WorldWideScience

Sample records for femtosecond growth dynamics

  1. Dynamics of Femtosecond Electron Bunches

    OpenAIRE

    Khachatryan, A. G.; Irman, A.; van Goor, F. A.; Boller, K. -J.

    2007-01-01

    In the laser wakefield accelerator (LWFA) a short intense laser pulse, with a duration of the order of a plasma wave period, excites an unusually strong plasma wake wave (laser wakefield). Recent experiments on laser wakefield acceleration [Nature (London) 431, p.535, p.538, p.541 (2004)] demonstrated generation of ultra-short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low energy spread of the order of a few percent. We have studied the dynamics of s...

  2. Femtosecond Carrier Dynamics and Modelocking in Monolithic CPM Lasers. [SB1

    DEFF Research Database (Denmark)

    Brorson, S.D.; Bischoff, Svend; MØrk, J.

    1996-01-01

    Femtosecond pump-probe measurements of the dynamics in both forward- and reverse-biased semiconductor optical waveguides arepresented. Slow (nanosecond) as well as ultrafast (femtosecond) dynamics are observed in both kinds of structures....

  3. Femtosecond Carrier Dynamics and Modelocking in Monolithic CPM Lasers. [SB1

    DEFF Research Database (Denmark)

    Brorson, S.D.; Bischoff, Svend; MØrk, J.;

    1996-01-01

    Femtosecond pump-probe measurements of the dynamics in both forward- and reverse-biased semiconductor optical waveguides arepresented. Slow (nanosecond) as well as ultrafast (femtosecond) dynamics are observed in both kinds of structures....

  4. Femtosecond photodissociation dynamics of I studied by ion imaging

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Mørkbak, N.J.

    1998-01-01

    on imaging is employed to analyze the fragments from timed Coulomb explosion studies of femtosecond (fs) molecular dynamics. The technique provides high detection efficiency and direct recording of the two-dimensional velocity of all ionized fragments. We illustrate the approach by studying photo...... agreement with quantum mechanical wave packet simulations. We discuss the perspectives for extending the studies to photochemical reactions of small polyatomic molecules......on imaging is employed to analyze the fragments from timed Coulomb explosion studies of femtosecond (fs) molecular dynamics. The technique provides high detection efficiency and direct recording of the two-dimensional velocity of all ionized fragments. We illustrate the approach by studying...

  5. Large amplitude femtosecond electron dynamics in metal clusters

    CERN Document Server

    Daligault, J

    2003-01-01

    We present a theoretical model that allows us to study linear and non-linear aspects of the femtosecond electron dynamics in metal clusters. The theoretical approach consists in the classical limit of the time-dependent Kohn-Sham equations. The electrons are described by a phase-space distribution function which satisfies a Vlasov-like equation while the ions are treated classically. This allows simulations for clusters containing several hundreds of atoms and extending up to several hundreds of femtoseconds during which the description conserves the fermionic character of the electron distribution. This semi-quantal approach compares very well with the purely quantal treatment. As an application of this approach, we show the prominent role of the electron dynamics during and after the interaction with an intense femtosecond laser pulse.

  6. Energy deposition dynamics of femtosecond pulses in water

    CERN Document Server

    Minardi, Stefano; Gopal, Amrutha; Tamošauskas, Gintaras; Milián, Carles; Couairon, Arnaud; Pertsch, Thomas; Dubietis, Audrius

    2014-01-01

    We exploit inverse Raman scattering and solvated electron absorption to perform a quantitative characterization of the energy loss and ionization dynamics in water with tightly focused near-infrared femtosecond pulses. A comparison between experimental data and numerical simulations suggests that the ionization energy of water is 8 eV, rather than the commonly used value of 6.5 eV.

  7. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    NARCIS (Netherlands)

    Khachatryan, A.G.; Irman, A.; Goor, van F.A.; Boller, K.-J.

    2007-01-01

    Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low (of the order of couple of percent) energy spread. In this article we study the dynamics of such bunches in drift s

  8. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation

    Science.gov (United States)

    Tominaga, Yusuke; Maruyama, Mihoko; Yoshimura, Masashi; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Tsukamoto, Katsuo; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Yoshikawa, Hiroshi Y.; Mori, Yusuke

    2016-11-01

    Large single crystals with desirable shapes are essential for various scientific and industrial fields, such as X-ray/neutron crystallography and crystalline devices. However, in the case of proteins the production of such crystals is particularly challenging, despite the efforts devoted to optimization of the environmental, chemical and physical parameters. Here we report an innovative approach for promoting the growth of protein crystals by directly modifying the local crystal structure via femtosecond laser ablation. We demonstrate that protein crystals with surfaces that are locally etched (several micrometers in diameter) by femtosecond laser ablation show enhanced growth rates without losing crystal quality. Optical phase-sensitive microscopy and X-ray topography imaging techniques reveal that the local etching induces spiral growth, which is energetically advantageous compared with the spontaneous two-dimensional nucleation growth mode. These findings prove that femtosecond laser ablation can actively switch the crystal growth mode, offering flexible control over the size and shape of protein crystals.

  9. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    OpenAIRE

    Khachatryan, A. G.; Irman, A.; Goor, van de, AAAM; Boller, K. -J.

    2007-01-01

    Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low (of the order of couple of percent) energy spread. In this article we study the dynamics of such bunches in drift space (vacuum) and in channel-guided laser wakefields. Analytical solutions were found for the transverse coordinate of an electron and for the bunch envelope in the wakefield in the case of arbitra...

  10. Energy deposition dynamics of femtosecond pulses in water

    Energy Technology Data Exchange (ETDEWEB)

    Minardi, Stefano, E-mail: stefano@stefanominardi.eu; Pertsch, Thomas [Institute of Applied Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Milián, Carles; Couairon, Arnaud [Centre de Physique Théorique, CNRS, École Polytechnique, F-91128 Palaiseau (France); Majus, Donatas; Tamošauskas, Gintaras; Dubietis, Audrius [Department of Quantum Electronics, Vilnius University, Sauletekio 9, bldg. 3, LT-10222 Vilnius (Lithuania); Gopal, Amrutha [Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-12-01

    We exploit inverse Raman scattering and solvated electron absorption to perform a quantitative characterization of the energy loss and ionization dynamics in water with tightly focused near-infrared femtosecond pulses. A comparison between experimental data and numerical simulations suggests that the ionization energy of water is 8 eV, rather than the commonly used value of 6.5 eV. We also introduce an equation for the Raman gain valid for ultra-short pulses that validates our experimental procedure.

  11. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)

    2015-01-13

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  12. Femtosecond Excited State Dynamics of Size Selected Neutral Molecular Clusters.

    Science.gov (United States)

    Montero, Raúl; León, Iker; Fernández, José A; Longarte, Asier

    2016-07-21

    The work describes a novel experimental approach to track the relaxation dynamics of an electronically excited distribution of neutral molecular clusters formed in a supersonic expansion, by pump-probe femtosecond ionization. The introduced method overcomes fragmentation issues and makes possible to retrieve the dynamical signature of a particular cluster from each mass channel, by associating it to an IR transition of the targeted structure. We have applied the technique to study the nonadiabatic relaxation of pyrrole homoclusters. The results obtained exciting at 243 nm, near the origin of the bare pyrrole electronic absorption, allow us to identify the dynamical signature of the dimer (Py)2, which exhibits a distinctive lifetime of τ1 ∼ 270 fs, considerably longer than the decays recorded for the monomer and bigger size clusters (Py)n>2. A possible relationship between the measured lifetime and the clusters geometries is tentatively discussed.

  13. Femtosecond dynamics of a spaser and unidirectional emission from a perfectly spherical nanoparticle

    KAUST Repository

    Gongora, J. S. Totero

    2015-01-01

    We investigate the femtosecond dynamics of the spaser emission by combining ab-initio simulations and thermodynamic analysis. Interestingly, the emission is characterized by rotational evolution, opening to the generation of unidirectional emission from perfectly spherical nanoparticles. © OSA 2015.

  14. Femtosecond structural dynamics on the atomic length scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang

    2014-03-15

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm{sup 2}) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO{sub 2} and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been

  15. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics

    Science.gov (United States)

    Sciaini, Germán; Miller, R. J. Dwayne

    2011-09-01

    One of the great dream experiments in Science is to directly observe atomic motions as they occur. Femtosecond electron diffraction provided the first 'light' of sufficient intensity to achieve this goal by attaining atomic resolution to structural changes on the relevant timescales. This review covers the technical progress that made this new level of acuity possible and gives a survey of the new insights gained from an atomic level perspective of structural dynamics. Atomic level views of the simplest possible structural transition, melting, are discussed for a number of systems in which both thermal and purely electronically driven atomic displacements can be correlated with the degree of directional bonding. Optical manipulation of charge distributions and effects on interatomic forces/bonding can be directly observed through the ensuing atomic motions. New phenomena involving strongly correlated electron-lattice systems are also discussed in which optically induced changes in the potential energy landscape lead to ballistic structural changes. Concepts such as the structural order parameters are now directly observable at the atomic level of inspection to give a remarkable view of the extraordinary degree of cooperativity involved in strongly correlated electron-lattice systems. These recent examples, in combination with time-resolved real space imaging now possible with electron probes, are truly defining an emerging field that holds great promise to make a significant impact in how we understand structural dynamics. This article is dedicated to the memory of Professor David John Hugh Cockayne, a world leader in electron microscopy, who sadly passed away in December.

  16. Optical beam dynamics in a gas repetitively heated by femtosecond filaments

    CERN Document Server

    Jhajj, N; Wahlstrand, J K; Milchberg, H M

    2013-01-01

    We investigate beam pointing dynamics in filamentation in gases driven by high repetition rate femtosecond laser pulses. Upon suddenly exposing a gas to a kilohertz train of filamenting pulses, the filament is steered from its original direction to a new stable direction whose equilibrium is determined by a balance among buoyant, viscous, and diffusive processes in the gas. Results are shown for Xe and air, but are broadly applicable to all configurations employing high repetition rate femtosecond laser propagation in gases.

  17. Femtosecond Laser Processing of Germanium: An Ab Initio Molecular Dynamics Study

    CERN Document Server

    Ji, Pengfei

    2016-01-01

    An ab initio molecular dynamics study of femtosecond laser processing of germanium is presented in this paper. The method based on the finite temperature density functional theory is adopted to probe the structural change, thermal motion of the atoms, dynamic property of the velocity autocorrelation, and the vibrational density of states. Starting from a cubic system at room temperature (300 K) containing 64 germanium atoms with an ordered arrangement of 1.132 nm in each dimension, the femtosecond laser processing is simulated by imposing the Nose Hoover thermostat to the electronic subsystem lasting for ~100 fs and continuing with microcanonical ensemble simulation of ~200 fs. The simulation results show solid, liquid and gas phases of germanium under adjusted intensities of the femtosecond laser irradiation. We find the irradiated germanium distinguishes from the usual germanium crystal by analyzing their melting and dynamic properties.

  18. Ultrafast dynamics of o-fluorophenol studied with femtosecond time-resolved photoelectron and photoion spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The ultrafast dynamics of o-fluorophenol via the excited states has been studied by femtosecond time-resolved photoelectron imaging. The photoion and photoelectron spectra taken with a time delay between 267 nm pump laser and 800 nm probe laser provide a longer-lived S1 electronic state of about ns timescale. In comparison,the spectra obtained by exciting the S2 state with femtosecond laser pulses at 400 nm and ionizing with pulses at 800 nm suggest that the S2 state has an ultrashort lifetime about 102 fs and reflects the internal conversion dynamics of the S2 state to the S1 state.

  19. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films

    DEFF Research Database (Denmark)

    Balling, P.; Schou, Jørgen

    2013-01-01

    Laser ablation of dielectrics by ultrashort laser pulses is reviewed. The basic interaction between ultrashort light pulses and the dielectric material is described, and different approaches to the modeling of the femtosecond ablation dynamics are reviewed. Material excitation by ultrashort laser...

  20. Solution dynamics by line shape analysis, resonance light scattering and femtosecond four-wave mixing

    NARCIS (Netherlands)

    Nibbering, Erik T.J.; Duppen, Koos; Wiersma, Douwe A.

    1992-01-01

    The results of line shape analysis, resonance light scattering and femtosecond four-wave mixing measurements are reported on several organic molecules in solution. It is shown that a Brownian oscillator model for line broadening provides a full description for the optical dynamics in aprotic solutio

  1. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein.

    Science.gov (United States)

    Pande, Kanupriya; Hutchison, Christopher D M; Groenhof, Gerrit; Aquila, Andy; Robinson, Josef S; Tenboer, Jason; Basu, Shibom; Boutet, Sébastien; DePonte, Daniel P; Liang, Mengning; White, Thomas A; Zatsepin, Nadia A; Yefanov, Oleksandr; Morozov, Dmitry; Oberthuer, Dominik; Gati, Cornelius; Subramanian, Ganesh; James, Daniel; Zhao, Yun; Koralek, Jake; Brayshaw, Jennifer; Kupitz, Christopher; Conrad, Chelsie; Roy-Chowdhury, Shatabdi; Coe, Jesse D; Metz, Markus; Xavier, Paulraj Lourdu; Grant, Thomas D; Koglin, Jason E; Ketawala, Gihan; Fromme, Raimund; Šrajer, Vukica; Henning, Robert; Spence, John C H; Ourmazd, Abbas; Schwander, Peter; Weierstall, Uwe; Frank, Matthias; Fromme, Petra; Barty, Anton; Chapman, Henry N; Moffat, Keith; van Thor, Jasper J; Schmidt, Marius

    2016-05-06

    A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes after photon absorption. The initial step is often the photoisomerization of a conjugated chromophore. Isomerization occurs on ultrafast time scales and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on photoactive yellow protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction.

  2. Femtosecond photodissociation dynamics of chloroiodomethane in the first absorption band

    Science.gov (United States)

    Murillo-Sánchez, M. L.; Marggi Poullain, S.; González-Vázquez, J.; Corrales, M. E.; Balerdi, G.; Bañares, L.

    2017-09-01

    The real time photodissociation of chloroiodomethane (CH2ICl) in the first absorption band at 268 nm is reported in comparison with the well-known methyl iodide (CH3I) in order to investigate the halogen-atom substituent effect on the time-resolved photodynamics of halomethanes. Femtosecond velocity map imaging measurements in conjunction with resonance enhanced multiphoton ionization (REMPI) to detect the iodine fragments have been performed to obtain translational energy, angular distributions and the photodissociation reaction times. High level ab initio and on-the-fly trajectory calculations have been carried out to rationalize the experimental results in terms of the excited states involved and the dissociation mechanisms.

  3. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  4. Femtosecond laser pulse induced desorption: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lončarić, Ivor, E-mail: ivor.loncaric@gmail.com [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Alducin, Maite [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Juaristi, J. Iñaki [Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain)

    2016-09-01

    In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which O{sub 2} is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results.

  5. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Science.gov (United States)

    Bainbridge, A. R.; Barlow Myers, C. W.; Bryan, W. A.

    2016-01-01

    Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs) combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics. PMID:27158637

  6. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Directory of Open Access Journals (Sweden)

    A. R. Bainbridge

    2016-03-01

    Full Text Available Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.

  7. Perspective: Structural dynamics in condensed matter mapped by femtosecond x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Elsaesser, T.; Woerner, M. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin (Germany)

    2014-01-14

    Ultrashort soft and hard x-ray pulses are sensitive probes of structural dynamics on the picometer length and femtosecond time scales of electronic and atomic motions. Recent progress in generating such pulses has initiated new directions of condensed matter research, exploiting a variety of x-ray absorption, scattering, and diffraction methods to probe photoinduced structural dynamics. Atomic motion, changes of local structure and long-range order, as well as correlated electron motion and charge transfer have been resolved in space and time, providing a most direct access to the physical mechanisms and interactions driving reversible and irreversible changes of structure. This perspective combines an overview of recent advances in femtosecond x-ray diffraction with a discussion on ongoing and future developments.

  8. DYNAMICS OF IONIZATION-ENHANCED SPECTRAL EXPANSION IN WATER INDUCED BY AN INTENSE FEMTOSECOND LASER BEAM

    Institute of Scientific and Technical Information of China (English)

    WANG SHU-FENG; QIN YUAN-DONG; YANG HONG; WANG DAN-LING; ZHU CHANG-JUN; GONG QI-HUANG

    2001-01-01

    The dynamic process of white-continuum generation in water was investigated by the pump-probe technique with a femtosecond intense laser at 805nm. The spectrum width of the probe beam was broadened at the blue side and varied with different delay times. This blueshift was attributed to the ionization-enhanced optical nonlinearity, in which both the multi-photon ionization and avalanche ionization had an effect.

  9. Femtosecond dynamics of the nonlinear index near the band edge in AlGaAs waveguides

    Science.gov (United States)

    Anderson, K. K.; LaGasse, M. J.; Wang, C. A.; Fujimoto, J. G.; Haus, H. A.

    1990-05-01

    The transient behavior of the nonresonant nonlinear index is investigated in AlGaAs waveguides with femtosecond time resolution. Both the refractive index and the absorption changes are measured by time division interferometry and pump probe techniques. Different mechanisms which contribute to the nonlinear index are distinguished by examining their dynamics, including the optical Stark effect, resonantly excited carriers, and two-photon absorption processes. The relative contribution from each mechanism is a strong function of wavelength near the band edge.

  10. Molecular dynamics simulation of heat-affected zone of copper metal ablated with femtosecond laser

    Science.gov (United States)

    Hirayama, Yoichi; Obara, Minoru

    2005-03-01

    Femtosecond laser ablation of materials with high thermal conductivity is of paramount importance, because the chemical composition and properties of the area ablated with femtosecond laser are kept unchanged. The material processing by femtosecond laser can well control the heat-affected zone, compared to nanosecond laser ablation. We report on the heat-affected zone of crystalline copper (Cu) by use of femtosecond laser experimentally and theoretically. Laser ablation of Cu is investigated theoretically by two temperature model and molecular dynamics (MD) simulation. The MD simulation takes into account of electron temperature and thermal diffusion length calculated by two temperature model. The dependence of lattice temperature on time and depth is calculated by the MD simulation and two temperature model. The heat-affected zone estimated from the temperature is mainly studied and calculated to be 3 nm at 0.02 J/cm2 which is below the threshold fluence of 0.137 J/cm2. In addition, the thickness of heat-affected zone of copper crystal ablated with femtosecond Ti:sapphire laser is experimentally studied. As a result of X-ray diffraction (XRD) of the ablated surface, the surface crystallinity is partially changed into disordered structure from crystal form. The residual energy left in the metal, which is not used for ablation, will induce liquid phase, leading to the amorphous phase of the metal during resolidification. The thickness of heat-affected zone depends on laser fluence and is experimentally measured to be less than 1 μm at higher laser fluences than the ablation threshold.

  11. Ablation and ultrafast dynamics of zinc selenide under femtosecond laser irradiation

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Wang; Tianqing Jia; Xiaoxi Li; Chengbin Li; Donghai Feng; Haiyi Sun; Shizhen Xu; Zhizhan Xu

    2005-01-01

    The ablation in zinc selenide (ZnSe) crystal is studied by using 150-fs, 800-nm laser system. The images of the ablation pit measured by scanning electronic microscope (SEM) show no thermal stress and melting dynamics. The threshold fluence is measured to be 0.7 J/cm2. The ultrafast ablation dynamics is studied by using pump and probe method. The result suggests that optical breakdown and ultrafast melting take place in ZnSe irradiated under femtosecond laser pulses.

  12. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids.

    Science.gov (United States)

    Faccio, D; Tamošauskas, G; Rubino, E; Darginavičius, J; Papazoglou, D G; Tzortzakis, S; Couairon, A; Dubietis, A

    2012-09-01

    We study cavitation dynamics when focusing ring-shaped femtosecond laser beams in water. This focusing geometry reduces detrimental nonlinear beam distortions and enhances energy deposition within the medium, localized at the focal spot. We observe remarkable postcollapse dynamics of elongated cavitation bubbles with high-speed ejection of microbubbles out of the laser focal region. Bubbles are ejected along the laser axis in both directions (away and towards the laser). The initial shape of the cavitation bubble is also seen to either enhance or completely suppress jet formation during collapse. In the absence of jetting, microbubble ejection occurs orthogonal to the laser propagation axis.

  13. Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication.

    Science.gov (United States)

    Yan, X; Jiang, L; Li, X; Zhang, K; Xia, B; Liu, P; Qu, L; Lu, Y

    2014-09-01

    We propose an approach to realize polarization-independent etching of fused silica by using temporally shaped femtosecond pulse trains to control the localized transient electrons dynamics. Instead of nanograting formation using traditional unshaped pulses, for the pulse delay of pulse trains larger than 1 ps, coherent field-vector-related coupling is not possible and field orientation is lost. The exponential growth of the periodic structures is interrupted. In this case, disordered and interconnected nanostructures are formed, which is probably the main reason of etching independence on the laser polarization. As an application example, square-wave-shaped and arc-shaped microchannels are fabricated by using pulse trains to demonstrate the advantage of the proposed method in fabricating high-aspect-ratio and three-dimensional microchannels.

  14. Femtosecond single- to few-electron point-projection microscopy for nanoscale dynamic imaging

    CERN Document Server

    Bainbridge, A R; Bryan, W A

    2015-01-01

    Femtosecond electron microscopy produces real-space images of matter on micrometre to nanometre length scales in a series of ultrafast snapshots, tracking the dynamic evolution of charge distributions. Given that femtosecond pulses of electrons self-disperse under space-charge broadening, the ideal operation mode (without active compression) is a single electron per pulse. Here, we demonstrate for the first time femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electron pulses in the present work have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 120 fs, combined with a spatial resolution below a micrometre. We image the evolution of a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. The rapidity of the strong-field response of the metal nanotip facilitates the char...

  15. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    Science.gov (United States)

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  16. X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene.

    Science.gov (United States)

    Abbey, Brian; Dilanian, Ruben A; Darmanin, Connie; Ryan, Rebecca A; Putkunz, Corey T; Martin, Andrew V; Wood, David; Streltsov, Victor; Jones, Michael W M; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G; Nugent, Keith A; Quiney, Harry M

    2016-09-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration.

  17. Direct growth of CdSe semiconductor quantum dots in glass matrix by femtosecond laser beam

    Science.gov (United States)

    Bell, G.; Filin, A. I.; Romanov, D. A.; Levis, R. J.

    2016-02-01

    Controllable, spatially inhomogeneous distributions of CdSe nanocrystals smaller than the exciton Bohr radius are grown in a glass matrix under combined action of sample heating (below the transformation temperature) and focused high-repetition femtosecond (fs) laser beam. Selective quantum dot precipitation is evidenced by position-dependent absorption and Raman spectra. The particle size is estimated as r = 2.1 ± 0.3 nm by comparing the measured absorption and Raman spectra with those obtained from the samples grown in glass by traditional heat-treatment procedure. Direct growth of CdSe quantum dots in glass is enabled by nonlinear excitation using a focused fs duration laser beam (as differentiated from other methods), and this opens an avenue for adjustable selective growth patterns.

  18. Dynamic Interactions of CdSe/ZnS Quantum Dots with Cyclic Solvents Probed by Femtosecond Four-Wave Mixing

    Directory of Open Access Journals (Sweden)

    Biju V.

    2013-03-01

    Full Text Available We studied dynamic interactions between CdSe/ZnS quantum dots (QDs and cyclic solvents probed by femtosecond four-wave mixing. We found that the dynamic interactions of QDs strongly depend on the existence of π-bonds in solvent molecules.

  19. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Hoehm, S.; Rosenfeld, A. [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Strasse 2A, D-12489 Berlin (Germany); Krueger, J.; Bonse, J. [BAM Bundesanstalt fuer Materialforschung und - pruefung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2013-02-04

    The formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a transillumination femtosecond time-resolved (0.1 ps-1 ns) pump-probe diffraction approach. This allows to reveal the generation dynamics of near-wavelength-sized LIPSS showing a transient diffraction at specific spatial frequencies even before a corresponding permanent surface relief was observed. The results confirm that the ultrafast energy deposition to the materials surface plays a key role and triggers subsequent physical mechanisms such as carrier scattering into self-trapped excitons.

  20. Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses

    Directory of Open Access Journals (Sweden)

    Rosenfeld A.

    2013-11-01

    Full Text Available The dynamics of the formation of laser-induced periodic surface structures (LIPSS on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps – 1 ns pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.

  1. Femtosecond dynamics of Tamm plasmon-polaritons (Conference Presentation)

    Science.gov (United States)

    Afinogenov, Boris I.; Popkova, Anna A.; Bessonov, Vladimir O.; Fedyanin, Andrey A.

    2016-09-01

    Tamm plasmon-polaritons (TPPs) have attracted many interest due to the peculiarities of their optical properties. TPPs are optical surface states, which can be excited at the boundary of distributed Bragg reflector and metal film. Like in case of surface plasmon-polaritons or surface electromagnetic waves excitation, the emergence of the TPP leads to the localization of the electromagnetic field near the DBR/metal interface. Experimentally, TPP can be detected by a narrow resonance in reflectance or transmittance spectrum of the DBR/metal structure. Tamm plasmon-polaritons were proposed to be used in several types of novel optical elements, such as sensors and lasers. It was also shown that TPPs can be effectively coupled with other localized states like surface plasmons and microcavity modes. In this contribution the direct measurements of the Tamm plasmon-polariton relaxation dynamics are presented. The lifetime of the TPP in one-dimensional photonic crystal is estimated experimentally and compared to the results of numerical calculations. The dependence of the lifetime on the angle of incidence and duration of the incident pulse is supported by numerical studies performed with the finite difference time-domain technique.

  2. Carrier dynamics and terahertz photoconductivity of doped silicon measured by femtosecond pump-terahertz probe spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The carrier dynamics and terahertz photoconductivity in the n-type silicon (n-Si) as well as in the p-type Silicon (p-Si) have been investigated by using femtosecond pump-terahertz probe technique. The measurements show that the relative change of terahertz transmission of p-Si at low pump power is slightly smaller than that of n-Si,due to the lower carrier density induced by the recombination of original holes in the p-type material and the photogenerated electrons. At high pump power,the bigger change of terahertz transmission of p-Si originates from the greater mobility of the carriers compared to n-Si. The transient photoconductivities are calculated and fit well with the Drude-Smith model,showing that the mobility of the photogenerated carriers decreases with the increasing pump power. The obtained results indicate that femtosecond pump-terahertz probe technique is a promising method to investigate the carrier dynamics of semiconductors.

  3. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  4. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  5. Dynamical theory of spectroscopy with femtosecond pulse excitation(Ⅲ)——Transient rate equation in Liouville space

    Institute of Scientific and Technical Information of China (English)

    陆靖; 范康年

    1999-01-01

    A dynamical theory of spectroscopy with femtosecond pulse excitation is developed in Liouville space. By using density matrix formalism, the transient rate equation that can be reduced to the classical KHD expression in CW case is obtained. This theory is applied to the Raman excitation profile of IBr and the results are in agreement with the experiments.

  6. Coherent control of ultracold molecule dynamics in a magneto-optical trap using chirped femtosecond laser pulses

    CERN Document Server

    Brown, B L; Walmsley, I A; Brown, Benjamin L.; Dicks, Alexander J.; Walmsley, Ian A.

    2005-01-01

    We have studied the effects of chirped femtosecond laser pulses on the formation of ultracold molecules in a Rb magneto-optical trap. We have found that application of chirped femtosecond pulses suppressed the formation of 85Rb-2 and 87Rb-2 lowest triplet state molecules in contrast to comparable non-chirped pulses, cw illumination, and background formation rates. Variation of the amount of chirp indicated that this suppression is coherent in nature, suggesting that coherent control is likely to be useful for manipulating the dynamics of ultracold quantum molecular gases.

  7. Coherent control of ultracold molecule dynamics in a magneto-optical trap by use of chirped femtosecond laser pulses.

    Science.gov (United States)

    Brown, Benjamin L; Dicks, Alexander J; Walmsley, Ian A

    2006-05-05

    We have studied the effects of chirped femtosecond laser pulses on the formation of ultracold molecules in a Rb magneto-optical trap. We have found that application of chirped femtosecond pulses suppressed the formation of (85)Rb and (87)Rb(2) a(3)sigma(+)(u) molecules in contrast to comparable nonchirped pulses, cw illumination, and background formation rates. Variation of the amount of chirp indicated that this suppression is coherent in nature, suggesting that coherent control is likely to be useful for manipulating the dynamics of ultracold quantum molecular gases.

  8. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    Science.gov (United States)

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  9. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films

    DEFF Research Database (Denmark)

    Balling, P.; Schou, Jørgen

    2013-01-01

    -field excitation makes it possible to produce films of materials that are transparent to the laser light. Second, the highly localized excitation reduces the emission of larger material particulates. Third, lasers with ultrashort pulses are shown to be particularly useful tools for the production of nanocluster......Laser ablation of dielectrics by ultrashort laser pulses is reviewed. The basic interaction between ultrashort light pulses and the dielectric material is described, and different approaches to the modeling of the femtosecond ablation dynamics are reviewed. Material excitation by ultrashort laser...... can be described by various rate-equation models in combination with different descriptions of the excited electrons. The optical properties of the highly excited dielectric undergo a rapid change during the laser pulse, which must be included in a detailed modeling of the excitations. The material...

  10. Femtosecond study of the effects of ions on the reorientation dynamics of water

    CERN Document Server

    van der Post, Sietse T; Bakker, Huib J

    2013-01-01

    We study the effects of ions on the reorientation dynamics of liquid water with polarization-resolved femtosecond mid-infared spectroscopy. We probe the anisotropy of the excitation of the O-D stretch vibration of HDO molecules in solutions of NaCl, NaI and tetra-alkylammonium bromide salts in 8 percent HDO:H2O. We find that the reorientation O-D groups of HDO molecules hydrating the Cl- and I- anions occurs on two different time scales with time constants of 2pm0.3 ps and 9pm2 ps. The fast component is due to a wobbling motion of the O-D group that keeps the hydrogen bond with the halogenic anion intact. For solutions of tetra-alkylammonium bromide salts we observe a very strong slowing down of the reorientation of water that is associated with the hydration of the hydrophobic alkyl groups of the tetra-alkylammonium ions.

  11. Dynamics of multiple bubbles, excited by femtosecond filament in water: Role of aberrations

    CERN Document Server

    Potemkin, F V

    2014-01-01

    Using shadow photography, we observed microsecond time scale evolution of multiple cavitation bubbles, excited by tighty focused femtosecond laser pulse in water under supercritical power regime (~100 Pcr). In these extreme conditions high energy delivery into the microvolume of liquid sample leads to creation of single filament which becomes a source of cavitation region formation. When aberrations were added to the optical scheme the hot spots along the filament axis are formed. At high energies (more than 40uJ) filaments in these hot spots are fired and, as a result, complex pattern of cavitation bubbles is created. The bubbles can be isolated from each other or build exotic drop-shaped cavitation region, which evolution at the end of its life, before the final collapse, contains the jet emission. The dynamics of the cavitation pattern was investigated from pulse energy and focusing. We found that greater numerical aperture of the focusing optics leads to greater cavitation area length. The strong interact...

  12. Femtosecond quantum dynamics and laser-cooling in thermal molecular systems

    CERN Document Server

    Warmuth, C

    2000-01-01

    of thermal trans-stilbene upon excitation at the omega sub 0 frequency. The experimental results are in good agreement with theoretical analysis. This work deals with coherent and incoherent vibrational phenomena in thermal systems, wave packet motion and laser-cooling. In the first part, the principle of COIN (Coherence Observation by Interference Noise) has been applied as a new approach to measuring wave packet motion. In the experiment pairs of phase-randomized femtosecond pulses with relative delay-time tau prepare interference fluctuations in the excited state population, so the variance of the correlated fluorescence intensity directly mimics the dynamics of the propagating wave packet. The scheme is demonstrated by measuring the vibrational coherence of wave packet-motion in the B-state of gaseous iodine. The COIN-interferograms obtained recover propagation, recurrences, spreading, and revivals as the typical signature of wave packets. Due to the disharmony of the B-state-potential, fractional revival...

  13. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses

    CERN Document Server

    Yao, Jinping; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2015-01-01

    We experimentally demonstrate ultrafast dynamic of generation of a strong 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the excited and ground states of N2 for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.

  14. Femtosecond Transient Absorption Spectra and Relaxation Dynamics of SWNT in SDS Micellar Solutions

    Science.gov (United States)

    Nadtochenko, V. A.; Lobach, A. S.; Gostev, F. E.; Tcherbinin, D. O.; Sobennikov, A.; Sarkisov, O. M.

    2005-09-01

    Transient absorption spectra and relaxation dynamics of excited SWNT were studied by femtosecond absorption spectroscopy as a function of: the energy of excitation quanta (ℏω = 2 eV, 2.5 eV, 4 eV); the density of the excitation energy; polarizations of the pump and probe pulses. The transient absorption spectra were monitored by white supercontinuum light pulse in the spectral region of ˜ 1.2 ÷ 3.6 eV. The induced transient absorption spectra of SWNT are considered as filling of the size-quantized energy bands with nonequilibrium carriers; renormalization of the one-dimensional energy bands at high density of the induced plasma; quantum confined Stark effect and screening of excitons. The anisotropic relaxation rate is observed.

  15. Selective triggering of phase change in dielectrics by femtosecond pulse trains based on electron dynamics control

    Institute of Scientific and Technical Information of China (English)

    Xu Chuan-Cai; Jiang Lan; Leng Ni; Liu Peng-Jun

    2013-01-01

    In this study we experimentally reveal that the phase change mechanism can be selectively triggered by shaping femtosecond pulse trains based on electron dynamics control (EDC),including manipulation of excitations,ionizations,densities,and temperatures of electrons.By designing the pulse energy distribution to adjust the absorptions,excitations,ionizations,and recombinations of electrons,the dominant phase change mechanism experiences transition from nonthermal to thermal process.This phenomenon is observed in quadruple,triple,and double pulses per train ablation of fused silica separately.This opens up possibilities for controlling phase change mechanisms by EDC,which is of great significance in laser processing of dielectrics and fabrication of integrated nano-and micro-optical devices.

  16. Femtosecond study of exciton dynamics in polyfluorene statistical copolymers in solutions and thin films

    Science.gov (United States)

    Zhang, Jin Z.; Kreger, Melissa A.; Klaerner, Gerrit; Kreyenschmidt, M.; Miller, Robert D.; Scott, J. Campbell

    1997-12-01

    The formation and decay dynamics of photogenerated excitons in polyfluorene statistical co-polymers in solutions and in thin films have been studied using femtosecond transient absorption spectroscopy. In solution photoexcitation of the polymer generates primarily intrachain singlet excitons which are initially hot and then relax quickly (polaron pairs in films at low intensities. At high intensities, the possibility cannot be ruled out completely, especially in relation to the fast decay. If bound polaron pairs are formed as indicated by the fast decay, they must be generated as a result of interaction between excitons on different chains since they are absent at low power, an they must be created and then decay within about 1 ps.

  17. Perspective: On the relevance of slower-than-femtosecond time scales in chemical structural-dynamics studies

    Directory of Open Access Journals (Sweden)

    Philip Coppens

    2015-03-01

    Full Text Available A number of examples illustrate structural-dynamics studies of picosecond and slower photo-induced processes. They include molecular rearrangements and excitations. The information that can be obtained from such studies is discussed. The results are complementary to the information obtained from femtosecond studies. The point is made that all pertinent time scales should be covered to obtain comprehensive insight in dynamic processes of chemical and biological importance.

  18. Influence of femtosecond laser produced nanostructures on biofilm growth on steel

    Science.gov (United States)

    Epperlein, Nadja; Menzel, Friederike; Schwibbert, Karin; Koter, Robert; Bonse, Jörn; Sameith, Janin; Krüger, Jörg; Toepel, Jörg

    2017-10-01

    Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization.

  19. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirscht, Julian

    2015-08-15

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  20. Relaxation dynamics in the excited states of a ketocyanine dye probed by femtosecond transient absorption spectroscopy

    Indian Academy of Sciences (India)

    Jahur A Mondal; Sandeep Verma; Hirendra N Ghosh; Dipak K Palit

    2008-01-01

    Relaxation dynamics of the excited singlet states of 2,5-bis-(N-methyl-N-1,3-propdienylaniline)-cyclopentanone (MPAC), a ketocyanine dye, have been investigated using steady-state absorption and emission as well as femtosecond time-resolved absorption spectroscopic techniques. Following photoexcitation using 400 nm light, the molecule is excited to the S2 state, which is fluorescent in rigid matrices at 77 K. S2 state is nearly non-fluorescent in solution and has a very short lifetime (0.5 ± 0.2 ps). In polar aprotic solvents, the S1 state follows a complex multi-exponential relaxation dynamics consisting of torsional motion of the donor groups, solvent re-organization as well as photoisomerization processes. However, in alcoholic solvents, solvent re-organization via intermolecular hydrogen-bonding interaction is the only relaxation process observed in the S1 state. In trifluoroethanol, a strong hydrogen bonding solvent, conversion of the non-hydrogen-bonded form, which is formed following photoexcitation, to the hydrogen-bonded complex has been clearly evident in the relaxation process of the S1 state.

  1. Carrier dynamics and terahertz photoconductivity of doped silicon measured by femtosecond pump-terahertz probe spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHOU QingLi; SHI YuLei; LI Tong; JIN Bin; ZHAO DongMei; ZHANG CunLin

    2009-01-01

    The carrier dynamics and terahertz photoconductivity in the n-type silicon (n-Si) as well as in the p-type Silicon (pSi) have been investigated by using femtoaecond pump-terahertz probe technique. The measurements show that the relative change of terahertz transmission of p-Si at low pump power is slightly smaller than that of n-Si, due to the lower carrier density induced by the recombination of original holes in the p-type material and the photogenerated electrons. At high pump power, the bigger change of terahertz transmission of p-Si originates from the greater mobility of the carriers compared to n-Si. The transient photoconductivities are calculated and fit well with the Drude-Smith model, showing that the mobility of the photogenerated carriers decreases with the increasing pump power. The obtained results indicate that femtosecond pump-terahertz probe technique is a promising method to investigate the carrier dynamics of semiconductors.

  2. Systematic study of spatiotemporal dynamics of intense femtosecond laser pulses in BK-7 glass

    Indian Academy of Sciences (India)

    Ram Gopal; V Deepak; S Sivaramakrishnan

    2007-04-01

    In this paper we present a systematic study of the spatial and temporal effects of intense femtosecond laser pulses in BK-7 over a broad range of input powers, 1–1000 times the critical power for self-focusing (cr) by numerically solving the nonlinear Schrödinger equation (NLS). Most numerical studies have not been extended to such high powers. A clear-cut classification of spatio-temporal dynamics up to very high powers into three regimes – the group-velocity dispersion (GVD) regime, the ionization regime and the dominant plasma regime – as done here, is a significant step towards a better understanding. Further, we examine in detail the role of GVD in channel formation by comparing BK-7 to an `artificial' medium. Our investigations bring forth the important observation that diffraction plays a minimal role in the formation of multiple cones and that plasma plays a diffraction-like role at very high powers. A detailed study of the spatio-temporal dynamics in any condensed medium over this range of powers has not been reported hitherto, to the best of our knowledge. We also suggest appropriate operational powers for various applications employing BK-7 on the basis of our results.

  3. Femtosecond pulses and dynamics of molecular photoexcitation: RbCs example

    CERN Document Server

    Londono, B E; Mahecha, J E; Crubellier, A; Luc-Koenig, E

    2012-01-01

    We investigate the dynamics of molecular photoexcitation by unchirped femtosecond laser pulses using RbCs as a model system. This study is motivated by a goal of optimizing a two-color scheme of transferring vibrationally-excited ultracold molecules to their absolute ground state. In this scheme the molecules are initially produced by photoassociation or magnetoassociation in bound vibrational levels close to the first dissociation threshold. We analyze here the first step of the two-color path as a function of pulse intensity from the low-field to the high-field regime. We use two different approaches, a global one, the 'Wavepacket' method, and a restricted one, the 'Level by Level' method where the number of vibrational levels is limited to a small subset. The comparison between the results of the two approaches allows one to gain qualitative insights into the complex dynamics of the high-field regime. In particular, we emphasize the non-trivial and important role of far-from-resonance levels which are adia...

  4. Femtosecond spectroscopy study of the exciton relaxation dynamics in silicon quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kryschi, Carola; Kuntermann, Volker; Cimpean, Carla [Institut fuer Physikalische Chemie I, FAU, Erlangen (Germany); Haarer, Dietrich [BIMF, Universitaet Bayreuth (Germany)

    2008-07-01

    This contribution is targeted to the development of surface-modified silicon quantum dots (Siqdots) with tailored luminescence properties. The surface modification of Siqdots with sizes between 1 and 5 nm has been successfully achieved via two different synthesis routes, first, by controlled oxidation followed from silanization and second, by thermal hydrosilylation with chromophores. The luminescence properties of ethanolic Siqdots dispersions were characterized using stationary and time-resolved luminescence spectroscopy techniques, whereas the ultrashort exciton relaxation dynamics were examined using femtosecond transient absorption spectroscopy. Silanized Siqdots were observed to exhibit two species of photoluminescence (PL): the blue emission at 380 nm is assigned to localized surface states, whereas radiative recombination of quantum confined excitons gives rise to a broad PL band around 800 nm. Whereas the latter is ascribed to Siqdots with sizes larger than 3 nm, for Siqdots smaller than 1.5 nm exciton relaxation dynamics is understood to occur predominantly by trapping due to lower-lying surface states which may radiatively decay. Siqdots terminated with suited chromophores were observed to exhibit only one PL band in the visible that is ascribed to exciton states involving resonant couplings to the conjugated electron system of the chromophores.

  5. Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A

    2012-09-06

    Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.

  6. Femtosecond Dynamics of Fundamental Reaction Processes in Liquids: Proton Transfer, Geminate Recombination, Isomerization and Vibrational Relaxation.

    Science.gov (United States)

    Schwartz, Benjamin Joel

    Femtosecond and picosecond transient absorption spectroscopy are used to probe several fundamental aspects of chemical reactivity in the condensed phase including proton transfer, germinate recombination, isomerization and vibrational relaxation. The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured for the first time, and the effects of external hydrogen-bonding interactions on the proton transfer are studied in detail. The proton transfer takes place in ~240 fsec in non-polar environments, but becomes faster than the instrumental resolution of 110 fsec in methanol solutions. A simple model is proposed to explain these results. The dynamics following photodissociation of CH _2I_2 and other small molecules provide the first direct observations of germinate recombination. The recombination of many different photodissociating species occurs on a ~350 fsec time scale. Results also show that recombination yields but not rates depend on the molecular details of the solvent environment and suggest that recombination kinetics are dominated by a single collision with the surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. The data show no simple correlation between the hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes. This strongly implies that the isomerization of these systems does not provide a suitable testing ground for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in the photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial

  7. Control of periodic ripples growth on metals by femtosecond laser ellipticity.

    Science.gov (United States)

    Tang, Yanfu; Yang, Jianjun; Zhao, Bo; Wang, Mingwei; Zhu, Xiaonong

    2012-11-01

    Formation of the periodic ripples on metallic surfaces is investigated comprehensively using variable ellipticities of femtosecond lasers. Compared with the linearly polarized incidence, the well defined grating-like ripple structures rather than the uniform arrays of nanoparticle can always be obtained for the elliptical polarization lasers. The ripple orientation is slanted clockwise or anticlockwise depending on the laser helicity but always display a maximum angle of 45°. Theoretical analyses indicate that no circular polarization is achieved for femtosecond lasers passing through quarter waveplate, and the induced ripple orientation is determined by the major axis of the polarization ellipse. The simulation results agree well with the experimental observations.

  8. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  9. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  10. Dynamics of plasma formation and permanent structural transformation in ZBLAN excited by tightly focused femtosecond laser pulses

    Science.gov (United States)

    Cho, Sung-Hak; Chang, Won-Seok; Kim, Kwang-Ryul; Hong, Jong Wook

    2009-01-01

    Time-resolved dynamics of plasma formation and bulk refractive-index modification in fluoride glass (ZBLAN) excited by a tightly focused femtosecond (130 fs) Ti:sapphire laser ( λp=790 nm) was observed in situ. The femtosecond time-resolved pump-probe measurement with perpendicularly linear polarized beams was used to study the dynamics of both plasma formation and induced permanent structural transformation with refractive-index change. In the refractive-index domain, the lifetime of induced plasma formation is ˜35 ps and structural transition time for forming the refractive-index change is ˜80 ps. In the optical damage domain, however, the lifetime of induced plasma formation is ˜40 ps and structural transition time for forming the optical damage is ˜140 ps. We found that the process of refractive-index bulk modification is significantly different from that of optical cracks. From the diffraction efficiency of Kogelnik's coupled mode theory, the maximum value of refractive-index change (Δ n) was estimated to be 1.3×10 -2. By the scanning of fluoride glass on the optical X-Y-Z stages, the fabrication of internal grating with refractive-index modification was demonstrated in fluoride glass using tightly focused femtosecond laser.

  11. Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses.

    Science.gov (United States)

    Esser, Dagmar; Rezaei, Saeid; Li, Jianzhao; Herman, Peter R; Gottmann, Jens

    2011-12-05

    Bursts of femtosecond laser pulses with a repetition rate of f = 38.5MHz were created using a purpose-built optical resonator. Single Ti:Sapphire laser pulses, trapped inside a resonator and released into controllable burst profiles by computer generated trigger delays to a fast Pockels cell switch, drove filamentation-assisted laser machining of high aspect ratio holes deep into transparent glasses. The time dynamics of the hole formation and ablation plume physics on 2-ns to 400-ms time scales were examined in time-resolved side-view images recorded with an intensified-CCD camera during the laser machining process. Transient effects of photoluminescence and ablation plume emissions confirm the build-up of heat accumulation effects during the burst train, the formation of laser-generated filaments and plume-shielding effects inside the deeply etched vias. The small time interval between the pulses in the present burst train enabled a more gentle modification in the laser interaction volume that mitigated shock-induced microcracks compared with single pulses.

  12. Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle

    Directory of Open Access Journals (Sweden)

    Paul Kühler

    2013-09-01

    Full Text Available In this work we analyze the ablation dynamics of crystalline Si in the intense near field generated by a small dielectric particle located at the material surface when being irradiated with an infrared femtosecond laser pulse (800 nm, 120 fs. The presence of the particle (7.9 μm diameter leads to a strong local enhancement (ca. 40 times of the incoming intensity of the pulse. The transient optical response of the material has been analyzed by means of fs-resolved optical microscopy in reflection configuration over a time span from 0.1 ps to about 1 ns. Characteristic phenomena like electron plasma formation, ultrafast melting and ablation, along with their characteristic time scales are observed in the region surrounding the particle. The use of a time resolved imaging technique allows us recording simultaneously the material response at ordinary and large peak power densities enabling a direct comparison between both scenarios. The time resolved images of near field exposed regions are consistent with a remarkable temporal shift of the ablation onset which occurs in the sub-picosend regime, from about 500 to 800 fs after excitation.

  13. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Amaran, Saieswari; Kosloff, Ronnie [Fritz Haber Research Centre and The Department of Physical Chemistry, Hebrew University, Jerusalem 91904 (Israel); Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Rybak, Leonid; Levin, Liat; Amitay, Zohar [The Shirlee Jacobs Femtosecond Laser Research Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P. [Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel (Germany)

    2013-10-28

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  14. Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser pulses on gold

    Science.gov (United States)

    Gurevich, Evgeny L.; Levy, Yoann; Gurevich, Svetlana V.; Bulgakova, Nadezhda M.

    2017-02-01

    In this paper we investigate the role of two-temperature heating dynamics for formation of periodic structures on metal surfaces exposed to single ultrashort laser pulses.The results of two-temperature model (TTM) two-dimensional simulations are presented on the irradiation of gold by a single 800-nm femtosecond laser pulse the intensity of which is modulated in order to reproduce an initial electron temperature perturbation, which can arise from incoming and scattered surface wave interference. The growing (unstable) modes of the lattice temperature distribution along the surface may be significant in the laser induced periodic surface structures formation. After the end of the laser pulse and before the complete coupling between lattice and electrons occurs, the evolution of the amplitude of the subsequent modulation in the lattice temperature reveals different tendencies depending on the spatial period of the initial modulation. This instabilitylike behavior is shown to arise due to the perturbation of the electronic temperature which relaxes slower for bigger spatial periods and thus imparts more significant modulations to the lattice temperature. Small spatial periods of the order of 100 nm and smaller experience stabilization and fast decay from the more efficient lateral heat diffusion which facilitates the relaxation of the electronic temperature amplitude due to in-depth diffusion. An analytical instability analysis of a simplified version of the TTM set of equations supports the lattice temperature modulation behavior obtained in the simulations and reveals that in-depth diffusion length is a determining parameter in the dispersion relation of unstable modes. Finally, it is discussed how the change in optical properties can intensify the modulation-related effects.

  15. SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations

    KAUST Repository

    Gongora, J. S. Totero

    2016-03-14

    Integrating coherent light sources at the nanoscale with spasers is one of the most promising applications of plasmonics. A spaser is a nano-plasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and the resonant cavity replaced by a nanoparticle supporting localized plasmonic modes. Despite the large body of experimental and theoretical studies, the understanding of the fundamental properties of the spaser emission is still challenging. In this work, we investigated the ultrafast dynamics of the emission from a core-shell spaser by developing a rigorous first-principle numerical model. Our results show that the spaser is a highly nonlinear system with many interacting degrees of freedom, whose emission sustain a rich manifold of different spatial phases. In the regime of strong interaction we observed that the spaser emission manifests an irreversible ergodic evolution, where energy is equally shared among all the available degrees of freedom. Under this condition, the spaser generates ultrafast vortex lasing modes that are spinning on the femtosecond scale, acquiring the character of a nanoparticle with an effective spin. Interestingly, the spin orientation is defined by spontaneous symmetry breaking induced by quantum noise, which is a fundamental component of our ab-initio model. This opens up interesting possibilities of achieving unidirectional emission from a perfectly spherical nanoparticle, stimulating a broad range of applications for nano-plasmonic lasers as unidirectional couplers, random information sources and novel form of photonics neural-networks. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Femtosecond time-resolved photodissociation dynamics of methyl halide molecules on ultrathin gold films

    Directory of Open Access Journals (Sweden)

    Mihai E. Vaida

    2011-09-01

    Full Text Available The photodissociation of small organic molecules, namely methyl iodide, methyl bromide, and methyl chloride, adsorbed on a metal surface was investigated in real time by means of femtosecond-laser pump–probe mass spectrometry. A weakly interacting gold surface was employed as substrate because the intact adsorption of the methyl halide molecules was desired prior to photoexcitation. The gold surface was prepared as an ultrathin film on Mo(100. The molecular adsorption behavior was characterized by coverage dependent temperature programmed desorption spectroscopy. Submonolayer preparations were irradiated with UV light of 266 nm wavelength and the subsequently emerging methyl fragments were probed by photoionization and mass spectrometric detection. A strong dependence of the excitation mechanism and the light-induced dynamics on the type of molecule was observed. Possible photoexcitation mechanisms included direct photoexcitation to the dissociative A-band of the methyl halide molecules as well as the attachment of surface-emitted electrons with transient negative ion formation and subsequent molecular fragmentation. Both reaction pathways were energetically possible in the case of methyl iodide, yet, no methyl fragments were observed. As a likely explanation, the rapid quenching of the excited states prior to fragmentation is proposed. This quenching mechanism could be prevented by modification of the gold surface through pre-adsorption of iodine atoms. In contrast, the A-band of methyl bromide was not energetically directly accessible through 266 nm excitation. Nevertheless, the one-photon-induced dissociation was observed in the case of methyl bromide. This was interpreted as being due to a considerable energetic down-shift of the electronic A-band states of methyl bromide by about 1.5 eV through interaction with the gold substrate. Finally, for methyl chloride no photofragmentation could be detected at all.

  17. Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Creelman, Mark; Kumauchi, Masato; Hoff, Wouter D; Mathies, Richard A

    2014-01-23

    Femtosecond stimulated Raman spectroscopy (FSRS) is used to examine the structural dynamics of the para-hydroxycinnamic acid (HCA) chromophore during the first 300 ps of the photoactive yellow protein (PYP) photocycle, as the system transitions from its vertically excited state to the early ground state cis intermediate, I0. A downshift in both the C7═C8 and C1═O stretches upon photoexcitation reveals that the chromophore has shifted to an increasingly quinonic form in the excited state, indicating a charge shift from the phenolate moiety toward the C9═O carbonyl, which continues to increase for 170 fs. In addition, there is a downshift in the C9═O carbonyl out-of-plane vibration on an 800 fs time scale as PYP transitions from its excited state to I0, indicating that weakening of the hydrogen bond with Cys69 and out-of-plane rotation of the C9═O carbonyl are key steps leading to photoproduct formation. HOOP intensity increases on a 3 ps time scale during the formation of I0, signifying distortion about the C7═C8 bond. Once on the I0 surface, the C7═C8 and C1═O stretches blue shift, indicating recovery of charge to the phenolate, while persistent intensity in the HOOP and carbonyl out-of-plane modes reveal HCA to be a cissoid structure with significant distortion about the C7═C8 bond and of C9═O out of the molecular plane.

  18. Surface Treatment of 45S5 Bio-glass using Femtosecond Laser to Achieve Superior Growth of Hydroxyapatite

    CERN Document Server

    Shaikh, Shazia; Singh, Anil Kumar; Sharma, Kuldeep; Sinha, Sucharita

    2016-01-01

    45S5 Hench bio-glass (BG) has gained interest in research because of its potential clinical applications. Several studies in-vivo and in-vitro have been in progress to improve bio-integration efficiency of this glass. In present contribution, surface modification of Hench BG has been done employing a femtosecond (fs) laser beam, resulting in increased effective surface area of the sample. These surface modified samples were subsequently immersed in simulated body fluid for varying number of days and characterized using Scanning electron microscope, energy dispersive X-ray analysis, X-ray diffraction, and micro-Raman spectroscopy. In-vitro studies indicated superior growth of hydroxyapatite (HAP) layer on the laser treated samples in comparison to the untreated samples. Presence of strong XRD peaks confirmed faster growth of HAP on laser treated samples. Raman peaks, five times more intense and relatively narrower represented higher crystallinity of hydroxyapatite layer on laser treated BG.

  19. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DEFF Research Database (Denmark)

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György;

    2015-01-01

    spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution...... states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined....

  20. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DEFF Research Database (Denmark)

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György;

    2015-01-01

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption...... spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution...

  1. Probing spin-vibronic dynamics using femtosecond X-ray spectroscopy

    DEFF Research Database (Denmark)

    Penfold, T. J.; Pápai, Mátyás Imre; Rozgonyi, T.;

    2016-01-01

    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the development of X-ray Free Electrons Lasers (X-FELs) and is opening new opportunities for the direct probing of femtosecond evolution of the nuclei, the electronic and spin degrees of freedom. In this contributi...

  2. Spatial-temporal dynamics of the terahertz field generated by femtosecond filament

    Science.gov (United States)

    Smirnov, S. V.; Grachev, Ya V.; Tsypkin, A. N.; Kulya, M. S.; Putilin, S. E.; Bespalov, V. G.

    2016-08-01

    We present the study on spatial distribution of the maximum of terahertz field amplitude in time domain when generated by a femtosecond filament. It is shown that as a result of the propagation of the terahertz field forms a spherical wave front, on the edge of which the maximum of amplitude has a temporary delay in contrary to its central part.

  3. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Benjamin J. [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast (~100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I2- photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I2- photodissociation in several size-selected I2-(Ar)n (n = 6-20) and I2-(CO2)n (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I2- on the ground $\\tilde{X}$(2Σu+) state in sufficiently large clusters. Recombination and trapping of I2- on the excited $\\tilde{A}$(2π3/2,g) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a ~500 fs to ~10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods (~1 ps to >200 ps), energy is transferred from vibrationally

  4. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, B.J.

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast ({approx} 100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I{sub 2}{sup -} photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I{sub 2}{sup -} photodissociation in several size-selected I{sub 2}{sup -}(Ar){sub n} (n = 6-20) and I{sub 2}{sup -}(CO{sub 2}){sub n} (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I{sub 2}{sup -} on the ground {tilde X}({sup 2}{Sigma}{sub u}{sup +}) state in sufficiently large clusters. Recombination and trapping of I{sub 2}{sup -} on the excited {tilde A}({sup 2}{Pi}{sub 3/2,g}) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a {approx}500 fs to {approx}10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods ({approx}1 ps to >200 ps), energy is transferred from vibrationally excite d I{sub 2}{sup -} to modes of the solvent, which in turn leads

  5. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy

    Science.gov (United States)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; Closser, Kristina D.; Prendergast, David; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-12-01

    Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (˜58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural

  6. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Suter, Jonathan D.; Phillips, Mark C.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlO is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.

  7. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Morgen, Michael Mark [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  8. Femtosecond Electron Diffraction: Next generation electron sources for atomically resolved dynamics

    OpenAIRE

    Hirscht, Julian

    2015-01-01

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine i...

  9. Femtosecond Optical Detection of Quasiparticle Dynamics in Single-Crystal Bi2Sr2CaCu2O8+δ

    Institute of Scientific and Technical Information of China (English)

    CAO Ning; WEI Yan-Feng; ZHAO Ji-Min; ZHAO Shi-Ping; YANG Qian-Sheng; ZHANG Zhi-Guo; FU Pan-Ming

    2008-01-01

    Quasiparticle dynamics of an optimally doped Bi2Sr2 CaCu2O8+δ single crystal is investigated by the femtosecond pump-probe technique. Temperature dependences of amplitude of the photoinduced differential reflectivity and the relaxation time show the evidence of strong phonon bottleneck. The experimental results are analysed by the Rothwarf-Taylor model.

  10. Growth of nanocomposite films : From dynamic roughening to dynamic smoothening

    NARCIS (Netherlands)

    Pei, Y.T.; Shaha, K.P.; Chen, C.Q.; van der Hulst, Ruben; Turkin, A; Vainshtein, D.I.; Hosson, J.Th.M. De

    2009-01-01

    This paper reports several new findings on the breakdown of dynamic roughening in thin film growth. With increasing energy flux of concurrent ion impingement during pulsed DC sputtering, a transition from dynamic roughening to dynamic smoothening is observed in the growth behavior of TiC/a-C nanocom

  11. X-ray diffuse scattering measurements of nucleation dynamics at femtosecond resolution.

    Science.gov (United States)

    Lindenberg, A M; Engemann, S; Gaffney, K J; Sokolowski-Tinten, K; Larsson, J; Hillyard, P B; Reis, D A; Fritz, D M; Arthur, J; Akre, R A; George, M J; Deb, A; Bucksbaum, P H; Hajdu, J; Meyer, D A; Nicoul, M; Blome, C; Tschentscher, Th; Cavalieri, A L; Falcone, R W; Lee, S H; Pahl, R; Rudati, J; Fuoss, P H; Nelson, A J; Krejcik, P; Siddons, D P; Lorazo, P; Hastings, J B

    2008-04-01

    Femtosecond time-resolved small and wide angle x-ray diffuse scattering techniques are applied to investigate the ultrafast nucleation processes that occur during the ablation process in semiconducting materials. Following intense optical excitation, a transient liquid state of high compressibility characterized by large-amplitude density fluctuations is observed and the buildup of these fluctuations is measured in real time. Small-angle scattering measurements reveal snapshots of the spontaneous nucleation of nanoscale voids within a metastable liquid and support theoretical predictions of the ablation process.

  12. X-ray diffuse scattering measurements of nucleation dynamics at femtosecond resolution.

    Energy Technology Data Exchange (ETDEWEB)

    Lindenberg, A. M.; Engemann, S.; Gaffney, K. J.; Sokolowski-Tinten, K.; Larsson, J.; Rudati, J.; Fuoss, P. H. (Advanced Photon Source); ( MSD); (Stanford Linear Acelerator Center); (Stanford Univ.); (Stanford Synchrotron Radiation Lab.); (Univ. Duisberg-Essen); (Lund Inst. of Tech.); (Univ. of Michigan); (Deutsches Elektronen-Synchrotron DESY); (Max-Planck Inst. Quantum Optics); (Univ. of California at Berkeley); (Korea Research Inst. Standards and Science); (Univ. of Chicago); (LLNL); (BNL); (Ecole Polytechnique de Montreal)

    2008-03-01

    Femtosecond time-resolved small and wide angle x-ray diffuse scattering techniques are applied to investigate the ultrafast nucleation processes that occur during the ablation process in semiconducting materials. Following intense optical excitation, a transient liquid state of high compressibility characterized by large-amplitude density fluctuations is observed and the buildup of these fluctuations is measured in real time. Small-angle scattering measurements reveal snapshots of the spontaneous nucleation of nanoscale voids within a metastable liquid and support theoretical predictions of the ablation process.

  13. Femtosecond Carrier Dynamics in Gold-MoS2 Hybrid Nanostructures

    Science.gov (United States)

    Doiron, Chloe; Liu, Xuejun; Robatjazi, Hossein; Thomann, Isabell

    Small plasmonic nanoparticles are known to efficiently generate energetic hot carriers that can be harnessed by injecting them across a Schottky barrier. To understand the role of plasmon-induced hot carrier generation across Schottky junctions in photocatalytic processes, we synthesized quasi-2D MoS2 monolayer flakes decorated with Au nanoparticles in ethanol. Our goal is to study ultrafast plasmon induced electron injection from Au nanospheres into MoS2 monolayer flakes. We will present femtosecond transient absorption measurements on MoS2/Au hybrid nanoparticles in ethanol solvent, and compare them with neat MoS2 flakes in ethanol.

  14. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Science.gov (United States)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2016-04-01

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  15. Femtosecond dynamics of a non-steroidal anti-inflammatory drug (piroxicam) in solution: The involvement of twisting motion

    Science.gov (United States)

    Gil, Michał; Douhal, Abderrazzak

    2008-06-01

    In this contribution, we report on fast and ultrafast dynamics of a non-steroidal anti-inflammatory drug, piroxicam (PX), in methyl acetate (MAC) and triacetin (TAC), two solvents of different viscosities. The enol form of PX undergoes a femtosecond (shorter than 100 fs) electronically excited state intramolecular proton-transfer reaction to produce keto tautomers. These structures exhibit an internal twisting motion to generate keto rotamers in ˜2-5 ps, a time being longer in TAC. The transient absorption/emission spectrum is very broad indicating that the potential-energy surface at the electronically excited state is very flat, and reflecting the involvement of several coordinates along which the wavepacket of the fs-produced structures evolve.

  16. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es; Siegel, Jan, E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, Javier; Solis, Javier [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2014-09-21

    The interaction of high-power single 130 femtosecond (fs) laser pulses with the surface of Lithium Niobate is experimentally investigated in this work. The use of fs-resolution time-resolved microscopy allows us to separately observe the instantaneous optical Kerr effect induced by the pulse and the generation of a free electron plasma. The maximum electron density is reached 550 fs after the peak of the Kerr effect, confirming the presence of a delayed carrier generation mechanism. We have also observed the appearance of transient Newton rings during the ablation process, related to optical interference of the probe beam reflected at the front and back surface of the ablating layer. Finally, we have analyzed the dynamics of the photorefractive effect on a much longer time scale by measuring the evolution of the transmittance of the irradiated area for different fluences below the ablation threshold.

  17. Femtosecond double-pulse fabrication of hierarchical nanostructures based on electron dynamics control for high surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhang, Ning; Li, Xin; Jiang, Lan; Shi, Xuesong; Li, Cong; Lu, Yongfeng

    2013-09-15

    This Letter presents a simple, efficient approach for high surface-enhanced Raman scattering by one-step controllable fabrication of hierarchical structures (nanoparticles+subwavelength ripples) on silicon substrates in silver nitrate solutions using femtosecond double pulses based on nanoscale electron dynamics control. As the delays of the double pulses increase from 0 fs to 1 ps, the hierarchical structures can be controlled with (1) nanoparticles--the number of nanoparticles in the range of 40-100 nm reaches the maximum at 800 fs and (2) ripples--the subwavelength ripples become intermittent with decreased ablation depths. The redistributed nanoparticles and the modified ripple structures contribute to the maximum enhancement factor of 2.2×10(8) (measured by 10(-6)  M rhodamine 6G solution) at the pulse delay of 800 fs.

  18. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es; Solis, Javier; Siegel, Jan, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2016-04-25

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  19. Femtosecond Soft X-ray Spectroscopy of Solvated Transition-Metal Complexes: Deciphering the Interplay of Electronic and Structural Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huse, Nils; Cho, Hana; Hong, Kiryong; Jamula, Lindsey; de Groot, Frank M. F.; Kim, Tae Kyu; McCusker, James K.; Schoenlein, Robert W.

    2011-04-21

    We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution-phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)3)]2+, where the ultrafast spinstate conversion of the metal ion, initiated by metal-to-ligand charge-transfer excitation, is directly measured using the intrinsic spin-state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin-state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase.

  20. A Dual-Colour Architecture for Pump-Probe Spectroscopy of Ultrafast Magnetization Dynamics in the Sub-10-femtosecond Range

    Science.gov (United States)

    Gonçalves, C. S.; Silva, A. S.; Navas, D.; Miranda, M.; Silva, F.; Crespo, H.; Schmool, D. S.

    2016-03-01

    Current time-resolution-limited dynamic measurements clearly show the need for improved techniques to access processes on the sub-10-femtosecond timescale. To access this regime, we have designed and constructed a state-of-the-art time-resolved magneto-optic Kerr effect apparatus, based on a new dual-color scheme, for the measurement of ultrafast demagnetization and precessional dynamics in magnetic materials. This system can operate well below the current temporal ranges reported in the literature, which typically lie in the region of around 50 fs and above. We have used a dual-colour scheme, based on ultra broadband hollow-core fibre and chirped mirror pulse compression techniques, to obtain unprecedented sub-8-fs pump and probe pulse durations at the sample plane. To demonstrate the capabilities of this system for ultrafast demagnetization and precessional dynamics studies, we have performed measurements in a ferrimagnetic GdFeCo thin film. Our study has shown that the magnetization shows a sudden drop within the first picosecond after the pump pulse, a fast recovery (remagnetization) within a few picoseconds, followed by a clear oscillation or precession during a slower magnetization recovery. Moreover, we have experimentally confirmed for the first time that a sub-10-fs pulse is able to efficiently excite a magnetic system such as GdFeCo.

  1. ARTICLES: A Surface Femtosecond Two-Photon Photoemission Spectrometer for Excited Electron Dynamics and Time-Dependent Photochemical Kinetics

    Science.gov (United States)

    Ren, Ze-feng; Zhou, Chuan-yao; Ma, Zhi-bo; Xiao, Chun-lei; Mao, Xin-chun; Dai, Dong-xu; LaRue, Jerry; Cooper, Russell; Wodtke, Alec M.; Yang, Xue-ming

    2010-06-01

    A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferometer was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.

  2. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping

    Science.gov (United States)

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D. P.; Jha, Animesh; Jose, Gin

    2015-09-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 s.cm-3. Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease.

  3. Studies on femtosecond fluorescence dynamics of photosystem II Particle complex at low temperature

    CERN Document Server

    Liu Xiao; He, Jun Fang; Cai, Xia; Peng Jun Fang; Kuang Ting Yun

    2004-01-01

    In order to understanding the diversity of energy transfer in PS II at different temperatures, PS II particle complex purified from spinach was investigated with femtosecond time-resolved fluorescence spectroscopy in the case of excitation 507 nm at 83 K, 160 K, 273 K. The data were analyzed by Gauss analysis and fluorescence decay time- fitting. Some results were achieved. (1) Increase of the temperature results in a broadening of the fluorescence emission spectra due to the temperature-dependent expressions for nonradiative transitions between two electronic states. (2) There are at least several characteristic Chl molecules exist in PS II particle complex, i.e. Chl b/sub 639//sup 640/, Chl b/sub 640//sup 645/, Chl a/sub 660//sup 663/, Chl a/sub 667//sup 668/, Chl a/sub 673//sup 676/, Chl a/sub 680 //sup 681/, Chl a/sub 680/681//sup 682/, Chl a/sub 684,685//sup 668 /689/, Chl a/sub 688//sup 698/, (Chl a/b/sub a//sup e/: a represents the peak of absorption, e represents the peak of emission). (3) Though the ...

  4. Detection Techniques of Femtosecond Lasers

    Institute of Scientific and Technical Information of China (English)

    LIU Li-peng; ZHOU Ming; DAI Qi-xun; CAI Lan

    2004-01-01

    The measurement techniques of femtosecond spectroscopy are effective method to investigate ultrafast dynamics, they are widely used in the fields of physics, chemistry and biology. In this paper, the principle, experiment setup and the approaches to deal with the experiment data were presented. Then different measurement techniques such as transient absorption spectroscopy, photon echoes, optical Kerr effect and degenerate four-wave mixing were explained with special examples. At last, the application prospect of measurement techniques of femtosecond spectroscopy was forecasted.

  5. Electron dynamics and optical properties modulation of monolayer MoS2 by femtosecond laser pulse: a simulation using time-dependent density functional theory

    Science.gov (United States)

    Su, Xiaoxing; Jiang, Lan; Wang, Feng; Su, Gaoshi; Qu, Liangti; Lu, Yongfeng

    2017-07-01

    In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS2 and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS2 under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS2 because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS2 and has potential applications in direction-dependent optoelectronic devices.

  6. Electron transfer dynamics of triphenylamine dyes bound to TiO2 nanoparticles from femtosecond stimulated Raman spectroscopy

    KAUST Repository

    Hoffman, David P.

    2013-04-11

    Interfacial electron transfer between sensitizers and semiconducting nanoparticles is a crucial yet poorly understood process. To address this problem, we have used transient absorption (TA) and femtosecond stimulated Raman spectroscopy (FSRS) to investigate the photoexcited dynamics of a series of triphenylamine-coumarin dye/TiO2 conjugates. The TA decay is multiexponential, spanning time scales from 100 fs to 100 ps, while the characteristic transient Raman spectrum of the radical cation decays biexponentially with a dominant ∼3 ps component. To explain these observations, we propose a model in which the decay of the TA is due to hot electrons migrating from surface trap states to the conduction band of TiO 2 while the decay of the Raman signature is due to internal conversion of the dye molecule. Furthermore, the S1 Raman spectrum of TPAC3, a dye wherein a vinyl group separates the triphenylamine and coumarin moieties, is similar to the S1 Raman spectrum of trans-stilbene; we conclude that their S1 potential energy surfaces and reactivity are also similar. This correlation suggests that dyes containing vinyl linkers undergo photoisomerization that competes with electron injection. © 2013 American Chemical Society.

  7. Ultrafast dynamics of a near-solid-density layer in an intense femtosecond laser-excited plasma

    Energy Technology Data Exchange (ETDEWEB)

    Adak, Amitava; Chatterjee, Gourab; Kumar Singh, Prashant; Lad, Amit D.; Brijesh, P.; Kumar, G. Ravindra, E-mail: grk@tifr.res.in [Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005 (India); Blackman, David R. [York Plasma Institute, University of York, Heslington, York YO10 5DQ (United Kingdom); Robinson, A. P. L. [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Didcot OX10 0QX (United Kingdom); Pasley, John [York Plasma Institute, University of York, Heslington, York YO10 5DQ (United Kingdom); Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Didcot OX10 0QX (United Kingdom)

    2014-06-15

    We report on the picosecond dynamics of a near-solid-density plasma generated by an intense, infrared (λ = 800 nm) femtosecond laser using time-resolved pump-probe Doppler spectrometry. An initial red-shift is observed in the reflected third harmonic (λ = 266 nm) probe pulse, which gets blue-shifted at longer probe-delays. A combination of particle-in-cell and radiation-hydrodynamics modelling is performed to model the pump laser interaction with the solid target. The results are post-processed to predict the Doppler shift. An excellent agreement is found between the results of such modelling and the experiment. The modelling suggests that the initial inward motion of the critical surface observed in the experiment is due to the passage of a shock-wave-like disturbance, launched by the pump interaction, propagating into the target. Furthermore, in order to achieve the best possible fit to the experimental data, it was necessary to incorporate the effects of bulk ion-acceleration resulting from the electrostatic field set up by the expulsion of electrons from the laser envelope. We also present results of time-resolved pump-probe reflectometry, which are corroborated with the spectrometry results using a 1-D reflectivity model.

  8. Time resolved infrared spectroscopy of femtosecond proton dynamics in the liquid phase; Spectroscopie infrarouge resolue en temps pour l'etude de la dynamique femtoseconde du proton en phase liquide

    Energy Technology Data Exchange (ETDEWEB)

    Amir, W

    2003-12-15

    This work of thesis aims to understand the strong mobility of protons in water. Water is fundamental to life and mediates many chemical and biological processes. However this liquid is poorly understood at the molecular level. The richness of interdisciplinary sciences allows us to study the properties which make it so unique. The technique used for this study was the femtosecond time resolved vibrational spectroscopy. Several experiments were carried out to characterize the femtosecond proton dynamics in water. The visualization of the rotation of water molecules obtained by anisotropy measurements will be presented. This experiment is carried out in isotopic water HDO/D{sub 2}O for reasons of experimental and theoretical suitability. However this is not water. Pure water H{sub 2}O was also studied without thermal effects across vibrations modes. An intermolecular energy resonant transfer was observed. Finally the localized structure of the proton in water (called Eigen form) was clearly experimentally observed. This molecule is implicated in the abnormal mobility of the proton in water (Grotthuss mechanism). (author)

  9. Femtosecond Dynamics of Energy Transfer in Native B800-B850 and B800-Released LH2 Complexes of Rhodobacter Sphaeroides

    Institute of Scientific and Technical Information of China (English)

    刘伟民; 朱荣毅; 夏辰安; 刘源; 徐春和; 钱士雄

    2003-01-01

    Two kinds of antenna complexes LH2 of Rhodobacter sphaeroides, wild type RS601 and the removal of B800 pigments (B800-released), were used in our experiment. These two LH2 complexes show quite different behaviour in absorption and femtosecond dynamics. By using the femtosecond pump-probe technique, the energy transfer processes occurring in two complexes were studied. Because of removing the B800 pigment from the LH2 in B800-released LH2 complex, the energy transfer between the B800 to B850 pigment was completely eliminated,while the pure internal energy transfer within the exciton states of B850 pigment could be carefully investigated.The results show that, at B800 absorption band, B800-released LH2 obviously shows a dominated transient absorption different from the photobleaching observed in RS601; while at the B850 band, these two complexes show similar photobleaching behaviour.

  10. Growth of ZnO nanostructures by femtosecond laser irradiation of polycrystalline targets

    Science.gov (United States)

    Escalante, G.; Ryu, Y. K.; de la Cruz, A. Ruíz; Puerto, D.; Solís, J.; Fernández, P.

    2015-11-01

    The formation of LIPSS upon irradiation with ultrashort laser pulses on the surface of polycrystalline ZnO samples and the potential use of irradiated areas as growth patterns for the production of highly ordered nanostructures upon redeposition have been studied. For this purpose, we have performed different sets of irradiation experiments including static irradiation experiments at low and high repetition rates, as well as scanned beam experiments at high repetition rate, this later in order to generate relatively large template regions for nanostructure growth by redeposition. In all cases, LIPSS formation has been achieved in the ZnO polycrystalline surface. Under appropriate irradiation conditions, the material is redeposited rendering a high density of nanostructures with high aspect ratios and good crystal quality. Given the special luminescent properties and applications of ZnO, particular attention has been paid to the luminescence properties after irradiation and after post-irradiation thermal treatments. The observed evolution has been correlated with evolution of point defects in the treated surfaces. Thermal treatments cause significant changes in both the topography and the cathodoluminescent emission, such as the development of laminar structures, the emergence of nucleation centers and the recovery of ultraviolet emission previously quenched as a consequence of irradiation. Interestingly, LIPSS remain after the luminescent recovery by thermal annealing, opening the possibility to control both luminescence properties and grain size while maintaining an ordered structure with a high effective surface area.

  11. Modeling microbial growth and dynamics.

    Science.gov (United States)

    Esser, Daniel S; Leveau, Johan H J; Meyer, Katrin M

    2015-11-01

    Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers.

  12. Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO2 (110) surface

    Institute of Scientific and Technical Information of China (English)

    Bin LI; Jin ZHAO; Min FENG; Ken ONDA

    2008-01-01

    The femtosecond time-resolved two-photon pho-toemission (TR-2PP) and the ultra high vacuum (UHV) sur-face science techniques are integrated to investigate the elec-tronic structures and the interracial electron transfer dynamics at the atomically ordered adsorbate overlayers on TiO,2single-crystalline surfaces. Our research into the CH,3OH/TiO,2sys-tem exhibits complex dynamics, providing abundant informa-tion with regard to electron transport and solvation processes in the interfacial solvent structures. These represent the fundamentally physical, photochemical, and photocatalytic reactions of protic chemicals covered with metal-oxides.

  13. Photoisomerization among ring-open merocyanines. I. Reaction dynamics and wave-packet oscillations induced by tunable femtosecond pulses

    Science.gov (United States)

    Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias

    2014-06-01

    Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm-1 and 360 cm-1 were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].

  14. Proteins in Action: Femtosecond to Millisecond Structural Dynamics of a Photoactive Flavoprotein

    Science.gov (United States)

    2013-01-01

    Living systems are fundamentally dependent on the ability of proteins to respond to external stimuli. The mechanism, the underlying structural dynamics, and the time scales for regulation of this response are central questions in biochemistry. Here we probe the structural dynamics of the BLUF domain found in several photoactive flavoproteins, which is responsible for light activated functions as diverse as phototaxis and gene regulation. Measurements have been made over 10 decades of time (from 100 fs to 1 ms) using transient vibrational spectroscopy. Chromophore (flavin ring) localized dynamics occur on the pico- to nanosecond time scale, while subsequent protein structural reorganization is observed over microseconds. Multiple time scales are observed for the dynamics associated with different vibrations of the protein, suggesting an underlying hierarchical relaxation pathway. Structural evolution in residues directly H-bonded to the chromophore takes place more slowly than changes in more remote residues. However, a point mutation which suppresses biological function is shown to ‘short circuit’ this structural relaxation pathway, suppressing the changes which occur further away from the chromophore while accelerating dynamics close to it. PMID:24083781

  15. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  16. Excited-state dynamics of bacteriorhodopsin probed by broadband femtosecond fluorescence spectroscopy.

    Science.gov (United States)

    Schmidt, B; Sobotta, C; Heinz, B; Laimgruber, S; Braun, M; Gilch, P

    2005-01-07

    The impact of varying excitation densities (approximately 0.3 to approximately 40 photons per molecule) on the ultrafast fluorescence dynamics of bacteriorhodopsin has been studied in a wide spectral range (630-900 nm). For low excitation densities, the fluorescence dynamics can be approximated biexponentially with time constants of <0.15 and approximately 0.45 ps. The spectrum associated with the fastest time constant peaks at 650 nm, while the 0.45 ps component is most prominent at 750 nm. Superimposed on these kinetics is a shift of the fluorescence maximum with time (dynamic Stokes shift). Higher excitation densities alter the time constants and their amplitudes. These changes are assigned to multi-photon absorptions.

  17. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    In liquid phase chemistry dynamic solute solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic...

  18. Dynamic Ecological Constraints to Economic Growth

    OpenAIRE

    Anke D. Wurzbacher

    2004-01-01

    An important characteristic defining the threat of environmental crises is the uncertainty about their consequences for future welfare. Random processes governing ecosystem dynamics and adaptation to anthropogenic change are the source of prevailing ecological uncertainty and contribute to the problem of how to balance economic development against natural resource conservation. The aim of this study is to describe the implications for steady-state economic growth subject to non-linear dynamic...

  19. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    CERN Document Server

    Corlett, J N; Barry, W; Byrd, J M; De Santis, S; Doolittle, L; Fawley, W; Green, M A; Hartman, N; Heimann, P A; Kairan, D; Kujawski, E; Li, D; Lidia, S M; Luft, P; McClure, R; Parmigiani, F; Petroff, Y; Pirkl, Werner; Placidi, Massimo; Ratti, A; Reavill, D; Reichel, I; Rimmer, R A; Robinson, K E; Sannibale, F; Schönlein, R W; Staples, J; Tanabe, J; Truchlikova, D; Wan, W; Wang, S; Wells, R; Wolski, A; Zholents, A

    2002-01-01

    LBNL is pursuing design studies and the scientific program for a facility of the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length (approx 60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses use...

  20. The Universal Dynamics of Tumor Growth

    Science.gov (United States)

    Brú, Antonio; Albertos, Sonia; Luis Subiza, José; García-Asenjo, José López; Brú, Isabel

    2003-01-01

    Scaling techniques were used to analyze the fractal nature of colonies of 15 cell lines growing in vitro as well as of 16 types of tumor developing in vivo. All cell colonies were found to exhibit exactly the same growth dynamics—which correspond to the molecular beam epitaxy (MBE) universality class. MBE dynamics are characterized by 1), a linear growth rate, 2), the constraint of cell proliferation to the colony/tumor border, and 3), surface diffusion of cells at the growing edge. These characteristics were experimentally verified in the studied colonies. That these should show MBE dynamics is in strong contrast with the currently established concept of tumor growth: the kinetics of this type of proliferation rules out exponential or Gompertzian growth. Rather, a clear linear growth regime is followed. The importance of new cell movements—cell diffusion at the tumor border—lies in the fact that tumor growth must be conceived as a competition for space between the tumor and the host, and not for nutrients or other factors. Strong experimental evidence is presented for 16 types of tumor, the growth of which cell surface diffusion may be the main mechanism responsible in vivo. These results explain most of the clinical and biological features of colonies and tumors, offer new theoretical frameworks, and challenge the wisdom of some current clinical strategies. PMID:14581197

  1. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Barry, W.; Barletta, W.A.; Byrd, J.M.; DeSantis, S.; Doolittle, L.; Fawley, W.; Green, M.A.; Hartman, N.; Heimann, P.; Kairan, D.; Kujawski, E.; Li, D.; Lidia, S.; Luft, P.; McClure, R.; Parmigiani, F.; Petroff, Y.; Pirkl, W.; Placidi, M.; Reavill, D.; Reichel, I.; Rimmer, R.A.; Ratti, A.; Robinson, K.E.; Sannibale, F.; Schoenlein, R.; Staples, J.; Tanabe, J.; Truchlikova, D.; Wan, W.; Wang, S.; Wells, R.; Wolski, A.; Zholents, A.

    2002-12-21

    LBNL is pursuing design studies and the scientific program for a facility dedicated to the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length ({approx}60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron bunches to minimize high-peak-current collective effects, and the ultimate x-ray duration is achieved by a combination of bunch manipulation and optical compression. Synchronization of x-ray pulses to sample excitation signals is expected to be of order 50 - 100 fs. Techniques for making use of the recirculating geometry to provide beam-based signals from early passes through the machine are being studied.

  2. Ultrafast Molecular Photodissociation Dynamics Studied by Femtosecond Photoelectron-Photoion Coincidence Spectroscopy

    Science.gov (United States)

    Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E.; Koch, Markus

    2017-06-01

    To completely characterize photodissociation mechanisms with time-resolved spectroscopy, it is essential to obtain unequivocal experimental information about the fragmentation dynamics induced by the laser pulse. We apply time-resolved photoelectron-photoion coincidence (PEPICO) detection in combination with different excitation schemes to obtain a mechanistic picture of the fragmentation process. For gas phase acetone molecules excited to high lying Rydberg states we are able to disentangle different ionization channels and investigate the fragmentation behavior of each channel separately. In particular, the high differentiability of PEPICO allows to distinguish channels where fragmentation proceeds after ionization from channels with fragmentation in the neutral. We show that excited Rydberg state population undergoes internal conversion due to coupling to valence states, which takes place within (150 ± 30) fs. The corresponding non-adiabatic, ultrafast relaxation dynamics to lower lying states causes conversion of electronic to vibrational energy and is found to play a crucial role in the fragmentation process (see figure 1). By studying the influence of photon energy, pulse duration, chirp and intensity of the laser pulses, we are able to determine the energy-threshold that is required for fragmentation, as well as corresponding fragmentation ratios. Surprisingly, for excitation with pulses possessing a strong negative chirp we observe significantly reduced fragmentation, indicating different internal conversion pathways and the associated intramolecular vibrational redistribution.

  3. Femtosecond dynamics of correlated many-body states in C60 fullerenes

    Science.gov (United States)

    Usenko, Sergey; Schüler, Michael; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L.; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal

    2016-11-01

    Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C60 by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of {τ }{el}={10}-3+5 fs. Energy dissipation towards nuclear degrees of freedom is studied with time-resolved techniques. The evaluation of the nonlinear autocorrelation trace gives a characteristic time constant of {τ }{vib}=400+/- 100 fs for the exponential decay. In line with the experiment, the observed transient dynamics is explained theoretically by nonadiabatic (vibronic) couplings involving the correlated electronic, the nuclear degrees of freedom (accounting for the Herzberg-Teller coupling), and their interplay.

  4. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  5. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy.

    Science.gov (United States)

    Zhang, Yuyuan; Beckstead, Ashley A; Hu, Yuesong; Piao, Xijun; Bong, Dennis; Kohler, Bern

    2016-11-30

    Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  6. Photo-induced dynamics in heterocyclic aromatic molecules probed by femtosecond XUV transient absorption spectroscopy

    Science.gov (United States)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, Chaitanya D.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-05-01

    We report on the ring-opening and dissociation dynamics of strong-field ionized selenophene (C4 H4 Se), studied by transient XUV absorption spectroscopy at the Se 3d edge. The table-top experiments are facilitated by high-order harmonic generation coupled with a gas phase transient XUV absorption setup that is optimized for the study of organic compounds. Employing element-specific core-to-valence transitions, the ultrafast molecular dynamics are monitored from the perspective of the well-localized Se atoms. Spectral features are assigned based on first principles TDDFT calculations for a large manifold of electronic states. We observe signatures of rapidly (~ 35 fs) decaying highly excited molecular cations, the formation of ring-opened products on a 100 fs time scale and, most notably, the elimination of bare Se+ ions in a very rapid multi-step process. A delayed onset of the Se+ ions provides direct evidence that both selenium-carbon bonds are broken within only ~ 130 fs and that a sequential mechanism, presumably an initial ring-opening followed by a subsequent breaking of the second bond, is required to eliminate the atomic fragments.

  7. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics of H2CCO + and D2CCO +

    Science.gov (United States)

    Niu, Baohua; Bai, Ying; Shirley, David A.

    1993-08-01

    High resolution helium Iα (584 Å) photoelectron spectra of H2CCO and D2CCO are reported. The present spectra of the ground states of ketene cations show more vibrational fine structure than previously reported. The adiabatic ionization energies (AIEs) of the cations' first, second, and fifth excited states are determined unambiguously. The doubletlike fine structures present in the first excited states of ketene cations imply the excitation of a ``soft'' mode that was not observed before. It was assigned to the ν5 mode, which is characterized by the CH2 (CD2) group out-of-plane wagging motion. The complexity of the photoelectron spectra obtained for the ionic first excited states is attributed to the possible dissociation and predissociation of this state. Strong isotope effects are observed in the vibronic (vibrational) couplings in most of the ionic states. Vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra for four of the six ionic states observed. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum of the upper potential energy surfaces (PES). The decay dynamics of the ionic first and fifth excited states of ketene are characterized by ultrafast intramolecular processes such as dissociation and predissociation.

  8. Femtosecond dynamics of fundamental reaction processes in liquids: Proton transfer, geminate recombination, isomerization and vibrational relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Benjamin Joel [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured and effects of external hydrogen-bonding interactions on the proton transfer are studied. The proton transfer takes place in ~240 fsec in nonpolar environments, but becomes faster than instrumental resolution of 110 fsec in methanol solution. The dynamics following photodissociation of CH2I2 and other small molecules provide the first direct observations of geminate recombination. The recombination of many different photodissociating species occurs on a ~350 fsec time scale. Results show that recombination yields but not rates depend on the solvent environment and suggest that recombination kinetics are dominated by a single collision with surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. Data show no simple correlation between hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes, implying that the isomerization does not provide a suitable for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial steps of the photochromic reaction process occur extremely rapidly. Laser system and computer codes for data analysis are discussed.

  9. Dynamics of large femtosecond filament arrays: possibilities, limitations, and trade-offs

    CERN Document Server

    Walasik, Wiktor

    2015-01-01

    Stable propagation of large, multifilament arrays over long distances in air paves new ways for microwave-radiation manipulation. Although, the dynamics of a single or a few filaments was discussed in some of the previous studies, we show that the stability of large plasma filament arrays is significantly more complicated and is constrained by several trade-offs. Here, we analyze the stability properties of rectangular arrays as a function of four parameters: relative phase of the generating beams, number of filaments, separation between them, and initial power. We find that arrays with alternating phase of filaments are more stable than similar arrays with all beams in phase. Additionally, we show that increasing the size of an array increases its stability, and that a proper choice of the beam separation and the initial power has to be made in order to obtain a dense and regular array of filaments.

  10. Femtosecond dynamics of the S2 and S1 fluorescence of ionic styryl dyes in polar solvents

    NARCIS (Netherlands)

    H. Wang; W. Rettig; A.I. Tolmachev; M. Glasbeek

    2004-01-01

    Femtosecond fluorescence upconversion and picosecond time-correlated single-photon counting fluorescence experiments for bridged and unbridged ionic styryl dye compounds in polar solvents are reported. The measured fluorescence transients reveal S2 S1 internal conversion (IC) with a typical time of

  11. Investigation of ultrafast dynamics of CdTe quantum dots by femtosecond fluorescence up-conversion spectroscopy

    NARCIS (Netherlands)

    Yao, G.-X.; Lü, L.-H.; Gui, M.-F.; Zhang, X.-Y.; Zheng, X.-F.; Ji, X.-H.; Zhang, H.; Cui, Z.-F.

    2012-01-01

    The ultrafast carrier relaxation processes in CdTe quantum dots are investigated by femtosecond fluorescence up-conversion spectroscopy. Photo-excited hole relaxing to the edge of the forbidden gap takes a maximal time of ~ 1.6 ps with exciting at 400 nm, depending on the state of the photo-excited

  12. Dynamic speckle study of microbial growth

    Science.gov (United States)

    Vincitorio, F. M.; Mulone, C.; Marcuzzi, P. A.; Budini, N.; Freyre, C.; Lopez, A. J.; Ramil, A.

    2015-08-01

    In this work we present a characterization of yeast dynamic speckle activity during growth in an isolated agar culture medium. We found that it is possible to detect the growth of the microorganisms even before they turn out to be visible. By observing the time evolution of the speckle activity at different regions of the culture medium we could extract a map of the growth process, which served to analyze how the yeast develops and spreads over the agar's medium. An interesting point of this study concerns with the influence of the laser light on the yeast growth rate. We have found that yeast finds hard to develop at regions with higher laser light illumination, although we used a synchronous system to capture the speckle pattern. The results obtained in this work would serve us as a starting point to fabricate a detector of growing microorganism colonies, with obvious interesting applications in diverse areas.

  13. Dynamics of Fibril Growth and Feedback Motifs

    DEFF Research Database (Denmark)

    Cordsen, Pia

    in the literature were found, such as length distribution and apparant persistence lengths. It is found that at all concentrations, fibril growth is characterized by Poissonian stop-go dynamics where the fibril either grows (``go'') or does not grow (``stop''). A monomer-trimer model is proposed in which monomers...... and trimers exist in equilibrium with monomers dominating at low concentrations and trimers dominating at high concentrations. In the model, fibrils consist either of monomers or of trimers and fibril growth is inhibited when the other species binds reversibly to the fibril. Growth probability is derived from...... chemical reaction rates of the model, and the theoretical and experimental growth probabilities are found to be in good agreement. Speed distributions of fibrils are also analysed and found to be in good agreement with the predictions of the model. Fibrils of the protein alpha-synuclein which are involved...

  14. Femtosecond dynamics of correlated many-body states in C$_{60}$ fullerenes

    CERN Document Server

    Usenko, Sergey; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal

    2016-01-01

    Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C$_{60}$ by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of $\\tau_\\mathrm{el}=8^{+12}_{-5}$ fs. Energy dissipation towards nuclear degrees of freedom is studied in time-resolved experiments. The evaluation of the non-linear autocorrelation trace gives a characteristic time constant of $\\tau_\\mathrm{vib}=309\\pm31$ fs for the exponenti...

  15. Carrier dynamics in EuTiO3 films probed by femtosecond pump-probe spectroscopy

    Science.gov (United States)

    Li, Zhongguo; Zhao, Run; Li, Weiwei; Wang, Haiyan; Yang, Hao; Zhang, Xueru; Wang, Yuxiao; Wei, Tai-Huei; Song, Ying-Lin

    2015-03-01

    Recently, perovskite oxide EuTiO3 has attracted considerable attention due to its intriguing multiferroic properties. To gain a deeper understanding of its fascinating properties, it is essential to characterize the competing interactions between charge, lattice, spin, and orbital parameters. Here we present optical studies of the ultrafast carrier dynamics in EuTiO3 films grown on SrTiO3 substrates by probing photo-induced transient absorption (TA) in the weak excitation limit. All the signals were measured at room temperature. The transient curve of EuTiO3 exhibits a fast rise after photo excitation (approximately 2 ps) and a long decay component with time constant of several nanoseconds, which are attributed to carrier-phonon coupling and carrier recombination respectively. The absorption change of EuTiO3 near zero temporal delay is found to be quite different from the SrTiO3 substrates, implying carrier-phonon interactions differ distinctively between these two materials. Our results could be helpful to understand the microscopic interactions in perovskite oxide. The authors acknowledge the support of the National Natural Science Foundation of China.

  16. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Yoann, E-mail: levy@fzu.cz [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Derrien, Thibault J.-Y. [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Bulgakova, Nadezhda M. [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); S.S. Kutateladze Institute of Thermophysics SB RAS, 1 Lavrentyev ave., 630090 Novosibirsk (Russian Federation); Gurevich, Evgeny L. [Chair of Applied Laser Technologies, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum (Germany); Mocek, Tomáš [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic)

    2016-06-30

    Highlights: • The surface temperature dynamics in Ti and Si is studied upon fs laser irradiation. • To model conditions of LIPSS formation, the laser energy coupling is modulated. • Temperature modulation survives more than 10 ps in Ti and more than 50 ps in Si. • Under certain conditions, periodic nano-melting develops along the surface. - Abstract: Formation of laser-induced periodic surface structures (LIPSS) is a complicated phenomenon which involves periodic spatial modulation of laser energy absorption on the irradiated surface, transient changes in optical response, surface layer melting and/or ablation. The listed processes strongly depend on laser fluence and pulse duration as well as on material properties. This paper is aimed at studying the spatiotemporal evolution of a periodic modulation of the deposited laser energy, once formed upon irradiation of metal (Ti) and semiconductor (Si) surfaces. Assuming that the incoming laser pulse interferes with a surface electromagnetic wave, the resulting sinusoidal modulation of the absorbed laser energy is introduced into a two-dimensional two-temperature model developed for titanium and silicon. Simulations reveal that the lattice temperature modulation on the surfaces of both materials following from the modulated absorption remains significant for longer than 50 ps after the laser pulse. In the cases considered here, the partially molten phase exists 10 ps in Ti and more than 50 ps in Si, suggesting that molten matter can be subjected to temperature-driven relocation toward LIPSS formation, due to the modulated temperature profile on the material surfaces. Molten phase at nanometric distances (nano-melting) is also revealed.

  17. Formation dynamics of femtosecond laser-induced phase objects in transparent materials

    Science.gov (United States)

    Mermillod-Blondin, A.; Rosenfeld, A.; Stoian, R.; Audouard, E.

    2012-01-01

    Ultrashort pulse lasers offer the possibility to structure the bulk of transparent materials on a microscale. As a result, the optical properties of the irradiated material are locally modified in a permanent fashion. Depending on the irradiation parameters, different types of laser-induced phase objects can be expected, from uniform voxels (that can exhibit higher or lower refractive index than the bulk) to self-organized nanoplanes. We study the physical mechanisms that lead to material restructuring, with a particular emphasis on events taking place on a sub picosecond to a microsecond timescale following laser excitation. Those timescales are particularly interesting as they correspond to the temporal distances between two consecutive laser pulses when performing multiple pulse irradiation: burst microprocessing usually involves picosecond separation times and high repetition rate systems operate in the MHz range. We employ a time-resolved microscopy technique based on a phase-contrast microscope setup extended into a pump-probe scheme. This methods enables a dynamic observation of the complex refractive index in the interaction region with a time resolution better than 300 fs. In optical transmission mode, the transient absorption coefficient can be measured for different illumination wavelengths (400 nm and 800 nm). The phase-contrast mode provides qualitative information about the real part of the transient refractive index. Based on the study of those transient optical properties, we observe the onset and relaxation of the laser-generated plasma into different channels such as defect creation, sample heating, and shockwave generation. The majority of our experiments were carried out with amorphous silica, but our method can be applied to the study of all transparent media.

  18. Femtosecond optomagnetism in dielectric antiferromagnets

    Science.gov (United States)

    Bossini, D.; Rasing, Th

    2017-02-01

    Optical femtosecond manipulation of magnetic order is attractive for the development of new concepts for ultrafast magnetic recording. Theoretical and experimental investigations in this research area aim at establishing a physical understanding of magnetic media in light-induced non-equilibrium states. Such a quest requires one to adjust the theory of magnetism, since the thermodynamical concepts of elementary excitations and spin alignment determined by the exchange interaction are not applicable on the femtosecond time-scale after the photo-excitation. Here we report some key milestones concerning the femtosecond optical control of spins in dielectric antiferromagnets, whose spin dynamics is by nature faster than that of ferromagnets and can be triggered even without any laser heating. The recent progress of the opto-magnetic effect in the sub-wavelength regime makes this exciting research area even more promising, in terms of both fundamental breakthroughs and technological perspectives.

  19. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.

    Science.gov (United States)

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Xia, Bo; Wang, Qingsong; Lu, Yongfeng

    2015-12-14

    A pump-probe shadowgraph imaging technique was used to reveal the femtosecond-picosecond-nanosecond multitimescale fundamentals of high-quality, high-aspect-ratio (up to 287:1) microhole drilling in poly-methyl-meth-acrylate (PMMA) by a single-shot femtosecond laser Bessel beam. The propagation of Bessel beam in PMMA (at 1.98 × 10⁸ m/s) and it induced cylindrical pressure wave expansion (at 3000-3950 m/s in radius) were observed during drilling processes. Also, it was unexpectedly found that the expansion of the cylindrical pressure wave in PMMA showed a linear relation with time and was insensitive to the laser energy fluctuation, quite different from the case in air. It was assumed that the energy insensitivity was due to the anisotropy of wave expansion in PMMA and the ambient air.

  20. Dynamical Riemannian Geometry and Plant Growth

    CERN Document Server

    Pulwicki, Julia

    2010-01-01

    A new model for biological growth is introduced that couples the geometry of an organism (or part of the organism) to the flow and deposition of material. The model has three dynamical variables (a) a Riemann metric tensor for the geometry, (b) a transport velocity of the material and (c) a material density. While the model was developed primarily to determine the effects of geometry (i.e. curvature and scale changes) in two-dimensional systems such as leaves and petals, it can be applied to any dimension. Results for one dimensional systems are presented and compared to measurements of growth made on blades of grass and corn roots. It is found that the model is able to reproduce many features associated with botanical growth.

  1. Quantum coherent control of the vibrational dynamics of a polyatomic molecule using adaptive feedback control of a femtosecond laser

    Indian Academy of Sciences (India)

    L R Botha; L E De Clercq; A M Smit; N Botha; E Ronander; H J Strydom

    2014-02-01

    We simulate adaptive feedback control to coherently shape a femtosecond infrared laser pulse by means of a 4f-spatial light modulator in order to selectively excite the rovibrational modes of a polyatomic molecule. We preferentially populate an arbitrarily chosen upper rovibrational level by only employing these tailored temporally shaped pulses. A second laser would then allow for mode selective chemistry to interact selectively with the excited population. Alternatively the excited molecules enhanced reactivity could be exploited for selective chemistry.

  2. Ultrafast spintronics roadmap: from femtosecond spin current pulses to terahertz non-uniform spin dynamics via nano-confined spin transfer torques (Conference Presentation)

    Science.gov (United States)

    Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe

    2016-10-01

    Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.

  3. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  4. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  5. Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures.

    Science.gov (United States)

    Shi, Xuesong; Jiang, Lan; Li, Xin; Wang, Sumei; Yuan, Yanping; Lu, Yongfeng

    2013-10-01

    This study proposes a method for adjusting subwavelength ripple periods and the corresponding double-grating structures formed on fused silica by designing femtosecond laser pulse trains based on localized transient electron density control. Four near-constant period ranges of 190-490 nm of ripples perpendicular to the polarization are obtained by designing pulse trains to excite and modulate the surface plasmon waves. In the period range of 350-490 nm, the double-grating structure is fabricated in one step, which is probably attributable to the grating-assisted enhanced energy deposition and subsequent thermal effects.

  6. Sub-femtosecond nuclear dynamics and high-harmonic generation: Can muonated species be used as a probe of isotope effects?

    Science.gov (United States)

    Jayachander Rao, B.; Varandas, A. J. C.

    2016-06-01

    Sub-femtosecond nuclear dynamics and high-order harmonic generation (HHG) studies are reported for the X ˜ 2B1 and A ˜ 2A1 states of Mu2O+ . The photoelectron spectra and autocorrelation functions are calculated by solving the time-dependent Schrödinger equation, and the HHG signals from the autocorrelation functions for the two cationic states. Good agreement is observed with our earlier studies, with the autocorrelation function ratios revealing maxima as a function of time. Expectation values of bond lengths and bond angle show quasiperiodic oscillations that reflect repeated passages of the wavepacket at minima of the potential surfaces, thence being responsible for the HHG peaks.

  7. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water

    CERN Document Server

    Vinh, N Q; Allen, S James; George, D K; Rahmani, A J; Plaxco, Kevin W

    2015-01-01

    Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water's most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the SI), we have obtained strong new constraints on theories of water's collective dynamics. For example, while the salt-dependencies we observe for water's two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bon...

  8. Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy

    Science.gov (United States)

    Ghadiri, Elham; Zakeeruddin, Shaik M.; Hagfeldt, Anders; Grätzel, Michael; Moser, Jacques-E.

    2016-04-01

    Efficient dye-sensitized solar cells are based on highly diffusive mesoscopic layers that render these devices opaque and unsuitable for ultrafast transient absorption spectroscopy measurements in transmission mode. We developed a novel sub-200 femtosecond time-resolved diffuse reflectance spectroscopy scheme combined with potentiostatic control to study various solar cells in fully operational condition. We studied performance optimized devices based on liquid redox electrolytes and opaque TiO2 films, as well as other morphologies, such as TiO2 fibers and nanotubes. Charge injection from the Z907 dye in all TiO2 morphologies was observed to take place in the sub-200 fs time scale. The kinetics of electron-hole back recombination has features in the picosecond to nanosecond time scale. This observation is significantly different from what was reported in the literature where the electron-hole back recombination for transparent films of small particles is generally accepted to occur on a longer time scale of microseconds. The kinetics of the ultrafast electron injection remained unchanged for voltages between +500 mV and -690 mV, where the injection yield eventually drops steeply. The primary charge separation in Y123 organic dye based devices was clearly slower occurring in two picoseconds and no kinetic component on the shorter femtosecond time scale was recorded.

  9. Quantum Entanglement Growth Under Random Unitary Dynamics

    CERN Document Server

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2016-01-01

    Characterizing how entanglement grows with time in a many-body system, for example after a quantum quench, is a key problem in non-equilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time--dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the `entanglement tsunami' in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar--Parisi--Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like $(\\text{time})^{1/3}$ and are spatially correlated over a distance $\\propto (\\text{time})^{2/3}$. We derive KPZ universal behaviour in three complementary ways, by mapping random entanglement growth to: (i) a stochastic model of a growing surface; (ii) a `minimal cut' picture, reminisce...

  10. Dynamic Productivity Growth in the Spanish Meat Industry

    NARCIS (Netherlands)

    Kapelko, M.; Oude Lansink, A.G.J.M.; Stefanou, S.E.

    2012-01-01

    This paper develops a dynamic Luenberger productivity growth indicator and decomposes it to identify the contributions of technical change, technical efficiency change and scale change. The Luenberger productivity growth indicator is estimated using Data Envelopment Analysis. The empirical

  11. Nanosecond and femtosecond ablation of La0.6Ca0.4CoO3: a comparison between plume dynamics and composition of the films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Papadopoulou, E.; Anglos, D.

    2011-01-01

    Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited with nanosec...

  12. Harmonic moment dynamics in Laplacian growth.

    Science.gov (United States)

    Leshchiner, Alexander; Thrasher, Matthew; Mineev-Weinstein, Mark B; Swinney, Harry L

    2010-01-01

    Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an expression that relates the derivative of the k(th) harmonic moment M(k) to measurable quantities (surface tension, viscosity, the distance between the plates, and a line integral over the contour encompassing the growing bubble). The laboratory observations are in good accord with the expression we derive for dM(k)/dt , which is proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0) are all conserved, in accord with Richardson's theory. In addition, from the measurements of the time evolution of the harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in terms of harmonic moments is physically realizable and robust.

  13. Ultrafast forward and backward electron transfer dynamics of coumarin 337 in hydrogen-bonded anilines as studied with femtosecond UV-pump/IR-probe spectroscopy.

    Science.gov (United States)

    Ghosh, Hirendra N; Verma, Sandeep; Nibbering, Erik T J

    2011-02-10

    Femtosecond infrared spectroscopy is used to study both forward and backward electron transfer (ET) dynamics between coumarin 337 (C337) and the aromatic amine solvents aniline (AN), N-methylaniline (MAN), and N,N-dimethylaniline (DMAN), where all the aniline solvents can donate an electron but only AN and MAN can form hydrogen bonds with C337. The formation of a hydrogen bond with AN and MAN is confirmed with steady state FT-IR spectroscopy, where the C═O stretching vibration is a direct marker mode for hydrogen bond formation. Transient IR absorption measurements in all solvents show an absorption band at 2166 cm(-1), which has been attributed to the C≡N stretching vibration of the C337 radical anion formed after ET. Forward electron transfer dynamics is found to be biexponential with time constants τ(ET)(1) = 500 fs, τ(ET)(2) = 7 ps in all solvents. Despite the presence of hydrogen bonds of C337 with the solvents AN and MAN, no effect has been found on the forward electron transfer step. Because of the absence of an H/D isotope effect on the forward electron transfer reaction of C337 in AN, hydrogen bonds are understood to play a minor role in mediating electron transfer. In contrast, direct π-orbital overlap between C337 and the aromatic amine solvents causes ultrafast forward electron transfer dynamics. Backward electron transfer dynamics, in contrast, is dependent on the solvent used. Standard Marcus theory explains the observed backward electron transfer rates.

  14. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    Science.gov (United States)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  15. Single-pulse femtosecond laser Bessel beams drilling of high-aspect-ratio microholes based on electron dynamics control

    Science.gov (United States)

    Zhao, Weiwei; Li, Xiaowei; Xia, Bo; Yan, Xueliang; Han, Weina; Lu, Yongfeng; Jiang, Lan

    2014-11-01

    Microholes drilling has attracted extensive research efforts for its broad applications in photonics, microfluidics, optical fibers and many other fields. A femtosecond (fs) laser is a promising tool for high-precision materials processing with reduced recast/microcracks and minimized heat affected zones. But there remain many challenges in hole drilling using conventional fs laser with Gaussian beams, such as low aspect ratio and taper effects. We report small-diameter and high-aspect-ratio microholes with taper free drilling in PMMA (polymethyl methacrylate) using single-pulse fs laser Bessel beams. Axicon is used to transform Gaussian beams into Bessel beams, which then irradiate in the sample by a telescope consisting of plano-convex lens and microscope objective. Using this technique, we enhance the aspect ratio of microholes by 55 times as compared with Gaussian beams. We attribute this high aspect ratio and high quality microholes formation to the unique spatial intensity distribution and propagation stability of Bessel beams, which can effectively adjust the transient localized electron density distribution leading to a long and uniform localized-interacted zone. By using the optimized pulse energy and focal depth position, the microholes diameter ranges between 1.4-2.1 μm and the aspect ratio can exceed 460. This efficient technique is of great potentials for fabrication of microphotonics devices and microfluidics.

  16. Femtosecond and temperature-dependent picosecond dynamics of ultrafast excited-state proton transfer in water-dioxane mixtures.

    Science.gov (United States)

    Freitas, Adilson A; Quina, Frank H; Maçanita, António A L

    2014-11-13

    Synthetic flavylium salts like the 7-hydroxy-4-methylflavylium (HMF) cation have been used as prototypes to study the chemistry and photochemistry of anthocyanins, the major group of water-soluble pigments in the plant kingdom. In this work, a combination of fluorescence upconversion with femtosecond time resolution and time-correlated single photon counting (TCSPC) with picosecond time resolution have been employed to investigate in details the excited-state proton transfer (ESPT) of HMF in water and in binary water/1,4-dioxane mixtures. TCSPC measurements as a function of temperature provide activation parameters for all of the individual rate constants involved in the proton transfer, including those for dissociation and recombination of the geminate excited base-proton pair (A*···H(+)) that can be detected in the water/dioxane mixtures (but not in water). Unlike the other rate constants, the deprotonation rate constant kd shows a non-Arrhenius dependence on temperature in both water and water/dioxane mixtures. At low temperatures kd is close to the dielectric relaxation rate of the solvent with a barrier of ca. 8 kJ mol(-1), suggesting that the solvent reorganization is the rate-limiting step. At higher temperatures (>30 °C) the proton transfer process is nearly barrierless and solvent-dependent. Fluorescence upconversion results in H2O, D2O, and water/dioxane mixtures confirm the two-step model for the ESPT of HMF and provide additional details of the early events prior to the onset of proton transfer, attributed to conformational relaxation and solvent reaccommodation around the initially formed excited state. The results are consistent with DFT calculations that indicate that charge redistribution occurs after rather than prior to the onset of the ESPT process.

  17. Femtosecond terahertz studies of many-body correlations. From ultrafast phonon-plasmon dynamics to an insulator-metal transition

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, C.

    2007-07-30

    Phase-matched optical rectification together with standard EOS methods gives direct access to the real-time evolution of the electric field of ultrashort THz pulses. This opens up a new field of experiments, in which the complex dielectric function or equivalently the frequency-dependent conductivity of solid state systems is monitored resonantly throughout the MIR and FIR with a femtosecond temporal resolution. Optical rectification of amplified laser pulses allows for the generation of electric fields of several 10 kV cm-1 up to 1 MV cm-1, depending on the laser pulse energy. Such highly energetic field transients may be employed to coherently drive low-energy transitions into the nonlinear regime. The problems which are inherent to standard EOS, i.e. a fixed detector response and a limited bandwidth, are absent in phase-matched EOS. If this novel detection technique is combined with phase-matched optical rectification, an extremely versatile multi-THz spectrometer is obtained. The accessible frequency range is extended toward the near infrared. In addition, both the emission spectrum and the detector response may be custom tailored to fit specific spectroscopic requirements. Proper choice of the phasematching geometry eliminates multiple time delayed reflections of the main THz pulse, resulting in an essentially unlimited frequency resolution. In the context of optical pump - multi-THz probe experiments the implementation of a photoelastic modulator results in significant improvement of the signal-to-noise ratio: Balancing of the differential detector is rendered less critical and the measurement time in a 2D time-resolved experiment is reduced by up to two orders of magnitude. Finally, the combination of phase-matched optical rectification and phasematched electro-optic sampling shows great scaling potential with respect to both achieving higher field energies and shorter wavelengths. (orig.)

  18. X-ray study of femtosecond structural dynamics in the 2D charge density wave compound 1T-TaS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Laulhé, C., E-mail: laulhe@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin - BP 48, F-91192 Gif-sur-Yvette (France); Université Paris-Sud, F-91405 Orsay Cedex (France); Cario, L.; Corraze, B.; Janod, E. [Institut des Matériaux Jean Rouxel - UMR 6502, Université de Nantes, 2 rue de la Houssinière, F-44322 Nantes (France); Huber, T. [Institute for Quantum Electronics, Physics Department, ETH Zurich, CH-8093 Zurich (Switzerland); Lantz, G. [Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, F-91405 Orsay (France); Boulfaat, S. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin - BP 48, F-91192 Gif-sur-Yvette (France); Ferrer, A.; Mariager, S.O.; Johnson, J.A.; Grübel, S.; Lübcke, A.; Ingold, G.; Beaud, P. [Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen (Switzerland); Johnson, S.L. [Institute for Quantum Electronics, Physics Department, ETH Zurich, CH-8093 Zurich (Switzerland); Ravy, S. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin - BP 48, F-91192 Gif-sur-Yvette (France)

    2015-03-01

    1T-TaS{sub 2} is a 2D metallic compound which undergoes a series of electronically driven phase transitions toward charge density wave and Mott phases. Its intricate electron–phonon interactions and electron–electron correlations have been promising peculiar out-of-equilibrium dynamics. In this paper, we provide the first direct information on the atomic structure response to an ultra-fast infrared laser pulse in the commensurate phase of 1T-TaS{sub 2}, by using femtosecond time-resolved X-ray diffraction. We show that ultra-fast excitation with near-infrared photons drives a displacive excitation of the amplitude mode of the commensurate charge density wave. About 3 ps after laser excitation, the system reaches a new, photo-induced state that is maintained for at least 10 ps. We give evidence that this long-lived state exhibits the same structural modulation as in the thermodynamically stable commensurate phase, with a large correlation length. Only the average amplitude of the modulation is found to decrease. We propose that the long-lived state is formed from the commensurate phase by reducing the modulation amplitude on few superlattice nodes. The underlying mechanism proposed is the annihilation of self-trapped polarons.

  19. Growth dynamics of Australia's polar dinosaurs.

    Science.gov (United States)

    Woodward, Holly N; Rich, Thomas H; Chinsamy, Anusuya; Vickers-Rich, Patricia

    2011-01-01

    Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions.

  20. Organisational Factors of Rapid Growth of Slovenian Dynamic Enterprises

    Directory of Open Access Journals (Sweden)

    Pšeničny Viljem

    2013-01-01

    Full Text Available The authors provide key findings on the internal and external environmental factors of growth that affect the rapid growth of dynamic enterprises in relation to individual key organisational factors or functions. The key organisational relationships in a growing enterprise are upgraded with previous research findings and identified key factors of rapid growth through qualitative and quantitative analysis based on the analysis of 4,511 dynamic Slovenian enterprises exhibiting growth potential. More than 250 descriptive attributes of a sample of firms from 2011 were also used for further qualitative analysis and verification of key growth factors. On the basis of the sample (the study was conducted with 131 Slovenian dynamic enterprises, the authors verify whether these factors are the same as the factors that were studied in previous researches. They also provide empirical findings on rapid growth factors in relation to individual organisational functions: administration - management - implementation (entrepreneur - manager - employees. Through factor analysis they look for the correlation strength between individual variables (attributes that best describe each factor of rapid growth and that relate to the aforementioned organisational functions in dynamic enterprises. The research findings on rapid growth factors offer companies the opportunity to consider these factors during the planning and implementation phases of their business, to choose appropriate instruments for the transition from a small fast growing firm to a professionally managed growing company, to stimulate growth and to choose an appropriate growth strategy and organisational factors in order to remain, or become, dynamic enterprises that can further contribute to the preservation, growth and development of the Slovenian economy

  1. Dynamics of Plant Growth; A Theory Based on Riemannian Geometry

    CERN Document Server

    Pulwicki, Julia

    2016-01-01

    In this work, a new model for macroscopic plant tissue growth based on dynamical Riemannian geometry is presented. We treat 1D and 2D tissues as continuous, deformable, growing geometries for sizes larger than 1mm. The dynamics of the growing tissue are described by a set of coupled tensor equations in non-Euclidean (curved) space. These coupled equations represent a novel feedback mechanism between growth and curvature dynamics. For 1D growth, numerical simulations are compared to two measures of root growth. First, modular growth along the simulated root shows an elongation zone common to many species of plant roots. Second, the relative elemental growth rate (REGR) calculated in silico exhibits temporal dynamics recently characterized in high-resolution root growth studies but which thus far lack a biological hypothesis to explain them. Namely, the REGR can evolve from a single peak localized near the root tip to a double-peak structure. In our model, this is a direct consequence of considering growth as b...

  2. Liquid assisted ablation of zirconium for the growth of LIPSS at varying pulse durations and pulse energies by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, Shazia [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Centre for Advanced Studies in Physics, GC University Lahore (Pakistan); Rafique, M. Shahid [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Engineering and Technology Lahore (Pakistan); Husinsky, Wolfgang [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria)

    2015-04-15

    Highlights: •Femtosecond laser ablation of Zr has been investigated. •The ablation was performed in ethanol environment. •The surface morphology of irradiated targets was explored by SEM analysis. •The compositional modification was performed by Raman spectroscopy. •The effect of pulse duration as well as pulse energy was revealed. -- Abstract: Investigations have been performed to explore the optimized conditions for the growth of Laser Induced Periodic Surface Structures (LIPSS) by varying pulse durations and pulse energies during ultrashort pulsed laser ablation of zirconium (Zr). The Ti: Sapphire laser with central wavelength of 800 nm, maximum pulse energy of 1 mJ is used to ablate Zr targets in the wet environment of ethanol. Scanning Electron Microscope (SEM) analysis was performed for central as well as the peripheral ablated area to characterize nano and microstructures formed on the Zr surface. Raman spectroscopy was carried out to explore the chemical and compositional changes produced in laser ablated Zr. In order to explore the effect of varying pulse durations ranging from 25 to 100 fs, targets were exposed to 1000 succeeding pulses keeping the pulse energy constant at 600 μJ. The micrographs of peripheral ablated areas reveal the formation of nano scale ripples or Laser Induced Periodic Surface Structures (LIPSS) for all pulse durations. LIPSS are more distinct and well organized for the shortest pulse duration of 25 fs. Whereas, LIPSS become diffused and indistinct with the increase in the pulse duration. This is the clear indication that shortest pulse duration (in our case 25 fs) is most suitable for the growth of nanoscale ripples. In order to explore the effect of varying pulse energies on the growth of LIPSS, targets were exposed to 1000 succeeding pulses with energies ranging from 200 μJ to 600 μJ for a pulse duration of 25 fs. In the peripheral ablated areas LIPSS are grown for all pulse energies. For the lowest pulse energy of

  3. Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated [Co(terpy)2]2+

    DEFF Research Database (Denmark)

    Biasin, Elisa; Brandt van Driel, Tim; Kjær, Kasper Skov;

    2016-01-01

    We study the structural dynamics of photoexcited [Co(terpy)2]2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitat......We study the structural dynamics of photoexcited [Co(terpy)2]2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows...

  4. Firms Growth Dynamics, Competition and Power Law Scaling

    OpenAIRE

    Hari M. Gupta; Campanha, Jose R.

    2002-01-01

    We study the growth dynamics of the size of manufacturing firms considering competition and normal distribution of competency. We start with the fact that all components of the system struggle with each other for growth as happened in real competitive bussiness world. The detailed quantitative agreement of the theory with empirical results of firms growth based on a large economic database spanning over 20 years is good .Further we find that this basic law of competition leads approximately a...

  5. Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy - Observation of a candidate promoting vibration.

    Science.gov (United States)

    Maiuri, Margherita; Delfino, Ines; Cerullo, Giulio; Manzoni, Cristian; Pelmenschikov, Vladimir; Guo, Yisong; Wang, Hongxin; Gee, Leland B; Dapper, Christie H; Newton, William E; Cramer, Stephen P

    2015-12-01

    We have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~1.2ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~84, 116, 189, and 226cm(-1). Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226cm(-1) band is assigned as a potential 'promoting vibration' in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Ablation and nanostructuring of metals by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ashitkov, S I; Komarov, P S; Ovchinnikov, A V; Struleva, E V; Agranat, M B [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Zhakhovskii, V V [All-Russian Institute of Automatics, Moscow (Russian Federation); Inogamov, N A [Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region (Russian Federation)

    2014-06-30

    Using an interferometric continuous monitoring technique, we have investigated the motion of the surface of an aluminium target in the case of femtosecond laser ablation at picosecond time delays relative to the instant of laser exposure. Measurements of the temporal target dispersion dynamics, molecular dynamics simulation results and the morphology of the ablation crater have demonstrated a thermomechanical (spall) nature of the disruption of the condensed phase due to the cavitation-driven formation and growth of vapour phase nuclei upon melt expansion, followed by the formation of surface nanostructures upon melt solidification. The tensile strength of heated aluminium in a condensed state has been determined experimentally at an expansion rate of ∼10{sup 9} s{sup -1}. (extreme light fields and their applications)

  7. Modes of Growth in Dynamic Systems

    CERN Document Server

    Garrett, Timothy J

    2012-01-01

    Regardless of a system's complexity or scale, its growth can be considered to be a spontaneous thermodynamic response to a local convergence of down-gradient material flows. Here it is shown how growth can be constrained to a few distinct modes that depend on the availability of material and energetic resources. These modes include a law of diminishing returns, logistic behavior and, if resources are expanding very rapidly, super-exponential growth. For a case where a system has a resolved sink as well as a source, growth and decay can be characterized in terms of a slightly modified form of the predator-prey equations commonly employed in ecology, where the perturbation formulation of these equations is equivalent to a damped simple harmonic oscillator. Thus, the framework presented here suggests a common theoretical under-pinning for emergent behaviors in the physical and life sciences. Specific examples are described for phenomena as seemingly dissimilar as the development of rain and the evolution of fish...

  8. Dynamics and growth of the eelpout

    NARCIS (Netherlands)

    Mendez, N.

    2014-01-01

    In the past the eelpout Zoarces viviparus was considered a resident fish species in the westernDutch Wadden Sea but nowadays it has become rare. In this study, we analysed populationdynamics and growth of Z. viviparus in this area and tried to relate it to changes inenvironmental factors, such as

  9. Forecasting sustainability: growth to removals ratio dynamics

    Science.gov (United States)

    Natasha A. James; Robert C. Abt; Karen L. Abt; Raymond M. Sheffield; Fredrick W. Cubbage

    2012-01-01

    The growth to removals ratio (G/R) is often used as a measure of forest resource sustainability and as a reference point to forecast future resource sustainability. However, little work has been done to determine if any relationship exists between G/R over time. Forest Inventory and Analysis data for 12 southern states were used to determine if any relationship exists...

  10. Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope

    Science.gov (United States)

    Masia, Francesco; Langbein, Wolfgang; Borri, Paola

    2012-06-01

    We demonstrate a phase-sensitive four-wave mixing microscopy in heterodyne detection to resolve the ultrafast changes of the real and imaginary parts of the dielectric function of single small (gold nanoparticles at the surface plasmon resonance. The results are quantitatively described via the transient electron temperature and density in gold considering both intraband and interband transitions. We find that the effect of interband transitions in the excitation is important to explain not only the magnitude of the measured four-wave mixing, but also its initial dynamics, which is dominated by the formation of hot electrons via Auger electron-hole recombination with 70-fs time constant, much faster than the well-characterized 500-fs electron thermalization dynamics for intraband excitation. This microscopy technique enables background-free detection of the complex susceptibility change even in highly scattering environments and can be readily applied to any metal nanostructure.

  11. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    Science.gov (United States)

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.

  12. Co-GISAXS technique for investigating surface growth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rainville, Meliha G.; Hoskin, Christa; Ulbrandt, Jeffrey G.; Narayanan, Suresh; Sandy, Alec R.; Zhou, Hua; Headrick, Randall L.; Ludwig, Jr., Karl F.

    2015-12-08

    Detailed quantitative measurement of surface dynamics during thin film growth is a major experimental challenge. Here X-ray Photon Correlation Spectroscopy with coherent hard X-rays is used in a Grazing-Incidence Small-Angle X-ray Scattering (i.e. Co-GISAXS) geometry as a new tool to investigate nanoscale surface dynamics during sputter deposition of a-Si and a-WSi2 thin films. For both films, kinetic roughening during surface growth reaches a dynamic steady state at late times in which the intensity autocorrelation function g2(q,t) becomes stationary. The g2(q,t) functions exhibit compressed exponential behavior at all wavenumbers studied. The overall dynamics are complex, but the most surface sensitive sections of the structure factor and correlation time exhibit power law behaviors consistent with dynamical scaling.

  13. The Dynamic Effects of Entrepreneurship on Regional Economic Growth

    DEFF Research Database (Denmark)

    Matejovsky, Lukas; Mohapatra, Sandeep; Steiner, Bodo

    2014-01-01

    This study explores the temporal pattern of income disparity for Canadian provinces in two estimation steps. First, an econometric growth regression model is applied to identify the impact of entrepreneurship on regional economic growth. The estimation results suggest that entrepreneurship......, measured in terms of the selfemployment rate, plays a pivotal role in determining regional development in Canada. Second, a dynamic vector autoregression (VAR) model is employed to predict the long-run regional growth effects that result from policy shocks affecting entrepreneurship. Compared to other...... growth drivers, entrepreneurship is found to have more pronounced and long-term stimulative effects on regional development for the period of 1987 to 2007...

  14. Femtosecond dynamics of fundamental reaction processes in liquids: Proton transfer, geminate recombination, isomerization and vibrational relaxation. [Spiropyrans

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, B.J.

    1992-11-01

    The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured and effects of external hydrogen-bonding interactions on the proton transfer are studied. The proton transfer takes place in [approximately]240 fsec in nonpolar environments, but becomes faster than instrumental resolution of 110 fsec in methanol solution. The dynamics following photodissociation of CH[sub 2]I[sub 2] and other small molecules provide the first direct observations of geminate recombination. The recombination of many different photodissociating species occurs on a [approximately]350 fsec time scale. Results show that recombination yields but not rates depend on the solvent environment and suggest that recombination kinetics are dominated by a single collision with surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. Data show no simple correlation between hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes, implying that the isomerization does not provide a suitable for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial steps of the photochromic reaction process occur extremely rapidly. Laser system and computer codes for data analysis are discussed.

  15. Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated [Co(terpy)2]2+

    CERN Document Server

    Biasin, Elisa; Kjær, Kasper S; Dohn, Asmus O; Christensen, Morten; Harlang, Tobias; Chabera, Pavel; Liu, Yizhu; Uhlig, Jens; Pápai, Mátyás; Németh, Zoltán; Hartsock, Robert; Liang, Winnie; Zhang, Jianxin; Alonso-Mori, Roberto; Chollet, Matthieu; Glownia, James M; Nelson, Silke; Sokaras, Dimosthenis; Assefa, Tadesse A; Britz, Alexander; Galler, Andreas; Gawelda, Wojciech; Bressler, Christian; Gaffney, Kelly J; Lemke, Henrik T; Møller, Klaus B; Nielsen, Martin M; Sundström, Villy; Vankó, György; Wärnmark, Kenneth; Canton, Sophie E; Haldrup, Kristoffer

    2016-01-01

    We study the structural dynamics of photoexcited [Co(terpy)2]2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ~ 7 ps.

  16. Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated [Co (terpy)2]2 +

    Science.gov (United States)

    Biasin, Elisa; van Driel, Tim Brandt; Kjær, Kasper S.; Dohn, Asmus O.; Christensen, Morten; Harlang, Tobias; Chabera, Pavel; Liu, Yizhu; Uhlig, Jens; Pápai, Mátyás; Németh, Zoltán; Hartsock, Robert; Liang, Winnie; Zhang, Jianxin; Alonso-Mori, Roberto; Chollet, Matthieu; Glownia, James M.; Nelson, Silke; Sokaras, Dimosthenis; Assefa, Tadesse A.; Britz, Alexander; Galler, Andreas; Gawelda, Wojciech; Bressler, Christian; Gaffney, Kelly J.; Lemke, Henrik T.; Møller, Klaus B.; Nielsen, Martin M.; Sundström, Villy; Vankó, György; Wärnmark, Kenneth; Canton, Sophie E.; Haldrup, Kristoffer

    2016-07-01

    We study the structural dynamics of photoexcited [Co (terpy)2]2 + in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ˜7 ps .

  17. Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated [Co(terpy)_{2}]^{2+}.

    Science.gov (United States)

    Biasin, Elisa; van Driel, Tim Brandt; Kjær, Kasper S; Dohn, Asmus O; Christensen, Morten; Harlang, Tobias; Chabera, Pavel; Liu, Yizhu; Uhlig, Jens; Pápai, Mátyás; Németh, Zoltán; Hartsock, Robert; Liang, Winnie; Zhang, Jianxin; Alonso-Mori, Roberto; Chollet, Matthieu; Glownia, James M; Nelson, Silke; Sokaras, Dimosthenis; Assefa, Tadesse A; Britz, Alexander; Galler, Andreas; Gawelda, Wojciech; Bressler, Christian; Gaffney, Kelly J; Lemke, Henrik T; Møller, Klaus B; Nielsen, Martin M; Sundström, Villy; Vankó, György; Wärnmark, Kenneth; Canton, Sophie E; Haldrup, Kristoffer

    2016-07-01

    We study the structural dynamics of photoexcited [Co(terpy)_{2}]^{2+} in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ∼7  ps.

  18. Interfacial coarsening dynamics in epitaxial growth with slope selection

    Science.gov (United States)

    Moldovan; Golubovic

    2000-06-01

    We investigate interfacial dynamics of molecular-beam epitaxy (MBE) growth in the presence of instabilities inducing formation of pyramids. We introduce a kinetic scaling theory which provides an analytic understanding of the coarsening dynamics laws observed in numerous experiments and simulations of the MBE. We address MBE growth on crystalline surfaces with different symmetries in order to explain experimentally observed differences between the growth on (111) and (001) surfaces and understand the coarsening exponents measured on these surfaces. We supplement our kinetic scaling theory by numerical simulations which document that the edges of the pyramids, forming a network across the growing interface, are essential for qualitative understanding of the coarsening dynamics of molecular-beam epitaxy.

  19. Growth fluctuation in preferential attachment dynamics

    Science.gov (United States)

    Hashimoto, Yasuhiro

    2016-04-01

    In the Yule-Simon process, creation and selection of words follows the preferential attachment mechanism, resulting in a power-law growth in the cumulative number of individual word occurrences as well as the power-law population distribution of the vocabulary. This is derived using mean-field approximation, assuming a continuum limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically, and confirm that those probability distributions are well supported by the numerical experiments.

  20. Thermophysical and gas-dynamic characteristics of laser-induced gasplasma flows under femtosecond laser ablation of titanium in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Loktionov, E Yu; Protasov, Yu S; Protasov, Yu Yu [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2014-03-28

    We report the results of experimental investigation of thermophysical and gas-dynamic characteristics of the gas-plasma flows induced by ultrashort (45 – 60 fs) laser pulse irradiation (the radiation wavelength λ = 400, 800 nm) of a titanium target in vacuum (∼5 × 10{sup -4} mbar). The use of combined interferometric technique and complex experimental data processing allowed us to estimate the momentum coupling coefficient (C{sub m} ∼ 10{sup -4} N W{sup -1}), the efficiency of laser energy conversion to the kinetic energy of the gas-plasma flow (65% – 85%), the spatiotemporal distributions of the particle density (n{sub e} = 10{sup 18} – 10{sup 20} cm{sup -3}) and velocity ((v)=4 – 9 km s{sup -1}), the static (10{sup 6} – 10{sup 8} Pa) and total (10{sup 7} – 10{sup 11} Pa) pressure and temperature (T=7 – 50 kK) in the flow. Our data are compared with published data obtained by other methods. (interaction of laser radiation with matter. laser plasma)

  1. Magnetization and microstructure dynamics in Fe/MnAs/GaAs(001): Fe magnetization reversal by a femtosecond laser pulse.

    Science.gov (United States)

    Spezzani, C; Ferrari, E; Allaria, E; Vidal, F; Ciavardini, A; Delaunay, R; Capotondi, F; Pedersoli, E; Coreno, M; Svetina, C; Raimondi, L; Zangrando, M; Ivanov, R; Nikolov, I; Demidovich, A; Danailov, M B; Popescu, H; Eddrief, M; De Ninno, G; Kiskinova, M; Sacchi, M

    2014-12-12

    Thin film magnetization reversal without applying external fields is an attractive perspective for applications in sensors and devices. One way to accomplish it is by fine-tuning the microstructure of a magnetic substrate via temperature control, as in the case of a thin Fe layer deposited on a MnAs/GaAs(001) template. This work reports a time-resolved resonant scattering study exploring the magnetic and structural properties of the Fe/MnAs system, using a 100 fs optical laser pulse to trigger local temperature variations and a 100 fs x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics. The experiment provides direct evidence that a single optical laser pulse can reverse the Fe magnetization locally. It reveals that the time scale of the magnetization reversal is slower than that of the MnAs structural transformations triggered by the optical pulse, which take place after a few picoseconds already.

  2. Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy.

    Science.gov (United States)

    Miannay, Francois-Alexandre; Gustavsson, Thomas; Banyasz, Akos; Markovitsi, Dimitra

    2010-03-11

    The room-temperature fluorescence of 2'-deoxyguanosine 5'-monophosphate (dGMP) in aqueous solution is studied by steady-state and time-resolved fluorescence spectroscopy. The steady-state fluorescence spectrum of dGMP shows one band centered at 334 nm but has an extraordinary long red tail, extending beyond 700 nm. Both the fluorescence quantum yield and the relative weight of the 334 nm peak increase with the excitation wavelength. The initial fluorescence anisotropy after excitation at 267 nm is lower than 0.2 for all emission wavelengths, indicating an ultrafast S(2) --> S(1) internal conversion. The fluorescence decays depend strongly on the emission wavelength, getting longer with the wavelength. A rise time of 100-150 fs was observed for wavelengths longer than 450 nm, in accordance with a gradual red shift of the time-resolved spectra. The results are discussed in terms of a relaxation occurring mainly on the lowest excited (1)pi pi*-state surface toward a conical intersection with the ground state, in line with recent theoretical predictions. Our results show that the excited-state population undergoes a substantial "spreading out" before reaching the CI, explaining the complex dynamics observed.

  3. The review of dynamic monitoring technology for crop growth

    Science.gov (United States)

    Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong

    2010-10-01

    In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.

  4. Demographic Dynamics and the Empirics of Economic Growth

    OpenAIRE

    Michael Sarel

    1995-01-01

    This paper examines the effects of demographic dynamics on the measured rates of economic growth. First, it develops a model of production with labor productivity that varies with age. Second, it uses macroeconomic and demographic data to estimate the relative productivity of different age groups. Third, it constructs a panel database of effective labor supply in order to reflect the changing age-structure of the population. Fourth, it decomposes the historical measured growth rates into effe...

  5. Dynamic Demonstration of Ceramic Grain Growth in Three Dimensions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Microstructural evolutions of ceramic grain growth we re dynamically demonstrated with 3D graphical display techniques. Based on the p rinciples of grain growth in ceramics, the data of coordination in different ato ms were calculated with Monte-Carlo method at atomistic scale. Realistic images in three-dimension were displayed onto two-dimension monitor by projection, i llumination and atomization, using Visual C++ and OpenGL languages. Different small spheres were used to model different kind of atoms,...

  6. Growth versus environment in dynamic models of capital accumulation

    Directory of Open Access Journals (Sweden)

    Toichiro Asada

    2002-01-01

    Full Text Available In this paper, we study the economic implications of the trade off between growth and environment in the context of dynamic models of capital accumulation. The collective solution is formulated in terms of dynamic optimization of the central planner, and the decentralized solution is formulated in terms of differential game between workers and capitalists. We compare the economic properties of two solutions.

  7. On the Gompertzian dynamics of growth and self-organization

    OpenAIRE

    Molski, Marcin; Konarski, Jerzy

    2007-01-01

    Comment on the Waliszewski's article "A principle of fractal-sto-chastic dualism and Gompertzian dynamics of growth and self-organization" (BioSystems 82 (2005)61-73) is presented. It has been proved that the main idea of this work that Gompertzian dynamics is governed by the Schr\\"{o}dinger-like equation including anharmonic Morse potential has been already introduced by Molski and Konarski in 2003. Some inconsistencies and mathematical errors in the Waliszewski's model are also pointed out.

  8. Ultrafast dynamics of strong-field dissociative ionization ofCH2Br2 probed by femtosecond soft x-ray transient absorptionspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Loh, Zhi-Heng; Leone, Stephen R.

    2008-01-15

    Femtosecond time-resolved soft x-ray transient absorption spectroscopy based on a high-order harmonic generation source is used to investigate the dissociative ionization of CH{sub 2}Br{sub 2} induced by 800 nm strong-field irradiation. At moderate peak intensities (2.0 x 10{sup 14} W/cm{sup 2}), strong-field ionization is accompanied by ultrafast C-Br bond dissociation, producing both neutral Br ({sup 2}P{sub 3/2}) and Br* ({sup 2}P{sub 1/2}) atoms together with the CH{sub 2}Br{sup +} fragment ion. The measured rise times for Br and Br* are 130 {+-} 22 fs and 74 {+-} 10 fs, respectively. The atomic bromine quantum state distribution shows that the Br/Br* population ratio is 8.1 {+-} 3.8 and that the Br {sup 2}P{sub 3/2} state is not aligned. The observed product distribution and the timescales of the photofragment appearances suggest that multiple field-dressed potential energy surfaces are involved in the dissociative ionization process. In addition, the transient absorption spectrum of CH{sub 2}Br{sub 2}{sup +} suggests that the alignment of the molecule relative to the polarization axis of the strong-field ionizing pulse determines the electronic symmetry of the resulting ion; alignment of the Br-Br, H-H, and C{sub 2} axis of the molecule along the polarization axis results in the production of the ion {tilde X}({sup 2}B{sub 2}), {tilde B}({sup 2}B{sub 1}) and {tilde C}({sup 2}A{sub 1}) states, respectively. At higher peak intensities (6.2 x 10{sup 14} W/cm{sup 2}), CH{sub 2}Br{sub 2}{sup +} undergoes sequential ionization to form the metastable CH{sub 2}Br{sub 2}{sup 2+} dication. These results demonstrate the potential of core-level probing with high-order harmonic transient absorption spectroscopy for studying ultrafast molecular dynamics.

  9. A sequential growth dynamics for a directed acyclic dyadic graph

    CERN Document Server

    Krugly, Alexey L

    2011-01-01

    A model of discrete spacetime on a microscopic level is considered. It is a directed acyclic dyadic graph. This is the particular case of a causal set. The goal of this model is to describe particles as some repetitive symmetrical self-organized structures of the graph without any reference to continuous spacetime. The dynamics of the model is considered. This dynamics is stochastic sequential additions of new vertexes. Growth of the graph is a Markovian process. This dynamics is a consequence of a causality principle.

  10. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  11. Micromachining using femtosecond lasers

    Science.gov (United States)

    Toenshoff, Hans K.; Ostendorf, Andreas; Nolte, Stefan; Korte, Frank; Bauer, Thorsten

    2000-11-01

    Femtosecond laser systems have been proved to be effective tools for high precision micro-machining. Almost all solid materials can be processed with high precision. The dependence on material properties like thermal conductivity, transparency, heat- or shock sensitivity is strongly reduced and no significant influence on the remaining bulk material is observed after ablation using femtosecond laser pulses. In contrast to conventional laser processing, where the achievable precision is reduced due to a formed liquid phase causing burr formation, the achievable precision using femtosecond pulses is only limited by the diffraction of the used optics. Potential applications of this technique, aincluding the structuring of biodegradable polymers for cardiovascular implants, so-called stents, as well as high precision machining of transparent materials are presented.

  12. The dynamic nature of crystal growth in pores

    Science.gov (United States)

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; Lee, Peter D.

    2016-09-01

    The kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.

  13. Perspective: Dynamic Shadowing Growth and its Energy Applications

    Directory of Open Access Journals (Sweden)

    Yiping eZhao

    2014-09-01

    Full Text Available The unique features of dynamic shadowing growth (DSG in structural and compositional design of nanomaterials are discussed. Their recent applications in energy storage, fuel cell, and solar energy conversion have been reviewed briefly. Future directions for applying DSG nanostructures in renewable energy applications are presented.

  14. Analyzing the impact of investment spikes on dynamic productivity growth

    NARCIS (Netherlands)

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, S.E.

    2015-01-01

    Firm-level data usually show that a large portion of firm-level investment takes place in a few investment episodes. This paper assesses productivity growth and its components in production framework that accounts for the dynamics of capital adjustment and relates this to investment spikes using

  15. Entanglement Growth in Quench Dynamics with Variable Range Interactions

    Directory of Open Access Journals (Sweden)

    J. Schachenmayer

    2013-09-01

    Full Text Available Studying entanglement growth in quantum dynamics provides both insight into the underlying microscopic processes and information about the complexity of the quantum states, which is related to the efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar molecules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems, identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin interactions in a transverse Ising chain is varied. Computing the buildup of bipartite entanglement as well as mutual information between distant spins, we identify linear growth of entanglement entropy corresponding to propagation of quasiparticles for shorter-range interactions, with the maximum rate of growth occurring when the Hamiltonian parameters match those for the quantum phase transition. Counterintuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic for most regimes, i.e., substantially slower than for shorter-range interactions. Experiments with trapped ions allow for the realization of this system with a tunable interaction range, and we show that the different phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct guide for the generation of large-scale entanglement in such experiments, towards a regime where the entanglement growth can render existing classical simulations inefficient.

  16. Thermal melting and ablation of silicon by femtosecond laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@lebedev.ru; Seleznev, L. V.; Sinitsyn, D. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Bunkin, A. F.; Lednev, V. N.; Pershin, S. M. [Russian Academy of Sciences, General Physics Institute (Russian Federation)

    2013-03-15

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  17. Dynamic density functional theory of solid tumor growth: Preliminary models

    Directory of Open Access Journals (Sweden)

    Arnaud Chauviere

    2012-03-01

    Full Text Available Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth.

  18. Investment age and dynamic productivity growth in the Spanish food processing industry

    NARCIS (Netherlands)

    Kapelko, Magda; Oude Lansink, A.G.J.M.; Stefanou, S.E.

    2016-01-01

    This article analyzes the relation between investment age, measured as the number of years since investment spike, and dynamic productivity growth and its components, which include dynamic technical change, dynamic inefficiency change, and dynamic scale inefficiency change. The empirical application

  19. Urea induced unfolding dynamics of flavin adenine dinucleotide (FAD): spectroscopic and molecular dynamics simulation studies from femto-second to nanosecond regime.

    Science.gov (United States)

    Sengupta, Abhigyan; Singh, Reman K; Gavvala, Krishna; Koninti, Raj Kumar; Mukherjee, Arnab; Hazra, Partha

    2014-02-20

    Here, we investigate the effect of urea in the unfolding dynamics of flavin adenine dinucleotide (FAD), an important enzymatic cofactor, through steady state, time-resolved fluorescence spectroscopic and molecular dynamics (MD) simulation studies. Steady state results indicate the possibility of urea induced unfolding of FAD, inferred from increasing emission intensity of FAD with urea. The TCSPC and up-conversion results suggest that the stack-unstack dynamics of FAD severely gets affected in the presence of urea and leads to an increase in the unstack conformation population from 15% in pure water to 40% in 12 M urea. Molecular dynamics simulation was employed to understand the nature of the interaction between FAD and urea at the molecular level. Results depict that urea molecules replace many of the water molecules around adenine and isoalloxazine rings of FAD. However, the major driving force for the stability of this unstack conformations arises from the favorable stacking interaction of a significant fraction of the urea molecules with adenine and isoalloxazine rings of FAD, which overcomes the intramolecular stacking interaction between themselves observed in pure water.

  20. Human growth and body weight dynamics: an integrative systems model.

    Science.gov (United States)

    Rahmandad, Hazhir

    2014-01-01

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and capturing changes in body weight, composition and height. Integrating previous empirical and modeling findings and validated against several additional empirical studies, the model replicates key trends in human growth including A) Changes in energy requirements from birth to old ages. B) Short and long-term dynamics of body weight and composition. C) Stunted growth with chronic malnutrition and potential for catch up growth. From obesity policy analysis to treating malnutrition and tracking growth trajectories, the model can address diverse policy questions. For example I find that even without further rise in obesity, the gap between healthy and actual Body Mass Indexes (BMIs) has embedded, for different population groups, a surplus of 14%-24% in energy intake which will be a source of significant inertia in obesity trends. In another analysis, energy deficit percentage needed to reduce BMI by one unit is found to be relatively constant across ages. Accompanying documented and freely available simulation model facilitates diverse applications customized to different sub-populations.

  1. Effects of microscale inertia on dynamic ductile crack growth

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-04-01

    The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.

  2. Bayesian analysis of the dynamic structure in China's economic growth

    Science.gov (United States)

    Kyo, Koki; Noda, Hideo

    2008-11-01

    To analyze the dynamic structure in China's economic growth during the period 1952-1998, we introduce a model of the aggregate production function for the Chinese economy that considers total factor productivity (TFP) and output elasticities as time-varying parameters. Specifically, this paper is concerned with the relationship between the rate of economic growth in China and the trend in TFP. Here, we consider the time-varying parameters as random variables and introduce smoothness priors to construct a set of Bayesian linear models for parameter estimation. The results of the estimation are in agreement with the movements in China's social economy, thus illustrating the validity of the proposed methods.

  3. Dynamic crack growth in a fiber-reinforced composite plate

    Institute of Scientific and Technical Information of China (English)

    LIU Kaixin; LIU Weifu; Zhang Jinxiang; LI Rong; ZHANG Guohua; FU Bin

    2005-01-01

    This paper reports an experiment on the failure of a precracked plate made of unidirectional glass-epoxy fiber-reinforced composites subjected to three-point bending impact load. In the experiment, the whole process of crack growth was recorded by using high-speed photographic technique, in which a transmitted light path was adopted. Moreover, a new phenomenon of dynamic fracture has been observed. Based on the results, some preliminary studies have been carried out on the rate and path of the crack growth, as well as the failure mode.

  4. Dynamical Stationarity as a Result of Sustained Random Growth

    CERN Document Server

    Biró, Tamás

    2016-01-01

    In sustained growth with random dynamics stationary distributions can exist without detailed balance. This suggests thermodynamical behavior in fast growing complex systems. In order to model such phenomena we apply both a discrete and a continuous master equation. The derivation of elementary rates from known stationary distributions is a generalization of the fluctuation--dissipation theorem. Entropic distance evolution is given for such systems. We reconstruct distributions obtained for growing networks, particle production, scientific citations and income distribution.

  5. Femtosecond Twisting and Coherent Vibrational Motion in the Excited State of Tetraphenylethylene

    NARCIS (Netherlands)

    Lenderink, E; Duppen, K.; Wiersma, D. A.

    1995-01-01

    The initial dynamics after excitation to the S-1 state of tetraphenylethylene is studied using femtosecond pump-probe spectroscopy. From the rapid spectral changes during the first few hundred femtoseconds, we conclude that a fast ethylenic twisting motion occurs in the excited state within this tim

  6. Dynamic crack growth in a nonlocal progressively cavitating solid

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo

    1998-01-01

    Dynamic crack growth is analyzed numerically using a nonlocal constitutive formulation for a porous ductile material. The delocalization relates to the void growth and coalescence mechanism and is incorporated in terms of an integral condition on the rate of increase of the void volume fraction....... The material is modeled as elastic-viscoplastic with the thermal softening due to adiabatic heating accounted for. Finite element computations are carried our for edge cracked specimens subject to tensile impact loading. Two values of the material characteristic length and two finite-element discretizations...... to increase and the crack speed to decrease with increasing values of the material characteristic length. The crack growth predictions using the nonlocal constitutive model exhibit less mesh sensitivity than the corresponding ones based on the local constitutive relation. However, for the largest value...

  7. Modeling of dislocation dynamics in germanium Czochralski growth

    Science.gov (United States)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  8. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    Science.gov (United States)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  9. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  10. Modeling Dynamic Height and Crown Growth in Trees

    Science.gov (United States)

    Franklin, O.; Fransson, P.; Brännström, Å.

    2015-12-01

    Previously we have shown how principles based on productivity maximization (e.g. maximization of net primary production, net growth maximization, or functional balance) can explain allocation responses to resources, such as nutrients and light (Franklin et al., 2012). However, the success of these approaches depend on how well they align with the ultimate driver of plant behavior, fitness, or life time reproductive success. Consequently, they may not fully explain how allocation changes during the life cycle of trees where not only growth but also survival and reproduction are important. In addition, maximizing instantaneous productivity does not account for path dependence of tree growth. For example, maximizing productivity during early growth in shade may delay emergence in the forest canopy and reduce lifetime fitness compared to a more height oriented strategy. Here we present an approach to model how growth of stem diameter and leaf area in relation to stem height dynamically responds to light conditions in a way that maximizes life-time fitness (rather than instantaneous growth). The model is able to predict growth of trees growing in different types of forests, including trees emerging under a closed canopy and seedlings planted in a clear-cut area. It can also predict the response to sudden changes in the light environment, due to disturbances or harvesting. We envisage two main applications of the model, (i) Modeling effects of forest management, including thinning and planting (ii) Elucidating height growth strategies in trees and how they can be represented in vegetation models. ReferenceFranklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström Å, Dybzinski R. 2012. Modeling carbon allocation in trees: a search for principles. Tree Physiology 32(6): 648-666.

  11. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: Comparison of atomistic and continual approaches

    Science.gov (United States)

    Fokin, Vladimir B.; Povarnitsyn, Mikhail E.; Levashov, Pavel R.

    2017-02-01

    We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.

  12. femtosecond laser ablation

    OpenAIRE

    Margetic, Vanja

    2003-01-01

    Femtosecond laser ablation was investigated as a solid sampling method for elemental chemical analysis. In comparison to the sampling with longer laser pulses, two aspects could be improved by using ultrashort pulses: elimination of the elemental fractionation from the ablation crater, which is necessary for an accurate quantitative analysis, and better control of the material removal (especially for metals), which increases the spatial resolution of microanalysis. Basic aspects of ultrashort...

  13. A dynamic model for tumour growth and metastasis formation.

    Science.gov (United States)

    Haustein, Volker; Schumacher, Udo

    2012-07-05

    A simple and fast computational model to describe the dynamics of tumour growth and metastasis formation is presented. The model is based on the calculation of successive generations of tumour cells and enables one to describe biologically important entities like tumour volume, time point of 1st metastatic growth or number of metastatic colonies at a given time. The model entirely relies on the chronology of these successive events of the metastatic cascade. The simulation calculations were performed for two embedded growth models to describe the Gompertzian like growth behaviour of tumours. The initial training of the models was carried out using an analytical solution for the size distribution of metastases of a hepatocellular carcinoma. We then show the applicability of our models to clinical data from the Munich Cancer Registry. Growth and dissemination characteristics of metastatic cells originating from cells in the primary breast cancer can be modelled thus showing its ability to perform systematic analyses relevant for clinical breast cancer research and treatment. In particular, our calculations show that generally metastases formation has already been initiated before the primary can be detected clinically.

  14. Conformal dynamics of fractal growth patterns without randomness

    Science.gov (United States)

    Davidovitch; Feigenbaum; Hentschel; Procaccia

    2000-08-01

    Many models of fractal growth patterns (such as diffusion limited aggregation and dielectric breakdown models) combine complex geometry with randomness; this double difficulty is a stumbling block to their elucidation. In this paper we introduce a wide class of fractal growth models with highly complex geometry but without any randomness in their growth rules. The models are defined in terms of deterministic itineraries of iterated conformal maps, generating the function Phi((n))(omega) which maps the exterior of the unit circle to the exterior of an n-particle growing aggregate. The complexity of the evolving interfaces is fully contained in the deterministic dynamics of the conformal map Phi((n))(omega). We focus attention on a class of growth models in which the itinerary is quasiperiodic. Such itineraries can be approached via a series of rational approximants. The analytic power gained is used to introduce a scaling theory of the fractal growth patterns and to identify the exponent that determines the fractal dimension.

  15. Economic Growth And Carbon Emission: A Dynamic Panel Data Analysis

    Directory of Open Access Journals (Sweden)

    Ibrahim BAKIRTAS

    2014-10-01

    Full Text Available The relationship between carbon dioxide emission (CO2 and economic growth is one of the crucial topics in environmental economics. This study is aimed to investigatethat problem. In this study, depending on the theory of Environmental Kuznets Curves (EKC, the impact of income in carbon dioxide emission has measured for 34 OECD and5 BRICS countries with using Dynamic Panel Data Analysis. In this regard OECD countries are classified by income groups due to the average per capita income rate ofOECD to solve the homogeneity problem among OECD countries. On the other hand EKC hypothesis analysed by short and long run income elasticity which will be using foran evident that a country reduces CO2 emissions with the income increase in this study. According to the findings of the study, % 36 of the country sample coherent with theEKC hypothesis. The main encouragement for testing this relationship between economic growth and CO2 emission is leading politicians to reconsider the environmental impactswhich are arising from income increase when they are taking a decision to maximizes the economic growth.Keywords: EKC; OECD; Dynamic Panel Data

  16. Dynamic Metabolic Modeling of Denitrifying Bacterial Growth: The Cybernetic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Liu, Chongxuan

    2015-06-29

    Denitrification is a multistage reduction process converting nitrate ultimately to nitrogen gas, carried out mostly by facultative bacteria. Modeling of the denitrification process is challenging due to the complex metabolic regulation that modulates sequential formation and consumption of a series of nitrogen oxide intermediates, which serve as the final electron acceptors for denitrifying bacteria. In this work, we examined the effectiveness and accuracy of the cybernetic modeling framework in simulating the growth dynamics of denitrifying bacteria in comparison with kinetic models. In four different case studies using the literature data, we successfully simulated diauxic and triauxic growth patterns observed in anoxic and aerobic conditions, only by tuning two or three parameters. In order to understand the regulatory structure of the cybernetic model, we systematically analyzed the effect of cybernetic control variables on simulation accuracy. The results showed that the consideration of both enzyme synthesis and activity control through u- and v-variables is necessary and relevant and that uvariables are of greater importance in comparison to v-variables. In contrast, simple kinetic models were unable to accurately capture dynamic metabolic shifts across alternative electron acceptors, unless an inhibition term was additionally incorporated. Therefore, the denitrification process represents a reasonable example highlighting the criticality of considering dynamic regulation for successful metabolic modeling.

  17. Diffusion of innovations dynamics, biological growth and catenary function

    Science.gov (United States)

    Guseo, Renato

    2016-12-01

    The catenary function has a well-known role in determining the shape of chains and cables supported at their ends under the force of gravity. This enables design using a specific static equilibrium over space. Its reflected version, the catenary arch, allows the construction of bridges and arches exploiting the dual equilibrium property under uniform compression. In this paper, we emphasize a further connection with well-known aggregate biological growth models over time and the related diffusion of innovation key paradigms (e.g., logistic and Bass distributions over time) that determine self-sustaining evolutionary growth dynamics in naturalistic and socio-economic contexts. Moreover, we prove that the 'local entropy function', related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlinde's conjecture on the origin of gravity as an effect of the entropic force.

  18. Coffee-stain growth dynamics on dry and wet surfaces

    CERN Document Server

    Boulogne, François; Stone, Howard A

    2016-01-01

    The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamic...

  19. Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blondel, Sophie [Univ. of Tennessee, Knoxville, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-06-01

    The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics calls for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.

  20. Nonlinear Dynamics of Biofilm Growth on Sediment Surfaces

    Science.gov (United States)

    Molz, F. J.; Murdoch, L. C.; Faybishenko, B.

    2013-12-01

    Bioclogging often begins with the establishment of small colonies (microcolonies), which then form biofilms on the surfaces of a porous medium. These biofilm-porous media surfaces are not simple coatings of single microbes, but complex assemblages of cooperative and competing microbes, interacting with their chemical environment. This leads one to ask: what are the underlying dynamics involved with biofilm growth? To begin answering this question, we have extended the work of Kot et al. (1992, Bull. Mathematical Bio.) from a fully mixed chemostat to an idealized, one-dimensional, biofilm environment, taking into account a simple predator-prey microbial competition, with the prey feeding on a specified food source. With a variable (periodic) food source, Kot et al. (1992) were able to demonstrate chaotic dynamics in the coupled substrate-prey-predator system. Initially, deterministic chaos was thought by many to be mainly a mathematical phenomenon. However, several recent publications (e.g., Becks et al, 2005, Nature Letters; Graham et al. 2007, Int. Soc Microb. Eco. J.; Beninca et al., 2008, Nature Letters; Saleh, 2011, IJBAS) have brought together, using experimental studies and relevant mathematics, a breakthrough discovery that deterministic chaos is present in relatively simple biochemical systems. Two of us (Faybishenko and Molz, 2013, Procedia Environ. Sci)) have numerically analyzed a mathematical model of rhizosphere dynamics (Kravchenko et al., 2004, Microbiology) and detected patterns of nonlinear dynamical interactions supporting evidence of synchronized synergetic oscillations of microbial populations, carbon and oxygen concentrations driven by root exudation into a fully mixed system. In this study, we have extended the application of the Kot et al. model to investigate a spatially-dependent biofilm system. We will present the results of numerical simulations obtained using COMSOL Multi-Physics software, which we used to determine the nature of the

  1. Developing a dynamic growth model for teak plantations in India

    Directory of Open Access Journals (Sweden)

    Vindhya Prasad Tewari

    2014-05-01

    Full Text Available Background Tectona grandis (teak is one of the most important tropical timber speciesoccurring naturally in India. Appropriate growth models, based on advanced modeling techniques,are not available but are necessary for the successful management of teak stands in the country.Long-term forest planning requires mathematical models, and the principles of Dynamical SystemTheory provide a solid foundation for these. Methods The state-space approach makes it possible to accommodate disturbances and avarying environment. In this paper, an attempt has been made to develop a dynamic growthmodel based on the limited data, consisting of three annual measurements, collected from 22 teak sample plots in Karnataka, Southern India. Results A biologically consistent whole-stand growth model has been presented which uses thestate-space approach for modelling rates of change of three state-variables viz., dominant height,stems per hectare and stand basal area. Moreover, the model includes a stand volume equationas an output function to estimate this variable at any point in time. Transition functions werefitted separately and simultaneously. Moreover, a continuous autoregressive error structure isalso included in the modelling process. For fitting volume equation, generalized method of moments was used to get efficient parameter estimates under heteroscedastic conditions. Conclusions A simple model containing few free parameters performed well and is particularlywell suited to situations where available data is scarce.

  2. Dynamic growth of slip surfaces in catastrophic landslides.

    Science.gov (United States)

    Germanovich, Leonid N; Kim, Sihyun; Puzrin, Alexander M

    2016-01-01

    This work considers a landslide caused by the shear band that emerges along the potential slip (rupture) surface. The material above the band slides downwards, causing the band to grow along the slope. This growth may first be stable (progressive), but eventually becomes dynamic (catastrophic). The landslide body acquires a finite velocity before it separates from the substrata. The corresponding initial-boundary value problem for a dynamic shear band is formulated within the framework of Palmer & Rice's (Proc. R. Soc. Lond. A332, 527-548. (doi:10.1098/rspa.1973.0040)) approach, which is generalized to the dynamic case. We obtain the exact, closed-form solution for the band velocity and slip rate. This solution assesses when the slope fails owing to a limiting condition near the propagating tip of the shear band. Our results are applicable to both submarine and subaerial landslides of this type. It appears that neglecting dynamic (inertia) effects can lead to a significant underestimation of the slide size, and that the volumes of catastrophic slides can exceed the volumes of progressive slides by nearly a factor of 2. As examples, we consider the Gaviota and Humboldt slides offshore of California, and discuss landslides in normally consolidated sediments and sensitive clays. In particular, it is conceivable that Humboldt slide is unfinished and may still displace a large volume of sediments, which could generate a considerable tsunami. We show that in the case of submarine slides, the effect of water resistance on the shear band dynamics may frequently be limited during the slope failure stage. For a varying slope angle, we formulate a condition of slide cessation.

  3. TOTAL ANTIOXIDANT ACTIVITY OF SOME BASIDIOMYCETES STRAINS IN GROWTH DYNAMIC

    Directory of Open Access Journals (Sweden)

    O. V. Fedotov

    2016-08-01

    Full Text Available The work is devoted to the study of total antioxidant activity (AOA in the growth dynamics of basidiomycetes strains in their periodic surface cultivation on glucose-peptone medium. Subjects of research are mycelium and culture filtrate (CF from 57 strains, 5 of which are belong to 5 types of Polyporales order, and 52 of which are belong to the 7 types of Agaricales order. In order to study the dynamics of growth used method for determining the weight of absolutely dry biomass accumulation (ADB. Total AOA of mycological material was evaluated by inhibition of lipid peroxidation products accumulation intensity in the model oxidation reaction of Tween-80 by air oxygen. It was found that the most productive in terms of the accumulation of ADB are strains F. velutipes F-610 and P. eryngii P-er. Lowest values of ADB accumulation recorded for strains P. ostreatus P-14 and P-192 and P. citrinopileatus P sіtr. Were selected the most productive strains of Basidiomycetes for the level of total AOA in mycelium and CF. There are strains P. eryngii P-er, P. citrinopileatus P sіtr, P. ostreatus P-035, F. hepatica Fh-08, A. cylindracea 960, P. ostreatus P-081, P-082, P-087, P. citrinopileatus P sіtr. Has not been established the dependence between the growth and the antioxidant activity of the 9- and 12-day fungal cultures. Selected producers of natural antioxidants may be used as biological agents in biotechnology.

  4. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions.

    Directory of Open Access Journals (Sweden)

    Hadiseh Safdari

    Full Text Available In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of "commonly accepted beliefs" seems rarely studied. In this paper, we examine how the growth process of a (social network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node's age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model.

  5. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions

    Science.gov (United States)

    Safdari, Hadiseh; Zare Kamali, Milad; Shirazi, Amirhossein; Khalighi, Moein; Jafari, Gholamreza; Ausloos, Marcel

    2016-01-01

    In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of “commonly accepted beliefs” seems rarely studied. In this paper, we examine how the growth process of a (social) network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA) differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node’s age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model. PMID:27171424

  6. Testing the Goodwin growth-cycle macroeconomic dynamics in Brazil

    Science.gov (United States)

    Moura, N. J.; Ribeiro, Marcelo B.

    2013-05-01

    This paper discusses the empirical validity of Goodwin’s (1967) macroeconomic model of growth with cycles by assuming that the individual income distribution of the Brazilian society is described by the Gompertz-Pareto distribution (GPD). This is formed by the combination of the Gompertz curve, representing the overwhelming majority of the population (˜99%), with the Pareto power law, representing the tiny richest part (˜1%). In line with Goodwin’s original model, we identify the Gompertzian part with the workers and the Paretian component with the class of capitalists. Since the GPD parameters are obtained for each year and the Goodwin macroeconomics is a time evolving model, we use previously determined, and further extended here, Brazilian GPD parameters, as well as unemployment data, to study the time evolution of these quantities in Brazil from 1981 to 2009 by means of the Goodwin dynamics. This is done in the original Goodwin model and an extension advanced by Desai et al. (2006). As far as Brazilian data is concerned, our results show partial qualitative and quantitative agreement with both models in the studied time period, although the original one provides better data fit. Nevertheless, both models fall short of a good empirical agreement as they predict single center cycles which were not found in the data. We discuss the specific points where the Goodwin dynamics must be improved in order to provide a more realistic representation of the dynamics of economic systems.

  7. ANALYSIS OF REGIONAL ECONOMY GROWTH WITH THE THEORY OF DIFFERENTIAL SYSTEM DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    XU Jiuping; LIU Jicheng

    2003-01-01

    In order to describe the interrelation forces among different regions during the economic growth, this paper introduces and analyzes the dynamical system model with the theory of differential systems dynamics. A practical example based on a simplified model is given to analyze the dynamical process of Sichuan economy growth.

  8. Modelling hair follicle growth dynamics as an excitable medium.

    Directory of Open Access Journals (Sweden)

    Philip J Murray

    Full Text Available The hair follicle system represents a tractable model for the study of stem cell behaviour in regenerative adult epithelial tissue. However, although there are numerous spatial scales of observation (molecular, cellular, follicle and multi follicle, it is not yet clear what mechanisms underpin the follicle growth cycle. In this study we seek to address this problem by describing how the growth dynamics of a large population of follicles can be treated as a classical excitable medium. Defining caricature interactions at the molecular scale and treating a single follicle as a functional unit, a minimal model is proposed in which the follicle growth cycle is an emergent phenomenon. Expressions are derived, in terms of parameters representing molecular regulation, for the time spent in the different functional phases of the cycle, a formalism that allows the model to be directly compared with a previous cellular automaton model and experimental measurements made at the single follicle scale. A multi follicle model is constructed and numerical simulations are used to demonstrate excellent qualitative agreement with a range of experimental observations. Notably, the excitable medium equations exhibit a wider family of solutions than the previous work and we demonstrate how parameter changes representing altered molecular regulation can explain perturbed patterns in Wnt over-expression and BMP down-regulation mouse models. Further experimental scenarios that could be used to test the fundamental premise of the model are suggested. The key conclusion from our work is that positive and negative regulatory interactions between activators and inhibitors can give rise to a range of experimentally observed phenomena at the follicle and multi follicle spatial scales and, as such, could represent a core mechanism underlying hair follicle growth.

  9. Femtosecond laser studies of ultrafast intramolecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  10. Design and analysis of X-band femtosecond linac

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M.; Kozawa, T.; Takeshita, A.; Kobayashi, T.; Ueda, T.; Miya, K. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1997-03-01

    Femtosecond quantum phenomena research project is proposed at Nuclear Engineering Research Laboratory, University of Tokyo. The research facility consists of an X-band (11.424GHz) femtosecond electron linac, a femtosecond wavelength tunable laser, two S-band (2.856GHz) picosecond electron linacs and measuring equipments. Especially, we aim to generate a 100 fs (FWHM) electron single bunch with more than 1 nC at the X-band femtosecond linac. Ultrafast processes in radiation physics, chemistry, material science and microscopic electromagnetic phenomena are going to be analyzed there. Here the design and analysis of an X-band femtosecond linac is presented. The simulation of electron dynamics is carried out including magnetic pulse compression by using PARMELA and SUPERFISH. It is found by the simulation that the 600 ps (tail-to-tail) electron emission from a 200 kV thermionic gun can be bunched and compressed to 110 fs (FWHM) with the charge of 0.8 nC which gives 7.3 kA. We plan to use one high power X-band klystron which can supply 60 MW with more than 200 ns pulse duration. The flatness of plateau of the pulse should be 0.2% for stable ultrashort bunch generation. (author)

  11. INTERACTION OF FEMTOSECOND LASER RADIATION WITH SKIN: MATHEMATICAL MODEL

    Directory of Open Access Journals (Sweden)

    Pavel Yu. Rogov

    2017-03-01

    Full Text Available The features of human skin response to the impact of femtosecond laser radiation were researched. The Monte–Carlo method was used for estimation of the radiation penetration depth into the skin cover. We used prevalent wavelength equal to 800 nm (for Ti: sapphire laser femtosecond systems. A mathematical model of heat transfer process was introduced based on the analytical solution of the system of equations describing the dynamics of the electron and phonon subsystems. An experiment was carried out to determine the threshold energy of biological tissue injury (chicken skin was used as a test object. The value of electronic subsystem relaxation time was determined from the experiment and is in keeping with literature data. The results of this work can be used to assess the maximum permissible exposure of laser radiation of different lengths that cause the damage of biological tissues, as well as for the formation of safe operation standards for femtosecond laser systems.

  12. Femtosecond Optical Frequency Comb Technology Principle, Operation and Application

    CERN Document Server

    Ye, Jun

    2005-01-01

    Over the last few years, there has been a remarkable convergence among the fields of ultrafast optics, optical frequency metrology, and precision laser spectroscopy. This convergence has enabled unprecedented advances in control of the electric field of the pulses produced by femtosecond mode-locked lasers. The resulting spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as "femtosecond comb technology." They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. This book provides an introductory description of mode-locked lasers, the connection between time and frequency descriptions of their output and the physical origins of the electric field dynamics, together with an overview of applications of femtosecond comb technology. Individual chapters go into more detail on mode-locked laser development, spectral broadening in microstructure fiber, optical parametric ...

  13. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Science.gov (United States)

    Abraham, J. W.; Strunskus, T.; Faupel, F.; Bonitz, M.

    2016-05-01

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  14. Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences

    Science.gov (United States)

    Höhm, S.; Rohloff, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2013-03-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica and silicon with multiple ( N DPS) irradiation sequences consisting of linearly polarized femtosecond laser pulse pairs (pulse duration ˜150 fs, central wavelength ˜800 nm) is studied experimentally. Nearly equal-energy double-pulse sequences are generated allowing the temporal pulse delay Δ t between the cross-polarized individual fs-laser pulses to be varied from -40 ps to +40 ps with a resolution of ˜0.2 ps. The surface morphologies of the irradiated surface areas are characterized by means of scanning electron and scanning force microscopy. Particularly for dielectrics in the sub-ps delay range striking differences in the orientation and spatial characteristics of the LIPSS can be observed. For fused silica, a significant decrease of the LIPSS spatial periods from ˜790 nm towards ˜550 nm is demonstrated for delay changes of less than ˜2 ps. In contrast, for silicon under similar irradiation conditions, the LIPSS periods remain constant (˜760 nm) for delays up to 40 ps. The results prove the impact of laser-induced electrons in the conduction band of the solid and associated transient changes of the optical properties on fs-LIPSS formation.

  15. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    Science.gov (United States)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  16. Dynamical mechanism of antifreeze proteins to prevent ice growth

    CERN Document Server

    Kutschan, B; Thoms, S

    2014-01-01

    The fascinating ability of algae, insects and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). Antifreeze proteins (AFPs) are surface-active molecules and interact with the diffusive water/ice interface preventing a complete solidification. A new dynamical mechanism is proposed how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau type approach to describe the phase separation in the two-component system (ice, AFP). The free energy density involves two fields: one for the ice phase with low AFP concentration, and one for the liquid water with high AFP concentration. The time evolution of the ice reveals microstructures as a result of phase separation in the presence of AFPs. We observe a faster clustering of pre-ice structure connected with a locking of grain size by the action of AFP which is an essentially dynamical process. The adsorption of additional water molecules are inhibited and the further growth of ice grains are stopped. The...

  17. Coffee-stain growth dynamics on dry and wet surfaces

    Science.gov (United States)

    Boulogne, François; Ingremeau, François; Stone, Howard A.

    2017-02-01

    The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamics is modified by the evaporation conditions, not the final accumulation at the contact line.

  18. Analysis of static and dynamic productivity growth in the Spanish meat processing industry

    NARCIS (Netherlands)

    Kapelko, M.; Oude Lansink, A.G.J.M.; Stefanou, S.E.

    2012-01-01

    This paper estimates static Malmquist and dynamic Luenberger productivity growth measures and decomposes these to identify the contributions of technical change, technical efficiency change and scale efficiency change. The Malmquist and Luenberger productivity growth measures are estimated using

  19. Dynamic Modeling of Aerobic Growth of Shewanella oneidensis. Predicting Triauxic Growth, Flux Distributions and Energy Requirement for Growth

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Ramkrishna, Doraiswami; Pinchuk, Grigoriy E.; Beliaev, Alex S.; Konopka, Allan; Fredrickson, Jim K.

    2013-01-01

    A model-based analysis is conducted to investigate metabolism of Shewanella oneidensis MR-1 strain in aerobic batch culture, which exhibits an intriguing growth pattern by sequentially consuming substrate (i.e., lactate) and by-products (i.e., pyruvate and acetate). A general protocol is presented for developing a detailed network-based dynamic model for S. oneidensis based on the Lumped Hybrid Cybernetic Model (LHCM) framework. The L-HCM, although developed from only limited data, is shown to accurately reproduce exacting dynamic metabolic shifts, and provide reasonable estimates of energy requirement for growth. Flux distributions in S. oneidensis predicted by the L-HCM compare very favorably with 13C-metabolic flux analysis results reported in the literature. Predictive accuracy is enhanced by incorporating measurements of only a few intracellular fluxes, in addition to extracellular metabolites. The L-HCM developed here for S. oneidensis is consequently a promising tool for the analysis of intracellular flux distribution and metabolic engineering.

  20. Dynamics of muscle fibre growth during postnatal mouse development

    Directory of Open Access Journals (Sweden)

    Gnocchi Viola F

    2010-02-01

    Full Text Available Abstract Background Postnatal growth in mouse is rapid, with total skeletal muscle mass increasing several-fold in the first few weeks. Muscle growth can be achieved by either an increase in muscle fibre number or an increase in the size of individual myofibres, or a combination of both. Where myofibre hypertrophy during growth requires the addition of new myonuclei, these are supplied by muscle satellite cells, the resident stem cells of skeletal muscle. Results Here, we report on the dynamics of postnatal myofibre growth in the mouse extensor digitorum longus (EDL muscle, which is essentially composed of fast type II fibres in adult. We found that there was no net gain in myofibre number in the EDL between P7 and P56 (adulthood. However, myofibre cross-sectional area increased by 7.6-fold, and length by 1.9-fold between these ages, resulting in an increase in total myofibre volume of 14.1-fold: showing the extent of myofibre hypertrophy during the postnatal period. To determine how the number of myonuclei changes during this period of intense muscle fibre hypertrophy, we used two complementary mouse models: 3F-nlacZ-E mice express nlacZ only in myonuclei, while Myf5nlacZ/+ mice have β-galactosidase activity in satellite cells. There was a ~5-fold increase in myonuclear number per myofibre between P3 and P21. Thus myofibre hypertrophy is initially accompanied by a significant addition of myonuclei. Despite this, the estimated myonuclear domain still doubled between P7 and P21 to 9.2 × 103 μm3. There was no further addition of myonuclei from P21, but myofibre volume continued to increase, resulting in an estimated ~3-fold expansion of the myonuclear domain to 26.5 × 103 μm3 by P56. We also used our two mouse models to determine the number of satellite cells per myofibre during postnatal growth. Satellite cell number in EDL was initially ~14 satellite cells per myofibre at P7, but then fell to reach the adult level of ~5 by P21. Conclusions

  1. Femtosecond and hole-burning studies of B800`s excitation energy relaxation dynamics in the LH2 antenna complex of Rhodopseudomonas acidophila (strain 10050)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.M.; Savikhin, S.; Reddy, N.R.S.; Jankowiak, R.; Struve, W.S.; Small, G.J. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States); Cogdell, R.J. [Univ. of Glasgow (United Kingdom)

    1996-07-18

    One- and two-color pump/probe femtosecond and hole-burning data are reported for the isolated B800-850 (LH2) antenna complex of Rhodopseudomonas acidophila (strain 10050). The two-color profiles are interpretable in terms of essentially monophasic B800{yields}B850 energy transfer with kinetics ranging from 1.6 to 1.1 ps between 19 and 130 K for excitation at or to the red of the B800 absorption maximum. The B800 zero-phonon hole profiles obtained at 4.2 K with burn frequencies located near or to the red of this maximum yielded a transfer time of 1.8 ps. B800 hole-burning data (4.2 K) are also reported for chromatophores at ambient pressure and pressures of 270 and 375 MPa. At ambient pressure the B800-B850 energy gap is 950 cm{sup -1}, while at 270 and 375 MPa it is close to 1000 and 1050 cm{sup -1}, respectively. However, no dependence of the B800{yields}B850 transfer time on pressure was observed. The resilience of the transfer rate to pressure-induced changes in the energy gap and the weak temperature dependence of the rate are consistent with the model that has the spectral overlap (of Foerster theory) provided by the B800 fluorescence origin band and weak vibronic absorption bands of B850. However, both the time domain and hole-burning data establish that there is an additional relaxation channel for B800, which is observed when excitation is located to the blue of the B800 absorption maximum. 40 refs., 11 figs., 6 tabs.

  2. A DYNAMIC-SYSTEMS MODEL OF COGNITIVE AND LANGUAGE GROWTH

    NARCIS (Netherlands)

    VANGEERT, P

    In the first part of the article, a conceptual framework is sketched to define cognitive growth, including language growth, as a process of growth under limited resources. Important concepts are the process, level, and rate of growth; minimal structural growth level; carrying capacity and unutilized

  3. Influence of Femtosecond Laser Irradiation and Heat Treatment on Precipitation of Silver Nanoparticles in Glass

    Institute of Scientific and Technical Information of China (English)

    曾惠丹; 邱建荣; 姜雄伟; 曲士良; 朱从善; 干福熹

    2003-01-01

    Silver nanoparticles were precipitated inside an Ag2 O-doped glass by femtosecond laser irradiation and successive heat treatment. The influence of heat treatment temperature on the precipitation of silver nanoparticles was investigated. Absorption spectra show that the femtosecond laser irradiation results in an apparent decrease of the treatment temperature for the precipitation of Ag nanoparticles. We demonstrate the control of precipitation,dissolution and growth of silver nanoparticles inside glass by changing the heat treatment temperature or using further femtosecond laser irradiation.

  4. Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser.

    Science.gov (United States)

    Han, D D; Liu, X M; Cui, Y D; Wang, G X; Zeng, C; Yun, L

    2014-03-15

    We propose a compact nanotube-mode-locked all-fiber laser that can simultaneously generate picosecond and femtosecond solitons at different wavelengths. The pulse durations of picosecond and femtosecond solitons are measured to be ∼10.6  ps and ∼466  fs, respectively. Numerical results agree well with the experimental observations and clearly reveal that the dynamic evolutions of the picosecond and femtosecond solitons are qualitatively distinct in the intracavity. Our study presents a simple, stable, low-cost, and dual-scale ultrafast-pulsed laser source suitable for practical applications in optical communications.

  5. Femtosecond laser induced microripple on PDMS surface

    Institute of Scientific and Technical Information of China (English)

    Jin Xie; Changhe Zhou; Wei Wang; Tengfei Wu

    2009-01-01

    laser pulses and the subsequent cool-down solidification of the melting PDMS along with the movement of the femtosecond laser spot. This result will be helpful to understand the interaction between the femtosecond laser and the polymer.

  6. Using Children's Literature for Dynamic Learning Frames and Growth Mindsets

    Science.gov (United States)

    Enriquez, Grace; Clark, Summer R.; Della Calce, Jessica

    2017-01-01

    This article describes a kindergarten teacher's incorporation of children's literature for dynamic learning frame, growth mind-set, and social justice development into her classroom literacy instruction. The authors first compare a dynamic learning frame with a growth mind-set, explaining their use of the former because of its consideration for…

  7. Liquid assisted ablation of zirconium for the growth of LIPSS at varying pulse durations and pulse energies by femtosecond laser irradiation

    Science.gov (United States)

    Bashir, Shazia; Rafique, M. Shahid; Husinsky, Wolfgang

    2015-04-01

    Investigations have been performed to explore the optimized conditions for the growth of Laser Induced Periodic Surface Structures (LIPSS) by varying pulse durations and pulse energies during ultrashort pulsed laser ablation of zirconium (Zr). The Ti: Sapphire laser with central wavelength of 800 nm, maximum pulse energy of 1 mJ is used to ablate Zr targets in the wet environment of ethanol. Scanning Electron Microscope (SEM) analysis was performed for central as well as the peripheral ablated area to characterize nano and microstructures formed on the Zr surface. Raman spectroscopy was carried out to explore the chemical and compositional changes produced in laser ablated Zr. In order to explore the effect of varying pulse durations ranging from 25 to 100 fs, targets were exposed to 1000 succeeding pulses keeping the pulse energy constant at 600 μJ. The micrographs of peripheral ablated areas reveal the formation of nano scale ripples or Laser Induced Periodic Surface Structures (LIPSS) for all pulse durations. LIPSS are more distinct and well organized for the shortest pulse duration of 25 fs. Whereas, LIPSS become diffused and indistinct with the increase in the pulse duration. This is the clear indication that shortest pulse duration (in our case 25 fs) is most suitable for the growth of nanoscale ripples. In order to explore the effect of varying pulse energies on the growth of LIPSS, targets were exposed to 1000 succeeding pulses with energies ranging from 200 μJ to 600 μJ for a pulse duration of 25 fs. In the peripheral ablated areas LIPSS are grown for all pulse energies. For the lowest pulse energy of 200 μJ, LIPSS are distinct and well defined. For intermediate energies of 300 and 400 μJ they become diffused and indistinct. For higher pulse energies of 500 and 600 μJ, their appearance again becomes well defined and distinct. For central ablated areas LIPSS are grown but their appearance diffuses with increasing pulse energies. For the highest pulse

  8. Femtosecond linear and nonlinear spectroscopy of silicon, germanium, and silicon-germanium alloys

    Science.gov (United States)

    Hu, Xiaofeng

    The time-resolved optical response of optically thick Si 1-xGe x alloys across the entire compositional range (0 pump-probe experiment in which a femtosecond pump pulse excites carriers (electron-hole pairs) in the sample and a probe pulse measures the ultrafast carrier dynamics at fixed incident angle in reflection mode through ellipsometric optics. This technique permits the real and imaginary parts of the time-varying dielectric function ɛ1(t) + iɛ2(t) to be distinguished clearly. The temporal shape Δvarepsilon1(t) depends only mildly on alloy composition, and is accurately modeled in terms of the Drude contribution from a diffusing electron-hole plasma by numerically solved four coupled differential equations and Monte Carlo simulations. The evolution of Δvarepsilon2(t), on the other hand, varies widely with composition, and appears to reflect more complicated dynamic processes including nonequilibrium carrier-induced band renormalization, thermal band gap shrinkage by nonequilibrium phonons, interband absorption saturation, and inter-conduction band absorption. Si(001) and Si 1-xGe x alloys surfaces are studied by optical second harmonic (SH) spectra generated in reflection using Ti:Sapphire femtosecond laser pulses for SH photon energies 2.0 eV adsorption and hydrogen desorption during low temperature, ultrahigh vacuum chemical vapor deposition film growth on Si(001) and Ge(001) are investigated in- situ in real time by monitoring the instantaneous hydrogen coverage using optical second harmonic generation. A simple two-site adsorption model and first- order desorption are used to establish reactive sticking coefficients and to predict epitaxial growth rate. The reactive sticking coefficients are temperature independent for disilane and temperature dependence for silane between 740 and 900 K. Predicted growth rates for silane and disilane are in good agreement with published values.

  9. Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals

    Science.gov (United States)

    Wang, Jincheng; Guo, Chunlei

    2007-05-01

    We employ a surface plasmon technique to resolve the dynamics of femtosecond-laser-induced coherent acoustic phonons in noble metals. Clear acoustic oscillations are observed in our experiments. We further study the dependence of the initial phase of the oscillations on pump fluence, and we find that the initial phase decreases linearly with pump fluence. Our model calculations show that hot electrons instantaneously excited by femtosecond pulses contribute to the generation of coherent acoustic phonons in metals.

  10. The rotating-crystal method in femtosecond X-ray diffraction.

    Science.gov (United States)

    Freyer, B; Stingl, J; Zamponi, F; Woerner, M; Elsaesser, T

    2011-08-01

    We report the first implementation of the rotating-crystal method in femtosecond X-ray diffraction. Applying a pump-probe scheme with 100 fs hard X-ray probe pulses from a laser-driven plasma source, the novel technique is demonstrated by mapping structural dynamics of a photoexcited bismuth crystal via changes of the diffracted intensity on a multitude of Bragg reflections. The method is compared to femtosecond powder diffraction and to Bragg diffraction from a crystal with stationary orientation.

  11. Femtosecond photography lessons

    Science.gov (United States)

    Fanchenko, S. D.

    1999-06-01

    Antic scientists, sailors, warriors, physician, etc. were perceiving the space by means of their eye vision system. Nowadays the same people use eyeglasses, telescopes, microscopes, image converters. All these devices fit the necessary magnification, intensification gain and image spectrum to the eyes. The human brain is processing the image data offered to him in a format pertaining to eyes. Hence, the cognition of images can be regarded as a direct measurement. As to the time scale converters, they turned out to be harder done as compared with the spatial scale converters. Hence, the development of the high-speed photography (HSP) continues for more than a hundred and fifty years. The recent pico- femtosecond HSP branch sprang up in 1949 at the Kurchatov Institute -- its cradle. All about the HSP had been advertised. Instead of reprinting what is already well known, it makes sense to emphasize some instructive lessons drawn from past experience. Also it is tempting to look a bit into the high-speed photography future.

  12. Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films.

    Science.gov (United States)

    Barkay, Z

    2010-12-01

    The dynamics of water condensation on self-supported thin films was studied at the nanoscale using transmitted electrons in an environmental scanning electron microscope. The initial stages of nucleation and growth over nanothick water films have been investigated. Irregularities at the water-film boundaries constituted nucleation sites for asymmetric dropwise and filmwise condensation. Nanodroplet growth was associated with center of mass movement, and the dynamic growth power law dependence was explored for the nanoscale.

  13. Asymptotic Stability and Balanced Growth Solution of the Singular Dynamic Input-Output System*

    Institute of Scientific and Technical Information of China (English)

    ChonghuiGuo; HuanwenTang

    2004-01-01

    The dynamic input-output system is well known in economic theory and practice. In this paper the asymptotic stability and balanced growth solution of the dynamic input-output system are considered. Under three natural assumptions, we obtain four theorems about asymptotic stability and balanced growth solution of the dynamic input-output system and bring together in a unified manner some contributions scattered in the literature.

  14. Femtosecond Hydrogen Bond Dynamics of Bulk-like and Bound Water at Positively and Negatively Charged Lipid Interfaces Revealed by 2D HD-VSFG Spectroscopy.

    Science.gov (United States)

    Singh, Prashant Chandra; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Tahara, Tahei

    2016-08-26

    Interfacial water in the vicinity of lipids plays an important role in many biological processes, such as drug delivery, ion transportation, and lipid fusion. Hence, molecular-level elucidation of the properties of water at lipid interfaces is of the utmost importance. We report the two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) study of the OH stretch of HOD at charged lipid interfaces, which shows that the hydrogen bond dynamics of interfacial water differ drastically, depending on the lipids. The data indicate that the spectral diffusion of the OH stretch at a positively charged lipid interface is dominated by the ultrafast (dynamics, while the dynamics at a negatively charged lipid interface exhibit sub-picosecond dynamics almost exclusively, implying that fast hydrogen bond fluctuation is prohibited. These results reveal that the ultrafast hydrogen bond dynamics at the positively charged lipid-water interface are attributable to the bulk-like property of interfacial water, whereas the slow dynamics at the negatively charged lipid interface are due to bound water, which is hydrogen-bonded to the hydrophilic head group.

  15. DYNAMIC SCALING OF GROWING SURFACES WITH GROWTH INHOMOGENEITIES OF SCREENED COULOMBIC FUNCTION

    Institute of Scientific and Technical Information of China (English)

    TANG GANG; MA BEN-KUN

    2000-01-01

    The dynamic scaling properties of growing surfaces with growth inhomogeneities are studied by applying a dy namic renormalization-group analysis to the generalized Kardar-Parisi-Zhang(hereafter abbreviated to KPZ) equation, which contains an additional term of growth inhomogeneities. In a practical crystal growth process, these growth inho mogeneities can be induced by surface impurities and defects and are modeled by a screened Coulomb function in this paper. Our results show that the existence of the growth inhomogeneities can significantly change the dynamic scaling properties of a growing surface and can lead to a rougher surface.

  16. Strong persistent growth differences govern individual performance and population dynamics in a tropical forest understorey palm

    NARCIS (Netherlands)

    Jansen, M.; Zuidema, P.A.; Anten, N.P.R.; Martínez-Ramos, M.

    2012-01-01

    1. Persistent variation in growth rate between individual plants can have strong effects on population dynamics as fast growers reach the reproductive size at an earlier age and thus potentially contribute more to population growth than slow growers. In tropical forests, such persistent growth diffe

  17. Molecular Dynamic Simulation of Thin Film Growth Stress Evolution

    Science.gov (United States)

    Zheng, Haifeng

    2011-12-01

    With the increasing demand for thin films across a wide range of technology, especially in electronic and magnetic applications, controlling the stresses in deposited thin films has become one of the more important challenges in modern engineering. It is well known that large intrinsic stress---in the magnitude of several gigapascals---can result during the thin film preparation. The magnitude of stress depends on the deposition technique, film thickness, types and structures of materials used as films and substrates, as well as other factors. Such large intrinsic stress may lead to film cracking and peeling in case of tensile stress, and delamination and blistering in case of compression. However it may also have beneficial effects on optoelectronics and its applications. For example, intrinsic stresses can be used to change the electronic band gap of semiconducting materials. The far-reaching fields of microelectronics and optoelectronics depend critically on the properties, behavior, and reliable performance of deposited thin films. Thus, understanding and controlling the origins and behavior of such intrinsic stresses in deposited thin films is a highly active field of research. In this study, on-going tensile stress evolution during Volmer-Weber growth mode was analyzed through numerical methods. A realistic model with semi-cylinder shape free surfaces was used and molecular dynamics simulations were conducted. Simulations were at room temperature (300 K), and 10 nanometer diameter of islands were used. A deposition rate that every 3 picoseconds deposit one atom was chosen for simulations. The deposition energy was and lattice orientation is [0 0 1]. Five different random seeds were used to ensure average behaviors. In the first part of this study, initial coalescence stress was first calculated by comparing two similar models, which only differed in the distance between two neighboring islands. Three different substrate thickness systems were analyzed to

  18. Development of a Laser Driven Photocathode Injector and Femtosecond Scale Laser Electron Synchronization for Next Generation Light Sources

    CERN Document Server

    Le Sage, G P; Ditmire, T R; Rosenzweig, J

    2000-01-01

    A high brightness photoinjector has been developed at LLNL. This injector combined with the 100 TW FALCON laser and the LLNL 100 MeV S-Band RF linac will enable development of a high brightness, femtosecond-scale, tunable, hard x-ray probe for time-resolved material measurements, based on Thomson scattering. Short pulse x-rays enable time-resolved characterization of shock dynamics, and examination of materials under extremes of pressure and temperature. Examples include Equation of State characterization on high-density materials, Crystal disorganization and re-growth in shocked and heated materials, and measurement of short time scale phase transition phenomena. Single shot evaluation, requiring high peak flux, is important for complex experiments such as probing of laser shocked actinides. A low emittance electron beam synchronized with femtosecond accuracy to an intense laser will revolutionize x-ray dynamics studies of materials. This project will lead development of ultrafast x-ray dynamics research on ...

  19. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  20. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Science.gov (United States)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-10-01

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  1. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  2. Simulation of Dynamics of PVT Growth: ZnSe

    Science.gov (United States)

    Worlikar, A.; Overholt, M.; Motakef, S.; Su, C.-H.; Ramachandran, N.

    1999-01-01

    An unsteady model for the simulation of PVT growth process has been developed and applied to growth of ZnSe. The model is capable of tracking the unsteady aspects of the growth process caused by, for example, changes in the system temperature associated with growth, source-depletion, translation of the charge, out-gassing at high temperatures, as well as changes in the source composition during growth. The model predicts the evolution of growth interface morphology as well as the shape of source-gas interface. Thermo-fluid transport in the gas phase is handled by a Low-Mach number unsteady compressible flow formulation. Heat transfer in the crystal, source, and the quartz housing is calculated by the Monte-Carlo technique to capture the variations in the spectral transmittance and index of refraction of the participating media. Simulation results are presented for the growth interface morphology, thermal stresses in the crystal, and growth rate at various stages of growth. The influence of impurity gases on the growth process is also discussed, The simulation results are compared with the experimental observations. The capabilities of the developed tool in addressing other PVT growth processes such as SiC are discussed.

  3. Prediction of competitive microbial growth in mixed culture at dynamic temperature patterns.

    Science.gov (United States)

    Fujikawa, Hiroshi; Sakha, Mohammad Z

    2014-01-01

    A novel competition model developed with the new logistic model and the Lotka-Volterra model successfully predicted the growth of bacteria in mixed culture using the mesophiles Staphylococcus aureus, Escherichia coli, and Salmonella at a constant temperature in our previous studies. In this study, we further studied the prediction of the growth of those bacteria in mixed culture at dynamic temperatures with various initial populations with the competition model. First, we studied the growth kinetics of the species in a monoculture at various constant temperatures ranging from 16℃ to 32℃. With the analyzed data in the monoculture, we then examined the prediction of bacterial growth in mixed culture with two and three species. The growth of the bacteria in the mixed culture at dynamic temperatures was successfully predicted with the model. The residuals between the observed and predicted populations at the data points were growth in mixed culture at dynamic temperature patterns.

  4. The Dynamic Relationship between Crime and Economic Growth in Nigeria

    Directory of Open Access Journals (Sweden)

    Adekoya Adenuga Fabian

    2017-03-01

    Full Text Available Crime is a major impediment to economic growth and development in Nigeria despite measures taken to reduce it. There is, however, currently no major statistical analysis of how crime affects economic growth in that country. This study examines the link between crime and growth based on the theory of rational choice and empirical data. Exogenous and endogenous growth models are employed, and include deterrence variables. The period examined is 1970–2013 and estimation is done using the autoregressive distributed lag model. The results of our study show that crime affects economic growth at a 1% and 10% level of significance. In other words, crime imposes the costs of prosecution and punishment on the citizens and country, which influences the growth of the economy. Given our results, we suggest that police and the system of justice should be strengthened. Indeed, this may be necessary if the development target stated in Nigeria vision 20: 2020 is to be reached.

  5. Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model

    Science.gov (United States)

    Rogov, P. U.; Smirnov, S. V.; Semenova, V. A.; Melnik, M. V.; Bespalov, V. G.

    2016-08-01

    We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems.

  6. Above-Threshold Dissociation of HD+ in Femtosecond Laser Field

    Institute of Scientific and Technical Information of China (English)

    BA Song-Yue; YUAN Kai-Jun; HAN Yong-Chang; CONG Shu-Lin

    2008-01-01

    @@ The above-threshold dissociation (ATD) of the HD+ molecular ion in femtosecond laser field is investigated theoretically. The energy-dependent distribution of the dissociated fragments is calculated using an asymptotic-flow expression in the momentum space. The calculations show that the ATD of HD+ is sensitive to the initial vibrational level of ground electronic state. Multiphoton ATDs can be observed in the dissociation processes. The dynamics phenomena are interpreted by using the concept of light-dressed potential.

  7. The dynamic relationship between money supply and economic growth

    Directory of Open Access Journals (Sweden)

    Antoni Antoni

    2015-10-01

    Full Text Available This study analyzes the influence of the financial sector to economic growth in Indonesia. The variables used are the country's financial sectors which are narrow money (M1, broad money (M2 and money the broadest money (M3, with an interest rate as a control variable. Economic growth is represented by Gross Domestic Product and producer price index. The analysis is performed using an Autoregressive Distributed Lag model (ARDL. The stability test is conducted using CUSUM test to see the changes in the structure and the effect of disruption to financial sector development relationship of economic growth. ARDL analysis results indicate that the development of the financial sector has a significant relationship with the country's economic growth. CUSUM analysis results suggest that the relationship of financial sector development-economic growth is stable against changes in economic structure.

  8. Femtosecond coherent Raman spectroscopy and its application to porphyrins.

    Science.gov (United States)

    Schmitt, M; Heid, M; Schlücker, S; Kiefer, W

    2002-01-01

    The results on femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) experiments for the analysis and control of ground state vibrational dynamics of porphyrin systems are briefly reviewed. By detecting the spectrum of the transient CARS signal, a detailed mapping of the dynamics initiated by the stimulated Raman pump process is achieved. The method yields the dephasing behavior and spectral information of the investigated system at the same time. The different contributions to the ground state vibrational dynamics are selected by changing the direction of the CARS signal analyzer in the polarization arrangement used.

  9. Dynamic model for predicting growth of Salmonella spp. in ground sterile pork.

    Science.gov (United States)

    Velugoti, Padmanabha Reddy; Bohra, Lalit K; Juneja, Vijay K; Huang, Lihan; Wesseling, Audrey L; Subbiah, Jeyamkondan; Thippareddi, Harshavardhan

    2011-06-01

    A predictive model for Salmonella spp. growth in ground pork was developed and validated using kinetic growth data. Salmonella spp. kinetic growth data in ground pork were collected at several isothermal conditions (between 10 and 45°C) and Baranyi model was fitted to describe the growth at each temperature, separately. The maximum growth rates (μ(max)) estimated from the Baranyi model were modeled as a function of temperature using a modified Ratkowsky equation. To estimate bacterial growth under dynamic temperature conditions, the differential form of the Baranyi model, in combination with the modified Ratkowsky equation for rate constants, was solved numerically using fourth order Runge-Kutta method. The dynamic model was validated using five different dynamic temperature profiles (linear cooling, exponential cooling, linear heating, exponential heating, and sinusoidal). Performance measures, root mean squared error, accuracy factor, and bias factor were used to evaluate the model performance, and were observed to be satisfactory. The dynamic model can estimate the growth of Salmonella spp. in pork within a 0.5 log accuracy under both linear and exponential cooling profiles, although the model may overestimate or underestimate at some data points, which were generallySalmonella spp., since low temperature conditions could alter the cell physiology. To obtain an accurate estimate of Salmonella spp. growth using the models reported in this work, it is suggested that the models be used at temperatures above 7°C, the minimum growth temperature for Salmonella spp. in pork.

  10. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics

    DEFF Research Database (Denmark)

    Akimov, Vyacheslav; Rigbolt, Kristoffer T G; Nielsen, Mogens M;

    2011-01-01

    ) for selectively decoding ubiquitination-driven processes involved in the regulation of cellular signaling networks. We applied this approach to characterize the temporal dynamics of ubiquitination events accompanying epidermal growth factor receptor (EGFR) signal transduction. We used recombinant UBDs derived...

  11. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics of H[sub 2]CCO[sup +] and D[sub 2]CCO[sup +

    Energy Technology Data Exchange (ETDEWEB)

    Niu, B.; Bai, Y.; Shirley, D.A. (Department of Chemistry, The University of California at Berkeley, Chemical Science Division, Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, California 94720 (United States))

    1993-08-15

    High resolution helium I[alpha] (584 A) photoelectron spectra of H[sub 2]CCO and D[sub 2]CCO are reported. The present spectra of the ground states of ketene cations show more vibrational fine structure than previously reported. The adiabatic ionization energies (AIEs) of the cations' first, second, and fifth excited states are determined unambiguously. The doubletlike fine structures present in the first excited states of ketene cations imply the excitation of a soft'' mode that was not observed before. It was assigned to the [nu][sub 5] mode, which is characterized by the CH[sub 2] (CD[sub 2]) group out-of-plane wagging motion. The complexity of the photoelectron spectra obtained for the ionic first excited states is attributed to the possible dissociation and predissociation of this state. Strong isotope effects are observed in the vibronic (vibrational) couplings in most of the ionic states. Vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra for four of the six ionic states observed. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum of the upper potential energy surfaces (PES). The decay dynamics of the ionic first and fifth excited states of ketene are characterized by ultrafast intramolecular processes such as dissociation and predissociation.

  12. Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.

    2013-01-01

    It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two orde

  13. Dynamical scaling and crossover from algebraic to logarithmic growth in dilute systems

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Shah, Peter Jivan

    1989-01-01

    The ordering dynamics of the two-dimensional Ising antiferromagnet with mobile vacancies and nonconserved order parameter is studied by Monte Carlo temperature-quenching experiments. The domain-size distribution function is shown to obey dynamical scaling. A crossover is found from an algebraic g...... growth law for the pure system to effectively logarithmic growth behavior in the dilute system, in accordance with recent experiments on ordering kinetics in impure chemisorbed overlayers and off-stoichiometric alloys....

  14. 109 Dynamics of Governance, Investment and economic Growth in ...

    African Journals Online (AJOL)

    SIPHAMBE, H.K. (PROF.)

    spanning 1970 – 2006 empirically examines the pattern of domestic .... government expenditure (Cooray, 2009; and Vasquez et al, 2005). Blejer and ..... and growth: Evidence from Malaysia‖, Journal of Development Economics, 84, 215-233.

  15. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

    Science.gov (United States)

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc

    2016-01-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  16. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.

    Directory of Open Access Journals (Sweden)

    Nils Giordano

    2016-03-01

    Full Text Available Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment.

  17. The dynamics of bone structure development during pubertal growth.

    Science.gov (United States)

    Rauch, F

    2012-03-01

    The pubertal growth spurt is a time of rapid changes in bone length, mass and structure, followed by the cessation of longitudinal growth. The two best studied anatomical areas in this respect are the metaphyses and the diaphyses of peripheral long bones. A model is presented here in which the speed of longitudinal growth and the resulting age gradient in metaphyseal bone are key factors in explaining the high incidence of distal radius fractures during puberty. As growth in length accelerates, the age of the bone structural elements at a given distance to the growth plate decreases, leaving less time for cortical thickening through trabecular coalescence. This leads to a discrepancy between stagnant metaphyseal bone strength and increasing mechanical requirements in the case of accidents. In comparison to the metaphysis, diaphyseal bone develops more in line with the increasing mechanical requirements, presumably because the bone formation rates needed for diaphyseal growth in width are only a fraction of the apposition rates in the metaphysis. It remains largely unexplored how local and systemic signals are integrated to achieve site-specific changes in bone structure.

  18. Dynamics of Investment and Growth in Developing Countries during the 1980s Dynamics of Investment and Growth in Developing Countries during the 1980s

    Directory of Open Access Journals (Sweden)

    Raimundo Soto

    1991-03-01

    Full Text Available Dynamics of Investment and Growth in Developing Countries during the 1980s Since the outbreak of the debt crisis in 1982 growth and investment in developing countries have been persistently low by historical standards. Most of the adjustment processes undertaken during the 1980s included strong devaluations and fiscal adjusrment relying heavily on lower public investment.The asessment of the consistency of these policies with expected increases in private investment and growth has been based up to now mainly on static crosscountry models that show contradictory results, specially with regard to the role of foreign debt, the real exchange rate, and public investment.This paper discuss why static approaches are inapproonate for an essentialy dynamic problem and proposes the estimation if a VAR-data model which may help clarify the relations between private investment and growth. The simulations of growth and investment responses to changes in the real exchange rate and the level of public investment show that dynamic responses through lagged effects differ substantially from what available static models suggest.

  19. A fungal growth model fitted to carbon-limited dynamics of Rhizoctonia solani

    NARCIS (Netherlands)

    Jeger, M.J.; Lamour, A.; Gilligan, C.A.; Otten, W.

    2008-01-01

    Here, a quasi-steady-state approximation was used to simplify a mathematical model for fungal growth in carbon-limiting systems, and this was fitted to growth dynamics of the soil-borne plant pathogen and saprotroph Rhizoctonia solani. The model identified a criterion for invasion into

  20. Studies on stand dynamic growth model for larch in Jilin in China

    Institute of Scientific and Technical Information of China (English)

    WENGGuo-qing; CHENXue-feng

    2004-01-01

    The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had high precision, and they could be used for the updating data of inventory of planning and designing and optimal decision of forest management.

  1. Degree Growth, Linear Independence and Periods of a Class of Rational Dynamical Systems

    CERN Document Server

    Ostafe, Alina

    2011-01-01

    We introduce and study algebraic dynamical systems generated by triangular systems of rational functions. We obtain several results about the degree growth and linear independence of iterates as well as about possible lengths of trajectories generated by such dynamical systems over finite fields. Some of these results are generalisations of those known in the polynomial case, some are new even in this case.

  2. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    Science.gov (United States)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2016-06-01

    In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  3. Dynamic Recrystallization and Grain Growth Behavior of 20SiMn Low Carbon Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    DONG Lanfeng; ZHONG Yuexian; MA Qingxian; YUAN Chaolong; MA Lishen

    2008-01-01

    A senes of thermodynamics experiments were used to optimize the hot forging process of 20SiMn low-carbon alloy steel.A dynamic recrystallization and grain growth model was developed for the 20SiMn steel for common production conditions of heavy forgings by doing a nonlinear curve fit of the expenment data.Optimized forging parameters were developed based on the control of the dynamic recrystallization and the MnS secondary phase.The data shows that the initial grain size and the MnS secondary phase all affect the behavior of the 20SiMn dynamic recrystallization and grain growth.

  4. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth

    Science.gov (United States)

    Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.

    2017-01-01

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  5. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Krüger, J. [BAM Bundesanstalt für Materialforschung und –prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Bonse, J., E-mail: joern.bonse@bam.de [BAM Bundesanstalt für Materialforschung und –prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2016-06-30

    Graphical abstract: - Highlights: • LIPSS formation on Fused Silica, Silicon, and Titanium is studied upon parallel and cross-polarized two-color (400 and 800 nm) double-fs-pulse irradiation. • LIPSS orientation on Fused Silica follows the polarization of the first pulse. • LIPSS formation on Silicon and Titanium can be explained by a plasmonic model. - Abstract: In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach–Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  6. Universal threshold for femtosecond laser ablation with oblique illumination

    Science.gov (United States)

    Liu, Xiao-Long; Cheng, Weibo; Petrarca, Massimo; Polynkin, Pavel

    2016-10-01

    We quantify the dependence of the single-shot ablation threshold on the angle of incidence and polarization of a femtosecond laser beam, for three dissimilar solid-state materials: a metal, a dielectric, and a semiconductor. Using the constant, linear value of the index of refraction, we calculate the laser fluence transmitted through the air-material interface at the point of ablation threshold. We show that, in spite of the highly nonlinear ionization dynamics involved in the ablation process, the so defined transmitted threshold fluence is universally independent of the angle of incidence and polarization of the laser beam for all three material types. We suggest that angular dependence of ablation threshold can be utilized for profiling fluence distributions in ultra-intense femtosecond laser beams.

  7. Drilling of Copper Using a Dual-Pulse Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    Chung-Wei Cheng

    2016-02-01

    Full Text Available The drilling of copper using a dual-pulse femtosecond laser with wavelength of 800 nm, pulse duration of 120 fs and a variable pulse separation time (0.1–150 ps is investigated theoretically. A one-dimensional two-temperature model with temperature-dependent material properties is considered, including dynamic optical properties and the thermal-physical properties. Rapid phase change and phase explosion models are incorporated to simulate the material ablation process. Numerical results show that under the same total laser fluence of 4 J/cm2, a dual-pulse femtosecond laser with a pulse separation time of 30–150 ps can increase the ablation depth, compared to the single pulse. The optimum pulse separation time is 85 ps. It is also demonstrated that a dual pulse with a suitable pulse separation time for different laser fluences can enhance the ablation rate by about 1.6 times.

  8. Food-dependent individual growth and population dynamics in fishes

    NARCIS (Netherlands)

    L. Persson; A.M. de Roos

    2006-01-01

    It is long since well established that growth and development in fish individuals are heavily dependent on food intake. Yet, this dependence of individual development on food levels has only to a limited extent been taken into consideration when studying fish population and community processes. Usin

  9. Diel growth dynamics in tree stems: linking anatomy and ecophysiology

    NARCIS (Netherlands)

    Steppe, K.; Sterck, F.J.; Deslauriers, A.

    2015-01-01

    Impacts of climate on stem growth in trees are studied in anatomical, ecophysiological, and ecological disciplines, but an integrative framework to assess those impacts remains lacking. In this opinion article, we argue that three research efforts are required to provide that integration. First, we

  10. Nonlinear growth dynamics and the origin of fluctuating asymmetry

    Science.gov (United States)

    Emlen, J.M.; Freeman, D.C.; Graham, J.H.

    1993-01-01

    The nonlinear, complex nature of biosynthesis magnifies the impacts of small, random perturbations on organism growth, leading to distortions in adaptive allometries and, in particular, to fluctuating asymmetry. These distortions can be partly checked by cell-cell and inter-body part feedback during growth and development, though the latter mechanism also may lead to complex patterns in right-left asymmetry. Stress can be expected to increase the degree to which random growth perturbations are magnified and may also result in disruption of the check mechanisms, thus exaggerating fluctuating asymmetry.The processes described not only provide one explanation for the existence of fluctuating asymmetry and its augmentation under stress, but suggest additional effects of stress as well. Specifically, stress is predicted to lead to decreased fractal dimension of bone sutures and branching structures in animals, and in increased dimension of growth trace patterns such as those found in mollusc shells and fish otoliths and scales.A basic yet broad primer on fractals and chaos is provided as background for the theoretical development in this manuscript.

  11. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    Science.gov (United States)

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters

  12. A dynamic model of tomato fruit growth integrating cell division, cell growth and endoreduplication

    NARCIS (Netherlands)

    Fanwoua, J.; Visser, de P.H.B.; Heuvelink, E.; Yin, X.; Struik, P.C.; Marcelis, L.F.M.

    2013-01-01

    In this study, we developed a model of tomato (Solanum lycopersicum L.) fruit growth integrating cell division, cell growth and endoreduplication. The fruit was considered as a population of cells grouped in cell classes differing in their initial cell age and cell mass. The model describes fruit gr

  13. The growth dynamics of the Turkish economy and its impact on the unemployment

    Directory of Open Access Journals (Sweden)

    Ayhan Ucak

    2013-01-01

    Full Text Available The main purpose of this study is to present the growth dynamics of the Turkish economy and discuss the sustainability of these dynamics. Throughout this argument, it is also possible to trace some evidences of the impact of growth on the unemployment. Firstly, it is evident that growth depends on first, import -due to cheap foreign exchange- and second, high level of foreign capital inflow in the financing of import -due to the insufficiency of export revenues. In addition to that, the policy of high interest rate - low level of foreign exchange is the source of the foreign capital inflow. Secondly, import-oriented growth in the economy has shifted towards a situation in which growth rate increases with the increase in the current account deficit and growth rate declines with a decline in the current account deficit, in the last analysis. Finally, when we analyze the growth performance and the unemployment rates correspondingly, it appears that the rate of unemployment will not decrease with the growth rates below 5%. Briefly, the only way of decreasing the unemployment level is to grow 5% or more every year. Central Bank has initiated the low interest rate-more realistic foreign exchange policy as of 2011 to restrain the unsustainable current account deficit. Finding this policy a promising one, we developed additional policy proposals in the light of the growth models in the literature to achieve a growth rate over 5% which is sustainable and not causing unemployment.

  14. Technological Exports and the Dynamics of Ukraine’s Economic Growth

    Directory of Open Access Journals (Sweden)

    Natalia Cherkass

    2006-03-01

    Full Text Available This article examines the promotion of technological exports in the context of making products competitive on the world market at the expense of quantified but not qualified factors. The author describes the destructive consequences of primary export growth. Relying on a designed structural model, she analyzes factors pertaining to technological exports and industrial production, and also evaluates the effectiveness of promoting exports for economic growth. She demonstrates the negative effect of the devaluation of the hryvnia on industrial production growth and the currency’s neutrality as a factor in the promotion of technological exports. The article establishes that technological exports determine to a considerable extent the dynamics of Ukraine’s economic growth, while the exports of raw materials worsen these indicators. The author shows that the export of metal products stands in the way of increasing technological export, and offers her recommendations to improve the dynamics of economic growth.

  15. The Influence of Fluctuated Soil Moisture on Growth Dynamic of Winter Wheat

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yuan; LUO Yuan-pei

    2002-01-01

    Glasshouse and laboratory tests were carried out in 1996 - 1998 using winter wheat cultivars Beinong 6 as materials. The growth dynamics of the whole-wheat plant were analysed under constant and fluctuated soil water condition. The results revealed that water stress made the starting time of crop greatest growth phase(STCGGP) in advance, prolonged crop greatest growth phase(CGGP), decreased the rate of crop greatest growth (CGGR or CGRm), and as a result, the rate of dry matter accumulation was reduced and the growth of the crop was slowed down. Rewatering delayed STCGGP, shortened CGGP, increased CGGR, thus,the rate of dry matter accumulation had been boosted and the growth of the crop was accelerated. The growth rate, dry matter weight and grains yield of winter wheat were almost equal to the well-watered controls if they were rewatered under the condition of moderate water stress during the jointing stage.

  16. Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, E T; Belak, J; Rudd, R E

    2003-10-07

    The effect of stress-triaxiality on growth of a void in a three dimensional single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular dynamics (MD) simulations using an embedded-atom (EAM) potential for copper have been performed at room temperature and using strain controlling with high strain rates ranging from 10{sup 7}/sec to 10{sup 10}/sec. Strain-rates of these magnitudes can be studied experimentally, e.g. using shock waves induced by laser ablation. Void growth has been simulated in three different conditions, namely uniaxial, biaxial, and triaxial expansion. The response of the system in the three cases have been compared in terms of the void growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant, but the stress-triaxiality increases rapidly together with exponential growth of the void; saturation of the stress-triaxiality; and finally the failure.

  17. Cluster dynamics, growth and syneresis during silica hydrogel polymerisation

    Science.gov (United States)

    Birch, David J. S.; Geddes, Chris D.

    2000-04-01

    The aggregation and syneresis of silica particles during hydrogel polymerisation has been observed in situ for the first time with near-Å resolution using a new approach based on the combined fluorescence anisotropy decay of solvated and bound dye molecules. Primary particles of mean hydrodynamic diameter ˜1.5 nm are found to be present within 20 min of mixing sodium silicate solution and sulphuric acid. Clustering then occurs during siloxane polymerisation to produce after ˜30 h secondary particles with a mean diameter up to ˜4.5 nm at a growth rate which depends on silicate concentration and time to microgelation, tg. Subsequent condensation to ˜4 nm diameter occurs within 1 week as particle syneresis dominates. The effects on particle growth of adding D 2O and inorganic salts are demonstrated.

  18. Scaling laws in the dynamics of crime growth rate

    Science.gov (United States)

    Alves, Luiz G. A.; Ribeiro, Haroldo V.; Mendes, Renio S.

    2013-06-01

    The increasing number of crimes in areas with large concentrations of people have made cities one of the main sources of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behavior. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.

  19. Scaling laws in the dynamics of crime growth rate

    CERN Document Server

    Alves, Luiz Gustavo de Andrade; Mendes, Renio dos Santos

    2013-01-01

    The increasing number of crimes in areas with large concentrations of people have made cities one of the main source of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for the contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behaviour. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.

  20. Growth dynamic of Naegleria fowleri in a microbial freshwater biofilm.

    Science.gov (United States)

    Goudot, Sébastien; Herbelin, Pascaline; Mathieu, Laurence; Soreau, Sylvie; Banas, Sandrine; Jorand, Frédéric

    2012-09-01

    The presence of pathogenic free-living amoebae (FLA) such as Naegleria fowleri in freshwater environments is a potential public health risk. Although its occurrence in various water sources has been well reported, its presence and associated factors in biofilm remain unknown. In this study, the density of N. fowleri in biofilms spontaneously growing on glass slides fed by raw freshwater were followed at 32 °C and 42 °C for 45 days. The biofilms were collected with their substrata and characterized for their structure, numbered for their bacterial density, thermophilic free-living amoebae, and pathogenic N. fowleri. The cell density of N. fowleri within the biofilms was significantly affected both by the temperature and the nutrient level (bacteria/amoeba ratio). At 32 °C, the density remained constantly low (1-10 N. fowleri/cm(2)) indicating that the amoebae were in a survival state, whereas at 42 °C the density reached 30-900 N. fowleri/cm(2) indicating an active growth phase. The nutrient level, as well, strongly affected the apparent specific growth rate (μ) of N. fowleri in the range of 0.03-0.23 h(-1). At 42 °C a hyperbolic relationship was found between μ and the bacteria/amoeba ratio. A ratio of 10(6) to 10(7) bacteria/amoeba was needed to approach the apparent μ(max) value (0.23 h(-1)). Data analysis also showed that a threshold for the nutrient level of close to 10(4) bacteria/amoeba is needed to detect the growth of N. fowleri in freshwater biofilm. This study emphasizes the important role of the temperature and bacteria as prey to promote not only the growth of N. fowleri, but also its survival.

  1. Growth dynamics and the evolution of cooperation in microbial populations

    OpenAIRE

    Jonas Cremer; Anna Melbinger; Erwin Frey

    2012-01-01

    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of c...

  2. Quasistatic and Dynamic Growth of Microscale Spherical Voids (Preprint)

    Science.gov (United States)

    2008-01-01

    function of gro\\ VIh rate. Eq. (56) is solved numerically for specified material data. Results of crossover growlh rate, v·, and pressure, P’, are shown...At a pressure P < p’, (or v < v"), growth rate is lower for materials with high yield stress. Conversely. at a pressure P > p •. (or v > v·), gro\\ VIh

  3. Moderate Growth Time Series for Dynamic Combinatorics Modelisation

    CERN Document Server

    Jaff, Luaï; Kacem, Hatem Hadj; Bertelle, Cyrille

    2007-01-01

    Here, we present a family of time series with a simple growth constraint. This family can be the basis of a model to apply to emerging computation in business and micro-economy where global functions can be expressed from local rules. We explicit a double statistics on these series which allows to establish a one-to-one correspondence between three other ballot-like strunctures.

  4. A Mathematical Analysis of Fractional Fragmentation Dynamics with Growth

    Directory of Open Access Journals (Sweden)

    Emile Franc Doungmo Goufo

    2014-01-01

    Full Text Available We make use of the theory of strongly continuous solution operators for fractional models together with the subordination principle for fractional evolution equations (Bazhlekova (2000 and Prüss (1993 to analyze and show existence results for a fractional fragmentation model with growth characterized by its growth rate r. Indeed, strange phenomena like the phenomenon of shattering (McGrady and Ziff (1987 and the sudden appearance of infinite number of particles in some systems with initial finite particles number could not be fully explained by classical models of fragmentation or aggregation. Then, there is an increasing volition to try new approaches and extend classical models to fractional ones. In the growth model, one of the major challenges in the analysis occurs when 1/r(x is integrable at x0≥0, the minimum size of a cell. We restrict our analysis to the case of integrability of r-1 at x0. This case needs more considerations on the boundary condition, which, in this paper, is the McKendrick-von Foerster renewal condition. In the process, some properties of Mittag-Leffler relaxation function Berberan-Santos (2005 are exploited to finally prove that there is a positive solution operator to the full model.

  5. Luminescence labeling and dynamics of growth active crystal surface structures

    Science.gov (United States)

    Bullard, Theresa Vivian

    One aspect of the multifaceted proposal by A. G. Cairns-Smith (CS), that imperfect crystals have the capacity to act as primitive genes by transferring the disposition of their imperfections from one crystal to another, is investigated. An experiment was designed in a model crystalline system unrelated to the composition of the pre-biotic earth but suited to a well-defined test. Plates of potassium hydrogen phthalate were studied in order to ascertain whether, according to CS, parallel screw dislocations could serve as an information store with cores akin to punches in an old computer card. Evidence of screw dislocations was obtained from their associated growth hillocks through differential interference contrast microscopy, atomic force microscopy, and luminescence labeling of hillocks in conjunction with confocal laser scanning microscopy. Inheritance was evaluated by the corresponding patterns of luminescence developed in 'daughter' crystals grown from seed in the presence of fluorophores. The dispositions and evolution of growth active hillock patterns were quantified by fractal correlation analysis and statistical analysis. Along the way, we came to realize that transferring information encoded in the disposition of screw dislocations is complicated by several factors that lead to 'mutations' in the information stored in the pattern of defects. These observations forced us to confront the fundamental mechanisms that give rise to screw dislocations. It became clear that inter-hillock correlations play a significant role in the appearance of new dislocations through growth, and cause the overall pattern of hillocks to be non-random. Tendencies for clustering and correlations along various crystallographic directions were observed. Investigations into the dye-crystal surface chemistries and interactions with hillock steps also ensued through a combination of experimental techniques and force-field calculations. It was established that certain dye molecules not

  6. System dynamics modelling and simulating the effects of intellectual capital on economic growth

    Directory of Open Access Journals (Sweden)

    Ivona Milić Beran

    2015-10-01

    Full Text Available System dynamics modelling is one of the best scientific methods for modelling complex, nonlinear natural, economic and technical system dynamics as it enables both monitoring and assessment of the effects of intellectual capital on economic growth. Intellectual capital is defined as “the ability to transform knowledge and intangible assets into resources to create wealth for a company and a country.” Transformation of knowledge is crucial. Knowledge increases a country’s wealth only if its importance is recognized and applied differently from existing work practices. The aim of this paper is to show the efficiency of modelling system dynamics and simulating the effects of intellectual capital on economic growth. A computer simulation provided a mathematical model, providing practical insight into the dynamic behavior of the observed system, i.e. the analysis of economic growth and observation of mutual correlation between individual parameters. The results of the simulation are presented in graphical form. The dynamic model of the effects of intellectual capital on Croatia’s economic growth has been verified by comparing simulation results with existing data on economic growth.

  7. Polycrystalline VO{sub 2} thin films via femtosecond laser processing of amorphous VO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Charipar, N.A.; Kim, H.; Charipar, K.M.; Mathews, S.A.; Pique, A. [Naval Research Laboratory, Materials Science and Technology Division, Washington, DC (United States); Breckenfeld, E. [National Research Council Fellow at the Naval Research Laboratory, Washington, DC (United States)

    2016-05-15

    Femtosecond laser processing of pulsed laser-deposited amorphous vanadium oxide thin films was investigated. Polycrystalline VO{sub 2} thin films were achieved by femtosecond laser processing in air at room temperature. The electrical transport properties, crystal structure, surface morphology, and optical properties were characterized. The laser-processed films exhibited a metal-insulator phase transition characteristic of VO{sub 2}, thus presenting a pathway for the growth of crystalline vanadium dioxide films on low-temperature substrates. (orig.)

  8. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    Science.gov (United States)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  9. Pulsed digital micro-holography of femto-second order by double-wavelength recording

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-wei; WANG Xiao-lei; ZHAI Hong-chen

    2007-01-01

    Double-wavelength recording used in a pulsed digital micro-holographic system to record ultra-fast processing of the order of femto-second is reported for the first time, where a BBO crystal is used to generate harmonic wave of the incident laser wave, and both of the basic and the frequency doubled waves are time-delayed and introduced to a Michelson's interferom eter to record two sub-holograms with different spatial frequencies on a single frame of a CCD. In the experiment, an ultra fast dynamic process of air ionization induced by a single femto-second laser pulse is recorded with holography by this system, and both of intensity and phase difference images digitally reconstructed are obtained through Fourier transformation and digital filtering, which show clearly the dynamic process of formation and propagation of the plasma, with a time resolution of the order of femto-second.

  10. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth.

    Science.gov (United States)

    Jo, Junghyo; Gavrilova, Oksana; Pack, Stephanie; Jou, William; Mullen, Shawn; Sumner, Anne E; Cushman, Samuel W; Periwal, Vipul

    2009-03-01

    Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.

  11. Scaling Phenomena in the Growth Dynamics of Scientific Output

    CERN Document Server

    Matia, K; Luwel, M; Moed, H F; Stanley, H E; Matia, Kaushik; Amaral, Luis A. Nunes; Luwel, Marc; Moed, Henk. F.

    2005-01-01

    We analyze a set of three databases at different levels of aggregation (i) a database of approximately $10^6$ publications of 247 countries in the period between 1980--2001. (ii) A database of 508 academic institutions from European Union (EU) and 408 institutes from USA in the 11 year period between during 1991--2001. (iii) A database comprising of 2330 Flemish authors in the period 1980--2000. At all levels of aggregation we find that the mean annual growth rates of publications is independent of the number of publications of the various units involved. We also find that the standard deviation of the distribution of annual growth rates decays with the number of publications as a power law with exponent $\\approx 0.3$. These findings are consistent with those of recent studies of systems such as the size of R&D funding budgets of countries, the research publication volumes of US universities, and the size of business firms.

  12. Nucleation, evolution, and growth dynamics of amorphous silica nanosprings

    Science.gov (United States)

    Wojcik, Peter M.; Bakharev, Pavel V.; Corti, Giancarlo; McIlroy, D. N.

    2017-01-01

    The initial phases of amorphous silica nanospring formation via a vapor-liquid-solid mechanism are reported. The low temperature eutectic of Au-Si results in the formation of an asymmetrical shaped catalyst at the early stages of nanospring formation. As solid silica is formed below the Au-Si catalyst the system lowers its surface free energy and forms multiple amorphous silica nanowires beneath a common catalyst, as opposed to a single nanowire. The diameter of one of the nanowires forming the nanospring ranges between 10-20 nm. The difference in growth rates of the individual nanowires creates an asymmetry in the interfacial surface tension on the boundaries of the Au-Si catalyst/nanowires interface. Using Stokes’ theorem it is shown that there is a variable work of adhesion on the outer boundary of the Au-Si catalyst/nanowire interface of a nanospring, which is defined as an effective contact angle anisotropy. The anisotropic growth on the catalyst/nanowire boundary results in the nanowires coherently coiling into to a single, larger, helical structure with an overall diameter of 70-500 nm.

  13. Femtosecond scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  14. Dynamics of Aggregate Growth Through Monomer Birth and Death

    Institute of Scientific and Technical Information of China (English)

    KE Jian-Hong; LIN Zhen-Quan

    2004-01-01

    @@ We investigate the kinetic behaviour of the growth of aggregates through monomer birth and death and propose a simple model with the rate kernels K(k) ∝ ku and K′(k) ∝ kv at which the aggregate Ak of size k respectively yields and loses a monomer. For the symmetrical system with K(k) = K′(k), the aggregate size distribution approaches the conventional scaling form in the case of u < 2, while the system may undergo a gelation-like transition in the u > 2 case. Moreover, the typical aggregate size S(t) grows as t1/(2-u) in the u < 2 case and increases exponentially with time in the u = 2 case. We also investigate several solvable systems with asymmetrical rate kernels and find that the scaling of the aggregate size distribution may break down in most cases.

  15. Gas Bubble Growth Dynamics in a Supersaturated Solution: Henry's and Sievert's Solubility Laws

    CERN Document Server

    Gor, Gennady Yu; Kuni, Fedor M

    2012-01-01

    Theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution is presented. We study the influence of Laplace pressure on the bubble growth. We consider two different solubility laws: Henry's law, which is fulfilled for the systems where no gas molecules dissociation takes place and Sievert's law, which is fulfilled for the systems where gas molecules completely dissociate in the solvent into two parts. We show that the difference between Henry's and Sievert's laws for chemical equilibrium conditions causes the difference in bubble growth dynamics. Assuming that diffusion flux of dissolved gas molecules to the bubble is steady we obtain differential equations on bubble radius for both solubility laws. For the case of homogeneous nucleation of a bubble, which takes place at a significant pressure drop bubble dynamics equations for Henry's and Sievert's laws are solved analytically. For both solubility laws three characteristic stages of bubble growth are mar...

  16. Dynamic Study of Polymer Particle Growth in Gas Phase Polymerization of Butadiene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An experimental apparatus composed of microscope, video camera. image-processing, and mini reactor which can be used for real-time measurement of the growth of polymer particle in gas phase polymerization was built up to carry out dynamic study of gas phase polymerization of butadiene by heterogeneous catalyst based on neodymium(Nd). The studies of the shape duplication of polymer particles and catalyst particles and the growth rate of polymer particle were made. Results show that the apparatus and procedure designed can be well utilized to make dynamic observation and data collection of the growth of polymer particle in gas phase polymerization. A phenomenon of shape duplication of polymer particles and catalyst particles was observed by the real-time measurement. The result also concludes that the activity of individual catalyst particle is different, and the effect of reaction pressure on the growth of polymer particle is significant.

  17. Salinity fluctuation influencing biological adaptation: growth dynamics and Na(+) /K(+) -ATPase activity in a euryhaline bacterium.

    Science.gov (United States)

    Yang, Hao; Meng, Yang; Song, Youxin; Tan, Yalin; Warren, Alan; Li, Jiqiu; Lin, Xiaofeng

    2017-07-01

    Although salinity fluctuation is a prominent characteristic of many coastal ecosystems, its effects on biological adaptation have not yet been fully recognized. To test the salinity fluctuations on biological adaptation, population growth dynamics and Na(+) /K(+) -ATPase activity were investigated in the euryhaline bacterium Idiomarina sp. DYB, which was acclimated at different salinity exposure levels, exposure times, and shifts in direction of salinity. Results showed: (1) bacterial population growth dynamics and Na(+) /K(+) -ATPase activity changed significantly in response to salinity fluctuation; (2) patterns of variation in bacterial growth dynamics were related to exposure times, levels of salinity, and shifts in direction of salinity change; (3) significant tradeoffs were detected between growth rate (r) and carrying capacity (K) on the one hand, and Na(+) /K(+) -ATPase activity on the other; and (4) beneficial acclimation was confirmed in Idiomarina sp. DYB. In brief, this study demonstrated that salinity fluctuation can change the population growth dynamics, Na(+) /K(+) -ATPase activity, and tradeoffs between r, K, and Na(+) /K(+) -ATPase activity, thus facilitating bacterial adaption in a changing environment. These findings provide constructive information for determining biological response patterns to environmental change. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Human population and atmospheric carbon dioxide growth dynamics: Diagnostics for the future

    Science.gov (United States)

    Hüsler, A. D.; Sornette, D.

    2014-10-01

    We analyze the growth rates of human population and of atmospheric carbon dioxide by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model describing the growth dynamics of coupled processes involving human population (labor in economic terms), capital and technology (proxies by CO2 emissions). Human population in the context of our energy intensive economies constitutes arguably the most important underlying driving variable of the content of carbon dioxide in the atmosphere. Using some of the best databases available, we perform empirical analyses confirming that the human population on Earth has been growing super-exponentially until the mid-1960s, followed by a decelerated sub-exponential growth, with a tendency to plateau at just an exponential growth in the last decade with an average growth rate of 1.0% per year. In contrast, we find that the content of carbon dioxide in the atmosphere has continued to accelerate super-exponentially until 1990, with a transition to a progressive deceleration since then, with an average growth rate of approximately 2% per year in the last decade. To go back to CO2 atmosphere contents equal to or smaller than the level of 1990 as has been the broadly advertised goals of international treaties since 1990 requires herculean changes: from a dynamical point of view, the approximately exponential growth must not only turn to negative acceleration but also negative velocity to reverse the trend.

  19. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array

    OpenAIRE

    Staiger, Christopher J.; Sheahan, Michael B.; Khurana, Parul; Wang,Xia; McCurdy, David W.; Blanchoin, Laurent

    2009-01-01

    Metazoan cells harness the power of actin dynamics to create cytoskeletal arrays that stimulate protrusions and drive intracellular organelle movements. In plant cells, the actin cytoskeleton is understood to participate in cell elongation; however, a detailed description and molecular mechanism(s) underpinning filament nucleation, growth, and turnover are lacking. Here, we use variable-angle epifluorescence microscopy (VAEM) to examine the organization and dynamics of the cortical cytoskelet...

  20. A new ODE tumor growth modeling based on tumor population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  1. Taxation, Growth and Welfare: Dynamic Effects of Estonia´s 2000 Income Tax Act

    OpenAIRE

    Funke, Michael; Strulik, Holger

    2006-01-01

    This paper analyses the long-run effects of Estonia’s 2000 Income Tax Act with a dynamic general equilibrium model. Specifically, we consider the impact of the shift from an imputation system to one where companies only pay taxes on distributed profits. Balanced growth paths, transitional dynamics and welfare costs are computed. Our results indicate that the 2000 Income Tax Act leads to higher per capita income and investment, but lower welfare. A sensitivity analysis shows that the results a...

  2. Root growth dynamics linked to aboveground growth in walnuts (Juglans regia L.)

    Science.gov (United States)

    Background and Aims: Examination of belowground plant responses to canopy and soil moisture manipulation is scant compared to that aboveground but needed to understand whole plant responses to environmental factors. Plasticity in the seasonal timing and vertical distribution of root growth in respon...

  3. R&D and economic growth in Slovenia: A dynamic general equilibrium approach with endogenous growth

    NARCIS (Netherlands)

    Verbic, M.; Majcen, B.; Ivanova, O.; Cok, M.

    2011-01-01

    In the article, we model R&D as a major endogenous growth element in a small open economy general equilibrium framework and consider several R&D policy scenarios for Slovenia. Increase of the share of sectoral investment in R&D that is deductible from the corporate income tax and increase of governm

  4. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    Science.gov (United States)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  5. Life-history and spatial determinants of somatic growth dynamics in Komodo dragon populations.

    Directory of Open Access Journals (Sweden)

    Rebecca J Laver

    Full Text Available Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world's largest lizard the Komodo dragon (Varanus komodoensis. The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species.

  6. Growth and Division in a Dynamic Protocell Model

    Directory of Open Access Journals (Sweden)

    Marco Villani

    2014-12-01

    Full Text Available In this paper a new model of growing and dividing protocells is described, whose main features are (i a lipid container that grows according to the composition of the molecular milieu (ii a set of “genetic memory molecules” (GMMs that undergo catalytic reactions in the internal aqueous phase and (iii a set of stochastic kinetic equations for the GMMs. The mass exchange between the external environment and the internal phase is described by simulating a semipermeable membrane and a flow driven by the differences in chemical potentials, thereby avoiding to resort to sometimes misleading simplifications, e.g., that of a flow reactor. Under simple assumptions, it is shown that synchronization takes place between the rate of replication of the GMMs and that of the container, provided that the set of reactions hosts a so-called RAF (Reflexive Autocatalytic, Food-generated set whose influence on synchronization is hereafter discussed. It is also shown that a slight modification of the basic model that takes into account a rate-limiting term, makes possible the growth of novelties, allowing in such a way suitable evolution: so the model represents an effective basis for understanding the main abstract properties of populations of protocells.

  7. Dynamic scaling of migration-driven aggregate growth

    Institute of Scientific and Technical Information of China (English)

    Ke Jian-Hong; Wang Xiang-Hong; Lin Zhen-Quan; Zhuang You-Yi

    2004-01-01

    We study the kinetic behaviour of the growth of aggregates driven by reversible migration between any two aggregates. For a simple model with the migration rate K(i; j) = K'(i; j)∝ iujv at which the monomers migrate from the aggregates of size i to those of size j, we find that the aggregate size distribution in the system with u + v ≤ 3and u < 2 approaches a conventional scaling form, which reduces to the Smoluchovski form in the u = 1 case. On the other hand, for the system with u < 2, the average aggregate size S(t) grows exponentially in the u + v = 3 case and as(t lnt)1/(5-2u) in another special case of v = u - 2. Moreover, this typical size S(t) grows as t1/(3 ) in the general u -- 2 < v < 3 - u case; while it always grows as t1/(5-2u) in the v < u - 2 case.

  8. Growth Dynamics of Celosia cristata Grown in Cocopeat, Burnt Rice Hull and Kenaf Core Fiber Mixtures

    Directory of Open Access Journals (Sweden)

    Yahya Awang

    2010-01-01

    Full Text Available Problem statement: Understanding the growth dynamics of short-lived plant could be critical as it would complete its life cycle in a short time period. It does not normally has much time to adjust to hostile environmental condition. This study provides a detail account on growth dynamics of Celosia cristata grown in five growing media for the production of high quality flowers. Approach: Celosia cristata plants were grown on five growing media (v/v: 100% Cocopeat (CP; 70% CP: 30% Burnt Rice Hull (BRH; 70% CP: 30% perlite; 70% CP: 30% Kenaf Core Fiber (KCF and 40% CP: 60% KCF. To explore the dynamics of plant growth and development, data on plant height and canopy diameter were regressed against Days After Transplanting (DAT by using the equation y = A/(1+be-cx while its derivative [dy/dx = (Abce-cx/(1+be-cx2] was used to estimate the growth rate of the parameter. The variation in leaf number, flower length and flower diameter were modeled using an exponential function of y = Aebx and their rate of change was derived using dx/dy = Abebx. Results: The growth rates of plant height, canopy diameter and leaf number of plants grown in media containing 100% CP, 70% CP: 30% BRH, 70% CP: 30% perlite, 70% CP: 30% KCF were higher than those grown on media containing 40% CP: 60% KCF. The growth rates of stem and canopy of the plants grown in the later media tended to be higher at the end of the growth cycle. This, however would not be sufficient to compensate their early losses, since the rate of growth in leaf number did not increase concurrently. Negative effects of media containing KCF were also detected in flower size. Conclusion: Overall results showed that CP is an excellent growing media for the production of Celosia cristata. Replacing 30% of CP with BRH, perlite and KCF did not affect the growth and flowering of the plants.

  9. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.

    2006-01-15

    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.

  10. Dynamical theory and experiments on GaAs nanowire growth for photovoltaic applications

    DEFF Research Database (Denmark)

    Krogstrup, Peter

    cells, as it requires control and an in-depth understanding of complex growth kinetics controlling the nanowire crystal formation and dopant incorporation. This thesis is concerned with the growth of self catalyzed GaAs based semiconductor nanowires on silicon substrates in a molecular beam epitaxy...... with a formulation of a theoretical framework which can serve as a basis to model and understand the dynamics of III-V nanowire growth via the ‘vapor-liquid-solid’ method. The formalism is based on principles from transition state kinetics driven by a Gibbs free energy minimization process. The crystallization...

  11. Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations.

    Science.gov (United States)

    Li, Tianqi; Patz, Aaron; Mouchliadis, Leonidas; Yan, Jiaqiang; Lograsso, Thomas A; Perakis, Ilias E; Wang, Jigang

    2013-04-04

    The technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications. Here we show femtosecond (10(-15) seconds) photo-induced switching from antiferromagnetic to ferromagnetic ordering in Pr0.7Ca0.3MnO3, by observing the establishment (within about 120 femtoseconds) of a huge temperature-dependent magnetization with photo-excitation threshold behaviour absent in the optical reflectivity. The development of ferromagnetic correlations during the femtosecond laser pulse reveals an initial quantum coherent regime of magnetism, distinguished from the picosecond (10(-12) seconds) lattice-heating regime characterized by phase separation without threshold behaviour. Our simulations reproduce the nonlinear femtosecond spin generation and underpin fast quantum spin-flip fluctuations correlated with coherent superpositions of electronic states to initiate local ferromagnetic correlations. These results merge two fields, femtosecond magnetism in metals and band insulators, and non-equilibrium phase transitions of strongly correlated electrons, in which local interactions exceeding the kinetic energy produce a complex balance of competing orders.

  12. Dynamics of microbial growth and coexistence on variably saturated rough surfaces.

    Science.gov (United States)

    Long, Tao; Or, Dani

    2009-08-01

    The high degree of microbial diversity found in soils is attributed to the highly heterogeneous pore space and the dynamic aqueous microenvironments. Previous studies have shown that spatial and temporal variations in aqueous diffusion pathways play an important role in shaping microbial habitats and biological activity in unsaturated porous media. A new modeling framework was developed for the quantitative description of diffusion-dominated microbial interactions focusing on competitive growth of two microbial species inhabiting partially saturated rough surfaces. Surface heterogeneity was represented by patches with different porosities and water retention properties, yielding heterogeneous distribution of water contents that varies with changes in relative humidity or soil matric potential. Nutrient diffusion and microbial growth on the variably hydrated and heterogeneous surface was modeled using a hybrid method that combines a reaction diffusion method for nutrient field with individual based model for microbial growth and expansion. The model elucidated the effects of hydration dynamics and heterogeneity on nutrient fluxes and mobility affecting microbial population growth, expansion, and coexistence at the microscale. In contrast with single species dominance under wet conditions, results demonstrated prolonged coexistence of two competing species under drier conditions where nutrient diffusion and microbial movement were both limited. The uneven distribution of resources and diffusion pathways in heterogeneous surfaces highlighted the importance of position in the landscape for survival that may compensate for competitive disadvantages conferred by physiological traits. Increased motility was beneficial for expansion and survival. Temporal variations in hydration conditions resulted in fluctuations in microbial growth rate and population size. Population growth dynamics of the dominant species under wet-dry cycles were similar to growth under average value

  13. Small doses, big troubles: modeling growth dynamics of organisms affecting microalgal production cultures in closed photobioreactors.

    Science.gov (United States)

    Forehead, Hugh I; O'Kelly, Charles J

    2013-02-01

    The destruction of mass cultures of microalgae by biological contamination of culture medium is a pervasive and expensive problem, in industry and research. A mathematical model has been formulated that attempts to explain contaminant growth dynamics in closed photobioreactors (PBRs). The model simulates an initial growth phase without PBR dilution, followed by a production phase in which culture is intermittently removed. Contaminants can be introduced at any of these stages. The model shows how exponential growth from low initial inocula can lead to "explosive" growth in the population of contaminants, appearing days to weeks after inoculation. Principal influences are contaminant growth rate, PBR dilution rate, and the size of initial contaminant inoculum. Predictions corresponded closely with observed behavior of two contaminants, Uronema sp. and Neoparamoeba sp., found in operating PBRs. A simple, cheap and effective protocol was developed for short-term prediction of contamination in PBRs, using microscopy and archived samples.

  14. Towards sub-femtosecond emission

    Science.gov (United States)

    Bach, Roger; Hansen, Peter; Batelaan, Herman; Hilbert, Shawn

    2010-03-01

    To manipulate femtosecond pulses of electrons new electron optical elements are needed. For example, if a source has a lower limit in the duration of the electron pulses that it generates, then aan electron optical element that can reduce the pulse duration could be useful. An example of this is the proposed ``temporal lens '' [1]. To detect the short electron pulses one also needs new elements. Attempts to use the ponderomotive interaction between the electron pulse and a second laser pulse will be presented [2]. Alternatively, we have started to explore a plasmonics structure provided by the Capasso group to make a fast electron switch. This has the potential to be useful both for switching, shaping and detecting the electron pulse. Finally, the experimental parameters and detection ideas for quantum degeneracy will be discussed. [1] S. Hilbert, B. Barwick, K. Uiterwaal, H. Batelaan, A. Zewail, ``Temporal lenses for attosecond and femtosecond electron pulses'', Proceedings of the National Academy of Sciences, p. 10558, vol. 106, (2009). [2] L. Kreminskaya, C. Corder, V. Engquist, O. Golovin, P. Hansen, H. Batelaan, A. I. Khizhnyak, G. A. Swartzlander, Jr., ``Laser Beam Shaping: Donut Mode Formation by Interference.'' Laser Beam Shaping X (Proceedings Volume) Proceedings of SPIE Volume: 7430.

  15. Femtosecond ultraviolet laser ablation of silver and comparison with nanosecond ablation

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Doggett, B.; Budtz-Jørgensen, C.

    2013-01-01

    The ablation plume dynamics arising from ablation of silver with a 500 fs, 248 nm laser at ~2 J cm-2 has been studied using angle-resolved Langmuir ion probe and thin film deposition techniques. For the same laser fluence, the time-of-flight ion signals from femtosecond and nanosecond laser ablat...

  16. Roles of Tunneling, Multiphoton Ionization, and Cascade Ionization for Femtosecond Optical Breakdown in Aqueous Media

    Science.gov (United States)

    2009-09-01

    Appl Phys B 76:215-229 [Mao04] Mao S S, Quéré F, Guizard S. Mao X, Russo E, Petite G, Martin P (2004) Dynamics of femtosecond laser interactions...Wey89] Weyl G M (1989) Physics of laser-induced breakdown: An update. In Radziemski LJ, Cremers DA (eds) Laser-induced plasmas and applications. Marcel

  17. Interpreting the dynamic nexus between energy consumption and economic growth: Empirical evidence from Russia

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuejun, E-mail: zyjmis@126.co [School of Management and Economics, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Haidian District, Beijing 100081 (China) and Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081 (China)

    2011-05-15

    Research on the nexus between energy consumption and economic growth is a fundamental topic for energy policy making and low-carbon economic development. Russia proves the third largest energy consumption country in the world in recent years, while little research has shed light upon its energy consumption issue till now, especially its energy-growth nexus. Therefore, this paper empirically investigates the dynamic nexus of the two variables in Russia based on the state space model. The results indicate that, first of all, Russia's energy consumption is cointegrated with its economic growth in a time-varying way though they do not have static or average cointegration relationship. Hence it is unsuitable to merely portrait the nexus in an average manner. Second, ever since the year of 2000, Russia's energy efficiency has achieved much more promotion compared with that in previous decades, mainly due to the industrial structure adjustment and technology progress. Third, among BRIC countries, the consistency of Russia's energy consumption and economic growth appears the worst, which suggests the complexity of energy-growth nexus in Russia. Finally, there exists bi-directional causality between Russia's energy consumption and economic growth, though their quantitative proportional relation does not have solid foundation according to the cointegration theory. - Research highlights: {yields}This study investigates the dynamic nexus of energy consumption and economic growth in Russia. {yields} Russia's energy consumption is cointegrated with its economic growth in a time-varying way though they do not have static or average cointegration relationship. {yields} Ever since 2000, Russia's energy efficiency has achieved much more promotion compared with that in previous decades. {yields} Among BRIC countries, the consistency of Russia's energy consumption and economic growth appears the worst. {yields} There exists bi-directional causality

  18. Tree dynamics in canopy gaps in old-growth forests of Nothofagus pumilio in Southern Chile

    NARCIS (Netherlands)

    Fajardo, Alex; Graaf, de N.R.

    2004-01-01

    The gap dynamics of two Nothofagus pumilio (lenga) stands have been investigated. We evaluated and compared tree diameter distributions, spatial patterns, tree fall and gap characteristics and regeneration responses in gaps in two old-growth forests of Nothofagus pumilio in Southern Chile (Shangri-L

  19. Informal sector dynamics in times of fragile growth : The case of Madagascar

    NARCIS (Netherlands)

    J. Vaillant (Julia); M. Grimm (Michael); J. Lay (Jann); F. Roubaud (François)

    2014-01-01

    markdownabstract__Abstract__ This article examines the dynamics of the informal sector in Madagascar during the 1995–2004 period, which was characterized by sustained growth that ended due to a major political crisis. As conventionally assumed by simple dualistic models, the informal sector indeed

  20. Informal sector dynamics in times of fragile growth: the case of Madagascar

    NARCIS (Netherlands)

    M. Grimm (Michael); J. Lay (Jann); J. Vaillant (Julia); F. Roubaud (François)

    2011-01-01

    textabstractAbstract: This paper investigates the dynamics of the informal sector in Madagascar during a period of fragile growth. Overall, the behavior of informal firms in terms of earnings, employment and capital accumulation points to a degree of heterogeneity which goes beyond a simple dualisti

  1. Growth of cockles (Cerastoderma edule) in the Oosterschelde described by a Dynamic Energy Budget model

    NARCIS (Netherlands)

    Wijsman, J.W.M.; Smaal, A.C.

    2011-01-01

    A Dynamic Energy Budget (DEB) model for cockles is presented and calibrated using detailed data on cockle growth and water quality in the Oosterschelde. Cockles in the intertidal areas of the Oosterschelde have an important function as a food source for wading birds and as such for the natural value

  2. Informal sector dynamics in times of fragile growth : The case of Madagascar

    NARCIS (Netherlands)

    J. Vaillant (Julia); M. Grimm (Michael); J. Lay (Jann); F. Roubaud (François)

    2014-01-01

    markdownabstract__Abstract__ This article examines the dynamics of the informal sector in Madagascar during the 1995–2004 period, which was characterized by sustained growth that ended due to a major political crisis. As conventionally assumed by simple dualistic models, the informal sector

  3. Informal sector dynamics in times of fragile growth: the case of Madagascar

    NARCIS (Netherlands)

    M. Grimm (Michael); J. Lay (Jann); J. Vaillant (Julia); F. Roubaud (François)

    2011-01-01

    textabstractAbstract: This paper investigates the dynamics of the informal sector in Madagascar during a period of fragile growth. Overall, the behavior of informal firms in terms of earnings, employment and capital accumulation points to a degree of heterogeneity which goes beyond a simple

  4. Informal sector dynamics in times of fragile growth: the case of Madagascar

    NARCIS (Netherlands)

    M. Grimm (Michael); J. Lay (Jann); J. Vaillant (Julia); F. Roubaud (François)

    2011-01-01

    textabstractAbstract: This paper investigates the dynamics of the informal sector in Madagascar during a period of fragile growth. Overall, the behavior of informal firms in terms of earnings, employment and capital accumulation points to a degree of heterogeneity which goes beyond a simple dualisti

  5. Informal sector dynamics in times of fragile growth : The case of Madagascar

    NARCIS (Netherlands)

    J. Vaillant (Julia); M. Grimm (Michael); J. Lay (Jann); F. Roubaud (François)

    2014-01-01

    markdownabstract__Abstract__ This article examines the dynamics of the informal sector in Madagascar during the 1995–2004 period, which was characterized by sustained growth that ended due to a major political crisis. As conventionally assumed by simple dualistic models, the informal sector indeed

  6. The estimation of growth dynamics for Pomacea maculata from hatchling to adult

    Science.gov (United States)

    Sutton, Karyn L.; Zhao, Lihong; Carter, Jacoby

    2017-01-01

    Pomacea maculata is a relatively new invasive species to the Gulf Coast region and potentially threatens local agriculture (rice) and ecosystems (aquatic vegetation). The population dynamics of P. maculata have largely been unquantified, and therefore, scientists and field-workers are ill-equipped to accurately project population sizes and the resulting impact of this species. We studied the growth of P. maculata ranging in weights from 6 to 105 g, identifying the sex of the animals when possible. Our studied population had a 4:9 male:female sex ratio. We present the findings from initial analysis of the individual growth data of males and females, from which it was apparent that females were generally larger than males and that small snails grew faster than larger snails. Since efforts to characterize the male and female growth rates from individual data do not yield statistically supported estimates, we present the estimation of several parameterized growth rate functions within a population-level mathematical model. We provide a comparison of the results using these various growth functions and discuss which best characterizes the dynamics of our observed population. We conclude that both males and females exhibit biphasic growth rates, and thus, their growth is size-dependent. Further, our results suggest that there are notable differences between males and females that are important to take into consideration in order to accurately model this species' population dynamics. Lastly, we include preliminary analyses of ongoing experiments to provide initial estimates of growth in the earliest life stages (hatchling to ≈6 g).

  7. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    Science.gov (United States)

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  8. Femtosecond studies of nonlinear optical switching in GaAs waveguides using time-domain interferometry

    Science.gov (United States)

    Anderson, Kristin K.; LaGasse, Michael J.; Haus, Hermann A.; Fujimoto, James G.

    1990-05-01

    We describe the application of a new femtosecond measurement technique, time division interferometry, for investigating the transient nonlinear index in waveguides. This technique performs an interferometric measurement using a time division multiplexed reference pulse and achieves high sensitivity with increased immunity to acoustic and thermal parasitics. Using a tunable femtosecond laser source, direct measurements of the wavelength dependent nonresonant nonlinear index have been performed in A1GaAs waveguides. In addition, conventional pump and probe absorption measurements permit the investigation of carrier dynamics, band filling, and two photon absorption effects. Two photon absorption is found to be a potentially serious limiting effect for obtaining all optical switching.

  9. PIF genes mediate the effect of sucrose on seedling growth dynamics.

    Directory of Open Access Journals (Sweden)

    Jodi L Stewart

    Full Text Available As photoautotrophs, plants can use both the form and amount of fixed carbon as a measure of the light environment. In this study, we used a variety of approaches to elucidate the role of exogenous sucrose in modifying seedling growth dynamics. In addition to its known effects on germination, high-resolution temporal analysis revealed that sucrose could extend the number of days plants exhibited rapid hypocotyl elongation, leading to dramatic increases in ultimate seedling height. In addition, sucrose changed the timing of daily growth maxima, demonstrating that diel growth dynamics are more plastic than previously suspected. Sucrose-dependent growth promotion required function of multiple phytochrome-interacting factors (PIFs, and overexpression of PIF5 led to growth dynamics similar to plants exposed to sucrose. Consistent with this result, sucrose was found to increase levels of PIF5 protein. PIFs have well-established roles as integrators of response to light levels, time of day and phytohormone signaling. Our findings strongly suggest that carbon availability can modify the known photomorphogenetic signaling network.

  10. High-resolution protein structure determination by serial femtosecond crystallography.

    Science.gov (United States)

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme

    2012-07-20

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.

  11. Vibrationally-induced electronic population inversion with strong femtosecond pulses

    CERN Document Server

    Sampedro, Pablo; Sola, Ignacio R

    2016-01-01

    We discover a new mechanism of electronic population inversion using strong femtosecond pulses, where the transfer is mediated by vibrational motion on a light-induced potential. The process can be achieved with a single pulse tuning its frequency to the red of the Franck-Condon window. We show the determinant role that the sign of the slope of the transition dipole moment can play on the dynamics, and extend the method to multiphoton processes with odd number of pulses. As an example, we show how the scheme can be applied to population inversion in Na2.

  12. Evaluation of the Growth Dynamics and Morphological Characteristics of Genetic Sources of Silybum marianum (L. Gaertn

    Directory of Open Access Journals (Sweden)

    Pavla Koláčková

    2015-01-01

    Full Text Available The aim of this work was to evaluate the growth dynamics and selected morphological characteristics of genetic sources of milk thistle (Silybum marianum L. Gaertn. for the further development of the minimal set of descriptors. Milk thistle is grown in the Czech Republic for its achenes; however, the quality of achenes can be reduced by many factors, by the occurrence of fungal pathogens mainly. The growth dynamics and morphological characteristics of milk thistle during the vegetation period in the years 2010–2013 at two localities were evaluated. The cluster analysis of the data showed the similarity for some of the accessions and confirmed the dependence of the data value to the climatic conditions. Source from Serbia, Slovakia, Romanian variety ’De Prahova’, German accessions SIL 2 and SIL 8, Hungarian accesion RCAT 040360 DDR and Czech variety ’Silyb’ seem to be promising genetic sources from the viewpoint of growth and development in the Czech Republic.

  13. Early growth dynamical implications for the steerability of stratospheric solar radiation management via sulfur aerosol particles

    Science.gov (United States)

    Benduhn, François; Schallock, Jennifer; Lawrence, Mark G.

    2016-09-01

    Aerosol growth dynamics may have implications for the steerability of stratospheric solar radiation management via sulfur particles. This paper derives a set of critical initial growth conditions that are analyzed as a function of two key parameters: the initial concentration of the injected sulfuric acid and its dilution rate with the surrounding air. Based upon this analysis, early aerosol growth dynamical regimes may be defined and classified in terms of their likelihood to serve as candidates for the controlled generation of a radiatively effective aerosol. Our results indicate that the regime that fulfills all critical conditions would require that airplane turbines be used to provide sufficient turbulence. The regime's parameter space is narrow and related to steep gradients, thus pointing to potential fine tuning requirements. More research, development, and testing would be required to refine our findings and determine their global-scale implications.

  14. Export dynamics as an optimal growth problem in the network of global economy

    CERN Document Server

    Caraglio, Michele; Stella, Attilio L

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the cali...

  15. Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective

    Science.gov (United States)

    Bjorndal, Karen A.; Chaloupka, Milani; Saba, Vincent S.; Diez, Carlos E.; van Dam, Robert P.; Krueger, Barry H.; Horrocks, Julia A.; Santos, Armando J. B.; Bellini, Cláudio; Marcovaldi, Maria A. G.; Nava, Mabel; Willis, Sue; Godley, Brendan J.; Gore, Shannon; Hawkes, Lucy A.; McGowan, Andrew; Witt, Matthew J.; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A. B.; Blumenthal, Janice; Moncada, Felix; Nodarse, Gonzalo; Medina, Yosvani; Dunbar, Stephen G.; Wood, Lawrence D.; Lagueux, Cynthia J.; Campbell, Cathi L.; Meylan, Anne B.; Meylan, Peter A.; Burns Perez, Virginia R.; Coleman, Robin A.; Strindberg, Samantha; Guzmán-H, Vicente; Hart, Kristen M.; Cherkiss, Michael S.; Hillis-Starr, Zandy; Lundgren, Ian; Boulon, Ralf H.; Connett, Stephen; Outerbridge, Mark E.; Bolten, Alan B.

    2016-01-01

    Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs. Main

  16. Thermally-Reconfigurable Quantum Photonic Circuits at Telecom Wavelength by Femtosecond Laser Micromachining

    CERN Document Server

    Flamini, Fulvio; Rab, Adil S; Spagnolo, Nicolò; D'Ambrosio, Vincenzo; Mataloni, Paolo; Sciarrino, Fabio; Zandrini, Tommaso; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2015-01-01

    The importance of integrated quantum photonics in the telecom band resides on the possibility of interfacing with the optical network infrastructure developed for classical communications. In this framework, femtosecond laser written integrated photonic circuits, already assessed for quantum information experiments in the 800 nm wavelength range, have great potentials. In fact these circuits, written in glass, can be perfectly mode-matched at telecom wavelength to the in/out coupling fibers, which is a key requirement for a low-loss processing node in future quantum optical networks. In addition, for several applications quantum photonic devices will also need to be dynamically reconfigurable. Here we experimentally demonstrate the high performance of femtosecond laser written photonic circuits for quantum experiments in the telecom band and we show the use of thermal shifters, also fabricated by the same femtosecond laser, to accurately tune them. State-of-the-art manipulation of single and two-photon states...

  17. Connections between the growth of Arctica islandica and phytoplankton dynamics on the Faroe Shelf

    Science.gov (United States)

    Bonitz, Fabian; Andersson, Carin; Trofimova, Tamara

    2017-04-01

    In this study we use molluscan sclerochronological techniques in order to obtain closer insights into environmental and ecological dynamics of Faroe Shelf waters. The Faroe Shelf represents a special ecosystem with rich benthic and neritic communities, which also have great importance for many economically relevant fish stocks. Thus, a better understanding of seasonal and year-to-year phytoplankton and stratification dynamics would be useful because they also have implications for higher trophic levels. The water masses of the Faroe Shelf are fairly homogenous and isolated from off-shelf waters but at a certain depth, which is referred to as transition zone, seasonal stratification and horizontal exchange occur. Systematic observations and phytoplankton dynamic investigations have only been performed during the last 29 years but longer records are missing. Thus, we use the growth increment variability in long-lived Arctica islandica shells from the transition zone of the eastern Faroe Shelf to evaluate its potential to estimate on-shelf phytoplankton and stratification dynamics since previous studies have shown that the growth of A. islandica is highly dependent on food availability. We have built a shell-based master-chronology reaching back to the 17th century. Comparisons between the growth indices of our chronology and fluorescence data reveal significant positive relationships. In combination with an index that accounts for stratification even stronger correlations are obtained. This indicates that the growth of A. islandica is largely influenced by a combination of how much phytoplankton is produced and how much actually reaches the bottom, i.e. how well-mixed the water column is. Further significant positive correlations can also be found between the growth indices and other primary productivity data from the Faroe Shelf. In conclusion, our results suggest that the growth indices can be related to year-to-year changes in phytoplankton production and

  18. Modelling mussel growth in ecosystems with low suspended matter loads using a Dynamic Energy Budget approach

    Science.gov (United States)

    Duarte, P.; Fernández-Reiriz, M. J.; Labarta, U.

    2012-01-01

    The environmental and the economic importance of shellfish stimulated a great deal of studies on their physiology over the last decades, with many attempts to model their growth. The first models developed to simulate bivalve growth were predominantly based on the Scope For Growth ( SFG) paradigm. In the last years there has been a shift towards the Dynamic Energy Budget ( DEB) paradigm. The general objective of this work is contributing to the evaluation of different approaches to simulate bivalve growth in low seston waters by: (i) implementing a model to simulate mussel growth in low suspended matter ecosystems based on the DEB theory (Kooijman, S.A.L.M., 2000. Dynamic and energy mass budgets in biological systems, Cambridge University Press); (ii) comparing and discussing different approaches to simulate feeding processes, in the light of recently published works both on experimental physiology and physiology modeling; (iii) comparing and discussing results obtained with a model based on EMMY ( Scholten and Smaal, 1998). The model implemented allowed to successfully simulate mussel feeding and shell length growth in two different Galician Rias. Obtained results together with literature data suggest that modeling of bivalve feeding should incorporate physiologic feed-backs related with food digestibility. In spite of considerable advances in bivalve modeling a number of issues is yet to be resolved, with emphasis on the way food sources are represented and feeding processes formulated.

  19. Probing initial-stages of ALD growth with dynamic in situ spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Muneshwar, Triratna, E-mail: muneshwa@ualberta.ca; Cadien, Ken

    2015-02-15

    Graphical abstract: - Highlights: • Dynamic in situ spectroscopic ellipsometry to study ALD growth initiation. • Sub-monolayer ALD growth is modeled as diffusive film growth mode. • Bruggeman's EMA model used to analyze d-iSE data. • Plasma enhanced ALD of ZrN is presented as example. • Surface coverage of ZrN film is calculated after every ALD cycle. - Abstract: The initial stages of ALD surface reactions are probed using dynamic in situ spectroscopic ellipsometry (d-iSE) technique during plasma-enhanced ALD of zirconium nitride (ZrN) thin films in spectral range of 0.73–6.4 eV. The measured change in the ellipsometry parameter Δ, with every precursor (TDMAZr) and reactant (forming gas plasma) exposure is interpreted as the combined effect of film growth and change in surface chemistry during ALD. We present application of Bruggeman's effective-medium approximation (B-EMA) in the analysis of d-iSE data to determine fractional surface coverage (θ) of ALD grown film at the end of every deposition cycle. During the deposition of first few ZrN monolayers, d-iSE datasets are analyzed on the basis of surface diffusion enhanced ALD growth, where the surface adsorbed precursor molecules can diffuse over substrate surface to occupy energetically favorable surface sites. The determined surface coverage of ZrN films highlights the effects of substrate enhanced ALD growth.

  20. Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium.

    Science.gov (United States)

    Soares, Nelson C; Spät, Philipp; Krug, Karsten; Macek, Boris

    2013-06-07

    Recent phosphoproteomics studies have generated relatively large data sets of bacterial proteins phosphorylated on serine, threonine, and tyrosine, implicating this type of phosphorylation in the regulation of vital processes of a bacterial cell; however, most phosphoproteomics studies in bacteria were so far qualitative. Here we applied stable isotope labeling by amino acids in cell culture (SILAC) to perform a quantitative analysis of proteome and phosphoproteome dynamics of Escherichia coli during five distinct phases of growth in the minimal medium. Combining two triple-SILAC experiments, we detected a total of 2118 proteins and quantified relative dynamics of 1984 proteins in all measured phases of growth, including 570 proteins associated with cell wall and membrane. In the phosphoproteomic experiment, we detected 150 Ser/Thr/Tyr phosphorylation events, of which 108 were localized to a specific amino acid residue and 76 were quantified in all phases of growth. Clustering analysis of SILAC ratios revealed distinct sets of coregulated proteins for each analyzed phase of growth and overrepresentation of membrane proteins in transition between exponential and stationary phases. The proteomics data indicated that proteins related to stress response typically associated with the stationary phase, including RpoS-dependent proteins, had increasing levels already during earlier phases of growth. Application of SILAC enabled us to measure median occupancies of phosphorylation sites, which were generally low (growth.

  1. Dynamic predictive model for growth of Salmonella spp. in scrambled egg mix.

    Science.gov (United States)

    Li, Lin; Cepeda, Jihan; Subbiah, Jeyamkondan; Froning, Glenn; Juneja, Vijay K; Thippareddi, Harshavardhan

    2017-06-01

    Liquid egg products can be contaminated with Salmonella spp. during processing. A dynamic model for the growth of Salmonella spp. in scrambled egg mix - high solids (SEM) was developed and validated. SEM was prepared and inoculated with ca. 2 log CFU/mL of a five serovar Salmonella spp. cocktail. Salmonella spp. growth data at isothermal temperatures (10, 15, 20, 25, 30, 35, 37, 39, 41, 43, 45, and 47 °C) in SEM were collected. Baranyi model was used (primary model) to fit growth data and the maximum growth rate and lag phase duration for each temperature were determined. A secondary model was developed with maximum growth rate as a function of temperature. The model performance measures, root mean squared error (RMSE, 0.09) and pseudo-R(2) (1.00) indicated good fit for both primary and secondary models. A dynamic model was developed by integrating the primary and secondary models and validated using two sinusoidal temperature profiles, 5-15 °C (low temperature) for 480 h and 10-40 °C (high temperature) for 48 h. The RMSE values for the sinusoidal low and high temperature profiles were 0.47 and 0.42 log CFU/mL, respectively. The model can be used to predict Salmonella spp. growth in case of temperature abuse during liquid egg processing.

  2. Serial femtosecond crystallography: the first five years

    Directory of Open Access Journals (Sweden)

    Ilme Schlichting

    2015-03-01

    Full Text Available Protein crystallography using synchrotron radiation sources has had a tremendous impact on biology, having yielded the structures of thousands of proteins and given detailed insight into their mechanisms. However, the technique is limited by the requirement for macroscopic crystals, which can be difficult to obtain, as well as by the often severe radiation damage caused in diffraction experiments, in particular when using tiny crystals. To slow radiation damage, data collection is typically performed at cryogenic temperatures. With the advent of free-electron lasers (FELs capable of delivering extremely intense femtosecond X-ray pulses, this situation appears to be remedied, allowing the structure determination of undamaged macromolecules using either macroscopic or microscopic crystals. The latter are exposed to the FEL beam in random orientations and their diffraction data are collected at cryogenic or room temperature in a serial fashion, since each crystal is destroyed upon a single exposure. The new approaches required for crystal growth and delivery, and for diffraction data analysis, including de novo phasing, are reviewed. The opportunities and challenges of SFX are described, including applications such as time-resolved measurements and the analysis of radiation damage-prone systems.

  3. Growth dynamics variation of different larch provenances under the mountain conditions in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Kulej, M. [Univ. of Agriculture, Cracow (Poland). Section of Seed Production and Selection

    1995-12-31

    The results of 25-year investigations based on measurements and statistical analysis concerning the growth dynamics variation of larch provenances from the entire area of Poland are reported in this paper. This is the first larch provenance experiment in Poland under mountain conditions. The results obtained showed a significant variability among the provenances tested as regards the basic growth characters (height, d.b.h., growth index) at the age of 5, 8, 11, 15, 20 and 25 years. The larch from Klodzko and Proszkow turned out to be the best in respect of growth during the entire 25-years period. Decidedly bad were provenances from Marcule, Grojec, Rawa mazowiecka and Kroscienko. We cannot forecast the future growth of larch when trees are 5-years old since such prognosis may carry an error. However, on the basis of the results obtained it may be concluded that when trees are about 8 years old the stabilization of the position of individual provenances as regards growth takes place. The height growth curves for the individual provenances during the 25-years period (with exception of the provenance from Marcule) fall within the interval {+-} 0,5S from the compensated curve for the entire population studied. All larch provenances in the experiment had reached the height growth culmination. A greatest differentiation in respect of this character occurred in case of the provenances from Sudetes. 27 refs, 4 figs, 8 tabs

  4. DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests

    Science.gov (United States)

    Shiying Tian; Mohamed A. Youssef; R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model,...

  5. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    Science.gov (United States)

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  6. All-fiber femtosecond Cherenkov radiation source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe

    2012-01-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion med......An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave......-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  7. Femtosecond X-ray scattering in condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Korff Schmising, Clemens von

    2008-11-24

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  8. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  9. The growth dynamics of tumor subject to both immune surveillance and external therapy intervention

    Institute of Scientific and Technical Information of China (English)

    SHAO YuanZhi; ZHONG WeiRong; WANG FengHua; HE ZhenHui; XIA ZhongJun

    2007-01-01

    Considering the growth of tumor cells modeled by an enzyme dynamic process under an immune surveillance,we studied in anti-tumor immunotherapy the single-variable growth dynamics of tumor cells subject to a multiplicative noise and an external therapy intervention simultaneously.The law of tumor growth of the above anti-tumor immunotherapy model was revealed through numerical simulaions to the relevant stochastic dynamic differential equation.Two simulative parameters of therapy,i.e.,therapy intensity and therapy duty-cycle,were introduced to characterize a treatment process similar to a tumor clinic therapy.There exists a critical therapy boundary which,in an exponent-decaying form,divides the parameter region of therapy into an invalid and a valid treatment zone,respectively.A greater critical therapy duty-cycle is necessary to achieve a valid treatment for a lower therapy intensity while the critical therapy intensity decreases accordingly with an enhancing immunity. primary clinic observation of the patients with the typical non-hodgekin's lymphoma was carried out,and there appears a basic agreement between clinic observations and dynamic simulations.

  10. 2 micron femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  11. Femtosecond optical studies of cuprates

    Science.gov (United States)

    Schneider, Michael L.; Rast, S.; Onellion, Marshall; Demsar, Jure; Taylor, Antoinette J.; Glinka, Yu D.; Tolk, Norman H.; Ren, Yuhang; Luepke, Gunter; Klimov, A.; Xu, Ying; Sobolewski, Roman; Si, Weidong; Zeng, X. H.; Soukiassian, A.; Xi, Xiaoxing; Abrecht, M.; Ariosa, Daniel; Pavuna, Davor; Manzke, Recardo; Printz, J. O.; Parkhurst, D. K.; Downum, K. E.; Guptasarma, P.; Bozovic, Ivan

    2002-11-01

    Femtosecond optical reflectivity measurements of La2-xSrxCuO4, La2CuO4+y, Bi2Sr2CuO6+z and Bi2Sr2CaCu2O8+δ thin films and single crystal samples indicate qualitative changes with fluence. At the lowest fluencies, there is a power law divergence in the relaxation time. The divergence has an onset temperature of 55+/-15K, independent of whether the sample is in the superconducting or normal states. At slightly higher fluencies, still perturbative, the additional response does not exhibit this power law divergence. At quite high fluencies- no longer perturbative- the metallic samples exhibit oscillations in the reflectivity amplitude. The period of these oscillations varies with the probe wavelength but not with the pump wavelength. The oscillations exhibit a decay time as long as 10 nsec.

  12. Structure and dynamics of an upland old- growth forest at Redwood National Park, California

    Science.gov (United States)

    van Mantgem, Philip J.; Stuart, John D.

    2011-01-01

    Many current redwood forest management targets are based on old-growth conditions, so it is critical that we understand the variability and range of conditions that constitute these forests. Here we present information on the structure and dynamics from six one-hectare forest monitoring plots in an upland old-growth forest at Redwood National Park, California. We surveyed all stems =20 cm DBH in 1995 and 2010, allowing us to estimate any systematic changes in these stands. Stem size distributions for all species and for redwood (Sequoia sempervirens (D. Don) Endl.) alone did not appreciably change over the 15 year observation interval. Recruitment and mortality rates were roughly balanced, as were basal area dynamics (gains from recruitment and growth versus losses from mortality). Similar patterns were found for Sequoia alone. The spatial structure of stems at the plots suggested a random distribution of trees, though the pattern for Sequoia alone was found to be significantly clumped at small scales (DBH). The non-uniform spatial arrangement of stems also suggests that restoration prescriptions for second-growth redwood forests that encourage uniform spatial arrangements do not appear to mimic current upland old-growth conditions.

  13. Dynamics of growth zone patterning in the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Auman, Tzach; Vreede, Barbara M I; Weiss, Aryeh; Hester, Susan D; Williams, Terri A; Nagy, Lisa M; Chipman, Ariel D

    2017-05-15

    We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited. © 2017. Published by The Company of Biologists Ltd.

  14. Growth dynamics of juvenile loggerhead sea turtles undergoing an ontogenetic habitat shift.

    Science.gov (United States)

    Ramirez, Matthew D; Avens, Larisa; Seminoff, Jeffrey A; Goshe, Lisa R; Heppell, Selina S

    2017-04-01

    Ontogenetic niche theory predicts that individuals may undergo one or more changes in habitat or diet throughout their lifetime to maintain optimal growth rates, or to optimize trade-offs between mortality risk and growth. We combine skeletochronological and stable nitrogen isotope (δ(15)N) analyses of sea turtle humeri (n = 61) to characterize the growth dynamics of juvenile loggerhead sea turtles (Caretta caretta) during an oceanic-to-neritic ontogenetic shift. The primary objective of this study was to determine how ontogenetic niche theory extends to sea turtles, and to individuals with different patterns of resource use (discrete shifters, n = 23; facultative shifters n = 14; non-shifters, n = 24). Mean growth rates peaked at the start of the ontogenetic shift (based on change in δ(15)N values), but returned to pre-shift levels within 2 years. Turtles generally only experienced 1 year of relatively high growth, but the timing of peak growth relative to the start of an ontogenetic shift varied among individuals (before, n = 14; during, n = 12; after, n = 8). Furthermore, no reduction in growth preceded the transition, as is predicted by ontogenetic niche theory. Annual growth rates were similar between non-transitioning turtles resident in oceanic and neritic habitats and turtles displaying alternative patterns of resource use. These results suggest that factors other than maximization of size-specific growth may more strongly influence the timing of ontogenetic shifts in loggerhead sea turtles, and that alternative patterns of resource use may have limited influence on somatic growth and age at maturation in this species.

  15. Growth dynamics of black spruce (Picea mariana) in a rapidly thawing discontinuous permafrost peatland

    Science.gov (United States)

    Sniderhan, Anastasia E.; Baltzer, Jennifer L.

    2016-12-01

    High-latitude warming has led to radical changes in abiotic conditions influencing forest growth. In the North American boreal forest, widespread declines in forest productivity (particularly in western regions) and changing climate-growth relationships have been documented. Previous studies have proposed that this decline can be attributed to drought stress as increasing temperatures may cause evapotranspirative demand to exceed available moisture. We used tree ring studies to document growth dynamics of black spruce, one of the most dominant boreal tree species, in a boreal peatland experiencing rapid permafrost thaw. We specifically look at how changing permafrost conditions influence growth. Growth of black spruce at this site has declined steadily since the mid-1900s and exhibited a shift from positive responses to temperature pre-1970 to predominantly negative responses in recent decades, despite precipitation increasing over time at this site. Our results show that there is no apparent effect of landscape position or rate of lateral permafrost thaw on growth trends of black spruce, despite gradients in soil moisture and active layer thickness across the mosaic of wetlands and drier permafrost plateaus at this site. However, this does not imply no effect of permafrost thaw on growth; our results support growing evidence that vertical permafrost thaw (i.e., active layer thickening) is causing drought stress in these slow-growing, shallow-rooted trees. To our knowledge, this study is the first to investigate permafrost as a driver of within-site variability in growth-climate responses, and we provide insight into the widespread growth declines and divergence of climate-growth relationships in high-latitude forests.

  16. Dynamic kinetic analysis of growth of Listeria monocytogenes in a simulated comminuted, non-cured cooked pork product

    Science.gov (United States)

    The objective of this study was to directly construct a tertiary growth model for Listeria monocytogenes in cooked pork and simultaneously determine the kinetic parameters using a combination of dynamic and isothermal growth curves. Growth studies were conducted using a cocktail of 5 strains of L. ...

  17. Dynamic Model of Urban Sports Infrastructure Supply and Demand Based on GDP Growth

    Directory of Open Access Journals (Sweden)

    Wenjing Zhang

    2014-01-01

    Full Text Available For different city, the change rate of the supply and demand of the sports infrastructure is not the same and is subject to regional GDP growth constraints. Taking GDP growth as control variables, a dynamic model of multi-city sports infrastructure supply and demand system was established. According to Lyapunov stability theory, the system asymptotically stable condition was obtained. Using the linear matrix inequality method, the paper gets a control method that cities with different development level can be unified use for making their sports infrastructure system asymptotically stable and supply-demand equilibrium. The method can reduce the cities’ sports infrastructure construction control complexity.

  18. Progress on grain growth dynamics in sintering of nano-powders

    Institute of Scientific and Technical Information of China (English)

    LIU Chunjing; WANG Xin; JIANG Yanfei; WANG Yongming; HAO Shunli

    2006-01-01

    Nanostructured materials, characterized by an ultrafine grain size, have stimulated much research interest by virtue of their unusual mechanical, electrical, optical, and magnetic properties. In this paper, the sintering process of nano-powders were reviewed, to which sintering of the traditional materials compared. The microstructural development, i.e., grain growth and densification during sintering as well as the mechanism of crystal surface diffusion and boundary migration were analyzed, and the dynamic models on sintering process were summarized by the relationship of grain growth and pores size, interface diffusion, densification rate, and sintering temperature. Finally, the research tendency of this major on the basis of above models was discussed.

  19. Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Zhijun; Wang, Qing

    Tumor cell growth models involve high-dimensional parameter spaces that require computationally tractable methods to solve. To address a proposed tumor growth dynamics mathematical model, an instance of the particle swarm optimization method was implemented to speed up the search process in the multi-dimensional parameter space to find optimal parameter values that fit experimental data from mice cancel cells. The fitness function, which measures the difference between calculated results and experimental data, was minimized in the numerical simulation process. The results and search efficiency of the particle swarm optimization method were compared to those from other evolutional methods such as genetic algorithms.

  20. A MODEL OF ECONOMIC GROWTH WITH PUBLIC FINANCE: DYNAMICS AND ANALYTIC SOLUTION

    Directory of Open Access Journals (Sweden)

    Oliviero Antonio Carboni

    2013-01-01

    Full Text Available This paper studies the equilibrium dynamics of a growth model with public finance where two different allocations of public resources are considered. The model simultaneously determines the optimal shares of consumption, capital accumulation, taxes and composition of the two different public expenditures which maximize a representative household's lifetime utilities in a centralized economy. The analysis supplies a closed form solution. Moreover, with one restriction on the parameters ( we fully determine the solutions path for all variables of the model and determine the conditions for balanced growth.

  1. Parametric sensitivity and temporal dynamics of sapphire crystal growth via the micro-pulling-down method

    Science.gov (United States)

    Samanta, Gaurab; Yeckel, Andrew; Bourret-Courchesne, Edith D.; Derby, Jeffrey J.

    2012-11-01

    The micro-pulling-down (μ-PD) crystal growth of sapphire fibers, whose steady-state limits were the focus of our prior study [Samanta et al., Journal of Crystal Growth 335 (2011) 148-159], is further examined using a parametric sensitivity computation derived by linearizing the nonlinear model around a quasi-steady-state (QSS). In addition, transient analyses are performed to assess inherent stability and dynamic responses in this μ-PD system. Information from these two approaches enlarges our understanding of this particular process, and the approaches themselves are put forth as valuable complements to classical QSS analysis.

  2. Integrin-linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics.

    Science.gov (United States)

    Michalski, John-Paul; Cummings, Sarah E; O'Meara, Ryan W; Kothary, Rashmi

    2016-02-01

    motility rendered less dynamic. Together, our work helps reconcile the phenotypic discrepancy between ILK loss in vitro and in vivo, informs on the oligodendrocyte's growth cone, and ascribes a role for ILK in growth cone dynamics.

  3. EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics.

    Science.gov (United States)

    Heller, Davide; Hoppe, Andreas; Restrepo, Simon; Gatti, Lorenzo; Tournier, Alexander L; Tapon, Nicolas; Basler, Konrad; Mao, Yanlan

    2016-01-11

    Epithelia grow and undergo extensive rearrangements to achieve their final size and shape. Imaging the dynamics of tissue growth and morphogenesis is now possible with advances in time-lapse microscopy, but a true understanding of their complexities is limited by automated image analysis tools to extract quantitative data. To overcome such limitations, we have designed a new open-source image analysis toolkit called EpiTools. It provides user-friendly graphical user interfaces for accurately segmenting and tracking the contours of cell membrane signals obtained from 4D confocal imaging. It is designed for a broad audience, especially biologists with no computer-science background. Quantitative data extraction is integrated into a larger bioimaging platform, Icy, to increase the visibility and usability of our tools. We demonstrate the usefulness of EpiTools by analyzing Drosophila wing imaginal disc growth, revealing previously overlooked properties of this dynamic tissue, such as the patterns of cellular rearrangements.

  4. Dynamics of gas bubble growth in a supersaturated solution with Sievert's solubility law.

    Science.gov (United States)

    Gor, G Yu; Kuchma, A E

    2009-07-21

    This paper presents a theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution. We study systems where gas molecules completely dissociate in the solvent into two parts, thus making Sievert's solubility law valid. We show that the difference between Henry's and Sievert's laws for chemical equilibrium conditions causes the difference in bubble growth dynamics. Assuming that diffusion flux is steady we obtain a differential equation on bubble radius. Bubble dynamics equation is solved analytically for the case of homogeneous nucleation of a bubble, which takes place at a significant pressure drop. We also obtain conditions of diffusion flux steadiness. The fulfillment of these conditions is studied for the case of nucleation of water vapor bubbles in magmatic melts.

  5. SUSTAINABLE GROWTH OF THE COMMERCIAL AVIATION INDUSTRY IN MALAYSIA USING A SYSTEM DYNAMICS APPROACH

    Directory of Open Access Journals (Sweden)

    B. S. TAN

    2015-09-01

    Full Text Available The environmental impact of the commercial aviation industry for an emerging economy like Malaysia is under-studied. The focus on the subject has thus far concentrated either on non geographical performance of the aviation industry or technical performance of aircrafts and that leaves the sustainability of the commercial aviation industry for an economy, or more specifically, an emerging economy least understood. Hence, this paper aims to investigate the sustainability of the growth of the commercial aviation industry in Malaysia and its impact upon the environment using a system dynamics approach. VENSIM is employed to model the commercial aviation industry in Malaysia as a dynamic system to evaluate the CO2 emitted from each component within the industry in order to forecast its overall CO2 emission. Results from the analysis show that sustainable growth can be affected by adopting short and long term strategies identified in this study.

  6. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Min, Tjun Kit; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  7. A variational approach to the growth dynamics of pre-stressed actin filament networks

    Science.gov (United States)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  8. Birth, growth and death as structuring tools in bacterial population dynamics

    OpenAIRE

    Lavric, Vasile; Graham, David W.

    2010-01-01

    Abstract A new model is presented that describes microbial population dynamics that emerge from complex interactions among birth, growth and death as oriented, discrete events. Specifically, birth and death act as structuring operators for individual organisms within the population, which become synchronised as age clusters (called cell-generations that are structured in age-classes) that are born at the same time and die in concert; a pattern very consistent with recent experiment...

  9. Export dynamics as an optimal growth problem in the network of global economy.

    Science.gov (United States)

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L

    2016-08-17

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years.

  10. Export dynamics as an optimal growth problem in the network of global economy

    Science.gov (United States)

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L.

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years. PMID:27530505

  11. Export dynamics as an optimal growth problem in the network of global economy

    Science.gov (United States)

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L.

    2016-08-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years.

  12. Neonatal Diagnostics: Towards Dynamic Growth Charts of Neuro-motor control

    Directory of Open Access Journals (Sweden)

    Elizabeth B Torres

    2016-11-01

    Full Text Available Current rise of neurodevelopmental disorders, poses a critical need to detect risk early in order to rapidly intervene. One of the tools Pediatricians use to track development is the standard Growth Chart. The Growth Charts are somewhat limited in predicting possible neurodevelopmental issues. They rely on linear models and assumptions of normality for physical growth data —obscuring key statistical information about possible neurodevelopmental risk in growth data that actually has accelerated, non-linear rates-of-change and variability encompassing skewed distributions. Here we use new analytics to profile growth data from 36 newborn babies that were tracked longitudinally for 5 months. By switching to incremental (velocity-based growth charts and combining these dynamic changes with underlying fluctuations in motor performance—as they transition from spontaneous random noise to a systematic signal— we demonstrate a method to detect very early stunting in the development of voluntary neuro-motor control and to flag risk of neurodevelopmental derail.

  13. SURFACE GROWTH OF GEOTRICHUM CANDIDUM: EFFECT OF THE ENVIRONMENTAL FACTORS ON ITS DYNAMICS

    Directory of Open Access Journals (Sweden)

    Denisa Liptáková

    2011-02-01

    Full Text Available  The growth dynamics of Geotrichum candidum was studied on the surface of the skim milk agar with respect to the temperature, pH and water activity/NaCl content. At pH ranging from 5.0 to 7.0, the fungus growth rates were similar, whereas the temperature and water activity represented by salt addition in concentration of 3 % influenced the growth significantly. The effect of incubation temperature on the surface growth rate was modelled with G-Twmodel. Designed model proved to be good predictor of fungus growth at used environmental conditions. As the filamentous fungus under study is commonly present on the surface of various cheeses, the quantitative data found in this work can provide useful information closely related to real fungus growth, e.g. calculation of time required for G. candidum to reach visible 3 mm colony. The predictions showed that, for example at 0 % NaCl content, such colonies were grown for 52.2, 30.7, 18.4, 14.4, 13.9 hat temperatures of 10, 14, 19, 23, 27 °C, respectively.doi:10.5219/109 

  14. Droplet formation and growth inside a polymer network: A molecular dynamics simulation study

    Science.gov (United States)

    Jung, Jiyun; Jang, Eunseon; Shoaib, Mahbubul Alam; Jo, Kyubong; Kim, Jun Soo

    2016-04-01

    We present a molecular dynamics simulation study that focuses on the formation and growth of nanoscale droplets inside polymer networks. Droplet formation and growth are investigated by the liquid-vapor phase separation of a dilute Lennard-Jones (LJ) fluid inside regularly crosslinked, polymer networks with varying mesh sizes. In a polymer network with small mesh sizes, droplet formation can be suppressed, the extent of which is dependent on the attraction strength between the LJ particles. When droplets form in a polymer network with intermediate mesh sizes, subsequent growth is significantly slower when compared with that in bulk without a polymer network. Interestingly, droplet growth beyond the initial nucleation stage occurs by different mechanisms depending on the mesh size: droplets grow mainly by diffusion and coalescence inside polymer networks with large mesh sizes (as observed in bulk), whereas Ostwald ripening becomes a more dominant mechanism for droplet growth for small mesh sizes. The analysis of droplet trajectories clearly reveals the obstruction effect of the polymer network on the movement of growing droplets, which leads to Ostwald ripening of droplets. This study suggests how polymer networks can be used to control the growth of nanoscale droplets.

  15. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    Directory of Open Access Journals (Sweden)

    J. Szlachetko

    2014-03-01

    Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

  16. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deb, Marwan, E-mail: marwan.deb@ipcms.unistra.fr; Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS, Université de Strasbourg, BP 43, 23 rue du Loess, 67034 Strasbourg Cedex 02 (France)

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  17. Dynamics of algae growth and nutrients in experimental enclosures culturing bighead carp and common carp:Phosphorus dynamics

    Institute of Scientific and Technical Information of China (English)

    Suiliang Huang; Baoyan Liu; Shaoming Wang; Yang Luo; Adam Szymkiewicz; Romuald Szymkiewicz; Min Wu; Changjuan Zang; Shenglan Du; Joseph Domagalski; Magdalena Gajewska; Feng Gao; Chao Lin; Yong Guo

    2016-01-01

    This is the third paper of the series about “Dynamics of algae growth and nutrients in experimental enclosures culturing bighead carp and common carp”. In this paper, phosphorus dynamics were inves-tigated under the condition of culturing bighead carp and common carp with added fish food (nitrogen dynamics is discussed in the second paper because their behaviors are so different from each other). Nearly fifty days’ observation results indicated that the reservoir water was typical of “phosphorus limited” water, and soluble reactive phosphorus (SRP) was the main constituent of measured total phosphorus (TP). The presence of fish food resulted in significantly higher SRP, dissolved total phos-phorus (DTP) and TP concentrations in contrast with the reservoir water. Moreover, continuous supply of fish food led to the decline of total nitrogen to total phosphorus (TN:TP) from more than 100 to less than 5. Variations in the ratio of TN to TP favored the growth of blue-green algae. Fish species affected phosphorus concentrations, and culturing bait-eating common carp contributed more to reducing the SRP, DTP and TP concentrations than culturing planktivorous bighead carp. 0.5%, 4.1%and 3.1%TP can be removed in enclosures with culturing bighead carp, common carp and mixed bighead carp and common carp, respectively. Abundant phosphorus in the fish culturing activities may be present as the uneaten food, algae cells, and within the water column and sediment, which should be taken into serious con-sideration for the target of future water eutrophication prevention and safety of the drinking water supply.

  18. Spatial Dynamics of Urban Growth Based on Entropy and Fractal Dimension

    CERN Document Server

    Chen, Yanguang

    2016-01-01

    The fractal dimension growth of urban form can be described with sigmoid functions such as logistic function due to squashing effect. The sigmoid curves of fractal dimension suggest a type of spatial replacement dynamics of urban evolution. How to understand the underlying rationale of the fractal dimension curves is a pending problem. This study is based on two previous findings. First, normalized fractal dimension proved to equal normalized spatial entropy; second, a sigmoid function proceeds from an urban-rural interaction model. Defining urban space-filling measurement by spatial entropy, and defining rural space-filling measurement by information gain, we can construct a new urban-rural interaction and coupling model. From this model, we can derive the logistic equation of fractal dimension growth strictly. This indicates that urban growth results from the unity of opposites between spatial entropy increase and information increase. In a city, an increase in spatial entropy is accompanied by a decrease i...

  19. Sources of energy productivity growth and its distribution dynamics in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunhua [School of International Trade and Economics, University of International Business and Economics, Beijing 100029 (China); Department of Geography and Earth Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States)

    2011-01-15

    The purposes of this paper are to determine the sources of energy productivity growth at the provincial level in China and to examine the relative contributions of the sources and their impacts on regional inequality. Energy productivity change is first decomposed into five components attributable to changes in capital-energy ratio, labor-energy ratio, output structure, and technical efficiency change and technological change. Then a nonparametric analysis is implemented to statistically test the relative contributions of the components and their roles in the distribution dynamics of energy productivity. It is found that (1) changes in capital-energy ratio, output structure, and technological change contribute to energy productivity growth in China, (2) increase in capital-energy ratio caused by capital accumulation is the primary driving force for energy productivity growth, and (3) capital accumulation contributes to energy productivity convergence between Chinese provinces over the time period of 1990-2005. (author)

  20. A general solution for classical sequential growth dynamics of Causal Sets

    CERN Document Server

    Varadarajan, M; Rideout, David; Varadarajan, Madhavan

    2006-01-01

    A classical precursor to a full quantum dynamics for causal sets has been forumlated in terms of a stochastic sequential growth process in which the elements of the causal set arise in a sort of accretion process. The transition probabilities of the Markov growth process satisfy certain physical requirements of causality and general covariance, and the generic solution with all transition probabilities non-zero has been found. Here we remove the assumption of non-zero probabilities, define a reasonable extension of the physical requirements to cover the case of vanishing probabilities, and find the completely general solution to these physical conditions. The resulting family of growth processes has an interesting structure reminiscent of an ``infinite tower of turtles'' cosmology.

  1. Fame and obsolescence: Disentangling growth and aging dynamics of patent citations

    Science.gov (United States)

    Higham, K. W.; Governale, M.; Jaffe, A. B.; Zülicke, U.

    2017-04-01

    We present an analysis of citations accrued over time by patents granted by the United States Patent and Trademark Office in 1998. In contrast to previous studies, a disaggregation by technology category is performed, and exogenously caused citation-number growth is controlled for. Our approach reveals an intrinsic citation rate that clearly separates into an—in the long run, exponentially time-dependent—aging function and a completely time-independent preferential-attachment-type growth kernel. For the general case of such a separable citation rate, we obtain the time-dependent citation distribution analytically in a form that is valid for any functional form of its aging and growth parts. Good agreement between theory and long-time characteristics of patent-citation data establishes our work as a useful framework for addressing still open questions about knowledge-propagation dynamics, such as the observed excess of citations at short times.

  2. A Molecular Dynamics Approach for Nucleation-Growth of Cryogenic Cavitation

    KAUST Repository

    Tsuda, Shin-ichi

    2011-01-01

    The growth of cavitation bubble nuclei in a metastable state in liquid argon, as one of cryogenic fluids, was investigated using a Molecular Dynamics (MD) simulation with a Nosé-Hoover chain thermostat. We observed rapid growth of bubble nuclei with weak inter-bubble interaction in the early stage, while observed a competing coarsening that looks like Ostwald ripening in the late stage and its growth exponent n became 0.51. We compared the present MD result with that in an adiabatic simulation (Energy-constant MD without any thermostats), and the influence of the field temperature was discussed. Also, we compared the present MD results with a coarsening theory for droplets, and discussed the characteristics of the coarsening mechanism of bubble nuclei. Copyright © 2011 by ASME.

  3. Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapatite crystals by osteopontin.

    Directory of Open Access Journals (Sweden)

    John R de Bruyn

    Full Text Available We study the effect of isoforms of osteopontin (OPN on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN, which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation.

  4. A Computational Growth Model for Measuring Dynamic Cortical Development in the First Year of Life

    Science.gov (United States)

    Nie, Jingxin; Li, Gang; Wang, Li; Gilmore, John H.; Lin, Weili

    2012-01-01

    Human cerebral cortex develops extremely fast in the first year of life. Quantitative measurement of cortical development during this early stage plays an important role in revealing the relationship between cortical structural and high-level functional development. This paper presents a computational growth model to simulate the dynamic development of the cerebral cortex from birth to 1 year old by modeling the cerebral cortex as a deformable elastoplasticity surface driven via a growth model. To achieve a high accuracy, a guidance model is also incorporated to estimate the growth parameters and cortical shapes at later developmental stages. The proposed growth model has been applied to 10 healthy subjects with longitudinal brain MR images acquired at every 3 months from birth to 1 year old. The experimental results show that our proposed method can capture the dynamic developmental process of the cortex, with the average surface distance error smaller than 0.6 mm compared with the ground truth surfaces, and the results also show that 1) the curvedness and sharpness decrease from 2 weeks to 12 months and 2) the frontal lobe shows rapidly increasing cortical folding during this period, with relatively slower increase of the cortical folding in the occipital and parietal lobes. PMID:22047969

  5. The Effect of Foreign Direct Investment in Economic Growth from the Perspective of Nonlinear Dynamics

    Directory of Open Access Journals (Sweden)

    Ch. K. Volos

    2015-09-01

    Full Text Available In today’s globalized economy one of the most crucial factors for the economic growth of a country, especially of a developing country, is the foreign direct investment, not only because of the transfer of capital but also of technology. In this work, the effect of foreign direct investments in a county’s economic growth by using tools of nonlinear dynamics is studied. As a model of the economic growth of a country, a well-known nonlinear discrete-time dynamical system, the Logistic map, is used. The system under study consists of two countries with a strong economic relationship. The source country of foreign direct investments is an industrialized, economically powerful and technologically advanced country that makes significant investments in the host country, which is a developing country and strong dependent from the source country. Simulation results of system’s behavior and especially the bifurcation diagrams reveal the strong connection between the countries of the proposed system and the effect of foreign direct investments in the economic growth of the host country.

  6. Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources.

    Science.gov (United States)

    Resat, Haluk; Bailey, Vanessa; McCue, Lee Ann; Konopka, Allan

    2012-05-01

    We have developed a new kinetic model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment and by different strategies for hydrolysis of polymeric carbon. The hybrid model represented the dynamics of substrates and enzymes using a continuum representation and the dynamics of the cells were modeled individually. Individual-based biological model allowed us to explicitly simulate microbial diversity, and to model cell physiology as regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions in heterogeneous media such as soil and by the functional attributes of individual microbes. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20-μm size portions of the soil physical structure and in 111-μm size soil aggregates with a random pore structure. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences suggested different functional niches for these two microbe types in cellulose utilization. Our model predicted an emergent behavior in which co-existence of membrane-associated hydrolase and extracellular hydrolases releasing organisms led to higher cellulose utilization efficiency and reduced stochasticity. Our analysis indicated that their co-existence mutually benefits these organisms, where basal cellulose degradation activity by membrane-associated hydrolase-expressing cells shortened the soluble hydrolase buildup time and, when enzyme buildup allowed for cellulose degradation to be fast enough to sustain exponential growth, all the

  7. Dynamical growth of the hadron bubbles during the quark-hadron phase transition

    CERN Document Server

    Shukla, P K; Sen-Gupta, S K

    2001-01-01

    The rate of dynamical growth of the hadron bubbles in a supercooled baryon free quark-gluon plasma, is evaluated by solving the equations of relativistic fluid dynamics in all space. For a non-viscous plasma, this dynamical growth rate is found to depend only on the range of correlation $\\xi$ of order parameter fluctuation, and the radius $R$ of the critical hadron bubble, the two length scales relevant for the description of the critical phenomena. Unlike Csernai-Kapusta result, this rate does not vanish in the limit of zero viscosity. Further, it is shown that the dynamical prefactor acquires an additive component when the medium becomes viscous. Interestingly, under certain reasonable assumption for the velocity of the sound in the medium, the viscous and the non-viscous parts of the prefactor are found to be identical to the results obtained by Csernai-Kapusta and Ruggeri-Friedman (for the case of zero viscosity) respectively. It is also demonstrated that the first order phase transition from QGP to hadro...

  8. DYNAMICS AND EFFICIENCY OF EVENTS TOURISM, FACTORS IN GLOBAL ECONOMIC GROWTH

    Directory of Open Access Journals (Sweden)

    Raluca Georgiana Stoian

    2016-09-01

    Full Text Available Meetings, Incentives, Conventions, and Exhibitions (MICE is an elite segment of tourism linked to business tourism. It has become dynamic worldwide in recent years. The efficiency of tourism events emerges with the connection between the corporate world and world travel organizations. This connection is a dynamic link that is profitable for all parties involved. Currently, about 40% of the activity and profit is due to worldwide business travel and the event industry. This paper aims to highlight the efficient role of tourism events through the dynamic “Convention Bureau”, at both the international and Romanian level, in terms of global economic growth. We found from the study of this activity sector that one of the important directions of innovation and raising the competitiveness of the tourist offer of any country is given the additional service diversification by stimulating tourism dynamics of events. The advantages and benefits that may be mentioned in business events tourism are revenues from services such as accommodation, facilities conference, catering, leisure, transport and entertainment. These revenues are stimulating the growth of the world economy.

  9. Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input

    Energy Technology Data Exchange (ETDEWEB)

    Jiao Jianjun [School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074 (China) and Guizhou Key Laboratory of Economics System Simulation, Guizhou College of Finance and Economics, Guiyang 550004 (China)], E-mail: jiaojianjun05@126.com; Yang Xiaosong [School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen Lansun [Institute of Mathematics, Academia Sinica, Beijing 100080 (China)], E-mail: lschen@amss.ac.cn; Cai Shaohong [Guizhou Key Laboratory of Economics System Simulation, Guizhou College of Finance and Economics, Guiyang 550004 (China)

    2009-11-30

    In this paper, a chemostat model with delayed response in growth and impulsive perturbations on the substrate is considered. Using the discrete dynamical system determined by the stroboscopic map, we obtain a microorganism-extinction periodic solution, further, the globally attractive condition of the microorganism-extinction periodic solution is obtained. By the use of the theory on delay functional and impulsive differential equation, we also obtain the permanent condition of the investigated system. Our results indicate that the discrete time delay has influence to the dynamics behaviors of the investigated system, and provide tactical basis for the experimenters to control the outcome of the chemostat. Furthermore, numerical analysis is inserted to illuminate the dynamics of the system affected by the discrete time delay.

  10. Dissipative Particle Dynamics Simulations of Domain Growth and Phase Separation in Binary Immiscible Fluids

    Institute of Scientific and Technical Information of China (English)

    Ying Zhao; Hong Liu; Zhong-yuan Lu; Chia-chung Sun

    2008-01-01

    It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=1/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=l/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.

  11. Fiscal Deficit, National Saving and Sustainability of Economic Growth in Emerging Economies: A Dynamic GMM Panel Data Approach

    Directory of Open Access Journals (Sweden)

    Buscemi Antonino

    2012-01-01

    Full Text Available The neoclassical growth models argued that the movement to steady states; technology, exogenous rate of savings, population growth and technical progress stimulate higher growth levels (Solow 1956. Contrary to the neoclassical argument, endogenous growth model argues that, in the theory of endogenous growth, government play a significant role in promoting accumulation of knowledge, research and development, public investment, human capital development, law and order can generate growth both in the short and long run. Moreover, they assumed technical progress as endogenous variable for growth (Barro 1995. This study analyze the effects of fiscal deficit on sustainability of economic growth and provided new empirical evidence on the effects of fiscal deficit on saving and sustainability of economic growth based on the assumption of endogenous growth model. We estimated using the reduced form of GMM method for dynamic panels covers 1990-2009 for three emerging countries that includes China, India and South Africa.

  12. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices.

  13. Seasonal dynamics of mobile carbohydrates and stem growth in Scots pine (Pinus sylvestris) exposed to drought

    Science.gov (United States)

    Oberhuber, Walter; Kofler, Werner; Schuster, Roman; Swidrak, Irene; Gruber, Andreas

    2014-05-01

    Tree growth requires a continuous supply of carbon as structural material and as a source for metabolic energy. To detect whether intra-annual stem growth is related to changes in carbon allocation, we monitored seasonal dynamics of shoot and radial growth and concentrations of mobile carbohydrates (NSC) in above- and belowground organs of Scots pine (Pinus sylvestris L.). The study area is situated within an inner Alpine dry environment (750 m asl, Tyrol, Austria), which is characterized by recurring drought periods at the start of the growing season in spring and limited water holding capacity of nutrient deficient, shallow stony soils. Shoot elongation was monitored on lateral branches in the canopy and stem radius changes were continuously followed by electronic band dendrometers. Daily radial stem growth and tree water deficit (ΔW) were extracted from dendrometer records. ΔW is regarded a reliable measure of drought stress in trees and develops when transpirational water loss from leaves exceeds water uptake by the root system. Daily radial stem growth and ΔW were related to environmental variables and determination of NSC was performed using specific enzymatic assays. Results revealed quite early culmination of aboveground growth rates in late April (shoot growth) and late May (radial growth), and increasing accumulation of NSC in coarse roots in June. NSC content in roots peaked at the end of July and thereafter decreased again, indicating a shift in carbon allocation after an early cessation of aboveground stem growth. ΔW was found to peak in late summer, when high temperatures prevailed. That maximum growth rates of aboveground organs peaked quite before precipitation increased during summer is related to the finding that ΔW and radial stem growth were more strongly controlled by the atmospheric environment, than by soil water content. We conclude that as a response to the seasonal development of ΔW a shift in carbon allocation from aboveground

  14. Impacts of crop growth dynamics on soil quality at the regional scale

    Science.gov (United States)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop

  15. Dynamics of HBV cccDNA expression and transcription in different cell growth phase

    Directory of Open Access Journals (Sweden)

    Chong Chin-Liew

    2011-12-01

    Full Text Available Abstract Background The covalently closed-circular DNA (cccDNA of hepatitis B virus (HBV is associated with viral persistence in HBV-infected hepatocytes. However, the regulation of cccDNA and its transcription in the host cells at different growth stages is not well understood. Methods We took advantages of a stably HBV-producing cell line, 1.3ES2, and examine the dynamic changes of HBV cccDNA, viral transcripts, and viral replication intermediates in different cellular growth stages. Results In this study, we showed that cccDNA increased suddenly in the initial proliferation phase of cell growth, probably attributable to its nuclear replenishment by intracellular nucleocapsids. The amount of cccDNA then decreased dramatically in the cells during their exponential proliferation similar to the loss of extrachromosomal plasmid DNA during cell division, after which it accumulated gradually while the host cells grew to confluency. We found that cccDNA was reduced in dividing cells and could be removed when proliferating cells were subjected to long term of lamivudine (3TC treatment. The amounts of viral replicative intermediates were rapidly reduced in these proliferating cells and were significantly increased after cells reaching confluency. The expression levels of viral transcripts were increased in parallel with the elevated expression of hepatic transcription factors (HNF4α, CEBPα, PPARα, etc. during cell growth confluency. The HBV transcripts were transcribed from both integrated viral genome and cccDNA, however the transcriptional abilities of cccDNA was less efficient then that from integrated viral genome in all cell growth stages. We also noted increases in the accumulation of intracellular viral particles and the secretion of mature virions as the cells reached confluency and ceased to grow. Conclusions Based on the dynamics of HBV replication, we propose that HBV replication is modulated differently in the different stages of cell

  16. Guiding of Long-Distance Electric Discharges by Combined Femtosecond and Nanosecond Pulses Emitted by Hybrid KrF Laser System

    Science.gov (United States)

    2014-01-30

    laser pulse initiated HV discharge with a time delay of tens nanoseconds – evidently it is developing due to an avalanche -like growth of electron...AFRL-AFOSR-UK-TR-2014-0040 Guiding of long-distance electric discharges by combined femtosecond and nanosecond pulses emitted by...and guiding electric discharge , KrF laser, femtosecond pulse , nanosecond pulse , filamentation, plasma channel, lightning control, laser control of

  17. Coupled dynamics of energy budget and population growth of tilapia in response to pulsed waterborne copper.

    Science.gov (United States)

    Chen, Wei-Yu; Lin, Chia-Jung; Ju, Yun-Ru; Tsai, Jeng-Wei; Liao, Chung-Min

    2012-11-01

    The impact of environmentally pulsed metal exposure on population dynamics of aquatic organisms remains poorly understood and highly unpredictable. The purpose of our study was to link a dynamic energy budget model to a toxicokinetic/toxicodynamic (TK/TD). We used the model to investigate tilapia population dynamics in response to pulsed waterborne copper (Cu) assessed with available empirical data. We mechanistically linked the acute and chronic bioassays of pulsed waterborne Cu at the scale of individuals to tilapia populations to capture the interaction between environment and population growth and reproduction. A three-stage matrix population model of larva-juvenile-adult was used to project offspring production through two generations. The estimated median population growth rate (λ) decreased from 1.0419 to 0.9991 under pulsed Cu activities ranging from 1.6 to 2.0 μg L(-1). Our results revealed that the influence on λ was predominately due to changes in the adult survival and larval survival and growth functions. We found that pulsed timing has potential impacts on physiological responses and population abundance. Our study indicated that increasing time intervals between first and second pulses decreased mortality and growth inhibition of tilapia populations, indicating that during long pulsed intervals tilapia may have enough time to recover. Our study concluded that the bioenergetics-based matrix population methodology could be employed in a life-cycle toxicity assessment framework to explore the effect of stage-specific mode-of-actions in population response to pulsed contaminants.

  18. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  19. Polarization dependent nanostructuring of silicon with femtosecond vortex pulse

    Science.gov (United States)

    Rahimian, M. G.; Bouchard, F.; Al-Khazraji, H.; Karimi, E.; Corkum, P. B.; Bhardwaj, V. R.

    2017-08-01

    We fabricated conical nanostructures on silicon with a tip dimension of ˜ 70 nm using a single twisted femtosecond light pulse carrying orbital angular momentum (ℓ =±1 ). The height of the nano-cone, encircled by a smooth rim, increased from ˜ 350 nm to ˜ 1 μ m with the pulse energy and number of pulses, whereas the apex angle remained constant. The nano-cone height was independent of the helicity of the twisted light; however, it is reduced for linear polarization compared to circular at higher pulse energies. Fluid dynamics simulations show nano-cones formation when compressive forces arising from the radial inward motion of the molten material push it perpendicular to the surface and undergo re-solidification. Simultaneously, the radial outward motion of the molten material re-solidifies after reaching the cold boundary to form a rim. Overlapping of two irradiated spots conforms to the fluid dynamics model.

  20. Polarization dependent nanostructuring of silicon with femtosecond vortex pulse

    Directory of Open Access Journals (Sweden)

    M. G. Rahimian

    2017-08-01

    Full Text Available We fabricated conical nanostructures on silicon with a tip dimension of ∼ 70 nm using a single twisted femtosecond light pulse carrying orbital angular momentum (ℓ=±1. The height of the nano-cone, encircled by a smooth rim, increased from ∼ 350 nm to ∼ 1 μm with the pulse energy and number of pulses, whereas the apex angle remained constant. The nano-cone height was independent of the helicity of the twisted light; however, it is reduced for linear polarization compared to circular at higher pulse energies. Fluid dynamics simulations show nano-cones formation when compressive forces arising from the radial inward motion of the molten material push it perpendicular to the surface and undergo re-solidification. Simultaneously, the radial outward motion of the molten material re-solidifies after reaching the cold boundary to form a rim. Overlapping of two irradiated spots conforms to the fluid dynamics model.

  1. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  2. Dynamic Mapping of Rice Growth Parameters Using HJ-1 CCD Time Series Data

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2016-11-01

    Full Text Available The high temporal resolution (4-day charge-coupled device (CCD cameras onboard small environment and disaster monitoring and forecasting satellites (HJ-1A/B with 30 m spatial resolution and large swath (700 km have substantially increased the availability of regional clear sky optical remote sensing data. For the application of dynamic mapping of rice growth parameters, leaf area index (LAI and aboveground biomass (AGB were considered as plant growth indicators. The HJ-1 CCD-derived vegetation indices (VIs showed robust relationships with rice growth parameters. Cumulative VIs showed strong performance for the estimation of total dry AGB. The cross-validation coefficient of determination ( R C V 2 was increased by using two machine learning methods, i.e., a back propagation neural network (BPNN and a support vector machine (SVM compared with traditional regression equations of LAI retrieval. The LAI inversion accuracy was further improved by dividing the rice growth period into before and after heading stages. This study demonstrated that continuous rice growth monitoring over time and space at field level can be implemented effectively with HJ-1 CCD 10-day composite data using a combination of proper VIs and regression models.

  3. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO3

    Science.gov (United States)

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.; Lee, Ho Nyung; Christen, H. M.; Zschack, P.; Larson, B. C.

    2016-11-01

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO3 . We show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing in PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD "self-organizes" local step flow on a length scale consistent with the substrate temperature and PLD parameters.

  4. Microfilament Dynamics is Required for Root Growth under Alkaline Stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yue Zhou; Zijun Yang; Guangqin Guo; Yan Guo

    2010-01-01

    The microfilament (MF) cytoskeleton has crucial functions in plant development. Recent studies have revealed the function of MFs in diverse stress response. Alkaline stress is harmful to plant growth;however, it remains unclear whether the MFs play a role in alkaline stress. In the present study, we find that blocking MF assembly with latrunculin B (Lat B) leads to inhibition of plant root growth, and stabilization of MFs with phalloidin does not significantly affect plant root growth under normal conditions. In high external pH conditions, MF de-polymerization is induced and that associates with the reduction of root growth; phalloidin treatment partially rescues this reduction. Moreover, Lat B treatment further decreases the survival rate of seedlings growing in high external pH conditions. However, a high external pH (8.0) does not affect MF stability in vitro. Taken together, our results suggest that alkaline stress may trigger a signal that leads the dynamics of MFs and in turn regulates root growth.

  5. Femtosecond Studies of Electrons at Interfaces

    Science.gov (United States)

    Harris, Charles

    2000-03-01

    Binding energies and ultrafast relaxation dynamics of image electrons reflect the nature of the electronic interaction with both the substrate and the adsorbed layer[1,2]. We demonstrate that a positive(attractive) affinity materials, such as Xe overlayers, lead to quantum well states at the interface. Negative(repulsive) affinity materials, such a n-alkane overlayers, present a tunneling barrier that dominates the energies and lifetimes of the image electrons. With the time- and angle-resolved two-photon photoemission technique(TPPE), it is possible to directly observe the dynamics of interfacial electrons with specific energy and parallel momentum. Oscillation in the lifetime of image state electrons as a function of Xe layer thickness is attributed to a quantum size effect and the formation of quantum wells at the Xe/Ag(111) interface[3]. Binding energy measurements as a function of Xe layer thickness in combination with parallel dispersion measurements allow the mapping of the three dimensional electronic structure of bulk Xe. At the n-alkane/Ag(111) interface, image electrons become spatially localized and self-trap into a small polaron state within a few hundred femtosecond[4]. The energy dependence of the self-trapping rate has been modeled with a theory analogous to electron transfer theory. Finally, the immediate extension of this research to study other electron dynamic processes, such as two dimensional electron solvation at interfaces, will be discussed. [1] Fauster, T.; Steinmann, W. Two-Photon Photoemission Spectroscopy of Image States. In Photonic Probes of Surfaces; Halevi, P., Ed.; Elsevier: Amsterdam, 1995; pp. 346-411. [2] Harris, C.B.; Ge, N.-H.; Lingle, Jr., R.L.; McNeill, J.D.; Wong, C.M. Annu. Rev. Phys. Chem. 1997, 48, 711. [3] McNeill, J.D.; Lingle, R.L.,Jr.; Ge, N.-H.; Wong, C.M.; Jordan, R.E.; Harris, C.B. Phys. Rev. Lett. 1997, 79, 4645. [4] Ge, N.-H.; Wong, C.M.; Lingle, R.L., Jr.; McNeill, J.D.; Gaffney, K.J.; Harris, C.B. Science 1998

  6. Water security, risk and economic growth: lessons from a dynamical systems model

    Science.gov (United States)

    Dadson, Simon; Hall, Jim; Garrick, Dustin; Sadoff, Claudia; Grey, David; Whittington, Dale

    2016-04-01

    Investments in the physical infrastructure, human capital, and institutions needed for water resources management have been a noteworthy feature in the development of most civilisations. These investments affect the economy in two distinct ways: (i) by improving the factor productivity of water in multiple sectors of the economy, especially those that are water intensive such as agriculture and energy; and (ii) by reducing the acute and chronic harmful effects of water-related hazards like floods, droughts, and water-related diseases. The need for capital investment to mitigate these risks in order to promote economic growth is widely acknowledged, but prior work to conceptualise the relationship between water-related risks and economic growth has focused on the productive and harmful roles of water in the economy independently. Here the two influences are combined using a simple, dynamical model of water-related investment, risk, and growth at the national level. The model suggests the existence of a context-specific threshold above which growth proceeds along an 'S'-curve. In many cases there is a requirement for initial investment in water-related assets to enable growth. Below the threshold it is possible for a poverty trap to arise. The presence and location of the poverty trap is context-specific and depends on the relative exposure of productive water-related assets to risk, compared with risks faced by assets in the wider economy. Exogenous changes in the level of water-related risk (through, for example, climate and land cover change) can potentially push an economy away from a growth path towards a poverty trap. These results illustrate the value of accounting for environmental risk in models of economic growth and may offer guidance in the design of robust policies for investment in water-related productive assets to manage risk, particularly in the face of global and regional environmental change.

  7. A dynamic model for intertemporal allocation of old-growth forests in the Pacific Northwest.

    Science.gov (United States)

    Carver, Andrew D; Lee, John G; LeMaster, Dennis C

    2002-12-01

    Across the globe, continued policy debates regarding the management of old-growth forests center around the difficult task of balancing economic and ecological considerations. Though the forests of the Pacific Northwest United States are among the most studied old-growth ecosystems, ecological and economic analyses have yielded public land management directives that remain controversial. Specifically, the recently adopted Northwest Forest Plan lacks explicit goals for maintaining intergenerational equity for the use of forest resources and the diversity of old-growth ecosystems. Unlike previous studies which rely on monetary quantification of costs and benefits, this study develops and applies a conceptual framework for evaluating socially optimal Pacific Northwest old-growth forest utilization strategies. Conditions for the optimal management of old-growth forests are derived using dynamic programming. The objective function synthesizes relevant biological and economic attributes of the old-growth allocation problem. Results in the form of extraction paths are compared given social pressure for consumptive and non-consumptive benefits, as well as different planning horizons, rates of social time preference, and environmental variance. Lengthening the planning horizon results in a vast divergence of optimal policies in the absence of discounting. Extraction rates appear to approach zero as the planning horizon approaches infinity. While higher rates of social time preference increase the rate of extraction, forest stocks remaining at the terminal time period equal levels remaining with a lower discount rate. Increasing environmental variance results in a higher level of stock remaining at the terminal time period. This analysis, while specific to the old-growth controversy of the Pacific Northwest, does provide general guidelines for addressing similar problems of multiple uses of natural areas, particularly where such uses are mutually incompatible, or where one

  8. Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

    Directory of Open Access Journals (Sweden)

    Alexander Lorz

    2017-08-01

    Full Text Available Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug’s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large

  9. Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

    KAUST Repository

    Lorz, Alexander

    2017-08-30

    Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug\\'s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/ switch-off” increase in the average

  10. Femtosecond fabricated surfaces for cell biology

    Science.gov (United States)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  11. System dynamic modelling of industrial growth and landscape ecology in China.

    Science.gov (United States)

    Xu, Jian; Kang, Jian; Shao, Long; Zhao, Tianyu

    2015-09-15

    With the rapid development of large industrial corridors in China, the landscape ecology of the country is currently being affected. Therefore, in this study, a system dynamic model with multi-dimensional nonlinear dynamic prediction function that considers industrial growth and landscape ecology is developed and verified to allow for more sustainable development. Firstly, relationships between industrial development and landscape ecology in China are examined, and five subsystems are then established: industry, population, urban economy, environment and landscape ecology. The main influencing factors are then examined for each subsystem to establish flow charts connecting those factors. Consequently, by connecting the subsystems, an overall industry growth and landscape ecology model is established. Using actual data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical industrial corridor in China, over the period 2005-2009, the model is validated in terms of historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model application has been made to consider the changes in landscape indices under four industrial development modes, and the optimal industrial growth plan has been examined for landscape ecological protection through the simulation prediction results over 2015-2020. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Growth dynamics and an order-disorder transition in epitaxial alloy semiconductors

    Science.gov (United States)

    Nakayama, Hiroshi; Takeguchi, Tohru; Nishino, Taneo

    1996-08-01

    A stochastic theory describing epitaxial growth dynamics in binary alloy systems has been proposed. Considering the "atom correlation" in surface adsorption and diffusion processes, the effective Ising Hamilton of binary elements and the stochastic differential equation (master equation) are combined in a unified manner. Monte-Carlo (MC) calculations made on the basis of the stochastic equation of a binary growing system have successfully revealed the growth dynamics and the evolution of short-range ordering (SRO) and long-range ordering (LRO) during the epitaxial processes. It has been discovered that the LRO parameter shows a peak at a certain temperature below the order-disorder transition temperature. The presence of the peak in the LRO parameter in the order-disorder transition is caused by the interplay of adsorption and diffusion processes involving atom correlation among the surface atoms. As an example, it is noted that the experimental data relating to LRO parameter variation as a function of the growth temperature in a (In,Ga)P pseudobinary alloy exhibits such an order-disorder transition, showing a peak in the LRO value just below the order-disorder transition temperature.

  13. A study of dynamic econometric relationship between urbanization and service industries growth in china

    Directory of Open Access Journals (Sweden)

    Congjun Cheng

    2013-03-01

    Full Text Available Purpose: The paper is going to analyze that there are dynamic quantitative relationships between Chinese urbanization and service industry.Design/methodology/approach: According to the index number of value-added of service industry and town population/ total population ratio during the year of 1978 to 2012 in China, the paper is designed with models which are analyzed by ADF test, co-integration test, error correction model and Granger causality test, finally get the conclusion.Findings: The paper achieves the two conclusions, one is that urbanization is the important power of service industry’s growth; the other is that the level of urbanization improves the level of service industry recently.Originality/value: Chinese urbanization and service industry have close relationship, and they also have dynamic changes. The paper studies their dynamic changes through collecting a lot of data from the year 1978 to 2010 and developing models to make quantitative analysis, for example, tables and quotations in the paper are the best proof. At last, the paper also puts forward some suggestions after get the conclusion that Chinese urbanization is the motive power to the growth of service industry.

  14. Quantitative nucleation and growth kinetics of gold nanoparticles via model-assisted dynamic spectroscopic approach.

    Science.gov (United States)

    Zhou, Yao; Wang, Huixuan; Lin, Wenshuang; Lin, Liqin; Gao, Yixian; Yang, Feng; Du, Mingming; Fang, Weiping; Huang, Jiale; Sun, Daohua; Li, Qingbiao

    2013-10-01

    Lacking of quantitative experimental data and/or kinetic models that could mathematically depict the redox chemistry and the crystallization issue, bottom-to-up formation kinetics of gold nanoparticles (GNPs) remains a challenge. We measured the dynamic regime of GNPs synthesized by l-ascorbic acid (representing a chemical approach) and/or foliar aqueous extract (a biogenic approach) via in situ spectroscopic characterization and established a redox-crystallization model which allows quantitative and separate parameterization of the nucleation and growth processes. The main results were simplified as the following aspects: (I) an efficient approach, i.e., the dynamic in situ spectroscopic characterization assisted with the redox-crystallization model, was established for quantitative analysis of the overall formation kinetics of GNPs in solution; (II) formation of GNPs by the chemical and the biogenic approaches experienced a slow nucleation stage followed by a growth stage which behaved as a mixed-order reaction, and different from the chemical approach, the biogenic method involved heterogeneous nucleation; (III) also, biosynthesis of flaky GNPs was a kinetic-controlled process favored by relatively slow redox chemistry; and (IV) though GNPs formation consists of two aspects, namely the redox chemistry and the crystallization issue, the latter was the rate-determining event that controls the dynamic regime of the whole physicochemical process.

  15. Endogenous Population Dynamics and Economic Growth with Free Trade between Countries

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2016-05-01

    Full Text Available This paper builds a model to deal with dynamic interdependence between different countries' birth rates, mortality rates, populations, wealth accumulation, and time distributions between working, leisure and children caring. The model shows the role of human capital, technological and preference changes on national differences in birth rates, mortality rates, time distributions, population change, and wealth accumulation. The economic mechanisms of wealth accumulation, production and trade are based the Solow growth model and the Oniki-Uzawa trade model. We use the utility function proposed by Zhang to describe the behavior of households. We model national and gender differences in human capital, propensity to have children, propensity to use leisure time, and children caring efficiency. We describe the dynamics of global economic growth, trade patterns, national differences in wealth, income, birth rates, mortality rates, and populations with differential equations. We simulate the model to show the motion of the system and identify the existence of equilibrium point. We also examine the effects of changes in the propensity to have children, the propensity to save, woman's propensity to use leisure, woman's human capital, and woman's emotional involvement in children caring on the dynamics of the global and national economies.

  16. A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization.

    Science.gov (United States)

    Waliszewski, Przemyslaw

    2005-10-01

    The emergence of Gompertzian dynamics at the macroscopic, tissue level during growth and self-organization is determined by the existence of fractal-stochastic dualism at the microscopic level of supramolecular, cellular system. On one hand, Gompertzian dynamics results from the complex coupling of at least two antagonistic, stochastic processes at the molecular cellular level. It is shown that the Gompertz function is a probability function, its derivative is a probability density function, and the Gompertzian distribution of probability is of non-Gaussian type. On the other hand, the Gompertz function is a contraction mapping and defines fractal dynamics in time-space; a prerequisite condition for the coupling of processes. Furthermore, the Gompertz function is a solution of the operator differential equation with the Morse-like anharmonic potential. This relationship indicates that distribution of intrasystemic forces is both non-linear and asymmetric. The anharmonic potential is a measure of the intrasystemic interactions. It attains a point of the minimum (U(0), t(0)) along with a change of both complexity and connectivity during growth and self-organization. It can also be modified by certain factors, such as retinoids.

  17. Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation

    Directory of Open Access Journals (Sweden)

    Wang GJ

    2012-04-01

    Full Text Available Hsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang 1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, Taiwan, 3Department of Mechanical Engineering, 4Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, People’s Republic of ChinaAbstract: One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA. This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic acid, bovine endothelial cells

  18. Femtosecond laser collagen cross-linking without traditional photosensitizers

    Science.gov (United States)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  19. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2016-01-01

    systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  20. Bathymodiolus growth dynamics in relation to environmental fluctuations in vent habitats

    Science.gov (United States)

    Nedoncelle, K.; Lartaud, F.; Contreira Pereira, L.; Yücel, M.; Thurnherr, A. M.; Mullineaux, L.; Le Bris, N.

    2015-12-01

    The deep-sea mussel Bathymodiolus thermophilus is a dominant species in the East Pacific Rise (EPR) hydrothermal vent fields. On the EPR volcanically unstable area, this late colonizer reaches high biomass within 4-5 years on new habitats created by lava flows. The environmental conditions and growth rates characterizing the reestablishment of B. thermophilus populations are however largely unknown, leaving unconstrained the role of this foundation species in the ecosystem dynamics. A typical example from the vent field at 9°50'N that was affected by the last massive eruption was the Bio-9 hydrothermal vent site. Here, six years later, a large mussel population had reestablished. The von Bertalanffy growth model estimates the oldest B. thermophilus specimens to be 1.3 year-old in March 2012, consistent with the observation of scarce juveniles among tubeworms in 2010. Younger cohorts were also observed in 2012 but the low number of individuals, relatively to older cohorts, suggests limited survival or growth of new recruits at this site, that could reflect unsuitable habitat conditions. To further explore this asumption, we investigated the relationships between mussel growth dynamics and habitat properties. The approach combined sclerochronology analyses of daily shell growth with continuous habitat monitoring for two mussel assemblages; one from the Bio-9 new settlement and a second from the V-vent site unreached by the lava flow. At both vent sites, semi-diurnal fluctuations of abiotic conditions were recorded using sensors deployed in the mussel bed over 5 to 10 days. These data depict steep transitions from well oxygenated to oxygen-depleted conditions and from alkaline to acidic pH, combined with intermittent sulfide exposure. These semi-diurnal fluctuations exhibited marked changes in amplitude over time, exposing mussels to distinct regimes of abiotic constraints. The V-vent samples allowed growth patterns to be examined at the scale of individual life and

  1. Insurance penetration and economic growth in Africa: Dynamic effects analysis using Bayesian TVP-VAR approach

    Directory of Open Access Journals (Sweden)

    D.O. Olayungbo

    2016-12-01

    Full Text Available This paper examines the dynamic interactions between insurance and economic growth in eight African countries for the period of 1970–2013. Insurance demand is measured by insurance penetration which accounts for income differences across the sample countries. A Bayesian Time Varying Parameter Vector Auto regression (TVP-VAR model with stochastic volatility is used to analyze the short run and the long run among the variables of interest. Using insurance penetration as a measure of insurance to economic growth, we find positive relationship for Egypt, while short-run negative and long-run positive effects are found for Kenya, Mauritius, and South Africa. On the contrary, negative effects are found for Algeria, Nigeria, Tunisia, and Zimbabwe. Implementation of sound financial reforms and wide insurance coverage are proposed recommendations for insurance development in the selected African countries.

  2. Market concentration and technological innovation in a dynamic model of growth and distribution

    Directory of Open Access Journals (Sweden)

    Gilberto Tadeu Lima

    2000-12-01

    Full Text Available This paper develops a post Keynesian macromodel of growth and distribution in which endogenous technological innovation plays a pivotal role. The innovationrate is made quadratic in market concentration, to capture a plausible neo-Schumpeterian non-linear influence of market structure on firms' propensity to innovate. Concentration is endogenous, though, since under neo-Schumpeterian competition the relation between market structure and technical change cuts both ways. Investment will then be non-linear in concentration, and the effect of changes in concentration on capacity utilisation, growth and distribution will depend on the level of concentration. Demand also plays a role, with capacity utilisation andgrowth rising with the wage share. The dynamic stability properties of the system will depend on the direction and relative strength of the technological innovation effects with respect to the demand ones, and on the relative bargaining power of workers and capitalists.

  3. Growth dynamics and cyclin expression in cutaneous T-cell lymphoma cell lines

    Directory of Open Access Journals (Sweden)

    Edyta Biskup

    2010-05-01

    Full Text Available We have investigated cell growth dynamics and cyclins B1 and E expression in cell lines derived from mycosis fungoides (MyLa, Sézary syndrome (SeAx, and CD30+ lympho-proliferative diseases (Mac1, Mac2a, JK. Mac1 and Mac2a had the highest growth rate (doubling time 18-28 h, >90% cycling cells whereas SeAx was proliferating slowly (doub-ling time 55 h, approximately 35% cycling cells. Expression of cyclin B1 correlated positively with doubling time whereas expression of cyclin E was unscheduled and constant across the investigated cell lines. All cell lines exhibited high expression of PCNA. Thus, we concluded that cyclin B1 could be used for rapid screening of cell proliferation in malignant lymphocytes derived from cutaneous T-cell lymphoma.

  4. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells

    Science.gov (United States)

    Shin, Dongha; Park, Jong Bo; Kim, Yong-Jin; Kim, Sang Jin; Kang, Jin Hyoun; Lee, Bora; Cho, Sung-Pyo; Hong, Byung Hee; Novoselov, Konstantin S.

    2015-02-01

    Formation, evolution and vanishing of bubbles are common phenomena in nature, which can be easily observed in boiling or falling water, carbonated drinks, gas-forming electrochemical reactions and so on. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in the liquid phase. Here, we demonstrate for the first time that the nanobubbles in water encapsulated by graphene membrane can be visualized by in-situ ultra-high vacuum transmission electron microscopy. Our microscopic results indicate two distinct growth mechanisms of merging nanobubbles and the existence of a critical radius of nanobubbles that determines the unusually long stability of nanobubbles. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation.

  5. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells.

    Science.gov (United States)

    Shin, Dongha; Park, Jong Bo; Kim, Yong-Jin; Kim, Sang Jin; Kang, Jin Hyoun; Lee, Bora; Cho, Sung-Pyo; Hong, Byung Hee; Novoselov, Konstantin S

    2015-02-02

    Formation, evolution and vanishing of bubbles are common phenomena in nature, which can be easily observed in boiling or falling water, carbonated drinks, gas-forming electrochemical reactions and so on. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in the liquid phase. Here, we demonstrate for the first time that the nanobubbles in water encapsulated by graphene membrane can be visualized by in-situ ultra-high vacuum transmission electron microscopy. Our microscopic results indicate two distinct growth mechanisms of merging nanobubbles and the existence of a critical radius of nanobubbles that determines the unusually long stability of nanobubbles. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation.

  6. Role of delay in plant growth dynamics: A two compartment mathematical model

    Science.gov (United States)

    Kalra, Preety; Kumar, Pankaj

    2017-07-01

    A mathematical model consisting of two compartments-shoot and root is used in this paper for the study of growth of an individual plant. The dynamics of plant growth is studied by division of plant in these two compartments where the associated state variables are structural dry weight and concentration of nutrients. The assumption is that the nutrient is taken up from the root compartment and the exogenic activities hinder the up taking of nutrients that are essential for the plants and adversely affect the nutrient use efficiency (utilization coefficients) resulting into root structural damage. This effect is studied by introducing the delay (time-lag) in utilization parameter. The inclusion of delay disturbed the Stability of the system and Hopf bifurcation occurred. Analytic results have been supported by numerical simulation using MATLAB.

  7. Fame and Obsolescence: Disentangling growth and ageing dynamics of patent citations

    CERN Document Server

    Higham, K W; Jaffe, A B; Zülicke, U

    2016-01-01

    We present an analysis of citations accrued over time by cohorts of patents from specific technology sectors (e.g., Electrical and Electronic) granted by the United States Patent and Trademark Office in 1998. In contrast to previous studies that did not differentiate patents by technology category, we observe an intrinsic citation rate that clearly separates into an ageing function and a completely time-independent preferential-attachment-type growth kernel. In the long run, the aging function turns out to be an exponential function of time. Relevant parameters for the ageing and growth functions are reliably extracted. The time-dependent citation distribution is obtained analytically for the general case of a separable citation rate, thus establishing a useful framework for the quantitative investigation of general knowledge-propagation dynamics.

  8. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples

    Science.gov (United States)

    Avnit-Sagi, Tali; Pompan-Lotan, Maya; Matot, Elad; Jona, Ghil; Harmelin, Alon; Cohen, Nadav; Sirota-Madi, Alexandra; Thaiss, Christoph A.; Pevsner-Fischer, Meirav; Sorek, Rotem; Xavier, Ramnik; Elinav, Eran; Segal, Eran

    2016-01-01

    Metagenomic sequencing increased our understanding of the role of the microbiome in health and disease, yet it only provides a snapshot of a highly dynamic ecosystem. Here, we show that the pattern of metagenomic sequencing read coverage for different microbial genomes contains a single trough and a single peak, the latter coinciding with the bacterial origin of replication. Furthermore, the ratio of sequencing coverage between the peak and trough provides a quantitative measure of a species' growth rate. We demonstrate this in vitro and in vivo, under different growth conditions, and in complex bacterial communities. For several bacterial species, peak to trough coverage ratios, but not relative abundances, correlated with the manifestation of inflammatory bowel disease and type II diabetes. PMID:26229116

  9. Growth dynamics in the context of pediatric sports injuries and overuse.

    Science.gov (United States)

    Zwick, Ernst B; Kocher, Robert

    2014-11-01

    The onset and timing of the growth of children and adolescents occurs with considerable variability in cohorts of the same chronological age. The musculoskeletal system changes in proportion over time, and lever-arm changes, altered individual flexibility, and strength lead to age-specific injury patterns in youth sports. In sports, juniors are commonly grouped according to their chronological age. Early- and late-maturing children and adolescents might therefore not routinely be trained in relation to their biology. This not only represents a risk for overuse and injury but might limit their development in sports. To obtain information about the biological age of children is challenging. Numerous methods have been studied and validated. However, the implementation of these methods on a large scale is still to come. This report provides a brief overview of growth dynamics in relation to youth sports injuries and describes a few challenges for the future.

  10. Exact Growth of Entanglement and Dynamical Phase Transition in Global Fermionic Quench

    CERN Document Server

    Paranjape, Shruti

    2016-01-01

    Critical quantum quench of free Dirac fermions in an infinite system is examined carefully. A much broader analysis, with more emphasis on free scalar fields, has been done in hep-th/1512.0218. For specially prepared squeezed states of the massive theory, quenched states obtained are Calabrese-Cardy(CC) states and generalized Calabrese-Cardy(gCC) states with higher-spin charges. Exact time dependence of correlators are computed showing thermalization explicitly. We also calculate the exact monotonic growth of entanglement entropy in CC states. In case of gCC states, for a particular charge, we show that there is a dynamical phase transition from monotonic to non-monotonic entanglement entropy growth when the effective chemical potential is increased beyond a critical value.

  11. A Tumor Growth Model with Unmolded Dynamics Based on an Online Feedback Neural Network Model

    Directory of Open Access Journals (Sweden)

    ArashPourhashemi

    2014-01-01

    Full Text Available In this study, we identify tumor growth system by an online feedback neural network model based on back-propagation method. The modeling and identification of nonlinear dynamic systems is the process of developing and improving a mathematical representation of a system using experimental data. So, it is a problem of considerable importance through the use of measured experimental data in biomedical modeling. As is obvious, in biomedical researches it is really difficult and in some cases impossible to implement research on real patient or such a system which is not possible to empirical tests. To deal with, we need sometime a model close to real system in order to forecast dynamic systems so as to perform researches on models and design controller for control of system.

  12. Threshold Dynamics of a Huanglongbing Model with Logistic Growth in Periodic Environments

    Directory of Open Access Journals (Sweden)

    Jianping Wang

    2014-01-01

    Full Text Available We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB infection. A new model about HLB transmission with Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global dynamics are determined by the basic reproduction number R0 which is defined through the spectral radius of a linear integral operator. If R0 1, then the disease persists. Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are given.

  13. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  14. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy.

    Science.gov (United States)

    Lee, J H; Luo, G; Tung, I C; Chang, S H; Luo, Z; Malshe, M; Gadre, M; Bhattacharya, A; Nakhmanson, S M; Eastman, J A; Hong, H; Jellinek, J; Morgan, D; Fong, D D; Freeland, J W

    2014-09-01

    The A(n+1)B(n)O(3n+1) Ruddlesden-Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of the intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden-Popper phases. We demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La3Ni2O7.

  15. Dynamics of gas bubble growth in oil-refrigerant mixtures under isothermal decompression

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Joao Paulo; Barbosa Junior, Jader R.; Prata, Alvaro T. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: jpdias@polo.ufsc.br, jrb@polo.ufsc.br, prata@polo.ufsc.br

    2010-07-01

    This paper proposes a numerical model to predict the growth of gaseous refrigerant bubbles in oil-refrigerant mixtures with high contents of oil subjected to isothermal decompression. The model considers an Elementary Cell (EC) in which a spherical bubble is surrounded by a concentric and spherical liquid layer containing a limited amount of dissolved liquid refrigerant. The pressure reduction in the EC generates a concentration gradient at the bubble interface and the refrigerant is transported to the bubble by molecular diffusion. After a sufficiently long period of time, the concentration gradient in the liquid layer and the bubble internal pressure reach equilibrium and the bubble stops growing, having attained its stable radius. The equations of momentum and chemical species conservation for the liquid layer, and the mass balance at the bubble interface are solved via a coupled finite difference procedure to determine the bubble internal pressure, the refrigerant radial concentration distribution and the bubble growth rate. Numerical results obtained for a mixture of ISO VG10 ester oil and refrigerant HFC-134a showed that bubble growth dynamics depends on model parameters like the initial bubble radius, initial refrigerant concentration in the liquid layer, decompression rate and EC temperature. Despite its simplicity, the model showed to be a potential tool to predict bubble growth and foaming which may result from important phenomena occurring inside refrigeration compressors such as lubrication of sliding parts and refrigerant degassing from the oil stored in oil sump during compressor start-up. (author)

  16. Examination of surface nucleation during the growth of long alkane crystals by molecular dynamics simulation

    Science.gov (United States)

    Bourque, Alexander; Rutledge, Gregory

    2015-03-01

    Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation using a validated united atom model. By quenching below the melting temperature of C50 (370 K), propagation of the crystal growth front into the C50 melt from a crystalline polyethylene surface was observed. By tracking the location of the midpoint in the orientational order parameter profile between the crystal and melt, crystal growth rates between 0.015-0.040 m/s were observed, for quench depths of 10 to 70 K below the melting point. In this work, surface nucleation is identified with the formation of 2D clusters of crystalline sites within layers parallel to the propagating growth front, by analogy to the formation of 3D clusters in primary, homogeneous nucleation. These surface nucleation events were tracked over several layers and numerous simulations, and a mean first passage time analysis was employed to estimate critical nucleus sizes, induction times and rates for surface nucleation. Based on new insights provided by the detailed molecular trajectories obtained from simulation, the classical theory proposed by Lauritzen and Hoffman is re-examined.

  17. Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

    Directory of Open Access Journals (Sweden)

    Dániel Kozma

    2012-01-01

    Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.

  18. Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies.

    Science.gov (United States)

    Kim, Huisung; Bai, Nan; Bhunia, Arun K; King, Galen B; Hirleman, E Daniel; Bae, Euiwon

    2013-12-01

    In order to understand the biophysics behind collective behavior of a bacterial colony, a confocal displacement meter was used to measure the profiles of the bacterial colonies, together with a custom built optical density circuits. The system delivered essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony. For example, the aspect ratio of S. aureus was approximately two times higher than that of E. coli O157 : H7, while the OD of S. aureus was approximately 1/3 higher than that of E. coli O157 : H7.

  19. Oscillatory dynamics in a model of vascular tumour growth - implications for chemotherapy

    Directory of Open Access Journals (Sweden)

    Maini PK

    2010-04-01

    Full Text Available Abstract Background Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth. Results By analysing a spatially uniform submodel, we identify regions of parameter space in which the combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady state, then steady travelling waves are observed in the full model, and the system evolves to the same stable steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one of λ-ω type dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the size of the tumour cell population are enhanced, compared to untreated controls. Conclusions We have developed a mathematical model of vascular tumour growth formulated as a system of partial

  20. Dynamic Grain Growth in Forsterite Aggregates Experimentally Deformed to High Strain

    Science.gov (United States)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.; Drury, M.

    2004-12-01

    The dynamics of the outer Earth are largely controlled by olivine rheology. From previous work it has become clear that if olivine rocks are deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that were reduced in grain size during straining by grain size insensitive (dislocation) creep mechanisms. The aim of the present study was to investigate microstructure evolution of fine-grained olivine rocks that coarsen in grain size while deforming by grain size sensitive (GSS) creep. We used fine-grained (~1 μ m) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3). Two types of experiments were carried out: 1) Hot isostatic pressing (HIP) followed by axial compression to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C, 2) HIP treatment without axial deformation. Microstructures were characterized by analyzing full grain size distributions and texture using SEM/EBSD. Our stress-strain curves showed continuous hardening. When samples were temporally unloaded for short time intervals, no difference in flow stress was observed before and after the interruption in straining. Strain rate sensitivity analysis showed a low value of ~1.5 for the stress exponent n. Measured grain sizes show an increase with strain up to a value twice that of the starting value. HIP-only samples showed only minor increase in grain size. A random LPO combined with the low n ~1.5 suggests dominant GSS creep controlled by grain boundary sliding. These results indicate that dynamic grain growth occurs in forsterite aggregates deforming by GSS

  1. Single-Wall Carbon Nanotube Growth from Graphite Layers-a Tight Binding Molecular Dynamics Simulation

    Institute of Scientific and Technical Information of China (English)

    Yuntuan FANG; Min ZHU; Yongshun WANG

    2003-01-01

    The growth of single-wall carbon nanotube from graphite layers is studied by tight binding molecular dynamics simulation. Given temperature of 2500 K or 3500 K and an interval of 0.25 nm for the two layers of graphite, a single-wall carbon nanotube with a zigzag shell will be produced. On the other conditions the carbon nanotube cannot grow or grows with too many defects. All carbon nanotube ends have pentagons which play an important role during the tube ends closing.

  2. Is it growing exponentially fast? -- Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics.

    Science.gov (United States)

    Chowell, Gerardo; Viboud, Cécile

    2016-10-01

    The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing models that capture the baseline transmission characteristics in order to generate reliable epidemic forecasts. Improved models for epidemic forecasting could be achieved by identifying signature features of epidemic growth, which could inform the design of models of disease spread and reveal important characteristics of the transmission process. In particular, it is often taken for granted that the early growth phase of different growth processes in nature follow early exponential growth dynamics. In the context of infectious disease spread, this assumption is often convenient to describe a transmission process with mass action kinetics using differential equations and generate analytic expressions and estimates of the reproduction number. In this article, we carry out a simulation study to illustrate the impact of incorrectly assuming an exponential-growth model to characterize the early phase (e.g., 3-5 disease generation intervals) of an infectious disease outbreak that follows near-exponential growth dynamics. Specifically, we assess the impact on: 1) goodness of fit, 2) bias on the growth parameter, and 3) the impact on short-term epidemic forecasts. Designing transmission models and statistical approaches that more flexibly capture the profile of epidemic growth could lead to enhanced model fit, improved estimates of key transmission parameters, and more realistic epidemic forecasts.

  3. The Impact of Export Dynamics on a Firm’s Growth

    Directory of Open Access Journals (Sweden)

    Jerzy Cieślik

    2014-09-01

    Full Text Available Purpose: This research aimed to identify the prevalence and particular characteristics of export-driven growth as opposed to those of the domestic market. It examined how the relative dynamics of export sales vs. domestic sales were affected by internationalization intensity (FSTS, age of the fi rm, early internationalization, size of the fi rm and industry technological level. Similarly, it examined the impact of sales growth and its direction (domestic vs. export-driven on company performance. Methodology: The analysis was based on panel data from approximately 300 manufacturing fi rms in the Mazovia region of Poland that were engaged in sustained export operations during 2003 to 2010. Several hypotheses were tested regarding factors affecting the growth dynamics of regular exporters as well as their performance (productivity. Findings: This research proved that only a small percentage (less than 10% of fi rms reached the status of regular exporter, although regular exporters engaged in international operations shortly after their foundation, They formed a distinct category of early internationalizing firms. For the management of young, ambitious ventures, achieving regularity in their initial export operations represented a major challenge. Implications: Regularity of international sales is crucial for export performance, both at the enterprise and country levels. This implies that export promotion efforts should concentrate on growth-oriented fi rms, specifi cally to assist them in reaching regular exporter status shortly after initiating sales outside the domestic market. Originality: The analysis of the internationalization process was expanded by adding the regularity dimension,which has been rarely addressed in the extant literature.

  4. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.

    Science.gov (United States)

    Postma, Johannes A; Schurr, Ulrich; Fiorani, Fabio

    2014-01-01

    In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant-plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.

  5. Photoionization of NaK molecule with a double-well potential in femtosecond pump-probe pulse laser fields

    Institute of Scientific and Technical Information of China (English)

    Yu Jie; Wang Sen-Ming; Yuan Kai-Jun; Cong Shu-Lin

    2006-01-01

    The method of time-dependent quantum wave packet dynamics is used to calculate the femtosecond pump-probe photoelectron spectra and study the wave packet dynamic processes of the double-minimum potential state 61∑+ of NaK in intense laser fields. The evolutions of the wave packet and the photoelectron energy spectra with time and internuclear distance are described in detail. The wave packet dynamic information of the 61∑+ state can be extracted from the photoelectron energy spectra.

  6. The effect of chirped intense femtosecond laser pulses on the Argon cluster

    CERN Document Server

    Ghaforyan, H; Irani, E

    2016-01-01

    The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nano-plasma model. Based on the dynamic simulations, ionization process, heating and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2*1017 Wcm-2 are studied. The analytical calculation provides ionization ratefor different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach the strong dependence of laser intensity, pulse duration and laser shape on the electron energy, the electron density and the cluster size are presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulsesare improved up to 20% in comparison to the unchirped and positively chirped pulses.

  7. The Effect of Chirped Intense Femtosecond Laser Pulses on the Argon Cluster

    Directory of Open Access Journals (Sweden)

    H. Ghaforyan

    2016-01-01

    Full Text Available The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nanoplasma model. Based on the dynamic simulations, ionization process, heating, and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2 × 1017 Wcm−2 are studied. The analytical calculation provides ionization rate for different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach, the strong dependence of laser intensity, pulse duration, and laser shape on the electron energy, the electron density, and the cluster size is presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulses are improved up to 20% in comparison to the unchirped and positively chirped pulses.

  8. Atmospheric pressure femtosecond laser imaging mass spectrometry

    Science.gov (United States)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  9. Femtosecond SESAM lasers with shortlength cavity

    Science.gov (United States)

    Trunov, V. I.; Pestryakov, Efim V.; Petrov, V. V.; Kirpichnikov, A. V.; Bordzilovskii, A. S.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.

    2003-10-01

    Femtosecond pulse generation in Al2O3:Ti3+ laser with some types of laser cavity configuration with semiconductor saturable absorber mirror (SESAM), based on semiconductor quantum well low temperature (LT) GaAs/AlAs, GaxIn1-xAs/AlyGa1-yAs saturated absorbers and metal mirrors have been investigated.

  10. Femtosecond laser control of chemical reactions

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-08-31

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  11. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim;

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  12. Development of a high power femtosecond laser

    CSIR Research Space (South Africa)

    Neethling, PH

    2010-10-01

    Full Text Available the pulses from the Coherent Mira/BMI amplified femtosecond laser at the LRI. Ideally the OPCPA stage should be pumped by a 100 ? 300 ps laser with tens of mJ pulse energy, matching the stretched pulse duration. This laser will be developed by the CSIR...

  13. Microstructuring of electrospun mats employing femtosecond laser

    Directory of Open Access Journals (Sweden)

    Erika Adomavičiūtė

    2015-03-01

    Full Text Available Electrospun mats from nano/micro-fibers with control porosity and pore shape may be ideal candidate for tissue engineering scaffolds. In this study three type of poly(vinyl alcohol (PVA mats of 48-65 µm thickness with different nano/micro-fibers diameters mostly of 100-200 nm were deposited by electrospinning process. Controlled density porosity in the electrospun mats was introduced by Yb:KGW femtosecond laser micromachining system. The influence of electrospun mat micro structure, the distance between the adjacent laser ablation points, the number of femtosecond laser pulses on quality and structure of laser irradiated holes were investigated. It was demonstrated that the quality of irradiated holes depend on structure of electrospun mats (diameter of nano/micro-fibers, thickness of mats and femtosecond laser processing parameters. Varying the distance between points and number of applied femtosecond laser pulses it is possible to fabricate electrospun mats with pores of 22-36 μm diameter.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.10249

  14. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...

  15. Femtosecond laser microstructuring of zirconia dental implants

    NARCIS (Netherlands)

    Delgado-Ruiz, R. A.; Calvo-Guirado, J. L.; Moreno, P.; Guardia, J.; Gomez-Moreno, G.; Mate-Sanchez, J. E.; Ramirez-Fernandez, P.; Chiva, F.

    2011-01-01

    This study evaluated the suitability of femtosecond laser for microtexturizing cylindrical zirconia dental implants surface. Sixty-six cylindrical zirconia implants were used and divided into three groups: Control group (with no laser modification), Group A (microgropored texture), and Group 13 (mic

  16. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    HE Ping; FAN Rong-Wei; XIA Yuan-Qin; YU Xin; YAO Yong; CHEN De-Ying

    2011-01-01

    @@ Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering(CARS)is applied to investigate molecular dynamics in gaseous iodine.40fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature(corresponding to a vapor pressure as low as about 35 Pa)by femtosecond timeresolved CARS.Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal.It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements.%Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond timeresolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements.

  17. Second harmonic generation in a centrosymmetric gas medium with spatiotemporally focused intense femtosecond laser pulses

    CERN Document Server

    Li, Guihua; Xie, Hongqiang; Zeng, Bin; Yao, Jinping; Chu, Wei; Zhang, Haisu; Jing, Chenrui; He, Fei; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2013-01-01

    We demonstrate unexpectedly strong second harmonic generation (SHG) in Argon gas by use of spatiotemporally focused (SF) femtosecond laser pulses. The resulting SHG by the SF scheme at a 75 cm distance shows a significantly enhanced efficiency than that achieved with conventional focusing scheme, which offers a new promising possibility for standoff applications. Our theoretical calculations reasonably reproduce the experimental observations, which indicate that the observed SHG mainly originates from the gradient of nonuniform plasma dynamically controlled by the SF laser field.

  18. Laser-Induced Continuum Structure of NO Molecules in Two-Colour Femtosecond Pulsed Laser Fields

    Institute of Scientific and Technical Information of China (English)

    WANG Sen-Ming; YUAN Kai-Jun; CONG Shu-Lin

    2006-01-01

    The method of quantum wave packet dynamics is used to study the multiphoton ionization of NO molecules via a two-photon Raman coupling and a laser-induced continuum structure (LICS) state in two-colour strong femtosecond pulsed laser fields.Time-and energy-resolved photoelectron energy spectra are calculated for describing three photoionization channels.The population transfers through the LICS and the Raman coupling passages and discussed.

  19. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    OpenAIRE

    Kafka, K. R. P.; D. R. Austin; Li, H.; Yi, A; Cheng, J.; Chowdhury, E. A.

    2015-01-01

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripple...

  20. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.

    Science.gov (United States)

    Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2012-02-28

    Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie stable and favor the formation of suspended droplets on top of the nanostructures as compared to partially wetting droplets which locally wet the base of the nanostructures. These suspended droplets promise minimal contact line pinning and promote passive droplet shedding at sizes smaller than the characteristic capillary length. However, the gas films underneath such droplets may significantly hinder the overall heat and mass transfer performance. We investigated droplet growth dynamics on superhydrophobic nanostructured surfaces to elucidate the importance of droplet morphology on heat and mass transfer. By taking advantage of well-controlled functionalized silicon nanopillars, we observed the growth and shedding behavior of suspended and partially wetting droplets on the same surface during condensation. Environmental scanning electron microscopy was used to demonstrate that initial droplet growth rates of partially wetting droplets were 6× larger than that of suspended droplets. We subsequently developed a droplet growth model to explain the experimental results and showed that partially wetting droplets had 4-6× higher heat transfer rates than that of suspended droplets. On the basis of these findings, the overall performance enhancement created by surface nanostructuring was examined in comparison to a flat hydrophobic surface. We showed these nanostructured surfaces had 56% heat flux enhancement for partially wetting droplet morphologies and 71% heat flux degradation for suspended morphologies in comparison to flat hydrophobic surfaces. This study provides insights into the previously unidentified role of droplet wetting morphology on growth rate, as well as the need to design Cassie stable nanostructured surfaces with tailored droplet

  1. Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Volk, Tyler

    1987-01-01

    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.

  2. Energy Change due to Off-Fault Damage Evolution associated with Dynamic Fault Tip Growth

    Science.gov (United States)

    Suzuki, T.

    2010-12-01

    We theoretically study off-fault damage evolution effects on dynamic earthquake rupture, especially from a standpoint of energy change in a whole system. The importance of off-fault inelastic energy loss due to damage on dynamic earthquake rupture has attracted interests of many researchers in terms of, for example, rupture velocity reduction and crack tip growth cessation. The damage effect is found to be important on dynamic earthquake slip behavior in terms of porosity increase also in a series of our previous studies, Suzuki and Yamashita (2007; 2008; 2009; 2010). The mathematical formulation of Murakami and Kamiya (1997) is assumed in the present study; the damage tensor D is used to describe damage state in a medium. Damage, which consists of microcracks in a medium, has direction (defined as normal to the crack surface) and the magnitude (crack size), so that a scalar damage variable is insufficient to describe the damage state. We first analytically derive the equation system including the damage tensor and describing energy change in a whole system due to any dynamic elastic and inelastic deformation processes such as macroscopic crack extension and damage evolution. The change in the summation of strain and kinetic energies and damage energy is found to be equal to the summation of energy flowing out of the medium through the boundary and energy turning to heat and irreversibly lost based on the analytical expression; the damage energy is associated with surface energy released by damage evolution. The damage energy is confirmed to be equal to the summation of the loss in strain energy due to change in the elastic moduli and irreversibly lost energy. A mode III crack embedded in a medium causing damage is then assumed to study the off-fault damage effects on dynamic earthquake rupture. Spontaneous crack tip growth with the Coulomb fracture criterion is assumed and in such a case the rupture velocity can be sufficiently smaller than the terminal velocity

  3. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation

    Science.gov (United States)

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C.; Oliveira, Osvaldo N.; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  4. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics

    Science.gov (United States)

    Poulter, Benjamin; Bousquet, Philippe; Canadell, Josep G.; Ciais, Philippe; Peregon, Anna; Saunois, Marielle; Arora, Vivek K.; Beerling, David J.; Brovkin, Victor; Jones, Chris D.; Joos, Fortunat; Gedney, Nicola; Ito, Akihito; Kleinen, Thomas; Koven, Charles D.; McDonald, Kyle; Melton, Joe R.; Peng, Changhui; Peng, Shushi; Prigent, Catherine; Schroeder, Ronny; Riley, William J.; Saito, Makoto; Spahni, Renato; Tian, Hanqin; Taylor, Lyla; Viovy, Nicolas; Wilton, David; Wiltshire, Andy; Xu, Xiyan; Zhang, Bowen; Zhang, Zhen; Zhu, Qiuan

    2017-09-01

    Increasing atmospheric methane (CH4) concentrations have contributed to approximately 20% of anthropogenic climate change. Despite the importance of CH4 as a greenhouse gas, its atmospheric growth rate and dynamics over the past two decades, which include a stabilization period (1999–2006), followed by renewed growth starting in 2007, remain poorly understood. We provide an updated estimate of CH4 emissions from wetlands, the largest natural global CH4 source, for 2000–2012 using an ensemble of biogeochemical models constrained with remote sensing surface inundation and inventory-based wetland area data. Between 2000–2012, boreal wetland CH4 emissions increased by 1.2 Tg yr‑1 (‑0.2–3.5 Tg yr‑1), tropical emissions decreased by 0.9 Tg yr‑1 (‑3.2‑1.1 Tg yr‑1), yet globally, emissions remained unchanged at 184 ± 22 Tg yr‑1. Changing air temperature was responsible for increasing high-latitude emissions whereas declines in low-latitude wetland area decreased tropical emissions; both dynamics are consistent with features of predicted centennial-scale climate change impacts on wetland CH4 emissions. Despite uncertainties in wetland area mapping, our study shows that global wetland CH4 emissions have not contributed significantly to the period of renewed atmospheric CH4 growth, and is consistent with findings from studies that indicate some combination of increasing fossil fuel and agriculture-related CH4 emissions, and a decrease in the atmospheric oxidative sink.

  5. There's a World Going on Underground: Imaging Technologies to Understand Root Growth Dynamics and Rhizosphere Interactions

    Science.gov (United States)

    Topp, C. N.

    2016-12-01

    Our ability to harness the power of plant genomics for basic and applied science depends on how well and how fast we can quantify the phenotypic ramifications of genetic variation. Plants can be considered from many vantage points: at scales from cells to organs, over the course of development or evolution, and from biophysical, physiological, and ecological perspectives. In all of these ways, our understanding of plant form and function is greatly limited by our ability to study subterranean structures and processes. The limitations to accessing this knowledge are well known - soil is opaque, roots are morphologically complex, and root growth can be heavily influenced by a myriad of environmental factors. Nonetheless, recent technological innovations in imaging science have generated a renewed focus on roots and thus new opportunities to understand the plant as a whole. The Topp Lab is interested in crop root system growth dynamics and function in response to environmental stresses such as drought, rhizosphere interactions, and as a consequence of artificial selection for agronomically important traits such as nitrogen uptake and high plant density. Studying roots requires the development of imaging technologies, computational infrastructure, and statistical methods that can capture and analyze morphologically complex networks over time and at high-throughput. The lab uses several imaging tools (optical, X-ray CT, PET, etc.) along with quantitative genetics and molecular biology to understand the dynamics of root growth and physiology. We aim to understand the relationships among root traits that can be effectively measured both in controlled laboratory environments and in the field, and to identify genes and gene networks that control root, and ultimately whole plant architectural features useful for crop improvement.

  6. A dynamic cell adhesion surface regulates tissue architecture in growth plate cartilage.

    Science.gov (United States)

    Romereim, Sarah M; Conoan, Nicholas H; Chen, Baojiang; Dudley, Andrew T

    2014-05-01

    The architecture and morphogenetic properties of tissues are founded in the tissue-specific regulation of cell behaviors. In endochondral bones, the growth plate cartilage promotes bone elongation via regulated chondrocyte maturation within an ordered, three-dimensional cell array. A key event in the process that generates this cell array is the transformation of disordered resting chondrocytes into clonal columns of discoid proliferative cells aligned with the primary growth vector. Previous analysis showed that column-forming chondrocytes display planar cell divisions, and the resulting daughter cells rearrange by ∼90° to align with the lengthening column. However, these previous studies provided limited information about the mechanisms underlying this dynamic process. Here we present new mechanistic insights generated by application of a novel time-lapse confocal microscopy method along with immunofluorescence and electron microscopy. We show that, during cell division, daughter chondrocytes establish a cell-cell adhesion surface enriched in cadherins and β-catenin. Rearrangement into columns occurs concomitant with expansion of this adhesion surface in a process more similar to cell spreading than to migration. Column formation requires cell-cell adhesion, as reducing cadherin binding via chelation of extracellular calcium inhibits chondrocyte rearrangement. Importantly, physical indicators of cell polarity, such as cell body alignment, are not prerequisites for oriented cell behavior. Our results support a model in which regulation of adhesive surface dynamics and cortical tension by extrinsic signaling modifies the thermodynamic landscape to promote organization of daughter cells in the context of the three-dimensional growth plate tissue.

  7. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida

    Science.gov (United States)

    Feller, Ilka C.; Whigham, D.F.; McKee, K.L.; Lovelock, C.E.

    2003-01-01

    The objectives of this study were to determine effects of nutrient enrichment on plant growth, nutrient dynamics, and photosynthesis in a disturbed mangrove forest in an abandoned mosquito impoundment in Florida. Impounding altered the hydrology and soil chemistry of the site. In 1997, we established a factorial experiment along a tree-height gradient with three zones, i.e., fringe, transition, dwarf, and three fertilizer treatment levels, i.e., nitrogen (N), phosphorus (P), control, in Mosquito Impoundment 23 on the eastern side of Indian River. Transects traversed the forest perpendicular to the shoreline, from a Rhizophora mangle-dominated fringe through an Avicennia germinans stand of intermediate height, and into a scrub or dwarf stand of A. germinans in the hinterland. Growth rates increased significantly in response to N fertilization. Our growth data indicated that this site is N-limited along the tree-height gradient. After 2 years of N addition, dwarf trees resembled vigorously growing saplings. Addition of N also affected internal dynamics of N and P and caused increases in rates of photosynthesis. These findings contrast with results for a R. mangle-dominated forest in Belize where the fringe is N-limited, but the dwarf zone is P-limited and the transition zone is co-limited by N and P. This study demonstrated that patterns of nutrient limitation in mangrove ecosystems are complex, that not all processes respond similarly to the same nutrient, and that similar habitats are not limited by the same nutrient when different mangrove forests are compared.

  8. Limited urban growth: London's street network dynamics since the 18th century.

    Directory of Open Access Journals (Sweden)

    A Paolo Masucci

    Full Text Available We investigate the growth dynamics of Greater London defined by the administrative boundary of the Greater London Authority, based on the evolution of its street network during the last two centuries. This is done by employing a unique dataset, consisting of the planar graph representation of nine time slices of Greater London's road network spanning 224 years, from 1786 to 2010. Within this time-frame, we address the concept of the metropolitan area or city in physical terms, in that urban evolution reveals observable transitions in the distribution of relevant geometrical properties. Given that London has a hard boundary enforced by its long standing green belt, we show that its street network dynamics can be described as a fractal space-filling phenomena up to a capacitated limit, whence its growth can be predicted with a striking level of accuracy. This observation is confirmed by the analytical calculation of key topological properties of the planar graph, such as the topological growth of the network and its average connectivity. This study thus represents an example of a strong violation of Gibrat's law. In particular, we are able to show analytically how London evolves from a more loop-like structure, typical of planned cities, toward a more tree-like structure, typical of self-organized cities. These observations are relevant to the discourse on sustainable urban planning with respect to the control of urban sprawl in many large cities which have developed under the conditions of spatial constraints imposed by green belts and hard urban boundaries.

  9. Limited urban growth: London's street network dynamics since the 18th century.

    Science.gov (United States)

    Masucci, A Paolo; Stanilov, Kiril; Batty, Michael

    2013-01-01

    We investigate the growth dynamics of Greater London defined by the administrative boundary of the Greater London Authority, based on the evolution of its street network during the last two centuries. This is done by employing a unique dataset, consisting of the planar graph representation of nine time slices of Greater London's road network spanning 224 years, from 1786 to 2010. Within this time-frame, we address the concept of the metropolitan area or city in physical terms, in that urban evolution reveals observable transitions in the distribution of relevant geometrical properties. Given that London has a hard boundary enforced by its long standing green belt, we show that its street network dynamics can be described as a fractal space-filling phenomena up to a capacitated limit, whence its growth can be predicted with a striking level of accuracy. This observation is confirmed by the analytical calculation of key topological properties of the planar graph, such as the topological growth of the network and its average connectivity. This study thus represents an example of a strong violation of Gibrat's law. In particular, we are able to show analytically how London evolves from a more loop-like structure, typical of planned cities, toward a more tree-like structure, typical of self-organized cities. These observations are relevant to the discourse on sustainable urban planning with respect to the control of urban sprawl in many large cities which have developed under the conditions of spatial constraints imposed by green belts and hard urban boundaries.

  10. Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model

    Science.gov (United States)

    Liu, Xing; Chen, Fei; Barlage, Michael; Zhou, Guangsheng; Niyogi, Dev

    2016-12-01

    Croplands are important in land-atmosphere interactions and in the modification of local and regional weather and climate; however, they are poorly represented in the current version of the coupled Weather Research and Forecasting/Noah with multiparameterization (Noah-MP) land surface modeling system. This study introduced dynamic corn (Zea mays) and soybean (Glycine max) growth simulations and field management (e.g., planting date) into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at field scales using crop biomass data sets, surface heat fluxes, and soil moisture observations. Compared to the generic dynamic vegetation and prescribed-leaf area index (LAI)-driven methods in Noah-MP, the Noah-MP-Crop showed improved performance in simulating leaf area index (LAI) and crop biomass. This model is able to capture the seasonal and annual variability of LAI and to differentiate corn and soybean in peak values of LAI as well as the length of growing seasons. Improved simulations of crop phenology in Noah-MP-Crop led to better surface heat flux simulations, especially in the early period of growing season where current Noah-MP significantly overestimated LAI. The addition of crop yields as model outputs expand the application of Noah-MP-Crop to regional agriculture studies. There are limitations in the use of current growing degree days (GDD) criteria to predict growth stages, and it is necessary to develop a new method that combines GDD with other environmental factors, to more accurately define crop growth stages. The capability introduced in Noah-MP allows further crop-related studies and development.

  11. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis.

    Directory of Open Access Journals (Sweden)

    Mayssa Nassour

    Full Text Available BACKGROUND: Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT "master genes". EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question. METHODOLOGY/PRINCIPAL FINDINGS: Using a Slug-lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10-20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres. CONCLUSIONS/SIGNIFICANCE: We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a

  12. Slug Controls Stem/Progenitor Cell Growth Dynamics during Mammary Gland Morphogenesis

    Science.gov (United States)

    Selmi, Abdelkader; Côme, Christophe; Faraldo, Maria-Luisa M.; Deugnier, Marie-Ange; Savagner, Pierre

    2012-01-01

    Background Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT) “master genes”. EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question. Methodology/Principal Findings Using a Slug–lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10–20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres. Conclusions/Significance We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a key mechanism

  13. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Attwood, David [University of California Berkeley

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  14. Femtosecond infrared spectroscopy of channelrhodopsin-1 chromophore isomerization

    Directory of Open Access Journals (Sweden)

    T. Stensitzki

    2016-07-01

    Full Text Available Vibrational dynamics of the retinal all-trans to 13-cis photoisomerization in channelrhodopsin-1 from Chlamydomonas augustae (CaChR1 was investigated by femtosecond visible pump mid-IR probe spectroscopy. After photoexcitation, the transient infrared absorption of C-C stretching modes was detected. The formation of the 13-cis photoproduct marker band at 1193 cm−1 was observed within the time resolution of 0.3 ps. We estimated the photoisomerization yield to (60 ± 6 %. We found additional time constants of (0.55 ± 0.05 ps and (6 ± 1 ps, assigned to cooling, and cooling processes with a back-reaction pathway. An additional bleaching band demonstrates the ground-state heterogeneity of retinal.

  15. Filming Femtosecond Molecular Movies with X-ray Pulses

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov

    This thesis describes the investigation of time-resolved phenomena using X-ray techniques, and in particular the new possibilities and challenges arising from the application of these techniques on the femtosecond time-scale. The thesis will review the processes following laser excitation...... of molecular species in solution, describing the interplay between electronic and structural dynamics, as well as the role of the solvent. This will be followed by an introduction of the three X-ray techniques used in this work, and it will be shown how the application of these techniques in a laser pump / X...... yielded by (and the practical challenges connected to) their simultaneous implementation in a single experiment. Finally, the experimental results of a signicant set of laser pump / X-ray probe experiments will be presented and discussed in order to gauge the applicability of these techniques as tools...

  16. Femtosecond Studies Of Coulomb Explosion Utilizing Covariance Mapping

    CERN Document Server

    Card, D A

    2000-01-01

    The studies presented herein elucidate details of the Coulomb explosion event initiated through the interaction of molecular clusters with an intense femtosecond laser beam (≥1 PW/cm2). Clusters studied include ammonia, titanium-hydrocarbon, pyridine, and 7-azaindole. Covariance analysis is presented as a general technique to study the dynamical processes in clusters and to discern whether the fragmentation channels are competitive. Positive covariance determinations identify concerted processes such as the concomitant explosion of protonated cluster ions of asymmetrical size. Anti- covariance mapping is exploited to distinguish competitive reaction channels such as the production of highly charged nitrogen atoms formed at the expense of the protonated members of a cluster ion ensemble. This technique is exemplified in each cluster system studied. Kinetic energy analyses, from experiment and simulation, are presented to fully understand the Coulomb explosion event. A cutoff study strongly suggests that...

  17. Femtosecond upconverted photocurrent spectroscopy of InAs quantum nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Tex, David M.; Kanemitsu, Yoshihiko, E-mail: kanemitu@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Japan Science and Technology Agency, CREST, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kamiya, Itaru [Toyota Technological Institute, Nagoya, Aichi 468-8511 (Japan)

    2015-07-06

    The carrier upconversion dynamics in InAs quantum nanostructures are studied for intermediate-band solar-cell applications via ultrafast photoluminescence and photocurrent (PC) spectroscopy based on femtosecond excitation correlation (FEC) techniques. Strong upconverted PC-FEC signals are observed under resonant excitation of quantum well islands (QWIs), which are a few monolayer-thick InAs quantum nanostructures. The PC-FEC signal typically decays within a few hundred picoseconds at room temperature, which corresponds to the carrier lifetime in QWIs. The photoexcited electron and hole lifetimes in InAs QWIs are evaluated as functions of temperature and laser fluence. Our results provide solid evidence for electron–hole–hole Auger process, dominating the carrier upconversion in InAs QWIs at room temperature.

  18. A Molecular Dynamics Study on the Constraint Conditions of the Particle Growth Process in Laser Synthesis of Nanopowders

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available Laser-induced chemical vapor deposition (LICVD is a nanopowder synthesis method in which the nanoparticles of a synthetic product undergo nucleation, growth, and agglomeration. The growth process is crucial because it directly determines the growth rate and final size of nanoparticles. In this paper, the nanoparticle growth process is analyzed through a molecular dynamics study, and the process is divided into five steps. In addition, this study explains the microscopic heat and mass transfer processes that occur in the surrounding space and on the particulate surface. Three constraint conditions that may restrict the growth process, namely, transfer constraint, surface constraint, and temperature constraint conditions, are proposed and modeled. To calculate the final diameter and the nanoparticle growth rate, formulae for the constraint conditions are developed. The behavior of four gases in the particulate growth zone is discussed in detail.

  19. Mosquitocidal Bacillus amyloliquefaciens: dynamics of growth & production of novel pupicidal biosurfactant.

    Science.gov (United States)

    Geetha, I; Aruna, R; Manonmani, A M

    2014-09-01

    A strain of Bacillus amyloliquefaciens (VCRC B483) producing mosquito larvicidal and pupicidal biosurfactant was isolated from mangrove forest soil. The present study was aimed at studying the kinetics of growth and production of the mosquitocidal biosurfactant by this bacterium. Dynamics of growth, sporulation and production of mosquitocidal biosurfactant were studied by standard microbiological methods. The mosquitocidal biosurfactant was precipitated from the culture supernatant and bioassayed against immature stages of mosquito vectors to determine lethal dose and lethal time. The activity, biological and biochemical properties of the biosurfactant have also been studied. The pupal stages of mosquitoes were found to be more vulnerable to the biosurfactant produced by this bacterium with Anopheles stephensi being the most vulnerable species. The median lethal time (LT 50 ) was found to be 1.23 h when the pupal stages of the above species were exposed to lethal concentration LC 90 (9 µg/ml) dosage of the biosurfactant. Production of biosurfactant was found to increase with incubation time and maximum biomass, maximum quantity of biosurfactant (7.9 mg/ml), maximum biosurfactant activity (6 kBS unit/mg) and maximum mosquitocidal activity (5 µg/ml) were attained by 72 h of growth. The lipopeptide nature of the biosurfactant was confirmed by β-haemolysis, lipase activity, biofilm forming capacity, thermostability and biochemical analysis. The mosquitocidal biosurfactant produced by B. amyloliquefaciens (VCRC B483) may be a prospective alternative molecule for use in mosquito control programmes involving bacterial biopesticides.

  20. Molecular dynamics simulations for the growth of CH4-CO2 mixed hydrate

    Institute of Scientific and Technical Information of China (English)

    Lizhi Yi; Deqing Liang; Xuebing Zhou; Dongliang Li

    2014-01-01

    Molecular dynamics simulations are performed to study the growth mechanism of CH4-CO2 mixed hydrate in xCO2=75%, xCO2=50%, and xCO2=25%systems at T =250 K, 255 K and 260 K, respectively. Our simulation results show that the growth rate of CH4-CO2 mixed hydrate increases as the CO2 concentration in the initial solution phase increases and the temperature decreases. Via hydrate formation, the composition of CO2 in hydrate phase is higher than that in initial solution phase and the encaging capacity of CO2 in hydrates increases with the decrease in temperature. By analysis of the cage occupancy ratio of CH4 molecules and CO2 molecules in large cages to small cages, we find that CO2 molecules are preferably encaged into the large cages of the hydrate crystal as compared with CH4 molecules. Interestingly, CH4 molecules and CO2 molecules frequently replace with each other in some particular cage sites adjacent to hydrate/solution interface during the crystal growth process. These two species of guest molecules eventually act to stabilize the newly formed hydrates, with CO2 molecules occupying large cages and CH4 molecules occupying small cages in hydrate.