WorldWideScience

Sample records for female b6d2f1 mice

  1. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training

    Raber, Jacob; Weber, Sydney J.; Kronenberg, Amy; Turker, Mitchell S.

    2016-06-01

    The space radiation environment includes energetic charged particles that may impact behavioral and cognitive performance. The relationship between the dose and the ionization density of the various types of charged particles (expressed as linear energy transfer or LET), and cognitive performance is complex. In our earlier work, whole body exposure to 28Si ions (263 MeV/n, LET = 78keV / μ m ; 1.6 Gy) affected contextual fear memory in C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation but this was not the case following exposure to 48Ti ions (1 GeV/n, LET = 107keV / μ m ; 0.2 or 0.4 Gy). As an increased understanding of the impact of charged particle exposures is critical for assessment of risk to the CNS of astronauts during and following missions, in this study we used 40Ca ion beams (942 MeV/n, LET = 90keV / μm) to determine the behavioral and cognitive effects for the LET region between that of Si ions and Ti ions. 40Ca ion exposure reduced baseline activity in a novel environment in a dose-dependent manner, which suggests reduced motivation to explore and/or a diminished level of curiosity in a novel environment. In addition, exposure to 40Ca ions had sex-dependent effects on response to shock. 40Ca ion irradiation reduced the response to shock in female, but not male, mice. In contrast, 40Ca ion irradiation did not affect fear learning, memory, or extinction of fear memory for either gender at the doses employed in this study. Thus 40Ca ion irradiation affected behavioral, but not cognitive, performance. The effects of 40Ca ion irradiation on behavioral performance are relevant, as a combination of novelty and aversive environmental stimuli is pertinent to conditions experienced by astronauts during and following space missions.

  2. Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice.

    Raber, Jacob; Torres, Eileen Ruth S; Akinyeke, Tunde; Lee, Joanne; Weber Boutros, Sydney J; Turker, Mitchell S; Kronenberg, Amy

    2018-04-20

    The space radiation environment includes helium (⁴He) ions that may impact brain function. As little is known about the effects of exposures to ⁴He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with ⁴He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. ⁴He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear

  3. Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice

    Jacob Raber

    2018-04-01

    Full Text Available The space radiation environment includes helium (4He ions that may impact brain function. As little is known about the effects of exposures to 4He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1 mice three months following irradiation with 4He ions (250 MeV/n; linear energy transfer (LET = 1.6 keV/μm; 0, 21, 42 or 168 cGy. Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. 4He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2 in the cortex. There was an effect of radiation on apolipoprotein E (apoE levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued

  4. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  5. Age-related deterioration of rod vision in mice.

    Kolesnikov, Alexander V; Fan, Jie; Crouch, Rosalie K; Kefalov, Vladimir J

    2010-08-18

    Even in healthy individuals, aging leads to deterioration in visual acuity, contrast sensitivity, visual field, and dark adaptation. Little is known about the neural mechanisms that drive the age-related changes of the retina and, more specifically, photoreceptors. According to one hypothesis, the age-related deterioration in rod function is due to the limited availability of 11-cis-retinal for rod pigment formation. To determine how aging affects rod photoreceptors and to test the retinoid-deficiency hypothesis, we compared the morphological and functional properties of rods of adult and aged B6D2F1/J mice. We found that the number of rods and the length of their outer segments were significantly reduced in 2.5-year-old mice compared with 4-month-old animals. Aging also resulted in a twofold reduction in the total level of opsin in the retina. Behavioral tests revealed that scotopic visual acuity and contrast sensitivity were decreased by twofold in aged mice, and rod ERG recordings demonstrated reduced amplitudes of both a- and b-waves. Sensitivity of aged rods determined from single-cell recordings was also decreased by 1.5-fold, corresponding to not more than 1% free opsin in these photoreceptors, and kinetic parameters of dim flash response were not altered. Notably, the rate of rod dark adaptation was unaffected by age. Thus, our results argue against age-related deficiency of 11-cis-retinal in the B6D2F1/J mouse rod visual cycle. Surprisingly, the level of cellular dark noise was increased in aged rods, providing an alternative mechanism for their desensitization.

  6. Crybb2 deficiency impairs fertility in female mice

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  7. Crybb2 deficiency impairs fertility in female mice

    Gao, Qian; Sun, Li-Li; Xiang, Fen-Fen; Gao, Li; Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo; Zhang, Jun-Jie; Li, Wen-Jie

    2014-01-01

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2 −/− ) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2 −/− mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2 −/− mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2 −/− female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2 −/− mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2 −/− mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells

  8. Dim Light at Night Increases Body Mass of Female Mice

    Aubrecht, Taryn G.; Jenkins, Richelle; Nelson, Randy J.

    2014-01-01

    During the past century the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16h light at ~150 lux/8h dark at ~0 lux) cycle or to light/dim light at night (dLAN; 16h light at ~150 lux/8h dim light at ~5 lux) cycles for six weeks. Females exposed to dLAN increased the rat...

  9. Dim light at night increases body mass of female mice.

    Aubrecht, Taryn G; Jenkins, Richelle; Nelson, Randy J

    2015-05-01

    During the past century, the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16 h light at ∼150 lux/8 h dark at ∼0 lux) cycle or to light/dim light at night (dLAN; 16 h light at ∼150 lux/8 h dim light at ∼5 lux) cycles for six weeks. Females exposed to dLAN increased the rate of change in body mass compared to LD mice despite reduced total food intake during weeks five and six, suggesting that dLAN disrupted circadian rhythms resulting in deranged metabolism.

  10. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    Yung-Hsiang Chen

    Full Text Available Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI. Wild-type (ERβ(+/+ and knockout (ERβ(-/- female mice were generated (aged 6-8 weeks, n = 6 and urethral function and protein expression were measured. Leak point pressures (LPP and maximum urethral closure pressure (MUCP were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+ group, the LPP and MUCP values of the ERβ(-/- group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/- female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/- mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/- female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  11. Social isolation during puberty affects female sexual behavior in mice

    Jasmina eKercmar

    2014-09-01

    Full Text Available Exposure to stress during puberty can lead to long-term behavioral alterations in adult rodents coincident with sex steroid hormone-dependent brain remodeling and reorganization. Social isolation is a stress for social animals like mice, but little is known about the effects of such stress during adolescence on later reproductive behaviors. The present study examined sexual behavior of ovariectomized, estradiol and progesterone primed female mice that were individually housed from 25 days of age until testing at approximately 95 days, or individually housed from day 25 until day 60 (during puberty, followed by housing in social groups. Mice in these isolated groups were compared to females that were group housed throughout the experiment. Receptive sexual behaviors of females and behaviors of stimulus males were recorded. Females housed in social groups displayed greater levels of receptive behaviors in comparison to both socially isolated groups. Namely, social females had higher lordosis quotients and more often displayed stronger lordosis postures in comparison to isolated females. No differences between female groups were observed in stimulus male sexual behavior suggesting that female ’attractiveness’ was not affected by their social isolation. Females housed in social groups had fewer cells containing immunoreactive estrogen receptor (ER α in the anteroventral periventricular nucleus (AVPV and in the ventromedial nucleus of the hypothalamus (VMH than both isolated groups. These results suggest that isolation during adolescence affects female sexual behavior and re-socialization for one month in adulthood is insufficient to rescue lordosis behavior from the effects of social isolation during the pubertal period.

  12. Augmented healing process in female mice with acute myocardial infarction.

    Wang, Fangfei; Keimig, Thomas; He, Quan; Ding, Jennifer; Zhang, Zhenggang; Pourabdollah-Nejad, Siamak; Yang, Xiao-Ping

    2007-09-01

    It is well established that premenopausal women are protected from cardiovascular disease. This gender difference in favor of females is also demonstrated in animal studies. Our research group previously found that female mice had much lower incidence of cardiac rupture and mortality than did males during the acute phase of myocardial infarction (MI); however, the mechanisms responsible for such protection are not fully understood. The aim of this study was to determine whether the favorable cardiac effect observed in female mice with MI is due to an augmented healing process that includes less inflammation, reduced matrix degradation, and enhanced neovascularization. Twelve-week-old male and female C57BL/6J mice were subjected to MI by ligating the left anterior descending coronary artery and then euthanized at 1, 4, 7, or 14 days post-MI. Inflammatory cell infiltration and myofibroblast transformation, matrix metalloproteinase (MMP)-2 and MMP-9 activity, tissue inhibitor of metalloproteinase (TIMP)-I expression, and neovascularization were examined by immunohistochemistry, zymography, Western blot, and laser scanning confocal microscopy, respectively. Cardiac function was evaluated by echocardiography on day 14. We found that: (1) neutrophil infiltration during the early phase of MI (1-4 days) was much lower in females than in males and was associated with lower MMP-9 activity and higher TIMP-1 protein expression, indicating less-exaggerated inflammation and extracellular matrix degradation in females; (2) myofibroblast transformation, as indicated by expression of alpha-smooth muscle actin, was significantly greater in females than in males at day 7 of MI (Pvascular area in the infarct border) was markedly increased in females, and was associated with better preserved cardiac function and less left ventricular dilatation. Our data suggest that less-exaggerated early inflammation and augmented reparative fibrotic response, indicated by enhanced myofibroblast

  13. Female preproenkephalin-knockout mice display altered emotional responses

    Ragnauth, A.; Schuller, A.; Morgan, M.; Chan, J.; Ogawa, S.; Pintar, J.; Bodnar, R. J.; Pfaff, D. W.

    2001-01-01

    The endogenous opioid system has been implicated in sexual behavior, palatable intake, fear, and anxiety. The present study examined whether ovariectomized female transgenic preproenkephalin-knockout (PPEKO) mice and their wild-type and heterozygous controls displayed alterations in fear and anxiety paradigms, sucrose intake, and lordotic behavior. To examine stability of responding, three squads of the genotypes were tested across seasons over a 20-month period. In a fear-conditioning paradigm, PPEKO mice significantly increased freezing to both fear and fear + shock stimuli relative to controls. In the open field, PPEKO mice spent significantly less time and traversed significantly less distance in the center of an open field than wild-type controls. Further, PPEKO mice spent significantly less time and tended to be less active on the light side of a dark–light chamber than controls, indicating that deletion of the enkephalin gene resulted in exaggerated responses to fear or anxiety-provoking environments. These selective deficits were observed consistently across testing squads spanning 20 months and different seasons. In contrast, PPEKO mice failed to differ from corresponding controls in sucrose, chow, or water intake across a range (0.0001–20%) of sucrose concentrations and failed to differ in either lordotic or female approach to male behaviors when primed with estradiol and progesterone, thereby arguing strongly for the selectivity of a fear and anxiety deficit which was not caused by generalized and nonspecific debilitation. These transgenic data strongly suggest that opioids, and particularly enkephalin gene products, are acting naturally to inhibit fear and anxiety. PMID:11172058

  14. Docetaxel chronopharmacology in mice.

    Tampellini, M; Filipski, E; Liu, X H; Lemaigre, G; Li, X M; Vrignaud, P; François, E; Bissery, M C; Lévi, F

    1998-09-01

    Docetaxel tolerance and antitumor efficacy could be enhanced if drug administration was adapted to circadian rhythms. This hypothesis was investigated in seven experiments involving a total of 626 male B6D2F1 mice, synchronized with an alternation of 12 h of light and 12 h of darkness (12:12), after i.v. administration of docetaxel. In experiment (Exp) 1, the drug was given once a week (wk) for 6 wks (20 mg/kg/wk) or for 5 wks (30 mg/kg/wk) at one of six circadian times, during light when mice were resting [3, 7, or 11 hours after light onset (HALO)], or during darkness, when mice were active (15, 19, or 23 HALO). Endpoints were survival and body weight change. In Exp 2 and 3, docetaxel (30 mg/kg/wk) was administered twice, 1 wk apart, at one of four circadian stages (7, 11, 19, or 23 HALO). Endpoints were hematological and intestinal toxicities. In Exp 4, circadian changes in cell cycle phase distribution and BCL-2 immunofluorescence were investigated in bone marrow as possible mechanisms of docetaxel tolerability rhythm. In Exp 5 to 7, docetaxel was administered to mice bearing measurable P03 pancreatic adenocarcinoma (270-370 mg), with tumor weight and survival as endpoints. Mice from Exp 5 and 6 received a weekly schedule of docetaxel at one of six circadian stages (20 or 30 mg/kg/wk at 3, 7, 11, 15, 19, or 23 HALO). In Exp 7, docetaxel (30 mg/kg) was given every 2 days (day 1, 3, 5 schedule) at 7, 11, 19, or 23 HALO. Docetaxel dosing in the second half of darkness (19 or 23 HALO) resulted in significantly worse toxicity than its administration during the light span (3, 7, or 11 HALO). The survival rate ranged from 56.3% in the mice treated at 23 HALO to 93.8 or 87.5% in those injected at 3 or 11 HALO, respectively (Exp 1, P active at 11 HALO (percentage increase in life span, 390%) and least active at 23 HALO (210%). Docetaxel tolerability and antitumor efficacy were simultaneously enhanced by drug dosing in the light span, when mice were resting. Mechanisms

  15. Male mice ultrasonic vocalizations enhance female sexual approach and hypothalamic kisspeptin neuron activity.

    Asaba, Akari; Osakada, Takuya; Touhara, Kazushige; Kato, Masahiro; Mogi, Kazutaka; Kikusui, Takefumi

    2017-08-01

    Vocal communication in animals is important for ensuring reproductive success. Male mice emit song-like "ultrasonic vocalizations (USVs)" when they encounter female mice, and females show approach to the USVs. However, it is unclear whether USVs of male mice trigger female behavioral and endocrine responses in reproduction. In this study, we first investigated the relationship between the number of deliveries in breeding pairs for 4months and USVs syllables emitted from those paired males during 3min of sexual encounter with unfamiliar female mice. There was a positive correlation between these two indices, which suggests that breeding pairs in which males could emit USVs more frequently had more offspring. Further, we examined the effect of USVs of male mice on female sexual behavior. Female mice showed more approach behavior towards vocalizing males than devocalized males. Finally, to determine whether USVs of male mice could activate the neural system governing reproductive function in female mice, the activation of kisspeptin neurons, key neurons to drive gonadotropin-releasing hormone neurons in the hypothalamus, was examined using dual-label immunocytochemistry with cAMP response element-binding protein phosphorylation (pCREB). In the arcuate nucleus (Arc), the number of kisspeptin neurons expressing pCREB significantly increased after exposure to USVs of male as compared with noise exposure group. In conclusion, our results suggest that USVs of male mice promote fertility in female mice by activating both their approaching behavior and central kisspeptin neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Defining Subpopulations of Arcuate Nucleus GABA Neurons in Male, Female, and Prenatally Androgenized Female Mice.

    Marshall, Christopher J; Desroziers, Elodie; McLennan, Timothy; Campbell, Rebecca E

    2017-01-01

    Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, β-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. GABA neurons rarely co-localized with kisspeptin (95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons. © 2016 S. Karger AG, Basel.

  17. Apoptosis in spermatogonia irradiated P53 null mice

    Streit-Bianchi, M.; Hendry, J.H.; Roberts, S.A.; Morris, J.D.; Durgaryan, A.A.

    2007-01-01

    Complete text of publication follows. The exposure of germ cells to ionizing radiations is of concern both from high-dose therapeutic exposures and from low doses causing deleterious trans-generational mutations. P53 protein plays an important role in cellular damage and is expressed in the testis normally during meiosis, its expression being localised to the preleptotene and early/mid pachytene spermatocytes. P53 null mice, heterozygotes possessing a 129 Sv/C57BL6 genetic background and B6D2F1 mice have been irradiated to 1 and 2 Gy single doses. Fractionated exposures of 1+1 Gy at 4 hours interval were also carried out. Apoptosis induction, spermatogonia and spermatocytes survival were assessed by microscope analysis of histological samples at 4 to 96 hours after irradiation in time-course experiments. The same end-points were also assessed at 72 and 96 hours after irradiation to single doses in the region between 20cGy to 2Gy. A dose dependent level of p53 expression was observed at 4 hours after irradiation to 1 and 2 Gy which returned to normal level by 24 hours. Our data support a two process mode of apoptosis with a first wave around 12 hours followed by a second wave at 2-3 days. The first wave apoptosis is substantially reduced in p53 null mice whereas the second wave is reduced in B6D2F1 mice. The initial increase in apoptosis was delayed in some stages of the of germ cells development which were identified by the spermatids shape. Clear correlation exists between apoptosis and survival assessed in stage XI-XII Tubules 72 hours after irradiation. The data are in agreement with other data in literature indicating that irradiated spermatogonia die through apoptosis. The lack of apoptosis observed in p53 null mice results in a very high survival rate of daughter cells assessed later. Theses spermatocytes and the following progenitor cells are likely to carry mutations as most will not die in the smaller second wave of apoptosis observed 3 days after

  18. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    Olivier Brock

    Full Text Available The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus, as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  19. Female Mice Deficient in Alpha-Fetoprotein Show Female-Typical Neural Responses to Conspecific-Derived Pheromones

    Brock, O.; Keller, M.; Douhard, Q.; Bakker, J.

    2012-01-01

    The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to

  20. Comparison of the course of infection with Giardia muris in male and female mice.

    Daniels, C W; Belosevic, M

    1995-01-01

    The infection with Giardia muris in male and female C57BL/6 mice was characterized by enumerating cyst release in the feces and trophozoite burden in the small intestine. Cyst release differed between males and females during the course of the primary and challenge infections. Males and females released similar numbers of cysts in the feces during the acute phase of the infection. However, the trophozoite burden was significantly higher in males during the same period. Males released cysts in their feces longer than females and trophozoites present in their intestines for a longer period than females. From day 18 of infection the females did not release cysts in their feces, while males continued to do so for at least 60 days. Thus, distinct differences exist between male and female mice in their ability to harbor and eliminate this intestinal parasite.

  1. Influence of Ovarian Hormones on Strength Loss in Healthy and Dystrophic Female Mice

    Kosir, Allison M.; Mader, Tara L.; Greising, Angela G.; Novotny, Susan A.; Baltgalvis, Kristen A.; Lowe, Dawn A.

    2014-01-01

    Purpose The primary objective of this study was to determine if strength loss and recovery following eccentric contractions is impaired in healthy and dystrophic female mice with low levels of ovarian hormones. Methods Female C57BL/6 (wildtype) or mdx mice were randomly assigned to ovarian-intact (Sham) and ovariectomized (Ovx) groups. Anterior crural muscles were tested for susceptibility to injury from 150 or 50 eccentric contractions in wildtype and mdx mice, respectively. An additional experiment challenged mdx mice with a 2-wk treadmill running protocol followed by an eccentric contraction injury to posterior crural muscles. Functional recovery from injury was evaluated in wildtype mice by measuring isometric torque 3, 7, 14, or 21 days following injury. Results Ovarian hormone deficiency in wildtype mice did not impact susceptibility to injury as the ~50% isometric torque loss following eccentric contractions did not differ between Sham and Ovx mice (p=0.121). Similarly in mdx mice, hormone deficiency did not affect percent of pre injury isometric torque lost by anterior crural muscles following eccentric contractions (p=0.952), but the percent of pre injury torque in posterior crural muscles was lower in Ovx compared to Sham mice (p=0.014). Recovery from injury in wildtype mice was affected by hormone deficiency. Sham mice recovered pre injury isometric strength by 14 days (96 ± 2%) while Ovx mice maintained deficits at 14 and 21 days post injury (80 ± 3% and 84 ± 2%; phormone status did not impact the vulnerability of skeletal muscle to strength loss following eccentric contractions. However, ovarian hormone deficiency did impair the recovery of muscle strength in female mice. PMID:25255128

  2. Speciation and reduced hybrid female fertility in house mice.

    Suzuki, Taichi A; Nachman, Michael W

    2015-09-01

    In mammals, intrinsic postzygotic isolation has been well studied in males but has been less studied in females, despite the fact that female gametogenesis and pregnancy provide arenas for hybrid sterility or inviability that are absent in males. Here, we asked whether inviability or sterility is observed in female hybrids of Mus musculus domesticus and M. m. musculus, taxa which hybridize in nature and for which male sterility has been well characterized. We looked for parent-of-origin growth phenotypes by measuring adult body weights in F1 hybrids. We evaluated hybrid female fertility by crossing F1 females to a tester male and comparing multiple reproductive parameters between intrasubspecific controls and intersubspecific hybrids. Hybrid females showed no evidence of parent-of-origin overgrowth or undergrowth, providing no evidence for reduced viability. However, hybrid females had smaller litter sizes, reduced embryo survival, fewer ovulations, and fewer small follicles relative to controls. Significant variation in reproductive parameters was seen among different hybrid genotypes, suggesting that hybrid incompatibilities are polymorphic within subspecies. Differences in reproductive phenotypes in reciprocal genotypes were observed and are consistent with cyto-nuclear incompatibilities or incompatibilities involving genomic imprinting. These findings highlight the potential importance of reduced hybrid female fertility in the early stages of speciation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  3. The role of p38 in mitochondrial respiration in male and female mice.

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-07

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Female nursing partner choice in a population of wild house mice (Mus musculus domesticus).

    Harrison, Nicola; Lindholm, Anna K; Dobay, Akos; Halloran, Olivia; Manser, Andri; König, Barbara

    2018-01-01

    Communal nursing in house mice is an example of cooperation where females pool litters in the same nest and indiscriminately nurse own and other offspring despite potential exploitation. The direct fitness benefits associated with communal nursing shown in laboratory studies suggest it to be a selected component of female house mice reproductive behaviour. However, past studies on communal nursing in free-living populations have debated whether it is a consequence of sharing the same nest or an active choice. Here using data from a long-term study of free-living, wild house mice we investigated individual nursing decisions and determined what factors influenced a female's decision to nurse communally. Females chose to nurse solitarily more often than expected by chance, but the likelihood of nursing solitarily decreased when females had more partners available. While finding no influence of pairwise relatedness on partner choice, we observed that females shared their social environment with genetically similar individuals, suggesting a female's home area consisted of related females, possibly facilitating the evolution of cooperation. Within such a home area females were more likely to nest communally when the general relatedness of her available options was relatively high. Females formed communal nests with females that were familiar through previous associations and had young pups of usually less than 5 days old. Our findings suggest that communal nursing was not a by-product of sharing the same nesting sites, but females choose communal nursing partners from a group of genetically similar females, and ultimately the decision may then depend on the pool of options available. Social partner choice proved to be an integrated part of cooperation among females, and might allow females to reduce the conflict over number of offspring in a communal nest and milk investment towards own and other offspring. We suggest that social partner choice may be a general

  5. Varying levels of female promiscuity in four Apodemus mice species

    Bryja, Josef; Patzenhauerová, Hana; Albrecht, Tomáš; Mošanský, L.; Stanko, M.; Stopka, P.

    2008-01-01

    Roč. 63, č. 2 (2008), s. 251-260 ISSN 0340-5443 R&D Projects: GA MŠk MEB090802; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519 Keywords : mating systems * multiple paternity * wood mice * testis size Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.917, year: 2008

  6. Effects of Altered Levels of Extracellular Superoxide Dismutase and Irradiation on Hippocampal Neurogenesis in Female Mice

    Zou, Yani; Leu, David; Chui, Jennifer; Fike, John R.; Huang, Ting-Ting

    2013-01-01

    Purpose: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. Methods and Materials: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. Results: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. Conclusion: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted

  7. Selecting Female Mice in Estrus and Checking Plugs.

    Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras

    2016-08-01

    The female mouse estrous cycle is divided into four phases: proestrus (development of ovarian follicles), estrus (ovulation), metestrus (formation of corpora lutea), and diestrus (beginning of follicle development for next ovulation and elimination of previous oocytes). The appearance of the epithelium of the external genitalia is used to identify the stage of the estrous cycle of a female mouse. This is usually easier to see in strains with either no or only light skin pigmentation. By examining the color, moistness, and degree of swelling of the vagina, females in estrus can readily be identified. To set up the matings, females are examined in the afternoon, and those in estrus are placed into the cages with males (one or two females in each cage with one male). Usually, 50% or more of the selected females will mate. The presence of a vaginal copulation plug next morning indicates that mating has occurred, but it does not mean that a pregnancy will result even if proven breeder fertile males were used. It is important to check vaginal plugs early in the morning because they fall out or are no longer detectable ~12 h after mating or sometimes earlier. © 2016 Cold Spring Harbor Laboratory Press.

  8. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity.

    Cappel, David A; Lantier, Louise; Palmisano, Brian T; Wasserman, David H; Stafford, John M

    2015-01-01

    Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD). Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP) is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD) feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.

  9. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity.

    David A Cappel

    Full Text Available Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD. Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α. These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.

  10. Endothelial dysfunction of resistance vessels in female apolipoprotein E-deficient mice

    Vasquez Elisardo C

    2010-05-01

    Full Text Available Abstract Background The effects of hypercholesterolemia on vasomotricity in apolipoprotein E-deficient (ApoE mice, a murine model of spontaneous atherosclerosis, are still unclear. The studies were mostly performed in conductance vessels from male mice fed a high-fat diet. In the present study, we evaluated the endothelial function of resistance vessels from normal C57BL/6 (C57 and hypercholesterolemic (ApoE female mice in both normal and ovariectomized conditions. Methods Twenty week-old C57 and ApoE mice underwent ovariectomy or sham surgery and were studied 30 days later. The vascular reactivities to norepinephrine (NE, 10-9 to 2 × 10-3 mol/L, acetylcholine (ACh and sodium nitroprusside (SNP (10-10 to 10-3 mol/L were evaluated in the isolated mesenteric arteriolar bed through dose-response curves. Results ACh-induced relaxation was significantly reduced (P 50 (-5.67 ± 0.18 vs. -6.23 ± 0.09 mol/L. Ovariectomy caused a significant impairment in ACh-induced relaxation in the C57 group (maximal response: 61 ± 4% but did not worsen the deficient state of relaxation in ApoE animals (maximal response: 39 ± 5%. SNP-induced vasorelaxation and NE-induced vasoconstriction were similar in ApoE and C57 female mice. Conclusion These data show an impairment of endothelial function in the resistance vessels of spontaneously atherosclerotic (ApoE-deficient female mice compared with normal (C57 female mice. The endothelial dysfunction in hypercholesterolemic animals was so marked that ovariectomy, which impaired endothelial function in C57 mice, did not cause additional vascular damage in ApoE-deficient mice.

  11. Lepidium meyenii (Maca increases litter size in normal adult female mice

    Gasco Manuel

    2005-05-01

    Full Text Available Abstract Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i Reproductive indexes group, ii Implantation sites group and iii Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to

  12. Serum antibody responses by male and female C57Bl/6 mice infected with Giardia muris.

    Daniels, C W; Belosevic, M

    1994-09-01

    We compared the levels of serum antibodies in male and female C57Bl/6 mice during the primary and after challenge infection with Giardia muris. Male mice began passing cysts in their faeces earlier than females, and were shedding cysts for over 60 days, while females stopped shedding cysts by day 20 after infection. In both males and females there were significant increases in parasite-specific IgM 10 and 20 days after infection. No differences in parasite-specific serum IgA were observed until 40 days after infection. Parasite-specific IgG (whole) levels were elevated on days 20 and 40 in females, while males showed no significant increases. In addition, females had a much stronger IgG2b and IgG3 response than males. After challenge with either cysts or soluble parasite protein only the females had significant increases in specific anti-parasite IgG2b. Our data show differential ability of males and females to control the infection with G. muris is paralleled by a difference in the anti-parasite serum IgG response of the mice.

  13. Role of the vomeronasal system in intersexual attraction in female mice.

    Martínez-Ricós, J; Agustín-Pavón, C; Lanuza, E; Martínez-García, F

    2008-05-02

    Although it is generally accepted that rodents' sociosexual behavior relies mainly on chemosignals, the specific roles played by the vomeronasal and olfactory systems in detecting these signals are presently unclear. This work reports the results of three experiments aimed at clarifying the role of the vomeronasal system on gender recognition and intersexual attraction, by analyzing the effects of lesions of the accessory olfactory bulbs (AOB) in chemically naïve female mice. The first experiment demonstrates that lesions of the AOB abolish the preference that females show for male-soiled bedding in tests in which the females can contact the bedding, thus having access to both volatile and involatile male chemosignals. The second experiment shows that airborne male-derived chemosignals are not attractive to intact, chemically naïve females but tend to be preferentially explored by females whose AOB has been lesioned. However, repeated exposure to male-soiled bedding has opposite effects in sham-operated and AOB-lesioned female mice. Whereas after this experience sham-operated females show an (acquired) attraction toward male airborne chemosignals, in AOB-lesioned females the same experience makes male-derived volatiles aversive. Finally, in the third experiment we have confirmed that our AOB-lesioned females are able to detect urine-borne male odorants, as well as to discriminate them from the synthetic terpene geraniol. These findings strongly suggest that in mice, the involatile male sexual pheromone that is intrinsically attractive is detected by the vomeronasal system of the females. In addition, the repeated experience of females with male-soiled bedding would probably allow the association of this pheromone, acting as unconditioned stimulus, with olfactory stimuli (odorants) that therefore would become conditioned attractors to the females.

  14. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet

    Luis A. Martinez-Lemus

    2017-06-01

    Full Text Available Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD, high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC activity on endothelial cells (EnNaC. Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

  15. Potential contribution of progesterone receptors to the development of sexual behavior in male and female mice.

    Desroziers, Elodie; Brock, Olivier; Bakker, Julie

    2017-04-01

    We previously showed that estradiol can have both defeminizing and feminizing effects on the developing mouse brain. Pre- and early postnatal estradiol defeminized the ability to show lordosis in adulthood, whereas prepubertal estradiol feminized this ability. Furthermore, we found that estradiol upregulates progesterone receptors (PR) during development, inducing both a male-and female-typical pattern of PR expression in the mouse hypothalamus. In the present study, we took advantage of a newly developed PR antagonist (ZK 137316) to determine whether PR contributes to either male- or female-typical sexual differentiation. Thus groups of male and female C57Bl/6j mice were treated with ZK 137316 or OIL as control: males were treated neonatally (P0-P10), during the critical period for male sexual differentiation, and females were treated prepubertally (P15-P25), during the critical period for female sexual differentiation. In adulthood, mice were tested for sexual behavior. In males, some minor effects of neonatal ZK treatment on sexual behavior were observed: latencies to the first mount, intromission and ejaculation were decreased in neonatally ZK treated males; however, this effect disappeared by the second mating test. By contrast, female mice treated with ZK during the prepubertal period showed significantly less lordosis than OIL-treated females. Mate preferences were not affected in either males or females treated with ZK during development. Taken together, these results suggest a role for PR and thus perhaps progesterone in the development of lordosis behavior in female mice. By contrast, no obvious role for PR can be discerned in the development of male sexual behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Male mice song syntax depends on social contexts and influences female preferences

    Jonathan eChabout

    2015-04-01

    Full Text Available In 2005 Holy & Guo advanced the idea that male mice produce ultrasonic vocalizations (USV with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

  17. Chronic nicotine differentially alters spontaneous recovery of contextual fear in male and female mice.

    Tumolo, Jessica M; Kutlu, Munir Gunes; Gould, Thomas J

    2018-04-02

    Post-traumatic stress disorder (PTSD) is a devastating disorder with symptoms such as flashbacks, hyperarousal, and avoidance of reminders of the traumatic event. Exposure therapy, which attempts to extinguish fear responses, is a commonly used treatment for PTSD but relapse following successful exposure therapy is a frequent problem. In rodents, spontaneous recovery (SR), where extinguished fear responses resurface following extinction treatment, is used as a model of fear relapse. Previous studies from our lab showed that chronic nicotine impaired fear extinction and acute nicotine enhanced SR of contextual fear in adult male mice. In addition, we showed that acute nicotine's effects were specific to SR as acute nicotine did not affect recall of contextual fear conditioning in the absence of extinction. However, effects of chronic nicotine administration on SR are not known. Therefore, in the present study, we investigated if chronic nicotine administration altered SR or recall of contextual fear in adult male and female C57BL/6J mice. Our results showed that chronic nicotine significantly enhanced SR in female mice and significantly decreased SR in males. Chronic nicotine had no effect on recall of contextual fear in males or females. Female sham mice also had significantly less baseline SR than male sham mice. Overall, these results demonstrate sex differences in SR of fear memories and that chronic nicotine modulates these effects on SR but nicotine does not alter recall of contextual fear. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Female scent signals enhance the resistance of male mice to influenza.

    Ekaterina A Litvinova

    Full Text Available BACKGROUND: The scent from receptive female mice functions as a signal, which stimulates male mice to search for potential mating partners. This searching behavior is coupled with infection risk due to sniffing both scent marks as well as nasal and anogenital areas of females, which harbor bacteria and viruses. Consideration of host evolution under unavoidable parasitic pressures, including helminthes, bacteria, viruses, etc., predicts adaptations that help protect hosts against the parasites associated with mating. METHODS AND FINDINGS: We propose that the perception of female signals by BALB/c male mice leads to adaptive redistribution of the immune defense directed to protection against respiratory infection risks. Our results demonstrate migration of macrophages and neutrophils to the upper airways upon exposure to female odor stimuli, which results in an increased resistance of the males to experimental influenza virus infection. This moderate leukocyte intervention had no negative effect on the aerobic performance in male mice. CONCLUSIONS: Our data provide the first demonstration of the adaptive immunological response to female odor stimuli through induction of nonspecific immune responses in the upper respiratory tract.

  19. Dopamine D5 receptor modulates male and female sexual behavior in mice.

    Kudwa, A E; Dominguez-Salazar, E; Cabrera, D M; Sibley, D R; Rissman, E F

    2005-07-01

    Dopamine exerts its actions through at least five receptor (DAR) isoforms. In female rats, D5 DAR may be involved in expression of sexual behavior. We used a D5 knockout (D5KO) mouse to assess the role of D5 DAR in mouse sexual behavior. Both sexes of D5KO mice are fertile and exhibit only minor disruptions in exploratory locomotion, startle, and prepulse inhibition responses. This study was conducted to characterize the sexual behavior of male and female D5KO mice relative to their WT littermates. Female WT and D5KO littermates were ovariectomized and given a series of sexual behavior tests after treatment with estradiol benzoate (EB) and progesterone (P). Once sexual performance was optimal the dopamine agonist, apomorphine (APO), was substituted for P. Male mice were observed in pair- and trio- sexual behavior tests. To assess whether the D5 DAR is involved in rewarding aspects of sexual behavior, WT and D5KO male mice were tested for conditioned place preference. Both WT and D5KO females can display receptivity after treatment with EB and P, but APO was only able to facilitate receptivity in EB-primed WT, not in D5KO, mice. Male D5KO mice display normal masculine sexual behavior in mating tests. In conditioned preference tests, WT males formed a conditioned preference for context associated with either intromissions alone or ejaculation as the unconditioned stimulus. In contrast, D5KO males only showed a place preference when ejaculation was paired with the context. In females, the D5 DAR is essential for the actions of dopamine on receptivity. In males, D5 DAR influences rewarding aspects of intromissions. Taken together, the work suggests that the D5 receptor mediates dopamine's action on sexual behavior in both sexes, perhaps via a reward pathway.

  20. Male mice emit distinct ultrasonic vocalizations when the female leaves the social interaction arena

    Mu eYang

    2013-11-01

    Full Text Available Adult male mice emit large number of complex ultrasonic vocalizations (USVs when interacting with adult females. Call numbers and call categories differ greatly among inbred mouse strains. Little is known about USV emissions when the social partner departs. To investigate whether call repertoires and call rates are different when the male is interacting with a female and after the removal of the female, we designed a novel male-female social interaction test in which vocalizations were recorded across three phases. During phase 1, the male subject freely interacts with an unfamiliar estrus female mouse in a clean cage for 5 minutes. During phase 2, the female is removed while the male remains in the cage for 3 minutes. During phase 3, the same female is returned to the cage to rejoin the male subject mouse for 3 minutes. C57BL/6J (B6, FVB.129P2-Pde6b(+ Tyr(c-ch/Ant (FVB, and BTBR T+ tf/J (BTBR male subject mice were tested in this paradigm. All three strains emitted USVs during the absence of the estrous female, although at lower rates. When the female was reintroduced in phase 3, numbers of USVs were similar to the initial introductory phase 1. Strain comparisons indicated fewer calls in pairs of BTBR males and stimulus females than in pairs of B6 males and stimulus females and pairs of FVB males and stimulus females. In the absence of the female, all FVB males vocalized, while only one third of B6 males and one third of BTBR males vocalized. In all three strains, changes in call repertoires were detected after the female was removed. Call categories reverted to the phase 1 pattern when the female was returned in phase 3. Present findings indicate that males of commonly used inbred strains emit USVs when a partner female leaves the testing arena, suggesting that removing a salient social stimulus may be a unique approach to elicit USVs from mice. Our three-phase paradigm may also be useful for studying attention to social cues, and qualitative

  1. No evidence for female discrimination against male house mice carrying a selfish genetic element.

    Sutter, Andreas; Lindholm, Anna K

    2016-12-01

    Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased brood sex ratios. Given these costs, evidence for female discrimination against male carriers is surprisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows strong transmission distortion in males and is typically homozygote lethal. As a consequence, mating between 2 t heterozygous (+/ t ) mice leads to high embryo mortality. Previous experiments showing that +/ t females avoid this incompatibility cost by preferring +/+ versus +/ t males have inferred preference based on olfactory cues or brief social interactions. Evidence from mating contexts in laboratory settings and semi-natural populations has been inconclusive. Here, we investigated female choice from a large number of no-choice mating trials. We found no evidence for discrimination against +/ t males based on mating, remating, and copulatory behavior. Further, we found no evidence for avoidance of incompatibility through selective interactions between gametes. The likelihood of mating showed significant effects of female weight and genotype, suggesting that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limitations of our approach. By explicitly considering selection at both the individual and gene level, we argue why precopulatory female discrimination by +/ t females may be less evolutionarily stable than discrimination by all females based on postcopulatory mechanisms.

  2. Fibroblast growth factor 21 has no direct role in regulating fertility in female mice

    Garima Singhal

    2016-08-01

    Full Text Available Objective: Reproduction is an energetically expensive process. Insufficient calorie reserves, signaled to the brain through peripheral signals such as leptin, suppress fertility. Recently, fibroblast growth factor 21 (FGF21 was implicated as a signal from the liver to the hypothalamus that directly inhibits the hypothalamic–gonadotropin axis during fasting and starvation. However, FGF21 itself increases metabolic rate and can induce weight loss, which suggests that the effects of FGF21 on fertility may not be direct and may reflect changes in energy balance. Methods: To address this important question, we evaluated fertility in several mouse models with elevated FGF21 levels including ketogenic diet fed mice, fasted mice, mice treated with exogenous FGF21 and transgenic mice over-expressing FGF21. Results: We find that ketogenic diet fed mice remain fertile despite significant elevation in serum FGF21 levels. Absence of FGF21 does not alter transient infertility induced by fasting. Centrally infused FGF21 does not suppress fertility despite its efficacy in inducing browning of inguinal white adipose tissue. Furthermore, a high fat diet (HFD can restore fertility of female FGF21-overexpressing mice, a model of growth restriction, even in the presence of supraphysiological serum FGF21 levels. Conclusions: We conclude that FGF21 is not a direct physiological regulator of fertility in mice. The infertility observed in FGF21 overexpressing mice is likely driven by the increased energy expenditure and consequent excess calorie requirements resulting from high FGF21 levels. Keywords: FGF21, Fertility, Leptin, Hypothalamic action

  3. Efficacy of protocols for induction of chronic hyperthyroidism in male and female mice.

    Engels, Kathrin; Rakov, Helena; Zwanziger, Denise; Hönes, Georg Sebastian; Rehders, Maren; Brix, Klaudia; Köhrle, Josef; Möller, Lars Christian; Führer, Dagmar

    2016-10-01

    Protocols for induction of hyperthyroidism in mice are highly variable and mostly involve short-term thyroid hormone (TH) treatment. In addition, little is known about a possible influence of sex on experimental TH manipulation. Here we analyzed the efficacy of intraperitoneal vs. oral levothyroxine (T4) administration to induce chronic hyperthyroidism in male and female mice and asked which T4 dosing intervals are required to achieve stable organ thyrotoxicosis. T4 was administered intraperitoneally or orally over a period of 6/7 weeks. Assessment included monitoring of body weight, TH serum concentrations, and serial quantitative TH target gene expression analysis in liver and heart. Our results show that both intraperitoneal and oral T4 treatment are reliable methods for induction of chronic hyperthyroidism in mice. Thereby T4 injection intervals should not exceed 48 h and oral levothyroxine should be administered continuously during experiments and up to sacrifice to ensure a hyperthyroid organ state. Furthermore, we found a sex-dependent variation in levothyroxine-induced TH serum state, with significantly higher T4 concentrations in female mice, while expression of investigated classical TH responsive genes in liver and heart did not vary with animal's sex. In summary, our study shows that common approaches for rendering rodents thyrotoxic can also be used for induction of chronic hyperthyroidism in male and female mice. Thereby T4 dosing intervals are critical as are read-out parameters to verify a chronic thyrotoxic organ state.

  4. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice

    Hougaard, Karin S.; Jackson, Petra; Kyjovska, Zdenka O.

    2013-01-01

    We studied the effects of preconceptional exposure to multiwalled carbon nanotubes (MWCNTs): mature, female C57BL/6J mice were intratracheally instilled with 67μg NM-400 MWCNT, and the following day co-housed with mature males, in breeding pairs. Time to delivery of the first litter, litter...

  5. Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder

    Claudia Fuchs

    2018-01-01

    Full Text Available CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/− mouse, has been little characterized. The lack of detailed behavioral profiling of this model remains a crucial gap that must be addressed in order to advance preclinical studies. Here, we provide a behavioral and molecular characterization of heterozygous Cdkl5 +/− mice. We found that Cdkl5 +/− mice reliably recapitulate several aspects of CDKL5 disorder, including autistic-like behaviors, defects in motor coordination and memory performance, and breathing abnormalities. These defects are associated with neuroanatomical alterations, such as reduced dendritic arborization and spine density of hippocampal neurons. Interestingly, Cdkl5 +/− mice show age-related alterations in protein kinase B (AKT and extracellular signal-regulated kinase (ERK signaling, two crucial signaling pathways involved in many neurodevelopmental processes. In conclusion, our study provides a comprehensive overview of neurobehavioral phenotypes of heterozygous female Cdkl5 +/− mice and demonstrates that the heterozygous female might be a valuable animal model in preclinical studies on CDKL5 disorder.

  6. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice[S

    Palmisano, Brian T.; Le, Thao D.; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M.

    2016-01-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. PMID:27354419

  7. Female genotype influences the behavioral performance of mice selected for reproductive traits.

    Weisker, S M; Barkley, M

    1991-10-01

    The behavioral performance of mice that differ in regularity of the estrous cycle and litter size was studied after female exposure to a male of the same or a different strain. Emotional reactivity was measured using the pole, straightaway and open field tests. Factor interpretations of emotionality included motor discharge, autonomic imbalance and acrophobia. Mice characterized by regular estrous cycles and large litters (line E) were more explorative and emotionally reactive with respect to motor discharge and autonomic imbalance. In contrast, mice with less regular estrous cycles and small litter size (line CN-) were more acrophobic. These strain differences in behavioral performance were influenced by the genotype of the female rather than the cohabitating male.

  8. Efficacy of Tramadol as a Sole Analgesic for Postoperative Pain in Male and Female Mice.

    Wolfe, A Marissa; Kennedy, Lucy H; Na, Jane J; Nemzek-Hamlin, Jean A

    2015-07-01

    Tramadol is a centrally acting weak μ opioid agonist that has few of the adverse side effects common to other opioids. Little work has been done to establish an effective analgesic dose of tramadol specific for surgical laparotomy and visceral manipulation in mice. We used general appearance parameters to score positive indicators of pain including posture, coat condition, activity, breathing, and interactions with other mice, activity events (that is, the number of times each mouse stretched up in a 3-min period) used as an indicator of decreased pain, von Frey fibers, and plasma levels of corticosterone to determine whether tramadol at 20, 40, or 80 mg/kg prevented postoperative pain in male and female C57BL/6 mice. A ventral midline laparotomy with typhlectomy was used as a model of postoperative pain. In male mice, none of the markers differed between groups that received tramadol (regardless of dose) and the saline-treated controls. However, general appearance scores and plasma corticosterone levels were lower in female mice that received 80 mg/kg tramadol compared with saline. In summary, for severe postoperative pain after laparotomy and aseptic typhlectomy, tramadol was ineffective in male C57BL/6 mice at all doses tested. Although 80 mg/kg ameliorated postoperative pain in female C57BL/6 mice, this dose is very close to the threshold reported to cause toxic side effects, such as tremors and seizures. Therefore, we do not recommend the use of tramadol as a sole analgesic in this mouse model of postoperative pain.

  9. Nucleus Accumbens Dopamine Signaling Regulates Sexual Preference for Females in Male Mice.

    Beny-Shefer, Yamit; Zilkha, Noga; Lavi-Avnon, Yael; Bezalel, Nadav; Rogachev, Ilana; Brandis, Alexander; Dayan, Molly; Kimchi, Tali

    2017-12-12

    Sexual preference for the opposite sex is a fundamental behavior underlying reproductive success, but the neural mechanisms remain unclear. Here, we examined the role of dopamine signaling in the nucleus accumbens core (NAcc) in governing chemosensory-mediated preference for females in TrpC2 -/- and wild-type male mice. TrpC2 -/- males, deficient in VNO-mediated signaling, do not display mating or olfactory preference toward females. We found that, during social interaction with females, TrpC2 -/- males do not show increased NAcc dopamine levels, observed in wild-type males. Optogenetic stimulation of VTA-NAcc dopaminergic neurons in TrpC2 -/- males during exposure to a female promoted preference response to female pheromones and elevated copulatory behavior toward females. Additionally, we found that signaling through the D1 receptor in the NAcc is necessary for the olfactory preference for female-soiled bedding. Our study establishes a critical role for the mesolimbic dopaminergic system in governing pheromone-mediated responses and mate choice in male mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Nucleus Accumbens Dopamine Signaling Regulates Sexual Preference for Females in Male Mice

    Yamit Beny-Shefer

    2017-12-01

    Full Text Available Sexual preference for the opposite sex is a fundamental behavior underlying reproductive success, but the neural mechanisms remain unclear. Here, we examined the role of dopamine signaling in the nucleus accumbens core (NAcc in governing chemosensory-mediated preference for females in TrpC2−/− and wild-type male mice. TrpC2−/− males, deficient in VNO-mediated signaling, do not display mating or olfactory preference toward females. We found that, during social interaction with females, TrpC2−/− males do not show increased NAcc dopamine levels, observed in wild-type males. Optogenetic stimulation of VTA-NAcc dopaminergic neurons in TrpC2−/− males during exposure to a female promoted preference response to female pheromones and elevated copulatory behavior toward females. Additionally, we found that signaling through the D1 receptor in the NAcc is necessary for the olfactory preference for female-soiled bedding. Our study establishes a critical role for the mesolimbic dopaminergic system in governing pheromone-mediated responses and mate choice in male mice.

  11. Activation of PPARα decreases bile acids in livers of female mice while maintaining bile flow and biliary bile acid excretion.

    Zhang, Youcai; Lickteig, Andrew J; Csanaky, Iván L; Klaassen, Curtis D

    2018-01-01

    Fibrates are hypolipidemic drugs that act as activators of peroxisome proliferator-activated receptor α (PPARα). In both humans and rodents, females were reported to be less responsive to fibrates than males. Previous studies on fibrates and PPARα usually involved male mice, but little has been done in females. The present study aimed to provide the first comprehensive analysis of the effects of clofibrate (CLOF) and PPARα on bile acid (BA) homeostasis in female mice. Study in WT male mice showed that a 4-day CLOF treatment increased liver weight, bile flow, and biliary BA excretion, but decreased total BAs in both serum and liver. In contrast, WT female mice were less susceptible to these CLOF-mediated responses observed in males. In WT female mice, CLOF decreased total BAs in the liver, but had little effect on the mRNAs of hepatic BA-related genes. Next, a comparative analysis between WT and PPARα-null female mice showed that lack of PPARα in female mice decreased total BAs in serum, but had little effect on total BAs in liver or bile. However, lack of PPARα in female mice increased mRNAs of BA synthetic enzymes (Cyp7a1, Cyp8b1, Cyp27a1, and Cyp7b1) and transporters (Ntcp, Oatp1a1, Oatp1b2, and Mrp3). Furthermore, the increase of Cyp7a1 in PPARα-null female mice was associated with an increase in liver Fxr-Shp-Lrh-1 signaling. In conclusion, female mice are resistant to CLOF-mediated effects on BA metabolism observed in males, which could be attributed to PPARα-mediated suppression in females on genes involved in BA synthesis and transport. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cardiac autonomic modulation by estrogen in female mice undergoing ambulatory monitoring and in vivo electrophysiologic testing.

    Saba, Samir; Shusterman, Vladimir; Usiene, Irmute; London, Barry

    2004-04-01

    Estrogen is an important modulator of cardiovascular risk, but its mechanism of action is not fully understood. We investigated the effect of ovariectomy and its timing on the cardiac electrophysiology in mice. Thirty female mice (age 18.8 +/- 3.1 weeks) underwent in vivo electrophysiologic testing before and after autonomic blockade. Fifteen mice were ovariectomized prepuberty (PRE) and ten postpuberty (POST), 2 weeks prior to electrophysiologic testing. Five age-matched sham-operated female mice (Control) served as controls. A subset of 13 mice (5 PRE, 3 POST, and 5 Controls) underwent 24-hour ambulatory monitoring. With ambulatory monitoring, the average (668 +/- 28 vs 769 +/- 52 b/min, P = 0.008) and minimum (485 +/- 47 vs 587 +/- 53 b/min, P = 0.02) heart rates were significantly slower in the ovariectomized mice (PRE and POST groups) compared to the Control group. At baseline electrophysiologic testing, there were no significant differences among the ovariectomized and intact mice in any of the measured parameters. With autonomic blockade, the Control group had a significantly larger change (delta) in the atrioventricular (AV) nodal Wenckebach (AVW) periodicity (deltaAVW = 11.3 +/- 2.9 vs 2.1 +/- 7.3 ms, P = 0.05) and functional refractory period (deltaFRP = 11.3 +/- 2.1 vs 1.25 +/- 6.8 ms, P = 0.02) compared to the ovariectomized mice. These results were not altered by the time of ovariectomy (PRE vs POST groups). Our results suggest that estrogen modulates the autonomic inputs into the murine sinus and AV nodes. These findings, if replicated in humans, might underlie the observed clustering of certain arrhythmias around menstruation and explain the higher incidence of arrhythmias in men and postmenopausal women.

  13. Protein restriction does not affect body temperature pattern in female mice.

    Kato, Goro A; Shichijo, Hiroki; Takahashi, Toshihiro; Shinohara, Akio; Morita, Tetsuo; Koshimoto, Chihiro

    2017-10-30

    Daily torpor is a physiological adaptation in mammals and birds characterized by a controlled reduction of metabolic rate and body temperature during the resting phase of circadian rhythms. In laboratory mice, daily torpor is induced by dietary caloric restriction. However, it is not known which nutrients are related to daily torpor expression. To determine whether dietary protein is a key factor in inducing daily torpor in mice, we fed mice a protein-restricted (PR) diet that included only one-quarter of the amount of protein but the same caloric level as a control (C) diet. We assigned six non-pregnant female ICR mice to each group and recorded their body weights and core body temperatures for 4 weeks. Body weights in the C group increased, but those in the PR group remained steady or decreased. Mice in both groups did not show daily torpor, but most mice in a food-restricted group (n=6) supplied with 80% of the calories given to the C group exhibited decreased body weights and frequently displayed daily torpor. This suggests that protein restriction is not a trigger of daily torpor; torpid animals can conserve their internal energy, but torpor may not play a significant role in conserving internal protein. Thus, opportunistic daily torpor in mice may function in energy conservation rather than protein saving.

  14. Papain-induced experimental pulmonary emphysema in male and female mice.

    Machado, Mariana Nascimento; Figueirôa, Silviane Fernandes da Silva; Mazzoli-Rocha, Flavia; Valença, Samuel dos Santos; Zin, Walter Araújo

    2014-08-15

    In papain-induced models of emphysema, despite the existing extensive description of the cellular and molecular aspects therein involved, sexual hormones may play a complex and still not fully understood role. Hence, we aimed at exploring the putative gender-related differences in lung mechanics, histology and oxidative stress in papain-exposed mice. Thirty adult BALB/c mice received intratracheally either saline (50 μL) or papain (10 U/50 μL saline) once a week for 2 weeks. In males papain increased lung resistive and viscoelastic/inhomogeneous pressures, static elastance, and viscoelastic component of elastance, while females showed higher static elastance and resistive pressure only. Both genders presented similar higher parenchymal cellularity and mean alveolar diameter, and less collagen-elastic fiber content and body weight gain than their respective controls. Increased functional residual capacity was more prominent in males. Female papain-treated mice were more susceptible to oxidative stress. Thus, male and female papain-exposed mice respond differently, which should be carefully considered to avoid confounding results. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Sartori, Michelle; Conti, Filipe F.; Dias, Danielle da Silva; dos Santos, Fernando; Machi, Jacqueline F.; Palomino, Zaira; Casarini, Dulce E.; Rodrigues, Bruno; De Angelis, Kátia; Irigoyen, Maria-Claudia

    2017-01-01

    Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice. Methods: Metabolic parameters, cardiac function, arterial pressure (AP), autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group) and ob/ob mice (OB group). Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF) and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress. Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals. PMID:28878683

  16. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Michelle Sartori

    2017-08-01

    Full Text Available Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice.Methods: Metabolic parameters, cardiac function, arterial pressure (AP, autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group and ob/ob mice (OB group.Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress.Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals.

  17. Alternative reproductive tactics in female striped mice: Solitary breeders have lower corticosterone levels than communal breeders.

    Hill, Davina L; Pillay, Neville; Schradin, Carsten

    2015-05-01

    Alternative reproductive tactics (ARTs), where members of the same sex and population show distinct reproductive phenotypes governed by decision-rules, have been well-documented in males of many species, but are less well understood in females. The relative plasticity hypothesis (RPH) predicts that switches between plastic ARTs are mediated by changes in steroid hormones. This has received much support in males, but little is known about the endocrine control of female ARTs. Here, using a free-living population of African striped mice (Rhabdomys pumilio) over five breeding seasons, we tested whether females following different tactics differed in corticosterone and testosterone levels, as reported for male striped mice using ARTs, and in progesterone and oestrogen, which are important in female reproduction. Female striped mice employ three ARTs: communal breeders give birth in a shared nest and provide alloparental care, returners leave the group temporarily to give birth, and solitary breeders leave to give birth and do not return. We expected communal breeders and returners to have higher corticosterone, owing to the social stress of group-living, and lower testosterone than solitary breeders, which must defend territories alone. Solitary breeders had lower corticosterone than returners and communal breeders, as predicted, but testosterone and progesterone did not differ between ARTs. Oestrogen levels were higher in returners (measured before leaving the group) than in communal and solitary breeders, consistent with a modulatory role. Our study demonstrates hormonal differences between females following (or about to follow) different tactics, and provides the first support for the RPH in females. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice.

    Liu, Jing; Shang, Dantong; Xiao, Yao; Zhong, Pei; Cheng, Hanhua; Zhou, Rongjia

    2017-09-29

    Germline stem cells are essential in the generation of both male and female gametes. In mammals, the male testis produces sperm throughout the entire lifetime, facilitated by testicular germline stem cells. Oocyte renewal ceases in postnatal or adult life in mammalian females, suggesting that germline stem cells are absent from the mammalian ovary. However, studies in mice, rats, and humans have recently provided evidence for ovarian female germline stem cells (FGSCs). A better understanding of the role of FGSCs in ovaries could help improve fertility treatments. Here, we developed a rapid and efficient method for isolating FGSCs from ovaries of neonatal mice. Notably, our FGSC isolation method could efficiently isolate on average 15 cell "strings" per ovary from mice at 1-3 days postpartum. FGSCs isolated from neonatal mice displayed the string-forming cell configuration at mitosis ( i.e. a "stringing" FGSC (sFGSC) phenotype) and a disperse phenotype in postnatal mice. We also found that sFGSCs undergo vigorous mitosis especially at 1-3 days postpartum. After cell division, the sFGSC membranes tended to be connected to form sFGSCs. Moreover, F-actin filaments exhibited a cell-cortex distribution in sFGSCs, and E-cadherin converged in cell-cell connection regions, resulting in the string-forming morphology. Our new method provides a platform for isolating FGSCs from the neonatal ovary, and our findings indicate that FGCSs exhibit string-forming features in neonatal mice. The sFGSCs represent a valuable resource for analysis of ovary function and an in vitro model for future clinical use to address ovarian dysfunction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Exposure to Alumina Nanoparticles in Female Mice During Pregnancy Induces Neurodevelopmental Toxicity in the Offspring.

    Zhang, Qinli; Ding, Yong; He, Kaihong; Li, Huan; Gao, Fuping; Moehling, Taylor J; Wu, Xiaohong; Duncan, Jeremy; Niu, Qiao

    2018-01-01

    Alumina nanoparticles (AlNP) have been shown to accumulate in organs and penetrate biological barriers which lead to toxic effects in many organ systems. However, it is not known whether AlNP exposure to female mice during pregnancy can affect the development of the central nervous system or induce neurodevelopmental toxicity in the offspring. The present study aims to examine the effect of AlNP on neurodevelopment and associated underlying mechanism. ICR strain adult female mice were randomly divided into four groups, which were treated with normal saline (control), 10 μm particle size of alumina (bulk-Al), and 50 and 13 nm AlNP during entire pregnancy period. Aluminum contents in the hippocampus of newborns were measured and neurodevelopmental behaviors were tracked in the offspring from birth to 1 month of age. Furthermore, oxidative stress and neurotransmitter levels were measured in the cerebral cortex of the adolescents. Our results showed that aluminum contents in the hippocampus of newborns in AlNP-treated groups were significantly higher than those in bulk-Al and controls. Moreover, the offspring delivered by AlNP-treated female mice displayed stunted neurodevelopmental behaviors. Finally, the offspring of AlNP-treated mice demonstrated significantly increased anxiety-like behavior with impaired learning and memory performance at 1 month of age. The underlying mechanism could be related to increased oxidative stress and decreased neurotransmitter levels in the cerebral cortex. We therefore conclude that AlNP exposure of female mice during pregnancy can induce neurodevelopmental toxicity in offspring.

  20. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  1. Neonatal exposure to daidzein, genistein, or the combination modulates bone development in female CD-1 mice.

    Kaludjerovic, Jovana; Ward, Wendy E

    2009-03-01

    Neonatal exposure to genistein (GEN), an isoflavone abundant in soy, favorably modulates bone mineral density (BMD) and bone strength in mice at adulthood. The study objective was to determine whether early exposure to a combination of the soy isoflavones daidzein (DAI) and GEN that naturally exists in soy protein-based infant formula results in greater benefits to bone at adulthood than either treatment alone. Male and female CD-1 mice (n = 8-16 pups per group per gender) were randomized to subcutaneous injections of DAI (2 mg x kg body weight(-1) x d(-1)), GEN (5 mg x kg body weight(-1) x d(-1)), DAI+GEN (7 mg x kg body weight(-1) x d(-1)), diethylstilbesterol (DES; positive control) (2 mg x kg body weight(-1) x d(-1)), or control (CON) from postnatal d 1-5 and were studied to 4 mo of age. BMD, biomechanical bone strength, and bone microarchitecture were assessed at the femur and lumbar vertebrae (LV). Females treated with DAI, GEN, DAI+GEN, or DES had greater (P GEN resulted in greater (P GEN had a positive effect on the skeleton of female mice at adulthood, but, compared with individual treatments, DAI+GEN did not have a greater benefit to bone in females or males.

  2. Effect of Vomeronasal Organ Removal From Male Mice on Their Preference for and Neural Fos Responses to Female Urinary Odors

    Pankevich, Diana E.; Cherry, James A.; Baum, Michael J.

    2006-01-01

    Four experiments were conducted to determine whether vomeronasal organ (VNO) inputs in male mice mediate the rewarding properties of estrous female urinary odors. Sexually naive male mice with either an intact (VNOi) or lesioned (VNOx) VNO preferred to investigate female urine over water in Y-maze tests. Subsequently, VNOi males ran significantly more quickly and remained in nasal contact longer with estrous female urine than with male urine, whereas VNOx males investigated these odors equall...

  3. The carcinogenic effects of fetal and postnatal radiation in female mice

    Kusama, Tomoko; Yoshizawa, Yasuo

    1982-01-01

    The present study was designed to investigate the carcinogenic effects of fetal and postnatal irradiation in female mice. The C57BL/6J mice were subjected to whole-body exposure to 1-Gy or 4-Gy 137 Cs γ-ray irradiation on the 15th fetal day or the 30th postnatal day. Following this, all mice were observed throughout their respective life spans under conventional rearing conditions. The tumor incidence rate, average latent period and distributions of various tumors were used as the quantitative parameters of radiation-induced carcinogenesis. The following conclusions can be draw: (1) The mean life span of mice that underwent 4-Gy irradiation at the age of 30 days was shorter than that of non-irradiated control mice. (2) In control mice, the tumor incidence was 75.7%. (3) In order to estimate the mean age and tumor incidence, an adjustment for competing death is necessary. (4) The adjusted tumor incidences of thymic lymphoma and breast tumor of the irradiated groups were not different from those of control group. On the other hand, there was a significant difference between the two in the adjusted incidence of reticular tissue neoplasm. (author)

  4. Staphylococcus epidermidis is involved in a mechanism for female reproduction in mice

    Chihiro Ono

    2015-06-01

    Full Text Available Both external and internal surfaces of organs (e.g., skin, mouth, gut, and intestine are covered with bacteria, which often contribute to physiological events in host animals. Despite externally opened organs, the presence of bacteria in the mammalian female reproductive tract is uncertain. Here we assessed this problem using wild-type strains of mice, C57BL/6N and ICR. We first demonstrated that bacterial colonies were formed from the oviductal fluid in the C57BL/6N mice with birth experience (“parous”, but not in the mice without birth experience (“non-parous”. Sequence analysis of 16S ribosomal RNA (rRNA revealed that Staphylococcus epidermidis existed in the oviductal fluid of the parous mice, confirmed by immunohistochemical analysis. Furthermore, extinction of bacterial population with intraperitoneal injection of antibiotics, penicillin G and streptomycin, disturbed the regularly implanted pattern of embryos in ICR mice. Our results indicate that symbiotic S. epidermidis plays a role in interaction between embryo and uterus upon implantation in mice.

  5. Entire litters developed from transferred eggs in whole body x-irradiated female mice

    Lin, T.P.

    1980-01-01

    The sensitivity of mouse eggs to sublethal x-irradiation was determined in vitro and in vivo with regard to the development of donor litters in foster mothers. One thousand seven hundred fifty-eight unfertilized eggs of agouti dark-eyed donor mice were transferred into 293 unirradiated or x-irradiated, mated female pink-eyed mice. Two hundred thirty-nine recipients became pregnant; of these 35 produced litters containing solely dark-eyed fetuses. Sublethal doses of x-radiation administered to donor eggs in vitro before transferring into unirradiated recipients did not influence significantly the number of litters of exclusively dark-eyed fetuses produced. However, recipients irradiated by 250 roentgens (r) produced more solely dark-eyed litters than did those irradiated with 100 r. In 21 pregnant females irradiated by 100 r, only 3 (14%) developed solely dark-eyed fetuses as compared to 22 pregnant females irradiated by 250 r, of which 13 (59%) developed solely dark-eyed fetuses, all from unirradiated, transferred eggs. Of another group of 22 pregnant females which received 250 r body irradiation and subsequently received eggs also irradiated by 250 r, only 7 (32%) produced litters of dark-eyed fetuses. No one female of these three groups carried native fetuses. Such radiation-induced infertility resulting from damage of native eggs rather than loss of mother's ability to carry a pregnancy, is frequently remedied by egg transfer

  6. Fluoxetine treatment induces dose dependent alterations in depression associated behavior and neural plasticity in female mice

    Hodes, Georgia E.; Hill-Smith, Tiffany E.; Lucki, Irwin

    2010-01-01

    Antidepressant induced increases in neurogenesis and neurotrophin mobilization in rodents and primates are proposed to be necessary for behavioral efficacy. The current study examines the relationship between the effects of fluoxetine treatment on behavior, cell proliferation and the neurotrophin BDNF in females. Female MRL/MpJ mice were treated acutely (5 and 10 mg/kg) or chronically (2.5, 5 and 10 mg/kg b.i.d.) with fluoxetine and tested in the tail suspension test (TST) and or novelty indu...

  7. Preferences of group-housed female mice regarding structure of softwood bedding.

    Kirchner, J; Hackbarth, H; Stelzer, H D; Tsai, P-P

    2012-04-01

    Bedding influences various parameters in the housing of laboratory mice, such as health, physiology and behaviour (often considered as being integral parts of welfare). Notwithstanding existent studies about bedding preferences of individually tested mice, data about group-housed mice are still lacking. The aim of this study was to find out the structure preference for softwood bedding of group-housed mice. One hundred and eight 8-week-old female mice (C57BL6/JOlaHsd and BALB/cOlaHsd) were housed in groups of three and were given one-week free access to two different bedding structures at a time. In three test combinations, softwood shaving bedding was tested versus softwood chip bedding products of three different particle sizes (fine/medium/coarse-grained). The preference test was performed in a DoubleCage system composed of two Makrolon type IIL cages, connected by a perspex tunnel. This validated system was able to detect the crossings of each individual animal with correct crossing time and direction. On the basis of these data, dwelling times on the particular bedding structures were statistically analysed as a parameter for bedding preferences. In all three test combinations, a highly significant shaving preference was detected. On average, mice spent 70% of their dwelling time on the shavings. This preference was more explicit during the light period and in C57BL/6J mice. The relative ranking of the bedding structures was: shavings > coarse-grained chips > medium chips = fine chips. By means of these results, a shaving structure as bedding can be recommended for laboratory mice, whereas fine chip structures should be avoided.

  8. Infertility as a consequence of spermagglutinating Staphylococcus aureus colonization in genital tract of female mice.

    Siftjit Kaur

    Full Text Available Various studies have shown Staphylococcus aureus to be one of the most prevalent organism in male and female genital tract but most practitioners dismiss it as mere contamination which is assumed to be of no significance. However, it is now suggested that the presence of this organism should not be ignored, as incubation of spermatozoa with S. aureus results in reduced sperm motility. Although S. aureus has been reported to cause immobilization of spermatozoa, however, its role in infertility has yet to be elucidated. The present study was designed to establish a spermagglutinating strain of S. aureus isolated from the cervix of a woman with unexplained infertility, in mouse and evaluate its effect on fertility outcome. Female Balb/c mice were inoculated intravaginally with different doses of S. aureus (10(4, 10(6 or 10(8cfu/20 µl for 10 consecutive days. Microbial colonization monitored every 3(rd day by vaginal cultures, revealed that strain could efficiently colonize mouse vagina. Mating on day 12, with proven breeder males led to 100% decrease in fertility as compared to control. Even a single dose of 10(6 or 10(8cfu could lead to vaginal colonization which persisted for 10 days followed by gradual clearing till 21 days, vaginal cultures were negative thereafter. Female mice mated on day 7 (culture positive, were rendered infertile, however, the mice mated on day 22 (culture negative, retained fertility and delivered pups indicating its role in provoking infertility. Further, except infertility, no other clinical manifestation could be seen apparently or histologically. However, when a non-spermagglutinating/immobilizing standard strain of S. aureus MTCC6625 was inoculated intravaginally at 10(8cfu for 10 days followed by mating on day 12, fertility was observed in all the female mice. This supports the hypothesis that infertility observed in the former groups was as a result of colonization with spermagglutinating strain of S. aureus.

  9. EFFECTS OF PHYSICAL TRAINING ON THE MYOCARDIUM OF FEMALE LDL KNOCKOUT OVARIECTOMIZED MICE

    Brianezi, Ledimar; Marques, Mara Rubia; Cardoso, Clever Gomes; Miranda, Maria Luiza de Jesus; Fonseca, Fernando Luiz Affonso; Maifrino, Laura Beatriz Mesiano

    2017-01-01

    ABSTRACT Introduction: The emergence of coronary heart disease increases with menopause, physical inactivity and with dyslipidemia. It is known that physical training promotes the improvement of cardiovascular functions. Objective: The purpose of this study was to investigate the effects of aerobic physical training on the left ventricle in female LDL knockout ovariectomized mice. Methods: Thirty animals were divided into 6 groups (n=5), namely, sedentary non-ovariectomized control; sedentary...

  10. Genistein Stimulates Jejunum Chloride Secretion via an Akt-Mediated Pathway in Intact Female Mice

    Lana Leung

    2015-02-01

    Full Text Available Background/Aims: We have previously shown that daily subcutaneous injections with the naturally occurring phytoestrogen genistein (600 mg genistein/kg body weight/day, 600G results in a significantly increased basal intestinal chloride, Cl-, secretion (Isc, a measure of transepithelial secretion in intact C57BL/6J female mice after 1-week of treatment, compared to controls (DMSO vehicle injected. Removal of endogenous estrogen via ovariectomy (OVX had no effect on the 600G-mediated increase in basal Isc. Methods: Given the estrogen-like characteristics of genistein, we compared the effects of daily estradiol (E2 injections (10 mg E2/kg body weight/day, 10E2 on basal Isc in intact and OVX mice. In intact mice, 10E2 was without effect on basal Isc, however, in OVX mice, 10E2 significantly increased basal Isc (mimicked 600G. The goal of the current study was to characterize the intracellular signaling pathways responsible for mediating 600G- or 10E2-stimulated increases in basal Isc in intact female or OVX mice. Results: We measured total protein expression in isolated segments of jejunum using western blot from the following six groups of mice; intact or OVX with; 600G, 10E2 or control. The proteins of interest were: Akt, p-Akt, p-PDK1, p-PTEN, p-c-Raf, p-GSK-3β, rap-1 and ERK1/2. All blots were normalized to GAPDH levels (n = 6-18/group. Conclusion: These data suggest that the presence of the endogenous sex steroid, estrogen, modifies the intracellular signaling pathway required to mediate Cl- secretion when the intestine is exposed to exogenous 600G or E2. These studies may have relevance for designing pharmacological tools for women with intestinal chloride secretory dysfunctions.

  11. Deficient Purposeful Use of Forepaws in Female Mice Modelling Rett Syndrome

    Bianca De Filippis

    2015-01-01

    Full Text Available Rett syndrome (RTT is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2 cause more than 95% of classic cases. Motor abnormalities represent a significant part of the spectrum of RTT symptoms. In the present study we investigated motor coordination and fine motor skill domains in MeCP2-308 female mice, a validated RTT model. This was complemented by the in vivo magnetic resonance spectroscopy (MRS analysis of metabolic profile in behaviourally relevant brain areas. MeCP2-308 heterozygous female mice (Het, 10-12 months of age were impaired in tasks validated for the assessment of purposeful and coordinated forepaw use (Morag test and Capellini handling task. A fine-grain analysis of spontaneous behaviour in the home-cage also revealed an abnormal handling pattern when interacting with the nesting material, reduced motivation to explore the environment, and increased time devoted to feeding in Het mice. The brain MRS evaluation highlighted decreased levels of bioenergetic metabolites in the striatal area in Het mice compared to controls. Present results confirm behavioural and brain alterations previously reported in MeCP2-308 males and identify novel endpoints on which the efficacy of innovative therapeutic strategies for RTT may be tested.

  12. Focal lesions within the ventral striato-pallidum abolish attraction for male chemosignals in female mice.

    Agustín-Pavón, Carmen; Martínez-García, Fernando; Lanuza, Enrique

    2014-02-01

    In rodents, socio-sexual behaviour is largely mediated by chemosensory cues, some of which are rewarding stimuli. Female mice display an innate attraction towards male chemosignals, dependent on the vomeronasal system. This behaviour likely reflects the hedonic value of sexual chemosignals. The anteromedial aspect of the olfactory tubercle, along with its associated islands of Calleja, receives vomeronasal inputs and sexually-dimorphic vasopressinergic innervation. Thus, we hypothesised that this portion of the ventral striato-pallidum, known to be involved in reward processing, might be important for sexual odorant-guided behaviours. In this study, we demonstrate that lesions of this region, but not of regions in the posterolateral striato-pallidum, abolish the attraction of female mice for male chemosignals, without affecting significantly their preference for a different natural reward (a sucrose solution). These results show that, at least in female mice, the integrity of the anterior aspect of the medioventral striato-pallidum, comprising a portion of the olfactory tubercle and associated islands of Calleja, is necessary for the attraction for male chemosignals. We suggest that this region contributes to the processing of the hedonic properties of biologically significant odorants. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet-fed dams.

    McKee, Sarah E; Grissom, Nicola M; Herdt, Christopher T; Reyes, Teresa M

    2017-06-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)-fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life-particularly within the prefrontal cortex (PFC), a brain region critical for executive function-we examined whether early life methyl donor supplementation ( e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.-McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation alters

  14. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet–fed dams

    McKee, Sarah E.; Grissom, Nicola M.; Herdt, Christopher T.; Reyes, Teresa M.

    2017-01-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)–fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life—particularly within the prefrontal cortex (PFC), a brain region critical for executive function—we examined whether early life methyl donor supplementation (e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.—McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation

  15. Chronic exposure to trichloroethene causes early onset of SLE-like disease in female MRL +/+ mice

    Cai Ping; Koenig, Rolf; Boor, Paul J.; Kondraganti, Shakuntala; Kaphalia, Bhupendra S.; Khan, M. Firoze; Ansari, G.A.S.

    2008-01-01

    Trichloroethene (TCE) exacerbates the development of autoimmune responses in autoimmune-prone MRL +/+ mice. Although TCE-mediated autoimmune responses are associated with an increase in serum immunoglobulins and autoantibodies, the underlying mechanism of autoimmunity is not known. To determine the progression of TCE-mediated immunotoxicity, female MRL +/+ mice were chronically exposed to TCE through the drinking water (0.5 mg/ml of TCE) for various periods of time. Serum concentrations of antinuclear antibodies increased after 36 and 48 weeks of TCE exposure. Histopathological analyses showed lymphocyte infiltration in the livers of MRL +/+ mice exposed to TCE for 36 or 48 weeks. Lymphocyte infiltration was also apparent in the pancreas, lungs, and kidneys of mice exposed to TCE for 48 weeks. Immunoglobulin deposits in kidney glomeruli were found after 48 weeks of exposure to TCE. Our results suggest that chronic exposure to TCE promotes inflammation in the liver, pancreas, lungs, and kidneys, which may lead to SLE-like disease in MRL +/+ mice

  16. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice

    Leland, Shawn; Nagarajan, Prabakaran; Polyzos, Aris; Thomas, Sharon; Samaan, George; Donnell, Robert; Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-24

    Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice, and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

  17. 17β-Estradiol administration promotes delayed cutaneous wound healing in 40-week ovariectomised female mice.

    Mukai, Kanae; Nakajima, Yukari; Urai, Tamae; Komatsu, Emi; Nasruddin; Sugama, Junko; Nakatani, Toshio

    2016-10-01

    This study investigated the effect of 17β-estradiol on wound healing in 40-week ovariectomised female mice. Thirty-six-week-old female mice were divided into three groups: medication with 17β-estradiol after ovariectomy (OVX + 17β-estradiol), ovariectomy (OVX) and sham (SHAM). The mice received two full-thickness wounds, and the OVX + 17β-estradiol group was administered 17β-estradiol at 0·01 g/day until healing. In the OVX + 17β-estradiol group, the ratio of wound area was significantly smaller than those of the OVX and SHAM groups on days 1-3, 5, 6, 8-12 and 9-12, respectively, the numbers of neutrophils and macrophages were significantly smaller than those on days 3 and 7, the ratio of re-epithelialisation was significantly higher than those on days 3 and 11, the ratio of myofibroblasts was significantly higher than those on day 11 and smaller on day 14, and the ratio of collagen fibres was significantly larger than that of the OVX group on days 7-14. We found that 17β-estradiol administration promotes cutaneous wound healing in 40-week female mice by reducing wound area, shortening inflammatory response, and promoting re-epithelialisation, collagen deposition and wound contraction. Our results suggest that cutaneous wound healing that is delayed because of ageing is promoted by exogenous and continuous 17β-estradiol administration. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  18. No evidence for punishment in communally nursing female house mice (Mus musculus domesticus).

    Ferrari, Manuela; König, Barbara

    2017-01-01

    Punishment is claimed as an important mechanism to stabilise costly cooperation in humans, but its importance in social animals has been questioned recently due to both conceptual considerations and a lack of empirical evidence (only few published studies). We empirically tested whether there is evidence for punishment in communally nursing house mice (Mus musculus domesticus, direct descendants of "wild" animals). Communally breeding females pool their litters and raise all offspring together, indiscriminately caring for own and other offspring. Such a situation resembles a public good and provides scope for exploitation if females vary in their relative contributions to the joint nest (offspring number). We allowed two females to communally breed and conducted removal experiments both in the presence and absence of pups. We aimed to test whether reduced investment by one of the females (induced through separation from the partner and their combined offspring for 4 or 12 hours) leads to increased aggression by the other female after the reunion. We found no evidence for punishment, on the contrary, females increased socio-positive behaviours. The costs of losing a partner in a communally breeding species might be too high and hinder the evolution of punishment. Our findings add to a growing list of examples questioning the role of punishment in cooperating non-human animals and emphasise the importance of empirical testing of its assumptions and predictions.

  19. Differences in peripheral sensory input to the olfactory bulb between male and female mice

    Kass, Marley D.; Czarnecki, Lindsey A.; Moberly, Andrew H.; McGann, John P.

    2017-04-01

    Female mammals generally have a superior sense of smell than males, but the biological basis of this difference is unknown. Here, we demonstrate sexually dimorphic neural coding of odorants by olfactory sensory neurons (OSNs), primary sensory neurons that physically contact odor molecules in the nose and provide the initial sensory input to the brain’s olfactory bulb. We performed in vivo optical neurophysiology to visualize odorant-evoked OSN synaptic output into olfactory bub glomeruli in unmanipulated (gonad-intact) adult mice from both sexes, and found that in females odorant presentation evoked more rapid OSN signaling over a broader range of OSNs than in males. These spatiotemporal differences enhanced the contrast between the neural representations of chemically related odorants in females compared to males during stimulus presentation. Removing circulating sex hormones makes these signals slower and less discriminable in females, while in males they become faster and more discriminable, suggesting opposite roles for gonadal hormones in influencing male and female olfactory function. These results demonstrate that the famous sex difference in olfactory abilities likely originates in the primary sensory neurons, and suggest that hormonal modulation of the peripheral olfactory system could underlie differences in how males and females experience the olfactory world.

  20. Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in F1 female mice

    Zhou, Changqing; Gao, Liying; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2017-03-01

    Phthalates are used in a large variety of products, such as building materials, medical devices, and personal care products. Most previous studies on the toxicity of phthalates have focused on single phthalates, but it is also important to study the effects of phthalate mixtures because humans are exposed to phthalate mixtures. Thus, we tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture adversely affects female reproduction in mice. To test this hypothesis, pregnant CD-1 dams were orally dosed with vehicle (tocopherol-stripped corn oil) or a phthalate mixture (20 and 200 μg/kg/day, 200 and 500 mg/kg/day) daily from gestational day 10 to birth. The mixture was based on the composition of phthalates detected in urine samples from pregnant women in Illinois. The mixture included 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. Female mice born to the exposed dams were subjected to tissue collections and fertility tests at different ages. Our results indicate that prenatal exposure to the phthalate mixture significantly increased uterine weight and decreased anogenital distance on postnatal days 8 and 60, induced cystic ovaries at 13 months, disrupted estrous cyclicity, reduced fertility-related indices, and caused some breeding complications at 3, 6, and 9 months of age. Collectively, our data suggest that prenatal exposure to an environmentally relevant phthalate mixture disrupts aspects of female reproduction in mice. - Highlights: • Prenatal exposure to a phthalate mixture disrupts F1 estrous cyclicity. • Prenatal exposure to a phthalate mixture induces F1 ovarian cysts. • Prenatal exposure to a phthalate mixture decreases F1 female fertility-related indices. • Prenatal exposure to a phthalate mixture induces F1 breeding complications.

  1. Genetic and hormonal control of hepatic steatosis in female and male mice.

    Norheim, Frode; Hui, Simon T; Kulahcioglu, Emre; Mehrabian, Margarete; Cantor, Rita M; Pan, Calvin; Parks, Brian W; Lusis, Aldons J

    2017-01-01

    The etiology of nonalcoholic fatty liver disease is complex and influenced by factors such as obesity, insulin resistance, hyperlipidemia, and sex. We now report a study on sex difference in hepatic steatosis in the context of genetic variation using a population of inbred strains of mice. While male mice generally exhibited higher concentration of hepatic TG levels on a high-fat high-sucrose diet, sex differences showed extensive interaction with genetic variation. Differences in percentage body fat were the best predictor of hepatic steatosis among the strains and explained about 30% of the variation in both sexes. The difference in percent gonadal fat and HDL explained 9.6% and 6.7% of the difference in hepatic TGs between the sexes, respectively. Genome-wide association mapping of hepatic TG revealed some striking differences in genetic control of hepatic steatosis between females and males. Gonadectomy increased the hepatic TG to body fat percentage ratio among male, but not female, mice. Our data suggest that the difference between the sexes in hepatic TG can be partly explained by differences in body fat distribution, plasma HDL, and genetic regulation. Future studies are required to understand the molecular interactions between sex, genetics, and the environment. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. The ZEB1 transcription factor is a novel repressor of adiposity in female mice.

    Jessica N Saykally

    Full Text Available BACKGROUND: Four genome-wide association studies mapped an "obesity" gene to human chromosome 10p11-12. As the zinc finger E-box binding homeobox 1 (ZEB1 transcription factor is encoded by the TCF8 gene located in that region, and as it influences the differentiation of various mesodermal lineages, we hypothesized that ZEB1 might also modulate adiposity. The goal of these studies was to test that hypothesis in mice. METHODOLOGY/PRINCIPAL FINDINGS: To ascertain whether fat accumulation affects ZEB1 expression, female C57BL/6 mice were fed a regular chow diet (RCD ad libitum or a 25% calorie-restricted diet from 2.5 to 18.3 months of age. ZEB1 mRNA levels in parametrial fat were six to ten times higher in the obese mice. To determine directly whether ZEB1 affects adiposity, wild type (WT mice and mice heterozygous for TCF8 (TCF8+/- were fed an RCD or a high-fat diet (HFD (60% calories from fat. By two months of age on an HFD and three months on an RCD, TCF8+/- mice were heavier than WT controls, which was attributed by Echo MRI to increased fat mass (at three months on an HFD: 0.517+/-0.081 total fat/lean mass versus 0.313+/-0.036; at three months on an RCD: 0.175+/-0.013 versus 0.124+/-0.012. No differences were observed in food uptake or physical activity, suggesting that the genotypes differ in some aspect of their metabolic activity. ZEB1 expression also increases during adipogenesis in cell culture. CONCLUSION/SIGNIFICANCE: These results show for the first time that the ZEB1 transcription factor regulates the accumulation of adipose tissue. Furthermore, they corroborate the genome-wide association studies that mapped an "obesity" gene at chromosome 10p11-12.

  3. Influence of the thymus on the capacity of female mice to reject male skin grafts

    De Pirro, E.S.; Goldberg, E.H.

    1989-01-01

    The ability of female mice to reject H-Y-incompatible, but otherwise histocompatible, male skin grafts differs greatly from strain to strain, as is illustrated particularly by the C57BL strain (B6 and other sublines), termed ''H-Y rejector,'' because females invariably and promptly reject C57BL male skin, in comparison with the C3H strain, termed ''H-Y nonrejector,'' because females characteristically accept male C3H skin. To assess the extent to which the thymus governs this rejector vs. nonrejector status, two studies were made. In the first, lethally irradiated B6 (C57BL) and C3H females were restored with (B6 X C3H)F1 female cells, providing a graft-vs.-host-free milieu for differentiation of the same immunopoietic cell population in B6 vs. C3H hosts. With respect to (B6 X C3H)F1 male skin grafts, B6 hosts responded as rejectors and C3H hosts as nonrejectors, signifying that rejector vs. nonrejector status was determined by the host during immunopoiesis. That the main organ responsible for rejector vs. nonrejector determination is the thymus was shown in a second study. Previously thymectomized (B6 X C3H)F1 females received a histocompatible graft of thymus from either B6 or C3H neonatal females and were restored with donor-marked (B6-Ly-5a X C3H)F1 female cells after lethal irradiation. With respect to (B6 X C3H)F1 male skin grafts, the recipients of B6 thymus grafts responded generally as rejectors and the recipients of C3H thymus grafts responded uniformly as nonrejectors

  4. Cognitive performance of male and female C57BL/6J mice after repetitive concussive brain injuries.

    Velosky, Alexander G; Tucker, Laura B; Fu, Amanda H; Liu, Jiong; McCabe, Joseph T

    2017-05-01

    In contact sports, repetitive concussive brain injury (rCBI) is the prevalent form of head injury seen in athletes. The need for effective treatment is urgent as rCBI has been associated with a host of cognitive, behavioral and neurological complaints. There has been a growing trend in the use of female animals in pre-clinical research, but few studies have investigated possible sex differences following rCBI. The goal of the current study was to determine any differences between male and female C57BL/6J mice on assessments of learning and memory after repetitive concussive injury. Following rCBI by impact to the scalp, male mice exhibited longer righting reflexes during acute recovery. In both sexes, there were no evident histopathological changes observed in the underlying cerebral cortex or hippocampus. Reactive astrogliosis was elevated in the corpus callosum and optic tract, and astrogliosis was slightly less in the optic tract of female mice. rCBI mice exhibited impairment during the learning phase of the Morris water maze (MWM), but female mice, in comparison to male mice, were observed to have superior spatial memory during standard MWM probe trials. Female mice were overall more active, evidenced by greater distances traveled in the y-maze and greater swim speeds in the MWM. The results of this study demonstrate sex differences in cognitive performance following rCBI and support previous research suggesting the neuroprotective role of sex in brain injury. Published by Elsevier B.V.

  5. Stress and estrous cycle affect strategy but not performance of female C57BL/6J mice

    ter Horst, J.P.; Kentrop, J.; de Kloet, E.R.; Oitzl, M.S.

    2013-01-01

    Stress induces a switch in learning strategies of male C57BL/6J mice from predominantly spatial to more stimulus-response learning. To study generalization of these findings over sex, we investigated female C57BL/6J mice at three phases of the estrous cycle under non stress and acute (10 min)

  6. The lemon balm extract ALS-L1023 inhibits obesity and nonalcoholic fatty liver disease in female ovariectomized mice.

    Kim, Jeongjun; Lee, Hyunghee; Lim, Jonghoon; Lee, Haerim; Yoon, Seolah; Shin, Soon Shik; Yoon, Michung

    2017-08-01

    Increasing evidence indicates that angiogenesis inhibitors regulate obesity. This study aimed to determine whether the lemon balm extract ALS-L1023 inhibits diet-induced obesity and nonalcoholic fatty liver disease (NAFLD) in female ovariectomized (OVX) mice. OVX mice received a low fat diet (LFD), a high fat diet (HFD) or HFD supplemented with ALS-L1023 (ALS-L1023) for 15 weeks. HFD mice exhibited increases in visceral adipose tissue (VAT) angiogenesis, body weight, VAT mass and VAT inflammation compared with LFD mice. In contrast, all of these effects were reduced in ALS-L1023 mice compared with HFD mice. Serum lipids and liver injury markers were improved in ALS-L1023 mice. Hepatic lipid accumulation, inflammatory cells and collagen levels were lower in ALS-L1023 mice than in HFD mice. ALS-L1023 mice exhibited a tendency to normalize hepatic expression of genes involved in lipid metabolism, inflammation and fibrosis to levels in LFD mice. ALS-L1023 also induced Akt phosphorylation and increased Nrf2 mRNA expression in livers of obese mice. Our results indicate that the angiogenesis inhibitor ALS-L1023 can regulate obesity, hepatic steatosis and fibro-inflammation, in part through improvement of VAT function, in obese OVX mice. These findings suggest that angiogenesis inhibitors may contribute to alleviation of NAFLD in post-menopausal women with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice.

    Clipperton-Allen, Amy E; Lee, Anna W; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W; Choleris, Elena

    2012-02-28

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Immune Alterations in Male and Female Mice after 2-Deoxy-D-Glucose Administration

    Dreau, Didier; Morton, Darla S.; Foster, Mareva; Swiggett, Jeanene P.; Sonnenfeld, Gerald

    1995-01-01

    Administration of 2-deoxy-D-glucose (2-DG), an analog of glucose which inhibits glycolysis by competitive antagonism for phosphohexose isomerase, results in acute periods of intracellular glucoprivation and hyperglycemia resulting in hyperphagia. In addition to these changes in the carbohydrate metabolism, injection of 2-DG results in alterations of both the endocrine and neurological systems as suggested by modifications in oxytocin and glucocorticoid levels and norepinephrine production. Moreover, alterations of the immune response, such as a decrease in the in vitro proliferation of splenocytes after mitogen-stimulation, were observed in mice injected with 2-DG. Sex, genotype and environment are among the factors that may modulate effects of catecholamines and hypothalamo-pituitary-adrenal axis on these immune changes. Sexual dimorphism in immune function resulting from the effects of sex hormones on immune effector cells has been shown in both animals and humans. These observations have important implications, especially with regard to higher incidence of many autoimmune diseases in females. Evidence exists that reproductive hormones influence the immune system and increase the risk of immunologically related disorders in both animals and humans. Indeed, immunological responses in stressful situations may also be confounded by fluctuations of sex hormones especially in females. Lymphocyte distribution, cytoldne production, and the ability of lymphocyte to proliferate in vitro were analyzed in male and female mice to determine if sex influenced 2-DG immunomodulation. In addition, the influence of hormones, especially sex hormones, on these changes were evaluated.

  9. Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity

    Kong, Bo; Csanaky, Iván L.; Aleksunes, Lauren M.; Patni, Meghan; Chen, Qi; Ma, Xiaochao; Jaeschke, Hartmut; Weir, Scott; Broward, Melinda; Klaassen, Curtis D.; Guo, Grace L.

    2012-01-01

    Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity of the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury. -- Highlights: ► High-fat diet decreases hepatic Mrp2 expression only in female but not in male mice. ► HFD significantly reduces early-phase biliary ANIT excretion in female mice. ► HFD protects female mice against ANIT-induced liver injury.

  10. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology.

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2004-07-01

    We recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by adult treatment with oestrogens. We determined here whether these impairments are associated with changes in general levels of activity, anxiety or 'depressive-like' symptomatology due to chronic oestrogen deficiency. We also compared the neurochemical profile of ArKO and wild-type (WT) females, as oestrogens have been shown to modulate dopaminergic, serotonergic and noradrenergic brain activities. ArKO females did not differ from WT in spontaneous motor activity, exploration or anxiety. These findings are in line with the absence of major neurochemical alterations in hypothalamus, prefrontal cortex or striatum, which are involved in the expression of these behaviours. By contrast, ArKO females displayed decreased active behaviours, such as struggling and swimming, and increased passive behaviours, such as floating, in repeated sessions of the forced swim test, indicating that these females exhibit 'depressive-like' symptoms. Adult treatment with oestradiol did not reverse the behavioural deficits observed in the forced swim test, suggesting that they may be due to the absence of oestradiol during development. Accordingly, an increased serotonergic activity was observed in the hippocampus of ArKO females compared with WT, which was also not reversed by adult oestradiol treatment. The possible organizational role of oestradiol on the hippocampal serotonergic system and the 'depressive-like' profile of ArKO females provide new insights into the pathophysiology of depression and the increased vulnerability of women to depression.

  11. Diseases of aging untreated virgin female RFM and BALB/c mice

    Cosgrove, G.E.; Satterfield, L.C.; Bowles, N.D.; Klima, W.C.

    1978-01-01

    Diseases of untreated, virgin female barrier-maintained RFM and BALB/c mice used as controls in a large radiation aging experiment were necropsied after natural death. The spectrum and incidence of neoplastic and nonneoplastic diseases were somewhat different in the two strains. Both strains show a high incidence of neoplasma (largely reticulum cell sarcomas and lung tumors) and of glomerulosclerosis. A wide variety of other diseases was noted in much lower incidence. The findings in the RF were briefly compared with those in earlier experiments with that strain in this laboratory

  12. Butyl paraben and propyl paraben modulate bisphenol A and estradiol concentrations in female and male mice

    Pollock, Tyler; Weaver, Rachel E.; Ghasemi, Ramtin; Catanzaro, Denys de, E-mail: decatanz@mcmaster.ca

    2017-06-15

    People are routinely exposed to the antimicrobial preservatives butyl paraben (BP) and propyl paraben (PP), as well as the monomer of polycarbonate plastics, bisphenol A (BPA). These chemicals are reliably detected in human urine and potentially interact. We investigated whether BP or PP exposure can modulate the concentrations of {sup 14}C-BPA and 17β-estradiol (E{sub 2}). Female and male CF1 mice were each given a subcutaneous injection of oil containing 0 (vehicle), 1, 3, or 9 mg BP or PP, then given a dietary supplement containing 50 μg/kg {sup 14}C-BPA. Radioactivity was measured in tissues through liquid scintillation counting. Significantly elevated {sup 14}C-BPA concentrations were observed following BP treatment in blood serum of both sexes, as well as the lungs, uterus, and ovaries of females and the testes and epididymides of males. Treatment with PP significantly elevated {sup 14}C-BPA concentrations in the uterus only. In another experiment, female and male CF1 mice were each injected with vehicle, 3 mg BP, or 3 mg PP, and E{sub 2} was measured in urine 2–12 h later. Whereas PP did not affect E{sub 2}, BP significantly elevated E{sub 2} 6–10 h after injection in females and 8 h after injection in males. These data indicate that BP and PP can alter the pharmacokinetics of BPA in vivo, and that BP can modulate E{sub 2} concentrations. These results are consistent with evidence that parabens inhibit enzymes that are critical for BPA and E{sub 2} metabolism, and demonstrate the importance of considering concurrent exposure to multiple chemicals when determining regulatory exposure limits. - Highlights: • We studied whether paraben exposure affects the distribution of oral {sup 14}C-BPA. • Elevated {sup 14}C–BPA was observed in mice given butyl or propyl paraben. • We also studied whether paraben exposure affects natural E{sub 2} levels in urine. • Elevated E{sub 2} was observed in mice given butyl, but not propyl, paraben. • Parabens may

  13. 2-Methoxyestradiol Reduces Angiotensin II-Induced Hypertension and Renal Dysfunction in Ovariectomized Female and Intact Male Mice.

    Pingili, Ajeeth K; Davidge, Karen N; Thirunavukkarasu, Shyamala; Khan, Nayaab S; Katsurada, Akemi; Majid, Dewan S A; Gonzalez, Frank J; Navar, L Gabriel; Malik, Kafait U

    2017-06-01

    Cytochrome P450 1B1 protects against angiotensin II (Ang II)-induced hypertension and associated cardiovascular changes in female mice, most likely via production of 2-methoxyestradiol. This study was conducted to determine whether 2-methoxyestradiol ameliorates Ang II-induced hypertension, renal dysfunction, and end-organ damage in intact Cyp1b1 -/- , ovariectomized female, and Cyp1b1 +/+ male mice. Ang II or vehicle was infused for 2 weeks and administered concurrently with 2-methoxyestradiol. Mice were placed in metabolic cages on day 12 of Ang II infusion for urine collection for 24 hours. 2-Methoxyestradiol reduced Ang II-induced increases in systolic blood pressure, water consumption, urine output, and proteinuria in intact female Cyp1b1 -/- and ovariectomized mice. 2-Methoxyestradiol also reduced Ang II-induced increase in blood pressure, water intake, urine output, and proteinuria in Cyp1b1 +/+ male mice. Treatment with 2-methoxyestradiol attenuated Ang II-induced end-organ damage in intact Cyp1b1 -/- and ovariectomized Cyp1b1 +/+ and Cyp1b1 -/- female mice and Cyp1b1 +/+ male mice. 2-Methoxyestradiol mitigated Ang II-induced increase in urinary excretion of angiotensinogen in intact Cyp1b1 -/- and ovariectomized Cyp1b1 +/+ and Cyp1b1 -/- female mice but not in Cyp1b1 +/+ male mice. The G protein-coupled estrogen receptor 1 antagonist G-15 failed to alter Ang II-induced increases in blood pressure and renal function in Cyp1b1 +/+ female mice. These data suggest that 2-methoxyestradiol reduces Ang II-induced hypertension and associated end-organ damage in intact Cyp1b1 -/- , ovariectomized Cyp1b1 +/+ and Cyp1b1 -/- female mice, and Cyp1b1 +/+ male mice independent of G protein-coupled estrogen receptor 1. Therefore, 2-methoxyestradiol could serve as a therapeutic agent for treating hypertension and associated pathogenesis in postmenopausal females, and in males. © 2017 American Heart Association, Inc.

  14. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust

    Win-Shwe, Tin-Tin, E-mail: tin.tin.win.shwe@nies.go.jp [Center for Environmental Health Sciences, National Institute for Environmental Studies, 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 (Japan); Fujimaki, Hidekazu; Fujitani, Yuji; Hirano, Seishiro [Center for Environmental Risk Research, National Institute for Environmental Studies, 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 (Japan)

    2012-08-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m{sup 3}), high-dose NRDE (H-NRDE, 129 μg/m{sup 3}), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. -- Highlights: ► The effects of nanoparticle-induced neurotoxicity remain unclear. ► We investigated the effect of exposure to

  15. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust

    Win-Shwe, Tin-Tin; Fujimaki, Hidekazu; Fujitani, Yuji; Hirano, Seishiro

    2012-01-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m 3 ), high-dose NRDE (H-NRDE, 129 μg/m 3 ), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. -- Highlights: ► The effects of nanoparticle-induced neurotoxicity remain unclear. ► We investigated the effect of exposure to

  16. Asic3(-/- female mice with hearing deficit affects social development of pups.

    Wei-Li Wu

    Full Text Available BACKGROUND: Infant crying is an important cue for mothers to respond adequately. Inappropriate response to infant crying can hinder social development in infants. In rodents, the pup-mother interaction largely depends on pup's calls. Mouse pups emit high frequency to ultrasonic vocalization (2-90 kHz to communicate with their dam for maternal care. However, little is known about how the maternal response to infant crying or pup calls affects social development over the long term. METHODOLOGY/PRINCIPAL FINDINGS: Here we used mice lacking acid-sensing ion channel 3 (Asic3(-/- to create a hearing deficit to probe the effect of caregiver hearing on maternal care and adolescent social development. Female Asic3(-/- mice showed elevated hearing thresholds for low to ultrasonic frequency (4-32 kHz on auditory brain stem response, which thus hindered their response to their pups' wriggling calls and ultrasonic vocalization, as well as their retrieval of pups. In adolescence, pups reared by Asic3(-/- mice showed a social deficit in juvenile social behaviors as compared with those reared by wild-type or heterozygous dams. The social-deficit phenotype in juvenile mice reared by Asic3(-/- mice was associated with the reduced serotonin transmission of the brain. However, Asic3(-/- pups cross-fostered to wild-type dams showed rescued social deficit. CONCLUSIONS/SIGNIFICANCE: Inadequate response to pups' calls as a result of ASIC3-dependent hearing loss confers maternal deficits in caregivers and social development deficits in their young.

  17. Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice

    Johansson, Hanna Katarina Lilith; Hansen, J. S.; Elfving, B.

    2017-01-01

    response and inflammation in experimental animals, which may affect female reproduction. This proof-of-principle study therefore aimed to investigate if lung exposure by intratracheal instillation of the MWCNT NM-400 would affect the estrous cycle and reproductive function in female mice.Results: Estrous...... of irregular cycling after exposure. Our data indicates that MWCNT exposure may interfere with events leading to ovulation....

  18. The ERa-PI3K cascade in proopiomelanocortin progenitor neurons regulates feeding and glucose balance in female mice

    Estrogens act upon estrogen receptor (ER)a to inhibit feeding and improve glucose homeostasis in female animals. However, the intracellular signals that mediate these estrogenic actions remain unknown. Here, we report that anorexigenic effects of estrogens are blunted in female mice that lack ERa sp...

  19. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice.

    Keesom, Sarah M; Morningstar, Mitchell D; Sandlain, Rebecca; Wise, Bradley M; Hurley, Laura M

    2018-05-12

    Early-life experiences, including maternal deprivation and social isolation during adolescence, have a profound influence on a range of adult social behaviors. Post-weaning social isolation in rodents influences behavior in part through the alteration of neuromodulatory systems, including the serotonergic system. Of significance to social behavior, the serotonergic system richly innervates brain areas involved in vocal communication, including the auditory system. However, the influence of isolation on serotonergic input to the auditory system remains underexplored. Here, we assess whether 4 weeks of post-weaning individual housing alters serotonergic fiber density in the inferior colliculus (IC), an auditory midbrain nucleus in which serotonin alters auditory-evoked activity. Individually housed male and female mice were compared to conspecifics housed socially in groups of three. Serotonergic projections were subsequently visualized with an antibody to the serotonin transporter, which labels serotonergic fibers with relatively high selectivity. Fiber densities were estimated in the three major subregions of the IC using line-scan intensity analysis. Individually housed female mice showed a significantly reduced fiber density relative to socially housed females, which was accompanied by a lower body weight in individually housed females. In contrast, social isolation did not affect serotonergic fiber density in the IC of males. This finding suggests that sensitivity of the serotonergic system to social isolation is sex-dependent, which could be due to a sex difference in the effect of isolation on psychosocial stress. Since serotonin availability depends on social context, this finding further suggests that social isolation can alter the acute social regulation of auditory processing. Copyright © 2018. Published by Elsevier B.V.

  20. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    H. Raie

    2006-04-01

    Full Text Available Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and female mice were divided into groups (seven mice in each group including: receiving testosterone (2 mg/kg S.C., estradiol benzoate (0.1 mg/kg S.C., and progesterone (0.5 mg/kg S.C. with and without hydroalcholic extract of chamomile (50 mg/kg i.p. Motor activity monitor system was used to evaluate locomotor activity parameters (fast and slow activity, fast and slow stereotype activity, fast and slow rearing in all groups. Results: 1 Testosterone had no any effect on motor activity parameters, but extract of chamomile with and without testosterone decreased motor activity parameters in male mice. 2 Estradiol benzoate and chamomile hydroalcholic extract in presence and absence of each other increased locomotor activity parameters in female mice. 3 Progesterone also did not change motor activity parameters in presence and absence of chamomile hydroalcholic extract in female mice. 4 Administration of Estradiol benzoate with progestrone in presence and absence of chamomile hydroalcholic extract did not alter motor activity parameters in female mice. Conclusion: It seems both of the chamomile hydroalcholic extract and estradiol enhance motor activity and probably act through same system and potentiate the effect of each other. Also it seems there are interaction between estradiol and progesterone and also between chamomile extract and progesterone. Testosterone probably did not have any interaction with chamomile extract in locomotor activity.

  1. FEMALE MICE ARE RESISTANT TO Fabp1 GENE ABLATION-INDUCED ALTERATIONS IN BRAIN ENDOCANNABINOID LEVELS

    Martin, Gregory G.; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K.; Dangott, Lawrence J.; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J.; Kier, Ann B.; Schroeder, Friedhelm

    2017-01-01

    Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing ECs, i.e arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: i) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; ii) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or iii) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO). PMID:27450559

  2. Associations between tumor types in irradiated BALB/c female mice

    Storer, J.B.

    1982-01-01

    Associations between pairs of 12 different tumor types were estimated for a population of over 3800 irradiated BALB/c female mice. The associations were adjusted for age and radiation dose. Of the 66 pairs of tumor types, 21 showed significant positive or negative associations. Of these, 8 were considered to be spurious, principally because one or both of the tumors was rapidly lethal, leading to an apparent negative association. Six of the remaining 13 significant associations involed tumors of endocrine organs or tumors known to be endocrine related. Six others involved associations between lung, vascular tissue, or reticular tissue tumors, and tumors of endocrine organs. The remaining and highly negative association was between reticulum cell sarcomas and other lymphomas and leukemias. It was concluded that in irradiated female mice of this strain, at least, tumors are not independent and that alterations in host factors (principally endocrine) lead to animals developing both tumors (positive associations) or to one tumor but not the other (negative associations)

  3. Effect of acute beer ingestion on the liver: studies in female mice.

    Kanuri, Giridhar; Wagnerberger, Sabine; Landmann, Marianne; Prigl, Eva; Hellerbrand, Claus; Bischoff, Stephan C; Bergheim, Ina

    2015-04-01

    The aim of the present study was to assess whether the effects of acute consumption of stout or pilsner beer on the liver differ from those of plain ethanol in a mouse model. Seven-week-old female C57BL/6J mice received either ethanol, stout or pilsner beer (ethanol content: 6 g/kg body weight) or isocaloric maltodextrin solution. Plasma alanine transaminase, markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade as well as lipid peroxidation and fibrogenesis in the liver were measured 12 h after acute ethanol or beer intake. Acute alcohol ingestion caused a marked ~11-fold increase in hepatic triglyceride accumulation in comparison to controls, whereas in mice exposed to stout and pilsner beer, hepatic triglyceride levels were increased only by ~6.5- and ~4-fold, respectively. mRNA expression of sterol regulatory element-binding protein 1c and fatty acid synthase in the liver did not differ between alcohol and beer groups. In contrast, expression of myeloid differentiation primary response gene 88, inducible nitric oxide synthases, but also the concentrations of 4-hydroxynonenal protein adducts, nuclear factor κB and plasminogen activator inhibitor-1 were induced in livers of ethanol treated mice but not in those exposed to the two beers. Taken together, our results suggest that acute ingestion of beer and herein especially of pilsner beer is less harmful to the liver than the ingestion of plain ethanol.

  4. Congenital malformations in embryos of female mice exposed to alcohol and nicotinamide

    Natasha Soares Simões dos Santos

    2009-03-01

    Full Text Available Objective: To compare the incidence of congenital malformations among the offspring of female mice exposed to alcohol or alcohol plus nicotinamide. Methods: Three groups of pregnant C57BL/6J mice were studied; G1 received alcohol (5 g/kg in saline solution (20% - vol/vol; G2 received nicotinamide, 50 mg/ml associated to alcohol; and G3, only saline solution; all by intraperitoneal injection on the seventh day of pregnancy. The animals were killed in a CO2 chamber on day 18 of pregnancy. The intrauterine content was assessed and the number of complete and reabsorbed fetuses was counted. The complete fetuses had their weight and crown-rump length measured and malformations were identified. Rresults: G1 showed the highest number of malformations: micrognathia, low set ears, hypertrophic nose, scoliosis, and atrophy of the lower and upper limbs. Weight was significantly different among the groups (p = 0.0139, and in G1 it was below average as compared to G3 (p = 0.3133. As for length, the lowest values were found in G2 and G3 showed the highest ones. There was a significant difference among the groups (p = 0.0145. Cconclusions: Ethanol, when administered to pregnant mice was teratogenic. However, length of G1 fetuses was, in average, higher than that of other groups. Nicotinamide decreased the number of malformations and may be a possible protector against alcohol effects.

  5. Adult Gli2+/-;Gli3Δ699/+ Male and Female Mice Display a Spectrum of Genital Malformation.

    Fei He

    Full Text Available Disorders of sexual development (DSD encompass a broad spectrum of urogenital malformations and are amongst the most common congenital birth defects. Although key genetic factors such as the hedgehog (Hh family have been identified, a unifying postnatally viable model displaying the spectrum of male and female urogenital malformations has not yet been reported. Since human cases are diagnosed and treated at various stages postnatally, equivalent mouse models enabling analysis at similar stages are of significant interest. Additionally, all non-Hh based genetic models investigating DSD display normal females, leaving female urogenital development largely unknown. Here, we generated compound mutant mice, Gli2+/-;Gli3Δ699/+, which exhibit a spectrum of urogenital malformations in both males and females upon birth, and also carried them well into adulthood. Analysis of embryonic day (E18.5 and adult mice revealed shortened anogenital distance (AGD, open ventral urethral groove, incomplete fusion of scrotal sac, abnormal penile size and structure, and incomplete testicular descent with hypoplasia in male mice, whereas female mutant mice displayed reduced AGD, urinary incontinence, and a number of uterine anomalies such as vaginal duplication. Male and female fertility was also investigated via breeding cages, and it was identified that male mice were infertile while females were unable to deliver despite becoming impregnated. We propose that Gli2+/-;Gli3Δ699/+ mice can serve as a genetic mouse model for common DSD such as cryptorchidism, hypospadias, and incomplete fusion of the scrotal sac in males, and a spectrum of uterine and vaginal abnormalities along with urinary incontinence in females, which could prove essential in revealing new insights into their equivalent diseases in humans.

  6. Cdc20 is critical for meiosis I and fertility of female mice.

    Fang Jin

    2010-09-01

    Full Text Available Chromosome missegregation in germ cells is an important cause of unexplained infertility, miscarriages, and congenital birth defects in humans. However, the molecular defects that lead to production of aneuploid gametes are largely unknown. Cdc20, the activating subunit of the anaphase-promoting complex/cyclosome (APC/C, initiates sister-chromatid separation by ordering the destruction of two key anaphase inhibitors, cyclin B1 and securin, at the transition from metaphase to anaphase. The physiological significance and full repertoire of functions of mammalian Cdc20 are unclear at present, mainly because of the essential nature of this protein in cell cycle progression. To bypass this problem we generated hypomorphic mice that express low amounts of Cdc20. These mice are healthy and have a normal lifespan, but females produce either no or very few offspring, despite normal folliculogenesis and fertilization rates. When mated with wild-type males, hypomorphic females yield nearly normal numbers of fertilized eggs, but as these embryos develop, they become malformed and rarely reach the blastocyst stage. In exploring the underlying mechanism, we uncover that the vast majority of these embryos have abnormal chromosome numbers, primarily due to chromosome lagging and chromosome misalignment during meiosis I in the oocyte. Furthermore, cyclin B1, cyclin A2, and securin are inefficiently degraded in metaphase I; and anaphase I onset is markedly delayed. These results demonstrate that the physiologically effective threshold level of Cdc20 is high for female meiosis I and identify Cdc20 hypomorphism as a mechanism for chromosome missegregation and formation of aneuploid gametes.

  7. Effects of Portulaca oleracea ethanolic extract on reproductive system of aging female mice

    Ahangarpour, Akram; Lamoochi, Zohreh; Fathi Moghaddam, Hadi; Mansouri, Seyed Mohamad Taghi

    2016-01-01

    Background: Aging contains morphological and functional deterioration in biological systems. D-galactose (D-gal) generates free radicals and accelerates aging. Portulaca oleracea (Purslane) may have protective effect against oxidative stress. Objective: Purslane ethanolic extract effects were evaluated on antioxidant indices and sex hormone in D-gal aging female mice. Materials and Methods: 48 female NMRI mice (25-35 gr) were randomly divided into, 6 groups: 1- control (normal saline for 45 days), 2- Purslane (200 mg/kg for last 3 weeks), 3-D-gal (500 mg/kg for 45 days), 4-D-gal+Purslane, 5- Aging, 6-Aging+Purslane. Sex hormones, antioxidants and malondialdehyde (MDA) level of ovary and uterus were measured. Histological assessment was also done. Results: In D-gal treated and aging animals, LH and FSH levels were significantly increased (p<0.001) while estrogen and progesterone levels were significantly reduced (p<0.001) in comparison with control group. MDA contents were significantly increased in ovaries and uterus of D-gal and aging groups (p<0.01). Superoxide dismutase (SOD) (p<0.001) and catalase (p<0.01) activities were significantly decreased in both aging and D-gal treated animals. Ovarian follicles were degenerated and atrophy on uterine wall and endometrial glands was observed in D-gal and aging groups. Alteration in hormone levels, MDA contents and antioxidant activity were significantly reversed by Purslane (p<0.05). Purslane could also improve histological changes such as atrophy of endometrium. Conclusion: These findings indicate that Purslane can attenuate aging alternations induced by D-gal and aging in female reproductive system. PMID:27294220

  8. Effects of Portulaca oleracea ethanolic extract on reproductive system of aging female mice

    Akram Ahangarpour

    2016-03-01

    Full Text Available Background: Aging contains morphological and functional deterioration in biological systems. D-galactose (D-gal generates free radicals and accelerates aging. Portulaca oleracea (Purslane may have protective effect against oxidative stress. Objective: Purslane ethanolic extract effects were evaluated on antioxidant indices and sex hormone in D-gal aging female mice. Materials and Methods: 48 female NMRI mice (25-35 gr were randomly divided into, 6 groups: 1- control (normal saline for 45 days, 2- Purslane (200 mg/kg for last 3 weeks, 3-D-gal (500 mg/kg for 45 days, 4-D-gal+Purslane, 5- Aging, 6-Aging+Purslane. Sex hormones, antioxidants and malondialdehyde (MDA level of ovary and uterus were measured. Histological assessment was also done. Results: In D-gal treated and aging animals, LH and FSH levels were significantly increased (p<0.001 while estrogen and progesterone levels were significantly reduced (p<0.001 in comparison with control group. MDA contents were significantly increased in ovaries and uterus of D-gal and aging groups (p<0.01. Superoxide dismutase (SOD (p<0.001 and catalase (p<0.01 activities were significantly decreased in both aging and D-gal treated animals. Ovarian follicles were degenerated and atrophy on uterine wall and endometrial glands was observed in D-gal and aging groups. Alteration in hormone levels, MDA contents and antioxidant activity were significantly reversed by Purslane (p<0.05. Purslane could also improve histological changes such as atrophy of endometrium. Conclusion: These findings indicate that Purslane can attenuate aging alternations induced by D-gal and aging in female reproductive system.

  9. The ZEB1 Transcription Factor Is a Novel Repressor of Adiposity in Female Mice

    Saykally, Jessica N.; Dogan, Soner; Cleary, Margot P.; Sanders, Michel M.

    2009-01-01

    Background Four genome-wide association studies mapped an “obesity” gene to human chromosome 10p11–12. As the zinc finger E-box binding homeobox 1 (ZEB1) transcription factor is encoded by the TCF8 gene located in that region, and as it influences the differentiation of various mesodermal lineages, we hypothesized that ZEB1 might also modulate adiposity. The goal of these studies was to test that hypothesis in mice. Methodology/Principal Findings To ascertain whether fat accumulation affects ZEB1 expression, female C57BL/6 mice were fed a regular chow diet (RCD) ad libitum or a 25% calorie-restricted diet from 2.5 to 18.3 months of age. ZEB1 mRNA levels in parametrial fat were six to ten times higher in the obese mice. To determine directly whether ZEB1 affects adiposity, wild type (WT) mice and mice heterozygous for TCF8 (TCF8+/−) were fed an RCD or a high-fat diet (HFD) (60% calories from fat). By two months of age on an HFD and three months on an RCD, TCF8+/− mice were heavier than WT controls, which was attributed by Echo MRI to increased fat mass (at three months on an HFD: 0.517±0.081 total fat/lean mass versus 0.313±0.036; at three months on an RCD: 0.175±0.013 versus 0.124±0.012). No differences were observed in food uptake or physical activity, suggesting that the genotypes differ in some aspect of their metabolic activity. ZEB1 expression also increases during adipogenesis in cell culture. Conclusion/Significance These results show for the first time that the ZEB1 transcription factor regulates the accumulation of adipose tissue. Furthermore, they corroborate the genome-wide association studies that mapped an “obesity” gene at chromosome 10p11–12. PMID:20041147

  10. Comparison of Neurological Function in Males and Females from Two Substrains of C57BL/6 Mice

    Amy Ashworth

    2014-12-01

    Full Text Available The C57BL/6 (B6 mouse is the background strain most frequently used for genetically-modified mice. Previous studies have found significant behavioral and genetic differences between the B6J (The Jackson Laboratory and B6N substrains (National Institutes of Health; however, most studies employed only male mice. We performed a comprehensive battery of motor function and learning and memory tests on male and female mice from both substrains. The B6N male mice had greater improvement in the rotarod test. In contrast, B6J female mice had longer latencies to falling from the rotarod. In the Morris water maze (MWM, B6J males had significantly shorter latencies to finding the hidden platform. However, B6N females had significantly shorter path lengths in the reversal and shifted-reduced phases. In open field locomotor activity, B6J males had higher activity levels, whereas B6N females took longer to habituate. In the fear conditioning test, B6N males had a significantly longer time freezing in the new context compared with B6J males, but no significant differences were found in contextual or cued tests. In summary, our findings demonstrate the importance of testing both males and females in neurobehavioral studies. Both factors (sex and substrain must be taken into account when designing developmental neurotoxicology studies.

  11. Experimental transmission of M. leprae in the testis of mice, born from 131I-injected females

    Sushida, Kiyo

    1974-01-01

    Six strains of M. leprae taken from lepromatous leprosy patients were inoculated into the testes of '' 131 I-F 1 '' mice, which were divided into two groups. The first group was born of females which had been subcutaneously injected with 131 I-100 μc during pregnancy; the second group was born of females which had been injected before pregnancy. The '' 131 I-F 1 '' mice which were born of females injected with 131 I-100 μc, during pregnancy were then inoculated with leprous bacilli described above, showed the presence of the so-called ''globi'' in the testes. When samples of leprous bacilli (LL28, LL32, LL33) taken from patients who had not been receiving anti-leprous drug treatments were injected into the 131 I-F 1 mice, globi were also found. When leprous bacilli from leproma removed from patients under treatment were injected into mice born from females which had been injected with 131 I-100 μc either during or before their pregnancy, no globi were found. Even though bacilli (LL32, LL33, LL34) from untreated patients were injected into mice born of females who were injected with 131 I-100 μc before pregnancy, no globi were found. (auth.)

  12. Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice.

    Maruoka, Takashi; Kodomari, Ikuko; Yamauchi, Rena; Wada, Etsuko; Wada, Keiji

    2009-04-17

    The maternal environment is thought to be important for fetal brain development. However, the effects of maternal environment are not fully understood. Here, we investigated whether enrichment of the maternal environment can influence prenatal brain development and postnatal behaviors in mice. An enriched environment is a housing condition with several objects such as a running wheel, tube and ladder, which are thought to increase sensory, cognitive and motor stimulation in rodents compared with standard housing conditions. First, we measured the number of BrdU-positive cells in the hippocampal dentate gyrus of fetuses from pregnant dams housed in an enriched environment. Our results revealed that maternal enrichment influences cell proliferation in the hippocampus of female, but not male, fetuses. Second, we used the open-field test to investigate postnatal behaviors in the offspring of dams housed in the enriched environment during pregnancy. We found that maternal enrichment significantly affects the locomotor activity and time spent in the center of the open-field in female, but not male, offspring. These results indicate that maternal enrichment influences prenatal brain development and postnatal behaviors in female offspring.

  13. DEHP exposure in utero disturbs sex determination and is potentially linked with precocious puberty in female mice

    Wang, Yongan; Yang, Qing; Liu, Wei; Yu, Mingxi; Zhang, Zhou; Cui, Xiaoyu

    2016-01-01

    Human's ubiquitous exposure to di (2-ethylhexyl) phthalate (DEHP) is thought to be associated with female reproductive toxicity. Previous studies found that DEHP inhibited follicle growth and decreased estradiol levels in adult female mice. However, limited information is available on the link between in utero DEHP exposure and ovarian development in female mouse offspring. The present study evaluates the disturbances in regulatory genes involved in female sex determination and the ovarian outcomes in fetal and postnatal female mice treated with in utero DEHP exposure. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposure levels. After in utero DEHP exposure, increased follicular atresia was observed in the female pups at postnatal days (PND) 21. Foxl2 expression was significantly upregulated, and Fst was significantly downregulated by DEHP above 2 mg/kg/d at PND 1 and 21. This suggests that lesion of granulosa cell differentiation and disturbance of follicle development in postnatal female mice. The expression of Cyp11a1 and Star were significantly downregulated by in utero DEHP exposure, indicating effects on estradiol biosynthesis. The female sex determination pathway was disturbed in fetus by DEHP at 2 mg/kg/d and above during the critical time window of sex determination causing significant upregulation of Foxl2, Wnt4, β-catenin and Fst. Furthermore, the increased expression of Wnt4 was supported by whole-mount in situ hybridization (WISH). These results suggest a possible association between in utero DEHP exposure and precocious puberty in the postnatal life of mice offspring, where disturbance of the sex determination regulating pathway acted as an important mechanism. - Highlights: • Maternal exposure to di (2-ethylhexyl) phthalate disturbs fetus sex determination. • DEHP upregulated Foxl2 expression potentially disturbs postnatal granulosa cell differentiation. • DEHP accelerated medulla

  14. DEHP exposure in utero disturbs sex determination and is potentially linked with precocious puberty in female mice

    Wang, Yongan [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024 (China); Yang, Qing [School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024 (China); Liu, Wei, E-mail: liu_wei@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024 (China); Yu, Mingxi; Zhang, Zhou; Cui, Xiaoyu [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024 (China)

    2016-09-15

    Human's ubiquitous exposure to di (2-ethylhexyl) phthalate (DEHP) is thought to be associated with female reproductive toxicity. Previous studies found that DEHP inhibited follicle growth and decreased estradiol levels in adult female mice. However, limited information is available on the link between in utero DEHP exposure and ovarian development in female mouse offspring. The present study evaluates the disturbances in regulatory genes involved in female sex determination and the ovarian outcomes in fetal and postnatal female mice treated with in utero DEHP exposure. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposure levels. After in utero DEHP exposure, increased follicular atresia was observed in the female pups at postnatal days (PND) 21. Foxl2 expression was significantly upregulated, and Fst was significantly downregulated by DEHP above 2 mg/kg/d at PND 1 and 21. This suggests that lesion of granulosa cell differentiation and disturbance of follicle development in postnatal female mice. The expression of Cyp11a1 and Star were significantly downregulated by in utero DEHP exposure, indicating effects on estradiol biosynthesis. The female sex determination pathway was disturbed in fetus by DEHP at 2 mg/kg/d and above during the critical time window of sex determination causing significant upregulation of Foxl2, Wnt4, β-catenin and Fst. Furthermore, the increased expression of Wnt4 was supported by whole-mount in situ hybridization (WISH). These results suggest a possible association between in utero DEHP exposure and precocious puberty in the postnatal life of mice offspring, where disturbance of the sex determination regulating pathway acted as an important mechanism. - Highlights: • Maternal exposure to di (2-ethylhexyl) phthalate disturbs fetus sex determination. • DEHP upregulated Foxl2 expression potentially disturbs postnatal granulosa cell differentiation. • DEHP accelerated medulla

  15. Inducible knockdown of pregnancy-associated plasma protein-A gene expression in adult female mice extends life span.

    Bale, Laurie K; West, Sally A; Conover, Cheryl A

    2017-08-01

    Pregnancy-associated plasma protein-A (PAPP-A) knockout (KO) mice, generated through homologous recombination in embryonic stem cells, have a significantly increased lifespan compared to wild-type littermates. However, it is unknown whether this longevity advantage would pertain to PAPP-A gene deletion in adult animals. In the present study, we used tamoxifen (Tam)-inducible Cre recombinase-mediated excision of the floxed PAPP-A (fPAPP-A) gene in mice at 5 months of age. fPAPP-A mice, which were either positive (pos) or negative (neg) for Tam-Cre, received Tam treatment with quarterly boosters. Only female mice could be used with this experimental design. fPAPP-A/neg and fPAPP-A/pos mice had similar weights at the start of the experiment and showed equivalent weight gain. We found that fPAPP-A/pos mice had a significant extension of life span (P = 0.005). The median life span was increased by 21% for fPAPP-A/pos compared to fPAPP-A/neg mice. Analysis of mortality in life span quartiles indicated that the proportion of deaths of fPAPP-A/pos mice were lower than fPAPP-A/neg mice at young adult ages (P = 0.002 for 601-800 days) and higher than fPAPP-A/neg mice at older ages (P = 0.004 for >1000 days). Thus, survival curves and age-specific mortality indicate that female mice with knockdown of PAPP-A gene expression as adults have an extended healthy life span. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    Kiran Chaudhari; Jessica M. Wong; Philip H. Vann; Nathalie Sumien

    2014-01-01

    Purpose: The purpose of this study was to determine if antioxidant supplementation, moderate exercise, and the combination of both treatments could ameliorate cognitive performance in adult mice and whether the apolipoprotein E (APOE) genotype as well as sex could influence the functional outcomes of the treatments. Methods: For a period of 16 weeks, separate groups of male and female mice expressing either the human APOE3 or APOE4 isoforms were fed either a control diet (NIH-31) or the co...

  17. The Effects of Dietary Macronutrient Balance on Skin Structure in Aging Male and Female Mice

    McMahon, Aisling C.; Ruohonen, Kari; Raubenheimer, David; Ballard, J. William O.; Le Couteur, David G.; Nicholls, Caroline; Li, Zhe; Maitz, Peter K. M.; Wang, Yiwei; Simpson, Stephen J.

    2016-01-01

    Nutrition influences skin structure; however, a systematic investigation into how energy and macronutrients (protein, carbohydrate and fat) affects the skin has yet to be conducted. We evaluated the associations between macronutrients, energy intake and skin structure in mice fed 25 experimental diets and a control diet for 15 months using the Geometric Framework, a novel method of nutritional analysis. Skin structure was associated with the ratio of dietary macronutrients eaten, not energy intake, and the nature of the effect differed between the sexes. In males, skin structure was primarily associated with protein intake, whereas in females carbohydrate intake was the primary correlate. In both sexes, the dermis and subcutaneous fat thicknesses were inversely proportional. Subcutaneous fat thickness varied positively with fat intake, due to enlarged adipocytes rather than increased adipocyte number. We therefore demonstrated clear interactions between skin structure and macronutrient intakes, with the associations being sex-specific and dependent on dietary macronutrient balance. PMID:27832138

  18. The Accessory Olfactory System Facilitates the Recovery of the Attraction to Familiar Volatile Female Odors in Male Mice.

    Muroi, Yoshikage; Nishimura, Masakazu; Ishii, Toshiaki

    2017-10-31

    Odors in female mice induce sexual arousal in male mice. Repeated exposure to female odors attenuates male attraction, which recovers when the odors are removed. The neuronal mechanisms for the recovery of male attraction have not been clarified. In this study, we examined how olfactory systems are involved in the recovery of male attraction to female odors following habituation in mice. Presentation with volatile female odors for 5 min induced habituation in males. To evaluate male attraction to familiar volatile female odors, we measured the duration for investigating volatile female odors from the same female mouse, which was presented twice for 5 min with 1-, 3-, or 5-min interval. Intranasal irrigation with ZnSO4 solution almost completely suppressed investigating behavior, indicating that the main olfactory system is indispensable for inducing the attraction to volatile female odors. In contrast, removal of the vomeronasal organ, bilateral lesions of the accessory olfactory bulb (AOB), or pharmacological blockage of neurotransmission in the AOB did not affect the investigation time at the first odor presentation. However, each one of the treatments decreased the investigation time in the second presentation, compared to that in the first presentation, at longer intervals than control treatment, indicating that the disturbance of neurotransmission in the accessory olfactory system delayed the recovery of the attraction attenuated by the first presentation. These results suggest that the accessory olfactory system facilitates the recovery of the attraction to familiar volatile female odors in male mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Different effects of bisphenol-A on memory behavior and synaptic modification in intact and estrogen-deprived female mice.

    Xu, Xiaohong; Gu, Ting; Shen, Qiaoqiao

    2015-03-01

    Bisphenol-A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)-induced memory impairment, whereas co-exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up-regulated synaptic proteins synapsin I and PSD-95 and NMDA receptor NR2B but inhibited EB-induced increase in PSD-95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen. © 2014 International Society for Neurochemistry.

  20. Reduced anxiety-like behavior and altered hippocampal morphology in female p75NTR exon IV-/- mice.

    Zoe ePuschban

    2016-06-01

    Full Text Available The presence of the neurotrophin receptor p75NTR in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR exonIII-/- model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety–associated behavior in p75NTR exonIV-/- mice lacking both p75NTR isoforms. Comparing p75NTR exonIV-/- and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice.Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR exonIV -/- mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice.

  1. Dietary arginine depletion reduces depressive-like responses in male, but not female, mice.

    Workman, Joanna L; Weber, Michael D; Nelson, Randy J

    2011-09-30

    Previous behavioral studies have manipulated nitric oxide (NO) production either by pharmacological inhibition of its synthetic enzyme, nitric oxide synthase (NOS), or by deletion of the genes that code for NOS. However manipulation of dietary intake of the NO precursor, L-arginine, has been understudied in regard to behavioral regulation. L-Arginine is a common amino acid present in many mammalian diets and is essential during development. In the brain L-arginine is converted into NO and citrulline by the enzyme, neuronal NOS (nNOS). In Experiment 1, paired mice were fed a diet comprised either of an L-arginine-depleted, L-arginine-supplemented, or standard level of L-arginine during pregnancy. Offspring were continuously fed the same diets and were tested in adulthood in elevated plus maze, forced swim, and resident-intruder aggression tests. L-Arginine depletion reduced depressive-like responses in male, but not female, mice and failed to significantly alter anxiety-like or aggressive behaviors. Arginine depletion throughout life reduced body mass overall and eliminated the sex difference in body mass. Additionally, arginine depletion significantly increased corticosterone concentrations, which negatively correlated with time spent floating. In Experiment 2, adult mice were fed arginine-defined diets two weeks prior to and during behavioral testing, and again tested in the aforementioned tests. Arginine depletion reduced depressive-like responses in the forced swim test, but did not alter behavior in the elevated plus maze or the resident intruder aggression test. Corticosterone concentrations were not altered by arginine diet manipulation in adulthood. These results indicate that arginine depletion throughout development, as well as during a discrete period during adulthood ameliorates depressive-like responses. These results may yield new insights into the etiology and sex differences of depression. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Distribution and time course of corticosterone excretion in faeces and urine of female mice with varying systemic concentrations

    Kalliokoski, Otto; Hau, Jann; Jacobsen, Kirsten R

    2010-01-01

    distribution and time course of corticosterone excretion, after intravenous injection of varying corticosterone concentrations, was investigated in female mice. Female BALB/c mice excreted 60% of all corticosterone in the urine with an approximate delay of 5h from tail vein administration. The remaining 40......% were excreted in faeces, with an approximate delay of 9h from administration. The faecal/urinary excretion ratio, as well as time course of excretion, remained unaltered by administration of various doses of corticosterone covering the entire physiological range of serum corticosterone. Although...

  3. Increased susceptibility to collagen-induced arthritis in female mice carrying congenic Cia40/Pregq2 fragments

    Liljander, Maria; Andersson, Åsa Inga Maria; Holmdahl, Rikard

    2008-01-01

    ABSTRACT: INTRODUCTION: Collagen-induced arthritis (CIA) in mice is a commonly used experimental model for rheumatoid arthritis (RA). We have previously identified a significant quantitative trait locus denoted Cia40 on chromosome 11 that affects CIA in older female mice. This locus colocalizes...... with another locus, denoted Pregq2, known to affect reproductive success. The present study was performed to evaluate the role of the Cia40 locus in congenic B10.Q mice and to identify possible polymorphic candidate genes, which may also be relevant in the context of RA. METHODS: Congenic B10.Q mice carrying...... an NFR/N fragment surrounding the Cia40/Pregq2 loci were created by 10 generations of backcrossing (N10). The congenic mice were investigated in the CIA model, and the incidence and severity of arthritis as well as the serum levels of anti-collagen II (CII) antibodies were recorded. RESULTS: Significant...

  4. NanoTIO2 (UV-Titan does not induce ESTR mutations in the germline of prenatally exposed female mice

    Boisen Anne Mette

    2012-06-01

    Full Text Available Abstract Background Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR loci in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development. Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO2 produces a long-lasting inflammatory response in mice, it was chosen for the present study. Findings Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO2 UV-Titan L181 (~42.4 mg UV-Titan/m3 or filtered clean air on gestation days (GD 8–18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring of F1 female mice (192 UV-Titan-exposed F2 offspring and 164 F2 controls. ESTR mutation rates of 0.029 (maternal allele and 0.047 (paternal allele in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele and 0.061 (paternal allele. Conclusions We found no evidence for increased ESTR mutation rates in F1 females exposed in utero to UV-Titan nanoparticles from GD8-18 relative to control females.

  5. Dominant lethal and ovarian effects of plutonium-239 in female mice

    Searle, A.G.; Beechey, C.V.; Green, D.; Howells, G.R.

    1982-01-01

    (C3H x 101)F 1 female mice were injected intravenously with 239 Pu in trisodium citrate, then mated in pairs to strain CBA males, to test for dominant lethality. In the first experiment 10μCi kg -1 and in the second 20μCi kg -1 body mass was injected. Matings were after 6 days in the first experiment (estimated ovarian absorbed dose of 0.1 Gy) and after 3,6 or 12 weeks in the second (estimated ovarian doses of 1.11, 2.45 and 5.91 Gy respectively). No evidence of dominant lethal induction was found in the first experiment, but in the second there was a significant increase over controls in pre-implantation loss in all three series. Post-implantation lethality increased significantly (by 12%) only after 12 weeks' exposure. With the 6- and 12-week exposures (especially the latter) luteal counts fell, fewer females becoming pregnant than in controls. This is attributed to oocyte killing by the α-particles. Histological and autoradiographic investigations showed a marked reduction in ovarian size and follicular numbers with fission-tracks clustered mainly over the medullary stroma. The preimplantation loss may stem from lowered fertilization of oocytes because of their damage, so that the best measure of dominant lethality is that based on post-implantation death. (author)

  6. Cannabidiol Prevents the Development of Cold and Mechanical Allodynia in Paclitaxel-Treated Female C57Bl6 Mice

    Ward, Sara Jane; Ramirez, Michael David; Neelakantan, Harshini; Walker, Ellen Ann

    2011-01-01

    The taxane chemotherapeutic paclitaxel frequently produces peripheral neuropathy in humans. Rodent models to investigate mechanisms and treatments are largely restricted to male rats, whereas female mouse studies are lacking. We characterized a range of paclitaxel doses on cold and mechanical allodynia in male and female C57Bl/6 mice. Because the nonpsycho-active phytocannabinoid cannabidiol attenuates other forms of neuropathic pain, we assessed its effect on paclitaxel-induced allodynia. Pa...

  7. Conditioned social preference, but not place preference, produced by intranasal oxytocin in female mice.

    Kosaki, Yutaka; Watanabe, Shigeru

    2016-04-01

    Oxytocin (OT) has been implicated in a variety of mammalian reproductive and social behaviors, and the use of intranasal OT for clinical purposes is on the rise. However, basic actions of OT, including the rewarding or reinforcing properties of the drug, are currently not fully understood. In this study, the authors investigated whether intranasally administered OT has different reinforcing properties for social and nonsocial stimuli and whether such effects are variable between male and female subjects. Conditioned social preference (CSP) and conditioned place preference (CPP) paradigms were used to examine social and nonsocial reinforcing properties of OT. In CSP, the presence of a same-sex unfamiliar conspecific was repeatedly paired with intranasal OT, while a different conspecific was associated with saline. The reinforcing effect of OT was assessed in a postconditioning choice test under a drug-free condition. In CPP, the 2 conspecifics were replaced with nonsocial black and white compartments. The authors found that intranasal OT (12 μg) in females supported the formation of CSP (Experiment 1) but not CPP (Experiment 3). Neither CSP (Experiment 2) nor CPP (Experiment 4) was formed in males. Extended conditioning with higher dose OT (36 μg), however, abolished the initial CSP in females and produced an aversion to the OT-paired stimulus mouse. Experiment 5 indicated that it was the repeated administrations rather than the higher dose that produced the abolition of the original preference. Overall, the current results demonstrate for the first time a sex- and stimulus-dependent reinforcing property of intranasal OT in mice. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  9. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  10. Spatial learning of female mice: a role of the mineralocorticoid receptor during stress and the estrous cycle

    Judith P Ter Horst

    2013-05-01

    Full Text Available Corticosterone facilitates behavioral adaptation to a novel experience in a coordinate manner via mineralocorticoid (MR and glucocorticoid receptors (GR. Initially, MR mediates corticosterone action on appraisal processes, risk assessment and behavioral flexibility and then, GR activation promotes consolidation of the new information into memory. Here, we studied on the circular holeboard (CHB the spatial performance of female mice with genetic deletion of MR from the forebrain (MRCaMKCre and their wild type littermates (MRflox/flox mice over the estrous cycle and in response to an acute stressor. The estrous cycle had no effect on the spatial performance of MRflox/flox mice and neither did the acute stressor. However, the MRCaMKCre mutants needed significantly more time to find the exit and made more hole visit errors than the MRflox/flox mice, especially when in proestrus and estrus. In addition, stressed MRCaMKCre mice in estrus had a shorter exit latency than the control estrus MRCaMKCre mice. About 70% of the female MRCaMKCre and MRflox/flox mice used a hippocampal (spatial, extra maze cues rather than the caudate nucleus (stimulate-response, S-R, intra-maze cue strategy and this preference did neither change over the estrous cycle nor after stress. However, stressed MRCaMKCre mice using the S-R strategy needed significantly more time to find the exit hole as compared to the spatial strategy using mice suggesting that the MR could be needed for the stress-induced strategy switch towards a spatial strategy. In conclusion, the results suggest that loss of MR interferes with performance of a spatial task especially when estrogen levels are high suggesting a strong interaction between stress and sex hormones.

  11. Increased survivorship of testosterone-treated female house mice (Mus musculus) in high-density field conditions

    W.J. Zielinski; J.G. Vandenbergh

    1991-01-01

    Differences in hormone levels influence sexual differences in aggression. survival, home-range size and dispcrsal in rodents. The role oftestosterone in establishing some of these differences in wild house mice was examined. Females treated with either 0·5 mg of testosterone enanthate (TE-treated) or oil (control), and an...

  12. A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice1

    Kauffman, Alexander S.; Thackray, Varykina G.; Ryan, Genevieve E.; Tolson, Kristen P.; Glidewell-Kenney, Christine A.; Semaan, Sheila J.; Poling, Matthew C.; Iwata, Nahoko; Breen, Kellie M.; Duleba, Antoni J.; Stener-Victorin, Elisabet; Shimasaki, Shunichi; Webster, Nicholas J.; Mellon, Pamela L.

    2015-01-01

    Polycystic ovary syndrome (PCOS) pathophysiology is poorly understood, due partly to lack of PCOS animal models fully recapitulating this complex disorder. Recently, a PCOS rat model using letrozole (LET), a nonsteroidal aromatase inhibitor, mimicked multiple PCOS phenotypes, including metabolic features absent in other models. Given the advantages of using genetic and transgenic mouse models, we investigated whether LET produces a similar PCOS phenotype in mice. Pubertal female C57BL/6N mice were treated for 5 wk with LET, which resulted in increased serum testosterone and normal diestrus levels of estradiol, similar to the hyperandrogenemia and follicular phase estrogen levels of PCOS women. As in PCOS, ovaries from LET mice were larger, polycystic, and lacked corpora lutea versus controls. Most LET females were acyclic, and all were infertile. LET females displayed elevated serum LH levels and higher Lhb mRNA in the pituitary. In contrast, serum FSH and Fshb were significantly reduced in LET females, demonstrating differential effects on gonadotropins, as in PCOS. Within the ovary, LET females had higher Cyp17, Cyp19, and Fsh receptor mRNA expression. In the hypothalamus, LET females had higher kisspeptin receptor mRNA expression but lower progesterone receptor mRNA levels. LET females also gained more weight than controls, had increased abdominal adiposity and adipocyte size, elevated adipose inflammatory mRNA levels, and impaired glucose tolerance, mirroring the metabolic phenotype in PCOS women. This is the first report of a LET paradigm in mice that recapitulates both reproductive and metabolic PCOS phenotypes and will be useful to genetically probe the PCOS condition. PMID:26203175

  13. Compared to Sucrose, Previous Consumption of Fructose and Glucose Monosaccharides Reduces Survival and Fitness of Female Mice123

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-01-01

    Background: Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar—high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). Objectives: We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. Methods: We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays—seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Results: Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. Conclusion: This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. PMID:25733457

  14. Compared to sucrose, previous consumption of fructose and glucose monosaccharides reduces survival and fitness of female mice.

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-03-01

    Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar-high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays-seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. © 2015 American Society for Nutrition.

  15. Developmental programming by androgen affects the circadian timing system in female mice.

    Mereness, Amanda L; Murphy, Zachary C; Sellix, Michael T

    2015-04-01

    Circadian clocks play essential roles in the timing of events in the mammalian hypothalamo-pituitary-ovarian (HPO) axis. The molecular oscillator driving these rhythms has been localized to tissues of the HPO axis. It has been suggested that synchrony among these oscillators is a feature of normal reproductive function. The impact of fertility disorders on clock function and the role of the clock in the etiology of endocrine pathology remain unknown. Polycystic ovarian syndrome (PCOS) is a particularly devastating fertility disorder, affecting 5%-10% of women at childbearing age with features including a polycystic ovary, anovulation, and elevated serum androgen. Approximately 40% of these women have metabolic syndrome, marked by hyperinsulinemia, dyslipidemia, and insulin resistance. It has been suggested that developmental exposure to excess androgen contributes to the etiology of fertility disorders, including PCOS. To better define the role of the timing system in these disorders, we determined the effects of androgen-dependent developmental programming on clock gene expression in tissues of the metabolic and HPO axes. Female PERIOD2::luciferase (PER2::LUC) mice were exposed to androgen (dihydrotestosterone [DHT]) in utero (Days 16-18 of gestation) or for 9-10 wk (DHT pellet) beginning at weaning (pubertal androgen excess [PAE]). As expected, both groups of androgen-treated mice had disrupted estrous cycles. Analysis of PER2::LUC expression in tissue explants revealed that excess androgen produced circadian misalignment via tissue-dependent effects on phase distribution. In vitro treatment with DHT differentially affected the period of PER2::LUC expression in tissue explants and granulosa cells, indicating that androgen has direct and tissue-specific effects on clock gene expression that may account for the effects of developmental programming on the timing system. © 2015 by the Society for the Study of Reproduction, Inc.

  16. A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a Western-style diet.

    Aslam, Muhammad Nadeem; Kreider, Jaclynn M; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; DaSilva, Marissa; Zernicke, Ronald F; Goldstein, Steven A; Varani, James

    2010-04-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for prevention of bone mineral loss. Sixty C57BL/6 mice were divided into three groups based on diet: the first group received a high-fat Western-style diet (HFWD), the second group was fed the same HFWD along with the mineral-rich extract included as a dietary supplement, and the third group was used as a control and was fed a low-fat rodent chow diet (AIN76A). Mice were maintained on the respective diets for 15 months. Then, long bones (femora and tibiae) from both males and females were analyzed by three-dimensional micro-computed tomography (micro-CT) and (bones from female mice) concomitantly assessed in bone strength studies. Tartrate-resistant acid phosphatase (TRAP), osteocalcin, and N-terminal peptide of type I procollagen (PINP) were assessed in plasma samples obtained from female mice at the time of sacrifice. To summarize, female mice on the HFWD had reduced bone mineralization and reduced bone strength relative to female mice on the low-fat chow diet. The bone defects in female mice on the HFWD were overcome in the presence of the mineral-rich supplement. In fact, female mice receiving the mineral-rich supplement in the HFWD had better bone structure/function than did female mice on the low-fat chow diet. Female mice on the mineral-supplemented HFWD had higher plasma levels of TRAP than mice of the other groups. There were no differences in the other two markers. Male mice showed little diet-specific differences by micro-CT.

  17. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  18. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice

    Xin-Yuan Cao

    2018-01-01

    Full Text Available Triclosan (TCS, a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH, follicle-stimulating hormone (FSH and progesterone, and gonadotrophin-releasing hormone (GnRH mRNA with the lack of LH surge and elevation of prolactin (PRL. TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV and arcuate nucleus (ARC. Moreover, the estrogen (E2-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3 and thyroxine (T4 in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH and thyroid releasing hormone (TRH. In TCS mice, the treatment with Levothyroxine (L-T4 corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.

  19. Differential Gene Expression in Gonadotropin-Releasing Hormone Neurons of Male and Metestrous Female Mice.

    Vastagh, Csaba; Rodolosse, Annie; Solymosi, Norbert; Farkas, Imre; Auer, Herbert; Sárvári, Miklós; Liposits, Zsolt

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the regulation of the hypothalamic-pituitary gonadal axis in a sex-specific manner. We hypothesized that the differences seen in reproductive functions of males and females are associated with a sexually dimorphic gene expression profile of GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact metestrous female and male GnRH-green fluorescent protein transgenic mice. About 1,500 individual GnRH neurons from each sex were sampled with laser capture microdissection followed by whole-transcriptome amplification for gene expression profiling. Under stringent selection criteria (fold change >1.6, adjusted p value 0.01), Affymetrix Mouse Genome 430 PM array analysis identified 543 differentially expressed genes. Sexual dimorphism was most apparent in gene clusters associated with synaptic communication, signal transduction, cell adhesion, vesicular transport and cell metabolism. To validate microarray results, 57 genes were selected, and 91% of their differential expression was confirmed by real-time PCR. Similarly, 88% of microarray results were confirmed with PCR from independent samples obtained by patch pipette harvesting and pooling of 30 GnRH neurons from each sex. We found significant differences in the expression of genes involved in vesicle priming and docking (Syt1, Cplx1), GABAergic (Gabra3, Gabrb3, Gabrg2) and glutamatergic (Gria1, Grin1, Slc17a6) neurotransmission, peptide signaling (Sstr3, Npr2, Cxcr4) and the regulation of intracellular ion homeostasis (Cacna1, Cacnb1, Cacng5, Kcnq2, Kcnc1). The striking sexual dimorphism of the GnRH neuron transcriptome we report here contributes to a better understanding of the differences in cellular mechanisms of GnRH neurons in the two sexes. © 2015 S. Karger AG, Basel.

  20. Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice

    Hao Wang

    2017-02-01

    Full Text Available We previously showed that cardiomyocyte-specific G protein-coupled estrogen receptor (GPER gene deletion leads to sex-specific adverse effects on cardiac structure and function; alterations which may be due to distinct differences in mitochondrial and inflammatory processes between sexes. Here, we provide the results of Gene Set Enrichment Analysis (GSEA based on the DNA microarray data from GPER-knockout versus GPER-intact (intact cardiomyocytes. This article contains complete data on the mitochondrial and inflammatory response-related gene expression changes that were significant in GPER knockout versus intact cardiomyocytes from adult male and female mice. The data are supplemental to our original research article “Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER leads to left ventricular dysfunction and adverse remodeling: a sex-specific gene profiling” (Wang et al., 2016 [1]. Data have been deposited to the Gene Expression Omnibus (GEO database repository with the dataset identifier GSE86843.

  1. Analysis of High-order Social Interaction of Female Mice on the International Space Station

    Lowe, M.; Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Cadena, S.; Stodieck, L.; Globus, R. K.; Ronca, A. E.

    2017-01-01

    Social interactions are adaptive responses to environmental pressures that have evolved to facilitate the success of individual animals and their progeny. Quantifying social behavior in social animals is therefore one method of evaluating an animal's health, wellbeing and their adjustment to changes in their environment. The interaction between environment and animal can influence numerous other physiological and psychological responses that may enhance, deter or shift an animals social paradigm. For this study, we utilized flight video from the Rodent Research Hardware and Operations Validation mission (Rodent Research-1; RR1) on the International Space Station (ISS). Female mice spent 37 days in microgravity on the ISS and video was captured during the final 33 days. In a previous analysis of individual behavior, we also reported an observed spontaneous ambulatory behavior which we termed circling or 'race tracking,' and we anecdotally observed an increase in group organization around this behavior. In this analysis we further examined this behavior, and other social interactions, to determine if (1) animals joining in on this behavior were induced by other cohort members already participating in this circling behavior, (2) rates of joining varied by number already participating.

  2. Newborn Interneurons in the Accessory Olfactory Bulb Promote Mate Recognition in Female Mice

    Livio eOboti

    2011-09-01

    Full Text Available In the olfactory bulb of adult rodents, local interneurons are constantly replaced by immature precursors derived from the subventricular zone. Whether any olfactory sensory process specifically relies on this cell renewal remains largely unclear. By using the well-known model of mating-induced imprinting, we demonstrate that this olfactory memory formation critically depends on the presence of newborn granule neurons in the accessory olfactory bulb. Accordingly, we show that, in adult female mice, exposure to male pheromones increases the number of new granule cells surviving in the accessory olfactory bulb. This neuronal addition depends on the detection of sensory cues by the vomeronasal organ and requires centrifugal feedback activity from the amygdala. The stimuli affecting neuronal survival are contained in the low molecular weight fraction of urine and are implied in pheromonal recognition during mating. By chemical depletion of newly generated bulbar interneurons, we show a direct role of renewed granule cells in the accessory olfactory bulb in preventing pregnancy block by mating male odours. Taken together, our results indicate that adult neurogenesis is essential for specific brain functions such as persistent odour learning and mate recognition.

  3. A selfish genetic element influencing longevity correlates with reactive behavioural traits in female house mice (Mus domesticus.

    Yannick Auclair

    Full Text Available According to theory in life-history and animal personality, individuals with high fitness expectations should be risk-averse, while individuals with low fitness expectations should be more bold. In female house mice, a selfish genetic element, the t haplotype, is associated with increased longevity under natural conditions, representing an appropriate case study to investigate this recent theory empirically. Following theory, females heterozygous for the t haplotype (+/t are hypothesised to express more reactive personality traits and be more shy, less explorative and less active compared to the shorter-lived homozygous wildtype females (+/+. As males of different haplotype do not differ in survival, no similar pattern is expected. We tested these predictions by quantifying boldness, exploration, activity, and energetic intake in both +/t and +/+ mice. +/t females, unlike +/+ ones, expressed some reactive-like personality traits: +/t females were less active, less prone to form an exploratory routine and tended to ingest less food. Taken together these results suggest that differences in animal personality may contribute to the survival advantage observed in +/t females but fail to provide full empirical support for recent theory.

  4. Short-term social memory deficits in adult female mice exposed to tannery effluent and possible mechanism of action.

    Estrela, Fernanda Neves; Rabelo, Letícia Martins; Vaz, Boniek Gontijo; de Oliveira Costa, Denys Ribeiro; Pereira, Igor; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme

    2017-10-01

    The accumulated organic residues in tannery-plant courtyards are an eating attraction to small rodents; however, the contact of these animals with these residues may change their social behavior. Thus, the aim of the present study is to investigate whether the exposure to tannery effluent (TE) can damage the social recognition memory of female Swiss mice, as well as to assess whether vitamin C supplementation could provide information about how TE constituents can damage these animals' memory. We have observed that resident females exposed to TE (without vitamin supplementation) did not explore the anogenital region, their body or chased intruding females for shorter time or with lower frequency during the retest session of the social recognition test, fact that indicates social recognition memory deficit in these animals. Such finding is reinforced by the confirmation that there was no change in the animals' olfactory function during the buried food test, or locomotor changes in females exposed to the pollutant. Since no behavioral change was observed in the females exposed to TE and treated with vitamin C (before or after the exposure), it is possible saying that these social cognitive impairments seem to be directly related to the imbalance between the cellular production of reactive oxygen species and the counteracting antioxidant mechanisms (oxidative stress) in female mice exposed to the pollutant (without vitamin supplementation). Therefore, the present study evidences that the direct contact with tannery effluent, even for a short period-of-time, may cause short-term social memory deficits in adult female Swiss mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Neuropsychiatric Symptom Modeling in Male and Female C57BL/6J Mice after Experimental Traumatic Brain Injury

    Tucker, Laura B.; Burke, John F.; Fu, Amanda H.

    2017-01-01

    Abstract Psychiatric symptoms such as anxiety and depression are frequent and persistent complaints following traumatic brain injury (TBI). Modeling these symptoms in animal models of TBI affords the opportunity to determine mechanisms underlying behavioral pathologies and to test potential therapeutic agents. However, testing these symptoms in animal models of TBI has yielded inconsistent results. The goal of the current study was to employ a battery of tests to measure multiple anxiety- and depressive-like symptoms following TBI in C57BL/6J mice, and to determine if male and female mice are differentially affected by the injury. Following controlled cortical impact (CCI) at a parietal location, neither male nor female mice showed depressive-like symptoms as measured by the Porsolt forced-swim test and sucrose preference test. Conclusions regarding anxiety-like behaviors were dependent upon the assay employed; CCI-induced thigmotaxis in the open field suggested an anxiogenic effect of the injury; however, results from the elevated zero maze, light-dark box, and marble-burying tests indicated that CCI reduced anxiety-like behaviors. Fewer anxiety-like behaviors were also associated with the female sex. Increased levels of activity were also measured in female mice and injured mice in these tests, and conclusions regarding anxiety should be taken with caution when experimental manipulations induce changes in baseline activity. These results underscore the irreconcilability of results from studies attempting to model TBI-induced neuropsychiatric symptoms. Changes in injury models or better attempts to replicate the clinical syndrome may improve the translational applicability of rodent models of TBI-induced anxiety and depression. PMID:27149139

  6. Insulin signaling displayed a differential tissue-specific response to low-dose dihydrotestosterone in female mice.

    Andrisse, Stanley; Billings, Katelyn; Xue, Ping; Wu, Sheng

    2018-04-01

    Hyperandrogenemia and hyperinsulinemia are believed to play prominent roles in polycystic ovarian syndrome (PCOS). We explored the effects of low-dose dihydrotestosterone (DHT), a model of PCOS, on insulin signaling in metabolic and reproductive tissues in a female mouse model. Insulin resistance in the energy storage tissues is associated with type 2 diabetes. Insulin signaling in the ovaries and pituitary either directly or indirectly stimulates androgen production. Energy storage and reproductive tissues were isolated and molecular assays were performed. Livers and white adipose tissue (WAT) from DHT mice displayed lower mRNA and protein expression of insulin signaling intermediates. However, ovaries and pituitaries of DHT mice exhibited higher expression levels of insulin signaling genes/proteins. Insulin-stimulated p-AKT levels were blunted in the livers and WAT of the DHT mice but increased or remained the same in the ovaries and pituitaries compared with controls. Glucose uptake decreased in liver and WAT but was unchanged in pituitary and ovary of DHT mice. Plasma membrane GLUTs were decreased in liver and WAT but increased in ovary and pituitary of DHT mice. Skeletal muscle insulin-signaling genes were not lowered in DHT mice compared with control. DHT mice did not display skeletal muscle insulin resistance. Insulin-stimulated glucose transport increased in skeletal muscles of DHT mice compared with controls. DHT mice were hyperinsulinemic. However, the differential mRNA and protein expression pattern was independent of hyperinsulinemia in cultured hepatocytes and pituitary cells. These findings demonstrate a differential effect of DHT on the insulin-signaling pathway in energy storage vs. reproductive tissues independent of hyperinsulinemia.

  7. Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice.

    Long, Caela C; Sadler, Katelyn E; Kolber, Benedict J

    2016-10-15

    The evolutionary advantages to the suppression of pain during a stressful event (stress-induced analgesia (SIA)) are obvious, yet the reasoning behind sex-differences in the expression of this pain reduction are not. The different ways in which males and females integrate physiological stress responses and descending pain inhibition are unclear. A potential supraspinal modulator of stress-induced analgesia is the central nucleus of the amygdala (CeA). This limbic brain region is involved in both the processing of stress and pain; the CeA is anatomically and molecularly linked to regions of the hypothalamic pituitary adrenal (HPA) axis and descending pain network. The CeA exhibits sex-based differences in response to stress and pain that may differentially induce SIA in males and females. Here, sex-based differences in behavioral and molecular indices of SIA were examined following noxious stimulation. Acute restraint stress in male and female mice was performed prior to intraplantar injections of formalin, a noxious inflammatory agent. Spontaneous pain-like behaviors were measured for 60min following formalin injection and mechanical hypersensitivity was evaluated 120 and 180min post-injection. Restraint stress altered formalin-induced spontaneous behaviors in male and female mice and formalin-induced mechanical hypersensitivity in male mice. To assess molecular indices of SIA, tissue samples from the CeA and blood samples were collected at the 180min time point. Restraint stress prevented formalin-induced increases in extracellular signal regulated kinase 2 (ERK2) phosphorylation in the male CeA, but no changes associated with pERK2 were seen with formalin or restraint in females. Sex differences were also seen in plasma corticosterone concentrations 180min post injection. These results demonstrate sex-based differences in behavioral, molecular, and hormonal indices of acute stress in mice that extend for 180min after stress and noxious stimulation. Copyright

  8. Variable Suppression of Serum Thyroxine in Female Mice of Different Inbred Strains by Triiodothyronine Administered in Drinking Water

    Hamidi, Sepehr; Aliesky, Holly; Chen, Chun-Rong; Rapoport, Basil

    2010-01-01

    Background Recombinant-inbred mouse strains differ in their susceptibility to Graves'-like hyperthyroidism induced by immunization with adenovirus expressing the human thyrotropin (TSH) receptor. Because one genetic component contributing to this susceptibility is altered thyroid sensitivity to TSH receptor agonist stimulation, we wished to quantify thyroid responsiveness to TSH. For such studies, it is necessary to suppress endogenous TSH by administering L-3,5,3′-triiodothyronine (L-T3), with the subsequent decrease in serum thyroxine (T4) reflecting endogenous TSH suppression. Our two objectives were to assess in different inbred strains of mice (i) the extent of serum T4 suppression after L-T3 administration and (ii) the magnitude of serum T4 increase induced by TSH. Methods Mice were tail-bled to establish baseline-serum T4 before L-T3 administration. We initially employed a protocol of L-T3-supplemented drinking water for 7 days. In subsequent experiments, we injected L-T3 intraperitoneally (i.p.) daily for 3 days. Mice were then injected i.p. with bovine TSH (10 mU) and euthanized 5 hours later. Serum T4 was assayed before L-T3 administration, and before and after TSH injection. In some experiments, serum T3 and estradiol were measured in pooled sera. Results Oral L-T3 (3 or 5 μg/mL) suppressed serum T4 levels by 26%–64% in female BALB/c mice but >95% in males. T4 suppression in female B6 mice ranged from 0% to 90%. In C3H mice, L-T3 at 3 μg/mL was ineffective but 5 μg/mL achieved >80% serum T4 reduction. Unlike inbred mice, in outbred CF1 mice the same protocol was more effective: 83% in females and 100% suppression in males. The degree of T4 suppression was unrelated to baseline T4, T3, or estradiol, but was related to mouse weight and postmortem T3, with greater suppression in larger mice (outbred CF1 animals and inbred males). Among females with serum T4 suppression >80%, the increase in serum T4 after TSH injection was greater for BALB

  9. Citalopram Ameliorates Impairments in Spatial Memory and Synaptic Plasticity in Female 3xTgAD Mice

    Zhang Wei

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is the primary cause of dementia. There is no effective treatment. Amyloid-β peptide (Aβ plays an important role in the pathogenesis and thus strategies suppressing Aβ production and accumulation seem promising. Citalopram is an antidepressant drug and can decrease Aβ production and amyloid plaques in transgenic mice of AD and humans. Whether citalopram can ameliorate memory deficit was not known yet. We tested the effects of citalopram on behavioral performance and synaptic plasticity in female 3xTgAD mice, a well-characterized model of AD. Mice were treated with citalopram or water from 5 months of age for 3 months. Citalopram treatment at approximately 10 mg/kg/day significantly improved spatial memory in the Morris water maze (MWM test, while not affecting anxiety-like and depression-like behavior in 3xTgAD mice. Further, hippocampal long-term potentiation (LTP impairment in 3xTgAD mice was reversed by citalopram treatment. Citalopram treatment also significantly decreased the levels of insoluble Aβ40 in hippocampal and cortical tissues in 3xTgAD mice, accompanied with a reduced amyloid precursor protein (APP. Together, citalopram treatment may be a promising strategy for AD and further clinical trials should be conducted to verify the effect of citalopram on cognition in patients with AD or mild cognitive impairment.

  10. Altered gut microbiota in female mice with persistent low body weights following removal of post-weaning chronic dietary restriction.

    Chen, Jun; Toyomasu, Yoshitaka; Hayashi, Yujiro; Linden, David R; Szurszewski, Joseph H; Nelson, Heidi; Farrugia, Gianrico; Kashyap, Purna C; Chia, Nicholas; Ordog, Tamas

    2016-10-03

    Nutritional interventions often fail to prevent growth failure in childhood and adolescent malnutrition and the mechanisms remain unclear. Recent studies revealed altered microbiota in malnourished children and anorexia nervosa. To facilitate mechanistic studies under physiologically relevant conditions, we established a mouse model of growth failure following chronic dietary restriction and examined microbiota in relation to age, diet, body weight, and anabolic treatment. Four-week-old female BALB/c mice (n = 12/group) were fed ad libitum (AL) or offered limited food to abolish weight gain (LF). A subset of restricted mice was treated with an insulin-like growth factor 1 (IGF1) analog. Food access was restored in a subset of untreated LF (LF-RF) and IGF1-treated LF mice (TLF-RF) on day 97. Gut microbiota were determined on days 69, 96-99 and 120 by next generation sequencing of the V3-5 region of the 16S rRNA gene. Microbiota-host factor associations were analyzed by distance-based PERMANOVA and quantified by the coefficient of determination R 2 for age, diet, and normalized body weight change (Δbwt). Microbial taxa on day 120 were compared following fitting with an overdispersed Poisson regression model. The machine learning algorithm Random Forests was used to predict age based on the microbiota. On day 120, Δbwt in AL, LF, LF-RF, and TLF-RF mice was 52 ± 3, -6 ± 1*, 40 ± 3*, and 46 ± 2 % (*, P < 0.05 versus AL). Age and diet, but not Δbwt, were associated with gut microbiota composition. Age explained a larger proportion of the microbiota variability than diet or Δbwt. Random Forests predicted chronological age based on the microbiota and indicated microbiota immaturity in the LF mice before, but not after, refeeding. However, on day 120, the microbiota community structure of LF-RF mice was significantly different from that of both AL and LF mice. IGF1 mitigated the difference from the AL group. Refed groups had a higher

  11. GnRH Neuron Activity and Pituitary Response in Estradiol-Induced vs Proestrous Luteinizing Hormone Surges in Female Mice.

    Silveira, Marina A; Burger, Laura L; DeFazio, R Anthony; Wagenmaker, Elizabeth R; Moenter, Suzanne M

    2017-02-01

    During the female reproductive cycle, estradiol exerts negative and positive feedback at both the central level to alter gonadotropin-releasing hormone (GnRH) release and at the pituitary to affect response to GnRH. Many studies of the neurobiologic mechanisms underlying estradiol feedback have been done on ovariectomized, estradiol-replaced (OVX+E) mice. In this model, GnRH neuron activity depends on estradiol and time of day, increasing in estradiol-treated mice in the late afternoon, coincident with a daily luteinizing hormone (LH) surge. Amplitude of this surge appears lower than in proestrous mice, perhaps because other ovarian factors are not replaced. We hypothesized GnRH neuron activity is greater during the proestrous-preovulatory surge than the estradiol-induced surge. GnRH neuron activity was monitored by extracellular recordings from fluorescently tagged GnRH neurons in brain slices in the late afternoon from diestrous, proestrous, and OVX+E mice. Mean GnRH neuron firing rate was low on diestrus; firing rate was similarly increased in proestrous and OVX+E mice. Bursts of action potentials have been associated with hormone release in neuroendocrine systems. Examination of the patterning of action potentials revealed a shift toward longer burst duration in proestrous mice, whereas intervals between spikes were shorter in OVX+E mice. LH response to an early afternoon injection of GnRH was greater in proestrous than diestrous or OVX+E mice. These observations suggest the lower LH surge amplitude observed in the OVX+E model is likely not attributable to altered mean GnRH neuron activity, but because of reduced pituitary sensitivity, subtle shifts in action potential pattern, and/or excitation-secretion coupling in GnRH neurons. Copyright © 2017 by the Endocrine Society.

  12. Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice.

    Chew, Chii Chii; Ng, Salby; Chee, Yun Lee; Koo, Teng Wai; Liew, Ming Hui; Chee, Evelyn Li-Ching; Modamio, Pilar; Fernández, Cecilia; Mariño, Eduardo L; Segarra, Ignacio

    2017-08-01

    Coadministration of diclofenac and sunitinib, tyrosine kinase inhibitor, led to sex-divergent pharmacokinetic drug-drug interaction outcomes. Male and female mice were administered 60 mg/kg PO sunitinib alone (control groups) or with 30 mg/kg PO diclofenac. Sunitinib concentration in plasma, brain, kidney and liver were determined by HPLC and non-compartmental pharmacokinetic parameters calculated. In male mice, diclofenac decreased AUC 0→∞ 38% in plasma (p diclofenac increased the liver uptake efficiency in male (27%, p diclofenac with probable clinical translatability due to potential different effects in male and female patients requiring careful selection of the NSAID and advanced TDM to implement a personalized treatment.

  13. Below background levels of blood lead impact cytokine levels in male and female mice

    Iavicoli, I.; Carelli, G.; Stanek, E.J.; Castellino, N.; Calabrese, E.J.

    2006-01-01

    A number of studies have documented that Pb exerts immunotoxic effects on T lymphocytes. In studies designed to explore this general response over a broad dose range, female Swiss mice were administered six different diets containing Pb acetate 1 day after mating. During lactation, the mothers received the same feed given during pregnancy, and the same diets were administered to the offspring for 9 months after weaning. At the end of exposure, blood Pb level in the offspring was determined, and possible changes in two type 1 cytokines (IL-2, INF-γ) and one type 2 cytokine (IL-4) in the serum were measured. At higher dietary Pb levels (40 and 400 ppm), a significant increase in IL-4 production was associated with a profound decrease in INF-γ and IL-2 production. At the lowest Pb diet level (0.02 ppm), which resulted in a blood lead level of (0.8 μg/dL), which is below background (2-3 μg/dL) values in humans, increases in INF-γ and IL-2 production along with a significant decrease in IL-4 production were observed. The findings provide evidence of a reversal of lead-induced cytokine skewing depending on the blood lead concentration. As blood lead concentration increases, there is a notable skewing toward Th2, while the pattern is reversed favoring Th1 development at lower blood lead values. The present findings are also notable since they indicate the potential for dietary Pb to have significant biological effects below normal background concentrations

  14. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice

    Judith P Ter Horst

    2014-02-01

    Full Text Available Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptors (MR and glucocorticoid receptors (GR. The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MRCaMKCre mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  15. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice.

    Ter Horst, Judith P; van der Mark, Maaike; Kentrop, Jiska; Arp, Marit; van der Veen, Rixt; de Kloet, E Ronald; Oitzl, Melly S

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  16. Female mucopolysaccharidosis IIIA mice exhibit hyperactivity and a reduced sense of danger in the open field test.

    Alex Langford-Smith

    Full Text Available Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A, is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.

  17. Female mucopolysaccharidosis IIIA mice exhibit hyperactivity and a reduced sense of danger in the open field test.

    Langford-Smith, Alex; Langford-Smith, Kia J; Jones, Simon A; Wynn, Robert F; Wraith, J E; Wilkinson, Fiona L; Bigger, Brian W

    2011-01-01

    Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A), is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.

  18. Differential metabolism of acrylonitrile to cyanide is responsible for the greater sensitivity of male vs female mice: role of CYP2E1 and epoxide hydrolases

    Chanas, Brian; Wang, Hongbing; Ghanayem, Burhan I.

    2003-01-01

    Acrylonitrile (AN) is a potent toxicant and a known rodent carcinogen. AN epoxidation to cyanoethylene oxide (CEO) via CYP2E1 and its subsequent metabolism via epoxide hydrolases (EH) to yield cyanide is thought to be responsible for the acute toxicity and mortality of AN. Recent reports showed that male mice are more sensitive than females to the acute toxicity/mortality of AN. The present work was undertaken to assess the metabolic and enzymatic basis for the greater sensitivity of male vs female mice to AN toxicity. Male and female wild-type and CYP2E1-null mice received AN at 0, 2.5, 10, 20, or 40 mg/kg by gavage. Cyanide concentrations were measured at 1 or 3 h after dosing. Current data demonstrated that cyanide levels in blood and tissues of AN-treated wild-type mice of both sexes were significantly greater than in vehicle-treated controls and increased in a dose-dependent manner. In contrast, cyanide levels in AN-treated CYP2E1-null mice were not statistically different from those measured in vehicle-treated controls. Furthermore, higher levels of cyanide were detected in male wild-type mice vs females in association with greater sensitivity of males to the acute toxicity/mortality of this chemical. Using Western blot analysis, negligible difference in CYP2E1 expression with higher levels of soluble and microsomal EH (sEH and mEH) was detected in the liver of male vs female mice. In kidneys, male mice exhibited higher expression of both renal CYP2E1 and sEH than did female mice. In conclusion, higher blood and tissue cyanide levels are responsible for the greater sensitivity of male vs female mice to AN. Further, higher expression of CYP2E1 and EH in male mice may contribute to greater formation of CEO and its subsequent metabolism to yield cyanide, respectively

  19. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  20. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice.

    True, Cadence; Nasrin Alam, Sayeda; Cox, Kimberly; Chan, Yee-Ming; Seminara, Stephanie B

    2015-04-01

    Humans carrying mutations in neurokinin B (NKB) or the NKB receptor fail to undergo puberty due to decreased secretion of GnRH. Despite this pubertal delay, many of these patients go on to achieve activation of their hypothalamic-pituitary-gonadal axis in adulthood, a phenomenon termed reversal, indicating that NKB signaling may play a more critical role for the timing of pubertal development than adult reproductive function. NKB receptor-deficient mice are hypogonadotropic but have no defects in the timing of sexual maturation. The current study has performed the first phenotypic evaluation of mice bearing mutations in Tac2, the gene encoding the NKB ligand, to determine whether they have impaired sexual development similar to their human counterparts. Male Tac2-/- mice showed no difference in the timing of sexual maturation or fertility compared with wild-type littermates and were fertile. In contrast, Tac2-/- females had profound delays in sexual maturation, with time to vaginal opening and first estrus occurring significantly later than controls, and initial abnormalities in estrous cycles. However, cycling recovered in adulthood and Tac2-/- females were fertile, although they produced fewer pups per litter. Thus, female Tac2-/- mice parallel humans harboring NKB pathway mutations, with delayed sexual maturation and activation of the reproductive cascade later in life. Moreover, direct comparison of NKB ligand and receptor-deficient females confirmed that only NKB ligand-deficient animals have delayed sexual maturation, suggesting that in the absence of the NKB receptor, NKB may regulate the timing of sexual maturation through other tachykinin receptors.

  1. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  2. Hops (Humulus lupulus) Content in Beer Modulates Effects of Beer on the Liver After Acute Ingestion in Female Mice.

    Landmann, Marianne; Sellmann, Cathrin; Engstler, Anna Janina; Ziegenhardt, Doreen; Jung, Finn; Brombach, Christine; Bergheim, Ina

    2017-01-01

    Using a binge-drinking mouse model, we aimed to determine whether hops (Humulus lupulus) in beer is involved in the less damaging effects of acute beer consumption on the liver in comparison with ethanol. Female C57BL/6 J mice were either fed one iso-alcoholic and iso-caloric bolus dose of ethanol, beer, beer without hops (6 g ethanol/kg body weight) or an iso-caloric bolus of maltodextrin control solution. Markers of steatosis, intestinal barrier function, activation of toll-like receptor 4 signaling cascades, lipid peroxidation and lipogenesis were determined in liver, small intestine and plasma 2 h and 12 h after acute alcohol ingestion. Alcohol-induced hepatic fat accumulation was significantly attenuated in mice fed beer whereas in those fed beer without hops, hepatic fat accumulation was similar to that found in ethanol-fed mice. While markers of intestinal barrier function e.g. portal endotoxin levels and lipogenesis only differed slightly between groups, hepatic concentrations of myeloid differentiation primary response gene 88, inducible nitric oxide synthase (iNOS) and plasminogen-activator inhibitor 1 protein as well as of 4-hydroxynonenal and 3-nitrotyrosine protein adducts were similarly elevated in livers of mice fed ethanol or beer without hops when compared with controls. Induction of these markers was markedly attenuated in mice fed hops-containing beer. Taken together, our data suggest that hops in beer markedly attenuated acute alcohol-induced liver steatosis in female mice through mechanisms involving a suppression of iNOS induction in the liver. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  3. Hyperandrogenemia Induced by Letrozole Treatment of Pubertal Female Mice Results in Hyperinsulinemia Prior to Weight Gain and Insulin Resistance.

    Skarra, Danalea V; Hernández-Carretero, Angelina; Rivera, Alissa J; Anvar, Arya R; Thackray, Varykina G

    2017-09-01

    Women with polycystic ovary syndrome (PCOS) diagnosed with hyperandrogenism and ovulatory dysfunction have an increased risk of developing metabolic disorders, including type 2 diabetes and cardiovascular disease. We previously developed a model that uses letrozole to elevate endogenous testosterone levels in female mice. This model has hallmarks of PCOS, including hyperandrogenism, anovulation, and polycystic ovaries, as well as increased abdominal adiposity and glucose intolerance. In the current study, we further characterized the metabolic dysfunction that occurs after letrozole treatment to determine whether this model represents a PCOS-like metabolic phenotype. We focused on whether letrozole treatment results in altered pancreatic or liver function as well as insulin resistance. We also investigated whether hyperinsulinemia occurs secondary to weight gain and insulin resistance in this model or if it can occur independently. Our study demonstrated that letrozole-treated mice developed hyperinsulinemia after 1 week of treatment and without evidence of insulin resistance. After 2 weeks of letrozole treatment, mice became significantly heavier than placebo mice, demonstrating that weight gain was not required to develop hyperinsulinemia. After 5 weeks of letrozole treatment, mice exhibited blunted glucose-stimulated insulin secretion, insulin resistance, and impaired insulin-induced phosphorylation of AKT in skeletal muscle. Moreover, letrozole-treated mice exhibited dyslipidemia after 5 weeks of treatment but no evidence of hepatic disease. Our study demonstrated that the letrozole-induced PCOS mouse model exhibits multiple features of the metabolic dysregulation observed in obese, hyperandrogenic women with PCOS. This model will be useful for mechanistic studies investigating how hyperandrogenemia affects metabolism in females. Copyright © 2017 Endocrine Society.

  4. Adult neurobehavioral alterations in male and female mice following developmental exposure to paracetamol (acetaminophen): characterization of a critical period.

    Philippot, Gaëtan; Gordh, Torsten; Fredriksson, Anders; Viberg, Henrik

    2017-10-01

    Paracetamol (acetaminophen) is a widely used non-prescription drug with analgesic and antipyretic properties. Among pregnant women and young children, paracetamol is one of the most frequently used drugs and is considered the first-choice treatment for pain and/or fever. Recent findings in both human and animal studies have shown associations between paracetamol intake during brain development and adverse behavioral outcomes later in life. The present study was undertaken to investigate if the induction of these effects depend on when the exposure occurs during a critical period of brain development and if male and female mice are equally affected. Mice of both sexes were exposed to two doses of paracetamol (30 + 30 mg kg -1 , 4 h apart) on postnatal days (PND) 3, 10 or 19. Spontaneous behavior, when introduced to a new home environment, was observed at the age of 2 months. We show that adverse effects on adult behavior and cognitive function occurred in both male and female mice exposed to paracetamol on PND 3 and 10, but not when exposed on PND 19. These neurodevelopmental time points in mice correspond to the beginning of the third trimester of pregnancy and the time around birth in humans, supporting existing human data. Considering that paracetamol is the first choice treatment for pain and/or fever during pregnancy and early life, these results may be of great importance for future research and, ultimately, for clinical practice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Effects of a single bout of strenuous exercise on platelet activation in female ApoE/LDLR-/- mice.

    Przyborowski, K; Kassassir, H; Wojewoda, M; Kmiecik, K; Sitek, B; Siewiera, K; Zakrzewska, A; Rudolf, A M; Kostogrys, R; Watala, C; Zoladz, J A; Chlopicki, S

    2017-11-01

    Strenuous physical exercise leads to platelet activation that is normally counterbalanced by the production of endothelium-derived anti-platelet mediators, including prostacyclin (PGI 2 ) and nitric oxide (NO). However, in the case of endothelial dysfunction, e.g. in atherosclerosis, there exists an increased risk for intravascular thrombosis during exercise that might be due to an impairment in endothelial anti-platelet mechanisms. In the present work, we evaluated platelet activation at rest and following a single bout of strenuous treadmill exercise in female ApoE/LDLR - /- mice with early (3-month-old) and advanced (7-month-old) atherosclerosis compared to female age-matched WT mice. In sedentary and post-exercise groups of animals, we analyzed TXB 2 generation and the expression of platelet activation markers in the whole blood ex vivo assay. We also measured pre- and post-exercise plasma concentration of 6-keto-PGF 1α , nitrite/nitrate, lipid profile, and blood cell count. Sedentary 3- and 7-month-old ApoE/LDLR - /- mice displayed significantly higher activation of platelets compared to age-matched wild-type (WT) mice, as evidenced by increased TXB 2 production, expression of P-selectin, and activation of GPIIb/IIIa receptors, as well as increased fibrinogen and von Willebrand factor (vWf) binding. Interestingly, in ApoE/LDLR - /- but not in WT mice, strenuous exercise partially inhibited TXB 2 production, the expression of activated GPIIb/IIIa receptors, and fibrinogen binding, with no effect on the P-selectin expression and vWf binding. Post-exercise down-regulation of the activated GPIIb/IIIa receptor expression and fibrinogen binding was not significantly different between 3- and 7-month-old ApoE/LDLR - /- mice; however, only 7-month-old ApoE/LDLR - /- mice showed lower TXB 2 production after exercise. In female 4-6-month-old ApoE/LDLR - /- but not in WT mice, an elevated pre- and post-exercise plasma concentration of 6-keto-PGF 1α was observed. In turn

  6. Camellia sinensis Prevents Perinatal Nicotine-Induced Neurobehavioral Alterations, Tissue Injury, and Oxidative Stress in Male and Female Mice Newborns

    Ajarem, Jamaan S.; Al-Basher, Gadh; Allam, Ahmed A.

    2017-01-01

    Nicotine exposure during pregnancy induces oxidative stress and leads to behavioral alterations in early childhood and young adulthood. The current study aimed to investigate the possible protective effects of green tea (Camellia sinensis) against perinatal nicotine-induced behavioral alterations and oxidative stress in mice newborns. Pregnant mice received 50 mg/kg C. sinensis on gestational day 1 (PD1) to postnatal day 15 (D15) and were subcutaneously injected with 0.25 mg/kg nicotine from PD12 to D15. Nicotine-exposed newborns showed significant delay in eye opening and hair appearance and declined body weight at birth and at D21. Nicotine induced neuromotor alterations in both male and female newborns evidenced by the suppressed righting, rotating, and cliff avoidance reflexes. Nicotine-exposed newborns exhibited declined memory, learning, and equilibrium capabilities, as well as marked anxiety behavior. C. sinensis significantly improved the physical development, neuromotor maturation, and behavioral performance in nicotine-exposed male and female newborns. In addition, C. sinensis prevented nicotine-induced tissue injury and lipid peroxidation and enhanced antioxidant defenses in the cerebellum and medulla oblongata of male and female newborns. In conclusion, this study shows that C. sinensis confers protective effects against perinatal nicotine-induced neurobehavioral alterations, tissue injury, and oxidative stress in mice newborns. PMID:28588748

  7. Aging rather than stress strongly influences amino acid metabolisms in the brain and genital organs of female mice.

    Kodaira, Momoko; Nagasawa, Mao; Yamaguchi, Takeshi; Ikeda, Hiromi; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-03-01

    Aging and stress affect quality of life, and proper nourishment is one of means of preventing this effect. Today, there is a focus on the amount of protein consumed by elderly people; however, changes in the amino acid metabolism of individuals have not been fully considered. In addition, the difference between average life span and healthy life years is larger in females than it is in males. To prolong the healthy life years of females, in the present study we evaluated the influence of stress and aging on metabolism and emotional behavior by comparing young and middle-aged female mice. After 28 consecutive days of immobilization stress, behavioral tests were conducted and tissue sampling was performed. The results showed that the body weight of middle-aged mice was severely lowered by stress, but emotional behaviors were hardly influenced by either aging or stress. Aging influenced changes in amino acid metabolism in the brain and increased various amino acid levels in the uterus and ovary. In conclusion, we found that aged mice were more susceptible to stress in terms of body-weight reduction, and that amino acid metabolisms in the brain and genital organs were largely influenced by aging rather than by stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. TWEAK Receptor Deficiency Has Opposite Effects on Female and Male Mice Subjected to Neonatal Hypoxia–Ischemia

    Anton Kichev

    2018-04-01

    Full Text Available Tumor necrosis factor (TNF-like weak inducer of apoptosis (TWEAK is a multifunctional cytokine member of the TNF family. TWEAK binds to its only known receptor, Fn14, enabling it to activate downstream signaling processes in response to tissue injury. The aim of this study was to investigate the role of TWEAK signaling in neonatal hypoxia–ischemia (HI. We found that after neonatal HI, both TWEAK and Fn14 expression were increased to a greater extent in male compared with female mice. To assess the role of TWEAK signaling after HI, the size of the injury was measured in neonatal mice genetically deficient in Fn14 and compared with their wild-type and heterozygote littermates. A significant sex difference in the Fn14 knockout (KO animals was observed. Fn14 gene KO was beneficial in females; conversely, reducing Fn14 expression exacerbated the brain injury in male mice. Our findings indicate that the TWEAK/Fn14 pathway is critical for development of hypoxic–ischemic brain injury in immature animals. However, as the responses are different in males and females, clinical implementation depends on development of sex-specific therapies.

  9. The ERα-PI3K Cascade in Proopiomelanocortin Progenitor Neurons Regulates Feeding and Glucose Balance in Female Mice.

    Zhu, Liangru; Xu, Pingwen; Cao, Xuehong; Yang, Yongjie; Hinton, Antentor Othrell; Xia, Yan; Saito, Kenji; Yan, Xiaofeng; Zou, Fang; Ding, Hongfang; Wang, Chunmei; Yan, Chunling; Saha, Pradip; Khan, Sohaib A; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J; Chan, Lawrence; Xu, Yong

    2015-12-01

    Estrogens act upon estrogen receptor (ER)α to inhibit feeding and improve glucose homeostasis in female animals. However, the intracellular signals that mediate these estrogenic actions remain unknown. Here, we report that anorexigenic effects of estrogens are blunted in female mice that lack ERα specifically in proopiomelanocortin (POMC) progenitor neurons. These mutant mice also develop insulin resistance and are insensitive to the glucose-regulatory effects of estrogens. Moreover, we showed that propyl pyrazole triol (an ERα agonist) stimulates the phosphatidyl inositol 3-kinase (PI3K) pathway specifically in POMC progenitor neurons, and that blockade of PI3K attenuates propyl pyrazole triol-induced activation of POMC neurons. Finally, we show that effects of estrogens to inhibit food intake and to improve insulin sensitivity are significantly attenuated in female mice with PI3K genetically inhibited in POMC progenitor neurons. Together, our results indicate that an ERα-PI3K cascade in POMC progenitor neurons mediates estrogenic actions to suppress food intake and improve insulin sensitivity.

  10. Performance of Male and Female C57BL/6J Mice on Motor and Cognitive Tasks Commonly Used in Pre-Clinical Traumatic Brain Injury Research

    Tucker, Laura B.; Fu, Amanda H.

    2016-01-01

    Abstract To date, clinical trials have failed to find an effective therapy for victims of traumatic brain injury (TBI) who live with motor, cognitive, and psychiatric complaints. Pre-clinical investigators are now encouraged to include male and female subjects in all translational research, which is of particular interest in the field of neurotrauma given that circulating female hormones (progesterone and estrogen) have been demonstrated to exert neuroprotective effects. To determine whether behavior of male and female C57BL6/J mice is differentially impaired by TBI, male and cycling female mice were injured by controlled cortical impact and tested for several weeks with functional assessments commonly employed in pre-clinical research. We found that cognitive and motor impairments post-TBI, as measured by the Morris water maze (MWM) and rotarod, respectively, were largely equivalent in male and female animals. However, spatial working memory, assessed by the y-maze, was poorer in female mice. Female mice were generally more active, as evidenced by greater distance traveled in the first exposure to the open field, greater distance in the y-maze, and faster swimming speeds in the MWM. Statistical analysis showed that variability in all behavioral data was no greater in cycling female mice than it was in male mice. These data all suggest that with careful selection of tests, procedures, and measurements, both sexes can be included in translational TBI research without concern for effect of hormones on functional impairments or behavioral variability. PMID:25951234

  11. Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice.

    Salais-López, Hugo; Lanuza, Enrique; Agustín-Pavón, Carmen; Martínez-García, Fernando

    2017-03-01

    Prolactin is fundamental for the expression of maternal behaviour. In virgin female rats, prolactin administered upon steroid hormone priming accelerates the onset of maternal care. By contrast, the role of prolactin in mice maternal behaviour remains unclear. This study aims at characterizing central prolactin activity patterns in female mice and their variation through pregnancy and lactation. This was revealed by immunoreactivity of phosphorylated (active) signal transducer and activator of transcription 5 (pSTAT5-ir), a key molecule in the signalling cascade of prolactin receptors. We also evaluated non-hypophyseal lactogenic activity during pregnancy by administering bromocriptine, which suppresses hypophyseal prolactin release. Late-pregnant and lactating females showed significantly increased pSTAT5-ir resulting in a widespread pattern of immunostaining with minor variations between pregnant and lactating animals, which comprises nuclei of the sociosexual and maternal brain, including telencephalic (septum, nucleus of the stria terminalis, and amygdala), hypothalamic (preoptic, paraventricular, supraoptic, and ventromedial), and midbrain (periaqueductal grey) regions. During late pregnancy, this pattern was not affected by the administration of bromocriptine, suggesting it to be elicited mostly by non-hypophyseal lactogenic agents, likely placental lactogens. Virgin females displayed, instead, a variable pattern of pSTAT5-ir restricted to a subset of the brain nuclei labelled in pregnant and lactating mice. A hormonal substitution experiment confirmed that estradiol and progesterone contribute to the variability found in virgin females. Our results reflect how the shaping of the maternal brain takes place prior to parturition and suggest that lactogenic agents are important candidates in the development of maternal behaviours already during pregnancy.

  12. Induction of Cyp1a1 and Cyp1b1 and formation of DNA adducts in C57BL/6, Balb/c, and F1 mice following in utero exposure to 3-methylcholanthrene

    Xu Mian; Nelson, Garret B.; Moore, Joseph E.; McCoy, Thomas P.; Dai, Jian; Manderville, Richard A.; Ross, Jeffrey A.; Miller, Mark Steven

    2005-01-01

    Fetal mice are more sensitive to chemical carcinogens than are adults. Previous studies from our laboratory demonstrated differences in the mutational spectrum induced in the Ki-ras gene from lung tumors isolated from [D2 x B6D2F1]F2 mice and Balb/c mice treated in utero with 3-methylcholanthrene (MC). We thus determined if differences in metabolism, adduct formation, or adduct repair influence strain-specific responses to transplacental MC exposure in C57BL/6 (B6), Balb/c (BC), and reciprocal F1 crosses between these two strains of mice. The induction of Cyp1a1 and Cyp1b1 in fetal lung and liver tissue was determined by quantitative fluorescent real-time PCR. MC treatment caused maximal induction of Cyp1a1 and Cyp1b1 RNA 2-8 h after injection in both organs. RNA levels for both genes then declined in both fetal organs, but a small biphasic, secondary increase in Cyp1a1 was observed specifically in the fetal lung 24-48 h after MC exposure in all four strains. Cyp1a1 induction by MC at 4 h was 2-5 times greater in fetal liver (7000- to 16,000-fold) than fetal lung (2000- to 6000-fold). Cyp1b1 induction in both fetal lung and liver was similar and much lower than that observed for Cyp1a1, with induction ratios of 8- to 18-fold in fetal lung and 10- to 20-fold in fetal liver. The overall kinetics and patterns of induction were thus very similar across the four strains of mice. The only significant strain-specific effect appeared to be the relatively poor induction of Cyp1b1 in the parental strain of B6 mice, especially in fetal lung tissue. We also measured the levels of MC adducts and their disappearance from lung tissue by the P 32 post-labeling assay on gestation days 18 and 19 and postnatal days 1, 4, 11, and 18. Few differences were seen between the different strains of mice; the parental strain of B6 mice had nominally higher levels of DNA adducts 2 (gestation day 19) and 4 (postnatal day 1) days after injection, although this was not statistically significant

  13. Ethanol preference is impacted by estrus stage but not housing or stress in female C57BL/6J mice

    Kimberly N. Williams

    2018-01-01

    Full Text Available Vulnerability to maladaptive patterns of alcohol use, including dependence and relapse, is influenced by a combination of biological and environmental factors. A better understanding of how individual factors influence alcohol use is needed to help reduce alcohol dependence and relapse rates in the general population. This study explored how environmental enrichment (EE, stress and estrus cycle stage affect ethanol (ETOH preference in female mice. Mice were housed in enriched or standard environments and exposed chronically to ETOH for two hours a day for twelve days, before entering a brief ETOH-free abstinence period. At the end of this abstinence period, mice were exposed to a series of mild stressors (forced swim tests and anxiety was assessed via an elevated plus-maze. Preference was measured using a two-bottle choice test prior to ETOH exposure (baseline, after chronic ETOH exposure, and immediately following the abstinence period and stressor. Results revealed that mice preferred ETOH more strongly after chronic ETOH exposure, but that this increase was not affected by environment. ETOH preference was further increased after a brief abstinence period, but preference was not affected by environment or mild stress. However, mice in the proestrus/estrus stage of the estrus cycle preferred ETOH more strongly after a brief abstinence period than did mice in the metestrus/diestrus stage, suggesting that circulating levels of gonadal hormones may contribute to the incubation of drug preference. Anxiety- and despair-like behaviors were not impacted by estrus cycle stage. These findings suggest that estrus stage may affect ETOH preference, even after relatively short drug-free periods. Further research is needed to rectify the role of EE and stress in individual vulnerability or resilience to substance abuse. These findings also highlight a need for increased research into how gonadal hormones may influence ETOH preference in both mice and humans.

  14. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    GH and IGF-1 are important for a variety of physiological processes including growth, development, and aging. Mice with reduced levels of GH and IGF-1 have been shown to live longer than wild-type controls. Our laboratory has previously found that mice with a GH receptor gene knockout (GHRKO) fro...

  15. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice

    Viglietti-Panzica Carla

    2009-07-01

    Full Text Available Abstract Background Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. Results Changes were observed in the medial preoptic area (MPA (significantly higher number in estrus and in the arcuate nucleus (Arc (significantly higher number in proestrus. In the ventrolateral part of the ventromedial nucleus (VMHvl and in the bed nucleus of the stria terminalis (BST no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle in the VMHvl and in the BST (when considering only the less intensely stained elements. In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. Conclusion These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle.

  16. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Michele La Merrill

    Full Text Available Dichlorodiphenyltrichloroethane (DDT has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  17. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  18. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice.

    Palmisano, Brian T; Le, Thao D; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M

    2016-08-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Jaeschke, Hartmut

    2014-01-01

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are critical

  1. Antitumor Effect of Selenium and Modified Pectin Nano Particles and Gamma Radiation on Ehrilch Solid Tumor in Female Mice

    Mansour, S. Z.; Anis, L.M.; EI- Batal, A.I.

    2010-01-01

    Selenium nano particle (Nano- Se) is a novel Se species with novel biological activities with low toxicity. The aim of the present work was to evaluate the antitumor activity of a novel Nano- Se compound with or without gamma irradiation of female mice. Selenium size- controlled Nano-Se was prepared by a simple method by adding modified pectin to the selenious acid and ascorbic acid. The antitumor activity of Selenium and Modified Pectin Nano Particles (Se-Mp- NPs) were evaluated against Ehrilch ascites carcinoma (In vitro) and Ehrilch solid tumor model (In vivo). The antioxidant states of the novel compound were assessed measuring parameters in blood and tumor tissue of female mice. Malonaldehydoyl (MDA) end product of lipid peroxidation was evaluated in plasma and tumor tissue. Glutathione -S- transferase (GST) and cytochrome P450 (Cyto P450) were determined in tumor tissue homogenate. Tumor necrosis factor alpha (TNF- a) concentration and interleukin 10 (IL- 10) concentrations was evaluated in plasma of female mice. The effect of tumor inoculation and different treatments on liver enzymes (ALT and AST) and kidney Function (urea and creatinine) were detected in the plasma of animals. Apoptosis was shown and estimated in tumor tissue of animals histopathological of tumor in different groups of mice were examined. Ehrilch solid tumor induced a significant increase in MDA content, GSH-Px and GST activities level and in the amount of metabolites of CYP 450. Moreover, a significant decrease was observed in GSH content, SOD activity level in the tumor tissue, INF- a concentration, IL- 10 concentration in the plasma. Also, a significant alteration in kidney and liver functions was occurred as compared to control group. The results showed a significant antitumor activity of selenium and Modified Pectin Nano Particles (Se-Mp- NPs) at the concentration 2.25 μg / ml was 70%

  2. Psychological stress on female mice diminishes the developmental potential of oocytes: a study using the predatory stress model.

    Yu-Xiang Liu

    Full Text Available Although the predatory stress experimental protocol is considered more psychological than the restraint protocol, it has rarely been used to study the effect of psychological stress on reproduction. Few studies exist on the direct effect of psychological stress to a female on developmental competence of her oocytes, and the direct effect of predatory maternal stress on oocytes has not been reported. In this study, a predatory stress system was first established for mice with cats as predators. Beginning 24 h after injection of equine chorionic gonadotropin, female mice were subjected to predatory stress for 24 h. Evaluation of mouse responses showed that the predatory stress system that we established increased anxiety-like behaviors and plasma cortisol concentrations significantly and continuously while not affecting food and water intake of the mice. In vitro experiments showed that whereas oocyte maturation and Sr(2+ activation or fertilization were unaffected by maternal predatory stress, rate of blastocyst formation and number of cells per blastocyst decreased significantly in stressed mice compared to non-stressed controls. In vivo embryo development indicated that both the number of blastocysts recovered per donor mouse and the average number of young per recipient after embryo transfer of blastocysts with similar cell counts were significantly lower in stressed than in unstressed donor mice. It is concluded that the predatory stress system we established was both effective and durative to induce mouse stress responses. Furthermore, predatory stress applied during the oocyte pre-maturation stage significantly impaired oocyte developmental potential while exerting no measurable impact on nuclear maturation, suggesting that cytoplasmic maturation of mouse oocytes was more vulnerable to maternal stress than nuclear maturation.

  3. Illumination of murine gammaherpesvirus-68 cycle reveals a sexual transmission route from females to males in laboratory mice.

    Sylvie François

    Full Text Available Transmission is a matter of life or death for pathogen lineages and can therefore be considered as the main motor of their evolution. Gammaherpesviruses are archetypal pathogenic persistent viruses which have evolved to be transmitted in presence of specific immune response. Identifying their mode of transmission and their mechanisms of immune evasion is therefore essential to develop prophylactic and therapeutic strategies against these infections. As the known human gammaherpesviruses, Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus are host-specific and lack a convenient in vivo infection model; related animal gammaherpesviruses, such as murine gammaherpesvirus-68 (MHV-68, are commonly used as general models of gammaherpesvirus infections in vivo. To date, it has however never been possible to monitor viral excretion or virus transmission of MHV-68 in laboratory mice population. In this study, we have used MHV-68 associated with global luciferase imaging to investigate potential excretion sites of this virus in laboratory mice. This allowed us to identify a genital excretion site of MHV-68 following intranasal infection and latency establishment in female mice. This excretion occurred at the external border of the vagina and was dependent on the presence of estrogens. However, MHV-68 vaginal excretion was not associated with vertical transmission to the litter or with horizontal transmission to female mice. In contrast, we observed efficient virus transmission to naïve males after sexual contact. In vivo imaging allowed us to show that MHV-68 firstly replicated in penis epithelium and corpus cavernosum before spreading to draining lymph nodes and spleen. All together, those results revealed the first experimental transmission model for MHV-68 in laboratory mice. In the future, this model could help us to better understand the biology of gammaherpesviruses and could also allow the development of strategies that could prevent

  4. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice.

    Sapouckey, Sarah A; Kassotis, Christopher D; Nagel, Susan C; Vandenberg, Laura N

    2018-03-01

    Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies. Copyright © 2018 Endocrine Society.

  5. Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender.

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1 (+/-) females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1 (+/-) mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1 (+/-) females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.

  6. Heterozygous Ambra1 deficiency in mice: A genetic trait with autism-like behavior restricted to the female gender

    Ekrem eDere

    2014-05-01

    Full Text Available Autism spectrum disorders (ASD are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of ~4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g. through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1+/- females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1+/- mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1+/- females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.

  7. The male sex pheromone darcin stimulates hippocampal neurogenesis and cell proliferation in the subventricular zone in female mice

    Emma eHoffman

    2015-04-01

    Full Text Available The integration of newly generated neurons persists throughout life in the mammalian olfactory bulb and hippocampus, regions involved in olfactory and spatial learning. Social cues can be potent stimuli for increasing adult neurogenesis; for example, odors from dominant but not subordinate male mice increase neurogenesis in both brain regions of adult females. However, little is known about the role of neurogenesis in social recognition or the assessment of potential mates. Dominant male mice scent-mark territories using urine that contains a number of pheromones including darcin (MUP20, a male-specific major urinary protein that stimulates rapid learned attraction to the spatial location and individual odor signature of the scent owner. Here we investigate whether exposure to darcin stimulates neurogenesis in the female brain. Hippocampal neurons and cellular proliferation in the lateral ventricles that supply neurons to the olfactory bulbs increased in females exposed for seven days to male urine containing at least 0.5µg/µl darcin. Darcin was effective whether presented alone or in the context of male urine, but other information in male urine appeared to modulate the proliferative response. When exposed to urine from wild male mice, hippocampal proliferation increased only if urine was from the same individual over seven days, suggesting that consistency of individual scent signatures is important. While seven days exposure to male scent initiated the first stages of increased neurogenesis, this caused no immediate increase in female attraction to the scent or in the strength or robustness of spatial learning in short-term conditioned place preference tests. The reliable and consistent stimulation of neurogenesis by a pheromone important in rapid social learning suggests that this may provide an excellent model to explore the relationship between the integration of new neurons and plasticity in spatial and olfactory learning in a socially

  8. Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently.

    Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio

    2015-08-01

    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P brain (P male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P brain, liver, and kidney (all P male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6-fold higher liver-to-plasma ratio (P female mice and in kidney (male and female mice) but decreased 55% in brain (P differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  9. Protective effects of lemongrass (Cymbopogon citratus STAPF) essential oil on DNA damage and carcinogenesis in female Balb/C mice.

    Bidinotto, Lucas T; Costa, Celso A R A; Salvadori, Daisy M F; Costa, Mirtes; Rodrigues, Maria A M; Barbisan, Luís F

    2011-08-01

    This study investigated the protective effect of oral treatment with lemongrass (Cymbopogon citratus STAPF) essential oil (LGEO) on leukocyte DNA damage induced by N-methyl-N-nitrosurea (MNU). Also, the anticarcinogenic activity of LGEO was investigated in a multi-organ carcinogenesis bioassay induced by 7,12-dimethylbenz(a)antracene, 1,2-dimethylhydrazine and N-butyl-N-(4-hydroxibuthyl)nitrosamine in Balb/C female Balb/c mice (DDB-initiated mice). In the short-term study, the animals were allocated into three groups: vehicle group (negative control), MNU group (positive control) and LGEO 500 mg kg⁻¹ (five times per week for 5 weeks) plus MNU group (test group). Blood samples were collected to analyze leukocyte DNA damage by comet assay 4 h after each MNU application at the end of weeks 3 and 5. The LGEO 500 mg kg⁻¹ treated group showed significantly lower (P lemongrass essential oil provided protective action against MNU-induced DNA damage and a potential anticarcinogenic activity against mammary carcinogenesis in DDB-initiated female Balb/C mice. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Studies on the localization of Trypanosoma brucei in the female reproductive tract of bka mice and hooded lister rats

    Chipepa, J.A.S.; Brown, H.; Holmes, P.

    1991-01-01

    A study was conducted to establish whether Trypanosoma brucei migrated preferentially to the reproductive tracts of female BKA mice, or Hooded Lister rats and lodged there as the site of choice compared to other organs. Blood flow to the reproductive tracts, the liver and spleen was measured using red blood cells labelled with chromium- 51. The distribution of trypanosomes labelled with 75 Se-methionine. The average percentage of the blood flow to the reproductive tract was 0.21Plus or minus0.08 in mice, while the mean concentration of trypanosomes there was 0.30% in both mice and rats. Blood flow to the liver was lower than the percentage distribution of Se-labelled T.Brucei(5.17Plus or minus1.34 versus 8.1Plus or Minus1.2). There were, on the contrary, less labelled trypanosomes as compared to the mean blood flow to the spleen (0.54% plus or minus0.18 versus 2.10%pPlus or minus0.88). After 24 hours there were adequate numbers of T. brucei in the reproductive tract to cause parasitaemia in recipient mice. From these preliminary data it was concluded that T. brucei did not lodge in the reproductive organ system a site of choice. (author). 9 refs., 3 tabs

  11. Wired for motherhood: induction of maternal care but not maternal aggression in virgin female CD1 mice.

    Martín-Sánchez, Ana; Valera-Marín, Guillermo; Hernández-Martínez, Adoración; Lanuza, Enrique; Martínez-García, Fernando; Agustín-Pavón, Carmen

    2015-01-01

    Virgin adult female mice display nearly spontaneous maternal care towards foster pups after a short period of sensitization. This indicates that maternal care is triggered by sensory stimulation provided by the pups and that its onset is largely independent on the physiological events related to gestation, parturition and lactation. Conversely, the factors influencing maternal aggression are poorly understood. In this study, we sought to characterize two models of maternal sensitization in the outbred CD1 strain. To do so, a group of virgin females (godmothers) were exposed to continuous cohabitation with a lactating dam and their pups from the moment of parturition, whereas a second group (pup-sensitized females), were exposed 2 h daily to foster pups. Both groups were tested for maternal behavior on postnatal days 2-4. Godmothers expressed full maternal care from the first test. Also, they expressed higher levels of crouching than dams. Pup-sensitized females differed from dams in all measures of pup-directed behavior in the first test, and expressed full maternal care after two sessions of contact with pups. However, both protocols failed to induce maternal aggression toward a male intruder after full onset of pup-directed maternal behavior, even in the presence of pups. Our study confirms that adult female mice need a short sensitization period before the onset of maternal care. Further, it shows that pup-oriented and non-pup-oriented components of maternal behavior are under different physiological control. We conclude that the godmother model might be useful to study the physiological and neural bases of the maternal behavior repertoire.

  12. Lack of effect on the chromosomal non-disjunction in aged female mice after low dose x-irradiation

    Strausmanis, R; Hendrikson, I B; Holmberg, M; Roennbaeck, C [Research Inst. of National Defence, Sundbyberg (Sweden). Dept. 4

    1978-02-01

    Karyotypes were determined in 1064 embryos of aged C57/BL mothers. The virgin female mice were irradiated with 0, 4, 8 or 16 R of X-rays, respectively, and placed with young untreated males 5 days after irradiation. 10.5-days old embryos were recovered from the uterus. Aneuploid embryos classified as alive (heart beats observed at the dissection) were 1 monosomic in the control group (496 embryos) and 2 trisomics in the irradiated group (568 embryos). The number of aneuploid embryos classified as dead was 4 trisomic cases in the control group and 3 trisomics in the irradiated group. The data indicate that trisomic embryos are not uncommon in the mouse but are eliminated in post-implantation death. In contrast to the results of Yamamoto et al. the present data do not demonstrate an increased frequency of chromosome abnormalities in embryos of aged mice X-irradiated before mating as compared to non-irradiated ones.

  13. Lack of effect on the chromosomal non-disjunction in aged female mice after low dose x-irradiation

    Strausmanis, R.; Hendrikson, I.-B.; Holmberg, M.; Roennbaeck, C.

    1978-01-01

    Karyotypes were determined in 1064 embryos of aged C57/BL mothers. The virgin female mice were irradiated with 0, 4, 8 or 16 R of X-rays, respectively, and placed with young untreated males 5 days after irradiation. 10.5-days old embryos were recovered from the uterus. Aneuploid embryos classified as alive (heart beats observed at the dissection) were 1 monosomic in the control group (496 embryos) and 2 trisomics in the irradiated group (568 embryos). The number of aneuploid embryos classified as dead was 4 trisomic cases in the control group and 3 trisomics in the irradiated group. The data indicate that trisomic embryos are not uncommon in the mouse but are eliminated in post-implantation death. In contrast to the results of Yamamoto et al. the present data do not demonstrate an increased frequency of chromosome abnormalities in embryos of aged mice X-irradiated before mating as compared to non-irradiated ones

  14. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice

    Lluís eFortes-Marco

    2015-10-01

    Full Text Available Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP, a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT, a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA, unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively than 2-HP (35 μmol. All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation-dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g. hormonal levels or neural measures (e.g. immediate early gene expression to

  16. Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice.

    Fortes-Marco, Lluís; Lanuza, Enrique; Martínez-García, Fernando; Agustín-Pavón, Carmen

    2015-01-01

    Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP), a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT), a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA), unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively) than 2-HP (35 μmol). All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation-dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT) or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g., hormonal levels) or neural measures (e.g., immediate early gene expression) to establish

  17. Vulnerability of female germ cells in developing mice and monkeys to tritium, gamma rays, and polycyclic aromatic hydrocarbons

    Dobson, R.L.; Koehler, C.G.; Felton, J.S.; Kwan, T.C.; Wuebbles, B.J.; Jones, D.C.L.

    1978-01-01

    During development female germ cells in both mouse and monkey are extremely sensitive to destruction by low-level chronic tritium exposure (via 3 HOH in maternal drinking water). Practical significance of this stems from tritium's importance in nuclear energy production and as an environmental pollutant. In mice exposed from conception to 14 days of age, the LD 50 level for oocytes is only 2 μCi per mililiter of body water. The present studies indicate that, for female germ cells in squirrel monkeys exposed in utero, the LD 50 is even lower, about 0.5 μCi/ml. This striking sensitivity contrasts with reported radioresistance for primate oocytes, chiefly from acute x-irradiation experiments. The discrepancy is reconciled if germ cells in the fetal primate pass through a highly sensitive period of limited duration. In light of other data showing germ-cell loss following repeated semiweekly x-irradiation during late but not during mid gestation, these results indicate that exceedingly high sensitivity occurs probably about the middle of the last trimester, at which time the LD 50 for monkey germ cells is, as for that of the mouse, less than 5 rads. Whereas highest radiosensitivity in primates is before birth, in mice it is after birth. To define the period of sensitivity more sharply, we measured oocyte responses to standard gamma-ray exposures in Swiss-Webster mice at various ages and found them to be maximal between days 5 and 19. Polycyclic aromatic hydrocarbons (PAH's), important as pollutants, also can destroy female germ cells effectively

  18. The effect of fenbuconazole on cell proliferation and enzyme induction in the liver of female CD1 mice

    Juberg, Daland R.; Mudra, Daniel R.; Hazelton, George A.; Parkinson, Andrew

    2006-01-01

    Fenbuconazole, a triazole fungicide, has been associated with an increase in the incidence of liver adenomas in female mice following long-term dietary exposure. The aim of this study was to evaluate whether the mode of action for liver tumor formation by fenbuconazole is similar to that of phenobarbital. Treatment of CD1 mice with 0, 20, 60, 180 or 1300 ppm fenbuconazole for up to 4 weeks caused a dose-dependent increase in liver weight that was associated with centrilobular hepatocellular hypertrophy, cytoplasmic eosinophilia and panlobular hepatocellular vacuolation, as well as an initial increase in the cell proliferation labeling index. Fenbuconazole also caused a dose-dependent increase in liver microsomal cytochromes b 5 and P450 and the levels of immunoreactive CYP2B10 and its associated activity 7-pentoxyresorufin O-dealkylation (PROD). Treatment of mice with 1000 ppm phenobarbital elicited the same effects as treatment of mice with 1300 ppm fenbuconazole, except that phenobarbital was more effective than fenbuconazole at inducing PROD activity, even though fenbuconazole induced CYP2B10 to the same extent as did phenobarbital. This difference was attributed to the ability of fenbuconazole to bind tightly to CYP2B10 and partially mask its catalytic activity in liver microsomes, which is characteristic of several azole-containing drugs. All hepatocellular changes and induced enzyme activity returned to control levels within 4 weeks of discontinuing treatment with fenbuconazole or phenobarbital, indicating that the observed changes were fully reversible. We conclude that fenbuconazole is a phenobarbital-type inducer of mouse liver cytochrome P450, and the mode of action by which fenbuconazole induces liver adenomas in mice is similar to that of phenobarbital

  19. 17ß-Estradiol Regulates Histone Alterations Associated with Memory Consolidation and Increases "Bdnf" Promoter Acetylation in Middle-Aged Female Mice

    Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.; Frick, Karyn M.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17ß-estradiol…

  20. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss.

    Iwaniec, U T; Philbrick, K A; Wong, C P; Gordon, J L; Kahler-Quesada, A M; Olson, D A; Branscum, A J; Sargent, J L; DeMambro, V E; Rosen, C J; Turner, R T

    2016-10-01

    Room temperature housing (22 °C) results in premature cancellous bone loss in female mice. The bone loss was prevented by housing mice at thermoneutral temperature (32 °C). Thermogenesis differs markedly between mice and humans and mild cold stress induced by standard room temperature housing may introduce an unrecognized confounding variable into preclinical studies. Female mice are often used as preclinical models for osteoporosis but, in contrast to humans, mice exhibit cancellous bone loss during growth. Mice are routinely housed at room temperature (18-23 °C), a strategy that exaggerates physiological differences in thermoregulation between mice (obligatory daily heterotherms) and humans (homeotherms). The purpose of this investigation was to assess whether housing female mice at thermoneutral (temperature range where the basal rate of energy production is at equilibrium with heat loss) alters bone growth, turnover and microarchitecture. Growing (4-week-old) female C57BL/6J and C3H/HeJ mice were housed at either 22 or 32 °C for up to 18 weeks. C57BL/6J mice housed at 22 °C experienced a 62 % cancellous bone loss from the distal femur metaphysis during the interval from 8 to 18 weeks of age and lesser bone loss from the distal femur epiphysis, whereas cancellous and cortical bone mass in 32 °C-housed mice were unchanged or increased. The impact of thermoneutral housing on cancellous bone was not limited to C57BL/6J mice as C3H/HeJ mice exhibited a similar skeletal response. The beneficial effects of thermoneutral housing on cancellous bone were associated with decreased Ucp1 gene expression in brown adipose tissue, increased bone marrow adiposity, higher rates of bone formation, higher expression levels of osteogenic genes and locally decreased bone resorption. Housing female mice at 22 °C resulted in premature cancellous bone loss. Failure to account for species differences in thermoregulation may seriously confound interpretation of studies

  1. The effect of maternal chromium status on lipid metabolism in female elderly mice offspring and involved molecular mechanism.

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-04-30

    Maternal malnutrition leads to the incidence of metabolic diseases in offspring. The purpose of this project was to examine whether maternal low chromium could disturb normal lipid metabolism in offspring, altering adipose cell differentiation and leading to the incidence of lipid metabolism diseases, including metabolic syndrome and obesity. Female C57BL mice were given a control diet (CD) or a low chromium diet (LCD) during the gestational and lactation periods. After weaning, offspring was fed with CD or LCD. The female offspring were assessed at 32 weeks of age. Fresh adipose samples from CD-CD group and LCD-CD group were collected. Genome mRNA were analysed using Affymetrix GeneChip Mouse Gene 2.0 ST Whole Transcript-based array. Differentially expressed genes (DEGs) were analysed based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis database. Maternal low chromium irreversibly increased offspring body weight, fat-pad weight, serum triglyceride (TG) and TNF-α. Eighty five genes increased and 109 genes reduced in the offspring adipose of the maternal low chromium group. According to KEGG pathway and String analyses, the PPAR signalling pathway may be the key controlled pathway related to the effect of maternal low chromium on female offspring. Maternal chromium status have long-term effects of lipid metabolism in female mice offspring. Normalizing offspring diet can not reverse these effects. The potential underlying mechanisms are the disturbance of the PPAR signalling pathway in adipose tissue. © 2017 The Author(s).

  2. Impact of peptide ghrelin antagonists on metabolic syndrome in female obese mice

    Maletínská, Lenka; Železná, Blanka; Matyšková, Resha; Maixnerová, Jana; Pýchová, Miroslava; Špolcová, Andrea; Blechová, Miroslava; Jurcovicová, J.; Haluzník, M.

    2010-01-01

    Roč. 16, S1 (2010), s. 116-117 ISSN 1075-2617. [European Peptide Symposium /31./. 05.09.2010-09.09.2010, Copenhagen] R&D Projects: GA ČR GA303/09/0744 Institutional research plan: CEZ:AV0Z40550506 Keywords : DIO * OVX * mice * ghrelin antagonist Subject RIV: CC - Organic Chemistry

  3. EFFECT OF CAGE BEDDING ON TEMPERATURE REGULATION AND METABOLISM OF GROUP-HOUSED FEMALE MICE.

    This manuscript examines how methods used to house and study laboratory rodents could affect the variability and quality of toxicological data. The key finding is that there is likely to be more instability in body temperature and metabolism in mice when housed on conventional be...

  4. Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder

    Fuchs, Claudia; Gennaccaro, Laura; Trazzi, Stefania; Bastianini, Stefano; Bettini, Simone; Martire, Viviana Lo; Ren, Elisa; Medici, Giorgio; Zoccoli, Giovanna; Rimondini, Roberto; Ciani, Elisabetta

    2018-01-01

    CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five) gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/−) mouse, has been little characterized. The lack of...

  5. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice

    Micheli Stéfani Zarzecki

    2014-01-01

    Full Text Available Chrysin (5,7-dihydroxyflavone is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts. The objective of this study was to investigate the hypolipidemic properties of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Triton WR-1339 was administered intraperitoneally (400 mg/kg to overnight-fasted mice to develop acute hyperlipidemia. Chrysin was administered orally (10 mg/kg 30 min before Triton WR-1339. At 24 h after Triton WR-1339 injection, blood samples were collected to measure plasma lipid levels. The hepatic thiobarbituric acid reactive substances (TBARS, carbonyl content, non-protein sulfhydryl (NPSH and ascorbic acid (AA levels, as well as catalase (CAT and superoxide dismutase (SOD activity were recorded. Chrysin administration significantly decreased total cholesterol levels. In addition, it partially decreased non-high density lipoprotein-cholesterol and triglycerides levels in plasma of hyperlipidaemic mice. In addition chrysin administration prevented the increase on TBARS levels and prevented the decrease in SOD activity induced by Triton WR-1339. These findings indicated that chrysin was able to decrease plasma lipids concentration and that its antioxidant properties was, at least in part, involved in the hypolipidaemic action of chrysin.

  6. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  7. Pomegranate (Punica granatum Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice

    Badriah Alkathiri

    2017-12-01

    Full Text Available Leishmania species are parasites that multiply within phagocytes and cause several clinical diseases characterized by single or multiple ulcerations. One of the complications that can induce tissue damage and the resulting scars is caused by secondary bacterial infections. Studies to find new, effective, and safe oral drugs for treating leishmaniasis are being conducted since several decades, owing to the problems associated with the use of antimonials available. Previously, the antiparasitic and antioxidant properties of Punica granatum (pomegranate, P. granatum have been reported. Therefore, in the present study, we aimed to investigate the antileishmanial activity of pomegranate aqueous juice in vitro and in female BALB/c mice. A 3-(4.5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in Leishmania major promastigotes and alterations in the antioxidant status, liver function, and skin histological changes in L. major-infected mice orally treated with pomegranate juice alone and in combination with the antibiotic ciprofloxacin, were used to investigate the in vitro and in vivo antileishmanial activity of pomegranate juice, respectively. Oral P. granatum juice treatment significantly reduced the average size of cutaneous leishmaniasis lesions compared with that of the untreated mice. This antileishmanial activity of P. granatum was associated with enhanced antioxidant enzyme activities. Histopathological evaluation proved the antileishmanial activity of P. granatum, but did not reveal changes in the treated animals, compared to the positive control. In conclusion, P. granatum shows high and fast antileishmanial activity probably by boosting the endogenous antioxidant activity.

  8. Pomegranate (Punica granatum) Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice.

    Alkathiri, Badriah; El-Khadragy, Manal F; Metwally, Dina M; Al-Olayan, Ebtesam M; Bakhrebah, Muhammed A; Abdel Moneim, Ahmed E

    2017-12-18

    Leishmania species are parasites that multiply within phagocytes and cause several clinical diseases characterized by single or multiple ulcerations. One of the complications that can induce tissue damage and the resulting scars is caused by secondary bacterial infections. Studies to find new, effective, and safe oral drugs for treating leishmaniasis are being conducted since several decades, owing to the problems associated with the use of antimonials available. Previously, the antiparasitic and antioxidant properties of Punica granatum (pomegranate, P. granatum ) have been reported. Therefore, in the present study, we aimed to investigate the antileishmanial activity of pomegranate aqueous juice in vitro and in female BALB/c mice. A 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Leishmania major promastigotes and alterations in the antioxidant status, liver function, and skin histological changes in L. major -infected mice orally treated with pomegranate juice alone and in combination with the antibiotic ciprofloxacin, were used to investigate the in vitro and in vivo antileishmanial activity of pomegranate juice, respectively. Oral P. granatum juice treatment significantly reduced the average size of cutaneous leishmaniasis lesions compared with that of the untreated mice. This antileishmanial activity of P. granatum was associated with enhanced antioxidant enzyme activities. Histopathological evaluation proved the antileishmanial activity of P. granatum , but did not reveal changes in the treated animals, compared to the positive control. In conclusion, P. granatum shows high and fast antileishmanial activity probably by boosting the endogenous antioxidant activity.

  9. Superior effects of quetiapine compared with aripiprazole and iloperidone on MK-801-induced olfactory memory impairment in female mice.

    Mutlu, Ahmet; Mutlu, Oguz; Ulak, Guner; Akar, Furuzan; Kaya, Havva; Erden, Faruk; Tanyeri, Pelin

    2017-05-01

    Cognitive dysfunction is commonly observed in schizophrenic patients and the administration of antipsychotic treatments results in different outcomes. Although the typical antipsychotic treatments, such as haloperidol, appear to be unable to improve cognition dysfunction, the atypical antipsychotic drugs (quetiapine, aripiprazole and iloperidone) exert a beneficial effect. The purpose of the current study was to investigate the effects of atypical antipsychotics on olfactory memory in mice, utilizing the social transmission of food preference (STFP) tests to evaluate the effects of drugs on MK-801-induced cognitive dysfunction. Female BALB/c mice were treated with quetiapine (5 and 10 mg/kg), aripiprazole (3 and 6 mg/kg), iloperidone (0.5 and 1 mg/kg) or MK-801 (0.1 mg/kg) alone or concurrently prior to retention sessions of STFP tests. In the STFP tests, quetiapine (10 mg/kg; P<0.05), aripiprazole (3 and 6 mg/kg; P<0.01 and P<0.001, respectively), iloperidone (0.5 and 1 mg/kg; P<0.01 and P<0.001, respectively) and MK-801 (P<0.001) significantly decreased cued/total food eaten (%). Quetiapine (5 mg/kg; P<0.05) significantly increased MK-801-induced decreases in cued/total food eaten (%), while aripiprazole and iloperidone demonstrated no significant effects. The results revealed that all of the drugs disturbed olfactory memory in the naive mice; however, only quetiapine reversed MK-801-induced memory impairment in the STFP test.

  10. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice.

    Watt, James; Baker, Amelia H; Meeks, Brett; Pajevic, Paola D; Morgan, Elise F; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2018-09-01

    The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR. © 2018 Wiley Periodicals, Inc.

  11. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity

    Cappel, David A.; Lantier, Louise; Palmisano, Brian T.; Wasserman, David H.; Stafford, John M.

    2015-01-01

    Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD). Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP) is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases mu...

  12. Test-retest paradigm of the forced swimming test in female mice is not valid for predicting antidepressant-like activity: participation of acetylcholine and sigma-1 receptors.

    Su, Jing; Hato-Yamada, Noriko; Araki, Hiroaki; Yoshimura, Hiroyuki

    2013-01-01

    The forced swimming test (FST) in mice is widely used to predict the antidepressant activity of a drug, but information describing the immobility of female mice is limited. We investigated whether a prior swimming experience affects the immobility duration in a second FST in female mice and whether the test-retest paradigm is a valid screening tool for antidepressants. Female ICR mice were exposed to the FST using two experimental paradigms: a single FST and a double FST in which mice had experienced FST once 24 h prior to the second trail. The initial FST experience reliably prolonged immobility duration in the second FST. The antidepressants imipramine and paroxetine significantly reduced immobility duration in the single FST, but not in the double FST. Scopolamine and the sigma-1 (σ1) antagonist NE-100 administered before the second trial significantly prevented the prolongation of immobility. Neither a 5-HT1A nor a 5-HT2A receptor agonist affected immobility duration. We suggest that the test-retest paradigm in female mice is not adequate for predicting antidepressant-like activity of a drug; the prolongation of immobility in the double FST is modulated through acetylcholine and σ1 receptors.

  13. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Effect of sulphur-35 on female gonadal cell kinetics in mice

    Satyanarayana Reddy, K.; Reddy, P.P.; Reddi, O.S.

    1980-01-01

    The radiation hazards of internally administered 35 S which is used as a diagnostic and therapeutic agent in human medicine are assessed. It is observed in the study that the treatment of females during pregnancy results in 35 S incorporation into ovaries of the embryos and may result in infertility and abortions or miscarriages. (author)

  15. Activation of BDNF Signaling Prevents the Return of Fear in Female Mice

    Baker-Andresen, Danay; Flavell, Charlotte R.; Li, Xiang; Bredy, Timothy W.

    2013-01-01

    There are significant sex differences in vulnerability to develop fear-related anxiety disorders. Females exhibit twice the rate of post-traumatic stress disorder (PTSD) as males and sex differences have been observed in fear extinction learning in both humans and rodents, with a failure to inhibit fear emerging as a precipitating factor in the…

  16. Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice

    El Akoum Souhad

    2011-12-01

    Full Text Available Abstract Background Adverse effects of high-fat diets (HFD on metabolic homeostasis are linked to adipose tissue dysfunction. The goal of this study was to examine the effect of the HFD nature on adipose tissue activity, metabolic disturbances and glucose homeostasis alterations in male mice compared with female mice. Methods C57BL/6J mice were fed either a chow diet or HFD including vegetal (VD or animal (AD fat. Body weight, plasmatic parameters and adipose tissue mRNA expression levels of key genes were evaluated after 20 weeks of HFD feeding. Results HFD-fed mice were significantly heavier than control at the end of the protocol. Greater abdominal visceral fat accumulation was observed in mice fed with AD compared to those fed a chow diet or VD. Correlated with weight gain, leptin levels in systemic circulation were increased in HFD-fed mice in both sexes with a significant higher level in AD group compared to VD group. Circulating adiponectin levels as well as adipose tissue mRNA expression levels were significantly decreased in HFD-fed male mice. Although its plasma levels remained unchanged in females, adiponectin mRNA levels were significantly reduced in adipose tissue of both HFD-fed groups with a more marked decrease in AD group compared to VD group. Only HFD-fed male mice were diabetic with increased fasting glycaemia. On the other hand, insulin levels were only increased in AD-fed group in both sexes associated with increased resistin levels. VD did not induce any apparent metabolic alteration in females despite the increased weight gain. Peroxisome Proliferator-Activated Receptors gamma-2 (PPARγ2 and estrogen receptor alpha (ERα mRNA expression levels in adipose tissue were decreased up to 70% in HFD-fed mice but were more markedly reduced in male mice as compared with female mice. Conclusions The nature of dietary fat determines the extent of metabolic alterations reflected in adipocytes through modifications in the pattern of

  17. Triclosan exacerbates the presence of {sup 14}C-bisphenol A in tissues of female and male mice

    Pollock, Tyler; Tang, Brandon; Catanzaro, Denys de, E-mail: decatanz@mcmaster.ca

    2014-07-15

    Current human generations are commonly exposed to both triclosan (TCS), an antimicrobial agent, and bisphenol A (BPA), the monomer of polycarbonate plastics and epoxies. Both are readily absorbed into circulation and found distributed among diverse tissues. Potential interactions between TCS and BPA are largely unstudied. We investigated whether TCS exposure affects the distribution of ingested {sup 14}C-BPA in select tissues. CF-1 mice were each subcutaneously injected with TCS then orally administered 50 μg/kg {sup 14}C-BPA. Females received 0, 0.2, 0.6, 1, 2, or 18 mg TCS (equivalent respectively to 0, 6.3, 16.9, 30.1, 60.5, and 558.9 mg/kg). Males received 0, 0.2, 2, or 18 mg TCS (equivalent respectively to 0, 5.3, 53.4, and 415.0 mg/kg). Levels of radioactivity were measured through liquid scintillation counting in blood serum and brain, reproductive, and other tissues. Significantly elevated levels of radioactivity were observed following combined TCS and {sup 14}C-BPA administration, with minimally effective TCS doses being tissue-dependent (Females: lungs, 0.6 mg; uterus, 1 mg; heart, muscle, ovaries, and serum, 18 mg. Males: serum, 0.2 mg; epididymides, 2 mg). Subsequently, we found that 2 or 6 mg TCS increased radioactivity in the ovaries and serum of females orally given only 5 μg/kg {sup 14}C-BPA. These data indicate that TCS can interact with BPA in vivo, magnifying its presence in certain tissues and serum. The data are consistent with evidence that TCS utilizes enzymes that are critical for metabolism and excretion of BPA. Further research should investigate the mechanisms through which these two chemicals interact at environmentally-relevant doses. - Highlights: • We examined whether triclosan exposure affects the distribution of oral {sup 14}C-BPA. • Radioactivity was elevated in select tissues of mice injected sc with triclosan. • In females, this effect was most pronounced in the uterus, ovaries, and lungs. • In males, this effect was

  18. Cross-generational impact of a male murine pheromone 2-sec-butyl-4,5-dihydrothiazole in female mice

    Koyama, Sachiko; Soini, Helena A.; Wager-Miller, James; Alley, William R.; Pizzo, Matthew J.; Rodda, Cathleen; Alberts, Jeffrey; Crystal, Jonathon D.; Lai, Cary; Foley, John; Novotny, Milos V.

    2015-01-01

    The current understanding of the activity of mammalian pheromones is that endocrine and behavioural effects are limited to the exposed individuals. Here, we demonstrate that the nasal exposure of female mice to a male murine pheromone stimulates expansion of mammary glands, leading to prolonged nursing of pups. Subsequent behavioural testing of the pups from pheromone-exposed dams exhibited enhanced learning. Sialic acid components in the milk are known to be involved in brain development. We hypothesized that the offspring might have received more of this key nutrient that promotes brain development. The mRNA for polysialyltransferase, which produces polysialylated neural cell adhesion molecules related to brain development, was increased in the brain of offspring of pheromone-exposed dams at post-natal day 10, while it was not different at embryonic stages, indicating possible differential brain development during early post-natal life. PMID:26136453

  19. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  20. Placental passage of rose bengal 131I, its accumulation in the fetus and its distribution in the organs of the female mice

    Sudarwati, S.; Sutasurya, L.A.

    1977-01-01

    Female mice of various gestation periods were injected intraperitoneally with 0.25-0.5O ml of rose bengal 131 I with the activity between 225-250 μCi. A group was administered with Lugol's solution one day before treatment. Accumulation of radio-rose bengal in the fetuses started at the eleventh day and great increase occured at the seventeenth day of gestation till birth. Acculmulations in both fetal and female mice's thyroids could be prevented by administering Lugol's solution before treatment, and the second target of the labelled compound after the thyroid gland was liver. (author)

  1. Absence of ERRalpha in female mice confers resistance to bone loss induced by age or estrogen-deficiency.

    Catherine Teyssier

    Full Text Available BACKGROUND: ERRalpha is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRalpha is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRalpha may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. METHODS/PRINCIPAL FINDINGS: In this report, we have determined the in vivo effect of ERRalpha on bone, using knock-out mice. Relative to wild type animals, female ERRalphaKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRalphaKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRalphaKO bone marrow, we also show that ERRalpha acts as an inhibitor of osteoblast differentiation. CONCLUSION/SIGNIFICANCE: Down-regulating ERRalpha could thus be beneficial against osteoporosis.

  2. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task

    Fritz, Ann-Kristina; Amrein, Irmgard; Wolfer, David P.

    2017-01-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water-maze and in 4,554 mice tested in the same open field arena. Confidence intervals for C...

  3. Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1

    Zhao, Liang; Svingen, Terje; Ting Ng, Ee

    2015-01-01

    for primary sex determination and instead maintains Sertoli cell phenotype in postnatal testes. Here, we report that enforced expression of Dmrt1 in XX mouse fetal gonads using a Wt1-BAC transgene system is sufficient to drive testicular differentiation and male secondary sex development. XX transgenic fetal...... into testicular cell types, including steroidogenic fetal Leydig cells and non-meiotic germ cells. As a consequence, male internal and external reproductive organs developed postnatally, with an absence of female reproductive tissues. These results reveal that Dmrt1 has retained its ability to act as the primary...

  4. Splenectomy reduces infarct volume and neuroinflammation in male but not female mice in experimental stroke

    Dotson, Abby L.; Wang, Jianming; Saugstad, Julie; Murphy, Stephanie J.; Offner, Halina

    2014-01-01

    The peripheral immune response contributes to neurodegeneration after stroke yet little is known about how this process differs between males and females. The current study demonstrates that splenectomy prior to experimental stroke eliminates sex differences in infarct volume and activated brain monocytes/microglia. In the periphery of both sexes, activated T cells correlate directly with stroke outcome while monocytes are reduced by splenectomy only in males. This study provides new information about the sex specific mechanisms of the peripheral immune response in neurodegeneration after stroke and demonstrates the need for representation of both sexes in basic and clinical stroke research. PMID:25434281

  5. Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice.

    Caitlin S Latimer

    Full Text Available Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.

  6. The effect of repeated stress on KCC2 and NKCC1 immunoreactivity in the hippocampus of female mice

    Takao Tsukahara

    2016-03-01

    Full Text Available K+–Cl− co-transporter (KCC2 and Na+–K+–2Cl− co-transporter (NKCC1 are the main regulators of neuronal intracellular chloride concentration; altered expression patterns of KCC2 and NKCC1 have been reported in several neurodegenerative diseases. In this paper, we show the effect of repeated stress on KCC2, NKCC1, and serine 940 phosphorylated KCC2 (pKCC2ser940 immunoreactivity.The data were obtained from the hippocampus of female mice using single-plane confocal microscopy images. The mean fluorescence intensity of the perisomatic area of neurons, defined as raw fluorescence intensity (RFI was calculated. Repeated stress (RS resulted in a decrease in perisomatic area of immunoreactive (IR-KCC2 and an increase of the IR-NKCC1. In addition, RS decreased perisomatic IR-pKCC2ser940, corresponding to that of KCC2. The data in this article support the results of a previous study [1] and provide the details of immunohistological methods. Interpretation of the data in this article can be found in “Repeated stress-induced expression pattern alterations of the hippocampal chloride transporters KCC2 and NKCC1 associated with behavioral abnormalities in female mice” by Tsukahara et al. [1]. Keywords: KCC2, NKCC1, repeated stress, IHC

  7. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task.

    Fritz, Ann-Kristina; Amrein, Irmgard; Wolfer, David P

    2017-09-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water-maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water-maze acquisition and in the open field, males tended to perform less reliably in the water-maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water-maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water-maze are used in preclinical research. © 2017 The Authors. American Journal of Medical Genetics Part C Published by Wiley Periodicals, Inc.

  8. Similar reliability and equivalent performance of female and male mice in the open field and water‐maze place navigation task

    Fritz, Ann‐Kristina; Amrein, Irmgard

    2017-01-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water‐maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water‐maze acquisition and in the open field, males tended to perform less reliably in the water‐maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water‐maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water‐maze are used in preclinical research. PMID:28654717

  9. Effect of dose on lead retention and distribution in suckling and adult female mice

    Keller, C.A.; Doherty, R.A.

    1980-01-01

    Single doses of lead (trace to 445 mg/kg) were administered per os to suckling and adult mice. Both groups exhibited dose-independent lead retention when doses of 4 to 445 mg/kg were administered. However, developmental differences in the fraction of initial dose (FID) retained were evident for all doses administered. A much larger FID was retained in both age groups following administration of carrier-free 203 Pb. The results are consistent with a mechanism of gastrointestinal lead absorption comprising two or more processes. Developmental differences were also observed in organ lead concentration relative to whole body concentration for kidneys, skull and brain 6 days following lead administration. Lead retentions (relative to whole body retention) in brain and in bone were linearly related to dose of lead administered in both suckling and adult age groups. Though uptake of lead into brain and into femur was observed to be directly related to dose over a wide range, relative blood lead concentrations were not linearly correlated with dose administered. The relationships between lead concentrations of blood and organ(s) were also shown to be nonlinear relative to dose. However, blood lead concentration was found to be a reliable indicator of kidney and liver lead concentrations following an acute lead exposure

  10. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice.

    Tuscher, Jennifer J; Szinte, Julia S; Starrett, Joseph R; Krentzel, Amanda A; Fortress, Ashley M; Remage-Healey, Luke; Frick, Karyn M

    2016-07-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Supplementation with α-lipoic acid, CoQ10, and vitamin E augments running performance and mitochondrial function in female mice.

    Arkan Abadi

    Full Text Available Antioxidant supplements are widely consumed by the general public; however, their effects of on exercise performance are controversial. The aim of this study was to examine the effects of an antioxidant cocktail (α-lipoic acid, vitamin E and coenzyme Q10 on exercise performance, muscle function and training adaptations in mice. C57Bl/J6 mice were placed on antioxidant supplement or placebo-control diets (n = 36/group and divided into trained (8 wks treadmill running (n = 12/group and untrained groups (n = 24/group. Antioxidant supplementation had no effect on the running performance of trained mice nor did it affect training adaptations; however, untrained female mice that received antioxidants performed significantly better than placebo-control mice (p ≤ 0.05. Furthermore, antioxidant-supplemented females (untrained showed elevated respiratory capacity in freshly excised muscle fibers (quadriceps femoris (p ≤ 0.05, reduced oxidative damage to muscle proteins (p ≤ 0.05, and increased expression of mitochondrial proteins (p ≤ 0.05 compared to placebo-controls. These changes were attributed to increased expression of proliferator-activated receptor gamma coactivator 1α (PGC-1α (p ≤ 0.05 via activation of AMP-activated protein kinase (AMPK (p ≤ 0.05 by antioxidant supplementation. Overall, these results indicate that this antioxidant supplement exerts gender specific effects; augmenting performance and mitochondrial function in untrained females, but does not attenuate training adaptations.

  12. Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women

    Russell, W.L.

    1977-01-01

    The female germ cell stage of primary importance in radiation genetic hazards is the immature, arrested oocyte. In the mouse, this stage has a near zero or zero sensitivity to mutation induction by radiation. However, the application of these mouse results to women has been questioned on the ground that the mouse arrested oocytes are highly sensitive to killing by radiation, while the human cells are not; and, furthermore, that the mature and maturing oocytes in the mouse, which are resistant to killing, are sensitive to mutation induction. The present results have a 2-fold bearing on this problem. First, a more detailed analysis of oocyte-stage sensitivity to killing and mutation induction shows that there is no consistent correlation, either negative or positive, between the two. This indicates that the sensitivity to cell killing of the mouse immature oocyte may not be sufficient reason to prevent its use in predicting the mutational response of the human immature oocyte. Second, if the much more cautious assumption is made that the human arrested oocyte might be as mutationally sensitive as the most sensitive of all oocyte stages in the mouse, namely the maturing and mature ones, then the present data on the duration of these stages permit more accurate estimates than were heretofore possible on the mutational response of these stages to chronic irradiation

  13. Phenotype selection reveals coevolution of muscle glycogen and protein and PTEN as a gate keeper for the accretion of muscle mass in adult female mice.

    Mandy Sawitzky

    Full Text Available We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK, were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.

  14. The Effect of a High-Fat Diet on Brain Plasticity, Inflammation and Cognition in Female ApoE4-Knockin and ApoE-Knockout Mice.

    Carola I F Janssen

    Full Text Available Apolipoprotein E4 (ApoE4, one of three common isoforms of ApoE, is a major risk factor for late-onset Alzheimer disease (AD. ApoE-deficient mice, as well as mice expressing human ApoE4, display impaired learning and memory functions and signs of neurodegeneration. Moreover, ApoE protects against high-fat (HF diet induced neurodegeneration by its role in the maintenance of the integrity of the blood-brain barrier. The influence of a HF diet on the progression of AD-like cognitive and neuropathological changes was assessed in wild-type (WT, human ApoE4 and ApoE-knockout (ApoE-/- mice to evaluate the modulatory role of ApoE in this process. From 12 months of age, female WT, ApoE4, and ApoE-/- mice were fed either a standard or a HF diet (19% butter, 0.5% cholate, 1.25% cholesterol throughout life. At 15 months of age mice performed the Morris water maze, evaluating spatial learning and memory. ApoE-/- showed increased spatial learning compared to WT mice (p = 0.009. HF diet improved spatial learning in WT mice (p = 0.045, but did not affect ApoE4 and ApoE-/- mice. Immunohistochemical analyses of the hippocampus demonstrated increased neuroinflammation (CD68 in the cornu ammonis 1 (CA1 region in ApoE4 (p = 0.001 and in ApoE-/- (p = 0.032 mice on standard diet. HF diet tended to increase CD68 in the CA1 in WT mice (p = 0.052, while it decreased in ApoE4 (p = 0.009, but ApoE-/- remained unaffected. A trend towards increased neurogenesis (DCX was found in both ApoE4 (p = 0.052 and ApoE-/- mice (p = 0.068. In conclusion, these data suggest that HF intake induces different effects in WT mice compared to ApoE4 and ApoE-/- with respect to markers for cognition and neurodegeneration. We propose that HF intake inhibits the compensatory mechanisms of neuroinflammation and neurogenesis in aged female ApoE4 and ApoE-/- mice.

  15. Immunomodulatory effects of black cohosh (Actaea racemosa) extract in female B6C3F1/N mice

    Smith, Matthew J.; Germolec, Dori R.; Frawley, Rachel P.; White, Kimber L.

    2013-01-01

    Black cohosh extracts (BCE; Actaea racemosa) are being used worldwide as an alternative to hormone replacement therapy for the management of menstrual and menopausal symptoms, yet the effects of BCE on the immune system are largely unknown. Female B 6 C 3 F 1 /N mice were treated daily with BCE (0, 62.5, 125, 250, 500, or 1000 mg/kg) for 28 days by oral gavage. Liver weights were significantly increased (26–32%) at the 1000 mg/kg dose. Dose-related increases in mean corpuscular volume and mean corpuscular hemoglobin were observed. Decreasing trends were observed in all thymic T cell populations, with the most notable dose-responsive effects on immature thymocytes. In the spleen, dose-related decreases were observed in all cell phenotypes evaluated, reaching the level of statistical significance at the 1000 mg/kg BCE dose. Splenic natural killer (NK) cell numbers were significantly decreased at all BCE doses, with the exception of absolute NK numbers at the 125 mg/kg dose. No effects were observed on T-dependent antibody responses of the humoral immune system, including the antibody-forming cell response to sheep erythrocytes (sRBC) and IgM antibody levels to both sRBC and keyhole limpet hemocyanin. Cytotoxic T cell (T CTL ) activity was increased, as was the mixed leukocyte response in one of two studies. Anti-CD3 mediated proliferation and the delayed-type hypersensitivity response were unaffected. No effects were observed on innate immunity or on bone marrow cellularity and colony-forming units. Overall, BCE exposure in B 6 C 3 F 1 /N mice for 28 days at doses up to 1000 mg/kg had minimal immune effects, with the exception of an increased T CTL response

  16. Chronic ethanol exposure downregulates hepatic expression of pregnane X receptor and P450 3A11 in female ICR mice

    Wang Jianping; Xu Dexiang; Sun Meifang; Chen Yuanhua; Wang Hua; Wei Wei

    2005-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates cytochrome P450 3A (CYP3A) gene transcription in a ligand-dependent manner. Ethanol has been reported to be either an inducer or an inhibitor of CYP3A expression. In this study, we investigated the effects of chronic ethanol exposure on PXR and P450 3A11 gene expression in mouse liver. Female ICR mice were administered by gavage with different doses (1000, 2000 and 4000 mg/kg) of ethanol for up to 5 weeks. Hepatic PXR and P450 3A11 mRNA levels were measured using RT-PCR. Erythromycin N-demethylase (ERND) activity was used as an indicator of CYP3A protein expression. Results showed that chronic ethanol exposure markedly decreased hepatic PXR and P450 3A11 mRNA levels. Consistent with downregulation of P450 3A11 mRNA, chronic ethanol exposure significantly decreased ERND activity in a dose-dependent manner. Additional experiment showed that chronic ethanol exposure significantly increased plasma endotoxin level and hepatic CD14 and TLR-4 mRNA expression, all of which were blocked by elimination of Gram-negative bacteria and endotoxin with antibiotics. Correspondingly, pretreatment with antibiotics reversed the downregulation of PXR and P450 3A11 mRNA expression and ERND activity in mouse liver. Furthermore, the downregulation of hepatic PXR and P450 3A11 mRNA expression was significantly attenuated in mice pretreated with GdCl 3 , a selective Kupffer cell toxicant. GdCl 3 pretreatment also significantly attenuated chronically ethanol-induced decrease in ERND activity. These results indicated that activation of Kupffer cells by gut-derived endotoxin contributes to downregulation of hepatic PXR and P450 3A11 expression during chronic alcohol intoxication

  17. Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice.

    Venancio, Jade Cabestre; Margatho, Lisandra Oliveira; Rorato, Rodrigo; Rosales, Roberta Ribeiro Costa; Debarba, Lucas Kniess; Coletti, Ricardo; Antunes-Rodrigues, Jose; Elias, Carol F; Elias, Lucila Leico K

    2017-11-01

    Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD. Copyright © 2017 Endocrine Society.

  18. Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice.

    Mineur, Yann S; Bentham, Matthew P; Zhou, Wen-Liang; Plantenga, Margreet E; McKee, Sherry A; Picciotto, Marina R

    2015-10-01

    The a2A-noradrenergic agonist guanfacine can decreases stress-induced smoking in female, but not male, human smokers. It is not known whether these effects are due to effects on mood regulation and/or result from nicotinic-cholinergic interactions. The objective of the study was to determine whether there are sex differences in the effect of guanfacine in tests of anxiolytic and antidepressant efficacy in mice at baseline and in a hypercholinergic model of depression induced by the acetylcholinesterase inhibitor physostigmine. The effects of guanfacine were measured in the light/dark box, tail suspension, and the forced swim test in female and male C57BL/6J mice. In parallel, electrophysiological properties were evaluated in the prefrontal cortex, a critical brain region involved in stress responses. c-fos immunoreactivity was measured in other brain regions known to regulate mood. Despite a baseline sex difference in behavior in the forced swim test (female mice were more immobile), guanfacine had similar, dose-dependent, antidepressant-like effects in mice of both sexes (optimal dose, 0.15 mg/kg). An antidepressant-like effect of guanfacine was also observed following pre-treatment with physostigmine. A sex difference in the paired-pulse ratio in the prefrontal cortex (PFC) (male, 1.4; female, 2.1) was observed at baseline that was normalized by guanfacine. Other brain areas involved in cholinergic control of depression-like behaviors, including the basolateral amygdala and lateral septum, showed sex-specific changes in c-fos expression. Guanfacine has a robust antidepressant-like effect and can reverse a depression-like state induced by increased acetylcholine (ACh) signaling. These data suggest that different brain areas are recruited in female and male mice, despite similar behavioral responses to guanfacine.

  19. Early markers of phenotypic heterogeneity in the induced model of systemic lupus erythematosus

    O. P. Kolesnikova

    2017-01-01

    Full Text Available The study aimed at evaluating the predisposition for development of different variants of SLE based on an inflammatory response in intact mice.Materials and methods. Low-dose systemic inflammatory response was modeled by the administration of lipopolysaccharide (LPS of E. coli (strain 111: B4 by intact B6D2F1 recipients in the dose of 10 ng/mouse or 1 μg / mouse. We evaluated the number of leukocytes, neutrophils, and lymphocytes in the blood, the index of neutrophils / lymphocytes (ratio N/L, and the level of free DNA (cf DNA cell free in dynamics. The first day after LPS injection we induced SLE model: the female B6D2F1 mice were injected 60–70 x 106 spleen cells of the DBA / 2 parent mice twice with interval five days. Three months after the induction of the model, the level of protein in the urine was measured twice: the mice with proteinuria 3 mg/ml and more were assigned to the group SLEnephritis+, and mice with less than 3 mg/ml of protein in the urine were assigned to the group SLEnephritis–.Results. It was established that administration of LPS does not change the frequency of nephritis in mice. The retrospective analysis of the number of leukocytes, neutrophils, and lymphocytes does not allow the prediction of the development of nephritis. We observed a significant increase in the frequency and the absolute value of the N/L index at week 8 relative to 4 weeks four weeks before the appearance of proteinuria in the group of mice SLEnephritis+ in contrast to mice SLEnephritis– when LPS was administered at a dose of 10 ng/mouse. Mice SLEnephritis+ and SLEnephritis– show different kinetics of the inflammatory response by an increase in the N/L index every subsequent hour relative to the previous one when LPS was administered at a dose of 1 μg/mouse. The dynamics of the cfDNA level is similar to the kinetics of an index N/L in the group SLEnephritis+ and the SLEnephritis–. The data obtained indicate the possibility of using of

  20. Prenatal androgenization of female mice programs an increase in firing activity of gonadotropin-releasing hormone (GnRH) neurons that is reversed by metformin treatment in adulthood.

    Roland, Alison V; Moenter, Suzanne M

    2011-02-01

    Prenatal androgenization (PNA) of female mice with dihydrotestosterone programs reproductive dysfunction in adulthood, characterized by elevated luteinizing hormone levels, irregular estrous cycles, and central abnormalities. Here, we evaluated activity of GnRH neurons from PNA mice and the effects of in vivo treatment with metformin, an activator of AMP-activated protein kinase (AMPK) that is commonly used to treat the fertility disorder polycystic ovary syndrome. Estrous cycles were monitored in PNA and control mice before and after metformin administration. Before metformin, cycles were longer in PNA mice and percent time in estrus lower; metformin normalized cycles in PNA mice. Extracellular recordings were used to monitor GnRH neuron firing activity in brain slices from diestrous mice. Firing rate was higher and quiescence lower in GnRH neurons from PNA mice, demonstrating increased GnRH neuron activity. Metformin treatment of PNA mice restored firing activity and LH to control levels. To assess whether AMPK activation contributed to the metformin-induced reduction in GnRH neuron activity, the AMPK antagonist compound C was acutely applied to cells. Compound C stimulated cells from metformin-treated, but not untreated, mice, suggesting that AMPK was activated in GnRH neurons, or afferent neurons, in the former group. GnRH neurons from metformin-treated mice also showed a reduced inhibitory response to low glucose. These studies indicate that PNA causes enhanced firing activity of GnRH neurons and elevated LH that are reversible by metformin, raising the possibility that central AMPK activation by metformin may play a role in its restoration of reproductive cycles in polycystic ovary syndrome.

  1. Acquired homotypic and heterotypic immunity against oculogenital Chlamydia trachomatis serovars following female genital tract infection in mice

    Peña A Salvador

    2005-11-01

    Full Text Available Abstract Background Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen causing female genital tract infection throughout the world. Reinfection with the same serovar, as well as multiple infections with different serovars, occurs in humans. Using a murine model of female C. trachomatis genital tract infection, we determined if homotypic and/or heterotypic protection against reinfection was induced following infection with human oculogenital strains of C. trachomatis belonging to two serovars (D and H that have been shown to vary significantly in the course of infection in the murine model. Methods Groups of outbred CF-1 mice were reinfected intravaginally with a strain of either serovar D or H, two months after initial infection with these strains. Cellular immune and serologic status, both quantitative and qualitative, was assessed following initial infection, and the course of infection was monitored by culturing vaginal samples collected every 2–7 days following reinfection. Results Serovar D was both more virulent (longer duration of infection and immunogenic (higher level of circulating and vaginal IgG and higher incidence of IgA in vaginal secretions in the mouse genital tract. Although both serovars induced cross-reacting antibodies during the course of primary infection, prior infection with serovar H resulted in only a slight reduction in the median duration of infection against homotypic reinfection (p ~ 0.10, while prior infection with serovar D resulted in significant reduction in the median duration of infection against both homotypic (p Conclusion Serovar D infection resulted in significant homotypic and heterotypic protection against reinfection, while primary infection with serovar H resulted in only slight homotypic protection. In addition to being the first demonstration of acquired heterotypic immunity between human oculogenital serovars, the differences in the level and extent of this immunity

  2. Comparison between C-FOS Expression in Male and Female Mice During Morphine Withdrawal in the Presence and Absence of Acute Administration of Matricaria Recutita

    Kesmati Mahnaz

    2009-06-01

    Full Text Available Background: There are some evidences that indicate there are sexual differences in drug abuse and response to synthetic and herbal drugs. It has been shown that the expression of C-FOS increases in many areas of brain during morphine withdrawal. Concerning the sedative effect of Matricaria recutita extract, the aim of this study was to compare expression of C-FOS transcription factor during morphine withdrawal with and without acute administration of Matricaria recutita on male and female adult mice.Materials and Methods: This study was done at Shahid Chamran University of Ahvaz in 2007 on NMRI mice. Male and female mice were assigned into 8 groups (morphine + saline; morphine + naloxone; morphine + Matricaria recutita + naloxone; and morphine + saline + naloxone. To develop morphine dependency, increasing doses of morphine (20, 40, 80 mg/kg injected subcutaneously for 4 days. Mice received a final morphine injection (40 mg/kg 3hours prior to naloxone (5 mg/kg on the day of testing (day 4. Matricaria recutita extract whit a dose of 30 mg/kg was administered intraperitoneally 5 minutes before naloxone injection. In cellular study, 90minute after naloxone injection, mice were decapitated and their brains were separated, then mRNA was extracted from brain tissue. Using DIG-labeled DNA probe of C-FOS, beta-actin and dot blot technique, expression of C-FOS was analyzed by Zero Dscan software. Statistical evaluation of data was performed using student t-test and ANOVA with one factor followed by Duncan test in SPSS software. P values less than 0.05 were considered significant. Results: The rate of expression of C-FOS increased in male mice but decreased significantly in female mice after naloxone-precipitated abstinence P<0.01(. Matricaria recutita attenuated the rate of expression of C-FOS in male mice but it showed synergistic effect on it in female mice P<0.05(.Conclusion: It seems that the cellular processes involving morphine dependency and

  3. Inhalation of tobacco smoke induces increased proliferation of urinary bladder epithelium and endothelium in female C57BL/6 mice

    Ohnishi, Takamasa; Arnold, Lora L.; He, Jun; Clark, Nicole M.; Kawasaki, Shin; Rennard, Stephen I.; Boyer, Craig W.; Cohen, Samuel M.

    2007-01-01

    Cigarette smoking is the major environmental risk factor for bladder cancer in humans. Aromatic amines, potent DNA-reactive bladder carcinogens present in cigarette smoke, contribute significantly. However, increased cell proliferation, caused by direct mitogenesis or in response to cytotoxicity, may also play a role since urothelial hyperplasia has been observed in human cigarette smokers. We examined the urothelial effects of cigarette smoke (whole body inhalation exposure (Teague) system) in female C57BL/6 mice at various times in two studies, including reversibility evaluations. In both studies, no urothelial hyperplasia was observed by light microscopy in any group. However, in study 1, the Ki-67 labeling index (LI) of the urothelium was significantly increased in the smoke exposed group compared to controls through 3 months, but was not present at 6, 9 or 12 months even with continued exposures. In the groups that discontinued smoke exposure, it returned to the same levels as controls or lower. In study 2, the bromodeoxyuridine LI was similar to controls on day 1 but significantly increased at 5 days in the smoke exposed group. In the group that discontinued smoke exposure for 2 days, the LI was increased compared to controls but not significantly. Superficial urothelial cell cytotoxicity and necrosis were detectable by scanning electron microscopy at 5 days. Changes in LI of submucosal endothelial cells generally followed those of the urothelium and effects were reversible upon cessation of exposure. The increased urothelial proliferation appeared to be due to superficial cell cytotoxicity with consequent regeneration

  4. High-fat-diet-induced weight gain ameliorates bone loss without exacerbating AβPP processing and cognition in female APP/PS1 mice

    Yunhua ePeng

    2014-08-01

    Full Text Available Osteoporosis is negatively correlated with body mass, whereas both osteoporosis and weight loss occur at higher incidence during the progression of Alzheimer’s disease (AD than the age-matched non-dementia individuals. Given that there is no evidence that overweight associated with AD-type cognitive dysfunction, we hypothesized that moderate weight gain might have a protective effect on the bone loss in AD without exacerbating cognitive dysfunction. In the present study, feeding a high-fat-diet (HFD, 45% calorie from fat to female APP/PS1 transgenic mice, an AD animal model, induced weight gain. The bone mineral density, microarchitecture, and biomechanical properties of the femurs were then evaluated. The results showed that the middle-aged female APP/PS1 transgenic mice were susceptible to osteoporosis of the femoral bones and that weight gain significantly enhanced bone mass and mechanical properties. Notably, HFD was not detrimental to brain insulin signaling and AβPP processing, as well as to exploration ability and working, learning and memory performance of the transgenic mice measured by T maze and water maze, compared with the mice fed a normal fat diet (10% calorie from fat. In addition, the circulating levels of leptin but not estradiol were remarkably elevated in HFD-treated mice. These results suggest that a body weight gain induced by the HFD feeding regimen significantly improved bone mass in female APP/PS1 mice with no detriments to exploration ability and spatial memory, most likely via the action of elevated circulating leptin.

  5. Pathology of Serially Sacrificed Female B6C3F1 Mice Continuously Exposed to Very Low-Dose-Rate Gamma Rays.

    Tanaka, I B; Komura, J; Tanaka, S

    2017-03-01

    We have previously reported on life span shortening as well as increased incidence rates in several neoplasms in B6C3F1 mice that were continuously exposed to 21 mGy/day of gamma rays for 400 days. To clarify whether the life shortening was due to early appearance of neoplasms (shortened latency) or increased promotion/progression, 8-week-old female specific-pathogen-free B6C3F1 mice were gamma-ray irradiated at a low dose rate of 20 mGy/day for 400 days. At 100 days postirradiation, 60-90 mice were sacrificed, and thereafter every 100 days alongside the age-matched nonirradiated controls, for 700 days. Additional groups were allowed to live out their natural life span. Pathological examination was performed on all mice to identify lesions, non-neoplastic and neoplastic, as well as to determine the cause of death. Body weights were significantly increased in irradiated mice from sacrifice days 200-500. Incidence rates for spontaneously occurring non-neoplastic lesions, such as adrenal subcapsular cell hyperplasia, fatty degeneration of the liver, atrophy and tubulostromal hyperplasia of the ovaries, were significantly increased in irradiated mice. Significantly increased incidence rates with no shortening of latency periods were observed in irradiated mice for malignant lymphomas, hepatocellular adenomas/carcinomas, bronchioloalveolar adenomas, harderian gland adenoma/adenocarcinoma. Shortened latencies with significantly increased incidence rates were observed for adrenal subcapsular cell adenomas and ovarian neoplasms (tubulostromal adenoma, granulosa cell tumors) in irradiated mice. Life span shortening in mice exposed to 20 mGy/day was mostly due to malignant lymphomas. Multiple primary neoplasms were significantly increased in mice exposed to 20 mGy/day from sacrifice days 400-700 and in the life span group. Our results confirm that continuous low-dose-rate gamma-ray irradiation of female B6C3F1 mice causes both cancer induction (shortened latency) and

  6. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  7. Ablation of the MiR-17-92 MicroRNA Cluster in Germ Cells Causes Subfertility in Female Mice.

    Wang, Jian; Xu, Bo; Tian, Geng G; Sun, Tao; Wu, Ji

    2018-01-01

    Oogenesis is a highly complex process that is intricately regulated by interactions of multiple genes and signaling molecules. However, the underlying molecular mechanisms are poorly understood. There is emerging evidence that microRNAs contribute to oogenesis. Here, we aimed to investigate the role of miR-17-92 cluster in regulating oogenesis. The miR-17-92 cluster was genetically ablated in germ cells of female mice by applying the Cre-loxp system for conditional gene knockout. Mating experiment, superovulation and histological analysis were used to assess the fertility of the model female mice. TUNEL assay was used to identify apoptotic cells in ovaries. The expression level of apoptosis- and follicular atresia- related genes was evaluated by qRT-PCR. Western blotting was performed to detect protein expression. Bioinformatics software and dual luciferase reporter assay were applied to predict and verify the target of miR-17-92 cluster. Deletion of miR-17-92 cluster in germ cells of female mice caused increased oocyte degradation and follicular atresia, perturbed oogenesis, and ultimately led to subfertility. Genes involved in follicular atresia and the mitochondrial apoptotic pathway were obviously up-regulated. Furthermore, we verified that miR-19a regulated oogenesis at the post-transcriptional level by targeting Bmf in the ovaries of miR-17-92 cluster conditional knockout female mice. The miR-17-92 cluster is an important regulator of oogenesis. These findings will assist in better understanding the etiology of disorders in oogenesis and in developing new therapeutic targets for female infertility. © 2018 The Author(s). Published by S. Karger AG, Basel.

  8. Progesterone protects normative anxiety-like responding among ovariectomized female mice that conditionally express the HIV-1 regulatory protein, Tat, in the CNS.

    Paris, Jason J; Fenwick, Jason; McLaughlin, Jay P

    2014-05-01

    Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17β-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Strain differences in the radiosensitivity of mouse spermatogonia

    Bianchi, M; Hurtado de Catalfo, G; Hendry, J H

    1985-01-01

    The radiosensitivity of spermatogonia was found to be greater by up to a factor of 2 in C3H mice than in B6D2F1 mice, whether assessed for the highly sensitive spermatogonia (types A2 to In) or the much more resistant clonogenic spermatogonia which repopulate tubules. The latter were similarly resistant in the B6D2F1 hybrid and in the DBA2 parent, but were much more sensitive in the C57BL parent strain. A difference in sensitivity by up to a factor of 2 results in a variation by a factor of 10 or more in the level of survival of clonogenic cells after high doses. This variation is also observed when comparing data in the literature from different authors using various strains of mice. Using the radiosensitizer misonidazole, it was shown that hypoxia did not play a major role in the lesser sensitivity demonstrated in B6D2F1 mice. The variation in sensitivity is similar to the range reported in the literature for reciprocal translocations.

  10. Early social enrichment provided by communal nest increases resilience to depression-like behavior more in female than in male mice.

    D'Andrea, Ivana; Gracci, Fiorenza; Alleva, Enrico; Branchi, Igor

    2010-12-20

    Early experiences produce persistent changes in behavior and brain function. Being reared in a communal nest (CN), consisting of a single nest where three mouse mothers keep their pups together and share care-giving behavior from birth to weaning, provides an highly stimulating social environment to the developing pup since both mother-offspring and peer-to-peer interactions are markedly increased. Here we show that being reared in a CN affects adult behavior of CD-1 mice in a gender-dependent fashion, with reduced depression-like responses in females and increased anxiety-like behavior in males. In particular, CN females showed higher sucrose preference at baseline condition, drinking more sweet solution compared to female mice reared in a standard laboratory condition (SN). In the isolation test, both SN and CN females showed a reduction in sucrose preference after exposure to isolation stress. However, after 24h, only CN females significantly recovered. Finally, in the forced swim test, compared to SN, CN females spent longer time floating, a behavioral response that in the CN model has been inversely associated with display of endophenotypes of depression. With regard to the emotional response, CN males displayed an increased anxiety-like behavior in comparison to SN, spending less time in the open arms and displaying reduced head-dippings in the elevated plus-maze test. No difference was found in females. Overall, our findings show that gender and early experiences interact in modulating adult behavior. In particular, we show that early experiences modified developmental trajectories shaping adult endophenotypes of depression more markedly in females than in males. Copyright 2010 Elsevier B.V. All rights reserved.

  11. KChIP2 genotype dependence of transient outward current (Ito) properties in cardiomyocytes isolated from male and female mice.

    Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert

    2017-01-01

    The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating.

  12. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice.

    Gruss, Michael; Braun, Katharina

    2004-07-01

    The Fragile X syndrome, a common form of mental retardation in humans, originates from the loss of expression of the Fragile X mental retardation gene leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). A broad pattern of morphological and behavioral abnormalities is well described for affected humans as well as Fmr1 knock-out mice, a transgenic animal model for the human Fragile X syndrome. In the present study, we examined neurochemical differences between female Fmr1 knock-out and wildtype mice with particular focus on neurotransmission. Significant age- and region-specific differences of basal tissue neurotransmitter and metabolite levels measured by high performance liquid chromatography were found. Those differences were more numerous in juvenile animals (postnatal day (PND) 28-31) compared to adults (postnatal day 209-221). In juvenile female knock-out mice, especially aspartate and taurine were increased in cortical regions, striatum, cerebellum, and brainstem. Furthermore, compared to the wildtype animals, the juvenile knock-out mice displayed an increased level of neuronal inhibition in the hippocampus and brainstem reflected by decreased ratios of (aspartate + glutamate)/(taurine + GABA), as well as an increased dopamine (DA) turnover in cortical regions, striatum, and hippocampus. These results provide the first evidence that the lack of FMRP expression in female Fmr1 knock-out mice is accompanied by age-dependent, region-specific alterations in brain amino acids, and monoamine turnover, which might be related to the reported synaptical and behavioural alterations in these animals.

  14. Effects of environmental enrichment on anxiety-like behavior, sociability, sensory gating, and spatial learning in male and female C57BL/6J mice.

    Hendershott, Taylor R; Cronin, Marie E; Langella, Stephanie; McGuinness, Patrick S; Basu, Alo C

    2016-11-01

    The influence of housing on cognition and emotional regulation in mice presents a problem for the study of genetic and environmental risk factors for neuropsychiatric disorders: standard laboratory housing may result in low levels of cognitive function or altered levels of anxiety that leave little room for assessment of deleterious effects of experimental manipulations. The use of enriched environment (EE) may allow for the measurement of a wider range of performance in cognitive domains. Cognitive and behavioral effects of EE in male mice have not been widely reproduced, perhaps due to variability in the application of enrichment protocols, and the effects of EE in female mice have not been widely studied. We have developed an EE protocol using common laboratory equipment that, without a running wheel for exercise, results in significant cognitive and behavioral effects relative to standard laboratory housing conditions. We compared male and female wild-type C57BL/6J mice reared from weaning age in an EE to those reared in a standard environment (SE), using common measures of anxiety-like behavior, sensory gating, sociability, and spatial learning and memory. Sex was a significant factor in relevant elevated plus maze (EPM) measures, and bordered on significance in a social interaction (SI) assay. Effects of EE on anxiety-like behavior and sociability were indicative of a general increase in exploratory activity. In male and female mice, EE resulted in reduced prepulse inhibition (PPI) of the acoustic startle response, and enhanced spatial learning and use of spatially precise strategies in a Morris water maze task. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Predominant modifier of extreme liver cancer susceptibility in C57BR/cdJ female mice localized to 6 Mb on chromosome 17

    Peychal, Stephanie E.-M.; Bilger, Andrea; Pitot, Henry C.; Drinkwater, Norman R.

    2009-01-01

    Sex hormones influence the susceptibility of inbred mice to liver cancer. C57BR/cdJ (BR) females are extremely susceptible to spontaneous and chemically induced liver tumors, in part due to a lack of protection against hepatocarcinogenesis normally offered by ovarian hormones. BR males are also moderately susceptible, and the susceptibility of both sexes of BR mice to liver tumors induced with N,N-diethylnitrosamine relative to the resistant C57BL/6J (B6) strain is caused by two loci designated Hcf1 and Hcf2 (hepatocarcinogenesis in females) located on chromosomes 17 and 1, respectively. The Hcf1 locus on chromosome 17 is the predominant modifier of liver cancer in BR mice. To validate the existence of this locus and investigate its potential interaction with Hcf2, congenic mice for each region were generated. Homozygosity for the B6.BR(D17Mit164-D17Mit2) region resulted in a 4-fold increase in liver tumor multiplicity in females and a 4.5-fold increase in males compared with B6 controls. A series of 16 recombinants covering the entire congenic region was developed to further narrow the area containing Hcf1. Susceptible heterozygous recombinants demonstrated a 3- to 7-fold effect in females and a 1.5- to 2-fold effect in males compared with B6 siblings. The effect in susceptible lines completely recapitulated the susceptibility of heterozygous full-length chromosome 17 congenics and furthermore narrowed the location of the Hcf1 locus to a single region of the chromosome from 30.05 to 35.83 Mb. PMID:19255062

  16. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice

    Buckley, Jill; Willingham, Emily; Agras, Koray; Baskin, Laurence S

    2006-01-01

    Abstract Background Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at ...

  17. The suitability of 129SvEv mice for studying depressive-like behaviour: both males and females develop learned helplessness.

    Chourbaji, Sabine; Pfeiffer, Natascha; Dormann, Christof; Brandwein, Christiane; Fradley, Rosa; Sheardown, Malcolm; Gass, P

    2010-07-29

    Behavioural studies using transgenic techniques in mice usually require extensive backcrossing to a defined background strain, e.g. to C57BL/6. In this study we investigated whether backcrossing can be replaced by using the 129SvEv strain from which the embryonic stem cells are generally obtained for gene targeting strategies to analyze e.g. depression-like behaviour. For that purpose we subjected male and female 129SvEv mice to two frequently used depression tests and compared them with commonly used C57BL/6 mice. 129SvEv and C57BL/6 mice exhibited differing profiles with regard to locomotion and pain sensitivity. However, in the learned helplessness paradigm, a procedure, which represents a valid method to detect depressive-like behaviour, 129SvEv animals develop a similar level of helplessness as C57BL/6 mice. One great advantage of the 129SvEv animals though, is the fact that in this strain even females develop helplessness, which could not be produced in C57BL/6 mice. In the tail suspension test, both genders of 129SvEv exhibited more despair behaviour than C57BL/6 animals. We therefore suggest that this strain may be utilized in the establishment of new test procedures for affective diseases, since costly and time-consuming backcrossing can be prevented, depressive-like behaviour may be analyzed effectively, and gender-specific topics could be addressed in an adequate way. Copyright 2010 Elsevier B.V. All rights reserved.

  18. IDH2 Deficiency Aggravates Fructose-Induced NAFLD by Modulating Hepatic Fatty Acid Metabolism and Activating Inflammatory Signaling in Female Mice

    Jeong Hoon Pan

    2018-05-01

    Full Text Available Fructose is a strong risk factor for non-alcoholic fatty liver disease (NAFLD, resulting from the disruption of redox systems by excessive reactive oxygen species production in the liver cells. Of note, recent epidemiological studies indicated that women are more prone to developing metabolic syndrome in response to fructose-sweetened beverages. Hence, we examined whether disruption of the redox system through a deletion of NADPH supplying mitochondrial enzyme, NADP+-dependent isocitrate dehydrogenase (IDH2, exacerbates fructose-induced NAFLD conditions in C57BL/6 female mice. Wild-type (WT and IDH2 knockout (KO mice were treated with either water or 34% fructose water over six weeks. NAFLD phenotypes and key proteins and mRNAs involved in the inflammatory pathway (e.g., NF-κB p65 and IL-1β were assessed. Hepatic lipid accumulation was significantly increased in IDH2 KO mice fed fructose compared to the WT counterpart. Neutrophil infiltration was observed only in IDH2 KO mice fed fructose. Furthermore, phosphorylation of NF-κB p65 and expression of IL-1β was remarkably upregulated in IDH2 KO mice fed fructose, and expression of IκBα was decreased by fructose treatment in both WT and IDH2 KO groups. For the first time, we report our novel findings that IDH2 KO female mice may be more susceptible to fructose-induced NAFLD and the associated inflammatory response, suggesting a mechanistic role of IDH2 in metabolic diseases.

  19. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  20. Exposure to chronic variable social stress during adolescence alters affect-related behaviors and adrenocortical activity in adult male and female inbred mice.

    Caruso, Michael J; Kamens, Helen M; Cavigelli, Sonia A

    2017-09-01

    Rodent models provide valuable insight into mechanisms that underlie vulnerability to adverse effects of early-life challenges. Few studies have evaluated sex differences in anxiogenic or depressogenic effects of adolescent social stress in a rodent model. Furthermore, adolescent stress studies often use genetically heterogeneous outbred rodents which can lead to variable results. The current study evaluated the effects of adolescent social stress in male and female inbred (BALB/cJ) mice. Adolescent mice were exposed to repeat cycles of alternating social isolation and social novelty for 4 weeks. Adolescent social stress increased anxiety-related behaviors in both sexes and depression-related behavior in females. Locomotion/exploratory behavior was also decreased in both sexes by stress. Previously stressed adult mice produced less basal fecal corticosteroids than controls. Overall, the novel protocol induced sex-specific changes in anxiety- and depression-related behaviors and corticoid production in inbred mice. The chronic variable social stress protocol used here may be beneficial to systematically investigate sex-specific neurobiological mechanisms underlying adolescent stress vulnerability where genetic background can be controlled. © 2017 Wiley Periodicals, Inc.

  1. Loss of miR-10a activates Lpo and collaborates with activated Wnt signaling in inducing intestinal Neoplasia in female mice

    Stadthagen Gomez, Gustavo; Tehler, Disa Elisabet; Høyland-Kroghsbo, Nina Molin

    2013-01-01

    , in the Apc(min) mouse model of intestinal neoplasia, female miR-10a deficient mice develop significantly more adenomas than miR-10(+/+) and male controls. We further found that Lpo is extensively upregulated in the intestinal epithelium of mice deprived of miR-10a. Using in vitro assays, we demonstrate...... that the primary miR-10a target KLF4 can upregulate transcription of Lpo, whereas siRNA knockdown of KLF4 reduces LPO levels in HCT-116 cells. Furthermore, Klf4 is upregulated in the intestines of miR-10a knockout mice. Lpo has previously been shown to have the capacity to oxidize estrogens into potent...... depurinating mutagens, creating an instable genomic environment that can cause initiation of cancer. Therefore, we postulate that Lpo upregulation in the intestinal epithelium of miR-10a deficient mice together with the predominant abundance of estrogens in female animals mainly accounts for the sex...

  2. GATA4 and GATA6 Knockdown During Luteinization Inhibits Progesterone Production and Gonadotropin Responsiveness in the Corpus Luteum of Female Mice.

    Convissar, Scott M; Bennett, Jill; Baumgarten, Sarah C; Lydon, John P; DeMayo, Francesco J; Stocco, Carlos

    2015-12-01

    The surge of luteinizing hormone triggers the genomic reprogramming, cell differentiation, and tissue remodeling of the ovulated follicle, leading to the formation of the corpus luteum. During this process, called luteinization, follicular granulosa cells begin expressing a new set of genes that allow the resulting luteal cells to survive in a vastly different hormonal environment and to produce the extremely high amounts of progesterone (P4) needed to sustain pregnancy. To better understand the molecular mechanisms involved in the regulation of luteal P4 production in vivo, the transcription factors GATA4 and GATA6 were knocked down in the corpus luteum by crossing mice carrying Gata4 and Gata6 floxed genes with mice carrying Cre recombinase fused to the progesterone receptor. This receptor is expressed exclusively in granulosa cells after the luteinizing hormone surge, leading to recombination of floxed genes during follicle luteinization. The findings demonstrated that GATA4 and GATA6 are essential for female fertility, whereas targeting either factor alone causes subfertility. When compared to control mice, serum P4 levels and luteal expression of key steroidogenic genes were significantly lower in conditional knockdown mice. The results also showed that GATA4 and GATA6 are required for the expression of the receptors for prolactin and luteinizing hormone, the main luteotropic hormones in mice. The findings demonstrate that GATA4 and GATA6 are crucial regulators of luteal steroidogenesis and are required for the normal response of luteal cells to luteotropins. © 2015 by the Society for the Study of Reproduction, Inc.

  3. Acute endocrine correlates of attack by lactating females in male mice: effects on plasma prolactin, luteinizing hormone and corticosterone levels.

    Broida, J; Michael, S D; Svare, B

    1984-05-01

    Immediately following defeat inflicted by lactating Rockland-Swiss (R-S) albino mice, adult R-S male mice exhibited significant reductions in circulating prolactin (PRL) and luteinizing hormone (LH), but not corticosterone (CORT). These results suggest that acute neuroendocrine responses to intersex competition may be as dramatic as those previously reported for intermale encounters.

  4. Extracellular signal-regulated kinase 1 and 2 are not required for GnRH neuron development and normal female reproductive axis function in mice.

    Wierman, Margaret E; Xu, Mei; Pierce, A; Bliesner, B; Bliss, S P; Roberson, M S

    2012-01-01

    Selective deletion of extracellular signal-regulated kinase (ERK) 1 and ERK2 in the pituitary gonadotrope and ovarian granulosa cells disrupts female reproductive axis function. Thus, we asked if ERK1 and ERK2 are critical for GnRH neuron ontogeny or the central control of female reproductive function. GnRH-Cre-recombinase (Cre+) expressing mice were crossed with mice with a global deletion of ERK1 and a floxed ERK2 allele (Erk1-/Erk2fl/fl) to selectively delete ERK2 in GnRH neurons. Cre-recombinase mRNA was selectively expressed in the brain of Cre+ mice. GnRH neuron number and location were determined during embryogenesis and in the adult. GnRH neuron counts at E15 did not differ between experimental and control groups (1,198 ± 65 and 1,160 ± 80 respectively, p = NS). In adults, numbers of GnRH neurons in the GnRHCre+Erk1-/Erk2- mice (741 ± 157) were similar to those in controls (756 ± 7), without alteration in their distribution across the forebrain. ERK1 and 2 deficiency did not alter the timing of vaginal opening, age at first estrus, or estrous cyclicity. Although ERK1 and 2 are components of a dominant signaling pathway in GnRH neuronal cells that modulates survival and control of GnRH gene expression, other signaling pathways compensate for their deletion in vivo to allow GnRH neuron survival and targeting and normal onset of female sexual maturation and reproductive function. In contrast to effects at the pituitary and the ovary, ERK1 and ERK2 are dispensable at the level of the GnRH neuron. Copyright © 2011 S. Karger AG, Basel.

  5. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Immunoglobulin Heavy Chain Variable Region and Major Histocompatibility Region Genes Are Linked to Induced Graves' Disease in Females From Two Very Large Families of Recombinant Inbred Mice

    Aliesky, Holly; Banuelos, Bianca; Magana, Jessica; Williams, Robert W.; Rapoport, Basil

    2014-01-01

    Graves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4. We investigated the genetic basis for induced Graves' disease in female mice of two large RI families and combined data with earlier findings to provide phenotypes for 178 genotypes. TSHR antibodies measured by inhibition of TSH binding to its receptor were highly significantly linked in the BXD set to the major histocompatibility region (chromosome 17), consistent with observations in 3 other RI families. In the LXS family, we detected linkage between T4 levels after TSHR-adenovirus immunization and the Ig heavy chain variable region (Igvh, chromosome 12). This observation is a key finding because components of the antigen binding region of Igs determine antibody specificity and have been previously linked to induced thyroid-stimulating antibodies. Data from the LXS family provide the first evidence in mice of a direct link between induced hyperthyroidism and Igvh genes. A role for major histocompatibility genes has now been established for genetic susceptibility to Graves' disease in both humans and mice. Future studies using arrays incorporating variation in the complex human Ig gene locus will be necessary to determine whether Igvh genes are also linked to Graves' disease in humans. PMID:25051451

  7. The long-term effects of stress and kappa opioid receptor activation on conditioned place aversion in male and female California mice.

    Laman-Maharg, Abigail R; Copeland, Tiffany; Sanchez, Evelyn Ordoñes; Campi, Katharine L; Trainor, Brian C

    2017-08-14

    Psychosocial stress leads to the activation of kappa opioid receptors (KORs), which induce dysphoria and facilitate depression-like behaviors. However, less is known about the long-term effects of stress and KORs in females. We examined the long-term effects of social defeat stress on the aversive properties of KOR activation in male and female California mice (Peromyscus californicus) using a conditioned place aversion paradigm. Female California mice naïve to social defeat, formed a place aversion following treatment with 2.5mg/kg of the KOR agonist U50,488, but females exposed to defeat did not form a place aversion to this dose. This supports the finding by others that social defeat weakens the aversive properties of KOR agonists. In contrast, both control and stressed males formed an aversion to 10mg/kg of U50,488. We also examined EGR1 immunoreactivity, an indirect marker of neuronal activity, in the nucleus accumbens (NAc) and found that stress and treatment with 10mg/kg of U50,488 increased EGR1 immunoreactivity in the NAc core in females but reduced activation in males. The effects of stress and U50,488 on EGR1 were specific to the NAc, as we found no differences in the bed nucleus of the stria terminalis. In summary, our data indicate important sex differences in the long-term effects of stress and indicate the need for further study of the molecular mechanisms mediating the behavioral effects of KOR in both males and females. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Efeitos da hiperprolactinemia sobre o útero de camundongos no proestro Hyperprolactinemia effects on the female mice uterus during proestrous

    Regina Célia Teixeira Gomes

    2009-08-01

    Full Text Available OBJETIVO: avaliar o efeito da hiperprolactinemia induzida pela metoclopramida sobre o endométrio e miométrio de camundongos fêmeas na fase de proestro. MÉTODOS: 24 camundongos fêmeas foram divididas aleatoriamente em dois grupos: GCtr/controle e GExp/tratadas com metoclopramida (6,7 µg/g por dia. Após 50 dias, os animais foram sacrificados na fase de proestro, e o sangue foi coletado para determinação dos níveis de estradiol, progesterona e prolactina. Os cornos uterinos foram removidos e fixados em formol a 10%; foram, então, processados para inclusão em parafina. Cortes de 4 µm foram corados pela hematoxilina-eosina (H/E. Na análise morfológica, foi utilizado microscópio de luz, da marca Carl Zeiss, com objetivas variando de 4 a 400 X, para caracterização de cada corte histológico. Na análise morfométrica, foi avaliada a espessura do epitélio superficial, da lâmina própria e do miométrio, com auxílio de um analisador de imagem (AxionVision, Carl Zeiss acoplado ao microscópio de luz (Carl Zeiss. A análise estatística foi realizada pela ANOVA seguida pelo teste Wilcoxon. O valor de p foi considerado significante quando PURPOSE: to evaluate the effect of hyperprolactinemia induced by metoclopramide on the endometrium and myometrium of female mice in the proestrus phase. METHODS: 24 female mice were randomly divided in two groups: CtrG/control and ExpG/treated with metoclopramide (6.7 mg/g daily. After 50 days, the animals were sacrificed in the proestrus phase, and the blood was collected to determine the levels of estradiol, progesterone and prolactin. The uterine horns were removed, fixed in 10% formaldehyde and processed before being included in paraffin. Slices of 4 µm were stained by hematoxylin and eosin (H/E. In the morphological analysis, a Carl Zeiss light microscope, with objectives varying from 4 to 400 X was used for each histological slice characterization. In the morphometrical analysis, the superficial

  10. Immunotoxicological profile of chloramine in female B6C3F1 mice when administered in the drinking water for 28 days.

    Guo, Tai L; Germolec, Dori R; Collins, Bradley J; Luebke, Robert W; Auttachoat, Wimolnut; Smith, Matthew J; White, Kimber L

    2011-01-01

    Monochloramine has been used to provide a disinfecting residual in water distribution systems where it is difficult to maintain an adequate free-chlorine residual or where disinfection by-product formation is of concern. The goal of this study was to characterize the immunotoxic effects of chloramine in female B(6)C(3)F(1) mice when administered via the drinking water. Mice were exposed to chloramine-containing deionized tap water at 2, 10, 20, 100, or 200 ppm for 28 days. No statistically significant differences in drinking water consumption, body weight, body weight gain, organ weights, or hematological parameters between the exposed and control animals were noted during the experimental period. There were no changes in the percentages and numbers of total B-lymphocytes, T-lymphocytes, CD4(+) and CD8(+) T-lymphocytes, natural killer (NK) cells, and macrophages in the spleen. Exposure to chloramine did not affect the IgM antibody-forming cell response to sheep red blood cells (SRBC) or anti-SRBC IgM antibody production. Minimal effects, judged to be biologically insignificant, were observed in the mixed-leukocyte response and NK activity. In conclusion, chloramine produced no toxicological and immunotoxic effects in female B(6)C(3)F(1) mice when administered for 28 days in the drinking water at concentrations ranging from 2-200 ppm.

  11. Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice

    Burns, Monika; Amaya, Aldo; Bodi, Caroline; Ge, Zhongming; Bakthavatchalu, Vasudevan; Ennis, Kathleen; Wang, Timothy C.; Georgieff, Michael

    2017-01-01

    Helicobacter pylori (H.pylori), a bacterial pathogen, is a causative agent of gastritis and peptic ulcer disease and is a strong risk factor for development of gastric cancer. Environmental conditions, such as poor dietary iron resulting in iron deficiency anemia (IDA), enhance H.pylori virulence and increases risk for gastric cancer. IDA affects billions of people worldwide, and there is considerable overlap between regions of high IDA and high H.pylori prevalence. The primary aims of our study were to evaluate the effect of H.pylori infection on behavior, iron metabolism, red blood cell indices, and behavioral outcomes following comorbid H. pylori infection and dietary iron deficiency in a mouse model. C57BL/6 female mice (n = 40) were used; half were placed on a moderately iron deficient (ID) diet immediately post-weaning, and the other half were maintained on an iron replete (IR) diet. Half were dosed with H.pylori SS1 at 5 weeks of age, and the remaining mice were sham-dosed. There were 4 study groups: a control group (-Hp, IR diet) as well as 3 experimental groups (-Hp, ID diet; +Hp, IR diet; +Hp,ID diet). All mice were tested in an open field apparatus at 8 weeks postinfection. Independent of dietary iron status, H.pylori -infected mice performed fewer exploratory behaviors in the open field chamber than uninfected mice (pmice on an ID diet (both pmice compared to all other study groups. H.pylori infection caused IDA in mice maintained on a marginal iron diet. The mouse model developed in this study is a useful model to study the neurologic, behavioral, and hematologic impact of the common human co-morbidity of H. pylori infection and IDA. PMID:28355210

  12. ⍺4-GABAA receptors of hippocampal pyramidal neurons are associated with resilience against activity-based anorexia for adolescent female mice but not for males.

    Chen, Yi-Wen; Actor-Engel, Hannah; Aoki, Chiye

    2018-04-20

    Activity-based anorexia (ABA) is an animal model of anorexia nervosa, a mental illness with highest mortality and with onset that is most frequently during adolescence. We questioned whether vulnerability of adolescent mice to ABA differs between sexes and whether individual differences in resilience are causally linked to alpha4betadelta-GABA A R expression. C57BL6/J WT and α4-KO adolescent male and female mice underwent ABA induction by combining wheel access with food restriction. ABA vulnerability was measured as the extent of food restriction-evoked hyperactivity on a running wheel and body weight losses. alpha4betadelta-GABA A R levels at plasma membranes of pyramidal cells in dorsal hippocampus were assessed by electron microscopic immunocytochemistry. Temporal patterns and extent of weight loss during ABA induction were similar between sexes. Both sexes also exhibited individual differences in ABA vulnerability. Correlation analyses revealed that, for both sexes, body weight changes precede and thus are likely to drive suppression of wheel running. However, the suppression was during the food-anticipatory hours for males, while for females, suppression was delayed by a day and during food-access hours. Correspondingly, only females adaptively increased food intake. ABA induced up-regulation of alpha4betadelta-GABA A Rs at plasma membranes of dorsal hippocampal pyramidal cells of females, and especially those females exhibiting resilience. Conversely, α4-KO females exhibited greater food restriction-evoked hyperactivity than WT females. In contrast, ABA males did not up-regulate alpha4betadelta-GABA A Rs, did not exhibit genotype differences in vulnerability, and exhibited no correlation between plasmalemmal alpha4betadelta-GABA A Rs and ABA resilience. Thus, food restriction-evoked hyperactivity is driven by anxiety but can be suppressed through upregulation of hippocampal alpha4betadelta-GABA A Rs for female but not for males. This knowledge of sex

  13. A Unique Egg Cortical Granule Localization Motif Is Required for Ovastacin Sequestration to Prevent Premature ZP2 Cleavage and Ensure Female Fertility in Mice.

    Bo Xiong

    2017-01-01

    Full Text Available Monospermic fertilization is mediated by the extracellular zona pellucida composed of ZP1, ZP2 and ZP3. Sperm bind to the N-terminus of ZP2 which is cleaved after fertilization by ovastacin (encoded by Astl exocytosed from egg cortical granules to prevent sperm binding. AstlNull mice lack the post-fertilization block to sperm binding and the ability to rescue this phenotype with AstlmCherry transgenic mice confirms the role of ovastacin in providing a definitive block to polyspermy. During oogenesis, endogenous ovastacin traffics through the endomembrane system prior to storage in peripherally located cortical granules. Deletion mutants of ovastacinmCherry expressed in growing oocytes define a unique 7 amino acid motif near its N-terminus that is necessary and sufficient for cortical granule localization. Deletion of the 7 amino acids by CRISPR/Cas9 at the endogenous locus (AstlΔ prevents cortical granule localization of ovastacin. The misdirected enzyme is present within the endomembrane system and ZP2 is prematurely cleaved. Sperm bind poorly to the zona pellucida of AstlΔ/Δ mice with partially cleaved ZP2 and female mice are sub-fertile.

  14. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    Juliann G. Kiang

    2014-01-01

    Full Text Available Exposure to ionizing radiation alone (radiation injury, RI or combined with traumatic tissue injury (radiation combined injury, CI is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to 60Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia.

  15. Suppression of cytotoxic T lymphocytes by carrageenan-activated macrophage-like cells

    Yung, Y.P.; Cudkowicz, G.

    1978-01-01

    In the presence of 100 μg/ml of carrageenans (CAR), B6D2F 1 responder spleen cells failed to generate antiparent or anti-allogeneic cytotoxic T lymphocytes in vitro, but instead generated suppressor cells. Cultured CAR-treated cells added to mixtures of B6D2F 1 anti-B6 or B6D2F 1 anti-C3H cytotoxic effectors (induced in vitro) and the appropriate 51 Cr-labeled lymphoma targets reduced or abolished cytolysis (measured as 51 Cr release) depending on the ratio of suppressor to effector cells. Cultured spleen cells not exposed to CAR failed to inhibit both types of cytotoxicity. Presuppressor cells were associated with a splenic subpopulation independent of the thymus (i.e., present in spleens of athymic nude mice), were moderately adherent to Sephadex G-10 columns, but were not phagocytic or ''sticky'' to carbonyl iron particles. Activation of such cells by CAR was not prevented by in vitro exposure to 2000 rads of γ-rays before culture, nor facilitated by antigenic stimulation. The matured suppressor cells remained radioresistant and became strongly adherent to Sephadex G-10. The suppressors lacked surface Thy-1 alloantigen detectable by antibody and rabbit complement. Suppressor cell activity was not restricted by the immunologic specificity and major histocompatibility type of effectors

  16. Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice.

    Monika Burns

    Full Text Available Helicobacter pylori (H.pylori, a bacterial pathogen, is a causative agent of gastritis and peptic ulcer disease and is a strong risk factor for development of gastric cancer. Environmental conditions, such as poor dietary iron resulting in iron deficiency anemia (IDA, enhance H.pylori virulence and increases risk for gastric cancer. IDA affects billions of people worldwide, and there is considerable overlap between regions of high IDA and high H.pylori prevalence. The primary aims of our study were to evaluate the effect of H.pylori infection on behavior, iron metabolism, red blood cell indices, and behavioral outcomes following comorbid H. pylori infection and dietary iron deficiency in a mouse model. C57BL/6 female mice (n = 40 were used; half were placed on a moderately iron deficient (ID diet immediately post-weaning, and the other half were maintained on an iron replete (IR diet. Half were dosed with H.pylori SS1 at 5 weeks of age, and the remaining mice were sham-dosed. There were 4 study groups: a control group (-Hp, IR diet as well as 3 experimental groups (-Hp, ID diet; +Hp, IR diet; +Hp,ID diet. All mice were tested in an open field apparatus at 8 weeks postinfection. Independent of dietary iron status, H.pylori -infected mice performed fewer exploratory behaviors in the open field chamber than uninfected mice (p<0.001. Hippocampal gene expression of myelination markers and dopamine receptor 1 was significantly downregulated in mice on an ID diet (both p<0.05, independent of infection status. At 12 months postinfection, hematocrit (Hct and hemoglobin (Hgb concentration were significantly lower in +Hp, ID diet mice compared to all other study groups. H.pylori infection caused IDA in mice maintained on a marginal iron diet. The mouse model developed in this study is a useful model to study the neurologic, behavioral, and hematologic impact of the common human co-morbidity of H. pylori infection and IDA.

  17. Reduced hippocampal IL-10 expression, altered monoaminergic activity and anxiety and depressive-like behavior in female mice subjected to chronic social instability stress.

    Labaka, Ainitze; Gómez-Lázaro, Eneritz; Vegas, Oscar; Pérez-Tejada, Joana; Arregi, Amaia; Garmendia, Larraitz

    2017-09-29

    Evidence indicates that release of pro-inflammatory cytokines induced by social stress contributes to affective disorders. Additionally, there are known sex differences in both the stress response and the stressors that can elicit this response. In this regard, the chronic social instability (CSI) rodent model of stress appears to be the best fit for the social nature of females. This study analyzed the effects of CSI on female mouse behavior, hippocampal cytokine expression, tryptophan metabolism and monoaminergic activity. The activity of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes were also measured. Results showed a decrease in sucrose consumption in stressed subjects, indicative of anhedonic behavior and an increase in climbing activity in the forced swimming test (FST) and in whisking behavior, which have been associated with anxiety. Decreased interleukin-10 (IL-10) expression was found in the hippocampus of the stressed mice, while no differences in pro-inflammatory cytokine expression and tryptophan (TRYP), kynurenine (KYN) or 3-hydroxy kynurenine (3-HK) levels were found. Increased hippocampal serotoninergic and noradrenergic activity was observed in stressed mice. The higher plasma corticosterone and lower hypothalamic glucocorticoid receptor (GR) expression levels showed an increase in HPA activity after CSI. No differences were found in the plasma estradiol levels or the central estrogen receptors (ERα and ERβ) expression levels. These data indicate that the CSI stress-induced behavioral and physiological changes associated with anxiety and depressive disorders. Although additional studies are warranted, the results suggest an involvement of anti-inflammatory cytokines in the biobehavioral effects of social stress in female mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice

    Pocar, Paola, E-mail: paola.pocar@unimi.it; Fiandanese, Nadia; Berrini, Anna; Secchi, Camillo; Borromeo, Vitaliano

    2017-05-01

    Endocrine disruptors (EDs) are compounds known to promote transgenerational inheritance of adult-onset disease in subsequent generations after maternal exposure during fetal gonadal development. This study was designed to establish whether gestational and lactational exposure to the plasticizer di(2-ethylhexyl)phthalate (DEHP) at environmental doses promotes transgenerational effects on reproductive health in female offspring, as adults, over three generations in the mouse. Gestating F0 mouse dams were exposed to 0, 0.05, 5 mg/kg/day DEHP in the diet from gestational day 0.5 until the end of lactation. The incidence of adult-onset disease in reproductive function was recorded in F1, F2 and F3 female offspring. In adult F1 females, DEHP exposure induced reproductive adverse effects with: i) altered ovarian follicular dynamics with reduced primordial follicular reserve and a larger growing pre-antral follicle population, suggesting accelerated follicular recruitment; ii) reduced oocyte quality and embryonic developmental competence; iii) dysregulation of the expression profile of a panel of selected ovarian and pre-implantation embryonic genes. F2 and F3 female offspring displayed the same altered reproductive morphological phenotype and gene expression profiles as F1, thus showing transgenerational transmission of reproductive adverse effects along the female lineage. These findings indicate that in mice exposure to DEHP at doses relevant to human exposure during gonadal sex determination significantly perturbs the reproductive indices of female adult offspring and subsequent generations. Evidence of transgenerational transmission has important implications for the reproductive health and fertility of animals and humans, significantly increasing the potential biohazards of this toxicant. - Highlights: • Maternal exposure to DEHP transgenerationally affects female reproductive health. • DEHP reduced ovarian follicular reserve up to the third generation. • DEHP

  19. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice

    Pocar, Paola; Fiandanese, Nadia; Berrini, Anna; Secchi, Camillo; Borromeo, Vitaliano

    2017-01-01

    Endocrine disruptors (EDs) are compounds known to promote transgenerational inheritance of adult-onset disease in subsequent generations after maternal exposure during fetal gonadal development. This study was designed to establish whether gestational and lactational exposure to the plasticizer di(2-ethylhexyl)phthalate (DEHP) at environmental doses promotes transgenerational effects on reproductive health in female offspring, as adults, over three generations in the mouse. Gestating F0 mouse dams were exposed to 0, 0.05, 5 mg/kg/day DEHP in the diet from gestational day 0.5 until the end of lactation. The incidence of adult-onset disease in reproductive function was recorded in F1, F2 and F3 female offspring. In adult F1 females, DEHP exposure induced reproductive adverse effects with: i) altered ovarian follicular dynamics with reduced primordial follicular reserve and a larger growing pre-antral follicle population, suggesting accelerated follicular recruitment; ii) reduced oocyte quality and embryonic developmental competence; iii) dysregulation of the expression profile of a panel of selected ovarian and pre-implantation embryonic genes. F2 and F3 female offspring displayed the same altered reproductive morphological phenotype and gene expression profiles as F1, thus showing transgenerational transmission of reproductive adverse effects along the female lineage. These findings indicate that in mice exposure to DEHP at doses relevant to human exposure during gonadal sex determination significantly perturbs the reproductive indices of female adult offspring and subsequent generations. Evidence of transgenerational transmission has important implications for the reproductive health and fertility of animals and humans, significantly increasing the potential biohazards of this toxicant. - Highlights: • Maternal exposure to DEHP transgenerationally affects female reproductive health. • DEHP reduced ovarian follicular reserve up to the third generation. • DEHP

  20. Effects of hydro-alcoholic extract of Vitex agnus-castus fruit on kidney of D-galactose-induced aging model in female mice

    Oroojan, A. A.; Ahangarpour, A.; Khorsandi, L.; Najimi, S. A.

    2016-01-01

    The aim of the present study was to evaluate the effect of a hydro-alcoholic extract of Vitex agnus-castus (VAC) fruit on blood urea nitrogen (BUN), creatinine (Cr) and, kidney histology of a female mouse model of D-galactose induced aging. In this experimental study, 72 NMRI mice were divided into 6 groups: control, VAC, D-galactose, D-galactose+VAC, aging, and aging+VAC. D-galactose was injected for 45 days and, VAC extract administered in the last 7 days, twice a day. Serum BUN and Cr leve...

  1. Assessment of immunotoxicity in female Fischer 344/N and Sprague Dawley rats and female B6C3F1 mice exposed to hexavalent chromium via the drinking water.

    Shipkowski, Kelly A; Sheth, Christopher M; Smith, Matthew J; Hooth, Michelle J; White, Kimber L; Germolec, Dori R

    2017-12-01

    Sodium dichromate dihydrate (SDD), an inorganic compound containing hexavalent chromium (Cr(VI)), is a common environmental contaminant of groundwater sources due to widespread industrial use. There are indications in the literature that Cr(VI) may induce immunotoxic effects following dermal exposure, including acting as both an irritant and a sensitizer; however, the potential immunomodulatory effects of Cr(VI) following oral exposure are relatively unknown. Following the detection of Cr(VI) in drinking water sources, the National Toxicology Program (NTP) conducted extensive evaluations of the toxicity and carcinogenicity of SDD following drinking water exposure, including studies to assess the potential for Cr(VI) to modulate immune function. For the immunotoxicity assessments, female Fischer 344/N (F344/N) and Sprague Dawley (SD) rats and female B 6 C 3 F 1 mice were exposed to SDD in drinking water for 28 consecutive days and evaluated for alterations in cellular and humoral immune function as well as innate immunity. Rats were exposed to concentrations of 0, 14.3, 57.3, 172, or 516 ppm SDD while mice were exposed to concentrations of 0, 15.6, 31.3, 62.5, 125, or 250 ppm SDD. Final mean body weight and body weight gain were decreased relative to controls in 250 ppm B 6 C 3 F 1 mice and 516 ppm SD rats. Water consumption was significantly decreased in F344/N and SD rats exposed to 172 and 516 ppm SDD; this was attributed to poor palatability of the SDD drinking water solutions. Several red blood cell-specific parameters were significantly (5-7%) decreased in 250 ppm mice; however, these parameters were unaffected in rats. Sporadic increases in the spleen IgM antibody response to sheep red blood cells (SRBC) were observed, however, these increases were not dose-dependent and were not reproducible. No significant effects were observed in the other immunological parameters evaluated. Overall, exposure to Cr(VI) in drinking water had limited effects on

  2. Induction of IL-6 by Cytotoxic Chemotherapy Is Associated With Loss of Lean Body and Fat Mass in Tumor-free Female Mice.

    Elsea, Collin R; Kneiss, Janet A; Wood, Lisa J

    2015-10-01

    Cancer patients treated with cytotoxic chemotherapy experience fatigue and changes in body composition that can impact physical functioning and quality of life during and after treatment. Interleukin-6 (IL-6) is associated with fatigue in cancer survivors and plays an important role in the regulation of body composition. The purpose of the present study was to determine the specific role of IL-6 in cyclophosphamide-doxorubicin-5-fluorouracil (CAF)-induced changes in fatigue, food intake, and body composition using mice lacking IL-6. Female wild-type (WT) and IL-6 (-/-) mice were injected with four cycles of CAF or normal saline (NS) administered at 21-day intervals. Daily voluntary wheel-running activity (VWRA), used as a proxy for fatigue, and food intake were monitored daily up to 21 days after the fourth dose. Dual-energy X-ray absorptiometry (DEXA) was used to assess treatment-related changes in lean body mass (LBM), fat mass (FM), and bone mineral content (BMC). Patterns of change in fatigue and food intake did not differ between CAF-treated WT and IL-6 (-/-) mice. However, a Genotype × Drug interaction was observed for LBM (p = 0.047) and FM (p = 0.035) but not BMC (p = .569). Whereas WT mice lost LBM and FM during CAF treatment, IL-6-deficient mice did not. Treatment-related decreases in levels of the anabolic hormone insulin-like growth factor-1 (IGF-1) may contribute to LBM and FM loss since CAF decreased IGF-1 levels in an IL-6-dependent manner. These findings implicate IL-6 and possibly IGF-1 in the regulation of body composition in breast cancer patients exposed to cytotoxic chemotherapy. © The Author(s) 2014.

  3. Aromatase deficiency causes altered expression of molecules critical for calcium reabsorption in the kidneys of female mice *.

    Oz, O.K.; Hajibeigi, A.; Howard, K.; Cummins, C.L.; Abel, M. van; Bindels, R.J.M.; Word, R.A.; Kuro-o, M.; Pak, C.Y.; Zerwekh, J.E.

    2007-01-01

    Kidney stones increase after menopause, suggesting a role for estrogen deficiency. ArKO mice have hypercalciuria and lower levels of calcium transport proteins, whereas levels of the klotho protein are elevated. Thus, estrogen deficiency is sufficient to cause altered renal calcium handling.

  4. NanoTIO2 (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice

    Boisen, Anne Mette Zenner; Shipley, Thomas; Hougaard, Karin Sørig

    2012-01-01

    Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR) loci in mice are sensitive markers of mutagenic effects o...

  5. Injection anaesthesia with fentanyl-midazolam-medetomidine in adult female mice: importance of antagonization and perioperative care.

    Fleischmann, Thea; Jirkof, Paulin; Henke, Julia; Arras, Margarete; Cesarovic, Nikola

    2016-08-01

    Injection anaesthesia is commonly used in laboratory mice; however, a disadvantage is that post-anaesthesia recovery phases are long. Here, we investigated the potential for shortening the recovery phase after injection anaesthesia with fentanyl-midazolam-medetomidine by antagonization with naloxone-flumazenil-atipamezole. In order to monitor side-effects, the depth of anaesthesia, heart rate (HR), core body temperature (BT) and concentration of blood gases, as well as reflex responses, were assessed during a 50 min anaesthesia. Mice were allowed to recover from the anaesthesia in their home cages either with or without antagonization, while HR, core BT and spontaneous home cage behaviours were recorded for 24 h. Mice lost righting reflex at 330 ± 47 s after intraperitoneal injection of fentanyl-midazolam-medetomidine. During anaesthesia, HR averaged 225 ± 23 beats/min, respiratory rate and core BT reached steady state at 131 ± 15 breaths/min and 34.3 ± 0.25℃, respectively. Positive pedal withdrawal reflex, movement triggered by tail pinch and by toe pinch, still occurred in 25%, 31.2% and 100% of animals, respectively. Arterial blood gas analysis revealed acidosis, hypoxia, hypercapnia and a marked increase in glucose concentration. After anaesthesia reversal by injection with naloxone-flumazenil-atipamezole, animals regained consciousness after 110 ± 18 s and swiftly returned to physiological baseline values, yet they displayed diminished levels of locomotion and disrupted circadian rhythm. Without antagonization, mice showed marked hypothermia (22 ± 1.9℃) and bradycardia (119 ± 69 beats/min) for several hours. Fentanyl-midazolam-medetomidine provided reliable anaesthesia in mice with reasonable intra-anaesthetic side-effects. Post-anaesthetic period and related adverse effects were both reduced substantially by antagonization with naloxone-flumazenil-atipamezole. © The Author(s) 2016.

  6. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840

  7. Effects of Repeated Intraperitoneal Injection of Pharmaceutical-grade and Nonpharmaceutical-grade Corn Oil in Female C57BL/6J Mice.

    Hubbard, Jennifer S; Chen, Patty H; Boyd, Kelli L

    2017-11-01

    Due to potential adverse effects on animal wellbeing, the use of nonpharmaceutical-grade substances in animal research must be scientifically justified in cases where a pharmaceutical-grade version of the substance exists. This requirement applies to all substances, including vehicles used to solubilize experimental drugs. To date, no studies have evaluated the direct effect of the pharmaceutical classification of a compound on animal wellbeing. In this study, we evaluated intraperitoneal administration of pharmaceutical-grade corn oil, nonpharmaceutical-grade corn oil, and saline in female C57BL/6J mice. Compounds were administered every 48 h for a total of 4 injections. Mice were evaluated clinically by using body weight, body condition score, visual assessment score, CBC, and serum chemistries. Animals were euthanized at 24 h and 14 d after the final injection. Inflammation of the peritoneal wall and mesenteric fat was assessed microscopically by using a semiquantitative scoring system. Saline-dosed groups had lower pathology scores at both time points. At day 21, pharmaceutical-grade corn oil had a significantly higher pathology score compared with nonpharmaceutical-grade corn oil. No other significant differences between the corn oil groups were observed. The use of nonpharmaceutical grade corn oil did not result in adverse clinical consequences and is presumed safe to use for intraperitoneal injection in mice. Differences in inflammation between the 2 groups suggest that the use of either pharmaceutical-grade or nonpharmaceutical-grade corn oil should be consistent within a study.

  8. Testosterone and 17β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice.

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Periera-Simon, Simone; Xia, Xiaomei; Korach, Ken; Berho, Mariana; Elliot, Sharon J; Karl, Michael

    2011-02-01

    Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis.

  9. Species and gender differences in the metabolism and distribution of tertiary amyl methyl ether in male and female rats and mice after inhalation exposure or gavage administration.

    Sumner, Susan C J; Janszen, Derek B; Asgharian, Bahman; Moore, Timothy A; Parkinson, Horace D; Fennell, Timothy R

    2003-01-01

    Tertiary amyl methyl ether (TAME) is a gasoline fuel additive used to reduce emissions. Understanding the metabolism and distribution of TAME is needed to assess potential human health issues. The effect of dose level, duration of exposure and route of administration on the metabolism and distribution of TAME were investigated in male and female F344 rats and CD-1 mice following inhalation or gavage administration. By 48 h after exposure, >96% of the administered radioactivity was expired in air (16-71%) or eliminated in urine and feces (28-72%). Following inhalation exposure, mice had a two- to threefold greater relative uptake of [14C]TAME compared with rats. Metabolites were excreted in urine of rats and mice that are formed by glucuronide conjugation of tertiary amyl alcohol (TAA), oxidation of TAA to 2,3-dihydroxy-2-methylbutane and glucuronide conjugation of 2,3-dihydroxy-2-methylbutane. A saturation in the uptake and metabolism of TAME with increased exposure concentration was indicated by a decreased relative uptake of total [14C]TAME equivalents and an increase in the percentage expired as volatiles. A saturation of P-450 oxidation of TAA was indicated by a disproportional decrease of 2,3-dihydroxy-2-methylbutane and its glucuronide conjugate with increased exposure concentration. Copyright 2003 John Wiley & Sons, Ltd.

  10. Mixed-strain housing for female C57BL/6, DBA/2, and BALB/c mice: validating a split-plot design that promotes refinement and reduction.

    Walker, Michael; Fureix, Carole; Palme, Rupert; Newman, Jonathan A; Ahloy Dallaire, Jamie; Mason, Georgia

    2016-01-27

    Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects) differing in a variable of interest (e.g. genotype) share an experimental unit (e.g. a cage or litter) to which a treatment is applied (e.g. a drug, diet, or cage manipulation). We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables). It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases) to achieve a power of 80%. Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices for research mice. Furthermore, it dramatically illustrates the

  11. Mixed-strain housing for female C57BL/6, DBA/2, and BALB/c mice: validating a split-plot design that promotes refinement and reduction

    Michael Walker

    2016-01-01

    Full Text Available Abstract Background Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects differing in a variable of interest (e.g. genotype share an experimental unit (e.g. a cage or litter to which a treatment is applied (e.g. a drug, diet, or cage manipulation. We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. Methods The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Results Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables. It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases to achieve a power of 80 %. Conclusions Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices

  12. Long-term administration of olanzapine induces adiposity and increases hepatic fatty acid desaturation protein in female C57BL/6J mice

    Hou, Po-Hsun; Chang, Geng-Ruei; Chen, Chin-Pin; Lin, Yen-Ling; Chao, I-Shuan; Shen, Ting-Ting; Mao, Frank Chiahung

    2018-01-01

    Objective(s): Weight gain and metabolic disturbances such as dyslipidemia, are frequent side effects of second-generation antipsychotics, including olanzapine. This study examined the metabolic effects of chronic olanzapine exposure. In addition, we investigated the hepatic fatty acid effects of olanzapine in female C57BL/6J mice fed a normal diet. Materials and Methods: Female C57BL/6J mice orally received olanzapine or normal saline for 7 weeks. The effects of long-term olanzapine exposure on body weight changes, food efficiency, blood glucose, triglyceride (TG), insulin, and leptin levels were observed. Hepatic TG and abdominal fat mass were investigated, and fat cell morphology was analyzed through histopathological methods. The levels of protein markers of fatty acid regulation in the liver, namely fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD-1), were measured. Results: Olanzapine treatment increased the food intake of the mice as well as their body weight. Biochemical analyses showed that olanzapine increased blood TG, insulin, leptin, and hepatic TG. The olanzapine group exhibited increased abdominal fat mass and fat cell enlargement in abdominal fat tissue. Western blotting of the mouse liver revealed significantly higher (1.6-fold) levels of SCD-1 in the olanzapine group relative to the control group; by contrast, FAS levels in the two groups did not differ significantly. Conclusion: Enhanced lipogenesis triggered by increased hepatic SCD-1 activity might be a probable peripheral mechanism of olanzapine-induced dyslipidemia. Some adverse metabolic effects of olanzapine may be related to the disturbance of lipid homeostasis in the liver. PMID:29922430

  13. Preventative topical diclofenac treatment differentially decreases tumor burden in male and female Skh-1 mice in a model of UVB-induced cutaneous squamous cell carcinoma

    Oberyszyn, Tatiana M.

    2013-01-01

    Ultraviolet B (UVB) light is the major environmental carcinogen contributing to non-melanoma skin cancer (NMSC) development. There are over 3.5 million NMSC diagnoses in two million patients annually, with men having a 3-fold greater incidence of squamous cell carcinoma (SCC) compared with women. Chronic inflammation has been linked to tumorigenesis, with a key role for the cyclooxygenase-2 (COX-2) enzyme. Diclofenac, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, currently is prescribed to patients as a short-term therapeutic agent to induce SCC precursor lesion regression. However, its efficacy as a preventative agent in patients without evidence of precursor lesions but with significant UVB-induced cutaneous damage has not been explored. We previously demonstrated in a murine model of UVB-induced skin carcinogenesis that when exposed to equivalent UVB doses, male mice had lower levels of inflammation but developed increased tumor multiplicity, burden and grade compared with female mice. Because of the discrepancy in the degree of inflammation between male and female skin, we sought to determine if topical treatment of previously damaged skin with an anti-inflammatory COX-2 inhibitor would decrease tumor burden and if it would be equally effective in the sexes. Our results demonstrated that despite observed sex differences in the inflammatory response, prolonged topical diclofenac treatment of chronically UVB-damaged skin effectively reduced tumor multiplicity in both sexes. Unexpectedly, tumor burden was significantly decreased only in male mice. Our data suggest a new therapeutic use for currently available topical diclofenac as a preventative intervention for patients predisposed to cutaneous SCC development before lesions appear. PMID:23125227

  14. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    Kiran Chaudhari

    2014-09-01

    Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.

  15. Estrogenic Effect of 70% Ethanol Turmeric (Curcuma domestica Val. Extract on Ovariectomized Female Mice (Mus musculus L.

    A.N. Dewi

    2007-11-01

    Full Text Available The influence of extract turmeric (Curcuma domestica Val. on endometrium thickness, vaginal epithelium, mammary gland, and protein of estrogen receptor of ovariectomized mice was examined. Twenty five ovariectomized mice which were divided into five groups, were treated by ethynilestradiol (8,4 x 10-3 g, aquades (10 ml, and turmeric extract at doses 230 mg/kg b.w.; 310 mg/kg b.w.; and 390 mg/kg b.w. for eight days. At the end of experiments the mice were killed, then the uterus, vagina, and mammae were removed and the wet weight of uterus was recorded. Uterus, vagina, and mammae were examined histologically. Estrogen receptor protein from uterus were analized by using SDS-PAGE. One way anava test showed that turmeric extract at doses 310 mg/kg b.w. and 390 mg/kg b.w give estrogenic effect on vaginal ephitelium, endometrium thickness, and diametre of mammary glands. SDS-PAGE analysis showed there were differences in protein concentration between control and treatment groups which were seen in the thickness of the bands. Estrogen receptor band could be detected in sampel of treatment groups at molecular weight 45 kDa.

  16. Neonatal vaginal irritation results in long-term visceral and somatic hypersensitivity and increased hypothalamic–pituitary–adrenal axis output in female mice

    Pierce, Angela N.; Zhang, Zhen; Fuentes, Isabella M.; Wang, Ruipeng; Ryals, Janelle M.; Christianson, Julie A.

    2015-01-01

    Abstract Experiencing early life stress or injury increases a woman's likelihood of developing vulvodynia and concomitant dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis. To investigate the outcome of neonatal vaginal irritation (NVI), female mouse pups were administered intravaginal zymosan on postnatal days 8 and 10 and were assessed as adults for vaginal hypersensitivity by measuring the visceromotor response to vaginal balloon distension (VBD). Western blotting and calcium imaging were performed to measure transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) in the vagina and innervating primary sensory neurons. Serum corticosterone (CORT), mast cell degranulation, and corticotropin-releasing factor receptor 1 (CRF1) expression were measured as indicators of peripheral HPA axis activation. Colorectal and hind paw sensitivity were measured to determine cross-sensitization resulting from NVI. Adult NVI mice had significantly larger visceromotor response during VBD than naive mice. TRPA1 protein expression was significantly elevated in the vagina, and calcium transients evoked by mustard oil (TRPA1 ligand) or capsaicin (TRPV1 ligand) were significantly decreased in dorsal root ganglion from NVI mice, despite displaying increased depolarization-evoked calcium transients. Serum CORT, vaginal mast cell degranulation, and CRF1 protein expression were all significantly increased in NVI mice, as were colorectal and hind paw mechanical and thermal sensitivity. Neonatal treatment with a CRF1 antagonist, NBI 35965, immediately before zymosan administration largely attenuated many of the effects of NVI. These results suggest that NVI produces chronic hypersensitivity of the vagina, as well as of adjacent visceral and distant somatic structures, driven in part by increased HPA axis activation. PMID:26098441

  17. Severe but Not Moderate Vitamin B12 Deficiency Impairs Lipid Profile, Induces Adiposity, and Leads to Adverse Gestational Outcome in Female C57BL/6 Mice.

    Ghosh, Shampa; Sinha, Jitendra Kumar; Putcha, Uday Kumar; Raghunath, Manchala

    2016-01-01

    Vitamin B12 deficiency is widely prevalent in women of childbearing age, especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters, and reproductive performance. Female weanling C57BL/6 mice were fed for 4 weeks: (a) control AIN-76A diet, (b) vitamin B12-restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption), or (c) vitamin B12-restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption). After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation, and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat% significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 h of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects.

  18. Hydroxysteroid (17β)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production.

    Hakkarainen, Janne; Jokela, Heli; Pakarinen, Pirjo; Heikelä, Hanna; Kätkänaho, Laura; Vandenput, Liesbeth; Ohlsson, Claes; Zhang, Fu-Ping; Poutanen, Matti

    2015-09-01

    Hydroxysteroid (17β)-dehydrogenase type 1 (HSD17B1) catalyzes the conversion of low active 17-ketosteroids, androstenedione (A-dione) and estrone (E1) to highly active 17-hydroxysteroids, testosterone (T) and E2, respectively. In this study, the importance of HSD17B1 in ovarian estrogen production was determined using Hsd17b1 knockout (HSD17B1KO) mice. In these mice, the ovarian HSD17B enzyme activity was markedly reduced, indicating a central role of HSD17B1 in ovarian physiology. The lack of Hsd17b activity resulted in increased ovarian E1:E2 and A-dione:T ratios, but we also observed reduced progesterone concentration in HSD17B1KO ovaries. Accordingly with the altered steroid production, altered expression of Star, Cyp11a1, Lhcgr, Hsd17b7, and especially Cyp17a1 was observed. The ovaries of HSD17B1KO mice presented with all stages of folliculogenesis, while the corpus luteum structure was less defined and number reduced. Surprisingly, bundles of large granular cells of unknown origin appeared in the stroma of the KO ovaries. The HSD17B1KO mice presented with severe subfertility and failed to initiate pseudopregnancy. However, the HSD17B1KO females presented with normal estrous cycle defined by vaginal smears and normal puberty appearance. This study indicates that HSD17B1 is a key enzyme in ovarian steroidogenesis and has a novel function in initiation and stabilization of pregnancy. © FASEB.

  19. Severe but not moderate vitamin B12 deficiency impairs lipid profile, induces adiposity and leads to adverse gestational outcome in female C57BL/6 mice

    Shampa eGhosh

    2016-01-01

    Full Text Available Vitamin B12 deficiency is widely prevalent in women of childbearing age especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters and reproductive performance. Female weanling C57BL/6 mice were fed for four weeks, (a control AIN-76A diet, (b vitamin B12 restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption or (c vitamin B12 restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption. After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat % significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 hours of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects.

  20. Exercise capacity and cardiac hemodynamic response in female ApoE/LDLR−/− mice: a paradox of preserved V’O2max and exercise capacity despite coronary atherosclerosis

    Wojewoda, M.; Tyrankiewicz, U.; Gwozdz, P.; Skorka, T.; Jablonska, M.; Orzylowska, A.; Jasinski, K.; Jasztal, A.; Przyborowski, K.; Kostogrys, R. B.; Zoladz, J. A.; Chlopicki, S.

    2016-01-01

    We assessed exercise performance, coronary blood flow and cardiac reserve of female ApoE/LDLR−/− mice with advanced atherosclerosis compared with age-matched, wild-type C57BL6/J mice. Exercise capacity was assessed as whole body maximal oxygen consumption (V’O2max), maximum running velocity (vmax) and maximum distance (DISTmax) during treadmill exercise. Cardiac systolic and diastolic function in basal conditions and in response to dobutamine (mimicking exercise-induced cardiac stress) were assessed by Magnetic Resonance Imaging (MRI) in vivo. Function of coronary circulation was assessed in isolated perfused hearts. In female ApoE/LDLR−/− mice V’O2max, vmax and DISTmax were not impaired as compared with C57BL6/J mice. Cardiac function at rest and systolic and diastolic cardiac reserve were also preserved in female ApoE/LDLR−/− mice as evidenced by preserved fractional area change and similar fall in systolic and end diastolic area after dobutamine. Moreover, endothelium-dependent responses of coronary circulation induced by bradykinin (Bk) and acetylcholine (ACh) were preserved, while endothelium-independent responses induced by NO-donors were augmented in female ApoE/LDLR−/− mice. Basal COX-2-dependent production of 6-keto-PGF1α was increased. Concluding, we suggest that robust compensatory mechanisms in coronary circulation involving PGI2- and NO-pathways may efficiently counterbalance coronary atherosclerosis-induced impairment in V’O2max and exercise capacity. PMID:27108697

  1. Wild-type offspring of heterozygous prolactin receptor-null female mice have maladaptive β-cell responses during pregnancy.

    Huang, Carol

    2013-03-01

    Abstract  β-Cell mass increases during pregnancy in adaptation to the insulin resistance of pregnancy. This increase is accompanied by an increase in β-cell proliferation, a process that requires intact prolactin receptor (Prlr) signalling. Previously, it was found that during pregnancy, heterozygous prolactin receptor-null (Prlr(+/-)) mice had lower number of β-cells, lower serum insulin and higher blood glucose levels than wild-type (Prlr(+/+)) mice. An unexpected observation was that the glucose homeostasis of the experimental mouse depends on the genotype of her mother, such that within the Prlr(+/+) group, the Prlr(+/+) offspring derived from Prlr(+/+) mothers (Prlr(+/+(+/+))) had higher β-cell mass and lower blood glucose than those derived from Prlr(+/-) mothers (Prlr(+/+(+/-))). Pathways that are known to regulate β-cell proliferation during pregnancy include insulin receptor substrate-2, Akt, menin, the serotonin synthetic enzyme tryptophan hydroxylase-1, Forkhead box M1 and Forkhead box D3. The aim of the present study was to determine whether dysregulation in these signalling molecules in the islets could explain the maternal effect on the phenotype of the offspring. It was found that the pregnancy-induced increases in insulin receptor substrate-2 and Akt expression in the islets were attenuated in the Prlr(+/+(+/-)) mice in comparison to the Prlr(+/+(+/+)) mice. The expression of Forkhead box D3, which plays a permissive role for β-cell proliferation during pregnancy, was also lower in the Prlr(+/+(+/-)) mice. In contrast, the pregnancy-induced increases in phospho-Jak2, tryptophan hydroxylase-1 and FoxM1, as well as the pregnancy-associated reduction in menin expression, were comparable between the two groups. There was also no difference in expression levels of genes that regulate insulin synthesis and secretion (i.e. glucose transporter 2, glucokinase and pancreatic and duodenal homeobox-1) between these two groups. Taken together, these

  2. Frequencies of aneuploidy and dominant lethal mutations in young female mice induced by low dose γ-rays

    Yao Suyan; Zhang Chaoyang; Dai Lianlian; Gao Changwen

    1991-01-01

    Relationship between aneuploidy, dominant lethal mutations and doses in young feral mice induced by low dose γ-rays was examined. The results suggest that the frequencies of aneuploidy of embryos increased at 0.15 Gy, but increases at over 0.50 Gy after irradiation in groups. The frequencies of aneuploidy and dominant lethal mutations increased with increasing doses and fitted linear relationship. This dose-response relationship of trisomic was not significant. The frequency of dominant lethal mutations induced by 60 Co γ irradiation is 5.59%. The effect of dominant lethal mutation is higher than that of the aneuploidy

  3. Toxicokinetics of α-thujone following intravenous and gavage administration of α-thujone or α- and β-thujone mixture in male and female F344/N rats and B6C3F1 mice

    Waidyanatha, Suramya; Johnson, Jerry D.; Hong, S. Peter; Robinson, Veronica Godfrey; Gibbs, Seth; Graves, Steven W.; Hooth, Michelle J.; Smith, Cynthia S.

    2013-01-01

    Plants containing thujone have widespread use and hence have significant human exposure. α-Thujone caused seizures in rodents following gavage administration. We investigated the toxicokinetics of α-thujone in male and female F344/N rats and B6C3F1 mice following intravenous and gavage administration of α-thujone or a mixture of α- and β-thujone (which will be referred to as α,β-thujone). Absorption of α-thujone following gavage administration was rapid without any dose-, species-, sex- or test article-related effect. Absolute bioavailability of α-thujone following administration of α-thujone or α,β-thujone was generally higher in rats than in mice. In rats, females had higher bioavailability than males following administration of either test article although a sex difference was not observed in mice. C max and AUC ∞ increased greater than proportional to the dose in female rats following administration of α-thujone and in male and female mice following administration of α,β-thujone suggesting possible saturation of elimination kinetics with increasing dose. Dose-adjusted AUC ∞ for male and female rats was 5- to 15-fold and 3- to 24-fold higher than mice counterparts following administration of α-thujone and α,β-thujone, respectively (p-value < 0.0001 for all comparisons). Following both intravenous and gavage administration, α-thujone was distributed to the brains of rats and mice with females, in general, having higher brain:plasma ratios than males. These data are in support of the observed toxicity of α-thujone and α,β-thujone where females were more sensitive than males of both species to α-thujone-induced neurotoxicity. In general there was no difference in toxicokinetics between test articles when normalized to α-thujone concentration. - Highlights: • Absorption of α-thujone following gavage administration was rapid in rats and mice. • Rats undergo higher exposure to α-thujone than mice. • α-Thujone brain:plasma ratios

  4. Toxicokinetics of α-thujone following intravenous and gavage administration of α-thujone or α- and β-thujone mixture in male and female F344/N rats and B6C3F1 mice

    Waidyanatha, Suramya, E-mail: waidyanathas@niehs.nih.gov [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Johnson, Jerry D.; Hong, S. Peter [Battelle Memorial Institute, Columbus, OH 43201 (United States); Robinson, Veronica Godfrey [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Gibbs, Seth; Graves, Steven W. [Battelle Memorial Institute, Columbus, OH 43201 (United States); Hooth, Michelle J.; Smith, Cynthia S. [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)

    2013-09-01

    Plants containing thujone have widespread use and hence have significant human exposure. α-Thujone caused seizures in rodents following gavage administration. We investigated the toxicokinetics of α-thujone in male and female F344/N rats and B6C3F1 mice following intravenous and gavage administration of α-thujone or a mixture of α- and β-thujone (which will be referred to as α,β-thujone). Absorption of α-thujone following gavage administration was rapid without any dose-, species-, sex- or test article-related effect. Absolute bioavailability of α-thujone following administration of α-thujone or α,β-thujone was generally higher in rats than in mice. In rats, females had higher bioavailability than males following administration of either test article although a sex difference was not observed in mice. C{sub max} and AUC{sub ∞} increased greater than proportional to the dose in female rats following administration of α-thujone and in male and female mice following administration of α,β-thujone suggesting possible saturation of elimination kinetics with increasing dose. Dose-adjusted AUC{sub ∞} for male and female rats was 5- to 15-fold and 3- to 24-fold higher than mice counterparts following administration of α-thujone and α,β-thujone, respectively (p-value < 0.0001 for all comparisons). Following both intravenous and gavage administration, α-thujone was distributed to the brains of rats and mice with females, in general, having higher brain:plasma ratios than males. These data are in support of the observed toxicity of α-thujone and α,β-thujone where females were more sensitive than males of both species to α-thujone-induced neurotoxicity. In general there was no difference in toxicokinetics between test articles when normalized to α-thujone concentration. - Highlights: • Absorption of α-thujone following gavage administration was rapid in rats and mice. • Rats undergo higher exposure to α-thujone than mice. • α-Thujone brain

  5. Adolescent chronic variable social stress influences exploratory behavior and nicotine responses in male, but not female, BALB/cJ mice.

    Caruso, M J; Reiss, D E; Caulfield, J I; Thomas, J L; Baker, A N; Cavigelli, S A; Kamens, H M

    2018-04-01

    Anxiety disorders and nicotine use are significant contributors to global morbidity and mortality as independent and comorbid diseases. Early-life stress, potentially via stress-induced hypothalamic-pituitary-adrenal axis (HPA) dysregulation, can exacerbate both. However, little is known about the factors that predispose individuals to the development of both anxiety disorders and nicotine use. Here, we examined the relationship between anxiety-like behaviors and nicotine responses following adolescent stress. Adolescent male and female BALB/cJ mice were exposed to either chronic variable social stress (CVSS) or control conditions. CVSS consisted of repeated cycles of social isolation and social reorganization. In adulthood, anxiety-like behavior and social avoidance were measured using the elevated plus-maze (EPM) and social approach-avoidance test, respectively. Nicotine responses were assessed with acute effects on body temperature, corticosterone production, locomotor activity, and voluntary oral nicotine consumption. Adolescent stress had sex-dependent effects on nicotine responses and exploratory behavior, but did not affect anxiety-like behavior or social avoidance in males or females. Adult CVSS males exhibited less exploratory behavior, as indicated by reduced exploratory locomotion in the EPM and social approach-avoidance test, compared to controls. Adolescent stress did not affect nicotine-induced hypothermia in either sex, but CVSS males exhibited augmented nicotine-induced locomotion during late adolescence and voluntarily consumed less nicotine during adulthood. Stress effects on male nicotine-induced locomotion were associated with individual differences in exploratory locomotion in the EPM and social approach-avoidance test. Relative to controls, adult CVSS males and females also exhibited reduced corticosterone levels at baseline and adult male CVSS mice exhibited increased corticosterone levels following an acute nicotine injection. Results

  6. Increased CRF mRNA expression in the sexually dimorphic BNST of male but not female GAD67 mice and TMT predator odor stress effects upon spatial memory retrieval.

    Janitzky, K; Peine, A; Kröber, A; Yanagawa, Y; Schwegler, H; Roskoden, T

    2014-10-01

    The bed nucleus of the stria terminalis (BNST) is an important region for 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) predator odor-induced stress responses in mice. It is sexually dimorphic and a region for corticotropin-releasing factor (CRF)-enhanced stress responses. Dense GABAergic and CRF input from the amygdala to the BNST gives point to relevant interactions between CRF and GABA activity in these brain regions. Hence, to investigate sexual dimorphism of stress-induced neuronal changes, we studied effects of acute TMT exposure on CRF mRNA expression in stress-related brain regions in male and female GAD67 mice and their wild-type littermates. In GAD67 mice, heterozygous knock-in of GFP in GABAergic neurons caused a 50% decrease of GAD67 protein level in the brain [91,99]. Results show higher CRF mRNA levels in the BNST of male but not female GAD67 mice after TMT and control odor exposure. While CRF neurons in the BNST are predominantly GABAergic and CRF enhances GABAergic transmission in the BNST [20,51], the deficit in GABAergic transmission in GAD67 mice could induce a compensatory CRF increase. Sexual dimorphism of the BNST with greater density of GABA-ir neurons in females could explain the differences in CRF mRNA levels between male and female GAD67 mice. Effects of odor exposure were studied in a radial arm maze (RAM) task. Results show impaired retrieval of spatial memory after acute TMT exposure in both sexes and genotypes. However, only GAD67 mice show increased working memory errors after control odor exposure. Our work elicits GAD67 mice as a model to further study interactions of GABA and CRF in the BNST for a better understanding of how sex-specific characteristics of the brain may contribute to differences in anxiety- and stress-related psychological disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Impact of Oxytocin Gene Knockout on Sexual Behavior and Gene Expression Related to Neuroendocrine Systems in the Brain of Female Mice.

    Zimmermann-Peruzatto, Josi Maria; Lazzari, Virgínia Meneghini; Agnes, Grasiela; Becker, Roberta Oriques; de Moura, Ana Carolina; Guedes, Renata Padilha; Lucion, Aldo Bolten; Almeida, Silvana; Giovenardi, Márcia

    2017-07-01

    Social relations are built and maintained from the interaction among individuals. The oxytocin (OT), vasopressin (VP), estrogen, dopamine, and their receptors are involved in the modulation of sexual behavior in females. This study aimed to analyze the impact of OT gene knockout (OTKO) on sexual behavior and the gene expression of oxytocin (OTR), estrogen alpha (ERα), estrogen beta (ERβ), vasopressin (V 1a R), and dopamine (D 2 R) receptors in the olfactory bulb (OB), prefrontal cortex (PFC), hippocampus (HPC), and hypothalamus (HPT), as well as in the synthesis of VP in the HPT of female mice. Wild-type (WT) littermates were used for comparisons. The C DNAs were synthesized by polymerase chain reaction and the gene expression was calculated with the 2 -ΔΔCt formula. Our results showed that the absence of OT caused an increase in the frequency and duration of non-receptive postures and a decrease in receptive postures in the OTKO. OTKO females showed a significant decrease in the gene expression of OTR in the HPC, V 1a R in the HPT, and ERα and ERβ in the PFC. There was no significant difference in the gene expression of D 2 R of OTKO. However, OTKO showed an increased gene expression of V 1a R in the HPC. There is no significant difference in VP mRNA synthesis in the HPT between OTKO and WT. Our findings demonstrate that the absence of OT leads to significant changes in the expression of the studied genes (OTR, ERα, ERβ, V 1a R), and these changes may contribute to the decreased sexual behavior observed in OTKO females.

  8. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation

    Kovalchuk, Olga; Burke, Paula; Besplug, Jill; Slovack, Mark; Filkowski, Jody; Pogribny, Igor

    2004-01-01

    The biological and genetic effects of chronic low-dose radiation (LDR) exposure and its relationship to carcinogenesis have received a lot of attention in the recent years. For example, radiation-induced genome instability, which is thought to be a precursor of tumorogenesis, was shown to have a transgenerational nature. This indicates a possible involvement of epigenetic mechanisms in LDR-induced genome instability. Genomic DNA methylation is one of the most important epigenetic mechanisms. Existing data on radiation effects on DNA methylation patterns is limited, and no one has specifically studied the effects of the LDR. We report the first study of the effects of whole-body LDR exposure on global genome methylation in muscle and liver tissues of male and female mice. In parallel, we evaluated changes in promoter methylation and expression of the tumor suppressor gene p16 INKa and DNA repair gene O 6 -methylguanine-DNA methyltransferase (MGMT). We observed different patterns of radiation-induced global genome DNA methylation in the liver and muscle of exposed males and females. We also found sex and tissue-specific differences in p16 INKa promoter methylation upon LDR exposure. In male liver tissue, p16 INKa promoter methylation was more pronounced than in female tissue. In contrast, no significant radiation-induced changes in p16 INKa promoter methylation were noted in the muscle tissue of exposed males and females. Radiation also did not significantly affect methylation status of MGMT promoter. We also observed substantial sex differences in acute and chronic radiation-induced expression of p16 INKa and MGMT genes. Another important outcome of our study was the fact that chronic low-dose radiation exposure proved to be a more potent inducer of epigenetic effects than the acute exposure. This supports previous findings that chronic exposure leads to greater genome destabilization than acute exposure

  9. Data describing lack of effects of 17α-ethinyl estradiol on mammary gland morphology in female mice exposed during pregnancy and lactation.

    LaPlante, Charlotte D; Vandenberg, Laura N

    2017-10-01

    Ethinyl estradiol (EE) is a synthetic estrogen used in pharmaceutical contraceptives. In many studies evaluating estrogenic endocrine disruptors, EE is used as a positive control for estrogenicity. However, the effects of EE often differ from the effects of other xenoestrogens, suggesting that these other compounds might act via distinct mechanisms. Reported here are data describing the effect of low doses of EE during pregnancy and lactation on the morphology of the lactating mammary gland in CD-1 mice. The data suggest that these low doses have few if any discernable effects on mammary gland morphology. Alterations to cell proliferation and the expression of estrogen receptor (ER)α were also not observed. These companion data were collected from the same females analyzed for effects of EE on maternal behavior and brain recently published in Reproductive Toxicology (Catanese & Vandenberg, 2017).

  10. Data describing lack of effects of 17α-ethinyl estradiol on mammary gland morphology in female mice exposed during pregnancy and lactation

    Charlotte D. LaPlante

    2017-10-01

    Full Text Available Ethinyl estradiol (EE is a synthetic estrogen used in pharmaceutical contraceptives. In many studies evaluating estrogenic endocrine disruptors, EE is used as a positive control for estrogenicity. However, the effects of EE often differ from the effects of other xenoestrogens, suggesting that these other compounds might act via distinct mechanisms. Reported here are data describing the effect of low doses of EE during pregnancy and lactation on the morphology of the lactating mammary gland in CD-1 mice. The data suggest that these low doses have few if any discernable effects on mammary gland morphology. Alterations to cell proliferation and the expression of estrogen receptor (ERα were also not observed. These companion data were collected from the same females analyzed for effects of EE on maternal behavior and brain recently published in Reproductive Toxicology (Catanese & Vandenberg, 2017.

  11. 2,2′,3,5′,6-PENTACHLOROBIPHENYL (PCB 95) AND ITS HYDROXYLATED METABOLITES ARE ENANTIOMERICALLY ENRICHED IN FEMALE MICE

    Kania-Korwel, Izabela; Barnhart, Christopher D.; Stamou, Marianna; Truong, Kim M.; El-Komy, Mohammed H.M.E.; Lein, Pamela J.; Veng-Pedersen, Peter; Lehmler, Hans-Joachim

    2012-01-01

    Epidemiological and laboratory studies link polychlorinated biphenyls and their metabolites to adverse neurodevelopmental outcomes. Several neurotoxic PCB congeners are chiral and undergo enantiomeric enrichment in mammalian species, which may modulate PCB developmental neurotoxicity. This study measures levels and enantiomeric enrichment of PCB 95 and its hydroxylated metabolites (OH-PCBs) in adult female C57Bl/6 mice following subchronic exposure to racemic PCB 95. Tissue levels of PCB 95 and OH-PCBs increased with increasing dose. Dose-dependent enantiomeric enrichment of PCB 95 was observed in brain and other tissues. OH-PCBs also displayed enantiomeric enrichment in blood and liver, but were not detected in adipose and brain. In light of data suggesting enantioselective effects of chiral PCBs on molecular targets linked to PCB developmental neurotoxicity, our observations highlight the importance of accounting for PCB and OH-PCB enantiomeric enrichment in the assessment of PCB developmental neurotoxicity. PMID:22974126

  12. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis

    Andersen, Jens Velde; McNair, Laura Frendrup; Schousboe, Arne

    2017-01-01

    Removal of endogenously released glutamate is mediated primarily by astrocytes and exogenous (13) C-labeled glutamate has been applied to study glutamate metabolism in astrocytes. Likewise, studies have clearly established the relevance of (13) C-labeled acetate as an astrocyte specific metabolic...... cortical slices from female NMRI mice were incubated in media containing [1,2-(13) C]acetate or [U-(13) C]glutamate, with or without methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Tissue extracts were analyzed by gas chromatography-mass spectrometry. Blocking GS abolished the majority...... of glutamine (13) C-labeling from [1,2-(13) C]acetate as intended. However, (13) C-labeling of GABA was only 40-50% reduced by MSO, suggesting considerable neuronal uptake of acetate. Moreover, labeling of glutamate from [1,2-(13) C]acetate in the presence of MSO exceeded the level probable from exclusive...

  13. Spontaneous mutation of Dock7 results in lower trabecular bone mass and impaired periosteal expansion in aged female Misty mice.

    Le, Phuong T; Bishop, Kathleen A; Maridas, David E; Motyl, Katherine J; Brooks, Daniel J; Nagano, Kenichi; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2017-12-01

    Misty mice (m/m) have a loss of function mutation in Dock7 gene, a guanine nucleotide exchange factor, resulting in low bone mineral density, uncoupled bone remodeling and reduced bone formation. Dock7 has been identified as a modulator of osteoblast number and in vitro osteogenic differentiation in calvarial osteoblast culture. In addition, m/m exhibit reduced preformed brown adipose tissue innervation and temperature as well as compensatory increase in beige adipocyte markers. While the low bone mineral density phenotype is in part due to higher sympathetic nervous system (SNS) drive in young mice, it is unclear what effect aging would have in mice homozygous for the mutation in the Dock7 gene. We hypothesized that age-related trabecular bone loss and periosteal envelope expansion would be altered in m/m. To test this hypothesis, we comprehensively characterized the skeletal phenotype of m/m at 16, 32, 52, and 78wks of age. When compared to age-matched wild-type control mice (+/+), m/m had lower areal bone mineral density (aBMD) and areal bone mineral content (aBMC). Similarly, both femoral and vertebral BV/TV, Tb.N, and Conn.D were decreased in m/m while there was also an increase in Tb.Sp. As low bone mineral density and decreased trabecular bone were already present at 16wks of age in m/m and persisted throughout life, changes in age-related trabecular bone loss were not observed highlighting the role of Dock7 in controlling trabecular bone acquisition or bone loss prior to 16wks of age. Cortical thickness was also lower in the m/m across all ages. Periosteal and endosteal circumferences were higher in m/m compared to +/+ at 16wks. However, endosteal and periosteal expansion were attenuated in m/m, resulting in m/m having lower periosteal and endosteal circumferences by 78wks of age compared to +/+, highlighting the critical role of Dock7 in appositional bone expansion. Histomorphometry revealed that osteoblasts were nearly undetectable in m/m and marrow

  14. TallyHO obese female mice experience poor reproductive outcomes and abnormal blastocyst metabolism that is reversed by metformin.

    Louden, Erica D; Luzzo, Kerri M; Jimenez, Patricia T; Chi, Tiffany; Chi, Maggie; Moley, Kelle H

    2014-12-01

    Obese women experience worse reproductive outcomes than normal weight women, specifically infertility, pregnancy loss, fetal malformations and developmental delay of offspring. The aim of the present study was to use a genetic mouse model of obesity to recapitulate the human reproductive phenotype and further examine potential mechanisms and therapies. New inbred, polygenic Type 2 diabetic TallyHO mice and age-matched control C57BL/6 mice were superovulated to obtain morula or blastocyst stage embryos that were cultured in human tubal fluid (HTF) medium. Deoxyglucose uptake was determined for individual insulin-stimulated blastocysts. Apoptosis was detected by confocal microscopy using the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay and Topro-3 nuclear dye. Embryos were scored for TUNEL-positive as a percentage of total nuclei. AMP-activated protein kinase (AMPK) activation, tumour necrosis factor (TNF)-α expression and adiponectin expression were analysed by western immunoblot and confocal immunofluorescent microscopy. Lipid accumulation was assayed by BODIPY. Comparisons were made between TallyHO morulae cultured to blastocyst embryos in either HTF medium or HTF medium with 25 μg mL(-1) metformin. TallyHO mice developed whole body abnormal insulin tolerance, had decreased litter sizes and increased non-esterified fatty acid levels. Blastocysts from TallyHO mice exhibited increased apoptosis, decreased insulin sensitivity and decreased AMPK. A possible cause for the insulin resistance and abnormal AMPK phosphorylation was the increased TNF-α expression and lipid accumulation, as detected by BODIPY, in TallyHO blastocysts and decreased adiponectin. Culturing TallyHO morulae with the AMPK activator metformin led to a reversal of all the abnormal findings, including increased AMPK phosphorylation, improved insulin-stimulated glucose uptake and normalisation of lipid accumulation. Women with obesity and

  15. Normal X-inactivation mosaicism in corneas of heterozygous FlnaDilp2/+ female mice--a model of human Filamin A (FLNA diseases

    Douvaras Panagiotis

    2012-02-01

    Full Text Available Abstract Background Some abnormalities of mouse corneal epithelial maintenance can be identified by the atypical mosaic patterns they produce in X-chromosome inactivation mosaics and chimeras. Human FLNA/+ females, heterozygous for X-linked, filamin A gene (FLNA mutations, display a range of disorders and X-inactivation mosaicism is sometimes quantitatively unbalanced. FlnaDilp2/+ mice, heterozygous for an X-linked filamin A (Flna nonsense mutation have variable eye, skeletal and other abnormalities, but X-inactivation mosaicism has not been investigated. The aim of this study was to determine whether X-inactivation mosaicism in the corneal epithelia of FlnaDilp2/+ mice was affected in any way that might predict abnormal corneal epithelial maintenance. Results X-chromosome inactivation mosaicism was studied in the corneal epithelium and a control tissue (liver of FlnaDilp2/+ and wild-type (WT female X-inactivation mosaics, hemizygous for the X-linked, LacZ reporter H253 transgene, using β-galactosidase histochemical staining. The corneal epithelia of FlnaDilp2/+ and WT X-inactivation mosaics showed similar radial, striped patterns, implying epithelial cell movement was not disrupted in FlnaDilp2/+ corneas. Corrected stripe numbers declined with age overall (but not significantly for either genotype individually, consistent with previous reports suggesting an age-related reduction in stem cell function. Corrected stripe numbers were not reduced in FlnaDilp2/+ compared with WT X-inactivation mosaics and mosaicism was not significantly more unbalanced in the corneal epithelia or livers of FlnaDilp2/+ than wild-type Flna+/+ X-inactivation mosaics. Conclusions Mosaic analysis identified no major effect of the mouse FlnaDilp2 mutation on corneal epithelial maintenance or the balance of X-inactivation mosaicism in the corneal epithelium or liver.

  16. Susceptibility and morbidity between male and female Swiss mice infected with Angiostrongylus costaricensis: Susceptibilidade e morbidade entre camundongos Swiss machos e fêmeas infectados com Angiostrongylus costaricensis

    Márcia B. Mentz

    2010-10-01

    Full Text Available The gender of vertebrate hosts may affect the outcome of parasitic infections. An experimental murine infection with Angiostrongylus costaricensis was followed with determinations of body weight, fecal larval elimination, number and length of adult worms, number of macroscopic intestinal lesions, and mortality. Groups of male and female Swiss mice were infected with 10 3rd-stage A. costaricensis larvae per animal. The results indicate there are no significant differences related to gender of the host, except for higher length of worms developed in male mice.O sexo dos hospedeiros vertebrados pode influenciar no resultado de infecções parasitárias. A infecção experimental de camundongos com Angiostrongylus costaricensis foi acompanhada com observação do peso corporal, eliminação de larvas nas fezes, número e comprimento dos vermes adultos, número de lesões macroscópicas nos intestinos e mortalidade. Grupos de camundongos Swiss machos e fêmeas foram infectados cada um com 10 larvas de terceiro estágio de A. costaricensis. Os resultados indicam que não há diferenças significativas relacionados ao sexo dos hospedeiros, exceto pelo maior comprimento dos vermes nos hospedeiros machos.

  17. Effects of hydro-alcoholic extract of Vitex agnus-castus fruit on kidney of D-galactose-induced aging model in female mice.

    Oroojan, A A; Ahangarpour, A; Khorsandi, L; Najimi, S A

    2016-01-01

    The aim of the present study was to evaluate the effect of a hydro-alcoholic extract of Vitex agnus-castus (VAC) fruit on blood urea nitrogen (BUN), creatinine (Cr) and, kidney histology of a female mouse model of D-galactose induced aging. In this experimental study, 72 NMRI mice were divided into 6 groups: control, VAC, D-galactose, D-galactose+VAC, aging, and aging+VAC. D-galactose was injected for 45 days and, VAC extract administered in the last 7 days, twice a day. Serum BUN and Cr levels were not significantly changed in the D-galactose and natural aged animals in comparison to control group. Histological changes such as nuclear pyknosis, proximal cell swelling, infiltration of inflammatory cells, tubular dilatation and, vasodilatation were observed in both D-galactose and natural aged mice. Further, glomerules diameter was decreased in them. Administration of VAC could attenuate the histological alterations. These results indicate that VAC may have beneficial effects on aging and aging related kidney disease.

  18. Modifying effects of lemongrass essential oil on specific tissue response to the carcinogen N-methyl-N-nitrosurea in female BALB/c mice.

    Bidinotto, Lucas T; Costa, Celso A R A; Costa, Mirtes; Rodrigues, Maria A M; Barbisan, Luís F

    2012-02-01

    Lemongrass (Cymbopogon citratus Stapf) essential oil has been used worldwide because of its ethnobotanical and medicinal usefulness. Regarding its medicinal usefulness, the present study evaluated the beneficial effects of lemongrass essential oil (LGEO) oral treatment on cell proliferation and apoptosis events and on early development of hyperplastic lesions in the mammary gland, colon, and urinary bladder induced by N-methyl-N-nitrosourea (MNU) in female BALB/c mice. The animals were allocated into three groups: G1, treated with LGEO vehicle for 5 weeks (five times per week); G2, treated with LGEO vehicle as for G1 and MNU (two injections each of 30 mg/kg of body weight at weeks 3 and 5); and G3, treated with LGEO (five times each with 500 mg/kg of body weight per week) and MNU as for G2. Twenty-four hours after the last MNU application, all animals were euthanized, and mammary glands, colon, and urinary bladder were collected for histological and immunohistochemical analysis. LGEO oral treatment significantly changed the indexes of apoptosis and/or cellular proliferation for the tissues analyzed. In particular, the treatment reduced the incidence of hyperplastic lesions and increased apoptosis in mammary epithelial cells. This increment in the apoptosis response may be related to a favorable balance in Bcl-2/Bax immunoreactivity in mammary epithelial cells. These findings indicate that LGEO presented a protective role against early MNU-induced mammary gland alterations in BALB/c mice.

  19. Trps1 differentially modulates the bone mineral density between male and female mice and its polymorphism associates with BMD differently between women and men.

    Lishi Wang

    Full Text Available The objective of our study was to identify genetic factors that regulate bone mineral density (BMD in mice using well defined recombinant inbred strains. For this purpose we chose the BXD recombinant inbred (RI strains derived from progeny of the C57BL/6J (B6 and DBA/2J (D2 progenitor strains. We sampled both male and female mice (∼4 each of 46 strains at 3 months-of-age, measured their BMD, and conducted QTL mapping. The data were analyzed to identify candidates genes contained within the most significant quantitative trait locus (QTL. Evaluation of candidate genes included functional assessment, single nucleotide polymorphism (SNP genotyping and direct sequencing. We established that there was a QTL for BMD in males on chromosome 15 that has the impact larger than QTLs on all other chromosomes. The QTL on chromosome 15 was narrowed to a genomic region between 38 Mbp and 52 Mbp. By examining transcripts within this region, we found an important candidate gene: trichorhinophalangeal syndrome, type I (Trps1. SNP analysis identified a nonsynonymous SNP (rs32398060 in Trps1 that co-segregated with bone mineral density. Analysis of association between this SNP within TRPS1 and BMD in a human population confirmed its significance.

  20. Effect of Vitex agnus castus L. essential oil on stereological architecture of adrenal glands in female mice

    HAMİDİAN, Gholamreza; MAHMOODİ, Razagh

    2014-01-01

    The adrenal gland is of critical importance for a plethora of biological processes and has a pivotal role in different stages of life. The structure and function of adrenal can be affected by steroid hormones. Vitex agnus-castus L. (VAC) is a phytosterogen shrub and has been used in the treatment of many female conditions such as menstrual disorders in traditional medicine. So, this study was conducted to investigate the effects of VAC essential oil on structure of adrenal glands. In this stu...

  1. Comparison of the eight weeks of supplementation Creatine and Glutamine consumption along with resistance exercise on the level of ALP in female mice

    A eskandari

    2015-11-01

    Full Text Available Background and purpose: in recent years, in order to improve power, speed, the increase in the volume of the musculature, preventing sports injuries and maintain the muscle performance athletes use from different resistance exercises and food supplements. In this regard, present study has been conducted with the aim of comparison the influence of an 8 week period consumption of creatine (2 gr.kg-1.day-1 in 1st week and 0.48 gr.kg-1.day-1during 2nd to 8th weeks and glutamine (1 gr.kg-1.day-1 from first to eighth weeks along with resistance exercise on level of ALP of female mice. Materials and methods: This experimental study was done on 80 Small adult female mice of Surrey species (28 ± 5 gram. The animals were randomly divided into 8 groups of: resistance exercise, resistance exercise + creatine, resistance exercise + glutamine, resistance exercise + glutamine + creatine, creatine, glutamine, creatine + glutamine and control groups (N= 10. Resistance exercise (5 days a week was including: climbing (4 sets, 5 times repetition with two minutes rest between the sets from a ladder (with the height of one meter and including 26 steps and bearing 30 percent of the weight of the Mouse body (hanging from tail in the first week and the increasing it up to 200 percent of body weight till the last week of the experiment. During 48 hours after the last practice session of resistance exercise, the blood sample was taken and the the level of ALP has been measured. Findings:The results showed that the level of ALP enzyme in creatine + glutamine + resistance exercise groug had been increased in comparison with the control group (144.3 ± 15.86 in comparison with 234.7 ± 25.69 U.L-1 P < 0.05. Conclusion: The results of this research indicate Creatine and Glutamine supplementation consumption along with resistance exercise increases in the level of ALP enzyme in the liver of mice.

  2. Effect of Temporary Inactivation of Nucleus Accumbens on Chronic Stress Induced by Electric Shock to the Sole of the Foot in Female NMRI Mice

    F Nicaeili

    2016-04-01

    Full Text Available BACKGROUND AND OBJECTIVE: Activity changes in the neurons of nucleus accumbens during stress have been previously identified. However, the role of nucleus accumbens in diminishing stress-induced side-effects is not fully understood. In this study, we aimed to evaluate the effects of temporary inactivation of nucleus accumbens on stress-induced metabolic changes in female mice. METHODS: This experimental study was performed on 48 female NMRI mice with an average 27±3 g. The nucleus accumbens was unilaterally and bilaterally cannulated. After one week of recovery, 2% lidocaine or saline was administered in mice for four consecutive days (5 min per day before inducing electric shock to the sole of the foot. Plasma corticosterone level, food and water intake, and delay in eating were assessed as stress-induced metabolic parameters. FINDINGS: Stress lonely, caused an increase in plasma corticosterone (17±0.8 compared with the control group (4.5±0.3 (p<0.001. It also, caused an increase delay in eating (%218±9.8, p<0.01 and, decrease water (%80±4.5 and food (%84±5.5 intake (p<0.05. Temporary inactivation of nucleus accumbens did not affect the stress-induced changes in plasma corticosterone, and it suppressed the effect of stress on the amount of water intake; inactivation of the left nucleus accumbens was more effective (%195±7.6, p<0.01. Temporary inactivation of nucleus accumbens neutralized the effect of stress on the amount of food intake. Temporary inactivation of the right nucleus accumbens augmented the effect of stress on delay in eating (%264±10.8, p<0.01, and inactivation of the left nucleus accumbens could suppress this effect. CONCLUSION: It seems that temporary inactivation of nucleus accumbens can be effective in diminishing stress-induced metabolic changes. However, this influence is indicative of asymmetry in the function of right and left nucleus accumbens. 

  3. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice.

    Anchan, Divya; Clark, Sara; Pollard, Kevin; Vasudevan, Nandini

    2014-01-01

    The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17β estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.

  4. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice.

    Fero, M L; Rivkin, M; Tasch, M; Porter, P; Carow, C E; Firpo, E; Polyak, K; Tsai, L H; Broudy, V; Perlmutter, R M; Kaushansky, K; Roberts, J M

    1996-05-31

    Targeted disruption of the murine p27(Kip1) gene caused a gene dose-dependent increase in animal size without other gross morphologic abnormalities. All tissues were enlarged and contained more cells, although endocrine abnormalities were not evident. Thymic hyperplasia was associated with increased T lymphocyte proliferation, and T cells showed enhanced IL-2 responsiveness in vitro. Thus, p27 deficiency may cause a cell-autonomous defect resulting in enhanced proliferation in response to mitogens. In the spleen, the absence of p27 selectively enhanced proliferation of hematopoietic progenitor cells. p27 deletion, like deletion of the Rb gene, uniquely caused neoplastic growth of the pituitary pars intermedia, suggesting that p27 and Rb function in the same regulatory pathway. The absence of p27 also caused an ovulatory defect and female sterility. Maturation of secondary ovarian follicles into corpora lutea, which express high levels of p27, was markedly impaired.

  5. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice.

    Buckley, Jill; Willingham, Emily; Agras, Koray; Baskin, Laurence S

    2006-02-21

    Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors alpha and beta, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females), we measured the lengths of the casts and performed ANOVA analysis on these data. Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias) and masculinizing females (longer urethras). Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen alpha and beta, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor alpha mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor alpha and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl estradiol. The results suggest that

  6. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice

    Baskin Laurence S

    2006-02-01

    Full Text Available Abstract Background Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. Methods We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors α and β, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females, we measured the lengths of the casts and performed ANOVA analysis on these data. Results Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias and masculinizing females (longer urethras. Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen α and β, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor α mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor α and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl

  7. IMPORTANCE OF THE LEPTIN/GRELIN RATIO AS A BIOMARKER IN DIETARY INDUCED HYPERLIPIDEMIA IN FEMALE C57Black/6 MICE

    N. A. Riger

    2018-01-01

    Full Text Available Visceral obesity, dyslipidemia and insulin resistance are considered the main causes of metabolic disorders in metabolic syndrome. Leptin and ghrelin are the most important factors involved in regulation of the metabolic processes. The purpose of this study was to evaluate the significance of leptin-to-ghrelin ratio (L/Gh and cytokine profiles as biomarkers of metabolic and immune disorders in an in vivo model of a dietary induced dyslipidemia in mice.The studies were carried out on 48 female C57Black/6 mice, which were divided into 6 groups of 8 animals. Group 1 (control received the AIN93 diet; group 2, excess fat administration (30% dry weight; the mice from group 3 were supplied with 20% fructose in drinking water added to the main diet; group 4 got fats and fructose excess, group 5, cholesterol excess (0.5% dry weight; group 6 was fed with cholesterol and fructose in excess. Duration of the experiment was 63 days. In all animals, the relative mass of internal organs was determined. The levels of cytokines, leptin and ghrelin in plasma were determined by means of Luminex 200 analyzer using Bio-Plex kits.There were no significant differences for plasma leptin and ghrelin concentrations between the control and most of experimental groups, except of the 6th group (combined diet with excess fructose and cholesterol which a significantly lower leptin levels as compared to the controls (group 6: 2.12 pg/ml, min 1.57 – max 3.83 vs group 1: 3.92 pg/ml, min 2.45 – max 27.88, p < 0.05. The changes in plasma ghrelin contents, depending on the diet, showed a generally opposite trend when compared to leptin levels.The value of L/Gh ratio in mice fed with excess fat (group 2 and cholesterol (group 5 showed a statistically unsignificant trend for increase. Fructose added to a diet with fat or cholesterol excess caused a significant decrease in L/Gh ratio (p < 0.05. In animals of the 6th group (fructose + cholesterol with minimal L/Gh values, the lowest

  8. Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice.

    White, Zoe; Terrill, Jessica; White, Robert B; McMahon, Christopher; Sheard, Phillip; Grounds, Miranda D; Shavlakadze, Tea

    2016-12-13

    There is much interest in the capacity of resistance exercise to prevent the age-related loss of skeletal muscle mass and function, known as sarcopenia. This study investigates the molecular basis underlying the benefits of resistance exercise in aging C57BL/6J mice of both sexes. This study is the first to demonstrate that long-term (34 weeks) voluntary resistance wheel exercise (RWE) initiated at middle age, from 15 months, prevents sarcopenia in selected hindlimb muscles and causes hypertrophy in soleus, by 23 months of age in both male and female C57BL/6J mice. Compared with 23-month-old sedentary (SED) controls, RWE (0-6 g of resistance) increased intramuscular mitochondrial density and oxidative capacity (measured by citrate synthase and NADH-TR) and increased LC3II/I ratios (a marker of autophagy) in exercised mice of both sexes. RWE also reduced mRNA expression of Gadd45α (males only) and Runx1 (females only) but had no effect on other markers of denervation including Chrng, Chrnd, Musk, and Myog. RWE increased heart mass in all mice, with a more pronounced increase in females. Significant sex differences were also noted among SED mice, with Murf1 mRNA levels increasing in male, but decreasing in old female mice between 15 and 23 months. Overall, long-term RWE initiated from 15 month of age significantly improved some markers of the mitochondrial and autophagosomal pathways and prevented age-related muscle wasting.

  9. Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P–diphtheria toxoid conjugate

    Schellenberger, Mario T.; Grova, Nathalie; Farinelle, Sophie; Willième, Stéphanie; Schroeder, Henri; Muller, Claude P.

    2013-01-01

    Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P–diphtheria toxoid (B[a]P–DT) conjugate vaccine were sub-acutely exposed to 2 mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured in 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P–DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P. - Highlights: • B[a]P-antibodies attenuated B[a]P induced NMDA expression in several brain regions. • B[a]P had measurable consequences on anxiety, short term learning and memory. • B[a]P immunization attenuated the pharmacological and neurotoxic effects of B[a]P. • Vaccination may also provide some protection against chemical carcinogenesis

  10. Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN and six weeks of exercise in obese female mice

    Golam Mezbah Uddin

    2016-08-01

    Full Text Available Obesity is well known to be a major cause of several chronic metabolic diseases, which can be partially counteracted by exercise. This is due, in part, to an upregulation of mitochondrial activity through increased nicotinamide adenine dinucleotide (NAD+. Recent studies have shown that NAD+ levels can be increased by using the NAD+ precursor, nicotinamide mononucleotide (NMN leading to the suggestion that NMN could be a useful intervention in diet related metabolic disorders. In this study we compared the metabolic, and especially mitochondrial-associated, effects of exercise and NMN in ameliorating the consequences of high-fat diet (HFD induced obesity in mice. Sixty female 5 week old C57BL6/J mice were allocated across 5 interventions: Chow sedentary: CS; Chow exercise: CEX; HFD sedentary: HS; HFD NMN: HNMN; HFD exercise: HEX (12/group. After 6 weeks of diet, exercise groups underwent treadmill exercise (15 m/min for 45 minutes, 6 days per week for 6 weeks. NMN or vehicle (500 mg/kg body weight was injected (i.p. daily for the last 17 days. No significant alteration in body weight was observed in response to exercise or NMN. The HFD significantly altered adiposity, glucose tolerance, plasma insulin, NADH levels and citrate synthase activity in muscle and liver. HEX and HNMN groups both showed significantly improved glucose tolerance compared to the HS group. NAD+ levels were increased significantly both in muscle and liver by NMN whereas exercise increased NAD+ only in muscle. Both NMN and exercise ameliorated the HFD-induced reduction in liver citrate synthase activity. However, exercise, but not NMN, ameliorated citrate synthase activity in muscle. Overall these data suggest that while exercise and NMN-supplementation can induce similar reversal of the glucose intolerance induced by obesity, they are associated with tissue-specific effects and differential alterations to mitochondrial function in muscle and liver.

  11. Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P–diphtheria toxoid conjugate

    Schellenberger, Mario T.; Grova, Nathalie; Farinelle, Sophie; Willième, Stéphanie [Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Grand-Duchy of Luxembourg (Luxembourg); Schroeder, Henri [University of Nancy, URAFPA, INRA UC340, F-54500 Vandoeuvre-lès-Nancy (France); Muller, Claude P., E-mail: claude.muller@crp-sante.lu [Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Grand-Duchy of Luxembourg (Luxembourg)

    2013-09-01

    Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P–diphtheria toxoid (B[a]P–DT) conjugate vaccine were sub-acutely exposed to 2 mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured in 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P–DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P. - Highlights: • B[a]P-antibodies attenuated B[a]P induced NMDA expression in several brain regions. • B[a]P had measurable consequences on anxiety, short term learning and memory. • B[a]P immunization attenuated the pharmacological and neurotoxic effects of B[a]P. • Vaccination may also provide some protection against chemical carcinogenesis.

  12. Genotypic differences in intruder-evoked immediate early gene activation in male, but not female, vasopressin 1b receptor knockout mice.

    Witchey, Shannah K; Stevenson, Erica L; Caldwell, Heather K

    2016-11-24

    The neuropeptide arginine vasopressin (Avp) modulates social behaviors via its two centrally expressed receptors, the Avp 1a receptor and the Avp 1b receptor (Avpr1b). Recent work suggests that, at least in mice, Avp signaling through Avpr1b within the CA2 region of the hippocampus is critical for normal aggressive behaviors and social recognition memory. However, this brain area is just one part of a larger neural circuit that is likely to be impacted in Avpr1b knockout (-/-) mice. To identify other brain areas that are affected by altered Avpr1b signaling, genotypic differences in immediate early gene activation, i.e. c-FOS and early growth response factor 1 (EGR-1), were quantified using immunocytochemistry following a single exposure to an intruder. In females, no genotypic differences in intruder-evoked c-FOS or EGR-1 immunoreactivity were observed in any of the brain areas measured. In males, while there were no intruder-evoked genotypic differences in c-FOS immunoreactivity, genotypic differences were observed in EGR-1 immunoreactivity within the ventral bed nucleus of the stria terminalis and the anterior hypothalamus; with Avpr1b -/- males having less EGR-1 immunoreactivity in these regions than controls. These data are the first to identify specific brain areas that may be a part of a neural circuit that includes Avpr1b-expressing cells in the CA2 region of the hippocampus. It is thought that this circuit, when working properly, plays a role in how an animal evaluates its social context.

  13. Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing α4-GABAA receptor activity of hippocampal pyramidal cells.

    Wable, G S; Chen, Y-W; Rashid, S; Aoki, C

    2015-12-03

    Adolescent females are particularly vulnerable to mental illnesses with co-morbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel-running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain resistance

  14. A role for progesterone and α4-containing GABAA receptors of hippocampal pyramidal cells in the exacerbated running response of adolescent female mice to repeated food restriction stress

    Wable, Gauri; Chen, Yi-Wen; Rashid, Shannon; Aoki, Chiye

    2015-01-01

    Adolescent females are particularly vulnerable to mental illnesses with comorbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline-runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 expression levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain

  15. Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, a 250-Fold Selective Melanocortin-4 Receptor (MC4R) Antagonist over the Melanocortin-3 Receptor (MC3R), Affects Energy Homeostasis in Male and Female Mice Differently.

    Lensing, Cody J; Adank, Danielle N; Doering, Skye R; Wilber, Stacey L; Andreasen, Amy; Schaub, Jay W; Xiang, Zhimin; Haskell-Luevano, Carrie

    2016-09-21

    The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure. A 7.5 nmol dose of SKY2-23-7 increased food intake, increased RER, and trended toward decreasing energy expenditure in male mice. However, this compound had minimal effect on female mice's food intake and RER at the 7.5 nmol dose. A 2.5 nmol dose of SKY2-23-7 significantly increased female food intake, RER, and energy expenditure while having a minimal effect on male mice at this dose. The observed sex differences of SKY2-23-7 administration result in the discovery of a novel chemical probe for elucidating the molecular mechanisms of the sexual dimorphism present within the melanocortin pathway. To further explore the melanocortin sexual dimorphism, hypothalamic gene expression was examined. The mRNA expression of the MC3R and proopiomelanocortin (POMC) were not significantly different between sexes. However, the expression of agouti-related peptide (AGRP) was significantly higher in female mice which may be a possible mechanism for the sex-specific effects observed with SKY2-23-7.

  16. Discovery of human posterior head 20 (hPH20) and homo sapiens sperm acrosome associated 1 (hSPACA1) immunocontraceptive epitopes and their effects on fertility in male and female mice.

    Chen, Xuemei; Liu, Xiaodong; Ren, Xiuhua; Li, Xuewu; Wang, Li; Zang, Weidong

    2016-03-01

    The key goals of immunocontraception research are to obtain full contraceptive effects using vaccines administered to both males and females. Current research concerning human anti-sperm contraceptive vaccines is focused on delineating infertility-related epitopes to avoid autoimmune disease. We constructed phage-display peptide libraries to select epitope peptides derived from human posterior head 20 (hPH20) and homo sapiens sperm acrosome associated 1 (hSPACA1) using sera collected from infertile women harbouring anti-sperm antibodies. Following five rounds of selection, positive colonies were reconfirmed for reactivity with the immunoinfertile sera. We biopanned and analysed the chemical properties of four epitope peptides, named P82, Sa6, Sa37 and Sa76. Synthetic peptides were made and coupled to either bovine serum albumin (BSA) or ovalbumin. We used the BSA-conjugated peptides to immunise BALB/c mice and examined the effects on fertility in female and male mice. The synthetic peptides generated a sperm-specific antibody response in female and male mice that caused a contraceptive state. The immunocontraceptive effect was reversible and, with the disappearance of peptide-specific antibodies, there was complete restoration of fertility. Vaccinations using P82, Sa6 and Sa76 peptides resulted in no apparent side effects. Thus, it is efficient and practical to identify epitope peptide candidates by phage display. These peptides may find clinical application in the specific diagnosis and treatment of male and female infertility and contraceptive vaccine development.

  17. Effects of chronic inhalation of electronic cigarettes containing nicotine on glial glutamate transporters and α-7 nicotinic acetylcholine receptor in female CD-1 mice.

    Alasmari, Fawaz; Crotty Alexander, Laura E; Nelson, Jessica A; Schiefer, Isaac T; Breen, Ellen; Drummond, Christopher A; Sari, Youssef

    2017-07-03

    Alteration in glutamate neurotransmission has been found to mediate the development of drug dependence, including nicotine. We and others, through using western blotting, have reported that exposure to drugs of abuse reduced the expression of glutamate transporter-1 (GLT-1) as well as cystine/glutamate antiporter (xCT), which consequently increased extracellular glutamate concentrations in the mesocorticolimbic area. However, our previous studies did not reveal any changes in glutamate/aspartate transporter (GLAST) following exposure to drugs of abuse. In the present study, for the first time, we investigated the effect of chronic exposure to electronic (e)-cigarette vapor containing nicotine, for one hour daily for six months, on GLT-1, xCT, and GLAST expression in frontal cortex (FC), striatum (STR), and hippocampus (HIP) in outbred female CD1 mice. In this study, we also investigated the expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), a major pre-synaptic nicotinic receptor in the glutamatergic neurons, which regulates glutamate release. We found that inhalation of e-cigarette vapor for six months increased α-7 nAChR expression in both FC and STR, but not in the HIP. In addition, chronic e-cigarette exposure reduced GLT-1 expression only in STR. Moreover, e-cigarette vapor inhalation induced downregulation of xCT in both the STR and HIP. We did not find any significant changes in GLAST expression in any brain region. Finally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques, we detected high concentrations of nicotine and cotinine, a major metabolite of nicotine, in the FC tissues of e-cigarette exposed mice. These data provide novel evidence about the effects of chronic nicotine inhalation on the expression of key glial glutamate transporters as well as α-7 nAChR. Our work may suggest that nicotine exposure via chronic inhalation of e-cigarette vapor may be mediated in part by alterations in the glutamatergic

  18. Voluntary Exercise Improves Estrous Cyclicity in Prenatally Androgenized Female Mice Despite Programming Decreased Voluntary Exercise: Implications for Polycystic Ovary Syndrome (PCOS).

    Homa, Lori D; Burger, Laura L; Cuttitta, Ashley J; Michele, Daniel E; Moenter, Suzanne M

    2015-12-01

    Prenatal androgen (PNA) exposure in mice produces a phenotype resembling lean polycystic ovary syndrome. We studied effects of voluntary exercise on metabolic and reproductive parameters in PNA vs vehicle (VEH)-treated mice. Mice (8 wk of age) were housed individually and estrous cycles monitored. At 10 weeks of age, mice were divided into groups (PNA, PNA-run, VEH, VEH-run, n = 8-9/group); those in the running groups received wheels allowing voluntary running. Unexpectedly, PNA mice ran less distance than VEH mice; ovariectomy eliminated this difference. In ovary-intact mice, there was no difference in glucose tolerance, lower limb muscle fiber types, weight, or body composition among groups after 16 weeks of running, although some mitochondrial proteins were mildly up-regulated by exercise in PNA mice. Before running, estrous cycles in PNA mice were disrupted with most days in diestrus. There was no change in cycles during weeks 1-6 of running (10-15 wk of age). In contrast, from weeks 11 to 16 of running, cycles in PNA mice improved with more days in proestrus and estrus and fewer in diestrus. PNA programs reduced voluntary exercise, perhaps mediated in part by ovarian secretions. Exercise without weight loss improved estrous cycles, which if translated could be important for fertility in and counseling of lean women with polycystic ovary syndrome.

  19. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice.

    McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C

    2011-07-01

    DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (pmethylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The effect of diet, exercise, and 7,12-dimethylbenz(a)anthracene on food intake, body composition, and carcass energy levels in virgin female BALB/c mice

    Lane, Helen W.; Keith, Robert E.; Strahan, Susan; White, Marguerite T.

    1991-01-01

    The effects of diet, exercise, and 7,12-dimethylbenz(a)anthracene (DMBA), a mammary-tumor carcinogen, on food intake, energy consumption, body weight, and body composition in virgin female BALB/c mice are investigated. Diet, exercise, and DMBA all had pronounced effects on energy consumption, which in turn affected body composition. These treatments may influence manifestations of breast cancer via their effects on body composition.

  1. Gene expression of hematoregulatory cytokines is elevated endogenously after sublethal gamma irradiation and is differentially enhanced by therapeutic administration of biologic response modifiers

    Peterson, V.M.; Adamovicz, J.J.; Madonna, G.S.; Gause, W.C.; Elliott, T.B.; Moore, M.M.; Ledney, G.D.; Jackson, W.E. III

    1994-01-01

    Prompt, cytokine-mediated restoration of hematopoiesis is a prerequisite for survival after irradiation. Therapy with biologic response modifiers (BRMs), such as LPS, 3D monophosphoryl lipid A (MPL), and synthetic trehalose dicrynomycolate (S-TDCM) presumably accelerates hematopoietic recovery after irradiation are poorly defined. One hour after sublethal (7.0 Gy) 60 Co gamma irradiation, B6D2F1/J female mice received a single i.p. injection of LPS, MPL, S-TDCM, an extract from Serratia marcescens (Sm-BRM), or Tween 80 in saline (TS). Five hours later, a quantitative reverse transcription-PCR assay demonstrated marked splenic gene expression for IL-1β, IL-3, IL-6, and granulocyte-CSF (G-CSF). Enhanced gene expression for TNF-α, macrophage-CSF (M-CSF), and stem cell factor (SCF) was not detected. Injection of any BRM further enhanced cytokine gene expression and plasma levels of CSF activity within 24 h after irradiation and hastened bone marrow recovery. Mice injected with S-TDCM or Sm-BRM sustained expression of the IL-6 gene for at least 24 h after irradiation. Sm-BRM-treated mice exhibited greater gene expression for IL-1β, IL-3, TNF-α, and G-CSF at day 1 than any other BRM. When challenged with 2 LD 50/30 of Klebsiella pneumoniae 4 days after irradiation, 100% of Sm-BRM-treated mice and 70% of S-TDCM-treated mice survived, whereas ≤30% of mice treated with LPS, MPL, or TS survived. Thus, sublethal irradiation induces transient, splenic cytokine gene expression that can be differentially amplified and prolonged by BRMs. BRMs that sustained and/or enhanced irradiation-induced expression of specific cytokine genes improved survival after experimental infection. 67 refs., 7 figs., 1 tab

  2. An Exploration of Molecular Correlates Relevant to Radiation Combined Skin-Burn Trauma.

    Aminul Islam

    Full Text Available Exposure to high dose radiation in combination with physical injuries such as burn or wound trauma can produce a more harmful set of medical complications requiring specialist interventions. Currently these interventions are unavailable as are the precise biomarkers needed to help both accurately assess and treat such conditions. In the present study, we tried to identify and explore the possible role of serum exosome microRNA (miRNA signatures as potential biomarkers for radiation combined burn injury (RCBI.Female B6D2F1/J mice were assigned to four experimental groups (n = 6: sham control (SHAM, burn injury (BURN, radiation injury (RI and combined radiation skin burn injury (CI. We performed serum multiplex cytokine analysis and serum exosome miRNA expression profiling to determine novel miRNA signatures and important biological pathways associated with radiation combined skin-burn trauma.Serum cytokines, IL-5 and MCP-1, were significantly induced only in CI mice (p<0.05. From 890 differentially expressed miRNAs identified, microarray analysis showed 47 distinct miRNA seed sequences significantly associated with CI mice compared to SHAM control mice (fold change ≥ 1.2, p<0.05. Furthermore, only two major miRNA seed sequences (miR-690 and miR-223 were validated to be differentially expressed for CI mice specifically (fold change ≥ 1.5, p<0.05.Serum exosome miRNA signature data of adult mice, following RCBI, provides new insights into the molecular and biochemical pathways associated with radiation combined skin-burn trauma in vivo.

  3. Synthetic trehalose dicorynomycolate (S-TDCM). Behavioral effects and radioprotection

    Landauer, M.R.; Mcchesney, D.G.; Ledney, G.D.

    1997-01-01

    This study evaluated synthetic trehalose dicorynomycolate (S-TDCM), an immunomodulator, for its survival enhancing capacity and behavioral toxicity in B6D2F1 female mice. In survival experiments, mice were administered S-TDCM (25-400 μg/mouse i.p.) 20-24 hr before 5.6 Gy mixed-field fission-neutron irradiation (n) and γ-photon irradiation. The 30-day survival rates for mice treated with 100-400 μg/mouse S-TDCM were significantly enhanced compared to controls. Toxicity of S-TDCM was measured in nonirradiated mice by locomotor activity, food intake, water consumption, and alterations in body weight. A dose-dependent decrease was noted in all behavioral measures in mice treated with S-TDCM. Doses of 100 and 200 μg/mouse S-TDCM significantly reduced motor activity beginning 12 hr postinjection with recovery by 24 hr. A dose of 400 μg/mouse significantly decreased activity within the first 4 hr after administration and returned to control levels by 32 hr following injection. Food and water intake were significantly depressed at doses of 200 and 400 μg/mouse on the day following drug administration, and were recovered in 24 hr. Body weight was significantly decreased in the 200 μg/mouse group for 2 days and in the 400 μg/mouse group for 4 days following injection. A dose of 100 μg/mouse effectively enhanced survival after fission-neutron irradiation with no adverse effect on food consumption, water intake, or body weight and a minimal, short-term effect on locomotor activity. (author)

  4. Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPKα-Mediated Pathway.

    Sun, Quancai; Qi, Weipeng; Xiao, Xiao; Yang, Szu-Hao; Kim, Daeyoung; Yoon, Kyong Sup; Clark, John M; Park, Yeonhwa

    2017-08-09

    Imidacloprid, a neonicotinoid insecticide, was previously reported to enhance adipogenesis and resulted in insulin resistance in cell culture models. It was also reported to promote high fat diet-induced obesity and insulin resistance in male C57BL/6J mice. Thus, the goal of the present study was to determine the effects of imidacloprid and dietary fat interaction on the development of adiposity and insulin resistance in female C57BL/6J mice. Mice were fed with a low (4% w/w) or high fat (20% w/w) diet containing imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) for 12 weeks. Mice fed with imidacloprid (0.6 mg/kg bw/day) significantly enhanced high fat diet-induced weight gain and adiposity. Treatment with imidacloprid significantly increased serum insulin levels with high fat diet without effects on other markers of glucose homeostasis. AMPKα activation was significantly inhibited by 0.6 and 6 mg imidacloprid/kg bw/day in white adipose tissue. Moreover, AMPKα activation with 5-aminoimidazole-4-carboxamide ribonucleotide abolished the effects of imidacloprid (10 μM) on enhanced adipogenesis in 3T3-L1 adipocytes. N-Acetyl cysteine also partially reversed the effects of imidacloprid on reduced phosphorylation of protein kinase B (AKT) in C2C12 myotubes. These results indicate that imidacloprid may potentiate high fat diet-induced adiposity in female C57BL/6J mice and enhance adipogenesis in 3T3-L1 adipocytes via the AMPKα-mediated pathway. Imidacloprid might also influence glucose homeostasis partially by inducing cellular oxidative stress in C2C12 myotubes.

  5. The probiotic mixture VSL#3 has differential effects on intestinal immune parameters in healthy female BALB/c and C57BL/6 mice

    Mariman, R.; Tielen, F.; Koning, F.; Nagelkerken, L.

    2015-01-01

    Background: Probiotic bacteria may render mice resistant to the development of various inflammatory and infectious diseases. Objective: This study aimed to identify mechanisms by which probiotic bacteria may influence intestinal immune homeostasis in noninflammatory conditions. Methods: The effect

  6. Supplementation of Mice with Specific Nondigestible Oligosaccharides during Pregnancy or Lactation Leads to Diminished Sensitization and Allergy in the Female Offspring

    Hogenkamp, Astrid; Knippels, Leon M J; Garssen, Johan; van Esch, Betty C A M

    2015-01-01

    BACKGROUND: The maternal environment and early life exposure affect immune development in offspring. OBJECTIVE: We investigated whether development of food allergy in offspring is affected by supplementing pregnant or lactating sensitized or nonsensitized mice with a mixture of nondigestible

  7. Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice.

    Shen, Erica Y; Ahern, Todd H; Cheung, Iris; Straubhaar, Juerg; Dincer, Aslihan; Houston, Isaac; de Vries, Geert J; Akbarian, Schahram; Forger, Nancy G

    2015-06-01

    Many neurological and psychiatric disorders exhibit gender disparities, and sex differences in the brain likely explain some of these effects. Recent work in rodents points to a role for epigenetics in the development or maintenance of neural sex differences, although genome-wide studies have so far been lacking. Here we review the existing literature on epigenetics and brain sexual differentiation and present preliminary analyses on the genome-wide distribution of histone-3 lysine-4 trimethylation in a sexually dimorphic brain region in male and female mice. H3K4me3 is a histone mark primarily organized as 'peaks' surrounding the transcription start site of active genes. We microdissected the bed nucleus of the stria terminalis and preoptic area (BNST/POA) in adult male and female mice and used ChIP-Seq to compare the distribution of H3K4me3 throughout the genome. We found 248 genes and loci with a significant sex difference in H3K4me3. Of these, the majority (71%) had larger H3K4me3 peaks in females. Comparisons with existing databases indicate that genes and loci with increased H3K4me3 in females are associated with synaptic function and with expression atlases from related brain areas. Based on RT-PCR, only a minority of genes with a sex difference in H3K4me3 has detectable sex differences in expression at baseline conditions. Together with previous findings, our data suggest that there may be sex biases in the use of epigenetic marks. Such biases could underlie sex differences in vulnerabilities to drugs or diseases that disrupt specific epigenetic processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Blood pharmacokinetics of tertiary amyl methyl ether in male and female F344 rats and CD-1 mice after nose-only inhalation exposure.

    Sumner, Susan C J; Janszen, Derek B; Asgharian, Bahman; Moore, Timothy A; Bobbitt, Carol M; Fennell, Timothy R

    2003-01-01

    Interest in understanding the biological behavior of aliphatic ethers has increased owing to their use as gasoline additives. The purpose of this study was to investigate the blood pharmacokinetics of the oxygenate tertiary amyl methyl ether (TAME), its major metabolite tertiary amyl alcohol (TAA) and acetone in rats and mice following inhalation exposure to TAME. Species differences in the area under the curve (AUC) for TAME were significant at each exposure concentration. For rats, the blood TAME AUC increased in proportion with an increase in exposure concentration. For mice, an increase in exposure concentration (100-500 ppm) resulted in a disproportional increase in the TAME AUC. Mice had greater (two- to threefold) blood concentrations of TAA compared with rats following exposure to 2500 or 500 ppm TAME. Mice had a disproportional increase in the TAA AUC with an increase in exposure concentration (100-500 ppm). This difference could result from saturation of a process (e.g. oxidation, glucuronide conjugation) that is involved in the further metabolism of TAA. For each species, gender and exposure concentration, acetone increased during exposure and returned to control values by 16 h following exposure. The source of acetone could be both as a metabolite of TAA or an effect on endogenous metabolism produced by exposure to TAME. Copyright 2003 John Wiley & Sons, Ltd.

  9. A novel role for dopamine signaling in the pathogenesis of bone loss from the atypical antipsychotic drug risperidone in female mice.

    Motyl, Katherine J; Beauchemin, Megan; Barlow, Deborah; Le, Phuong T; Nagano, Kenichi; Treyball, Annika; Contractor, Anisha; Baron, Roland; Rosen, Clifford J; Houseknecht, Karen L

    2017-10-01

    Atypical antipsychotic (AA) drugs, including risperidone (RIS), are used to treat schizophrenia, bipolar disorder, and autism, and are prescribed off-label for other mental health issues. AA drugs are associated with severe metabolic side effects of obesity and type 2 diabetes. Cross-sectional and longitudinal data also show that risperidone causes bone loss and increases fracture risk in both men and women. There are several potential mechanisms of bone loss from RIS. One is hypogonadism due to hyperprolactinemia from dopamine receptor antagonism. However, many patients have normal prolactin levels; moreover we demonstrated that bone loss from RIS in mice can be blocked by inhibition of β-adrenergic receptor activation with propranolol, suggesting the sympathetic nervous system (SNS) plays a pathological role. Further, when, we treated ovariectomized (OVX) and sham operated mice daily for 8weeks with RIS or vehicle we demonstrated that RIS causes significant trabecular bone loss in both sham operated and OVX mice. RIS directly suppressed osteoblast number in both sham and OVX mice, but increased osteoclast number and surface in OVX mice alone, potentially accounting for the augmented bone loss. Thus, hypogonadism alone cannot explain RIS induced bone loss. In the current study, we show that dopamine and RIS are present in the bone marrow compartment and that RIS can exert its effects directly on bone cells via dopamine receptors. Our findings of both direct and indirect effects of AA drugs on bone are relevant for current and future clinical and translational studies investigating the mechanism of skeletal changes from AA drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Strain- and sex-dependent circadian changes in abcc2 transporter expression: implications for irinotecan chronotolerance in mouse ileum.

    Alper Okyar

    Full Text Available ATP-binding cassette transporter abcc2 is involved in the cellular efflux of irinotecan. The drug is toxic for mouse ileum, where abcc2 is highly expressed. Here, we investigate whether circadian changes in local abcc2 expression participate in the circadian rhythm of irinotecan toxicity for ileum mucosa, and further assess whether genetic background or sex modify this relation.Ileum mucosa was obtained every 3-4 h for 24 h in male and female B6D2F(1 and B6CBAF(1 mice synchronized with light from Zeitgeber Time (ZT0 to ZT12 alternating with 12 h of darkness. Irinotecan (50 mg/kg i.v. daily for 4 days was administered at the sex- and strain-specific times corresponding to least (ZT11-15 or largest drug-induced body weight loss (ZT23-03-07. Abcc2 expression was determined with qRT-PCR for mRNA and with immunohistochemistry and confocal microscopy for protein. Histopathologic lesions were graded in ileum tissues obtained 2, 4 or 6 days after treatment. Two- to six-fold circadian changes were demonstrated for mRNA and protein mean expressions of abcc2 in mouse ileum (p<0.05. ZT12 corresponded to high mRNA and protein expressions, with circadian waveforms differing according to genetic background and sex. The proportion of mice spared from ileum lesions varied three-fold according to irinotecan timing, with best tolerability at ZT11-15 (p = 0.00003. Irinotecan was also best tolerated in males (p = 0.05 and in B6CBAF(1 (p = 0.0006.Strain- and sex-dependent circadian patterns in abcc2 expressions displayed robust relations with the chronotolerance of ileum mucosa for irinotecan. This finding has strong potential implications for improving the intestinal tolerability of anticancer drugs through circadian delivery.

  11. Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: Relevance for sex differences in stress-related disorders.

    Shepard, Ryan; Page, Chloe E; Coutellier, Laurence

    2016-09-22

    Stress-induced modifications of the prefrontal cortex (PFC) are believed to contribute to the onset of mood disorders, such as depression and anxiety, which are more prevalent in women. In depression, the PFC is hypoactive; however the origin of this hypoactivity remains unclear. Possibly, stress could impact the prefrontal GABAergic inhibitory system that, as a result, impairs the functioning of downstream limbic structures controlling emotions. Preclinical evidence indicates that the female PFC is more sensitive to the effects of stress. These findings suggest that exposure to stress could lead to sex-specific alterations in prefrontal GABAergic signaling, which contribute to sex-specific abnormal functioning of limbic regions. These limbic changes could promote the onset of depressive and anxiety behaviors in a sex-specific manner, providing a possible mechanism mediating sex differences in the clinical presentation of stress-related mood disorders. We addressed this hypothesis using a mouse model of stress-induced depressive-like behaviors: the unpredictable chronic mild stress (UCMS) paradigm. We observed changes in prefrontal GABAergic signaling after exposure to UCMS most predominantly in females. Increased parvalbumin (PV) expression and decreased prefrontal neuronal activity were correlated in females with severe emotionality deficit following UCMS, and with altered activity of the amygdala. In males, small changes in emotionality following UCMS were associated with minor changes in prefrontal PV expression, and with hypoactivity of the nucleus accumbens. Our data suggest that prefrontal hypoactivity observed in stress-related mood disorders could result from stress-induced increases in PV expression, particularly in females. This increased vulnerability of the female prefrontal PV system to stress could underlie sex differences in the prevalence and symptomatology of stress-related mood disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All

  12. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice.

    Phumsatitpong, Chayarndorn; Moenter, Suzanne M

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.

  13. Protein adducts of malondialdehyde and 4-hydroxynonenal contribute to trichloroethene-mediated autoimmunity via activating Th17 cells: Dose– and time–response studies in female MRL+/+ mice

    Wang, Gangduo; Wang, Jianling; Fan, Xiuzhen; Ansari, G.A.S.; Khan, M. Firoze

    2012-01-01

    Highlights: ► TCE exposure led to dose- and time-related increases in MDA-/HNE-protein adducts and their antibodies. ► Increased MDA-/HNE-adducts were associated with increases in serum autoantibodies. ► MDA-/HNE-albumin adducts trigger greater release of IL-17 and IL-21 from splenocytes of TCE-treated mice. ► Results support that MDA-/HNE-modified proteins could contribute to an autoimmune response. -- Abstract: Trichloroethene (TCE), a common occupational and environmental toxicant, is known to induce autoimmunity. Previous studies in our laboratory showed increased oxidative stress in TCE-mediated autoimmunity. To further establish the role of oxidative stress and to investigate the mechanisms of TCE-mediated autoimmunity, dose– and time–response studies were conducted in MRL+/+ mice by treating them with TCE via drinking water at doses of 0.5, 1.0 or 2.0 mg/ml for 12, 24 or 36 weeks. TCE exposure led to dose-related increases in malondialdehyde (MDA)-/hydroxynonenal (HNE)-protein adducts and their corresponding antibodies in the sera and decreases in GSH and GSH/GSSG ratio in the kidneys at 24 and 36 weeks, with greater changes at 36 weeks. The increases in these protein adducts and decreases in GSH/GSSG ratio were associated with significant elevation in serum anti-nuclear- and anti-ssDNA-antibodies, suggesting an association between TCE-induced oxidative stress and autoimmune response. Interestingly, splenocytes from mice treated with TCE for 24 weeks secreted significantly higher levels of IL-17 and IL-21 than did splenocytes from controls after stimulation with MDA-mouse serum albumin (MSA) or HNE-MSA adducts. The increased release of these cytokines showed a dose-related response and was more pronounced in mice treated with TCE for 36 weeks. These studies provide evidence that MDA- and or HNE-protein adducts contribute to TCE-mediated autoimmunity, which may be via activation of Th17 cells.

  14. Differential exposure and acute health impacts of inhaled solid-fuel emissions from rudimentary and advanced cookstoves in female CD-1 mice.

    Gibbs-Flournoy, Eugene A; Gilmour, M Ian; Higuchi, Mark; Jetter, James; George, Ingrid; Copeland, Lisa; Harrison, Randy; Moser, Virginia C; Dye, Janice A

    2018-02-01

    There is an urgent need to provide access to cleaner end user energy technologies for the nearly 40% of the world's population who currently depend on rudimentary cooking and heating systems. Advanced cookstoves (CS) are designed to cut emissions and solid-fuel consumption, thus reducing adverse human health and environmental impacts. We hypothesized that, compared to a traditional (Tier 0) three-stone (3-S) fire, acute inhalation of solid-fuel emissions from advanced natural-draft (ND; Tier 2) or forced-draft (FD; Tier 3) stoves would reduce exposure biomarkers and lessen pulmonary and innate immune system health effects in exposed mice. Across two simulated cooking cycles (duration ~ 3h), emitted particulate mass concentrations were reduced 80% and 62% by FD and ND stoves, respectively, compared to the 3-S fire; with corresponding decreases in particles visible within murine alveolar macrophages. Emitted carbon monoxide was reduced ~ 90% and ~ 60%, respectively. Only 3-S-fire-exposed mice had increased carboxyhemoglobin levels. Emitted volatile organic compounds were FD ≪ 3-S-fire ≤ ND stove; increased expression of genes involved in xenobiotic metabolism (COX-2, NQO1, CYP1a1) was detected only in ND- and 3-S-fire-exposed mice. Diminished macrophage phagocytosis was observed in the ND group. Lung glutathione was significantly depleted across all CS groups, however the FD group had the most severe, ongoing oxidative stress. These results are consistent with reports associating exposure to solid fuel stove emissions with modulation of the innate immune system and increased susceptibility to infection. Lower respiratory infections continue to be a leading cause of death in low-income economies. Notably, 3-S-fire-exposed mice were the only group to develop acute lung injury, possibly because they inhaled the highest concentrations of hazardous air toxicants (e.g., 1,3-butadiene, toluene, benzene, acrolein) in association with the greatest number of particles, and

  15. Photobiomodulation induced by 670 nm light ameliorates MOG35-55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress.

    Kamaldeen A Muili

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is the most commonly studied animal model of multiple sclerosis (MS, a chronic autoimmune demyelinating disorder of the central nervous system. Immunomodulatory and immunosuppressive therapies currently approved for the treatment of MS slow disease progression, but do not prevent it. A growing body of evidence suggests additional mechanisms contribute to disease progression. We previously demonstrated the amelioration of myelin oligodendrocyte glycoprotein (MOG-induced EAE in C57BL/6 mice by 670 nm light-induced photobiomodulation, mediated in part by immune modulation. Numerous other studies demonstrate that near-infrared/far red light is therapeutically active through modulation of nitrosoxidative stress. As nitric oxide has been reported to play diverse roles in EAE/MS, and recent studies suggest that axonal loss and progression of disability in MS is mediated by nitrosoxidative stress, we investigated the effect of 670 nm light treatment on nitrosative stress in MOG-induced EAE.Cell culture experiments demonstrated that 670 nm light-mediated photobiomodulation attenuated antigen-specific nitric oxide production by heterogenous lymphocyte populations isolated from MOG immunized mice. Experiments in the EAE model demonstrated down-regulation of inducible nitric oxide synthase (iNOS gene expression in the spinal cords of mice with EAE over the course of disease, compared to sham treated animals. Animals receiving 670 nm light treatment also exhibited up-regulation of the Bcl-2 anti-apoptosis gene, an increased Bcl-2:Bax ratio, and reduced apoptosis within the spinal cord of animals over the course of disease. 670 nm light therapy failed to ameliorate MOG-induced EAE in mice deficient in iNOS, confirming a role for remediation of nitrosative stress in the amelioration of MOG-induced EAE by 670 nm mediated photobiomodulation.These data indicate that 670 nm light therapy protects against nitrosative

  16. Chronic moderate ethanol intake differentially regulates vitamin D hydroxylases gene expression in kidneys and xenografted breast cancer cells in female mice.

    García-Quiroz, Janice; García-Becerra, Rocío; Lara-Sotelo, Galia; Avila, Euclides; López, Sofía; Santos-Martínez, Nancy; Halhali, Ali; Ordaz-Rosado, David; Barrera, David; Olmos-Ortiz, Andrea; Ibarra-Sánchez, María J; Esparza-López, José; Larrea, Fernando; Díaz, Lorenza

    2017-10-01

    Factors affecting vitamin D metabolism may preclude anti-carcinogenic effects of its active metabolite calcitriol. Chronic ethanol consumption is an etiological factor for breast cancer that affects vitamin D metabolism; however, the mechanisms underlying this causal association have not been fully clarified. Using a murine model, we examined the effects of chronic moderate ethanol intake on tumoral and renal CYP27B1 and CYP24A1 gene expression, the enzymes involved in calcitriol synthesis and inactivation, respectively. Ethanol (5% w/v) was administered to 25-hydroxyvitamin D 3 -treated or control mice during one month. Afterwards, human breast cancer cells were xenografted and treatments continued another month. Ethanol intake decreased renal Cyp27b1 while increased tumoral CYP24A1 gene expression.Treatment with 25-hydroxyvitamin D 3 significantly stimulated CYP27B1 in tumors of non-alcohol-drinking mice, while increased both renal and tumoral CYP24A1. Coadministration of ethanol and 25-hydroxyvitamin D 3 reduced in 60% renal 25-hydroxyvitamin D 3 -dependent Cyp24a1 upregulation (Pintake decreases renal and tumoral 25-hydroxyvitamin D 3 bioconversion into calcitriol, while favors degradation of both vitamin D metabolites in breast cancer cells. The latter may partially explain why alcohol consumption is associated with vitamin D deficiency and increased breast cancer risk and progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility

  18. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  19. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice

    Anchan, Divya; Clark, Sara; Pollard, Kevin; Vasudevan, Nandini

    2014-01-01

    The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17beta estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improv...

  20. Chronic low-level arsenite exposure through drinking water increases blood pressure and promotes concentric left ventricular hypertrophy in female mice.

    Sanchez-Soria, Pablo; Broka, Derrick; Monks, Sarah L; Camenisch, Todd D

    2012-04-01

    Cardiovascular disease is the leading cause of death in the United States and worldwide. High incidence of cardiovascular diseases has been linked to populations with elevated arsenic content in their drinking water. Although this correlation has been established in many epidemiological studies, a lack of experimental models to study mechanisms of arsenic-related cardiovascular pathogenesis has limited our understanding of how arsenic exposure predisposes for development of hypertension and increased cardiovascular mortality. Our studies show that mice chronically exposed to drinking water containing 100 parts per billion (ppb) sodium arsenite for 22 weeks show an increase in both systolic and diastolic blood pressure. Echocardiographic analyses as well as histological assessment show concentric left ventricular hypertrophy, a primary cardiac manifestation of chronic hypertension. Live imaging by echocardiography shows a 43% increase in left ventricular mass in arsenic-treated animals. Relative wall thickness (RWT) was calculated showing that all the arsenic-exposed animals show an RWT greater than 0.45, indicating concentric hypertrophy. Importantly, left ventricular hypertrophy, although often associated with chronic hypertension, is an independent risk factor for cardiovascular-related mortalities. These results suggest that chronic low-level arsenite exposure promotes the development of hypertension and the comorbidity of concentric hypertrophy.

  1. Positive environmental modification of depressive phenotype and abnormal hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinence from chronic ethanol consumption

    Terence Y Pang

    2013-07-01

    Full Text Available Depression is a commonly reported co-morbidity during rehabilitation from alcohol use disorders and its presence is associated with an increased likelihood of relapse. Interventions which impede the development of depression could be of potential benefit if incorporated into treatment programs. We previously demonstrated an ameliorative effect of physical exercise on depressive behaviours in a mouse model of alcohol abstinence. Here, we show that environmental enrichment (cognitive and social stimulation has a similar beneficial effect. The hypothalamic-pituitary-adrenal (HPA axis is a key physiological system regulating stress responses and its dysregulation has been separably implicated in the pathophysiology of depression and addiction disorders. We performed a series of dexamethasone challenges and found that mice undergoing 2 weeks of alcohol abstinence had significantly greater corticosterone and ACTH levels following a DEX-CRH challenge compared to water controls. Environmental enrichment during alcohol abstinence corrected the abnormal DEX-CRH corticosterone response despite a further elevation of ACTH levels. Examination of gene expression revealed abstinence-associated alterations in glucocorticoid receptor (Gr, corticotrophin releasing hormone (Crh and pro-opiomelanocortin (Pomc1 mRNA levels which were differentially modulated by environmental enrichment. Overall, our study demonstrates a benefit of environmental enrichment on alcohol abstinence-associated depressive behaviours and HPA axis dysregulation.

  2. Administration of the Antioxidant N-Acetyl-Cysteine in Pregnant Mice Has Long-Term Positive Effects on Metabolic and Behavioral Endpoints of Male and Female Offspring Prenatally Exposed to a High-Fat Diet

    Alessandra Berry

    2018-03-01

    Full Text Available A growing body of evidence suggests the consumption of high-fat diet (HFD during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS, might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery and were exposed to the N-acetyl-cysteine (NAC antioxidant from 10-weeks of age until right before delivery. Body weight of the offspring was assessed following birth, up to weaning and at adulthood. The metabolic, neuroendocrine and emotional profile of the adult offspring was tested at 3-months of age. Prenatal HFD increased mother’s body weight and offspring’s weight at the time of weaning, when administered in conjunction with NAC. In females, NAC administration reduced high levels of leptin resulting from prenatal HFD. Prenatal NAC administration also resulted in greater glucose tolerance and insulin sensitivity while increasing adiponectin levels, as well as increasing exploratory behavior, an effect accompanied by reduced plasma corticosterone levels in response to restraint stress. Analysis of glutathione levels in the hypothalamus and in brown adipose tissue indicates that, while HFD administration to pregnant dams led to reduced levels of glutathione in the offspring, as in the male hypothalamus, NAC was able to revert this effect and to increase glutathione levels both in the periphery (Brown Adipose Tissue, both males and females and in the central nervous system (males. Overall, results from this study indicate that the body redox milieu should be tightly regulated during fetal life and that buffering OS during pregnancy can have important

  3. Administration of the Antioxidant N-Acetyl-Cysteine in Pregnant Mice Has Long-Term Positive Effects on Metabolic and Behavioral Endpoints of Male and Female Offspring Prenatally Exposed to a High-Fat Diet.

    Berry, Alessandra; Bellisario, Veronica; Panetta, Pamela; Raggi, Carla; Magnifico, Maria C; Arese, Marzia; Cirulli, Francesca

    2018-01-01

    A growing body of evidence suggests the consumption of high-fat diet (HFD) during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS), might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy) on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery) and were exposed to the N-acetyl-cysteine (NAC) antioxidant from 10-weeks of age until right before delivery. Body weight of the offspring was assessed following birth, up to weaning and at adulthood. The metabolic, neuroendocrine and emotional profile of the adult offspring was tested at 3-months of age. Prenatal HFD increased mother's body weight and offspring's weight at the time of weaning, when administered in conjunction with NAC. In females, NAC administration reduced high levels of leptin resulting from prenatal HFD. Prenatal NAC administration also resulted in greater glucose tolerance and insulin sensitivity while increasing adiponectin levels, as well as increasing exploratory behavior, an effect accompanied by reduced plasma corticosterone levels in response to restraint stress. Analysis of glutathione levels in the hypothalamus and in brown adipose tissue indicates that, while HFD administration to pregnant dams led to reduced levels of glutathione in the offspring, as in the male hypothalamus, NAC was able to revert this effect and to increase glutathione levels both in the periphery (Brown Adipose Tissue, both males and females) and in the central nervous system (males). Overall, results from this study indicate that the body redox milieu should be tightly regulated during fetal life and that buffering OS during pregnancy can have important long

  4. Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice.

    Cleary-Gaffney, Michael; Coogan, Andrew N

    2018-05-15

    Circadian rhythms are recurring patterns in a range of behavioural, physiological and molecular parameters that display periods of near 24 h, and are underpinned by an endogenous biological timekeeping system. Circadian clocks are increasingly recognised as being key for health. Environmental light is the key stimulus that synchronises the internal circadian system with the external time cues. There are emergent health concerns regarding increasing worldwide prevalence of electric lighting, especially man-made light-at-night, and light's impact on the circadian system may be central to these effects. A number of previous studies have demonstrated increased depression-like behaviour in various rodent experimental models exposed to dim light-at-night. In this study we set out to study the impact of dim light-at-night on circadian and affective behaviours in C57Bl/6 mice. We set out specifically to examine the impact of sex on light at night's effects, as well as the impact of housing conditions. We report minimal impact of light-at-night on circadian and affective behaviours, as measured by the tail suspension test, the forced swim test, the sucrose preference test and the elevated plus maze. Light-at-night was also not associated with an increase in body weight, but was associated with a decrease in the cell proliferation marker Ki-67 in the dentate gyrus. In summary, we conclude that experimental contextual factors, such as model species or strain, may be considerable importance in the investigation of the impact of light at night on mood-related parameters. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Adverse reproductive and developmental health outcomes following prenatal exposure to a 2 hydraulic fracturing chemical mixture in female C57Bl/6 mice

    Kassotis, Christopher D.; Bromfield, John J.; Klemp, Kara C.; Meng, Chun-Xia; Wolfe, Andrew R.; Zoeller, Thomas; Balise, Victoria D.; Isiguzo, Chiamaka J.; Tillitt, Donald E.; Nagel, Susan C.

    2016-01-01

    Unconventional oil and gas operations using hydraulic fracturing can contaminate surface and groundwater with endocrine-disrupting chemicals. We have previously shown that 23 of 24 commonly used hydraulic fracturing chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors in a human endometrial cancer cell reporter gene assay and that mixtures can behave synergistically, additively, or antagonistically on these receptors. In the current study, pregnant female C57Bl/6 dams were exposed to a mixture of 23 commonly used unconventional oil and gas chemicals at approximately 3, 30, 300, and 3000 μg/kg·d, flutamide at 50 mg/kg·d, or a 0.2% ethanol control vehicle via their drinking water from gestational day 11 through birth. This prenatal exposure to oil and gas operation chemicals suppressed pituitary hormone concentrations across experimental groups (prolactin, LH, FSH, and others), increased body weights, altered uterine and ovary weights, increased heart weights and collagen deposition, disrupted folliculogenesis, and other adverse health effects. This work suggests potential adverse developmental and reproductive health outcomes in humans and animals exposed to these oil and gas operation chemicals, with adverse outcomes observed even in the lowest dose group tested, equivalent to concentrations reported in drinking water sources. These endpoints suggest potential impacts on fertility, as previously observed in the male siblings, which require careful assessment in future studies. - See more at: http://press.endocrine.org/doi/10.1210/en.2016-1242#sthash.9kqfLvXg.dpuf

  6. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin administration and high-fat diet on the body weight and hepatic estrogen metabolism in female C3H/HeN mice

    Zhu Baoting; Gallo, Michael A.; Burger, Conney W.; Meeker, Robert J.; Cai, May Xiaoxin; Xu Shiyao; Conney, Allan H.

    2008-01-01

    We studied the effect of administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by i.p. injection once every 2 weeks in combination with a high-fat (HF) diet for 8 or 16 weeks on the body and organ weight changes as well as on the hepatic enzyme activity for estrogen metabolism in C3H/HeN female mice. Administration of TCDD at 100 μg/kg b.w. once every 2 weeks for 8 weeks increased the body weight by 46% in the HF diet-fed animals, but not in the regular diet-fed animals. This is the first observation suggesting that TCDD at a high dose (100 μg/kg b.w.), but not at lower doses (1 or 10 μg/kg b.w.), may have a strong obesity-inducing effect in C3H/HeN mice fed an HF diet. While TCDD increased liver weight and decreased thymus weight in animals, these effects were enhanced by feeding animals an HF diet. Metabolism studies showed that TCDD administration for 8 or 16 weeks increased the liver microsomal activity for the 2- and 4-hydroxylation of 17β-estradiol in animals fed a control diet, but surprisingly not in animals fed an HF diet. Treatment with TCDD dose-dependently increased the hepatic activity for the O-methylation of catechol estrogens in both control and HF diet-fed animals, and it also decreased the levels of liver microsomal sulfatase activity for hydrolysis of estrone-3-sulfate. TCDD did not significantly affect the hepatic enzyme activity for the glucuronidation or esterification of endogenous estrogens. It is suggested that enhanced metabolic inactivation of endogenous estrogens by hepatic estrogen-metabolizing enzymes in TCDD-treated, control diet-fed animals contributes importantly to the reduced incidence of estrogen-associated tumors in animals treated with TCDD

  7. Specific-locus experiments show that female mice exposed near the time of birth to low-LET ionizing radiation exhibit both a low mutational response and a dose-rate effect

    Selby, P.B.; Lee, S.S.; Kelly, E.M.; Bangham, J.W.; Raymer, G.D.; Hunsicker, P.R.

    1991-01-01

    Female mice were exposed to 300 R of 73-93 R/min X-radiation either as fetuses at 18.5d post conception (p.c.) or within 9h after birth. Combining the similar results from these 2 groups yielded a specific-locus mutation frequency of 9.4x10 -8 mutation/locus/R, which is statistically significantly higher than the historical-control mutation frequency, but much lower than the rate obtained by irradiating mature and maturing oocytes in adults. Other females, exposed at 18.5 days p.c. to 300 R of 0.79 R/min γ-radiation, yielded a mutation frequency that was statistically significantly lower than the frequency at high dose rates. The low-dose-rate group also had markedly higher fertility. It appears that the doe-rate effect for mutations induced near the time of birth may be more pronounced than that reported for mature and maturing oocytes of adults. A hypothesis sometimes advanced to explain low mutation frequencies recovered from cell populations that experience considerable radiation-induced cell killing is that there is selection against mutant cells. The reason for the relatively low mutational response following acute irradiation in the experiments is unknown; however, the finding of a dose-rate effect in these oocytes in the presence of only minor radiation-induced cell killing (as judged from fertility) makes it seem unlikely that selection was responsible for the low mutational response following acute exposure. Had selection been an important factor, the mutation frequency should have increased when oocyte killing was markedly reduced. (author). 32 refs.; 5 figs.; 5 tabs

  8. [Genes in the development of female genital tract].

    Chen, Na; Zhu, Lan; Lang, Jing-he

    2013-12-01

    Female genital tract, which includes oviduct, uterus, and vagina, is critical for female reproduction. In recent years, animal experiments using knockout mice and genetic studies on patients with female genital malformations have contributed substantially to our understanding of the molecular mechanisms in the female genital tract development. Here we review genes that are involved in various stages of female genital tract formation and development.

  9. Genome-wide screening identifies Plasmodium chabaudi-induced modifications of DNA methylation status of Tlr1 and Tlr6 gene promoters in liver, but not spleen, of female C57BL/6 mice.

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel Azeem S; Delic, Denis; Santourlidis, Simeon; Wunderlich, Frank

    2013-11-01

    Epigenetic reprogramming of host genes via DNA methylation is increasingly recognized as critical for the outcome of diverse infectious diseases, but information for malaria is not yet available. Here, we investigate the effect of blood-stage malaria of Plasmodium chabaudi on the DNA methylation status of host gene promoters on a genome-wide scale using methylated DNA immunoprecipitation and Nimblegen microarrays containing 2,000 bp oligonucleotide features that were split into -1,500 to -500 bp Ups promoters and -500 to +500 bp Cor promoters, relative to the transcription site, for evaluation of differential DNA methylation. Gene expression was analyzed by Agilent and Affymetrix microarray technology. Challenging of female C57BL/6 mice with 10(6) P. chabaudi-infected erythrocytes resulted in a self-healing outcome of infections with peak parasitemia on day 8 p.i. These infections induced organ-specific modifications of DNA methylation of gene promoters. Among the 17,354 features on Nimblegen arrays, only seven gene promoters were identified to be hypermethylated in the spleen, whereas the liver exhibited 109 hyper- and 67 hypomethylated promoters at peak parasitemia in comparison with non-infected mice. Among the identified genes with differentially methylated Cor-promoters, only the 7 genes Pigr, Ncf1, Klkb1, Emr1, Ndufb11, and Tlr6 in the liver and Apol6 in the spleen were detected to have significantly changed their expression. Remarkably, the Cor promoter of the toll-like receptor Tlr6 became hypomethylated and Tlr6 expression increased by 3.4-fold during infection. Concomitantly, the Ups promoter of the Tlr1 was hypermethylated, but Tlr1 expression also increased by 11.3-fold. TLR6 and TLR1 are known as auxillary receptors to form heterodimers with TLR2 in plasma membranes of macrophages, which recognize different pathogen-associated molecular patterns (PAMPs), as, e.g., intact 3-acyl and sn-2-lyso-acyl glycosylphosphatidylinositols of P. falciparum

  10. Enlargement of Axo-Somatic Contacts Formed by GAD-Immunoreactive Axon Terminals onto Layer V Pyramidal Neurons in the Medial Prefrontal Cortex of Adolescent Female Mice Is Associated with Suppression of Food Restriction-Evoked Hyperactivity and Resilience to Activity-Based Anorexia

    Chen, Yi-Wen; Wable, Gauri Satish; Chowdhury, Tara Gunkali; Aoki, Chiye

    2015-01-01

    Many, but not all, adolescent female mice that are exposed to a running wheel while food restricted (FR) become excessive wheel runners, choosing to run even during the hours of food availability, to the point of death. This phenomenon is called activity-based anorexia (ABA). We used electron microscopic immunocytochemistry to ask whether individual differences in ABA resilience may correlate with the lengths of axo-somatic contacts made by GABAergic axon terminals onto layer 5 pyramidal neur...

  11. A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor

    Olesen, Uffe Høgh; Thougaard, Annemette V; Jensen, Peter Buhl

    2010-01-01

    Inhibitor of nicotinamide phosphoribosyltransferase APO866 is a promising cancer drug currently in phase II clinical trials in oncology. Here, we present a strategy for increasing the therapeutic potential of APO866 through the rescue of normal tissues by coadministration of nicotinic acid (Vitamin...... B(3)). We examined the toxicity profile of APO866 in B6D2F1 mice and the effect of oral administration of nicotinic acid on tissue toxicity. Nicotinic acid (50 mg/kg) protects mice from death and severe toxicity from an APO866 dose (60 mg/kg) four times the monotherapy maximum tolerated dose (15 mg....../kg). In a panel of six cancer cell lines, we find that three (including ML-2 cells) are protected by nicotinic acid in vitro, whereas the cytotoxicity of APO866 remains unaffected in the remaining three (including A2780 cells). A selective biomarker for the protection by nicotinic acid was subsequently identified...

  12. Disruption of genes encoding eIF4E binding proteins-1 and -2 does not alter basal or sepsis-induced changes in skeletal muscle protein synthesis in male or female mice.

    Steiner, Jennifer L; Pruznak, Anne M; Deiter, Gina; Navaratnarajah, Maithili; Kutzler, Lydia; Kimball, Scot R; Lang, Charles H

    2014-01-01

    Sepsis decreases skeletal muscle protein synthesis in part by impairing mTOR activity and the subsequent phosphorylation of 4E-BP1 and S6K1 thereby controlling translation initiation; however, the relative importance of changes in these two downstream substrates is unknown. The role of 4E-BP1 (and -BP2) in regulating muscle protein synthesis was assessed in wild-type (WT) and 4E-BP1/BP2 double knockout (DKO) male mice under basal conditions and in response to sepsis. At 12 months of age, body weight, lean body mass and energy expenditure did not differ between WT and DKO mice. Moreover, in vivo rates of protein synthesis in gastrocnemius, heart and liver did not differ between DKO and WT mice. Sepsis decreased skeletal muscle protein synthesis and S6K1 phosphorylation in WT and DKO male mice to a similar extent. Sepsis only decreased 4E-BP1 phosphorylation in WT mice as no 4E-BP1/BP2 protein was detected in muscle from DKO mice. Sepsis decreased the binding of eIF4G to eIF4E in WT mice; however, eIF4E•eIF4G binding was not altered in DKO mice under either basal or septic conditions. A comparable sepsis-induced increase in eIF4B phosphorylation was seen in both WT and DKO mice. eEF2 phosphorylation was similarly increased in muscle from WT septic mice and both control and septic DKO mice, compared to WT control values. The sepsis-induced increase in muscle MuRF1 and atrogin-1 (markers of proteolysis) as well as TNFα and IL-6 (inflammatory cytokines) mRNA was greater in DKO than WT mice. The sepsis-induced decrease in myocardial and hepatic protein synthesis did not differ between WT and DKO mice. These data suggest overall basal protein balance and synthesis is maintained in muscle of mice lacking both 4E-BP1/BP2 and that sepsis-induced changes in mTOR signaling may be mediated by a down-stream mechanism independent of 4E-BP1 phosphorylation and eIF4E•eIF4G binding.

  13. Female offenders

    Vivienne de Vogel; Marijke Louppen

    2017-01-01

    Although girls and women represent only a minority of the forensic mental health and prison populations, studies worldwide suggest that there has been a steady increase in the number of females being convicted for committing offenses, especially violent offenses. In this chapter, an overview will

  14. Lack of oestrogenic effects of food preservatives (parabens) in uterotrophic assays

    Hossaini, A.; Larsen, Jens-Jørgen; Larsen, John Christian

    2000-01-01

    The oestrogenic activity of the parabens, methyl-, ethyl- and propyl p-hydroxybenzoate, widely used as antimicrobials in food, and butyl p-hydroxybenzoate, which is used in cosmetic products, and their shared main metabolite p-hydroxybenzoic acid was investigated in a mouse uterotrophic assay......, Immature B6D2F1 mice were treated with oral or subcutaneous doses of the test compounds for three consecutive days, p-Hydroxgybenzoic acid and butyl p-hydroxybenzoate were also tested by the subcutaneous route in a rat uterotrophic assay. A significant increase in the uterus weight at day 4 was considered...... an oestrogenic effect. In the mouse assay, none of the compounds tested produced any oestrogenic response at dose levels up to 100 mg/kg body weight per day, for ethyl p-hydroxybenzoate even at a dose level of 1000 mg/kg body weight per day. In immature Wistar rats, subcutaneous administration of butyl p...

  15. Female infertility

    Hall, D.A.; Yoder, I.

    1984-01-01

    Infertility, defined as 1 year of unprotected intercourse without conception, is becoming of increasingly important medical concern. Fertility in both the male and the female is at its peak in the twenties. Many couples today have postponed marriage and/or childbearing into their 30s until careers are established, but at that point fertility may be diminished. The current epidemic of venereal disease has been associated with an increasing incidence of tubal scarring. In addition, the use of intrauterine devices (IUDs) and birth control pills for contraception have let to later problems with pelvic inflammatory disease (PID) and ovulation disturbances. The problem of infertility intensifies as the number of babies available for adoption decreases. Therefore, it is estimated that approximately 10-20% of couples will eventually seek medical attention for an infertility-related problem. Fortunately, marked improvements in the results of tubal surgery are concurrently occurring secondary to refinements in microsurgical techniques, and many medical alternatives to induce ovulation are being developed. The male factor causes infertility in 30-40 % of couples, and the female factor is responsible in approximately 50% of couples. No cause is found in 10-20% of couples. This chapter discusses the role of coordinated imaging in the diagnosis and therapy of infertility in the female

  16. Haploidentical hematopoietic SCT increases graft-versus-tumor effect against renal cell carcinoma.

    Budak-Alpdogan, T; Sauter, C T; Bailey, C P; Biswas, C S; Panis, M M; Civriz, S; Flomenberg, N; Alpdogan, O

    2013-08-01

    Allogeneic hematopoietic SCT (HSCT) has been shown to be an effective treatment option for advanced renal cell cancer (RCC). However, tumor resistance/relapse remains as the main post transplant issue. Therefore, enhancing graft-versus-tumor (GVT) activity without increasing GVHD is critical for improving the outcome of HSCT. We explored the GVT effect of haploidentical-SCT (haplo-SCT) against RCC in murine models. Lethally irradiated CB6F1 (H2K(b/d)) recipients were transplanted with T-cell-depleted BM cells from B6CBAF1 (H2K(b/k)) mice. Haplo-SCT combined with a low-dose haploidentical (HI) T-cell infusion (1 × 10(5)) successfully provided GVT activity without incurring GVHD. This effect elicited murine RCC growth control and consequently displayed a comparative survival advantage of haplo-SCT recipients when compared with MHC-matched (B6D2F1CB6F1) and parent-F1 (B6CB6F1) transplant recipients. Recipients of haplo-SCT had an increase in donor-derived splenic T-cell numbers, T-cell proliferation and IFN-γ-secreting donor-derived T-cells, a critical aspect for anti-tumor activity. The splenocytes from B6CBAF1 mice had a higher cytotoxicity against RENCA cells than the splenocytes from B6 and B6D2F1 donors after tumor challenge. These findings suggest that haplo-SCT might be an innovative immunotherapeutic platform for solid tumors, particularly for renal cell carcinoma.

  17. Female condoms.

    Bounds, W

    1997-06-01

    Early versions of a female condom were available in the 1920s and 1960s, but they were little used and soon forgotten. It took the arrival of AIDS, and the urgent need for a wider range of female-controlled barrier techniques, to rekindle scientific interest in this method. In the 1980s, three groups in Europe and the USA began development of new female condom designs, comprising 'Femidom (Reality)', the 'Bikini Condom', and 'Women's Choice'. Apart from differences in their physical design, Femidom differs from the others in that it is made of a polyurethane membrane, which has several advantages over latex. Of the three, Femidom is the most advanced in terms of development and clinical testing, and it is the only one to have reached the marketing stage. Laboratory studies and clinical trials suggest that its contraceptive efficacy is similar to that documented for the male condom, though a direct comparison is not possible because no comparative clinical trials have, as yet, been undertaken. Reported 'typical-use' pregnancy rates range from 12.4 to 22.2% at 6 months of use in the USA and Latin America, respectively, while a study in the UK observed a rate of 15% at 12 months. As with all barrier methods, most failures appear to be associated with poor compliance or incorrect use. 'Perfect-use' pregnancy rates were substantially lower, indicating that Femidom can be very effective, if used consistently and correctly. Evidence for Femidom's effectiveness to protect against transmission of sexual disease-causing organisms, including HIV, is still very limited and based largely on laboratory studies. Whilst, in theory, the condom should confer reliable protection, its efficacy in clinical use will depend upon correct and consistent use and upon the product's ability to maintain an effective physical barrier throughout penetrative intercourse. In this respect, the results of recent and ongoing clinical studies are expected with much interest. How valuable Femidom will

  18. Enlargement of Axo-Somatic Contacts Formed by GAD-Immunoreactive Axon Terminals onto Layer V Pyramidal Neurons in the Medial Prefrontal Cortex of Adolescent Female Mice Is Associated with Suppression of Food Restriction-Evoked Hyperactivity and Resilience to Activity-Based Anorexia.

    Chen, Yi-Wen; Wable, Gauri Satish; Chowdhury, Tara Gunkali; Aoki, Chiye

    2016-06-01

    Many, but not all, adolescent female mice that are exposed to a running wheel while food restricted (FR) become excessive wheel runners, choosing to run even during the hours of food availability, to the point of death. This phenomenon is called activity-based anorexia (ABA). We used electron microscopic immunocytochemistry to ask whether individual differences in ABA resilience may correlate with the lengths of axo-somatic contacts made by GABAergic axon terminals onto layer 5 pyramidal neurons (L5P) in the prefrontal cortex. Contact lengths were, on average, 40% greater for the ABA-induced mice, relative to controls. Correspondingly, the proportion of L5P perikaryal plasma membrane contacted by GABAergic terminals was 45% greater for the ABA mice. Contact lengths in the anterior cingulate cortex correlated negatively and strongly with the overall wheel activity after FR (R = -0.87, P resilience through suppression of wheel running, a behavior that is intrinsically rewarding and helpful for foraging but maladaptive within a cage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency.

    Kotarska, Katarzyna; Galas, Jerzy; Przybyło, Małgorzata; Bilińska, Barbara; Styrna, Józefa

    2015-02-01

    It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency. © The Author(s) 2014.

  20. Effect of cadmium chloride on hepatic lipid peroxidation in mice

    Andersen, H R; Andersen, O

    1988-01-01

    Intraperitoneal administration of cadmium chloride to 8-12 weeks old CBA-mice enhanced hepatic lipid peroxidation. A positive correlation between cadmium chloride dose and level of peroxidation was observed in both male and female mice. A sex-related difference in mortality was not observed...... but at a dose of 25 mumol CdCl2/kg the level of hepatic lipid peroxidation was higher in male mice than in female mice. The hepatic lipid peroxidation was not increased above the control level in 3 weeks old mice, while 6 weeks old mice responded with increased peroxidation as did 8-12 weeks old mice....... The mortality after an acute toxic dose of cadmium chloride was the same in the three age groups. Pretreatment of mice with several low intraperitoneal doses of cadmium chloride alleviated cadmium induced mortality and lipid peroxidation. The results demonstrate both age dependency and a protective effect...

  1. Classical and alternative activation and metalloproteinase expression occurs in foam cell macrophages in male and female ApoE null mice in the absence of T- and B-lymphocytes

    Elaine Mo Hayes

    2014-10-01

    Full Text Available Background: Rupture of advanced atherosclerotic plaques accounts for most life-threatening myocardial infarctions. Classical (M1 and alternative (M2 macrophage activation could promote atherosclerotic plaque progression and rupture by increasing production of proteases, including matrix metalloproteinases (MMPs. Lymphocyte-derived cytokines may be essential for generating M1 and M2 phenotypes in plaques, although this has not been rigorously tested until now.Methods and Results: We validated the expression of M1 markers (iNOS and COX-2 and M2 markers (arginase-1, Ym-1 and CD206 and then measured MMP mRNA levels in mouse macrophages during classical and alternative activation in vitro. We then compared mRNA expression of these genes ex vivo in foam cells from subcutaneous granulomas in fat-fed immune-competent ApoE knockout and immune-compromised ApoE/Rag-1 double knockout mice, which lack all T and B cells. Furthermore, we performed immunohistochemistry in subcutaneous granulomas and in aortic root and brachiocephalic artery atherosclerotic plaques to measure the extent of M1/M2 marker and MMP protein expression in vivo. Classical activation of mouse macrophages with bacterial lipopolysaccharide in vitro increased MMPs-13, -14 and -25 but decreased MMP-19 and TIMP-2 mRNA expressions. Alternative activation with IL-4 increased MMP-19 expression. Foam cells in subcutaneous granulomas expressed all M1/M2 markers and MMPs at ex vivo mRNA and in vivo protein levels, irrespective of Rag-1 genotype. There were also similar percentages of foam cell macrophages carrying M1/M2 markers and MMPs in atherosclerotic plaques from ApoE knockout and ApoE/Rag-1 double knockout mice. Conclusions: Classical and alternative activation leads to distinct MMP expression patterns in mouse macrophages in vitro. M1 and M2 polarization in vivo occurs in the absence of T and B lymphocytes in either granuloma or plaque foam cell macrophages.

  2. Normal Female Reproductive Anatomy

    ... historical Searches are case-insensitive Reproductive System, Female, Anatomy Add to My Pictures View /Download : Small: 720x756 ... Large: 3000x3150 View Download Title: Reproductive System, Female, Anatomy Description: Anatomy of the female reproductive system; drawing ...

  3. The Development of Female Sexual Behavior Requires Prepubertal Estradiol

    Brock, O.; Baum, M.J.; Bakker, J.

    2011-01-01

    The classic view of brain and behavioral sexual differentiation holds that the neural mechanisms controlling sexual behavior in female rodents develop in the absence ofovarian sex hormone actions. However,inaprevious study, female aromatase knock-out (ArKO) mice, which cannot convert testosterone to

  4. Reduced alcohol consumption in mice lacking preprodynorphin.

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  5. Sex-Specific Diurnal Immobility Induced by Forced Swim Test in Wild Type and Clock Gene Deficient Mice

    Ningyue Li

    2015-03-01

    Full Text Available Objective: The link between alterations in circadian rhythms and depression are well established, but the underlying mechanisms are far less elucidated. We investigated the circadian characteristics of immobility behavior in wild type (WT mice and mice with mutations in core Clock genes. Methods: All mice were tested with forced swim test (FST at 4 h intervals. Results: These experiments revealed significant diurnal rhythms associated with immobility behavior in both male and female WT mice with sex-different circadian properties. In addition, male mice showed significantly less immobility during the night phase in comparison to female mice. Female Per1Brdm1 mice also showed significant rhythmicity. However, the timing of rhythmicity was very different from that observed in female wild type mice. Male Per1Brdm1 mice showed a pattern of rhythmicity similar to that of wild type mice. Furthermore, female Per1Brdm1 mice showed higher duration of immobility in comparison to male Per1Brdm1 mice in both daytime and early night phases. Neither Per2Brdm1 nor ClockΔ19 mice showed significant rhythmicity, but both female Per2Brdm1 and ClockΔ19 mice had lower levels of immobility, compared to males. Conclusions: This study highlights the differences in the circadian characteristics of immobility induced by FST in WT, ClockΔ19, Per1, and Per2 deficient mice.

  6. Voluntary running enhances glymphatic influx in awake behaving, young mice

    von Holstein-Rathlou, Stephanie; Petersen, Nicolas Caesar; Nedergaard, Maiken

    2018-01-01

    that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We...... of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas...

  7. Transplacental arsenic carcinogenesis in mice

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  8. Cloning Mice.

    Ogura, Atsuo

    2017-08-01

    Viable and fertile mice can be generated by somatic nuclear transfer into enucleated oocytes, presumably because the transplanted somatic cell genome becomes reprogrammed by factors in the oocyte. The first somatic cloned offspring of mice were obtained by directly injecting donor nuclei into recipient enucleated oocytes. When this method is used (the so-called Honolulu method of somatic cell nuclear transfer [SCNT]), the donor nuclei readily and completely condense within the enucleated metaphase II-arrested oocytes, which contain high levels of M-phase-promoting factor (MPF). It is believed that the condensation of the donor chromosomes promotes complete reprogramming of the donor genome within the mouse oocytes. Another key to the success of mouse cloning is the use of blunt micropipettes attached to a piezo impact-driving micromanipulation device. This system saves a significant amount of time during the micromanipulation of oocytes and thus minimizes the loss of oocyte viability in vitro. For example, a group of 20 oocytes can be enucleated within 10 min by an experienced operator. This protocol is composed of seven parts: (1) preparing micropipettes, (2) setting up the enucleation and injection micropipettes, (3) collecting and enucleating oocytes, (4) preparing nucleus donor cells, (5) injecting donor nuclei, (6) activating embryos and culturing, and (7) transferring cloned embryos. © 2017 Cold Spring Harbor Laboratory Press.

  9. Metabolic and adaptive immune responses induced in mice infected ...

    This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were ...

  10. Congenital malformations in mice induced by addiction to alcohol ...

    Objective: To study the teratogenic effect of either alcohol alone, cocaine alone, or a combination of both alcohol and cocaine on mice foetuses. Design: Eighty pregnant mice were divided into four equal groups. In the first (alcohol) group, the pregnant females were given absolute ethanol at 2.5gm/100 gm twice daily by ...

  11. Introducing Clicker Training as a Cognitive Enrichment for Laboratory Mice.

    Leidinger, Charlotte; Herrmann, Felix; Thöne-Reineke, Christa; Baumgart, Nadine; Baumgart, Jan

    2017-03-06

    Establishing new refinement strategies in laboratory animal science is a central goal in fulfilling the requirements of Directive 2010/63/EU. Previous research determined a profound impact of gentle handling protocols on the well-being of laboratory mice. By introducing clicker training to the keeping of mice, not only do we promote the amicable treatment of mice, but we also enable them to experience cognitive enrichment. Clicker training is a form of positive reinforcement training using a conditioned secondary reinforcer, the "click" sound of a clicker, which serves as a time bridge between the strengthened behavior and an upcoming reward. The effective implementation of the clicker training protocol with a cohort of 12 BALB/c inbred mice of each sex proved to be uncomplicated. The mice learned rather quickly when challenged with tasks of the clicker training protocol, and almost all trained mice overcame the challenges they were given (100% of female mice and 83% of male mice). This study has identified that clicker training for mice strongly correlates with reduced fear in the mice during human-mice interactions, as shown by reduced anxiety-related behaviors (e.g., defecation, vocalization, and urination) and fewer depression-like behaviors (e.g., floating). By developing a reliable protocol that can be easily integrated into the daily routine of the keeping of laboratory mice, the lifetime experience of welfare in the mice can be improved substantially.

  12. Self catheterization - female

    ... female Images Bladder catheterization, female References Davis JE, Silverman MA. Urologic procedures. In: Roberts JR, ed. Roberts ... provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Medical Director, Brenda Conaway, Editorial ...

  13. Female reproductive disorders

    Crain, D Andrew; Janssen, Sarah J; Edwards, Thea M

    2008-01-01

    To evaluate the possible role of endocrine-disrupting compounds (EDCs) on female reproductive disorders emphasizing developmental plasticity and the complexity of endocrine-dependent ontogeny of reproductive organs. Declining conception rates and the high incidence of female reproductive...... disruptions warrant evaluation of the impact of EDCs on female reproductive health....

  14. Generation of ERα-floxed and knockout mice using the Cre/LoxP system

    Antonson, P.; Omoto, Y.; Humire, P.; Gustafsson, J.-Å.

    2012-01-01

    Highlights: ► ERα floxed and knockout mice were generated. ► Disruption of the ERα gene results in sterility in both male and female mice. ► ERα −/− mice have ovaries with hemorrhagic follicles and hypoplastic uterus. ► Female ERα −/− mice develop obesity. -- Abstract: Estrogen receptor alpha (ERα) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ERα mouse line that can be used to knock out ERα in selected tissues by using the Cre/LoxP system. In this study, we established a new ERα knockout mouse line by crossing the floxed ERα mice with Cre deleter mice. Here we show that genetic disruption of the ERα gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ERα is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.

  15. Female reproductive disorders

    Crain, D Andrew; Janssen, Sarah J; Edwards, Thea M

    2008-01-01

    To evaluate the possible role of endocrine-disrupting compounds (EDCs) on female reproductive disorders emphasizing developmental plasticity and the complexity of endocrine-dependent ontogeny of reproductive organs. Declining conception rates and the high incidence of female reproductive disrupti......To evaluate the possible role of endocrine-disrupting compounds (EDCs) on female reproductive disorders emphasizing developmental plasticity and the complexity of endocrine-dependent ontogeny of reproductive organs. Declining conception rates and the high incidence of female reproductive...... disruptions warrant evaluation of the impact of EDCs on female reproductive health....

  16. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice

    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice spe...

  17. Influence of Sex and Age on Natural Resistance to St. Louis Encephalitis Virus Infection in Mice

    Andersen, Arthur A.; Hanson, Robert P.

    1974-01-01

    A difference was observed in susceptibility of adult male and female mice to St. Louis encephalitis (SLE) virus as measured by the death rate after intravenous challenge. Female mice that had susceptibility similar to that of males at 2 months of age had increased resistance to SLE virus at 3 and 4 months of age. The increased resistance occurred after sexual maturity, indicating that the resistance factor possibly was related to an aging process in the female. The susceptibility of male mice remained unchanged over the 2- to 4-month period. Neither pregnancy nor castration had any effect on resistance of adult mice to St. Louis encephalitis virus. PMID:4857422

  18. Two-year body composition analyses of long-lived GHR null mice.

    Berryman, Darlene E; List, Edward O; Palmer, Amanda J; Chung, Min-Yu; Wright-Piekarski, Jacob; Lubbers, Ellen; O'Connor, Patrick; Okada, Shigeru; Kopchick, John J

    2010-01-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice exhibit increased life span and adipose tissue mass. Although this obese phenotype has been reported extensively for young adult male GHR-/- mice, data for females and for other ages in either gender are lacking. Thus, the purpose of this study was to evaluate body composition longitudinally in both male and female GHR-/- mice. Results show that GHR-/- mice have a greater percent fat mass with no significant difference in absolute fat mass throughout life. Lean mass shows an opposite trend with percent lean mass not significantly different between genotypes but absolute mass reduced in GHR-/- mice. Differences in body composition are more pronounced in male than in female mice, and both genders of GHR-/- mice show specific enlargement of the subcutaneous adipose depot. Along with previously published data, these results suggest a consistent and intriguing protective effect of excess fat mass in the subcutaneous region.

  19. Female feticide in India.

    Ahmad, Nehaluddin

    2010-01-01

    Women are murdered all over the world. But in India a most brutal form of killing females takes place regularly, even before they have the opportunity to be born. Female feticide--the selective abortion of female fetuses--is killing upwards of one million females in India annually with far-ranging and tragic consequences. In some areas, the sex ratio of females to males has dropped to less than 8000:1000. Females not only face inequality in this culture, they are even denied the right to be born. Why do so many families selectively abort baby daughters? In a word: economics. Aborting female fetuses is both practical and socially acceptable in India. Female feticide is driven by many factors, but primarily by the prospect of having to pay a dowry to the future bridegroom of a daughter. While sons offer security to their families in old age and can perform the rites for the souls of deceased parents and ancestors, daughters are perceived as a social and economic burden. Prenatal sex detection technologies have been misused, allowing the selective abortions of female offspring to proliferate. Legally, however, female feticide is a penal offence. Although female infanticide has long been committed in India, feticide is a relatively new practice, emerging concurrently with the advent of technological advancements in prenatal sex determination on a large scale in the 1990s. While abortion is legal in India, it is a crime to abort a pregnancy solely because the fetus is female. Strict laws and penalties are in place for violators. These laws, however, have not stemmed the tide of this abhorrent practice. This article will discuss the socio-legal conundrum female feticide presents, as well as the consequences of having too few women in Indian society.

  20. Does open-field exposure during infancy influence open-field behavior of the same adult mice?

    Vidal Gómez, José

    2013-01-01

    The goal of this report is to find out whether early exposure of mice to the open-field results in altered behavior of the same adult mice in the same open-field. Early exposure to the open-field was carried out between birth and weaning; two control groups were included: control 2 (mice exposed to a reduced dark space) and control 1 (mice left undisturbed). The (male and female) mice were of the Balb/c and C57Bl/6 strains. Adult C57Bl/6 female mice of the openfield and control 2 groups ambul...

  1. Female mice respond differently to costly foraging versus food restriction

    Schubert, Kristin A.; Vaanholt, Lobke M.; Stavasius, Fanny; Demas, Gregory E.; Daan, Serge; Visser, G. Henk

    2008-01-01

    Experimental manipulation of foraging costs per food reward can be used to study the plasticity of physiological systems involved in energy metabolism. This approach is useful for understanding adaptations to natural variation in food availability. Earlier studies have shown that animals foraging on

  2. Anatomical features of the urethra and urinary bladder catheterization in female mice and rats. An essential translational tool Características anatômicas da cateterização da uretra e bexiga de camundongos e ratos fêmeas. Instrumento essencial na pesquisa pré clínica

    Leonardo Oliveira Reis

    2011-01-01

    Full Text Available PURPOSE: To present fundamental anatomical aspects and technical skills necessary to urethra and urinary bladder catheterization in female mice and rats. METHODS: Urethral and bladder catheterization has been widely utilized for carcinogenesis and cancer research and still remains very useful in several applications: from toxicological purposes as well as inflammatory and infectious conditions to functional aspects as bladder dynamics and vesicoureteral reflux, among many others. RESULTS: Animal models are in the center of translational research and those involving rodents are the most important nowadays due to several advantages including human reproducibility, easy handling and low cost. CONCLUSIONS: Although technical and anatomical pearls for rodent urethral and bladder access are presented as tackles to the advancement of lower urinary tract preclinical investigation in a broaden sight, restriction to female animals hampers the male microenvironment, demanding future advances.OBJETIVO: Apresentar aspectos anatômicos fundamentais e habilidades técnicas necessárias para cateterismo da uretra e bexiga em ratos e camundongos fêmeas. MÉTODOS: Cateterismo vesical tem sido amplamente utilizado na pesquisa do câncer e carcinogênese, além de várias outras aplicações, desde fins toxicológicos, condições inflamatórias e infecciosas até aspectos funcionais como a dinâmica vesical e refluxo vesico-ureteral, entre muitos outros. RESULTADOS: Os modelos animais estão no centro da investigação de translação e os roedores são os mais importantes devido a várias vantagens, incluindo reprodutibilidade humana, o fácil manuseio e baixo custo. CONCLUSÕES: Apesar de permitir o desenvolvimento da investigação pré-clínica do trato urinário inferior, o modelo se restringe aos animais do sexo feminino, de modo que avanços futuros são necessários.

  3. Female terrorism : a review

    Jacques, Karen; Taylor, Paul J.

    2009-01-01

    The sharp growth in the number of publications examining female involvement in terrorism has produced a valuable but un-integrated body of knowledge spread across many disciplines. In this paper, we bring together 54 publications on female terrorism and use qualitative and quantitative analyses to

  4. Female Labor Supply

    Maassen-van den Brink, te Henriet

    1994-01-01

    To gain insight on factors that impede economic independence of women, this book concentrates on female labor supply in relation to child care, male-female wage differentials, the division of unpaid labor, and marital conflicts between women and men. It may very well be that restrictions on the

  5. Corticosterone release in oxytocin gene deletion mice following exposure to psychogenic versus non-psychogenic stress.

    Amico, Janet A; Cai, Hou-ming; Vollmer, Regis R

    2008-09-19

    Both anxiety-related behavior [J.A. Amico, R.C. Mantella, R.R. Vollmer, X. Li, Anxiety and stress responses in female oxytocin deficient mice, J. Neuroendocrinol. 16 (2004) 1-6; R.C. Mantella, R.R. Vollmer, X. Li, J.A. Amico, Female oxytocin-deficient mice display enhanced anxiety-related behavior, Endocrinology 144 (2003) 2291-2296] and the release of corticosterone following a psychogenic stress such as exposure to platform shaker was greater in female [J.A. Amico, R.C. Mantella, R.R. Vollmer, X. Li, Anxiety and stress responses in female oxytocin deficient mice, J. Neuroendocrinol. 16 (2004) 1-6; R.C. Mantella, R.R. Vollmer, L. Rinaman, X. Li, J.A. Amico, Enhanced corticosterone concentrations and attenuated Fos expression in the medial amygdala of female oxytocin knockout mice exposed to psychogenic stress, Am. J. Physiol. Regul. Integr. Comp. Physiol. 287 (2004) R1494-R1504], but not male [R.C. Mantella, R.R. Vollmer, J.A. Amico, Corticosterone release is heightened in food or water deprived oxytocin deficient male mice, Brain Res. 1058 (2005) 56-61], oxytocin gene deletion (OTKO) mice compared to wild type (WT) cohorts. In the present study we exposed OTKO and WT female mice to another psychogenic stress, inserting a rectal probe to record body temperature followed by brief confinement in a metabolic cage, and measured plasma corticosterone following the stress. OTKO mice released more corticosterone than WT mice (Pstress. In contrast, if OTKO and WT female and male mice were administered insulin-induced hypoglycemia, an acute physical stress, corticosterone release was not different between genotypes. The absence of central OT signaling pathways in female mice heightens the neuroendocrine (e.g., corticosterone) response to psychogenic stress, but not to the physical stress of insulin-induced hypoglycemia.

  6. Progesterone transfer among cohabitating female big brown bats (Eptesicus fuscus).

    Greville, Lucas J; Pollock, Tyler; Salter, Joseph C; Faure, Paul A; deCatanzaro, Denys

    2017-06-01

    Experiments using female mice and bats have demonstrated that tritium-labeled 17β-estradiol ( 3 H-E 2 ) can be absorbed via cutaneous and intranasal routes and distributed to reproductive and neural tissues. Radioactivity has also been measured in tissues of untreated females after 48h cohabitation with 3 H-E 2 injected males. The present study was designed to quantify steroid transfer among female bats. Radioactive quantification via liquid scintillation counting revealed absorption of tritium-labeled progesterone ( 3 H-P 4 ) in adult females 1h after cutaneous and intranasal application (10μCi). Subsequently, pairs of mature females were each housed for 48h with a single mature female that had been administered 3 H-P 4 (50μCi) via intraperitoneal injection. Radioactivity was observed in all collected tissues of all non-injected females at levels significantly greater than the control group. Following the same paradigm, radioactivity was not observed in the tissues of untreated female bats that were housed with stimulus females treated with 3 H-E 2 (50μCi). Enzyme immunoassays revealed measurable levels of unconjugated progesterone and estradiol in the urine of female bats, suggesting urine as a vector for steroid transfer. Given that bats of this species live in predominantly female roosts in very close contact, progesterone transfer among individuals is likely to occur in natural roosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of Vitex agnus-castus fruit on sex hormones and antioxidant indices in a d-galactose-induced aging female mouse model

    Akram Ahangarpour

    2016-11-01

    Conclusion: Vitex improved some aging events in the reproductive system of female mice. Therefore, because of its apparent antiaging effects, Vitex can be suitable for some aging problems such as oxidative stress, female sex hormone deficiency, and an atrophic endometrium.

  8. Amyloid beta precursor protein regulates male sexual behavior.

    Park, Jin Ho; Bonthius, Paul J; Tsai, Houng-Wei; Bekiranov, Stefan; Rissman, Emilie F

    2010-07-28

    Sexual behavior is variable between individuals, ranging from celibacy to sexual addictions. Within normal populations of individual men, ranging from young to middle aged, testosterone levels do not correlate with libido. To study the genetic mechanisms that contribute to individual differences in male sexual behavior, we used hybrid B6D2F1 male mice, which are a cross between two common inbred strains (C57BL/6J and DBA/2J). Unlike most laboratory rodent species in which male sexual behavior is highly dependent upon gonadal steroids, sexual behavior in a large proportion of these hybrid male mice after castration is independent of gonadal steroid hormones and their receptors; thus, we have the ability to discover novel genes involved in this behavior. Gene expression arrays, validation of gene candidates, and transgenic mice that overexpress one of the genes of interest were used to reveal genes involved in maintenance of male sexual behavior. Several genes related to neuroprotection and neurodegeneration were differentially expressed in the hypothalamus of males that continued to mate after castration. Male mice overexpressing the human form of one of these candidate genes, amyloid beta precursor protein (APP), displayed enhanced sexual behavior before castration and maintained sexual activity for a longer duration after castration compared with controls. Our results reveal a novel and unexpected relationship between APP and male sexual behavior. We speculate that declining APP during normal aging in males may contribute to the loss of sexual function.

  9. Skewed X-inactivation in cloned mice

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  10. AGONISTIC BEHAVIOR OF LABORATORY MICE

    D. Cinghiţă

    2005-01-01

    Full Text Available In this work we study agonistic behavior of laboratory white mice when they are kept in captivity. For all this experimental work we used direct observation of mice, in small lists, because we need a reduced space to emphasize characteristics of agonistic behavior. Relations between members of the same species that live in organized groups are based in most cases on hierarchical structure. Relations between leader and subservient, decided by fighting, involve a thorough observation between individuals. Each member of a group has its own place on the ierarchical scale depending on resultes of fhights – it can be leader or it can be subsurvient, depending on if it wines or looses the fight. Once hierarchical scale made, every animal will adjust its behavior. After analyzing the obtained data we have enough reasons to believe that after fights the winner, usually, is the massive mouse, but it is also very important the sexual ripeness, so the immature male will be beaten. The leader male had a big exploring area and it checks up all territory.The females can be more aggressive, its fights are more brutal, than male fights are, when they fight for supremacy, but in this case fights are not as frequent as in the case of males. Always the superior female, on hierarchical scale, shows males its own statute, so the strongest genes will be perpetuated.

  11. Gender affects skin wound healing in plasminogen deficient mice.

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  12. Saw palmetto extract induces nuclear heterogeneity in mice.

    Trinachartvanit, Wachareeporn; Francis, Bettina M; Rayburn, A Lane

    2009-01-01

    Saw palmetto (SW), a phytotherapeutic compound used in the treatment of prostate disease, was examined for potential nuclear effects. SW extract was incorporated into a complete casein-based semisynthetic rodent chow at 0%, 0.1% and 1% SW. SW was fed to mice for 6 weeks, after which the mice received a single i/p injection of either the known genotoxic agent methyl methanesulfonate (MMS) in saline or just saline. Forty-eight hours after injection, blood and bone marrow were collected for flow cytometric analysis. A significant effect of MMS was observed in both male and female mice with respect to: an increase in nuclear heterogeneity in bone marrow cells as measured by the coefficient of variation of the G1 peak in a flow histogram (6.32 versus 4.8 in male mice, 7.0 versus 4.9 in female mice) and an increase in the number of micronucleated blood cells (3.4% versus 0.56% male mice, 3.1% versus 0.6 in female mice) indicating a positive genotoxic response. SW also appears to increase the heterogeneity of bone marrow nuclei in a dose dependent manner (0-5.1%, 0.1-5.5% and 1-5.7% in male mice, 0-5.7%, 0.1-6.0% and 1-6.2% in female mice) without a concomitant increase in blood cell micronuclei. These results indicate that SW is not genotoxic with respect to physical DNA damage and that the changes observed in the bone marrow are due to chromatin conformation modifications in the nuclei of in vivo treated mouse cells. Copyright © 2008 Elsevier B.V. All rights reserved.

  13. Expanding the body mass range: associations between BMR and tissue morphology in wild type and mutant dwarf mice (David mice).

    Meyer, Carola W; Neubronner, Juliane; Rozman, Jan; Stumm, Gabi; Osanger, Andreas; Stoeger, Claudia; Augustin, Martin; Grosse, Johannes; Klingenspor, Martin; Heldmaier, Gerhard

    2007-02-01

    We sought to identify associations of basal metabolic rate (BMR) with morphological traits in laboratory mice. In order to expand the body mass (BM) range at the intra-strain level, and to minimize relevant genetic variation, we used male and female wild type mice (C3HeB/FeJ) and previously unpublished ENU-induced dwarf mutant littermates (David mice), covering a body mass range from 13.5 g through 32.3 g. BMR was measured at 30 degrees C, mice were killed by means of CO(2 )overdose, and body composition (fat mass and lean mass) was subsequently analyzed by dual X-ray absorptiometry (DEXA), after which mice were dissected into 12 (males) and 10 (females) components, respectively. Across the 44 individuals, 43% of the variation in the basal rates of metabolism was associated with BM. The latter explained 47% to 98% of the variability in morphology of the different tissues. Our results demonstrate that sex is a major determinant of body composition and BMR in mice: when adjusted for BM, females contained many larger organs, more fat mass, and less lean mass compared to males. This could be associated with a higher mass adjusted BMR in females. Once the dominant effects of sex and BM on BMR and tissue mass were removed, and after accounting for multiple comparisons, no further significant association between individual variation in BMR and tissue mass emerged.

  14. Female urethral carcinoma

    Saitoh, Masahiko; Kondo, Atsuo; Sakakibara, Toshihumi

    1988-01-01

    Urethral carcinoma in 2 females has been treated with irradiation together with adjunct chemotherapy. In case 1, a 73-year-old female with squamous cell carcinoma was successfully treated with irradiation of 4,000 rad and peplomycin of 60 mg intravenously given. She has been free from the disease for the past 43 months. In case 2, a 61-year-old female with transitional cell carcinoma was initially treated with irradiation of 5,000 rad together with peplomycin 90 mg, which was followed by another 5,000 rad irradiation. The tumor recurred and the patient was operated on for cystourethrectomy and partial resection of the vagina. A further chemotherapy of cisplatin, peplomycin, and mitomycin C was instituted. She died of the tumor recurrence 23 months after the first visit to our clinic. Diagnosis and treatment modalities on the female urethral carcinoma are briefly discussed. (author)

  15. Female Reproductive System

    ... of the Female Reproductive System Print en español Sistema reproductor femenino About Human Reproduction All living things ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on KidsHealth® is for ...

  16. Female pattern baldness

    Alopecia in women; Baldness - female; Hair loss in women; Androgenetic alopecia in women; Hereditary balding or thinning in women ... in the skin called a follicle. In general, baldness occurs when the hair follicle shrinks over time, ...

  17. Female Athlete Triad

    ... for some competitive female athletes, problems such as low self-esteem, a tendency toward perfectionism, and family stress place ... depression, pressure from coaches or family members, or low self-esteem and can help her find ways to deal ...

  18. Female Sex Tourism

    Mc Intyre, Maria Kleivan

    2017-01-01

    ABSTRACT This project explores the phenomenon of North American and Western European women, who travel to the Global South and engage in sexual encounters with the local men. This project has positioned itself as a postcolonial critique, arguing that female sex tourism is a form of neocolonialism. It has also investigated the term romance tourism, where it has found that as a result of essentialist gender stereotyping, the female version of sex tourism has been titled ‘romance tourism’. The p...

  19. Female physicist doctoral experiences

    Katherine P. Dabney; Robert H. Tai

    2013-01-01

    The underrepresentation of women in physics doctorate programs and in tenured academic positions indicates a need to evaluate what may influence their career choice and persistence. This qualitative paper examines eleven females in physics doctoral programs and professional science positions in order to provide a more thorough understanding of why and how women make career choices based on aspects both inside and outside of school and their subsequent interaction. Results indicate that female...

  20. The lonely female partner

    Bruun, Poul; Pedersen, Birthe D; Osther, Palle J

    2011-01-01

    The aim of this qualitative study was to investigate the experiences of female partners to men with prostate cancer. The women found the capacity to manage their lives through mutual love in the family and through their faith.......The aim of this qualitative study was to investigate the experiences of female partners to men with prostate cancer. The women found the capacity to manage their lives through mutual love in the family and through their faith....

  1. Female pattern hair loss

    İdil Ünal

    2014-06-01

    Full Text Available Female androgenetic alopecia is the commonest cause of hair loss in women. It is characterized by a diffuse reduction in hair density over the crown and frontal scalp with retention of the frontal hairline and a characteristic pattern distribution in genetically predisposed women. Because of the uncertain relationship with the androgens Female Pattern Hair Loss (FPHL is the most preferred definition of the condition. This review has been focused on the clinical features, diagnosis and treatment alternatives of FPHL.

  2. Online Female Escort Advertisements

    James D. Griffith

    2016-05-01

    Full Text Available Female escorts represent an occupational group that charges a fee for sex, which can be regarded as an extreme form of short-term mating. The present study examined if the fees charged by escorts are related to traits typically associated with female short-term mate value. A total of 2,925 advertisements for female escorts offering sexual services in the United States were examined, as a customized software program was used to download all the advertisements from an online escort directory. The advertisement content was coded, and relationships between advertised physical characteristics and the hourly rate charged by female escorts were examined. The analyses showed that higher fees were associated with female escorts who advertised a waist-to-hip ratio near 0.7, lower weight and body mass index, younger age, and photographic displays of breast and buttocks nudity. The findings provide evidence that evolutionarily relevant traits associated with female short-term mate value are systematically related to fees charged for sexual services.

  3. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice.

    Liu, Ying-Juan; Li, Lai-Fu; Zhang, Yao-Hua; Guo, Hui-Fen; Xia, Min; Zhang, Meng-Wei; Jing, Xiao-Yuan; Zhang, Jing-Hua; Zhang, Jian-Xu

    2017-03-01

    Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Female genital cutting.

    Perron, Liette; Senikas, Vyta; Burnett, Margaret; Davis, Victoria

    2013-11-01

    To strengthen the national framework for care of adolescents and women affected by female genital cutting (FGC) in Canada by providing health care professionals with: (1) information intended to strengthen their knowledge and understanding of the practice; (2) directions with regard to the legal issues related to the practice; (3) clinical guidelines for the management of obstetric and gynaecological care, including FGC related complications; and (4) guidance on the provision of culturally competent care to adolescents and women with FGC. Published literature was retrieved through searches of PubMed, CINAHL, and The Cochrane Library in September 2010 using appropriate controlled vocabulary (e.g., Circumcision, Female) and keywords (e.g., female genital mutilation, clitoridectomy, infibulation). We also searched Social Science Abstracts, Sociological Abstracts, Gender Studies Database, and ProQuest Dissertations and Theses in 2010 and 2011. There were no date or language restrictions. Searches were updated on a regular basis and incorporated in the guideline to December 2011. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). Summary Statements 1. Female genital cutting is internationally recognized as a harmful practice and a violation of girls' and women's rights to life, physical integrity, and health. (II-3) 2. The immediate and long-term health risks and complications of female genital cutting can be serious and life threatening. (II-3) 3. Female genital cutting continues to be practised in many countries, particularly in sub-Saharan Africa, Egypt, and Sudan. (II-3) 4. Global migration

  5. Male sexual harassment alters female social behaviour towards other females.

    Darden, Safi K; Watts, Lauren

    2012-04-23

    Male harassment of females to gain mating opportunities is a consequence of an evolutionary conflict of interest between the sexes over reproduction and is common among sexually reproducing species. Male Trinidadian guppies Poecilia reticulata spend a large proportion of their time harassing females for copulations and their presence in female social groups has been shown to disrupt female-female social networks and the propensity for females to develop social recognition based on familiarity. In this study, we investigate the behavioural mechanisms that may lead to this disruption of female sociality. Using two experiments, we test the hypothesis that male presence will directly affect social behaviours expressed by females towards other females in the population. In experiment one, we tested for an effect of male presence on female shoaling behaviour and found that, in the presence of a free-swimming male guppy, females spent shorter amounts of time with other females than when in the presence of a free-swimming female guppy. In experiment two, we tested for an effect of male presence on the incidence of aggressive behaviour among female guppies. When males were present in a shoal, females exhibited increased levels of overall aggression towards other females compared with female only shoals. Our work provides direct evidence that the presence of sexually harassing males alters female-female social behaviour, an effect that we expect will be recurrent across taxonomic groups.

  6. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice.

  7. Aldh2 knockout mice were more sensitive to DNA damage in leukocytes due to ethyl tertiary butyl ether exposure.

    Weng, Zuquan; Suda, Megumi; Ohtani, Katsumi; Mei, Nan; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2011-01-01

    To clarify the genotoxicity of ethyl tertiary butyl ether (ETBE), a gasoline additive, male and female C57BL/6 mice of Aldh2+/+ and Aldh2-/- genotypes, aged 8 wk, were exposed to 0, 500, 1,750, or 5,000 ppm ETBE for 6 h/day, 5 d per week for 13 wk. DNA damage in leukocytes was measured by the alkaline comet assay and expressed quantitatively as Tail Intensity (TI). For male mice, TI was significantly higher in all three groups exposed to ETBE than in those without exposure within Aldh2-/- mice, whereas within Aldh2+/+ mice, TI increased only in those exposed to 5,000 ppm of ETBE as compared with mice without exposure. For female mice, a significant increase in TI values was observed in the group exposed to 5,000 ppm of ETBE as compared with those without exposure within Aldh2-/- mice; TI in Aldh2-/- mice exposed to 1,750 and 5,000 ppm was significantly higher than in Aldh2+/+ mice without exposure. TI did not significantly increase in any of the groups exposed to ETBE within female Aldh2+/+ mice. Based on the results we suggest that Aldh2-/- mice are more sensitive to DNA damage caused by ETBE than Aldh2+/+ mice and that males seem more susceptible to this effect than females.

  8. Metabolic characteristics of long-lived mice

    Andrzej eBartke

    2012-12-01

    Full Text Available Genetic suppression of insulin/insulin-like growth factor signaling (IIS can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor (IGF-1. Long-lived GH-resistant GHRKO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1df and Snell dwarf (Pit1dw mice lacking GH (along with prolactin and TSH, are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHRKO mice. Indirect calorimetry revealed that both Ames dwarf and GHRKO mice utilize more oxygen per gram (g of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient (RQ, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO2 were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO2 did not differ between GHRKO and normal mice. Thus, the increased metabolic rate of the GHRKO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of

  9. Dominant lethal mutations research in mice fed with irradiated black beams

    Andrade, Z.P.

    1982-01-01

    To evaluate the potential mutagenic effects of irradiated black beans (Phaseolus vulgaris) with conservation purpose, in germ cells of mice, dominant lethal assay were employed. Three groups of albino swiss male mice (S W-55) were fed with a normal ration, or unirradiated or irradiated (0,2; 0,5; 1; 5; 10; 15 e 20 KGy) test diets for eight weeks. After the feeding period the males were mated with groups of untreated females mice for four consecutive weeks. Numbers of pregnancy rates females were observed. The females were autopsied at mid-term pregnancy for evaluation of dominant lethal mutations. (author)

  10. Female physicist doctoral experiences

    Katherine P. Dabney

    2013-04-01

    Full Text Available The underrepresentation of women in physics doctorate programs and in tenured academic positions indicates a need to evaluate what may influence their career choice and persistence. This qualitative paper examines eleven females in physics doctoral programs and professional science positions in order to provide a more thorough understanding of why and how women make career choices based on aspects both inside and outside of school and their subsequent interaction. Results indicate that female physicists experience conflict in achieving balance within their graduate school experiences and personal lives and that this then influences their view of their future careers and possible career choices. Female physicists report both early and long-term support outside of school by family, and later departmental support, as being essential to their persistence within the field. A greater focus on informal and out-of-school science activities for females, especially those that involve family members, early in life may help influence their entrance into a physics career later in life. Departmental support, through advisers, mentors, peers, and women’s support groups, with a focus on work-life balance can help females to complete graduate school and persist into an academic career.

  11. Female physicist doctoral experiences

    Dabney, Katherine P.; Tai, Robert H.

    2013-06-01

    The underrepresentation of women in physics doctorate programs and in tenured academic positions indicates a need to evaluate what may influence their career choice and persistence. This qualitative paper examines eleven females in physics doctoral programs and professional science positions in order to provide a more thorough understanding of why and how women make career choices based on aspects both inside and outside of school and their subsequent interaction. Results indicate that female physicists experience conflict in achieving balance within their graduate school experiences and personal lives and that this then influences their view of their future careers and possible career choices. Female physicists report both early and long-term support outside of school by family, and later departmental support, as being essential to their persistence within the field. A greater focus on informal and out-of-school science activities for females, especially those that involve family members, early in life may help influence their entrance into a physics career later in life. Departmental support, through advisers, mentors, peers, and women’s support groups, with a focus on work-life balance can help females to complete graduate school and persist into an academic career.

  12. Female genital mutilation.

    Ladjali, M; Rattray, T W; Walder, R J

    1993-08-21

    Female genital mutilation, also misleadingly known as female circumcision, is usually performed on girls ranging in from 1 week to puberty. Immediate physical complications include severe pain, shock, infection, bleeding, acute urinary infection, tetanus, and death. Longterm problems include chronic pain, difficulties with micturition and menstruation, pelvic infection leading to infertility, and prolonged and obstructed labor during childbirth. An estimated 80 million girls and women have undergone female genital mutilation. In Britain alone an estimated 10,000 girls are currently at risk. Religious, cultural, medical, and moral grounds rationalize the custom which is practiced primarily in sub-Saharan Africa, the Arab world, Malaysia, Indonesia, and among migrant populations in Western countries. According to WHO it is correlated with poverty, illiteracy, and the low status of women. Women who escape mutilation are not sought in marriage. WHO, the UN Population Fund, the UN Children's Fund, the International Planned Parenthood Federation, and the UN Convention on the Rights of the Child have issued declarations on the eradication of female genital mutilation. In Britain, local authorities have intervened to prevent parents from mutilating their daughters. In 1984, the Inter-African Committee Against Harmful Traditional Practices Affecting Women and Children was established to work toward eliminating female genital mutilation and other damaging customs. National committees in 26 African countries coordinate projects run by local people using theater, dance, music, and storytelling for communication. In Australia, Canada, Europe, and the US women have organized to prevent the practice among vulnerable migrants and refugees.

  13. A laboratory cage for foster nursing newborn mice

    S. Marques-de-Araújo

    1999-03-01

    Full Text Available We describe a cage to be used for foster nursing in order to guarantee that original mother's colostrum is not ingested by the newborn mice. A common (30.5 cm x 19.5 cm x 12.0 cm mouse cage was fitted with a wire net tray with a mesh (1 cm x 1 cm, which divides the cage into an upper and a lower compartment. Mice born to females placed in the upper compartment pass through the mesh and fall into the lower compartment, where another lactating female with one or two of its own pups are. Of a total of 28 newborn mice of C3H/He and Swiss strains, 23 were successfully fostered. Important observations are presented to show that this is a valuable alternative for foster studies without great suffering on the part of the female.

  14. Gender affects skin wound healing in plasminogen deficient mice

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...

  15. Airway Inflammation and Remodeling in Two Mouse Models of Asthma : Comparison of Males and Females

    Blacquiere, M. J.; Hylkema, M. N.; Postma, D. S.; Geerlings, M.; Timens, W.; Melgert, B. N.

    2010-01-01

    Background: Asthma and especially severe asthma affect women more frequently than men. Since asthma severity correlates with remodeling changes in the lung, a female propensity to remodeling could be expected. We studied whether our previous observation that female mice have more pronounced airway

  16. Evaluate the Influence of Eupatorium adenophorum Extract with Mice Organ

    Nong, Xiang; Yang, Can; Yang, Yaojun; Liang, Zi; Hu, Qiang; Zhang, Ting

    2018-01-01

    In order to study the influence of extract from Eupatorium adenophorum in mice organs, this experiment will be the basis of further study that make Eupatorium adenophorum become Phyto contraceptive, this experiment take the feeding respectively way after the completion of the 1D, 5D, 10d, 15d of Eupatorium adenophorum mice by intragastrical administration of levonorgestrel group and blank control group. After the same operation in different periods of small rat heart and kidney the uterus, testis, and other organs were observed. The results showed that after extraction of E. adenophorum changes in female mice uterus shape was perfused significantly, showed swelling larger. Data analysis of each viscera coefficient was found E. adenophorum had No obvious effect on the heart, kidneys and testicles of mice. but there are obvious differences date between the treatment group and the blank group. (5d: F=10. 800 P=0. 043 cases) from tissue sections we can see female mice uterus cell morphology changes significantly, there was a similar appearance change in the uterus of the female mice with the estradiol For a male mouse testis of E.adenophorum gavage had No obvious effect. And it is found that the heart, the treated mice kidney, testis, ovary and other organs were observed in each period of time the organization had No obvious change; only female mice uterus tissue sections of individual cells became larger, and the organization of the gap larger. This research shows that E.adenophorum extract has the potential to develop botanical contraceptives, we will conduct in-depth study.

  17. Female athlete triad update.

    Beals, Katherine A; Meyer, Nanna L

    2007-01-01

    The passage of Title IX legislation in 1972 provided enormous opportunities for women to reap the benefits of sports participation. For most female athletes, sports participation is a positive experience, providing improved physical fitness, enhanced self-esteem, and better physical and mental health. Nonetheless, for a few female athletes, the desire for athletic success combined with the pressure to achieve a prescribed body weight may lead to the development of a triad of medical disorders including disordered eating, menstrual dysfunction, and low bone mineral density (BMD)--known collectively as the female athlete triad. Alone or in combination, the disorders of the triad can have a negative impact on health and impair athletic performance.

  18. Dopamine D3 receptor knockout mice exhibit abnormal nociception in a sex-different manner.

    Liu, Peng; Xing, Bo; Chu, Zheng; Liu, Fei; Lei, Gang; Zhu, Li; Gao, Ya; Chen, Teng; Dang, Yong-Hui

    2017-07-01

    Pain is a complex and subjective experience. Previous studies have shown that mice lacking the dopamine D3 receptor (D3RKO) exhibit hypoalgesia, indicating a role of the D3 receptor in modulation of nociception. Given that there are sex differences in pain perception, there may be differences in responses to nociceptive stimuli between male and female D3RKO mice. In the current study, we examined the role of the D3 receptor in modulating nociception in male and female D3RKO mice. Acute thermal pain was modeled by hot-plate test. This test was performed at different temperatures including 52°C, 55°C, and 58°C. The von Frey hair test was applied to evaluate mechanical pain. And persistent pain produced by peripheral tissue injury and inflammation was modeled by formalin test. In the hot-plate test, compared with wild-type (WT) mice, D3RKO mice generally exhibited longer latencies at each of the three temperatures. Specially, male D3RKO mice showed hypoalgesia compared with male WT mice when the temperature was 55°C, while for the female mice, there was a statistical difference between genotypes when the test condition was 52°C. In the von Frey hair test, both male and female D3RKO mice exhibited hypoalgesia. In the formalin test, the male D3RKO mice displayed a similar nociceptive behavior as their sex-matched WT littermates, whereas significantly depressed late-phase formalin-induced nociceptive behaviors were observed in the female mutants. These findings in