-01

    The present study investigated the removal efficiency of amoxicillin by the Fenton process, individual activated sludge process and Fenton-activated sludge combined system. For the antibiotic at 1 g L(-1), the optimal conditions of the Fenton process included: 4 mL FeSO4·7H2O solution (20.43 g  L(-1)), 6 mL H2O2 solution (3%) and 40°C. Under the optimal conditions, the removal rate of amoxicillin achieved up to 80% in 70 min. In addition, the impact of amoxicillin on microorganism limited the removal capacity of the activated sludge process. When the concentration of amoxicillin was less than 350 mg L(-1), 69.04-88.79% of the antibiotic was removed. However, the antibiotic could not be treated by the activated sludge when the concentration increased up to 650 mg L(-1). On the other hand, ifamoxicillin was pretreated partly by the Fenton process it was then degraded completely by the same activated sludge. Thus, the combined system included two steps: 80% amoxicillin was degraded in step I and was removed completely in the cheaper biological treatment (step II). Our result showed that compared with the individual activated sludge process, the Fenton process improved the removal capacity of the subsequent activated sludge process in the combined system.

  1. Hybrid process for nitrogen oxides reduction

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  2. Hybrid process for nitrogen oxides reduction

    International Nuclear Information System (INIS)

    Epperly, W.R.; Sprague, B.N.

    1991-01-01

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH 4 -lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1'-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500 degrees F. to about 1600 degrees F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein

  3. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst

    Science.gov (United States)

    Li, Wenhui; Wu, Xiaofeng; Li, Shuangde; Tang, Wenxiang; Chen, Yunfa

    2018-04-01

    The synthesis of effective and recyclable Fenton-like catalyst is still a key factor for advanced oxidation processes. Herein, magnetic porous Fe3O4/carbon octahedra were constructed by a two-step controlled calcination of iron-based metal organic framework. The porous octahedra were assembled by interpenetrated Fe3O4 nanoparticles coated with graphitic carbon layer, offering abundant mesoporous channels for the solid-liquid contact. Moreover, the oxygen-containing functional groups on the surface of graphitic carbon endow the catalysts with hydrophilic nature and well-dispersion into water. The porous Fe3O4/carbon octahedra show efficiently heterogeneous Fenton-like reactions for decomposing the organic dye methylene blue (MB) with the help of H2O2, and nearly 100% removal efficiency within 60 min. Furthermore, the magnetic catalyst retains the activity after ten cycles and can be easily separated by external magnetic field, indicating the long-term catalytic durability and recyclability. The good Fenton-like catalytic performance of the as-synthesized Fe3O4/carbon octahedra is ascribed to the unique mesoporous structure derived from MOF-framework, as well as the sacrificial role and stabilizing effect of graphitic carbon layer. This work provides a facile strategy for the controllable synthesis of integrated porous octahedral structure with graphitic carbon layer, and thereby the catalyst holds significant potential for wastewater treatment.

  4. Delay oil oxidation during frying process

    International Nuclear Information System (INIS)

    Atta, N.M.M.; Shams Eldin, N.M.M.

    2010-01-01

    Blend oil (mixed of refined sunflower and soy beans oils 1:1 w/w) containing add 200 ppm of rosemary leaves methanolic extract (rosemary extract) (RE) and 3% refined rice bran oil (RRBO), were used in frying process at 1800 degree c for 5 hrs/ day, four consecutive days to delay oil oxidation during frying. Therefore, rosemary extract (methanolic extract) was analyzed by HPLC technique for identification of flavonoids compounds (as a specific active compounds; gives high protection to frying oil). Physical and chemical properties, including refractive index(RI). Red color unit (R), viscosity, acidity (FFA), peroxide value (PV), iodine value (IV) oxidized fatty acid (OFA), polymer content (PC), total polar components (TPC) and trans fatty acid (TFA) as eliadic acid were determined. The results indicated that; rosemary extract contained about eight flavonoids compounds (hypersoid, rutin, 3-OH flavon, luleotin, kempferol, sakarutin, querectrin and apeginin). Addition of RE or RRBO to frying oil caused delay oil oxidation during frying process compared with frying oil without any addition. Also, the results indicated that rosemary extract was more effective in reducing formation of PV, FFA, OFA, PC, TPC and TFA in frying oil than refined rice bran oil

  5. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  6. Catalysed electrolytic metal oxide dissolution processes

    International Nuclear Information System (INIS)

    Machuron-Mandard, X.

    1994-01-01

    The hydrometallurgical processes designed for recovering valuable metals from mineral ores as well as industrial wastes usually require preliminary dissolution of inorganic compounds in aqueous media before extraction and purification steps. Unfortunately, most of the minerals concerned hardly or slowly dissolve in acidic or basic solutions. Metallic oxides, sulfides and silicates are among the materials most difficult to dissolve in aqueous solutions. They are also among the main minerals containing valuable metals. The redox properties of such materials sometimes permit to improve their dissolution by adding oxidizing or reducing species to the leaching solution, which leads to an increase in the dissolution rate. Moreover, limited amounts of redox promoters are required if the redox agent is regenerated continuously thanks to an electrochemical device. Nuclear applications of such concepts have been suggested since the dissolution of many actinide compounds (e.g., UO 2 , AmO 2 , PuC, PuN,...) is mainly based on redox reactions. In the 1980s, improvements of the plutonium dioxide dissolution process have been proposed on the basis of oxidation-reduction principles, which led a few years later to the design of industrial facilities (e.g., at Marcoule or at the french reprocessing plant of La Hague). General concepts and well-established results obtained in France at the Atomic Energy Commission (''Commissariat a l'Energie Atomique'') will be presented and will illustrate applications to industrial as well as analytical problems. (author)

  7. Investigation of the Scanning Microarc Oxidation Process

    Directory of Open Access Journals (Sweden)

    Lingqin Xia

    2017-01-01

    Full Text Available Scanning microarc oxidation (SMAO is a coating process which is based on conventional microarc oxidation (MAO. The key difference is that deposition in SMAO is achieved by using a stainless steel nozzle to spray an electrolyte stream on the substrate surface as opposed to immersing the workpiece in an electrolyzer. In the present study, SMAO discharge characteristics, coating morphology, and properties are analyzed and compared to results obtained from MAO under similar conditions. Results show that MAO and SMAO have comparable spark and microarc lifetimes and sizes, though significant differences in incubation time and discharge distribution were evident. Results also showed that the voltage and current density for MAO and SMAO demonstrate similar behavior but have markedly different transient and steady-state values. Results obtained from coating A356 aluminum sheet show that oxide thickness and growth rate in SMAO are strongly dependent on interelectrode spacing and travel speed. Analysis of the SMAO coating morphology and structure showed that a denser and slightly harder layer was deposited in comparison to MAO and is attributed to reduced porosity and increased formation of α-Al2O3. Preliminary results indicate that SMAO represents a viable process for coating of aluminum surfaces.

  8. Advanced oxidation removal of hypophosphite by O3/H2O2 combined with sequential Fe(II) catalytic process.

    Science.gov (United States)

    Zhao, Zilong; Dong, Wenyi; Wang, Hongjie; Chen, Guanhan; Wang, Wei; Liu, Zekun; Gao, Yaguang; Zhou, Beili

    2017-08-01

    Elimination of hypophosphite (HP) was studied as an example of nickel plating effluents treatment by O 3 /H 2 O 2 and sequential Fe(II) catalytic oxidation process. Performance assessment performed with artificial HP solution by varying initial pH and employing various oxidation processes clearly showed that the O 3 /H 2 O 2 ─Fe(II) two-step oxidation process possessed the highest removal efficiency when operating under the same conditions. The effects of O 3 dosing, H 2 O 2 concentration, Fe(II) addition and Fe(II) feeding time on the removal efficiency of HP were further evaluated in terms of apparent kinetic rate constant. Under improved conditions (initial HP concentration of 50 mg L -1 , 75 mg L -1 O 3 , 1 mL L -1 H 2 O 2 , 150 mg L -1 Fe(II) and pH 7.0), standard discharge (<0.5 mg L -1 in China) could be achieved, and the Fe(II) feeding time was found to be the limiting factor for the evolution of apparent kinetic rate constant in the second stage. Characterization studies showed that neutralization process after oxidation treatment favored the improvement of phosphorus removal due to the formation of more metal hydroxides. Moreover, as a comparison with lab-scale Fenton approach, the O 3 /H 2 O 2 ─Fe(II) oxidation process had more competitive advantages with respect to applicable pH range, removal efficiency, sludge production as well as economic costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Preparation of a new Fenton-like catalyst from red mud using molasses wastewater as partial acidifying agent.

    Science.gov (United States)

    Wei, Guangtao; Shao, Luhua; Mo, Jihua; Li, Zhongmin; Zhang, Linye

    2017-06-01

    Using molasses wastewater as partial acidifying agent, a new Fenton-like catalyst (ACRM sm ) was prepared through a simple process of acidification and calcination using red mud as main material. With molasses wastewater, both the free alkali and the chemically bonded alkali in red mud were effectively removed under the action of H 2 SO 4 and molasses wastewater, and the prepared ACRM sm was a near-neutral catalyst. The ACRM sm preparation conditions were as follows: for 3 g of red mud, 9 mL of 0.7 mol/L H 2 SO 4 plus 2 g of molasses wastewater as the acidifying agent, calcination temperature 573 K, and calcination time 1 h. Iron phase of ACRM sm was mainly α-Fe 2 O 3 and trace amount of carbon existed in ACRM sm . The addition of molasses wastewater not only effectively reduced the consumption of H 2 SO 4 in acidification of red mud but also resulted in the generation of carbon and significantly improved the distribution of macropore in prepared ACRM sm . It was found that near-neutral pH of catalyst, generated carbon, and wide distribution of macropore were the main reasons for the high catalytic activity of ACRM sm . The generated carbon and wide distribution of macropore were entirely due to the molasses wastewater added. In degradation of orange II, ACRM sm retained most of its catalytic stability and activity after five recycling times, indicating ACRM sm had an excellent long-term stability in the Fenton-like process. Furthermore, the performance test of settling showed ACRM sm had an excellent settleability. ACRM sm was a safe and green catalytic material used in Fenton-like oxidation for wastewater treatment.

  10. Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in Fenton-like oxidation of rhodamine B.

    Science.gov (United States)

    Deng, Jing; Chen, Yi-Jing; Lu, Yu-An; Ma, Xiao-Yan; Feng, Shan-Fang; Gao, Naiyun; Li, Jun

    2017-06-01

    CoFe 2 O 4 /ordered mesoporous carbon (OMC) nanocomposites were synthesized and tested as heterogeneous peroxymonosulfate (PMS) activator for the removal of rhodamine B. Characterization confirmed that CoFe 2 O 4 nanoparticles were tightly bonded to OMC, and the hybrid catalyst possessed high surface area, pore volume, and superparamagnetism. Oxidation experiments demonstrated that CoFe 2 O 4 /OMC nanocomposites displayed favorable catalytic activity in PMS solution and rhodamine B degradation could be well described by pseudo-first-order kinetic model. Sulfate radicals (SO 4 - ·) were verified as the primary reactive species which was responsible for the decomposition of rhodamine B. The optimum loading ratio of CoFe 2 O 4 and OMC was determined to be 5:1. Under optimum operational condition (catalyst dosage 0.05 g/L, PMS concentration 1.5 mM, pH 7.0, and 25 °C), CoFe 2 O 4 /OMC-activated peroxymonosulfate system could achieve almost complete decolorization of 100 mg/L rhodamine B within 60 min. The enhanced catalytic activity of CoFe 2 O 4 /OMC nanocomposites compared to that of CoFe 2 O 4 nanoparticles could be attributable to the increased adsorption capacity and accelerated redox cycles between Co(III)/Co(II) and Fe(III)/Fe(II).

  11. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system

    DEFF Research Database (Denmark)

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan

    2017-01-01

    reaction (MEC-Fenton) for efficient treatment of real wastewater containing a high concentration (4460 ± 52 mg L−1) of aniline. In this system, H2O2 was in situ electro-synthesized from O2 reduction on the graphite cathode and was simultaneously used as source of radical dotOH for the oxidation of aniline...

  12. Application of BiFeO3-based on nickel foam composites with a highly efficient catalytic activity and easily recyclable in Fenton-like process under microwave irradiation

    Science.gov (United States)

    Li, Shuo; Zhang, Guangshan; Zheng, Heshan; Zheng, Yongjie; Wang, Peng

    2018-05-01

    In this study, BiFeO3 (BFO) powders decorated on nickel foam (NF) with a high catalytic activity are prepared via a one-step microwave-assisted hydrothermal method. The factors that influence the degradation of bisphenol A (BPA) with BFO/NFs as catalysts are optimized to improve the catalytic activity in a microwave-enhanced Fenton-like process. BFO/NF exhibit a superior catalytic activity with a high BPA removal ratio (98.4%) and TOC removal ratio (69.5%) within 5 min. Results indicate that NF significantly affect the improvement of the catalytic activity of BFO because it served as a source of hydroxyl radicals (•OH) during degradation. The amount of •OH generated by BFO/NF is approximately 1.65-fold higher than that by pure BFO. After six reaction cycles, the stability and reusability of •OH remain high. These findings provide new insights into the synthesis of composites on heterogeneous catalysts with high efficiency and easy recyclability for water treatment applications.

  13. Mesoporous metal oxides and processes for preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  14. Tertiary treatment of pulp mill wastewater by solar photo-Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Marco S., E-mail: mlucas@utad.pt [Centro de Quimica de Vila Real, Universidade de Tras-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Peres, Jose A.; Amor, Carlos [Centro de Quimica de Vila Real, Universidade de Tras-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Prieto-Rodriguez, Lucia; Maldonado, Manuel I.; Malato, Sixto [Plataforma Solar de Almeria (CIEMAT), Carretera de Senes, Km 4, 04200, Tabernas, Almeria (Spain)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We firstly report a real pulp mill wastewater treatment by solar photo-Fenton in a CPC reactor. Fenton reagent experiments were tested firstly. Black-Right-Pointing-Pointer Solar photo-Fenton presents excellent ability to treat the pulp mill wastewater. Black-Right-Pointing-Pointer Experimental conditions were optimised. Black-Right-Pointing-Pointer Biodegradability and toxicity tests (respirometry assays and BOD{sub 5}/COD ratio) were performed during the wastewater treatment. Black-Right-Pointing-Pointer A way to reduce the economic and environmental impact was evaluated. - Abstract: This work reports on pulp mill wastewater (PMW) tertiary treatment by Fenton (Fe{sup 2+}/H{sub 2}O{sub 2}) and solar photo-Fenton (Fe{sup 2+}/H{sub 2}O{sub 2}/UV) processes in a pilot plant based on compound parabolic collectors (CPCs). Solar photo-Fenton reaction is much more efficient than the respective dark reaction under identical experimental conditions. It leads to DOC mineralisation, COD and total polyphenols (TP) removal higher than 90%. The solar photo-Fenton experiment with 5 mg Fe L{sup -1} reaches 90% of DOC mineralisation with 31 kJ L{sup -1} of UV energy and 50 mM of H{sub 2}O{sub 2}. The initial non-biodegradability of PMW, as shown by respirometry assays and BOD{sub 5}/COD ratio, can be changed after a solar photo-Fenton treatment. Experiments with 20 and 50 mg Fe L{sup -1} revealed that solar photo-Fenton can reach the same DOC degradation (90%), however, consuming less H{sub 2}O{sub 2} and time. Diluting the initial organic load to 50% also diminishes the dosage of H{sub 2}O{sub 2} and the necessary reaction time to achieve high DOC removals. Accordingly, solar photo-Fenton can be considered an alternative or complementary process to improve the performance of a biologic treatment and, subsequently, achieve legal limits on discharge into natural waters.

  15. Degradation of bisphenol A in water by the heterogeneous photo-Fenton.

    Science.gov (United States)

    Jiang, Chuanrui; Xu, Zhencheng; Guo, Qingwei; Zhuo, Qiongfang

    2014-01-01

    Bisphenol A (BPA) is a kind of a controversial endocrine disruptor, and is ubiquitous in environment. The degradation of BPA with the heterogeneous photo-Fenton system was demonstrated in this study. The Fe-Y molecular sieve catalyst was prepared with the ion exchange method, and it was characterized by X-ray radiation diffraction (XRD). The effects ofpH, initial concentration of H2O2, initial BPA concentration, and irradiation intensity on the degradation of BPA were investigated. The service life and iron solubility of catalyst were also tested. XRD test shows that the major phase of the Fe-Y catalyst was Fe2O3. The method of heterogeneous photo-Fenton with Fe-Y catalyst was superior to photolysis, photo-oxidation with only hydrogen, heterogeneous Fenton, and homogeneous photo-Fenton approaches. pH value had no obvious effects on BPA degradation over the range of 2.2-7.2. The initial concentration of H2O2 had an optimal value of 20 x 10(-4) mol/L. The decrease in initial concentration of BPA was favourable for degradation. The intensity of ultraviolet irradiation has no obvious effect on the BPA removal. The stability tests indicated that the Fe-Y catalyst can be reused and iron solubility concentration ranged from NA to 0.0062 mg/L. Based on the results, the heterogeneous photo-Fenton treatment is the available method for the degradation of BPA.

  16. Decolorizing textile wastewater with Fenton's reagent electrogenerated with a solar photovoltaic cell.

    Science.gov (United States)

    Figueroa, Sandra; Vázquez, Leticia; Alvarez-Gallegos, A

    2009-02-01

    In this work it is demonstrated that Fenton's reagent can be electroproduced with abundant and cheap feedstock: oxygen saturated wastewater and solar energy. Experiments were carried out in a divided electrochemical flow cell using two electrodes: a three dimensional reticulated vitreous carbon cathode and stainless steel anode. Fenton's reagent is produced by oxygen reduction on the cathode in the presence of 1mM Fe(2+). The influence of electrolyte nature and its concentration and potential difference on the current efficiency, as well as the rate of Fenton's reagent electroproduction is discussed and it is concluded that over this extended range of conditions the current efficiency, for Fenton's reagent production, fell within the range 50-70%. It is possible to electroproduce a stoichiometric amount of Fenton reagent for the oxidation of 0.061mM Reactive Black 5 (in tap water+0.05M Na(2)SO(4), approximately pH 2.8). Similar results were obtained for solutions containing 0.1mM Acid Green 25. Some practical applications in the field of water treatment are included. The energy required for drive electrochemical reaction is supplied to the flow cell by means of a commercial solar panel.

  17. Synergistic effect of water content and composite conditioner of Fenton's reagent combined with red mud on the enhanced hydrogen production from sludge pyrolysis.

    Science.gov (United States)

    Yang, Jiakuan; Song, Jian; Liang, Sha; Guan, Ruonan; Shi, Yafei; Yu, Wenbo; Zhu, Suiyi; Fan, Wei; Hou, Huijie; Hu, Jingping; Deng, Huali; Xiao, Bo

    2017-10-15

    This study investigated the synergistic effect of water content and a composite conditioner of Fenton's reagent combined with red mud (Fenton-RM) on the pyrolytic products (fuel gas, tar, and solid char) of deep-dewatered sludge. The catalytic effect of metal oxides in Fenton-RM could be promoted by the presence of water during sludge pyrolysis, showing higher gas yield with increased water content. Maximum gas outputs of the deep-dewatered sludge conditioned with Fenton-RM (S-Fenton-RM) and the conventional dewatered sludge conditioned with polyacrylamide (S-PAM), both appeared at 900 °C with a water content of 65 wt%, and were 0.257 and 0.189 L/g dry solid (DS), respectively. At the same temperature and with the same water content, the hydrogen (H 2 ) yields of the S-Fenton-RM samples were always higher than those of the S-PAM samples. At 900 °C, the maximum H 2 yield of the S-Fenton-RM samples was 0.102 L/g DS, which was 85.5% higher than that of the S-PAM samples. The results indicated that water in the wet sludge provided the steam atmosphere for pyrolysis, and the water vapor then involved in secondary cracking reformation of tar and char gasification reactions, which would be catalyzed by the presence of metal oxides in the Fenton-RM conditioner, thus increasing the yield of fuel gas, especially hydrogen. The H 2 production cost from the S-Fenton-RM system is less than that from the S-PAM system. The results suggest that pyrolysis of the wet deep-dewatered sludge conditioned with Fenton-RM is an economical and promising alternative for sewage sludge dewatering and disposal/reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Decolorization kinetics of Procion H-exl dyes from textile dyeing using Fenton-like reactions.

    Science.gov (United States)

    Ntampegliotis, K; Riga, A; Karayannis, V; Bontozoglou, V; Papapolymerou, G

    2006-08-10

    The decolorization kinetics of three commercially used Procion H-exl dyes was studied using a Fenton-like reagent. The effect of the major system parameters (pH, concentration of H(2)O(2) and Fe(3+) and initial dye concentration) on the kinetics was determined. For comparison, the effect of the use of UV irradiated Fenton-like reagent and of Fenton reagent on the kinetics was also examined. In addition, mineralization rates and the biodegradability improvement as well as the effect of the addition of Cl(-), CO(3)(2-) or HCO(3)(-) on the decolorization rates was studied. The reactions were carried out in a 300 ml stirred cylindrical reactor with the capability of UV irradiation. The dye half-life time goes through a minimum with respect to the solution pH between 3 and 4. It also exhibits a broad minimum with respect to Fe(3+) and H(2)O(2) at molar ratios of H(2)O(2)/Fe(3+) from about 100 to 10. The addition of CO(3)(2-) and HCO(3)(-) substantially reduces the decolorization rates, while this effect is significantly less pronounced with Cl(-). At an optimum range of parameters, the mineralization rate (TOC reduction) is very slow for the Fenton-like process (TOC decrease from an initial 49.5 to 41.1 mg/l after 30 min and to only 35.2 mg/l after 600 min), but it increases significantly for the photo-Fenton-like process (to TOC values of 39.7 and 11.4 mg/l, respectively). The biodegradability, as expressed by the BOD/COD ratio, increases significantly from an initial value of 0.11-0.55 for the Fenton-like and to 0.72 for the photo-Fenton-like processes.

  19. Electro-Fenton degradation of antimicrobials triclosan and triclocarban

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Oturan, Nihal [Universite de Marne la Vallee, Laboratoire des Geomateriaux et Geologie de l' Ingenieur, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallee Cedex 2 (France); Oturan, Mehmet A. [Universite de Marne la Vallee, Laboratoire des Geomateriaux et Geologie de l' Ingenieur, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallee Cedex 2 (France); Rodriguez, Rosa Maria [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2007-05-05

    The antimicrobials triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) and triclocarban (N-(4-chlorophenyl)-N'-(3,4-dichlorophenyl)urea) have been degraded by four electro-Fenton systems using undivided electrolytic cells with a Pt or boron-doped diamond (BDD) anode and a carbon felt or O{sub 2} diffusion cathode. The main oxidant is hydroxyl radical ({center_dot}OH) produced both on the anode surface from water oxidation and in the medium by Fenton's reaction, which takes place between electrogenerated H{sub 2}O{sub 2} and Fe{sup 2+} coming from cathodic reduction of O{sub 2} and Fe{sup 3+}, respectively. Triclosan from saturated aqueous solutions of pH 3.0 is completely removed in all cells, decreasing its decay rate in the order: Pt/carbon felt > BDD/carbon felt > Pt/O{sub 2} diffusion > BDD/O{sub 2} diffusion, in agreement with their {center_dot}OH generation ability from Fenton's reaction. Glyoxylic, maleic and oxalic acids are identified as aliphatic intermediates. Complexes between oxalic acid and iron ions persist largely in solution, although Fe{sup 2+}-oxalato complexes are mineralized by {center_dot}OH in the medium and Fe{sup 3+}-oxalato complexes are destroyed by {center_dot}OH on BDD. Analogous treatments of more concentrated triclosan solutions using a 20:80 (v/v) acetonitrile/water mixture as solvent evidence the role of hydroxyl radicals along the degradation. In this hydroorganic medium hydroxylated derivatives such as 2,4-dichlorophenol, 4-chlorocatechol, chlorohydroquinone and chloro-p-benzoquinone, and carboxylic acids such as maleic, oxalic, formic and acetic acids are detected as products. Complete destruction of iron-oxalato complexes and released Cl{sup -} ion involves some oxidizing species coming from parallel acetonitrile oxidation. The same electro-Fenton systems also yield the overall removal of triclocarban in acetonitrile/water mixtures, giving rise to urea, hydroquinone, chlorohydroquinone, 1-chloro-4

  20. Immobilizing LaFeO3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance

    Science.gov (United States)

    Wang, Kaixuan; Niu, Helin; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Gao, Yuanhao

    2017-05-01

    LaFeO3 nanoparticles immobilized on the surface of monodisperse carbon spheres have been obtained through a facile and environmentally friendly ultrasonic assisted surface ions adsorption method. The LaFeO3/C nanocomposite was evaluated as photo-Fenton like catalyst for the degradation of Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). The LaFeO3/C nanocomposite possesses high specific surface area compared with pure LaFeO3 and significantly enhanced photo-Fenton like catalytic performance. The possible formation process of the LaFeO3/C nanocomposite and the mechanism for photo-Fenton like reaction were discussed. The superior property was attributed to the synergistic effects from the photo-Fenton like process and the presence of carbon spheres. In addition, the heterogeneous process led to better recyclability of this type of catalyst.

  1. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    Science.gov (United States)

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration.

  2. Enhanced Electro-Fenton Mineralization of Acid Orange 7 Using a Carbon Nanotube Fiber-Based Cathode

    Directory of Open Access Journals (Sweden)

    Thi Xuan Huong Le

    2018-02-01

    Full Text Available A new cathodic material for electro-Fenton (EF process was prepared based on a macroscopic fiber (CNTF made of mm-long carbon nanotubes directly spun from the gas phase by floating catalyst CVD, on a carbon fiber (CF substrate. CNTF@CF electrode is a highly graphitic material combining a high surface area (~260 m2/g with high electrical conductivity and electrochemical stability. One kind of azo dye, acid orange 7 (AO7, was used as model bio-refractory pollutant to be treated at CNTF@CF cathode in acidic aqueous medium (pH 3.0. The experimental results pointed out that AO7 and its organic intermediate compounds were totally mineralized by hydroxyl radical generated from Fenton reaction. In fact, 96.7% of the initial total organic carbon (TOC was eliminated in 8 h of electrolysis by applying a current of −25 mA and ferrous ions as catalyst at concentration of 0.2 mM. At the same electrolysis time, only 23.7% of TOC removal found on CF support which proved the high mineralization efficiency of new material thanks to CNTF deposition. The CNTF@CF cathode maintained stable its activity during five experimental cycles of EF setup. The results indicated that CNTF@CF material could be a potential choice for wastewater treatment containing bio-refractory by electrochemical advanced oxidation processes.

  3. Ultrasonic-enhanced Fenton-like degradation of bisphenol A using a bio-synthesized schwertmannite catalyst.

    Science.gov (United States)

    Li, Xiang; Zhang, Yongkui; Xie, Yi; Zeng, Yu; Li, Panyu; Xie, Tonghui; Wang, Yabo

    2018-02-15

    Schwertmannite (Sch) was synthesized by Acidithiobacillus ferrooxidans and used as Fenton-like catalyst for bisphenol A (BPA) degradation combining with ultrasonic technology (US). Physicochemical characterizations showed that the bio-synthesized Sch particles had a pompon-like morphology with high BET surface area of 92.92m 2 /g. The degradation reaction showed a two-stage pseudo-first-order kinetic process consisting of an induction period and a followed rapid degradation period. A synergistic effect existed between US and Sch on activating H 2 O 2 and the synergy factor was calculated to be 2.32. The catalytic efficiency of the system was mainly affected by pH, Sch dosage and temperature, but less relevant to H 2 O 2 concentration. Free OH radicals in the bulk solution were identified to be the dominant oxidant, which were produced by both heterogeneous and homogeneous processes. The promotional effect of US on Fenton-like degradation of BPA can be ascribed to the reasons of (1) increasing the radical generation by ultrasonic cavitation; (2) reducing the apparent activation energies of degradation reaction; (3) accelerating the dissolution of iron and (4) keeping the high surface area of catalyst by continuous surface cleaning. Ecotoxicity tests indicated lower toxicities of intermediates than BPA. In addition, Sch exhibited high reusability in the recycle study. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Role of copper pyrovanadate as heterogeneous photo-Fenton like catalyst for the degradation of neutral red and azure-B: An eco-friendly approach

    Energy Technology Data Exchange (ETDEWEB)

    Kalal, Sangeeta; Ameta, Noopur; Kumar, Sudhish; Punjabi, Pinki Bala [M. L. Sukhadia University, Udaipur (India); Chauhan, Narendra Pal Singh [B. N. P. G. College, Udaipur (India); Ameta, Rakshit [PAHER University, Udaipur (India)

    2014-12-15

    The heterogeneous photo-Fenton like process is a green chemical pathway.. It has an edge over conventional Fenton and photo-Fenton processes as it does not require the removal of ferrous/ferric ions in the form of sludge. We prepared copper pyrovanadate or Volborthite (Cu{sub 3}V{sub 2}(OH){sub 2}O{sub 7}·2H{sub 2}O) composite photocatalyst by wet chemical method. The photocatalyst was characterized by SEM, XRD, IR, TGA/DSC, EDX and BET. Experiments demonstrated that catalyst could effectively catalyze degradation of neutral red and azure-B in presence of H{sub 2}O{sub 2} in visible light. Moreover, the photo-Fenton-like catalytic activity of Cu{sub 3}V{sub 2}(OH){sub 2}O{sub 7}·2H{sub 2}O was much higher than CuO and V{sub 2}O{sub 5}, when used alone as photocatalyst. The effect of variation of different parameters, i.e., pH, amount of photocatalyst, concentration of dye, amount of H{sub 2}O{sub 2} and light intensity was also investigated. The degradation was well fitted under pseudo-first-order reaction with a rate constant of 2.081x10{sup −4} sec{sup −1} and 3.876x10{sup −4} sec{sup −1} for neutral red and azure-B, respectively. Quality parameters of dye solutions before and after photo-Fenton degradation were also determined. A tentative mechanism involving •OH radical as an oxidant has been proposed. The high catalytic activity may be due to the Cu{sub 3}V{sub 2}(OH){sub 2}O{sub 7}·2H{sub 2}O shell, which not only increased the surface hydroxyl groups, but also enhanced the interfacial electron transfer.. The catalyst has been found to possess good recyclability.

  5. Immobilizing LaFeO{sub 3} nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaixuan [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Niu, Helin, E-mail: niuhelin@ahu.edu.cn [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Gao, Yuanhao [Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)

    2017-05-15

    Highlights: • LaFeO{sub 3} nanoparticles sub–10 nm were successfully immobilized on monodisperse carbon spheres for the first time through a facile and environmental friendly ultrasonic assisted surface ions adsorption method. • LaFeO{sub 3}/C nanocomposite exhibits much higher photo-Fenton like catalytic activity than LaFeO{sub 3}. • The superior property was attributed to the synergistic effects from the photo-Fenton like process and the presence of monodisperse carbon spheres. - Abstract: LaFeO{sub 3} nanoparticles immobilized on the surface of monodisperse carbon spheres have been obtained through a facile and environmentally friendly ultrasonic assisted surface ions adsorption method. The LaFeO{sub 3}/C nanocomposite was evaluated as photo-Fenton like catalyst for the degradation of Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). The LaFeO{sub 3}/C nanocomposite possesses high specific surface area compared with pure LaFeO{sub 3} and significantly enhanced photo-Fenton like catalytic performance. The possible formation process of the LaFeO{sub 3}/C nanocomposite and the mechanism for photo-Fenton like reaction were discussed. The superior property was attributed to the synergistic effects from the photo-Fenton like process and the presence of carbon spheres. In addition, the heterogeneous process led to better recyclability of this type of catalyst.

  6. Degradation of benzalkonium chloride coupling photochemical advanced oxidation technologies with biological processes

    International Nuclear Information System (INIS)

    Meichtry, J; Lamponi, A; Gautier, E; Acosta, T; Fiol, P; Curutchet, G; Candal, R; Litter, M

    2005-01-01

    The combination of Advanced Oxidation Technologies (AOTs) and biological processes can be visualized as a very successful technological option for treatment of effluents, because it combines high oxidizing technologies with a conventional, low-cost and well-established treatment technology.Photochemical AOTs, like UV-C with or without H 2 O 2 , photo-Fenton (PF, UV/H 2 O 2 /Fe(II-III)) and UV/TiO 2 heterogeneous photo catalysis involve the generation and use of powerful oxidizing species, mainly the hydroxyl radical.In almost all AOTs, it is possible to use sunlight. Benzalkonium chloride (dodecyldimetylbencylammonium chloride, BKC) is a widely used surfactant, which has many industrial applications.Due to its antibacterial effect, it cannot be eliminated from effluents by a biological treatment, and the complexity of its chemical structure makes necessary the use of drastic oxidizing treatments to achieve complete mineralization and to avoid the formation of byproducts even more toxic than the initial compound.In this study, different alternatives for BKC treatment using photochemical AOTs followed by bio catalytic techniques are presented.Three AOTs were tested: a) UV-C (254 nm, germicide lamp) with and without H 2 O 2 , b) PF (366 nm), c) UV/TiO 2 (254 and 366 nm). PF at a 15:1:1 H 2 O 2 total/BKC 0 /Fe 0 molar ratio at 55 degree C was the most efficient treatment in order to decrease the tensioactivity and the total organic carbon of the solution . The biocatalysis was studied in a reactor fitted with a biofilm of microorganisms coming from a sludge-water treatment plant. To evaluate the maximal BKC concentration that could be allowed to ingress to the biological reactor after the AOT treatment, the toxicity of solutions of different BKC concentrations was analyzed. The study of the relevant parameters of both processes and their combination allowed to establish the preliminary conditions for optimizing the pollutant degradation

  7. Microorganisms inactivation in wastewater by solar photo-Fenton at neutral pH; Inactivacion de microorganismos presentes en aguas mediante foto-Feton solar a pH neutro

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Gomez, E.

    2015-07-01

    The global fresh water shortage, caused mainly by the drought and the pollution of sources, is one of the main environmental problems currently affecting the human race. Over the last few decades, water quality requirements for use in different activities has obliged us to find alternative solutions which requires a concerted effort at a scientific as well as political, economic and social level. In particular, treated wastewater recycling has come up recently as a source provision for sectors where high water quantities are consumed. In this regard, the main sector to benefit is agriculture, which produces the 60% of global food, according to Food and Agriculture Organization (FAO). As such, treatments that are able to guarantee water microbiological quality, as stated by governing law, are necessary and resolve disadvantages or problems with current treatment, Amongst new technologies available for wastewater regeneration, a noteworthy point is the high level of efficiency in Advanced Oxidation Processes (AOPs). Furthermore, those that are capable of using sunlight as a radiation source are of special interest, particularly the homogeneous photocatalytic process, solar photo-Fenton. Generally speaking, in Fenton reactions, an oxidant agent (H2O2) reacts with a catalyst (Fe2+) generating hydroxyl radicals, which are high oxidant and non-selective species causing the inactivation of several microorganisms. The presence of UV-A photons in sunlight leads to catalyst regeneration and the production of more hydroxyl radicals. One of the main goals of this research work has been to improve the knowledge about the microorganism inactivation process through solar photo-Fenton at neutral pH, which has been scarcely studied, for application as a tertiary treatment in a wastewater treatment plant (WWTP). With this aim in mind, the bacteria Enterococus faecalis (Gram-positive microorganism) has been used as a fecal pollution indicator since it has not been studied in great

  8. Fabrication of magnetic carbon composites from peanut shells and its application as a heterogeneous Fenton catalyst in removal of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lincheng, E-mail: zhoulc@lzu.edu.cn; Ma, Junjun; Zhang, He; Shao, Yanming; Li, Yanfeng

    2015-01-01

    Graphical abstract: Peanut shell magnetic carbon (PMC) were fabricated by carbonized the mixture of peanut shells and (NH{sub 4}){sub 3}Fe(C{sub 2}O{sub 4}){sub 3}. The obtained PMC exhibit high efficiency in catalysis oxidation methylene blue with the help of K{sub 2}S{sub 2}O{sub 8} and it can be easily separated from aqueous by external magnetic field. Meanwhile, the catalyst can be reused for seven times almost without decreased of activity. - Highlights: • Novel peanut shell magnetic carbon (PMC) catalysts were successfully synthesized. • PMC exhibited superior activity as a heterogeneous Fenton-like catalyst. • A high efficient Fenton-like system was set up for removal MB. • PMC posed excellent catalysis oxidation quality, stability and good reusability. - Abstract: Magnetic carbons were prepared from agricultural waste peanut shells and Ferric ammonium oxalate via a simple impregnation and carbonization process. The obtained composites were characterized by element analysis, MÖssbauer spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry and the Brunauer-Emmett-Teller surface area method, respectively. The magnetic carbon material was used as catalyst of heterogeneous Fenton reaction to remove methylene blue with the help of persulfate in waste water. The results indicated that both the removal rate and removal efficiency of this catalytic system are very excellent. The degradation efficiency was best (90% within 30 min) using initial concentrations of 0.5 g L{sup −1} persulfate and 40 mg L{sup −1} methylene blue. The removal mechanism was investigated by LC-MS. The catalyst retained its activity after seven reuses, indicating its good stability and reusability. It is inexpensive because it consists mainly of agricultural waste. Its porosity contributed to its high activity, which was achieved without any additional activation process. These indicating that the catalyst is

  9. Sustaining 1,2-Dichloroethane Degradation in Nanoscale Zero-Valent Iron induced Fenton system by using Sequential H2O2 Addition at Natural pH

    Science.gov (United States)

    Phenrat, T.; Le, T. S. T.

    2017-12-01

    1,2-Dichloroethane (1,2-DCA) is a prevalent subsurface contaminant found in groundwater and soil around the world. Nanoscale zero-valent iron (NZVI) is a promising in situ remediation agent for chlorinated organics. Nevertheless, 1,2-DCA is recalcitrant to reductive dechlorination using NZVI. Chemical oxidation using Fenton's reaction with conventional Fe2+ is a valid option for 1,2-DCA remediation with a major technical challenge, i.e. aquifer acidification is needed to maintain Fe2+ for catalytic reaction. In this work, NZVI Fenton's process at neutral pH was applied to degrade 1,2-DCA at high concentration (2,000 mg/L) representing dissolved 1,2-DCA concentration close to non-aqueous phase liquid source zone. Instead of using acidification to maintain dissolved Fe2+ concentration, NZVI Fenton's process is self-catalytic based on oxidative dissolution of NZVI in the present of H2O2. Interfacial H+ is produced at NZVI surface to provide appropriate local pH which continuously releases Fe2+ for Fenton's reaction. Approximately, 87% of 1,2-DCA was degraded at neutral pH with the pseudo first-order rate constant of 0.98 hour-1 using 10 g/L of NZVI and 200 mM of H2O2. However, the reaction was prohibited quickly within 3 hours presumably due to the rapid depletion of H2O2. The application of sequential H2O2 addition provided a better approach to prevent rapid inhibition via controlling the H2O2 concentration in the system to be sufficient but not excess, thus resulting in the higher degradation efficiency (the pseudo first-order rate constant of 0.49 hour-1 and 99 % degradation in 8 hours). Using NZVI with sequential H2O2 addition was also successful in degrading 1,2-DCA sorbed on to soil, yielding 99% removal of 1,2-DCA within 16 hours at the rate constant of 0.23 hour-1, around two times slower than in the system without soil presumably due to rate-limited 1,2-DCA desorption from soil. Mechanistic understanding of how sequential addition of H2O2, in comparison to

  10. ESTUDO MECANÍSTICO DAS REAÇÕES FENTON E CUPRO-FENTON POR ANÁLISE VOLTAMÉTRICA IN SITU

    Directory of Open Access Journals (Sweden)

    Leidi C. Friedrich

    Full Text Available Although the classical Fenton process exhibits a high initial rate of the organic compounds degradation, this process is not complete due to the formation of refractory compounds which resist the attack of the hydroxyl radicals. In the presence of Cu(II, the degradation is slower, but results in a greater reduction of TOC (total organic carbon measurements of net mineralization at the end of the reaction (t=120min. The addition of Cu(II ions to classical Fenton reaction conditions (Fe(II plus H2O2 at pH 3 is shown to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15% additional reduction of the TOC. Voltammetric studies confirm the catalytic role of catechol in the presence of Fe(III/Fe(II and Cu(II/Cu(I. Addition of aliphatic acids to the reaction medium, did not interfere with the cupro-Fenton reaction, but had an inhibitory effect on the classical Fenton reaction, consistent with the following order of interaction with the ion Fe(III: Oxalic Acid (OA >> Formic Acid (FA ~ Acetic acid (AA.

  11. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhujian [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Wu, Pingxiao, E-mail: pppxwu@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); Gong, Beini; Yang, Shanshan; Li, Hailing [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhu, Ziao; Cui, Lihua [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2016-05-01

    Graphical abstract: - Highlights: • G–Fe chelate molecules were well preserved into montmorillonite. • The product shows an excellent catalytic activity under sunlight at neutral pH value. • G–Fe–Mt is a promising catalyst for advanced oxidation processes. - Abstract: To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G–Fe–Mt) was developed. The physiochemical properties of G–Fe–Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G–Fe–Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G–Fe–Mt under neutral pH. G–Fe–Mt is a promising catalyst for advanced oxidation processes.

  12. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.

    Directory of Open Access Journals (Sweden)

    Martin C Krueger

    Full Text Available Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS. Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ, which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants.

  13. Experimental Design of Photo-Fenton Reactions for the Treatment of Car Wash Wastewater Effluents by Response Surface Methodological Analysis

    Directory of Open Access Journals (Sweden)

    Maha A. Tony

    2014-01-01

    Full Text Available Establishing a treatment process for practical and economic disposal of car wash wastewater has become an urgent environmental concern. Photo-Fenton’s process as one of the advanced oxidation processes is a potentially useful oxidation process in treating such wastewater. Lab-scale experiments with UV source, coupled with Fenton’s reagent, showed that hydrocarbon oil is degradable through such a process. The feasibility of photo-Fenton’s process to treat wastewater from a car wash is investigated in the present study. A factorial design based on the response surface methodology was applied to optimize the photo-Fenton oxidation process conditions using chemical oxygen demand (COD reduction as the target parameter to optimize. The reagent (Fe2+ and H2O2 concentration and pH are used as the controlling factors to be optimized. Maximal COD reduction (91.7% was achieved when wastewater samples were treated at pH 3.5 in the presence of hydrogen peroxide and iron in amounts of 403.9 and 48.4 mg/L, respectively.

  14. Elaboration and characterisation of yttrium oxide and hafnium oxide powders by the sol-gel process

    International Nuclear Information System (INIS)

    Hours, T.

    1988-01-01

    The two classical sol-gel processes, colloidal and polymeric are studied for the preparation of yttrium oxide and hafnium oxide high performance powders. In the colloidal process, controlled and reproducible conditions for the preparation of yttrium oxide and hafnium oxide sols from salts or alkoxides are developed and the hydrothermal synthesis monodisperse hafnium oxide colloids is studied. The polymeric process is studied with hafnium ethyl-hexylate, hydrolysis kinetics for controlled preparation of sols and gels is investigated. Each step of preparation is detailed and powders obtained are characterized [fr

  15. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater

    Directory of Open Access Journals (Sweden)

    Nancy R. Sanabria

    2012-01-01

    Full Text Available This paper focuses on the use of pillared clays as catalysts for the Fenton-like advanced oxidation, specifically wet hydrogen peroxide catalytic oxidation (WHPCO. This paper discusses the limitations on the application of a homogeneous Fenton system, development of solid catalysts for the oxidation of phenol, advances in the synthesis of pillared clays, and their potential application as catalysts for phenol oxidation. Finally, it analyzes the use of pillared clays as heterogeneous Fenton-like catalysts for a real wastewater treatment, emphasizing the oxidation of phenolic compounds present in coffee wastewater. Typically, the wet hydrogen peroxide catalytic oxidation in a real effluent system is used as pretreatment, prior to biological treatment. In the specific case of coffee wet processing wastewater, catalytic oxidation with pillared bentonite with Al-Fe is performed to supplement the biological treatment, that is, as a posttreatment system. According to the results of catalytic activity of pillared bentonite with Al-Fe for oxidation of coffee processing wastewater (56% phenolic compounds conversion, 40% selectivity towards CO2, and high stability of active phase, catalytic wet hydrogen peroxide oxidation emerges as a viable alternative for management of this type of effluent.

  16. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  17. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.

    Science.gov (United States)

    Zhang, Ying; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Gamal El-Din, Mohamed

    2017-07-01

    Naphthenic acids (NAs) are a highly complex mixture of organic compounds naturally present in bitumen and identified as the primary toxic constituent of oil sands process-affected water (OSPW). This work investigated the degradation of cyclohexanoic acid (CHA), a model NA compound, and natural occurring NAs during the UV photolysis of Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton processes. The results indicated that in the UV-Fe(III)NTA process at pH 8, the CHA removal increased with increasing NTA dose (0.18, 0.36 and 0.72 mM), while it was independent of the Fe(III) dose (0.09, 0.18 and 0.36 mM). Moreover, the three Fe concentrations had no influence on the photolysis of the Fe(III)NTA complex. The main responsible species for the CHA degradation was hydroxyl radical (OH), and the role of dissolved O 2 in the OH generation was found to be negligible. Real OSPW was treated with the UV-Fe(III)NTA and UV-NTA-Fenton advanced oxidation processes (AOPs). The removals of classical NAs (O 2 -NAs), oxidized NAs with one additional oxygen atom (O 3 -NAs) and with two additional oxygen atoms (O 4 -NAs) were 44.5%, 21.3%, and 25.2% in the UV-Fe(III)NTA process, respectively, and 98.4%, 86.0%, and 81.0% in the UV-NTA-Fenton process, respectively. There was no influence of O 2 on the NA removal in these two processes. The results also confirmed the high reactivity of the O 2 -NA species with more carbons and increasing number of rings or double bond equivalents. This work opens a new window for the possible treatment of OSPW at natural pH using these AOPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Advances in solar photoelectro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Brillas, Enric

    2014-01-01

    Highlights: • Assessment of an autonomous solar pre-pilot plant for solar photoelectro-Fenton. • Total decolorization and 96-97% mineralization for solutions of Direct Yellow 4 diazo dye at pH 3.0. • More rapid dye decay and mineralization at 0.50 mmol dm −3 Fe 2+ and maximum current of 5.0 A. • 11 aromatics, 22 hydroxylated derivatives and 9 carboxylic acids detected as intermediates. • Release of NH 4 + and SO 4 2− as main inorganic ions. - Abstract: Here, an overview on the advances in solar photoelectro-Fenton (SPEF) is initially presented to show that it is the more potent electrochemical advanced oxidation process based on Fenton's reaction chemistry to remove organic pollutants from waters, due to the synergistic action of generated hydroxyl radicals and solar irradiation. As a novel advance for SPEF, an autonomous solar pre-pilot plant is proposed to make an energetically inexpensive process that can be viable at industrial level. The plant of 10 dm 3 capacity contained a Pt/air-diffusion cell with 90.2 cm 2 electrode area, coupled to a solar compound parabolic collectors (CPCs) photoreactor of 1.57 dm 3 irradiation volume and to a solar photovoltaic panel that provides a maximum average current of 5.0 A. The oxidation ability of this plant was assessed by studying the degradation of Direct Yellow 4 (DY4) diazo dye, which involved the predominant destruction of organics by ·OH formed from Fenton's reaction between H 2 O 2 generated at the cathode and added Fe 2+ , along with the photolysis of Fe(III)-carboxylate complexes with sunlight in the CPCs photoreactor. The effect of Fe 2+ and dye contents as well as current on decolorization rate, substrate decay and mineralization rate was examined. About 96-97% mineralization was rapidly attained using 0.50 mmol dm −3 Fe 2+ and up to 0.32 mmol dm −3 DY4 at 5.0 A. The DY4 decay always obeyed a pseudo-first-order kinetics. Eleven aromatic products, twenty two hydroxylated derivatives

  19. Elimination of drugs of abuse and their toxicity from natural waters by photo-Fenton treatment.

    Science.gov (United States)

    Catalá, M; Domínguez-Morueco, N; Migens, A; Molina, R; Martínez, F; Valcárcel, Y; Mastroianni, N; López de Alda, M; Barceló, D; Segura, Y

    2015-07-01

    This paper investigates the elimination of drugs of abuse from six different chemical classes and their metabolites in natural fluvial waters (nearby the output of a sewage system). Mineralization of these substances and toxicological characterization before and after treatment by a heterogeneous photo-Fenton system has been evaluated. This advanced oxidation technology was able to significantly reduce the concentration of the drugs of abuse in all the tested conditions (different hydrogen peroxide and catalyst loadings). However, toxicological analyses measured as inhibition of fern spore mitochondrial activity, showed only a complete elimination of acute and chronic toxicity when a higher solid catalyst loading was used (0.6 g/L). A lower catalyst loading of 0.2 g/L was not enough for toxicity elimination. These results evidence the need for combining toxicological tests and chemical analyses in order to establish the effectiveness of the water treatment technologies based on advanced oxidation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Oxidative processes in power plant oils

    International Nuclear Information System (INIS)

    Forlerer, Elena; Zambrano, Debora N.

    2007-01-01

    This paper analyzes the chemical properties differences between thermal-oxidation and radioactive-oxidation in turbine oils in order to estimate the oils' Service Life. The oils were Turbine R type, provided by Repsol-YPF with only few additives such as: anti rust, antioxidant, anticorrosion and without viscosity index improvers. The oils were ISO 32 and ISO 68 grade -with viscosity index 95- and API (American Petroleum Institute) group I, due to its viscosity index (95), the percent of paraffinic component ( 0.03%). Different samples from the heavy water main pumps were collected with different service times and radiation fields during an Embalse NPP's outage. For comparison purposes oils from feedwater pumps systems that convey light water to the steam generators in the Turbine building -without radiation- were obtained. The properties studied by ASTM standards were: colour (visual inspection), Viscosity Index VI (ASTM D227/93), viscosity at 40 C degrees (ASTM D445/96) and Total Acid Number, TAN (ASTM D974-97). Oxidative degradation of base oils could be described by two successive mechanisms that allow the definition of two stages: Primary and Secondary Oxidation. Primary oxidation begins with the thermal generation of alkylation's reactions and acid products formation. Radiation damage operates by two mechanisms: scission and cross-linking. The first one generates free radicals of low molecular weight while the other one can build-up complex molecular networks with high or low solubility in the base oil. Moreover, radiation damage destroys additives molecules and generates colour centres different from oxidative colour modification. Due to scission and cross-linking alkyl group substitution in the aromatic rings are formed. Then, radiation acts as a precursor of Primary Oxidation. Both, thermal and radioactive, damage mechanisms can act simultaneously making the isolated analysis for each one very difficult. To manage it, a Relative Damage Index (RDI) has been

  1. Empleo del reactivo de Fenton para la degradación del colorante Tartrazina

    OpenAIRE

    Arroyave Rojas, Joan Amir; Garcés Giraldo, Luís Fernando; Mejía Trujillo, Julieta

    2009-01-01

    Objective. To evaluate the degradation of Tartrazine dye by using the Fenton´s reagent. We aim to implement an advanced oxidation technology in order to remove the Tartrazine dye, which is widely used in food industry locally, nationally and internationally. Materials and methods. A randomized factorial experimental design was used, with a reactor composed of a glass recipient as a reservoir to store the problem sample and the reaction place for the degradation. Add...

  2. Degradation of ion spent resin using the Fenton's reagent; Degradacao da resina de troca ionica utilizando o reagente de Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leandro Goulart de

    2013-07-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  3. INVESTIGATIONS ON SEWAGE TREATMENT PROCESS USING COMBINED BIO-OXIDIZERS

    Directory of Open Access Journals (Sweden)

    V. N. Jaromsky

    2010-01-01

    Full Text Available The paper presents results of investigations on process of aerobic waste water treatment with combined bio-oxidizers at milk processing enterprises. It has been shown that attached biocenosis, free-floating biocenosis and also bio-module rotation frequency  have exerted a significant influence on the process of an aerobic sewage treatment. It has been established that combined bio-oxidizers can be used for cleaning high concentrated waste water at the enterprises of food industry.

  4. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  5. Characterization and detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vedrenne, Michel [Department of Chemistry and Chemical Engineering, Universidad Iberoamericana, Mexico City, Prolongacion Paseo de la Reforma 880, Col. Lomas de Santa Fe. 01219 Mexico, D.F. (Mexico); Department of Chemical and Environmental Engineering, Technical University of Madrid, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Vasquez-Medrano, Ruben, E-mail: ruben.vasquez@uia.mx [Department of Chemistry and Chemical Engineering, Universidad Iberoamericana, Mexico City, Prolongacion Paseo de la Reforma 880, Col. Lomas de Santa Fe. 01219 Mexico, D.F. (Mexico); Prato-Garcia, Dorian [Department of Chemistry and Chemical Engineering, Universidad Iberoamericana, Mexico City, Prolongacion Paseo de la Reforma 880, Col. Lomas de Santa Fe. 01219 Mexico, D.F. (Mexico); Frontana-Uribe, Bernardo A. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, 50200 Toluca, Edo. de Mexico (Mexico); Ibanez, Jorge G. [Department of Chemistry and Chemical Engineering, Universidad Iberoamericana, Mexico City, Prolongacion Paseo de la Reforma 880, Col. Lomas de Santa Fe. 01219 Mexico, D.F. (Mexico)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer A mature landfill leachate was characterized in terms of its pollutants and toxicity. Black-Right-Pointing-Pointer A toxicity bioassay revealed an antagonistic behavior among its pollutants. Black-Right-Pointing-Pointer The coagulation stage produced good results for TC and lead at an acidic pH. Black-Right-Pointing-Pointer The photo Fenton treatment yielded good COD, ammonia and lead removals. Black-Right-Pointing-Pointer Arsenic and mercury showed low removal efficiencies throughout the treatment. - Abstract: The aim of the present work was to characterize and treat a mature landfill leachate using a coagulation/flocculation process followed by a photo-Fenton oxidation treatment. The leachate was obtained from a landfill in Tetlama, Morelos (Mexico) during the drought season and was characterized in terms of its major pollutants. Considerable levels of chemical oxygen demand (COD), total carbon (TC) and NH{sub 4}{sup +} were identified, as well as high concentrations of Hg, Pb, and As. Other heavy metals such as Ni, Co, Zn, Cd, and Mn were detected at trace levels. The lethal concentration (LC{sub 50}) of the leachate, evaluated on Artemia salina, was 12,161 {+-} 11 mg/L of COD, demonstrating an antagonistic interaction among the leachate's components. The treatment of this effluent consisted of a coagulation-flocculation process using an optimal dose of FeCl{sub 3}{center_dot}6H{sub 2}O of 300 mg/L. The supernatant was treated using a photo-Fenton process mediated with FeCl{sub 2}{center_dot}4H{sub 2}O and H{sub 2}O{sub 2} in a compound parabolic concentrator (CPC) photo-reactor operating in batch mode using an R ratio (R = [H{sub 2}O{sub 2}]/[Fe{sup 2+}]) of 114. The global removal efficiencies after treatment were 56% for the COD, 95% for TC, and 64% for NH{sub 4}{sup +}. The removal efficiencies for As, Hg, and Pb were 46%, 9%, and 85%, respectively.

  6. Mobil pilot unit of the advanced oxidation process for waste water treatment and reuse of the hydrics effluents; Unidade piloto movel de processo oxidativo avancado aplicado a tratamento e reuso de efluentes hidricos

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Lucia Maria Limoeiro; Pereira Junior, Oswaldo de Aquino; Henriques, Sheyla de Oliveira Carvalho; Jacinto Junior, Agenor [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The chemical oxidation processes which generate free hydroxyl radicals are called Advanced Oxidation Process (AOP). These processes have been studied, in the last decades, as a new alternative for pollutants degradation. In the (AOP)'s there are in situ formation of hydroxyl radicals (OH{center_dot}), which are highly oxidant. Its high oxidation strength becomes it indicated in the treatment of effluent with highly refractory contaminants. It can be used as a partial treatment (taking the effluent to more degradable compounds), as a final treatment (taking the effluent to complete mineralization) or as a complementary treatment to other processes, allowing, for example, its reuse. The applicability of this technology in oily water effluents in all segments of the oil industry, has taken to the development, in the LARA (Laboratory of Treatment and Reuse of Waters - CENPES), of the Advanced Oxidation Process Mobile Pilot Unit (AOP's- MU) with capacity up to 1 m3/h. The (AOP's- MU) are able to produce hydroxyl radical from Fenton's reaction, titanium dioxide heterogeneous photo catalysis and hydrogen peroxide, photo-radiated or not. It is equipped with ultraviolet reactors of different wave lengths and power. (author)

  7. Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst

    Science.gov (United States)

    Dong, Qimei; Chen, Yingying; Wang, Lingli; Ai, Shasha; Ding, Hanming

    2017-12-01

    Alkalinized graphitic carbon nitride (CNK-OH) has been synthesized by one-step thermal poly-condensation method, and Cu-modified alkalinized g-C3N4 (Cu-CNK-OH) has been prepared by impregnation approach over CNK-OH. These copper species in Cu-CNK-OH are embedded in the frame of CNK-OH mostly via the Cu-N bonds. Cu-CNK-OH has been employed as a heterogeneous Fenton-like catalyst to degrade rhodamine B (RhB). Both the production efficiency of hydroxyl radicals and the transformation rate of Cu(II)/Cu(I) redox pair increase under visible-light irradiation. As a result, Cu-CNK-OH exhibits improved Fenton-like catalytic activity on the degradation of RhB. The synergetic interaction between Fenton-like process and photocatalytic process also contributes such improvement. The hydroxyl radicals and holes are the major reactive species in the photocatalytically assisted Fenton-like process. This study provides a valuable strategy for metal modification of alkalinized g-C3N4 with enhanced Fenton-like catalytic performance for the degradation of organic contaminants.

  8. Decolorization kinetics of Procion H-exl dyes from textile dyeing using Fenton-like reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ntampegliotis, K. [Department of Physical Sciences, Technological and Educational Institute of Larisa, T.K 411 10 Larisa (Greece); Riga, A. [Department of Physical Sciences, Technological and Educational Institute of Larisa, T.K 411 10 Larisa (Greece); Karayannis, V. [Department of Physical Sciences, Technological and Educational Institute of Larisa, T.K 411 10 Larisa (Greece); Bontozoglou, V. [Department of Mechanical and Industrial Engineering, University of Thessaly, Pedion Areos, T.K 383 34 Volos (Greece); Papapolymerou, G. [Department of Physical Sciences, Technological and Educational Institute of Larisa, T.K 411 10 Larisa (Greece)]. E-mail: papapoly@teilar.gr

    2006-08-10

    The decolorization kinetics of three commercially used Procion H-exl dyes was studied using a Fenton-like reagent. The effect of the major system parameters (pH, concentration of H{sub 2}O{sub 2} and Fe{sup 3+} and initial dye concentration) on the kinetics was determined. For comparison, the effect of the use of UV irradiated Fenton-like reagent and of Fenton reagent on the kinetics was also examined. In addition, mineralization rates and the biodegradability improvement as well as the effect of the addition of Cl{sup -}, CO{sub 3} {sup 2-} or HCO{sub 3} {sup -} on the decolorization rates was studied. The reactions were carried out in a 300 ml stirred cylindrical reactor with the capability of UV irradiation. The dye half-life time goes through a minimum with respect to the solution pH between 3 and 4. It also exhibits a broad minimum with respect to Fe{sup 3+} and H{sub 2}O{sub 2} at molar ratios of H{sub 2}O{sub 2}/Fe{sup 3+} from about 100 to 10. The addition of CO{sub 3} {sup 2-} and HCO{sub 3} {sup -} substantially reduces the decolorization rates, while this effect is significantly less pronounced with Cl{sup -}. At an optimum range of parameters, the mineralization rate (TOC reduction) is very slow for the Fenton-like process (TOC decrease from an initial 49.5 to 41.1 mg/l after 30 min and to only 35.2 mg/l after 600 min), but it increases significantly for the photo-Fenton-like process (to TOC values of 39.7 and 11.4 mg/l, respectively). The biodegradability, as expressed by the BOD/COD ratio, increases significantly from an initial value of 0.11-0.55 for the Fenton-like and to 0.72 for the photo-Fenton-like processes.

  9. Functional kaolin supported nanoscale zero-valent iron as a Fenton-like catalyst for the degradation of Direct Black G.

    Science.gov (United States)

    Lin, Jiajiang; Sun, Mengqiang; Liu, Xinwen; Chen, Zuliang

    2017-10-01

    Kaolin supported nanoscale zero-valent iron (K-nZVI) is synthesized and applied as the Fenton-like oxidation catalyst to degrade a model azo dye, Direct Black G (DBG). The characterization of K-nZVI by the high resolution transmission electronmicroscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Energy Diffraction Spectrum (EDS) and X-ray diffraction (XRD) show that kaolin as a support material not only reduces the aggregation of zero-valent iron (nZVI) but also facilitates the Fenton-like oxidation by increasing the local concentration of DBG in the vicinity of nZVI. Pseudo first-order and pseudo second-order kinetic models are employed to reveal the adsorption and degradation of the DBG using K-nZVI as the catalyst. A better fit with pseudo second-order model for the adsorption process and equal excellent fits with pseudo first-order and pseudo second-order models for the degradation process are observed; the adsorption process is found to be the rate limiting step for overall reactions. The adsorption, evaluated by isotherms and thermodynamic parameters is a spontaneous and endothermic process. High-performance liquid chromatography-mass spectrometry (LC-MS) analysis was used to test degraded products in the degradation of DGB by K-nZVI. A removal mechanism based on the adsorption and degradation is proposed, including (i) prompt adsorption of DBG onto the K-nZVI surface, and (ii) oxidation of DBG by hydroxyl radicals at the K-nZVI surface. The application of K-nZVI to treat real wastewater containing azo dyes shows excellent degradation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The adsorption and Fenton behavior of iron rich Terra Rosa soil for removal of aqueous anthraquinone dye solutions: kinetic and thermodynamic studies.

    Science.gov (United States)

    Aktas, Doga; Dizge, Nadir; Cengiz Yatmaz, H; Caliskan, Yasemin; Ozay, Yasin; Caputcu, Ayten

    2017-12-01

    Adsorption and advanced oxidation processes are being extensively used for treatment of wastewater containing dye chemicals. In this study, the adsorption and Fenton behavior of iron rich Terra Rosa soil was investigated for the treatment of aqueous anthraquinone dye (Reactive Blue 19 (RB19)) solutions. The impact of pH, initial dye concentration, soil loading rate, contact time and temperature was systematically investigated for adsorption process. A maximum removal efficiency of dye (86.6%) was obtained at pH 2, soil loading of 10 g/L, initial dye concentration of 25 mg/L, and contact time of 120 min. Pseudo-first-order, pseudo-second-order, Elovich, and Weber-Morris kinetic models were applied to describe the adsorption mechanism and sorption kinetic followed a pseudo-second-order kinetic model. Moreover, Langmuir, Freundlich and Temkin isotherm models were used to investigate the isothermal mechanism and equilibrium data were well represented by the Langmuir equation. The maximum adsorption capacity of soil was found as 4.11 mg/g using Langmuir adsorption isotherm. The effect of soil loading and hydrogen peroxide (H 2 O 2 ) dosage was solely tested for Fenton oxidation process. The highest removal efficiency of dye (89.4%) was obtained at pH 2, H 2 O 2 dosage of 10 mM, soil loading of 5 g/L, initial dye concentration of 50 mg/L, and contact time of 60 min. Thermodynamic studies showed that when the adsorption dosage of dye was 25 mg/L at 293-313 K, adsorption enthalpy (ΔH) and entropy (ΔS) were negative and adsorption free energy (ΔG) was positive. This result indicated that the adsorption was exothermic. Morphological characteristics of the soil were evaluated by X-ray fluorescence (XRF), scanning electron microscopy (SEM), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy before and after the adsorption and oxidation process.

  11. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  12. Development of an efficient process for the treatment of residual sludge discharged from an anaerobic digester in a sewage treatment plant.

    Science.gov (United States)

    Abe, Naoki; Tang, Yue-Qin; Iwamura, Makoto; Ohta, Hiroto; Morimura, Shigeru; Kida, Kenji

    2011-09-01

    In order to reduce the discharge of residual sludge from an anaerobic digester, pre-treatment methods including low-pressure wet-oxidation, Fenton oxidation, alkali treatment, ozone oxidation, mechanical destruction and enzymatic treatment were evaluated and compared. VSS removal efficiencies of greater than 50% were achieved in cases of low-pressure wet-oxidation, Fenton oxidation and alkali treatment. Residual sludge from an anaerobic digester was pre-treated and subjected to thermophilic anaerobic digestion. As a result, the process of low-pressure wet-oxidation followed by anaerobic digestion achieved the highest VSS removal efficiency of 83%. The total efficiency of VSS removal of sewage sludge consisting of primary and surplus sludge would be approximately 92%, assuming that the VSS removal efficiency of sewage sludge is 50% in the anaerobic digester of the sewage treatment plant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption.

    Science.gov (United States)

    Rodríguez, Eva; Encinas, Angel; Masa, Francisco J; Beltrán, Fernando J

    2008-02-01

    Activated carbon adsorption and chemical oxidation followed by activated carbon adsorption of resorcinol in water has been studied. Three chemical oxidants have been used: hypochlorite, permanganate and Fenton's reagent. The influence of concentrations of resorcinol and activated carbon on adsorption removal rates has been investigated. Both isotherm and adsorption kinetics have been studied. Results are fit well by Freundlich isotherms and adsorption rates of resorcinol were found to follow a pseudo-second-order kinetic model. However, pyrogallol, an intermediate of resorcinol oxidation with permanganate and Fenton's reagent, showed an unfavourable isotherm type. At the conditions investigated, chemical oxidation allows slight reductions of TOC and intermediates formed were found to inhibit the adsorption rate of TOC in the case of permanganate and Fenton's reagent oxidation, likely due to formation of some polymer pyrogallol product. The adsorption process was found to be controlled by pore internal diffusion, which justifies the poor affinity of oxidation intermediates toward activated carbon since molecules of larger size should diffuse rapidly for the adsorption to be effective.

  14. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  15. Processes regulating nitric oxide emissions from soils

    DEFF Research Database (Denmark)

    Pilegaard, Kim

    2013-01-01

    of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus......, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes...... for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission....

  16. Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP.

    Science.gov (United States)

    Mackuľak, Tomáš; Nagyová, Kristína; Faberová, Milota; Grabic, Roman; Koba, Olga; Gál, Miroslav; Birošová, Lucia

    2015-09-01

    Utilization of relatively low-cost modification of Fenton reaction for the elimination of selected antibiotics and resistant coliforms in different part of wastewater treatment plant (WWTP) was studied. The concentration of antibiotics and occurrence of resistant gems in different stages of WWTP in the capital city of Slovakia - Bratislava was analyzed by LC-MS/MS technique. Consequently, Fenton-like reaction was applied for the elimination of chemical and biological contaminants. Comparative study with classical Fenton reaction was also done. Very high concentrations of clarithromycin, ciprofloxacin and azithromycin in influent water were found. Coliform bacteria were predominantly resistant to ampicillin, ciprofloxacin and gentamicin. After the mechanical stage, the concentration of antibiotics in water was significantly decreased because of the sorption during this step. Biological step degraded 12 types of antibiotics. Analyses of effluent water showed very bad elimination of azithromycin (919ng/L) and clarithromycin (684ng/L). Contrary, ciprofloxacin was removed with very high efficiency (95%). The number of resistant bacteria was also significantly decreased in effluent water. In the case of Escherichia coli only ampicillin and gentamicin resistance bacteria were detected. Our results show that antibiotics as well as resistant bacteria were eliminated by the modification of classical Fenton reaction with high efficiency. The modification of the Fenton reaction can decrease the process wages, environmental impact. Moreover, the degradation process was easily controlled, monitored and tuned. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Comparação entre diferentes processos oxidativos avançados para degradação de corante azo Comparison of various advanced oxidation processes for azo dye degradation

    Directory of Open Access Journals (Sweden)

    Camila Costa de Amorim

    2009-12-01

    Full Text Available O objetivo deste estudo foi comparar os processos de oxidação avançada (H2O2, UV, UV/H2O2, Fe2+/H2O2, UV/Fe2+/H2O2 para descoloração do corante têxtil Reactive Red 195. Também foi investigada a utilização do pó do desempoeiramento da ala de corrida do alto forno como fonte alternativa de ferro na peroxidação catalítica, com e sem radiação UV, para degradação do corante. O efeito das concentrações de H2O2 e corante na cinética de descoloração foram estudados. Os resultados indicaram que a maior eficiência de descoloração foi obtida através do sistema foto-Fenton com o uso do resíduo; entretanto, a utilização do resíduo no sistema Fenton sem irradiação atingiu a mesma eficiência, com tempo de reação aumentado em apenas 15 minutos. A utilização do resíduo siderúrgico aumentou a velocidade de descoloração, mostrando-se bastante promissora como fonte de ferro.This study aimed at comparing various advanced oxidation processes (H2O2, UV, UV/H2O2, Fe2+/H2O2, UV/Fe2+/H2O2 for textile dye Reactive Red 195 decolorization. The use of blast furnace dust (BFD was also investigated as an alternative source of iron in catalytic peroxidation with and without UV radiation. The effects of H2O2 and dye concentrations in kinetics of decolorization were studied. Decolorization reactions follow pseudo-first order kinetics. The results indicated greater efficiency of decolorization in the photo-Fenton system with the use of BFD; however, the use of BFD in the Fenton system without irradiation reached the same efficiency with a reaction time only 15 minutes superior. The use of blast furnace dust increased considerably the rates of reactions and is very promising as a source of iron.

  18. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  19. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Science.gov (United States)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  20. Bundled tungsten oxide nanowires under thermal processing

    International Nuclear Information System (INIS)

    Sun Shibin; Zhao Yimin; Xia Yongde; Zhu Yanqiu; Zou Zengda; Min Guanghui

    2008-01-01

    Ultra-thin W 18 O 49 nanowires were initially obtained by a simple solvothermal method using tungsten chloride and cyclohexanol as precursors. Thermal processing of the resulting bundled nanowires has been carried out in air in a tube furnace. The morphology and phase transformation behavior of the as-synthesized nanowires as a function of annealing temperature have been characterized by x-ray diffraction and electron microscopy. The nanostructured bundles underwent a series of morphological evolution with increased annealing temperature, becoming straighter, larger in diameter, and smaller in aspect ratio, eventually becoming irregular particles with size up to 5 μm. At 500 deg. C, the monoclinic W 18 O 49 was completely transformed to monoclinic WO 3 phase, which remains stable at high processing temperature. After thermal processing at 400 deg. C and 450 deg. C, the specific surface areas of the resulting nanowires dropped to 110 m 2 g -1 and 66 m 2 g -1 respectively, compared with that of 151 m 2 g -1 for the as-prepared sample. This study may shed light on the understanding of the geometrical and structural evolution occurring in nanowires whose working environment may involve severe temperature variations

  1. STUDY ON THE FENTON REACTION FOR DEGRADATION OF REMAZOL RED B IN TEXTILE WASTE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Henry Setiyanto

    2016-11-01

    Full Text Available Remazol Red B is a reactive dye that is often used in the textile industry. The dye can cause serious problems in the environmental / water because it is difficult to be degraded by microorganisms. Decolorization of reactive azo dyes (Remazol Red B before being discharged into the environment is an important aspect in creating technology (method that are environmentally friendly. The method chosen for this decolorization is Advanced Oxidation Process (AOP using the Fenton reaction. The optimum conditions for this reaction is 25 mg/L H2O2 and 1.25 mg/L of Fe2+ to Remazol Red B with initial concentration at 83 mg/L ( with ratio [H2O2]/[Fe2+] = 20. The optimum conditions of this reaction were obtained at pH 3 and temperature of 27 0C, with decolorization efficiency up to 100% for a reaction time of 60 minutes. The kinetic model of dye decoloritation follow the second order reaction. Some of the metal ions were added i.e. Cu2+, Pb2+ and Zn2+ , given no significant impact on the degradation performed.

  2. Heterogeneous electro-Fenton as plausible technology for the degradation of imidazolinium-based ionic liquids.

    Science.gov (United States)

    Poza-Nogueiras, V; Arellano, M; Rosales, E; Pazos, M; González-Romero, E; Sanromán, M A

    2018-05-01

    Conventional water treatments are generally inadequate for degradation of emerging pollutants such as ionic liquids (ILs). The use of heterogeneous electro-Fenton (HEF) has attracted great interest, due to its ability to efficiently oxidize a wide range of organic pollutants operating in cycles or in continuous mode. In this study, the removal of a complex IL from the imidazolinium family (1,3-Bis(2,4,6-trimethylphenyl)imidazolinium chloride), by means of HEF using iron alginate spheres as catalyst has been investigated, resulting in significant TOC decay after 6 h. The optimization of the key process parameters (current, IL concentration and catalyst dosage) has been performed using a Box-Behnken experimental design and achieving 76.98% of TOC abatement in 2 h of treatment. Current proved to be a crucial parameter and high catalyst dosage is required to achieve the maximum removal. In addition, an insight about the availability of iron into the reactor and the evolution of several intermediates has been carried out by employing differential pulse voltammetry on screen-printed carbon electrodes. The evolution of the different voltammetric peaks confirmed the influence of iron release, and the generation of several iron complexes has permitted the comprehension of the degradation pathway, which has been validated by chromatographic techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Oxidizing attack process of uranium ore by a carbonated liquor

    International Nuclear Information System (INIS)

    Maurel, Pierre; Nicolas, Francois.

    1981-01-01

    A continuous process for digesting a uraniferous ore by oxidation with a recycling aqueous liquor containing alkaline carbonates and bicarbonates in solution as well as uranium in a concentration close to its solubility limit at digestion temperature, and of recuperation of the precipitated uranium within the solid phase remaining after digestion. The digestion is carried out by spraying oxygen into the hot reactional medium in order not only to permit oxidation of the uranium and its solubilization but also to ensure that the sulphides of impurities and organic substances present in the ore are oxidized [fr

  4. THE DIMINISHING OF THE CONTENT OF TEXTILE DIRECT DYES AND AUXILIARY COMPOUNDS DURING THEIR CATALYTIC OXIDATION

    Directory of Open Access Journals (Sweden)

    Maria Gonta

    2014-06-01

    Full Text Available Advanced oxidation methods of organic compounds lead to their partial mineralization and increase of the adsorption process efficiency on the surface of oxidized activated carbon. We have studied the oxidation process using model solutions containing mixture of dye direct brown (DB, ethylene glycol (EGL and sodium lauryl sulfate (SLS under the action of Fenton reagent, in the presence and absence of UV irradiation or under the action of electric current (in the electrochemical cell. The same studies were performed by replacing the iron (II ion with titanium dioxide.

  5. Thermal processing and native oxidation of silicon nanoparticles

    International Nuclear Information System (INIS)

    Winters, Brandon J.; Holm, Jason; Roberts, Jeffrey T.

    2011-01-01

    In this study, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS) were used to investigate in-air oxidation of silicon nanoparticles ca. 11 nm in diameter. Particle samples were prepared first by extracting them from an RF plasma synthesis reactor, and then heating them in an inert carrier gas stream. The resulting particles had varying surface hydrogen coverages and relative amounts of SiH x (x = 1, 2, and 3), depending on the temperature to which they had been heated. The particles were allowed to oxidize in-air for several weeks. FTIR, XPS, and EELS analyses that were performed during this period clearly establish that adsorbed hydrogen retards oxidation, although in complex ways. In particular, particles that have been heated to intermediate hydrogen coverages oxidize more slowly in air than do freshly generated particles that have a much higher hydrogen content. In addition, the loss of surface hydride species at high processing temperatures results in fast initial oxidation and the formation of a self-limiting oxide layer. Analogous measurements made on deuterium-covered particles show broadly similar behavior; i.e., that oxidation is the slowest at some intermediate coverage of adsorbed deuterium.

  6. Process for removal of sulfur oxides from hot gases

    International Nuclear Information System (INIS)

    Bauerle, G. L.; Kohl, A. L.

    1984-01-01

    A process for the removal of sulfur oxides from two gas streams containing the same. One gas stream is introduced into a spray dryer zone and contacted with a finely dispersed spray of an aqueous medium containing an absorbent for sulfur oxides. The aqueous medium is introduced at a controlled rate so as to provide water to the gas in an amount to produce a cooled product gas having a temperature at least 7 0 C. above its adiabatic saturation temperature and from about 125-300% of the stoichiometric amount of absorbent required to react with the sulfur oxides to be removed from the gas stream. The effluent from the spray dryer zone comprises a gas stream of reduced sulfur oxide content and contains entrained dry particulate reaction products including unreacted absorbent. This gas stream is then introduced into a particulate removal zone from which is withdrawn a gas stream substantially free of particles and having a reduced sulfur oxide content. the dry particulate reaction products are collected and utilized as a source of absorbent for a second aqueous scrubbing medium containing unreacted absorbent for the sulfur oxides. An effluent gas stream is withdrawn from the aqueous scrubbing zone and comprises a water-saturated gas stream of reduced sulfur oxide content and substantially free of particles. The effluent gas streams from the particulate removal zone and the aqueous scrubbing zone are combined in such proportions that the combined gas stream has a temperature above its adiabatic saturation temperature

  7. Process for the fabrication of nuclear fuel oxide pellets

    International Nuclear Information System (INIS)

    Francois, Bernard; Paradis, Yves.

    1977-01-01

    Process for the fabrication of nuclear fuel oxide pellets of the type for which particles charged with an organic binder -selected from the group that includes polyvinyl alcohol, carboxymethyl cellulose, polyvinyl compounds and methyl cellulose- are prepared from a powder of such an oxide, for instance uranium dioxide. These particles are then compressed into pellets which are then sintered. Under this process the binder charged particles are prepared by stirring the powder with a gas, spraying on to the stirred powder a solution or a suspension in a liquid of this organic binder in order to obtain these particles and then drying the particles so obtained with this gas [fr

  8. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  9. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  10. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  11. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system.

    Science.gov (United States)

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-08-01

    Aniline-containing wastewater can cause significant environmental problems and threaten the humans's life. However, rapid degradation of aniline with cost-efficient methods remains a challenge. In this work, a novel microbial electrolysis cell with bipolar membrane was integrated with Fenton reaction (MEC-Fenton) for efficient treatment of real wastewater containing a high concentration (4460 ± 52 mg L -1 ) of aniline. In this system, H 2 O 2 was in situ electro-synthesized from O 2 reduction on the graphite cathode and was simultaneously used as source of OH for the oxidation of aniline wastewater under an acidic condition maintained by the bipolar membrane. The aniline was effectively degraded following first-order kinetics at a rate constant of 0.0166 h -1 under an applied voltage of 0.5 V. Meanwhile, a total organic carbon (TOC) removal efficiency of 93.1 ± 1.2% was obtained, revealing efficient mineralization of aniline. The applicability of bipolar membrane MEC-Fenton system was successfully demonstrated with actual aniline wastewater. Moreover, energy balance showed that the system could be a promising technology for removal of biorefractory organic pollutants from wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Response to Fenton and Fenton: evidence does not support the alkaline diet

    Science.gov (United States)

    In the space available in this broad review, we focused on large trials published since the 2011 Fenton meta-analysis. This included two trials published in 2013 and one in 2015. These trials found favorable effects of supplementation with alkaline salts of potassium, in amounts of 60 mmol/day and h...

  13. Dynamics of Nitric Oxide and Nitrous Oxide Emission during Nitrogen Conversion Processes

    OpenAIRE

    Kampschreur, M.J.

    2010-01-01

    Nitric oxide (NO) and nitrous oxide (N2O) emissions can be a serious threat to the environment. Rising levels of N2O in the atmosphere contribute to global warming and destruction of the ozone layer. This thesis describes an investigation on the emission of NO and N2O during nitrogen conversion processes. Emissions were measured at wastewater treatment plants and at lab-scale reactors to investigate the underlying mechanisms. Metabolic and kinetic models were used to identify pathways leading...

  14. Estudo da degradação do metil parabeno utilizando processos Fenton, foto-Fenton e eletro-Fenton

    OpenAIRE

    Carlos Dante Gamarra Güere

    2014-01-01

    Os disruptores endócrinos são frequentemente relatados na literatura como contaminantes de ambientes aquáticos. Por isso, os processos oxidativos avançados (POAs) têm sido estudados como alternativa para o tratamento em meio aquoso. Os POAs consistem na oxidação de compostos orgânicos por radicais hidroxilas com alto poder oxidante. Diante desses aspectos, o presente trabalho tem como principal objetivo o estudo da degradação do metil parabeno (MeP) por processos Fenton, utilizando planejame...

  15. Optimal Condition of Fenton's Reagent to Enhance the Alcohol Production from Palm Oil Mill Effluent (POME

    Directory of Open Access Journals (Sweden)

    Supawadee Sinnaraprasat

    2011-07-01

    Full Text Available Application of Fenton's reaction for a proper hydrolysis step is an essential and important step in obtaining a higher level of readily biodegradable sugars from palm oil mill effluent (POME for improving the alcohol production by using immobilized Clostridium acetobutylicum. The objective of this research was, therefore, to investigate the optimum condition of Fenton's reaction in terms of COD: H2O2 ratios (w/w and H2O2: Fe2+ ratios (molar ratio used to oxidize carbohydrate and high molecular organic compounds into simple sugars, which are further fermented into alcohol. The experiments were carried out at H2O2: Fe2+ ratios (molar ratios of 5, 10, 20, 30 and 40 and the COD: H2O2 ratios (w/w of 50, 70, 100 and 130 (initial COD about 50,000 mg/L. The total sugar concentrations and organic compounds biodegradability (BOD5/COD ratios were also used for investigating suitable conditions for Fenton's reaction. The concentration of Fenton's reagent at H2O2:Fe2+ and COD:H2O2 ratio of 20 and 130 was identified as the optimum operating condition for the highest simple sugars of about 0.865% and BOD5/COD ratios of 0.539. The alcohol productions were carried out in the continuous stirred tank reactors (CSTR under an anaerobic continuous immobilization system. At a hydraulic retention time of 12 hours and POME pH of 4.8, the maximum total ABE concentration of 495 mg/L and the ABE yield of 0.236 grams of ABE produced/gram of reducing sugars were achieved at the mixed polyvinyl alcohol (PVA and palm oil ash (POA ratio of 10 : 3.

  16. Photochemical oxidation of antibiotic gemifloxacin in aqueous solutions – A comparative study

    Directory of Open Access Journals (Sweden)

    G. Shankaraiah

    2017-12-01

    Full Text Available The amount of organic micro pollutants like antibiotics detected in effluents, lakes, rivers, hospital wastewater, sewage water and ground water. These antibiotics are affecting aquatic organisms. Common wastewater treatment plants are not built to remove these substances. Thus there is a need for new technologies. The present study focuses on the application of a promising technology, that is the use of advanced oxidation processes (AOPs, which works based on the intermediacy of hydroxyl and other radicals to oxidized non-biodegradable compounds. Hence, in the present study treatment of certain gemifloxacin commonly used in day-to-day life has been carried out. The combination of UV, UV/H2O2, Fenton, and UV/Fenton systems has been studied. Gemifloxacin concentration degradation, Chemical Oxygen Demand (COD and Total Organic Carbon (TOC are monitored. Among all the processes studied photo-Fenton process has been found to be the maximum removal of gemifloxacin (97%. Keywords: Antibiotics, Pharmaceuticals, Oxidation technologies, Non-biodegradable, Gemifloxacin

  17. Fenton's reagent minimum dosage for remediation of water contaminated with dyes

    Directory of Open Access Journals (Sweden)

    Gina Terán

    2015-09-01

    Full Text Available Effluents from the textile industry not only represent a latent threat to biodiversity on our planet but also to humans due to the pollution generated by industrial dyes. In this study a Fenton process was evaluated for the decoloration of water contaminated with yellow 160, blue 81 and red 190 with an initial concentration of 3300 mg.L-1 and a chemical oxygen demand of 1719 mg.L-1. Changes in pH and molar doses of ferrous sulfate and hydrogen peroxide were evaluated. The Fenton process allowed 99,9% removal of organic matter and 100% removal of turbidity when it worked at pH 3,5 and molar dose Fe+2/ H2O2 between 1:3 and 1:5. By spectrophotometric scanning and measurement of redox potential, it was shown that the quality of decontaminated water resembled the ultrapure water type I.

  18. Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment.

    Science.gov (United States)

    Vallejo, Marta; Fresnedo San Román, M; Ortiz, Inmaculada; Irabien, Angel

    2015-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are a family of unintentionally produced persistent organic pollutants (POPs) that have received considerable public and scientific attention due to the toxicity of some of their congeners, more specifically those with chlorine substitution in the 2,3,7,8 positions. The environmental management and control of PCDD/Fs is addressed at a global level through the Stockholm Convention that establishes that POPs should be destroyed or irreversibly transformed in order to reduce or eliminate their release to the environment. Several technologies, including advanced oxidation processes (AOPs) such as photolysis, photocatalysis and Fenton oxidation, have been considered as effective methods for destroying PCDD/Fs in polluted waters. Nevertheless, during the remediation of wastewaters it is critical that the treatment technologies applied do not lead to the formation of by-products that are themselves POPs, especially if PCDD/Fs precursors or chlorine are present in the reaction medium. Despite the high effectiveness of AOPs in the oxidation of major contaminants, scarce references deal with the monitoring of PCDD/Fs in the course of the oxidation process, revealing that a detailed assessment of non-combustion technologies with respect to PCDD/Fs formation is still lacking. This study reports a review of the state of the art related to the potential remediation and/or formation of PCDD/Fs as a result of the application of AOPs for the treatment of polluted waters, warning on the correct selection of the operating conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    DEFF Research Database (Denmark)

    Rineau, Francois; Roth, Doris; Shah, Firoz

    2012-01-01

    chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular...... the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matterprotein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism...... by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton...