WorldWideScience

Sample records for fel gain length

  1. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  2. Review of High Gain FELs

    International Nuclear Information System (INIS)

    Shintake, Tsumoru

    2007-01-01

    For understanding on basic radiation mechanism of the high-gain FEL based on SASE, the author presents electron-crystal interpretation of FEL radiation. In the electron-crystal, electrons are localized at regularly spaced multi-layers, which represents micro-bunching, whose spacing is equal to the radiation wavelength, and the multi-layers are perpendicular to beam axis, thus, diffracted wave creates Bragg's spots in forward and backward directions. Due to the Doppler's effect, frequency of the back-scattered wave is up-converted, generates forwardly focused X-ray. The Bragg's effect contributes focusing the X-ray beam into a spot, thus peak power becomes extremely higher by factor of typically 107. This is the FEL radiation. As well known, the total numbers of scattered photons in Bragg's spots is equal to the total elastic scattering photons from the atoms contained in the crystal. Therefore, total power in the FEL laser is same as the spontaneous radiation power from the undulator for the same beam parameter. The FEL radiation phenomenon is simple interference effect. In today's presentations, we use the laser pointer, and we frequently experience difficulty in pointing precisely or steadily in one place on the screen, since the laser spot is very small and does not spread. Exactly same to this, X-ray FEL is a highly focused beam, and pointing stability dominates productivity of experiment, thus we need special care on beam stability from linear accelerator

  3. FEL gain optimisation and spontaneous radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  4. Electron bunch length measurement at the Vanderbilt FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M. [Vanderbilt Free-Electron-Laser Center, Nashville, TN (United States)] [and others

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  5. Scaling of gain with energy spread and energy in the PEP FEL

    International Nuclear Information System (INIS)

    Fisher, A.S.

    1992-01-01

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread σ var-epsilon . I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field

  6. Dispersion relations for 1D high-gain FELs

    International Nuclear Information System (INIS)

    Webb, S.D.; Litvinenko, V.N.

    2010-01-01

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  7. Circular polarization with crossed-planar undulators in high-gain FELs

    CERN Document Server

    Kim, K J K J

    2000-01-01

    We propose a crossed undulator configuration for a high-gain free-electron laser to allow versatile polarization control. This configuration consists of a long (saturation length) planar undulator, a dispersive section, and a short (a few gain lengths) planar undulator oriented perpendicular to the first one. In the first undulator, a radiation component linearly polarized in the x-direction is amplified to saturation. In the second undulator, the x-polarized component propagates freely, while a new component, polarized in the y-direction, is generated and reaches saturation in a few gain lengths. By adjusting the strength of the dispersive section, the relative phase of two radiation components can be adjusted to obtain a suitable polarization for the total radiation field, including the circular polarization. The operating principle of the high-gain crossed undulator, which is quite different from that of the crossed undulator for spontaneous radiation, is illustrated in terms of 1-D FEL theory.

  8. On FEL integral equation and electron energy loss in intermediate gain regime

    International Nuclear Information System (INIS)

    Takao, Masaru

    1994-03-01

    The FEL pendulum equation in a intermediate gain small signal regime is investigated. By calculating the energy loss of the electron beam in terms of the solution of the pendulum equation, we confirm the consistency of the FEL equation in intermediate gain regime. (author)

  9. Study on the drive laser system of the photocathode-injector used in high gain FEL

    CERN Document Server

    Lu Xiang Yang; Zhao Kui; Wang Li; Quan Sheng Wen; Hao Jian Kui; Zhang Bao Cheng; Chen J

    2002-01-01

    High gain FEL requires high quality electron beam which can be provided only by the RF photocathode gun. The drive laser for electron source plays the key role. In Institute of Heavy Ion Physics of Beijing University, the laser system is required to deliver a 500 mu J, 6-8 ps pulse of UV photons (260 nm) to the cathode. This system mainly consists of a CW, frequency-doubled, diode-pumped Nd:YAG laser, which provides energy to pump a CW mode-locked Ti:sapphire oscillator, Q-switched Nd:YaG pump lasers, a regenerative amplifier and harmonics crystals. To meet the low jitters of pulses (1.0 ps), cavity length of the oscillator should be adjustable to lock the pulse frequency with external RF reference, and a phase stability feedback system is also used

  10. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    2017-06-01

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considers a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.

  11. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    Energy Technology Data Exchange (ETDEWEB)

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  12. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Richman, B.A. [Stanford Univ., CA (United States); DeLong, K.W.; Trebino, R. [Sandia National Lab., Livermore, CA (United States)

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  13. High-gain Seeded FEL Amplifier Tunable in the Terahertz Range

    CERN Document Server

    Sung, C; Pellegrini, C; Ralph, J E; Reiche, S; Rosenzweig, J B; Tochitsky, Sergei Ya

    2005-01-01

    The lack of a high-power, relatively low-cost and compact terahertz (THz) source in the range 0.3-3x10(12) Hz is the major obstacle in progressing on biomedical and material studies at these wavelengths. A high-gain, single pass seeded FEL technique allows to obtain high power THz pulses of a high spectral brightness. We describe an ongoing project at the Neptune laboratory where a ~ 1kW seed pulse generated by difference frequency mixing of CO2 laser lines in a GaAs nonlinear crystal is injected into a waveguide FEL amplifier. The FEL is driven by a 5 ps (r.m.s) long electron pulse with a peak current up to 100A provided by a regular S-band photoinjector. According to 3-D, time dependent simulations, up to ~ 10 MW THz power can be generated using a 2 meter long planar undulator. By mixing different pairs of CO2 laser lines and matching resonant energy of the electron beam, tunability in the 100-400 mm range is expected. A tunable Fabri-Perot interferometer will be used to select a high-power 5ps THz pulse. T...

  14. A Coherent Compton Backscattering High Gain FEL using an X-Band Microwave Undulator

    CERN Document Server

    Pellegrini, C; Travish, G

    2005-01-01

    We describe a proposed high-gain FEL using an X-band microwave undulator and operating at a wavelength of about 0.5 μm. The FEL electron beam energy is 65 MeV. The beam is produced by the NLCTA X-band linac at SLAC, using an S-band high-brightness photoinjector. The undulator consists of a circular waveguide with an rf wave counter-propagating with respect to the electron beam. The undulator is powered with two high-power X-band klystrons and a dual-moded pulse compressor recently developed at SLAC. This system is capable of delivering flat-top rf pulses of up to 400 ns and a few hundred megawatts. The equivalent undulator period is 1.4 cm, the radius of the circular pipe is 1 cm, and the undulator parameter is about 0.4 for a helical undulator configuration, obtained using two cross-polarized TE modes, or larger for a planar configuration, using one rf polarization. The undulator is about four meters long. The FEL will reach saturation within this distance when operated in a SASE mode. We describe t...

  15. Demonstration Of 3D Effects With High Gain And Efficiency In A UV FEL Oscillator

    International Nuclear Information System (INIS)

    Benson, Stephen; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; Kortze, James; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle; Tennant, Christopher; Walker, Richard; Watson, Anne; Williams, Gwyn; Wilson, Frederick; Zhang, Shukui

    2011-01-01

    We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency.

  16. Electron beam bunch length characterizations using incoherent and coherent transition radiation on the APS SASE FEL project

    CERN Document Server

    Lumpkin, Alex H; Berg, W J; Lewellen, J W; Sereno, N S; Happek, U

    2000-01-01

    The Advanced Photon Source (APS) injector linac has been reconfigured with a low-emittance RF thermionic gun and a photocathode (PC) RF gun to support self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiments. One of the most critical parameters for optimizing SASE performance (gain length) is the electron beam peak current, which requires a charge measurement and a bunch length measurement capability. We report here initial measurements of the latter using both incoherent optical transition radiation (OTR) and coherent transition radiation (CTR). A visible light Hamamatsu C5680 synchroscan streak camera was used to measure the thermionic RF gun beam's bunch length (sigma approx 2-3 ps) via OTR generated by the beam at 220 MeV and 200 mA macropulse average current. In addition, a CTR monitor (Michelson Interferometer) based on a Golay cell as the far-infrared (FIR) detector has been installed at the 40-MeV station in the beamline. Initial observations of CTR signal strength variation wi...

  17. A single-particle calculation of the FEL-Cerenkov gain

    International Nuclear Information System (INIS)

    Dattoli, G.; Doria, A.; Gallerano, G.P.; Renieri, A.; Schettini, G.; Torre, A.

    1988-01-01

    In this work it is shown that the basic FEL-Cerenkov dynamics can be modelled using a pendulumlike equation in close analogy with FEL undulator case. The analysis, including the inhomogeneous broadening effects, is worked out in the hypothesis of single-slab geometry. Two-dimensional motion dynamics effects are also included

  18. Optimizing x-ray mirror thermal performance using variable length cooling for second generation FELs

    Science.gov (United States)

    Hardin, Corey L.; Srinivasan, Venkat N.; Amores, Lope; Kelez, Nicholas M.; Morton, Daniel S.; Stefan, Peter M.; Nicolas, Josep; Zhang, Lin; Cocco, Daniele

    2016-09-01

    The success of the LCLS led to an interest across a number of disciplines in the scientific community including physics, chemistry, biology, and material science. Fueled by this success, SLAC National Accelerator Laboratory is developing a new high repetition rate free electron laser, LCLS-II, a superconducting linear accelerator capable of a repetition rate up to 1 MHz. Undulators will be optimized for 200 to 1300 eV soft X-rays, and for 1000 to 5000 eV hard X-rays. To absorb spontaneous radiation, higher harmonic energies and deflect the x-ray beam to various end stations, the transport and diagnostics system includes grazing incidence plane mirrors on both the soft and Hard X-ray beamline. To deliver the FEL beam with minimal power loss and wavefront distortion, we need mirrors of height errors below 1nm rms in operational conditions. We need to mitigate the thermal load effects due to the high repetition rate. The absorbed thermal profile is highly dependent on the beam divergence, and this is a function of the photon energy. To address this complexity, we developed a mirror cradle with variable length cooling and first order curve correction. Mirror figure error is minimized using variable length water-cooling through a gallium-indium eutectic bath. Curve correction is achieved with an off-axis bender that will be described in details. We present the design features, mechanical analysis and results from optical and mechanical tests of a prototype assembly, with particular regards to the figure sensitivity to bender corrections.

  19. Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment

    International Nuclear Information System (INIS)

    Biedron, S. G.

    1999-01-01

    Over the last few years, there has been a growing interest in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) as a means for achieving a fourth-generation light source. In order to correctly and easily simulate the many configurations that have been suggested, such as multi-segmented wigglers and the method of high-gain harmonic generation, we have developed a robust three-dimensional code. The specifics of the code, the comparison to the linear theory as well as future plans will be presented

  20. Plasma Wakefield Accelerated Beams for Demonstration of FEL Gain at FLASHForward

    OpenAIRE

    Niknejadi, Pardis; Aschikhin, Alexander; Hu, Zhanghu; Karstensen, Sven; Knetsch, Alexander; Kononenko, Olena; Libov, Vladyslav; Ludwig, Kai; Martinez de la Ossa, Alberto; Marutzky, Frank; Mehrling, Timon; Osterhoff, Jens; Behrens, Christopher; Palmer, Charlotte; Poder, Kristjan

    2017-01-01

    FLASHForward is the Future-ORiented Wakefield Accelerator Research and Development project at the DESY free-electron laser (FEL) facility FLASH. It aims to produce high-quality, GeV-energy electron beams over a plasma cell of a few centimeters. The plasma is created by means of a 25 TW Ti:Sapphire laser system. The plasma wakefield will be driven by high-current-density electron beams extracted from the FLASH accelerator. The project focuses on the advancement of plasma-based particle acceler...

  1. Status and initial commissioning of a high gain 800 nm SASE FEL

    CERN Document Server

    Tremaine, Aaron M; Murokh, A; Musumeci, P; Pellegrini, C; Rosenzweig, J; Babzien, M; Ben-Zvi, I; Johnson, E; Malone, R; Rakowsky, G; Skaritka, J; Wang, X J; Yu, L H; Van Bibber, K A; Hill, J M; Le Sage, G P; Carr, R; Cornacchia, M; Nuhn, H D; Ruland, R; Nguyen, D C

    2000-01-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation.

  2. Status and initial commissioning of a high gain 800 nm SASE FEL

    International Nuclear Information System (INIS)

    Tremaine, A.; Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.; Rosenzweig, J.; Babzien, M.; Ben-Zvi, I.; Johnson, E.; Malone, R.; Rakowsky, G.; Skaritka, J.; Wang, X.J.; Yu, L.H.; Van Bibber, K.A.; Hill, J.M.; Le Sage, G.P.; Carr, R.; Cornacchia, M.; Nuhn, H.-D.; Ruland, R.; Nguyen, D.C.

    2000-01-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation

  3. THE VISA FEL UNDULATOR

    International Nuclear Information System (INIS)

    CARR, R.; CORNACCHIA, M.; EMMA, P.; NUHN, H.D.; FULAND, R.; JOHNSON, E.; RAKOWSKY, G.; LIDIA, S.; BERTOLINI, L.; LIBKIND, M.; FRIGOLA, P.; PELLEGRINI, C.; ROSENZWEIG, J.

    1998-01-01

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulator comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than ±50 pm per field gain length

  4. FEL small signal gain reduction due to phase error of undulator

    International Nuclear Information System (INIS)

    Jia Qika

    2002-01-01

    The effects of undulator phase errors on the Free Electron Laser small signal gain is analyzed and discussed. The gain reduction factor due to the phase error is given analytically for low-gain regimes, it shows that degradation of the gain is similar to that of the spontaneous radiation, has a simple exponential relation with square of the rms phase error, and the linear variation part of phase error induces the position shift of maximum gain. The result also shows that the Madey's theorem still hold in the presence of phase error. The gain reduction factor due to the phase error for high-gain regimes also can be given in a simple way

  5. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  6. The 'Fresh-Bunch' technique in FELs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Yang, K.M.; Yu, L.H.

    1991-01-01

    The 'Fresh Bunch' technique is being proposed as a method of increasing the gain and power of FEL amplifiers in which the length of the optical radiation pulse is shorter than the length of the electron bunch. In multi-stage FEL, electron beam energy spread is increased by the FEL interaction in the early stages. In the 'Fresh Bunch' technique, the low energy spread of the electron beam is recovered by shifting the radiation pulse to an undisturbed part of the electron bunch, thus improving the gain and trapping fraction in later stages. A test case for the application of the Fresh Bunch method is demonstrated by numerical simulation. In this particular example we examine a subharmonically seeded VUV Free-Electron Laser. We begin with the generation of harmonic radiation, which takes place over one part of the electron bunch. Then the radiation is shifted by means of a strong dispersive section to a fresh part of the bunch for exponential amplification and tapered wiggler amplification. By starting over with a new ensemble of electrons, the energy spread introduced by the bunching in the fundamental is removed, leading to an increased gain. Furthermore, it is possible to use a much stronger seed in the fundamental without incurring the penalty of a large energy spread later on. We note that more than a single application of the 'Fresh Bunch' method may be done in a single FEL multiplier-amplifier. Thus x-ray wavelengths may be reached by successive multiplication in a chain of FEL amplifiers starting from a tunable seed laser. 5 refs., 2 figs., 2 tabs

  7. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  8. Harmonic lasing in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-05-15

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned X-ray FEL facilities. In particular, LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other X-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact X-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the

  9. Summary of the working group on FEL theory

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references.

  10. Summary of the working group on FEL theory

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references

  11. Peyronie's Reconstruction for Maximum Length and Girth Gain: Geometrical Principles

    Directory of Open Access Journals (Sweden)

    Paulo H. Egydio

    2008-01-01

    Full Text Available Peyronie's disease has been associated with penile shortening and some degree of erectile dysfunction. Surgical reconstruction should be based on giving a functional penis, that is, rectifying the penis with rigidity enough to make the sexual intercourse. The procedure should be discussed preoperatively in terms of length and girth reconstruction in order to improve patient satisfaction. The tunical reconstruction for maximum penile length and girth restoration should be based on the maximum length of the dissected neurovascular bundle possible and the application of geometrical principles to define the precise site and size of tunical incision and grafting procedure. As penile rectification and rigidity are required to achieve complete functional restoration of the penis and 20 to 54% of patients experience associated erectile dysfunction, penile straightening alone may not be enough to provide complete functional restoration. Therefore, phosphodiesterase inhibitors, self-injection, or penile prosthesis may need to be added in some cases.

  12. The daily weight gain, growth rate and length-weight relationships of ...

    African Journals Online (AJOL)

    The daily weight gain, growth rate and length-weight relationships of Clarias gariepinus, Heterobranchus longifilis and their reciprocal hybrids (Pisces: Clariidae) reared under ambient environmental conditions.

  13. Towards short wavelengths FELs workshop

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  14. Towards short wavelengths FELs workshop

    Science.gov (United States)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  15. Contributions to the FEL2005 conference

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, O. (comp.)

    2005-07-01

    The following topics were dealt with: First lasing at 32 nm of the VUV-FEL at DESY, properties of the radiation from VUV-FEL at DESY, accelerator lay out and physics of X-ray free-electron lasers, bunch compression stability dependence on RF parameters, undulator systems and photon diagnostic for the European XFEL project, electron beam characterization at PITZ and the VUV-FEL at DESY, high precision optical synchronization systems for X-ray free electron lasers, optical laser synnchronized for the DESY VUV-FEL for two-color pump probe experiments, properties of the third harmonic of the SASE FEL radiation, detector response and beam line transmission measurements with far-infrared radiation, upgrades of the laser beam-line at PITZ, bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL, next generation synchronization system for the VUV-FEL at DESY, transverse electron beam diagnostics at the VYV-FEL at DESY, the infrared undulator project at the VUV-FEL, misconceptions regarding second harmonic generation in X-ray free-electron lasers, influence of an energy chirp on SASE FEL operation, design considerations for the 4GLS XUV-FEL, broadband single shot spectrometer, commissioning of TTF2 bunch compressors for 20 fs SASE source, observation of femtosecond bunch length using a transverse deflecting structure, measurement of slice-emittance using a transverse deflecting structure, the injector of the VUV-FEL at DESY, spectral decoding electro-optic measurements for longitudinal bunch diagnostics at the DESY VUV-FEL, longitudinal phase space studies at PITZ, modelling the transverse phase space and core emittance studies at PITZ, measurements of thermal emittance for cesium telluride photocathodes at PITZ, status and first results from the upgraded PITZ facility, commissioning of the SPARC movable emittance meter and its first operation at PITZ. (HSI)

  16. Contributions to the FEL2005 conference

    International Nuclear Information System (INIS)

    Grimm, O.

    2005-01-01

    The following topics were dealt with: First lasing at 32 nm of the VUV-FEL at DESY, properties of the radiation from VUV-FEL at DESY, accelerator lay out and physics of X-ray free-electron lasers, bunch compression stability dependence on RF parameters, undulator systems and photon diagnostic for the European XFEL project, electron beam characterization at PITZ and the VUV-FEL at DESY, high precision optical synchronization systems for X-ray free electron lasers, optical laser synnchronized for the DESY VUV-FEL for two-color pump probe experiments, properties of the third harmonic of the SASE FEL radiation, detector response and beam line transmission measurements with far-infrared radiation, upgrades of the laser beam-line at PITZ, bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL, next generation synchronization system for the VUV-FEL at DESY, transverse electron beam diagnostics at the VYV-FEL at DESY, the infrared undulator project at the VUV-FEL, misconceptions regarding second harmonic generation in X-ray free-electron lasers, influence of an energy chirp on SASE FEL operation, design considerations for the 4GLS XUV-FEL, broadband single shot spectrometer, commissioning of TTF2 bunch compressors for 20 fs SASE source, observation of femtosecond bunch length using a transverse deflecting structure, measurement of slice-emittance using a transverse deflecting structure, the injector of the VUV-FEL at DESY, spectral decoding electro-optic measurements for longitudinal bunch diagnostics at the DESY VUV-FEL, longitudinal phase space studies at PITZ, modelling the transverse phase space and core emittance studies at PITZ, measurements of thermal emittance for cesium telluride photocathodes at PITZ, status and first results from the upgraded PITZ facility, commissioning of the SPARC movable emittance meter and its first operation at PITZ. (HSI)

  17. Design study of a longer wavelength FEL for FELIX

    International Nuclear Information System (INIS)

    Lin, L.; Oepts, D.; Meer, A.F.G. van der

    1995-01-01

    We present a design study of FEL3, which will extend the FELIX spectral range towards a few hundred microns. A rectangular waveguide will be used to reduce diffraction losses. Calculations show that with a waveguide gap of 1 cm, only one sinusoidal mode along the guided direction can exist within the FEL gain bandwidth, thus excluding group velocity dispersion and lengthening of short radiation pulses. To incorporate FEL3 in the existing FELIX facility, two options are being considered: to combine FEL3 with FEL1 by insertion of a waveguide into FEL1, and to build a dedicated third beam line for FEL3 after the two linacs. Expected FEL performance: gain, spectrum, power, pulse shape, etc., will be presented based on numerical simulations

  18. Overview of bunch length measurements

    International Nuclear Information System (INIS)

    Lumpkin, A. H.

    1999-01-01

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed

  19. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    International Nuclear Information System (INIS)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia, S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-01-01

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands

  20. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  1. A Mode Locked UV-FEL

    CERN Document Server

    Parvin, Parviz

    2004-01-01

    An appropriate resonator has been designed to generate femtosecond mode locked pulses in a UV FEL with the modulator performance based on the gain switching. The gain broadening due to electron energy spread affects on the gain parameters, small signal gain (γ0) and saturation intensity (Is), to determine the optimum output coupling as small.

  2. GINGER simulations of short-pulse effects in the LEUTL FEL

    International Nuclear Information System (INIS)

    Huang, Z.; Fawley, W.M.

    2001-01-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup

  3. FEL in transverse optical klystron regime

    International Nuclear Information System (INIS)

    Scarlat, F.; Baltateanu, N.

    1994-01-01

    Among all operational regimes of free electron laser (FEL), the transverse optical regime (TOK) requires the least stringent electron beam parameters. The device associated to this regime, also defined as FEL with two or more components, consists of two or more identical interaction sections separated by one or more drift distances among themselves. Starting from the motion equations which describe the interaction between an electron and the radiation inside the undulator, one can obtain some practical expressions for the calculation of the efficiency of the energy transfer from the electron to the radiation, and the gain of the external coherent radiation for a FEL in TOK with three cavities. (Author)

  4. FEL radiation power available in electron storage rings

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))

  5. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    CERN Document Server

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  6. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  7. FEL diagnostics and user control

    International Nuclear Information System (INIS)

    Knippels, G.M.H.; Meer, A.F.G. van der

    1998-01-01

    The most recent upgrades and improvements to the free-electron laser (FEL) facility FELIX are presented. Special attention is paid to the improved beam-handling and diagnostic station. In this evacuated beam station a device is implemented that is capable of selecting single micropulses with measured efficiencies of more than 50% over the whole wavelength range of FELIX (5-110 μm). Furthermore, the broadband autocorrelator for micropulse length measurements and the planned continuous polarization rotator based on reflective optics are discussed. Recent additions to the ancillary equipment available to FEL users are presented briefly. The most important ones are the mirror-dispersion-controlled 10-fs Ti:sapphire laser and the 40-T magnet. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. FEL small signal dynamics and electron beam prebunching

    International Nuclear Information System (INIS)

    Dattoli, G.

    1993-01-01

    A seed signal and/or a pre-bunched electron beam may provide the start up of a free electron laser (FEL). Recently, interest has grown around FEL's operating with pre-bunched electron beams; this paper is, therefore, devoted to the analysis of the dynamic features of FEL's operating in such a configuration. It exploits a slightly modified form of the FEL high gain equation to derive quantities of practical interest like the dependence of the system growth rate on the bunching coefficients

  9. Benefits from the BESSY FEL Higher Harmonic Radiation

    CERN Document Server

    Goldammer, K

    2005-01-01

    In the FEL process, bunching and coherent radiation is produced at the fundamental frequency as well as its higher harmonics. BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will be seeded by three lasers spanning the spectral range of 230nm to 460nm. Two to four HGHG stages downconvert the seed wavelength to the desired radiation range of 1.24nm to 51nm using higher harmonic bunching. As a surplus, higher harmonic radiation is intrinsically produced in each FEL stage. Radiation on a higher harmonic of the FEL frequency is of high interest because it yields the possibility to reduce the number of FEL stages. This paper details extensive studies of the higher harmonic content of the BESSY FEL radiation. Important aspects of FEL interaction on higher harmonics as resulting from theory and from numerical simulations are discussed. For the case of the BESSY FEL, methods for improving the harmonic content are present...

  10. Femtosecond X-ray Pulses from a Spatially Chirped Electron Bunch in a SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.

    2003-01-14

    We propose a simple method to produce short x-ray pulses using a spatially chirped electron bunch in a SASE FEL. The spatial chirp is generated using an rf deflector which produces a transverse offset (in y and/or y') correlated with the longitudinal bunch position. Since the FEL gain is very sensitive to an initial offset in the transverse phase space at the entrance of the undulator, only a small portion of the electron bunch with relatively small transverse offset will interact significantly with the radiation, resulting in an x-ray pulse length much shorter than the electron bunch length. The x-ray pulse is also naturally phase locked to the rf deflector and so allows high precision timing synchronization. We discuss the generation and transport of such a spatially chirped electron beam and show that tens of femtosecond long pulse can be generated for the linac coherent light source (LCLS).

  11. Observation of SASE in LEBRA FEL system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. E-mail: tanaka@lebra.nihon-u.ac.jp; Hayakawa, K.; Sato, I.; Hayakawa, Y.; Yokoyama, K

    2004-08-01

    A large enhancement of spontaneous undulator radiation has been observed during FEL lasing experiments at LEBRA. The enhancement has been observed only with the detector for the infrared fundamental radiation. The detector output signal showed spikes during the electron beam pulse, yet no apparent enhancement was observed with a CCD camera monitoring the visible harmonic radiations. An enhancement factor greater than 10 has been obtained with a 2.4 m long undulator with a completely detuned FEL optical cavity length and depends strongly on the parameters of the linac RF system. This implies that the SASE operation is possible even with a conventional electron beam by achieving suitable bunch compression.

  12. Short Rayleigh length free electron lasers

    Directory of Open Access Journals (Sweden)

    W. B. Colson

    2006-03-01

    Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.

  13. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    International Nuclear Information System (INIS)

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-01-01

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab

  14. Tunability and Power Characteristics of the LEBRA Infrared FEL

    CERN Document Server

    Tanaka, Toshinari; Hayakawa, Yasushi; Mori, Akira; Nogami, Kyoko; Sato, Isamu; Yokoyama, Kazue

    2004-01-01

    Application of the infrared (IR) Free-Electron Laser (FEL) was started in October 2003 at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. The FEL system consisted of silver-coated copper mirrors has demonstrated wavelength tunability ranged from 940 to 6100 nm as a function of the electron energy and the undulator K-value. Wavelength dependence of the FEL output power has been measured in term of different electron beam currents, electron energies and the undulator K-values. Approximate 25 mJ/macropulse has been obtained in the range 2 to 3 microns, which corresponds to peak power of 2 MW, provided that the FEL pulse length is 0.4 ps as resulted from the measurement by an interferometric method. The power decrease observed in the longer wavelength range is due to a large diffraction loss in the FEL guiding optics and the vacuum ducts.

  15. FEL components and diagnostics

    International Nuclear Information System (INIS)

    Carr, R.

    1997-01-01

    FEL hardware includes undulators, alignment systems, electron beam diagnostics, and mechanical and vacuum systems. While most FEL close-quote s employ conventional undulators, there is some interest in novel types, particularly where conventional designs cannot be used, as at very short periods and high fields. For these areas, superconducting technology is indicated. The most serious issue facing long FEL undulators is that of alignment; mechanical techniques may not be accurate enough, and beam-based strategies must be considered. To maintain alignment and control the electron trajectory, beam position monitors with micron precision are required. Beam size monitors are also required to assure control of emittance. The talks given in the working group sessions touch on undulators, alignment, and electron beam diagnostics, and they are summarized here. copyright 1997 American Institute of Physics

  16. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Weilun; Huang, S.; Liu, K.X.; Huang, Z; Ding, Y.; Maxwell, T.J.; Kim, K.-J.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flat energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.

  17. Transverse effects in UV FELs

    International Nuclear Information System (INIS)

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-01-01

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium's UV FEL

  18. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  19. Serum Concentration of Leptin in Pregnant Adolescents Correlated with Gestational Weight Gain, Postpartum Weight Retention and Newborn Weight/Length

    Directory of Open Access Journals (Sweden)

    Reyna Sámano

    2017-09-01

    Full Text Available Introduction: Gestational weight gain is an important modifiable factor known to influence fetal outcomes including birth weight and adiposity. Leptin is normally correlated with adiposity and is also known to increase throughout pregnancy, as the placenta becomes a source of leptin synthesis. Several studies have reported positive correlations between cord blood leptin level and either birthweight or size for gestational age, as well as body mass index (BMI. Objective: To determine the correlation of prenatal leptin concentration in pregnant adolescents with their gestational weight gain, postpartum weight retention, and weight/length of their newborn. Methods: A cohort study was conducted on pregnant Mexican adolescents from Gestational Week 26–28 to three months postpartum (n = 168 mother–child dyads. An anthropometric assessment was made of each pregnant adolescent, and the serum level of leptin and the intake of energy were determined. The newborn was evaluated each month during postpartum. Clinical records were reviewed to obtain sociodemographic data. Bivariate correlations, tests for repeating measurements and logistic regression models were performed. Results: Leptin concentration gradually increased during the third trimester of pregnancy. At Gestation Week 36, leptin level correlated with gestational weight gain. When comparing adolescents that had the lowest and highest concentration of leptin, the former presented a mean of 6 kg less in gestational weight gain (inter-subject leptin concentration, p = 0.001; inter-subject energy intake, p = 0.497. Leptin concentration and gestational weight gain exerted an effect on the weight of the newborn (inter-subject leptin concentration for Week 32, p = 0.024; inter-subject gestational weight gain, p = 0.011. Newborn length was associated with leptin concentration at Week 28 (leptin effect, p = 0.003; effect of gestational weight gain, p = 0.722. Conclusions: Pregnant adolescents with

  20. Serum Concentration of Leptin in Pregnant Adolescents Correlated with Gestational Weight Gain, Postpartum Weight Retention and Newborn Weight/Length.

    Science.gov (United States)

    Sámano, Reyna; Martínez-Rojano, Hugo; Chico-Barba, Gabriela; Godínez-Martínez, Estela; Sánchez-Jiménez, Bernarda; Montiel-Ojeda, Diana; Tolentino, Maricruz

    2017-09-27

    Introduction : Gestational weight gain is an important modifiable factor known to influence fetal outcomes including birth weight and adiposity. Leptin is normally correlated with adiposity and is also known to increase throughout pregnancy, as the placenta becomes a source of leptin synthesis. Several studies have reported positive correlations between cord blood leptin level and either birthweight or size for gestational age, as well as body mass index (BMI). Objective : To determine the correlation of prenatal leptin concentration in pregnant adolescents with their gestational weight gain, postpartum weight retention, and weight/length of their newborn. Methods : A cohort study was conducted on pregnant Mexican adolescents from Gestational Week 26-28 to three months postpartum ( n = 168 mother-child dyads). An anthropometric assessment was made of each pregnant adolescent, and the serum level of leptin and the intake of energy were determined. The newborn was evaluated each month during postpartum. Clinical records were reviewed to obtain sociodemographic data. Bivariate correlations, tests for repeating measurements and logistic regression models were performed. Results : Leptin concentration gradually increased during the third trimester of pregnancy. At Gestation Week 36, leptin level correlated with gestational weight gain. When comparing adolescents that had the lowest and highest concentration of leptin, the former presented a mean of 6 kg less in gestational weight gain (inter-subject leptin concentration, p = 0.001; inter-subject energy intake, p = 0.497). Leptin concentration and gestational weight gain exerted an effect on the weight of the newborn (inter-subject leptin concentration for Week 32, p = 0.024; inter-subject gestational weight gain, p = 0.011). Newborn length was associated with leptin concentration at Week 28 (leptin effect, p = 0.003; effect of gestational weight gain, p = 0.722). Conclusions : Pregnant adolescents with leptin

  1. Bunch compression for an FEL at NLCTA

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1997-04-01

    As part of the design effort for a free electron laser driven by the Next Linear Collider Test Accelerator (NLCTA), the author reports studies of bunch-length compression utilizing the existing infrastructure and hardware. In one possible version of the NLCTA FEL, bunches with 900-microm FWHM length, generated by an S-band photo-injector, would be compressed to an rms length of 60--120 microm before entering the FEL undulator. It is shown that, using the present magnetic chicane, the bunch compression is essentially straightforward, and that almost all emittance-diluting effects, e.g. wakefields, chromaticity, or space charge in the bending magnets, are small. The only exception to this finding is the predicted increase of the horizontal emittance due to coherent synchrotron radiation (CSR). Estimates based on existing theories of coherent synchrotron radiation suggest a tripling or quadrupling of the initial emittance, which seems to preclude bunch compression during regular FEL operation. Serendipitously, the magnitude of the predicted emittance growth would, on the other hand, make the NLCTA chicane an excellent tool for measuring the effects of coherent synchrotron radiation. This will be of considerable interest to many future projects, in particular to the Linac Coherent Light Source (LCLS). As an aside, it is shown that coherent synchrotron radiation in a bending magnet gives rise to a minimum possible bunch length, which is very reminiscent of the Oide limit on the vertical spot size at the interaction point of a linear collider

  2. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, L.; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G.

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  3. Analysis of the FEL-RF interaction in recirculating energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, Lia; Alexeev, P.; Benson, Steve; Bolshakov, A.; Doolittle, Lawrence; Neil, George

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  4. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    Energy Technology Data Exchange (ETDEWEB)

    Merminga, L. E-mail: merminga@jlab.org; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G

    1999-06-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab.

  5. Optics-free x-ray FEL oscillator

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-01-01

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide (∼0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  6. Optics-free x-ray FEL oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  7. Milestone experiments for single pass UV/X-ray FELs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1994-01-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELS. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA Self Amplified Spontaneous Emission experiment and the BNL laser seeded Harmonic Generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 meter tong NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities

  8. Accelerator Physics Challenges of X-Ray FEL SASE Sources

    Energy Technology Data Exchange (ETDEWEB)

    Emma, Paul J

    2002-05-30

    A great deal of international interest has recently focused on the design and construction of free-electron lasers (FEL) operating in the x-ray region ({approx}1 {angstrom}). At present, a linac-based machine utilizing the principle of self-amplified spontaneous emission (SASE) appears to be the most promising approach. This new class of FEL achieves lasing in a single pass of a high brightness electron beam through a long undulator. The requirements on electron beam quality become more demanding as the FEL radiation wavelength decreases, with the 1-{angstrom} goal still 3-orders of magnitude below the shortest wavelength operational SASE FEL (TTF-FEL at DESY [1]). The subpicosecond bunch length drives damaging effects such as coherent synchrotron radiation, and undulator vacuum chamber wakefields. Unlike linear colliders, beam brightness needs to be maintained only over a small ''slice'' of the bunch length, so the concepts of bunch integrated emittance and energy spread are less relevant than their high-frequency (or ''time-sliced'') counterparts, also adding a challenge to phase space diagnostics. Some of the challenges associated with the generation, preservation, measurement, and stability of high brightness FEL electron beams are discussed here.

  9. Tapered undulators for SASE FELs

    CERN Document Server

    Fawley, W M; Vinokurov, N A

    2002-01-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  10. Viability of infrared FEL facilities

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    2004-01-01

    Infrared FELs have broken important ground in optical science in the past decade. The rapid development of optical parametric amplifiers and oscillators, and THz sources, however, has changed the competitive landscape and compelled FEL facilities to identify and exploit their unique advantages. The viability of infrared FEL facilities depends on targeting unique world-class science and providing adequate experimental beam time at competitive costs

  11. Harmonic Content of the BESSY FEL Radiation

    CERN Document Server

    Meseck, Atoosa

    2005-01-01

    BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will consist of three undulator lines. The associated tunable lasers will cover the spectral range of 230nm to 460nm. Two to four HGHG stages reduce the seed wavelength to the desired radiation range of 1.24nm < λ < 51nm. The harmonic content of the high-intensity radiator output can be used to reduce the number of necessary HGHG stages. Moreover the higher harmonic content of the final output extends the offered spectral range and thus is of high interest for the user community. In this paper, the higher harmonic content of the final output as well as of the output of several radiators are investigated. The main parameters such as output power, pulse duration and bandwidth as well as their suitability for seeding are discussed.

  12. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  13. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  14. THz Imaging by a Wide-band Compact FEL

    CERN Document Server

    Uk Jeong Young; Cheol Lee Byung; Hee-Park, S

    2004-01-01

    We have developed a laboratory-scale users facility with a compact THz FEL. The FEL operates in the wide wavelength range of 100–1200 μm, which corresponds to 0.3-3 THz. THz radiation from the FEL shows well collimated Gaussian spatial distribution and narrow spectral width of 0.3 μm, which is Fourier transform limited by the estimated pulse duration of 20 ps. The main application of the FEL is THz imaging for bio-medical researches. We are developing THz imaging techniques by 2-D scanning, single pulse capturing with the electro-optic method, and 3-D holography. High power, coherent, and pulsed feature of the FEL radiation is expected to show much better performance in advanced THz imaging of 3-D tomography by comparing with incoherent and weak THz sources. By controlling the optical delay between reference beam and scattered light from an object, we can get its 3-D tomography by the holograms. The coherent and pulse length of the FEL beam is measured to be 3-6 mm. In this paper we will show a...

  15. Statistical properties of SASE FEL radiation: experimental results from the VUV FEL at the TESLA test facility at DESY

    International Nuclear Information System (INIS)

    Yurkov, M.V.

    2002-01-01

    This paper presents an experimental study of the statistical properties of the radiation from a SASE FEL. The experiments were performed at the TESLA Test Facility VUV SASE FEL at DESY operating in a high-gain linear regime with a gain of about 10 6 . It is shown that fluctuations of the output radiation energy follows a gamma-distribution. We also measured for the first time the probability distribution of SASE radiation energy after a narrow-band monochromator. The experimental results are in good agreement with theoretical predictions, the energy fluctuations after the monochromator follow a negative exponential distribution

  16. INSIG2 is Associated with Lower Gain in Weight-for-Length Between Birth and Age 6 Months

    Directory of Open Access Journals (Sweden)

    Ann Chen Wu

    2009-01-01

    Full Text Available Researchers have described the association of a common DNA polymorphism, rs7566605, near INSIG2 (insulin-induced gene 2 with obesity in multiple independent populations that include subjects ages 11–60 years.1 To our knowledge, no studies have examined the association of this polymorphism with weight status during early childhood. We explored the association of the rs7566605 polymorphism with weight-for-length among 319 children at 6 months and 3 years participating in Project Viva, a pre-birth cohort study. In contrast to studies of older individuals, CC homozygosity was associated with lower gain in weight-for-length z-score between birth and age 6 months than GG homozygosity or GC heterozygosity. At age 3, we did not find an association. The association of INSIG2 gene with obesity may change direction with age.

  17. Quantum SASE FEL with a Laser Wiggler

    CERN Document Server

    Bonifacio, R

    2005-01-01

    Quantum effects in high-gain FELs become relevant when ρ'=ρ(mcγ/ ћ k)<1. The quantum FEL parameter ρ' rules the maximum number of photons emitted per electrons. It has been shown that when ρ'<1 a "quantum purification" of the SASE regime occurs: in fact, the spectrum of the emitted radiation (randomly spiky in the usual classical SASE regime) shrinks to a very narrow single line, leading to a high degree of temporal coherence. From the definition of ρ it appears that in order to achieve the quantum regime, small values of ρ, beam energy and radiation wavelength are necessary. These requirements can be met only using a laser wiggler. In this work we state the scaling laws necessary to operate a SASE FEL in the Angstrom region. All physical quantities are expressed in terms of the normalized emittance and of two parameters: the ratio between laser and electron beam spot sizes and the ratio between Rayleigh range and electron ...

  18. FEL Trajectory Analysis for the VISA Experiment

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    1998-01-01

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, and post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment

  19. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  20. A proposed visible FEL Facility at Boeing

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D. [Boeing Defense & Space Group, Seattle, WA (United States)] [and others

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  1. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    CERN Document Server

    Merminga, L; Benson, S; Bolshakov, A; Doolittle, L; Neil, George R

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed...

  2. The "TEU-FEL" project

    OpenAIRE

    Ernst, G.J.; Witteman, W.J.; Verschuur, Jeroen W.J.; Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; van Oerle, B.M.; van Oerle, B.M.; Bouman, A.F.M.; Botman, J.I.M.; Hagedoorn, H.L.; Delhez, J.L.; Kleeven, W.J.G.M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will then produce tunable radiation around 200 µm. In phase two the linac will be used as an injector for the microtron. The FEL will then produce tunable radiation around 10 µm. Technical information ...

  3. Harmonic Inverse FEL Interaction at 800nm

    CERN Document Server

    Sears, C M S; Siemann, R; Spencer, J E

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.

  4. Introduction: a short-wavelength-FEL/storage-ring complex

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1984-01-01

    We believe that, in view of the present state of FEL understanding, it is now proper to construct a research facility devoted to the use of coherent radiation and the advancement of FEL physics technology at wavelengths shorter than 1000 A. We show a possible layout of such a facility, which will be referred to as a Coherent xuv Facility (CXF), where research can be conducted on several techniques for generating coherent radiation. Undulators are already well understood and will generate broadly tunable, spatially coherent radiation of bandwidth lambda /Δlambda approx. = 10 2 . A crossed undulator system will extend the undulator capability to include variable polarization. For full coherence, in spatial as well as in longitudinal directions, it is necessary to induce and exploit density modulation in electron beams, as is the case in the transverse optical klystrons (TOKs) and FELs. In TOKs, coherent radiation is generated at harmonics of an input laser frequency, with the electron beam playing the role of a nonlinear medium. Ultimately, FELS would deliver intense, tunable x rays and vuv radiation of extremely narrow spectral width. There are two possible routes to an FEL, one based on feedback by end mirrors, the other based on development of a high-gain, single-pass device. It can be seen, from this paper, that the photon flux increases monotonically, or the wavelength decreases monotonically, as one goes through (1) undulator radiation, (2) TOK radiation, (3) FEL oscillator radiation, to (4) FEL single-pass radiation. Each of these will demand considerable quality development effort. Each will result in photon fluxes of increased value to the users

  5. The "TEU-FEL" project

    NARCIS (Netherlands)

    Ernst, G.J.; Witteman, W.J.; Verschuur, Jeroen W.J.; Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; van Oerle, B.M.; van Oerle, B.M.; Bouman, A.F.M.; Botman, J.I.M.; Hagedoorn, H.L.; Delhez, J.L.; Kleeven, W.J.G.M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will

  6. FEL polarization control studies on Dalian coherent light source

    International Nuclear Information System (INIS)

    Zhang Tong; Deng Haixiao; Wang Dong; Zhao Zhentang; Zhang Weiqing; Wu Guorong; Dai Dongxu; Yang Xueming

    2013-01-01

    The polarization switch of a free-electron laser (FEL) is of great importance to the user scientific community. In this paper, we investigate the generation of controllable polarization FEL from two well-known approaches for Dalian coherent light source, i.e., crossed planar undulator and elliptical permanent undulator. In order to perform a fair comparative study, a one-dimensional time-dependent FEL code has been developed, in which the imperfection effects of an elliptical permanent undulator are taken into account. Comprehensive simulation results indicate that the residual beam energy chirp and the intrinsic FEL gain may contribute to the degradation of the polarization performance for the crossed planar undulator. The elliptical permanent undulator is not very sensitive to the undulator errors and beam imperfections. Meanwhile, with proper configurations of the main planar undulators and additional elliptical permanent undulator section, circular polarized FEL with pulse energy exceeding 100 μJ could be achieved at Dalian coherent light source. (authors)

  7. Performance of the FEL cryomodules

    International Nuclear Information System (INIS)

    Drury, M.; Fischer, J.; Preble, J.

    1998-01-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab, formerly known as CEBAF) is building a highly efficient, kilowatt-level infrared free-electron laser, the IR Demo FEL. The IR FEL uses superconducting radio-frequency (SRF) cavities to accelerate the electron beam that provides energy for the laser. These cavities provide the high-gradient acceleration for the high average currents necessary for a compact FEL design. Currently, a quarter cryomodule injector and a full eight-cavity cryomodule have been installed in the FEL linac. These units were tested as part of the IR FEL commissioning process. The main focus of these tests was to determine the maximum stable operating gradient. The average maximum gradient reached by these ten cavities was 11 Mv/m. Other tests include measurement of cavity parameters such as the unloaded Q (Qo) vs. gradient, the input coupling, calibration of field probes and behavior of the tuner mechanisms. This paper presents the results of those tests

  8. Issues at a university based FEL center

    International Nuclear Information System (INIS)

    Smith, T.I.; Schwettman, H.A.

    1998-01-01

    The Stanford FEL Center was established in September 1990. In this paper, the FEL itself, the Center infrastructure, the interaction with experimenters and the educational mission are described. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. FEL-principles, techniques and its progress

    International Nuclear Information System (INIS)

    Zhao Xiaofeng; Yang Fujia

    1992-01-01

    The basic principles of free electron laser (FEL) and its operation modes are presented. The state of the art is described for accelerator technology and laser systems. Some comparisons are made between FEL and conventional laser with regard to power capability, short-wavelength operation, and tunability. The application prospects of FEL are discussed

  10. The ARC-EN-CIEL FEL Proposal

    CERN Document Server

    Couprie, M E

    2005-01-01

    ARC-EN-CIEL (Accelerator-Radiation for Enhanced Coherent Intense Extended Light), the French project of a fourth generation light source aims at providing the user community with coherent femtosecond light pulses covering from UV to soft X ray. It is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate. The FEL is based on in the injection of High Harmonics in Gases in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The produced radiation extending down to 0.8 nm with the Non Linear Harmonic reproduces the good longitudinal and transverse coherence of the harmonics in gas. Optional beam loops are foreseen to increase the beam current or the energy. They will accommodate fs synchrotron radiation sources in the IR, VUV and X ray ranges and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerator and laser communities. Indeed, electron plasma accelerat...

  11. Extension of the spectral range of the CLIO FEL

    Energy Technology Data Exchange (ETDEWEB)

    Marcouille, O.; Boyer, J.C.; Corlier, M. [LURE, Orsay (France)] [and others

    1995-12-31

    The CLIO FEL has been designed to lase between 2 and 20 {mu}m. The electrons are produced by a 32/50 MeV RF linear accelerator. The injector is a 100 keV thermoionic gun, followed by a subharmonic prebuncher at 0.5 GHz and a buncher at 3 GHz. The electron beam is then accelerated in a 4.5 m long travelling wave accelerating section, to the nominal energy. The undulator consisted of 48 periods of 40 mm and the optical cavity is 4.8 m long which corresponds to a 1.2 m Rayleigh length. The peak power extracted by a ZnSe Brewster plate is 10 MW at 10 {mu}. But, beyond 11{mu}m, the laser power decreases rapidely and no laser oscillation appears above 17 {mu}m. In order to lase at farther wavelengths, few changes have been made: First of all, the power limit is due to the diffraction losses of the undulator vaccuum chamber (7 mm height and 2 m long). Numerical calculations have been made and show that cavity losses reach 55 % at 15 {mu}m whereas the measured gain is 60 %. Consequently, the undulator vaccuum chamber have been replaced by a approximately twice bigger one. Then, the minimum gap is increased and the maximum deflection parameter K is reduced by a factor 2: laser tunability is greatly reduced. This why a new undulator has been built. The main characteristics are summarized.

  12. The drive laser for the APS LEUTL FEL Rf photoinjector

    International Nuclear Information System (INIS)

    Arnold, N.; Koldenhoven, R.; Travish, G.

    1999-01-01

    The APS LEUTL free-electron laser (FEL) is a high-gain, short-wavelength device requiring a high-current, low-emittance beam. An rf photoinjector driven by a laser is used to provide the requisite beam. The drive laser consists of a diode-pumped Nd:Glass oscillator and a chirped pulse amplification (CPA) system consisting of a grating stretcher, a flashlamp-pumped Nd:Glass regenerative amplifier, and a grating compressor. The system generates 4-mj pulses in the R with a pulse length as short as 2 ps FWHM and a repetition rate of 6 Hz. Nonlinear doubling crystals are used to generate fourth-harmonic output of ∼500 microJ in the UV (263 nm), which is required to exceed the work function of the copper cathode in the gun. This paper describes the drive laser as well as the extensive controls implemented to allow for remote operation and monitoring. Performance measurements as well as the operating experience are presented

  13. High average power CW FELs [Free Electron Laser] for application to plasma heating: Designs and experiments

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X.

    1989-01-01

    A short period wiggler (period ∼ 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam (''body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation

  14. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    Energy Technology Data Exchange (ETDEWEB)

    Boscolo, I. [Univ. and INFN, Milan (Italy); Gong, J. [Southwest Jiaotong Univ., Chengdu (China)

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  15. Optimization of a high efficiency FEL amplifier

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2014-10-01

    The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.

  16. Three-dimensional analysis of harmonic generation in high-gain free-electron lasers

    International Nuclear Information System (INIS)

    Huang, Zhirong; Kim, Kwang-Je

    2000-01-01

    In a high-gain free-electron laser (FEL) employing a planar undulator, strong bunching at the fundamental wavelength can drive substantial bunching and power levels at the harmonic frequencies. In this paper we investigate the three-dimensional evolution of harmonic radiation based on the coupled Maxwell-Klimontovich equations that take into account nonlinear harmonic interactions. Each harmonic field is a sum of a linear amplification term and a term driven by nonlinear harmonic interactions. After a certain stage of exponential growth, the dominant nonlinear term is determined by interactions of the lower nonlinear harmonics and the fundamental radiation. As a result, the gain length, transverse profile, and temporal structure of the first few harmonics are eventually governed by those of the fundamental. Transversely coherent third-harmonic radiation power is found to approach 1% of the fundamental power level for current high-gain FEL projects

  17. FAST: a three-dimensional time-dependent FEL simulation code

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1999-01-01

    In this report we briefly describe the three-dimensional, time-dependent FEL simulation code FAST. The equations of motion of the particles and Maxwell's equations are solved simultaneously taking into account the slippage effect. Radiation fields are calculated using an integral solution of Maxwell's equations. A special technique has been developed for fast calculations of the radiation field, drastically reducing the required CPU time. As a result, the developed code allows one to use a personal computer for time-dependent simulations. The code allows one to simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate simultaneously an external seed with superimposed noise in the electron beam; to take into account energy spread in the electron beam and the space charge fields; and to simulate a high-gain, high-efficiency FEL amplifier with a tapered undulator. It is important to note that there are no significant memory limitations in the developed code and an electron bunch of any length can be simulated

  18. Milestone experiments for single pass UV/X-ray FELs

    Science.gov (United States)

    Ben-Zvi, Ilan

    1995-04-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.

  19. Coherence and linewidth studies of a 4-nm high power FEL

    International Nuclear Information System (INIS)

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    1993-05-01

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output line widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width

  20. Effects of physical activity during pregnancy and gestational weight gain on newborn weight and length at birth in Warmińsko-Mazurskie province.

    Science.gov (United States)

    Przybyłowicz, Katarzyna; Przybyłowicz, Mariusz; Grzybiak, Marek; Janiszewska, Katarzyna

    2014-01-01

    Epidemiological research has identified a relationship between maternal physical activity, early nutrition and infant birth weight with likelihood of developing future diseases. The aim of the study was to determine a relationship between gestational weight gain and physical activity during pregnancy to the nutritional status of newborns. The presented study was conducted in the period from February 2010 until November 2012 in the gynecological and obstetric clinics in Warmińsko-Mazurskie voivodeship with various levels of reference. The research subjects included 510 women in the puerperal period aged 18-36. The scope of the research included an assessment of the selected anthropometric parameters of both pregnant women (body mass, height, BMI, gestational weight gain) and newborns (infant birth weight, infant length, Ponderal Index), as well as an analysis of the connections between the gestational weight gain, physical activity during pregnancy and anthropometric parameters of newborns. In the study group there was a significant percentage of women characterised by an inactive lifestyle and excessive gestational weight gain. There were significantly higher neonatal birth anthropometric parameters in women with abnormal excessive gestational weight gain than in women with normal and inappropriate - low gestational weight gain. The highest percentage of women with appropriate weight gain was observed in the group of women who are physically active, although this requires confirmation in larger population. Our studies have not shown statistically significant differences between the gestational weight gain and nutritional status of newborns in relation to the level of physical activity of pregnant women.

  1. FELI linac for IR- and UV-FEL facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  2. FELs, nice toys or efficient tools?

    CERN Document Server

    Van der Meer, Alex F G

    2004-01-01

    An FEL is an intrinsically interesting device and pushing its performance presents a natural challenge to a physicist. Nonetheless, the main justification for doing FEL research is of course its potential as a unique, versatile source of radiation to be employed for something useful. After 25 years of FEL research, one may wonder how efficient these tools have become. In this paper, I will reflect on this issue from the perspective of 10 years of operation of FELIX as a user facility.

  3. Super ACO FEL oscillation at 300 nm

    CERN Document Server

    Nutarelli, D; Renault, E; Nahon, L; Couprie, Marie Emmanuelle

    2000-01-01

    Some recent improvements, involving both the optical cavity mirrors and the positron beam dynamics in the storage ring, have allowed us to achieve a laser oscillation at 300 nm on the Super ACO Storage Ring FEL. The Super ACO storage ring is operated at 800 MeV which is the nominal energy for the usual synchrotron radiation users, and the highest energy for a storage ring FEL. The lasing at 300 nm could be kept during 2 h per injection, with a stored current ranging between 30 and 60 mA. The FEL characteristics are presented here. The longitudinal stability and the FEL optics behaviour are also discussed.

  4. FEL mirror response to shipboard vibrations

    OpenAIRE

    Beauvais, Joshua A.

    2011-01-01

    The Optical cavity of a Free Electron Laser (FEL) is composed of components that must be maintained to very tight tolerances. The shipboard environment is one that will preclude a direct coupling of FEL components to the ship. This thesis will explore the basis for these tight tolerances, and how to isolate them from the FEL. A solid model of a potential FEL system will be developed using SolidWorks. This model will then be converted to a finite element model in ANSYS. The finite element ...

  5. Seeded quantum FEL at 478 keV

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Thirolf, Peter; Seggebrock, Thorben [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Habs, Dietrich [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2012-07-01

    We present for the first time a concept for a seeded {gamma} quantum Free Electron Laser (QFEL) at 478 keV (transition in {sup 7}Li). To produce a highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of a highly brilliant and coherent {gamma} beam are novel refractive {gamma} lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. To realize such a coherent {gamma} beam at 478 keV (1/38 A), it is suitable to use a quantum FEL design based on a new ''asymmetric'' laser-electron Compton back scattering scheme as pursued for the MeGaRay and ELI-NP facilities. Here the pulse length of the laser is much longer than the electron bunch length, equivalent to a {gamma}-FEL with laser wiggler. The coherence of a seeded QFEL can open up totally new areas of fundamental physics and applications. Especially, 478 keV can be attractive for ''green energy'' and life-science research, such as the detection of Li deposition in the brain for manic-depressive psychosis treatment with high spatial resolution or isotope-specific nuclear waste management and treatment.

  6. Analyses of superradiance and spiking-mode lasing observed at JAERI-FEL

    CERN Document Server

    Hajima, R; Nagai, R; Minehara, E J

    2001-01-01

    Japan Atomic Energy Research Institute (JAERI)-FEL has achieved quasi-CW lasing with an average power of 1.7 kW, the initial goal of the R and D program. The FEL extraction efficiency obtained completely exceeds the well-known limit for non-bunched beam, which is determined by the number of undulator periods. We have conducted numerical studies to characterize lasing dynamics observed at JAERI-FEL. Cavity-length detuning curves numerically obtained show good agreement with experimental results. Lasing behavior numerically obtained exhibits chaotic spiking-mode and superradiance as the cavity-length detuning approaches zero. Broadening of lasing spectrum observed in the experiments is explained by these lasing dynamics. The extraction efficiency becomes maximal at the perfect synchronization of the cavity length, where the lasing is quasi-stationary superradiance. We also compare these results with analytical theory previously reported.

  7. Serum Concentration of Leptin in Pregnant Adolescents Correlated with Gestational Weight Gain, Postpartum Weight Retention and Newborn Weight/Length

    OpenAIRE

    Reyna Sámano; Hugo Martínez-Rojano; Gabriela Chico-Barba; Estela Godínez-Martínez; Bernarda Sánchez-Jiménez; Diana Montiel-Ojeda; Maricruz Tolentino

    2017-01-01

    Introduction: Gestational weight gain is an important modifiable factor known to influence fetal outcomes including birth weight and adiposity. Leptin is normally correlated with adiposity and is also known to increase throughout pregnancy, as the placenta becomes a source of leptin synthesis. Several studies have reported positive correlations between cord blood leptin level and either birthweight or size for gestational age, as well as body mass index (BMI). Objective: To determine the corr...

  8. Newborn length predicts early infant linear growth retardation and disproportionately high weight gain in a low-income population.

    Science.gov (United States)

    Berngard, Samuel Clark; Berngard, Jennifer Bishop; Krebs, Nancy F; Garcés, Ana; Miller, Leland V; Westcott, Jamie; Wright, Linda L; Kindem, Mark; Hambidge, K Michael

    2013-12-01

    Stunting is prevalent by the age of 6 months in the indigenous population of the Western Highlands of Guatemala. The objective of this study was to determine the time course and predictors of linear growth failure and weight-for-age in early infancy. One hundred and forty eight term newborns had measurements of length and weight in their homes, repeated at 3 and 6 months. Maternal measurements were also obtained. Mean ± SD length-for-age Z-score (LAZ) declined from newborn -1.0 ± 1.01 to -2.20 ± 1.05 and -2.26 ± 1.01 at 3 and 6 months respectively. Stunting rates for newborn, 3 and 6 months were 47%, 53% and 56% respectively. A multiple regression model (R(2) = 0.64) demonstrated that the major predictor of LAZ at 3 months was newborn LAZ with the other predictors being newborn weight-for-age Z-score (WAZ), gender and maternal education∗maternal age interaction. Because WAZ remained essentially constant and LAZ declined during the same period, weight-for-length Z-score (WLZ) increased from -0.44 to +1.28 from birth to 3 months. The more severe the linear growth failure, the greater WAZ was in proportion to the LAZ. The primary conclusion is that impaired fetal linear growth is the major predictor of early infant linear growth failure indicating that prevention needs to start with maternal interventions. © 2013.

  9. The Harmonically Coupled 2-Beam FEL

    CERN Document Server

    McNeil, Brian W J

    2004-01-01

    A 1-D model of a 2-beam Free Electron Laser amplifier is presented. The two co-propagating electron beams have different energies, chosen so that the fundamental resonant FEL interaction of the higher energy beam is at an harmonic of the lower energy beam. In this way, a coupling between the FEL interactions of the two beams occurs via the harmonic components of the electron bunching and radiation emission of the lower energy interaction. Such resonantly coupled FEL interactions may offer potential benefits over existing single beam FEL schemes. A simple example is presented where the lower energy FEL interaction only is seeded with radiation at its fundamental resonant wavelength. It is predicted that the coherence properties of this seed field are transfered via the resonantly coupled FEL interaction to the un-seeded higher energy FEL interaction, thereby improving its coherence properties over that of a SASE interaction alone. This method may offer an alternative seeding scheme for FELs operating in the XU...

  10. Planar undulator motion excited by a fixed traveling wave. Quasiperiodic averaging normal forms and the FEL pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James A.; Heinemann, Klaus [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Vogt, Mathias [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Gooden, Matthew [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics

    2013-03-15

    We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length {lambda} of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As {lambda} varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in

  11. Planar undulator motion excited by a fixed traveling wave. Quasiperiodic averaging normal forms and the FEL pendulum

    International Nuclear Information System (INIS)

    Ellison, James A.; Heinemann, Klaus; Gooden, Matthew

    2013-03-01

    We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length λ of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As λ varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in the

  12. A high-power compact regenerative amplifier FEL

    International Nuclear Information System (INIS)

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-01-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction ( 5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  13. FEL options for power beaming

    International Nuclear Information System (INIS)

    Kim, K.J.; Zholents, A.A.; Zolotorev, M.S.; Vinokurov, N.A.

    1997-10-01

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ''slot'' in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P L = 200kW. The wavelength is chosen to be λ 0.84 microm, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes

  14. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  15. Technological Challenges to X-Ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.

  16. Effects of Probiotics on Necrotizing Enterocolitis, Sepsis, Intraventricular Hemorrhage, Mortality, Length of Hospital Stay, and Weight Gain in Very Preterm Infants: A Meta-Analysis.

    Science.gov (United States)

    Sun, Jing; Marwah, Gayatri; Westgarth, Matthew; Buys, Nicholas; Ellwood, David; Gray, Peter H

    2017-09-01

    Probiotics are increasingly used as a supplement to prevent adverse health outcomes in preterm infants. We conducted a systematic review, meta-analysis, and subgroup analysis of findings from randomized controlled trials (RCTs) to assess the magnitude of the effect of the probiotics on health outcomes among very-low-birth-weight (VLBW) infants. Relevant articles from January 2003 to June 2017 were selected from a broad range of databases, including Medline, PubMed, Scopus, and Embase. Studies were included if they used an RCT design, involved a VLBW infant (birthweight probiotic intervention group, measured necrotizing enterocolitis (NEC) as a primary outcome, and measured sepsis, mortality, length of hospital stay, weight gain, and intraventricular hemorrhage (IVH) as additional outcomes. The initial database search yielded 132 potentially relevant articles and 32 ( n = 8998 infants) RCTs were included in the final meta-analysis. Subgroup analysis was used to evaluate the effects of the moderators on the outcome variables. In the probiotics group, it was found that NEC was reduced by 37% (95% CI: 0.51%, 0.78%), sepsis by 37% (95% CI: 0.72%, 0.97%), mortality by 20% (95% CI: 0.67%, 0.95%), and length of hospital stay by 3.77 d (95% CI: -5.94, -1.60 d). These findings were all significant when compared with the control group. There was inconsistent use of strain types among some of the studies. The results indicate that probiotic consumption can significantly reduce the risk of developing medical complications associated with NEC and sepsis, reduce mortality and length of hospital stay, and promote weight gain in VLBW infants. Probiotics are more effective when taken in breast milk and formula form, consumed for Probiotics are not effective in reducing the incidence of IVH in VLBW infants. © 2017 American Society for Nutrition.

  17. Suppression of mode-beating in a saturated hole-coupled FEL oscillator

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Xie, M.; Kim, K.J.

    1992-08-01

    In a hole-coupled resonator, either empty or loaded with a linear FEL gain medium, the phenomenon of mode-degeneracy and mode-beating have been studied. When the magnitudes of the eigenvalues, derived from a linear analysis, are equal for two or more dominant eigenmodes, the system cannot achieve a stable beam-profile. We investigate this phenomenon when a saturated FEL is present within the cavity, thus introducing non-linearity. We use a three-dimensional FEL oscillator code, based on the amplifier code TDA, and show that mode-beating is completely suppressed in the nonlinear saturated regime. We suggest a simple, qualitative model for the mechanism responsible for this suppression

  18. Status report on the development of a high-power UV/IR FEL at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.; Bohn, C.; Dylla, H.F. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)] [and others

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  19. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    International Nuclear Information System (INIS)

    Fawley, William; Vay, Jean-Luc

    2010-01-01

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma 2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the 'standard' eikonal FEL simulation approach.

  20. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  1. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V.V.; Oepts, W.; Wiel, van der M.J.

    1997-01-01

    A possible way to carry out two-color IR + VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  2. Multi-mode interactions in an FEL oscillator

    CERN Document Server

    Dong Zhi Wei; Masuda, K; Yamazaki, T; Yoshikawa, K

    2000-01-01

    A 3D time-dependent FEL oscillator simulation code has been developed by using the transverse mode spectral method to analyze interaction among transverse modes. The competition among them in an FEL oscillator was investigated based on the parameters of LANL FEL experiments. It is found that under typical FEL oscillator operation conditions, the TEM sub 0 sub 0 mode is dominant, and the effects of other transverse modes can be negligible.

  3. A helical optical for circular polarized UV-FEL project at the UVSOR

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Hiroyuki [Institute for Molecular Science, Okazaki (Japan)

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  4. The APS SASE FEL: modeling and code comparison

    International Nuclear Information System (INIS)

    Biedron, S. G.

    1999-01-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL

  5. Quantum-mechanical analysis of low-gain free-electron laser oscillators

    Science.gov (United States)

    Fares, H.; Yamada, M.; Chiadroni, E.; Ferrario, M.

    2018-05-01

    In the previous classical theory of the low-gain free-electron laser (FEL) oscillators, the electron is described as a point-like particle, a delta function in the spatial space. On the other hand, in the previous quantum treatments, the electron is described as a plane wave with a single momentum state, a delta function in the momentum space. In reality, an electron must have statistical uncertainties in the position and momentum domains. Then, the electron is neither a point-like charge nor a plane wave of a single momentum. In this paper, we rephrase the theory of the low-gain FEL where the interacting electron is represented quantum mechanically by a plane wave with a finite spreading length (i.e., a wave packet). Using the concepts of the transformation of reference frames and the statistical quantum mechanics, an expression for the single-pass radiation gain is derived. The spectral broadening of the radiation is expressed in terms of the spreading length of an electron, the relaxation time characterizing the energy spread of electrons, and the interaction time. We introduce a comparison between our results and those obtained in the already known classical analyses where a good agreement between both results is shown. While the correspondence between our results and the classical results are shown, novel insights into the electron dynamics and the interaction mechanism are presented.

  6. The CSU Accelerator and FEL Facility

    NARCIS (Netherlands)

    Milton, S.V.; Biedron, S.G.; Burleson, T.; Carrico, C.; Edelenbos, J.; Hall, C.; Horovitz, K.; Morin, A.; Rand, L.; Sipahi, N.; Sipahi, T.; van der Slot, P.; Yehudah, H.; Dong, A.; Tanaka, T.; Schaa, V.R.W.

    2013-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode

  7. FEL based photon collider of TeV energy range

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    Physical principles of operation of high energy photon linear colliders (PLC) based on the Compton backscattering of laser photons on high energy electrons are discussed. The main emphasis is put on the analysis of a possibility to construct the PLC with the center of mass energy 0.5-2 TeV. Free electron laser (FEL) is considered as a source of primary photons. Proposed FEL system consists of a tunable FEL oscillator (output power ∼ 1 - 10 MW) with subsequent amplification of the master signal in a FEL amplifier up to the power ∼ 3 x 10 11 W. The FEL parameters are optimized, restrictions on the electron beam and FEL magnetic system parameters are formulated and problems of technical realization are discussed. It is shown that the FEL technique provides the most suitable way to construct photon linear collider on the base of future generation linear collider. 22 refs., 10 figs., 2 tabs

  8. SwissFEL - Conceptual design report

    International Nuclear Information System (INIS)

    Ganter, R.

    2010-07-01

    This report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility. The goal of SwissFEL is to provide a source of extremely bright and short X-ray pulses enabling scientific discoveries in a wide range of disciplines to be made, from fundamental research through to applied science. The eminent scientific need for such an X-ray source which is well documented in the SwissFEL Science Case Report is noted. The technical design of SwissFEL has to keep a delicate balance between the demand by experimentalists for breathtaking performance in terms of photon beam properties on the one hand, and essential requirements for a user facility, such as confidence in technical feasibility, reliable and stable functioning and economy of installation and operation on the other hand. The baseline design which has been defined is discussed. This relies entirely on state-of-the-art technologies without fundamental feasibility issues. This SwissFEL Conceptual Design Report describes the technical concepts and parameters used for this baseline design. The report discusses the design strategy, the choice of parameters and the simulation of the accelerator unit and undulator. The photon beam layout is discussed, as is the installation's tera hertz pump source. The components of the facility, including the laser and radio-frequency systems, timing and synchronisation systems, magnets, undulators, and mechanical support systems are discussed. Further, the concepts behind electron beam diagnostics, vacuum equipment as well as control and feedback systems are discussed. The building layout is described and safety issues are discussed. An appendix completes the report

  9. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Sei, Norihiro, E-mail: sei.n@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zen, Heishun; Ohgaki, Hideaki [Institute for Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  10. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    International Nuclear Information System (INIS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-01-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  11. Bunching phase evolution of short-pulse FEL oscillator system

    CERN Document Server

    Song, S B; Choi, D I

    2000-01-01

    We studied numerically the short-pulse FEL oscillator system using properly defined bunching phase theta sub B and PSI sub B. In stable operation, we have found that the optical field 'locks' the phase to pi/2 at the trailing edge, which gives the maximum gain. Moreover, electrons can be detrapped from ponderomotive bucket due to the spatial variation of the optical field, and this detrapping effect is a major cause of the limit cycle oscillation of the system. The 'bump' of the output power during the amplification usually exists at the near-perfect cavity synchronism regime, which can be explained as the change of the matching condition between electron micropulse and optical pulse.

  12. Study of CSR Effects in the Jefferson Laboratory FEL Driver

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C. C. [Colorado State U.; Biedron, S. [Colorado State U.; Burleson, Theodore A. [Colorado State U.; Milton, Stephen V. [Colorado State U.; Morin, Auralee L. [Colorado State U.; Benson, Stephen V. [JLAB; Douglas, David R. [JLAB; Evtushenko, Pavel E. [JLAB; Hannon, Fay E. [JLAB; Li, Rui [JLAB; Tennant, Christopher D. [JLAB; Zhang, Shukui [JLAB; Carlsten, Bruce E. [LANL; Lewellen, John W. [LANL

    2013-08-01

    In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.

  13. Dynamical aspects on FEL interaction in single passage and storage ring devices

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Renieri, A. [ENEA, Frascati (Italy)

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  14. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J.; Nikitina, Y.M. [DESY/HASYLAB, Hamburg (Germany)

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  15. FEL system with homogeneous average output

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph

    2018-01-16

    A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.

  16. The SwissFEL Experimental Laser facility.

    Science.gov (United States)

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  17. Growth of transverse coherence in SASE FELs

    International Nuclear Information System (INIS)

    Kumar, Vinit; Krishnagopal, Srinivas

    2000-01-01

    We introduce the correlation function between the electric field at two different points in the transverse plane as a parameter to quantify the degree of transverse coherence. We also propose a more realistic model for the initialization of the radiation in computer codes used to study SASE FELs. We make these modifications in the code TDA and use it to study the growth of transverse coherence as a function of electron beam size, beam current and transverse emittance. Our results show explicitly that the onset of full transverse coherence in SASE takes place much before the power saturates. With the more realistic model the onset of the exponential growth regime is delayed, and to get a given power from the FEL one needs a longer undulator than would be predicted by the original TDA code

  18. X-Ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser I: Basic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-07-02

    We study a new approach to produce x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Besides the merits of a Self-Amplified Spontaneous Emission (SASE) scheme, an HGHG scheme could also provide much better stability of the radiation power, controllable short pulse length, more stable central wavelength, and radiation with better longitudinal coherence. Detailed design and optimization scheme, simulation results and analytical estimate formulae are presented. To lay results on a realistic basis, the electron bunch parameters used in this paper are restricted to be those of DESY TTF and SLAC LCLS projects; however, such sets of parameters are not necessary to be optimized for an HGHG FEL.

  19. THE SECOND STAGE OF FERMI at ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    International Nuclear Information System (INIS)

    Allaria, E.; DeNinno, G.; Fawley, W.M.

    2009-01-01

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  20. Spontaneous emission in Cherenkov FEL devices

    International Nuclear Information System (INIS)

    Ciocci, F.; Dattoli, G.; Doria, A.; Schettini, G.; Torre, A.; Walsh, J.E.

    1987-01-01

    The main features of the spectral characteristics of the spontaneously emitted Cherenkov light in circular and rectangular wave-guides filled with dielectric are discussed. The characteristics of the radiation emitted by an electron beam moving near and parallel to the surface of a dielectric slab are also analysed. Finally, the relevance of these results to a possible FEL-Cherenkov operation is briefly discussed

  1. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  2. Duke storage rink UV/VUV FEL: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  3. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  4. Renewal of KU-FEL Facility

    CERN Document Server

    Kii, Toshiteru; Masuda, Kai; Murakami, Shio; Ohgaki, Hideaki; Yamazaki, Tetsuo; Yoshikawa, Kiyoshi; Zen, Heishun

    2004-01-01

    Users demands to a high power tunable IR laser are increasing in Japan in energy-related science, such as basic study of high-efficiency solar cells, generation of new energy source of alcohol and/or H2 from polluted gas, and separation of DNA and/or RNA. To satisfy these demands, we decided to renew our FEL facility more user friendly and to operate more flexibly. Construction and fundamental studies on the KU-FEL have been carried out at a building of Institute of Chemical Research where few other accelerators are operating. Therefore, available machine time for our experiments is quite limited. We are now modifying the room by adding concrete walls of 2-m thickness and some space for users will be available. The present FEL system will be moved to the room A photocathode RF-gun system will be nearly added to the system and the present thermionic RF-gun will be used ternatively according to the demands of users. The photocathode material will be Cs2Te. The room with the shielding will be completed in June, ...

  5. FEL for the polymer processing industries

    Science.gov (United States)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  6. Future metrology needs for FEL reflective optics

    International Nuclear Information System (INIS)

    Assoufid, L.

    2000-01-01

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed

  7. Future metrology needs for FEL reflective optics.

    Energy Technology Data Exchange (ETDEWEB)

    Assoufid, L.

    2000-09-21

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed.

  8. Electron beam optics for the FEL experiment and IFEL experiment

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1990-01-01

    Electron beam transport system parameters for the FEL experiment and for the FEL experiment are given. The perturbation of the ''interaction region'' optics due to wiggler focussing is taken into account and a range of solutions are provided for relevant Twiss parameters in the FEL or IFEL region. Modifications of the transport optics in specific sections of the overall beam transport lines, for reasons of enhanced diagnostic capability or enhanced beam momentum analysis resolution, is also presented

  9. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    International Nuclear Information System (INIS)

    Pedrozzi, M.

    2010-07-01

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  10. Start-Up of FEL Oscillator from Shot Noise

    International Nuclear Information System (INIS)

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-01

    In free-electron laser (FEL) oscillators, as in self-amplified spontaneous emission (SASE) FELs, the buildup of cavity power starts from shot noise resulting from the discreteness of electronic charge. It is important to do the start-up analysis for the build-up of cavity power in order to fix the macropulse width from the electron accelerator such that the system reaches saturation. In this paper, we use the time-dependent simulation code GINGER [1]to perform this analysis. We present results of this analysis for the parameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2] being built at RRCAT

  11. Nonlinear harmonic generation and proposed experimental verification in SASE FELs

    CERN Document Server

    Freund, H P; Milton, S V

    2000-01-01

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  12. Computer modelling of statistical properties of SASE FEL radiation

    International Nuclear Information System (INIS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-01-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY

  13. Coherent harmonic production using a two-section undulator FEL

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  14. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  15. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    International Nuclear Information System (INIS)

    Neuman, C.P.; Ponds, M.L.; Barnett, G.A.; Madey, J.M.J.; O'Shea, P.G.

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these methods to calculate the expected outcome of a COUR experiment. We propose an experiment to demonstrate COUR effects and their applications to SASE FELs

  16. Ultrahigh harmonics generation in a FEL with a seed laser

    International Nuclear Information System (INIS)

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-01-01

    One of the most challenging problems in modern FEL technology is to operate in the X-ray region, especially in the open-quotes water windowclose quotes. Because of the absence of optical resonators in this range of wavelengths, only a single-pass device may be suitable for this task. The Self-Amplified Spontaneous Emission (SASE) mechanism is now under active discussion as a realistic way to provide high-power coherent emission in the X-ray range. Both the undulator parameters and the electron beam parameters required for the lasing are achieveable at today's technological level. On the other hand, the SASE approach implies a very long and expensive periodic magnetic structure, typically several tens of meters long. This is mainly because of the rather long build-up time necessary to establish a coherent mode from incoherent noise. A mechanism of shortening this time would be therefore highly desirable. In the present paper we consider a scheme using two undulators and a seed-laser to produce coherent X-ray emission. The first undulator and the seed-laser provide a pre-modulation of the beam while the second undulator serves as a source of coherent spontaneous radiation at a very high harmonic of the seed-laser frequency; the whole scheme may then be considered to be an FEL-based frequency upconvertor. The total length of the periodic magnetic structure is shown to be of the order of several meters, nearly an order of magnitude shorter than in the SASE case. For the same beam quality as in the SASE scheme and with realistic seed-laser parameters, the efficiency of the beam pre-modulation at the 50-th (exclamation point) harmonic is shown to be as high as 15%. The output radiation is tunable between discrete harmonics of the seed-frequency

  17. An Experimental Study of an FEL Oscillator with a Linear Taper

    International Nuclear Information System (INIS)

    Benson, S.; Gubeli, J.; Neil, G.R.

    2001-01-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed reasonably well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL

  18. Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

    International Nuclear Information System (INIS)

    Lawler, J E; Yavuz, D; Bisognano, J; Bosch, R A; Chiang, T C; Green, M A; Jacobs, K; Miller, T; Wehlitz, R; York, R C

    2013-01-01

    A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (∼170 MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ‘head-on’ fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti : sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam. (paper)

  19. A 20fs synchronization system for lasers and cavities in accelerators and FELs

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.

    2010-02-01

    A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.

  20. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Destler, W.W.; Granatstein, V.L. [Univ. of Maryland, College Park, MD (United States)] [and others

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  1. Proposed uv-FEL user facility at BNL

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750 Angstrom. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs

  2. Progress toward a soft X-ray FEL

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1988-01-01

    We review the FEL physics and obtain scaling laws for the extension of its operation to the soft X-ray region. We also discuss the properties of an electron beam needed to drive such an FEL, and the present state of the art for the beam production. (orig.)

  3. Observation of superradiance in a short-pulse FEL oscillator

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Chaix, P.; Piovella, N.; Oepts, D.; Knippels, G.M.H.; van der Meer, A. F. G.; Weits, H. H.

    1997-01-01

    Superradiance has been experimentally studied, in a short-pulse free-electron laser (FEL) oscillator. Superradiance is the optimal way of extracting optical radiation from an FEL and can be characterised by the following scale laws: peak optical power P, scales as the square of electron charge, Q,

  4. Elements of a realistic 17 GHz FEL/TBA design

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Halbach, K.; Hoyer, E.H.; Sessler, A.M.; Sternbach, E.J.

    1989-01-01

    Recently, renewed interest in an FEL version of a two-beam accelerator (TBA) has prompted a study of practical system and structure designs for achieving the specified physics goals. This paper presents elements of a realistic design for an FEL/TBA suitable for a 1 TeV, 17 GHz linear collider. 13 refs., 8 figs., 2 tabs

  5. Calculation of 3-D free electron laser gain: Comparison with simulation and generalization to elliptical cross section

    International Nuclear Information System (INIS)

    Chin, Yong Ho; Kim, Kwang-Je; Xie, Ming.

    1992-08-01

    In the previous paper, we have derived a dispersion relation for the free electron laser (FEL) gain in the exponential regime taking account the diffraction and electron's betatron oscillation. Here, we compare the growth rates obtained by solving the dispersion relation with those obtained by simulation calculation for the waterbag and the Gaussian models for the electron's transverse phase space distribution. The agreement is found to be good except for the limiting case where the Rayleigh length is much longer than the gain length (1-D limit). We also generalize the analysis to the case where the electron beam cross section is elliptical as is usually the case in storage rings, and derive the first-order dispersion relation

  6. Brightness and coherence of radiation from undulators and high-gain free electron lasers

    International Nuclear Information System (INIS)

    Kim, Kwang-Je.

    1987-03-01

    The purpose of this paper is to review the radiation characteristics of undulators and high-gain free electron lasers (FELs). The topics covered are: a phase-space method in wave optics and synchrotron radiation, coherence from the phase-space point of view, discussions of undulator performances in next-generation synchrotron radiation facility and the characteristics of the high-gain FELs and their performances

  7. The GALAXIE all-optical FEL project

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O' Shea, B.; O' Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M. [Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); Dept. of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  8. Effects of physical activity during pregnancy and gestational weight gain on newborn weight and length at birth in Warmińsko-Mazurskie province

    OpenAIRE

    Katarzyna Przybyłowicz; Mariusz Przybyłowicz; Marek Grzybiak; Katarzyna Janiszewska

    2014-01-01

    Background. Epidemiological research has identifi ed a relationship between maternal physical activity, early nutrition and infant birth weight with likelihood of developing future diseases. The aim of the study was to determine a relationship between gestational weight gain and physical activity during pregnancy to the nutritional status of newborns. Material and methods. The presented study was conducted in the period from February 2010 until November 2012 in the gynecological and obste...

  9. Design and implementation of Web-based SDUV-FEL engineering database system

    International Nuclear Information System (INIS)

    Sun Xiaoying; Shen Liren; Dai Zhimin; Xie Dong

    2006-01-01

    A design of Web-based SDUV-FEL engineering database and its implementation are introduced. This system will save and offer static data and archived data of SDUV-FEL, and build a proper and effective platform for share of SDUV-FEL data. It offers usable and reliable SDUV-FEL data for operators and scientists. (authors)

  10. Generation of doublet spectral lines at self-seeded X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  11. Generation of doublet spectral lines at self-seeded X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-11-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  12. The Present Applications of IR FEL at Peking University

    CERN Document Server

    Yang Li Min; Zhao, Kui

    2004-01-01

    In this study the sections of human tissues were treated under 9.5 μm FEL in the BFEL based on the vibrational spectroscopic investigation that significant differences occur between normal and malignant tissues. Under the defocus condition, the burning of tissue section at some part while other part remains unchanged, suggesting that the FEL can selectively destroy some part of tissue. Vibrational spectroscopic and microscopic methods have shown that the FEL can induce decomposition of malignant tissues. The application of FEL whose wavelength is on the characteristic bands of malignant tissues may provide a new method to kill cancer cells with higher selectivity. For understanding the interactions between FEL and biological tissues, structure changes of substances under irradiation by FEL of 9.414 μm and 6.228 μm were measured using FTIR spectroscopy. The samples include ATP, ADP, AMP, and D-ribose, etc. The FTIR spectra of the molecules before and after irradiation of FEL indicate...

  13. FEL induced molecular operation on cultured fibroblast and cholesterol ester

    International Nuclear Information System (INIS)

    Awazu, Kunio; Ogino, Seiji; Nishimura, Eiichi; Tomimasu, Takio; Yasumoto, Masato.

    1997-01-01

    Free Electron Lasers can be used to molecular operation such as the delivery of a number of molecules into cells or the separation of cholesterol ester. First, cultured NIH3T3 cells are exposed to high-intensity short pulse Free Electron Laser (FEL). The FEL is tuned to an absorption maximum wavelength, 6.1 μm, which was measured by microscopic FTIR. A fluorescence dye in the cell suspension is more absorbed into the cell with the FEL exposure due to the FEL-induced mechanical stress to the cell membrane. A quantitative fluorescence microscopy is used to determine the efficiency of delivery. Second, as a compound in a lipid cell, cholesterol ester was exposed to 5.75 μm FEL. FTIR measurement was done to evaluate the modification of the cholesterol ester. The result showed that the fluorescence intensity of sample cells were higher than that of control cells, and there was significant difference between the control and the sample group. Blebbing and the colony formation of the cells were observed for cells with mechanical stress. As for the cholesterol ester, it can be modified by the FEL irradiation. These results showed that FEL can be used as a molecular operational tool by photo-chemical and photo-mechanical interaction. (author)

  14. High-power FEL design issues - a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G. [Duke Univ., Durham, NC (United States)

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  15. Undulator systems for the TESLA X-FEL

    International Nuclear Information System (INIS)

    Pflueger, J.; Tischer, M.

    2002-01-01

    A large X-ray FEL lab is under consideration within the TESLA project and is supposed to be operated in parallel with the TESLA linear collider. There will be five SASE FELs and five conventional spontaneous undulators. A conceptual design study has been made for the undulator systems for these X-FELs. It includes segmentation into 6.1 m long undulator 'cells'. Each consists of a 5 m long undulator 'segment', a separate quadrupole, one horizontal and one vertical corrector, and a phase shifter. These items are presented and discussed

  16. Status of the Novosibirsk high-power terahertz FEL

    International Nuclear Information System (INIS)

    Gavrilov, N.G.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Scheglov, M.A.; Serednyakov, S.S.; Shevchenko, O.A.; Skrinsky, A.N.; Tcheskidov, V.G.; Vinokurov, N.A.

    2007-01-01

    The first stage of Novosibirsk high-power free electron laser (FEL) was commissioned in 2003. It is based on the normal conducting CW energy recovery linac (ERL). Now the FEL provides electromagnetic radiation in the wavelength range 120-230 μm. The maximum average power is 400 W. The minimum measured linewidth is 0.3%, which is close to the Fourier-transform limit. Four user stations are in operation now. Manufacturing of the second stage of the FEL (based on the four-turn ERL) is in progress

  17. Tunable driver for the LLNL FEL experiment

    International Nuclear Information System (INIS)

    Guss, W.C.; Basten, M.A.; Kreischer, K.E.; Temkin, R.J.

    1991-07-01

    This report describes main activities undertaken during the period 1 June 1990 to 1 June 1991 by MIT to support the Lawrence Livermore National Laboratory tunable FEL driver project. The goal of this research was to further characterize a tunable microwave source (already identified as a BWO-gyrotron) of moderate output power (10--20 kW). In the 1989 fiscal year, the source was assembled at MIT and initial tests were conducted. Proposed for the fiscal year 1990 were analysis of the previous experimental results, and the performance of new experiments designed to increase the voltage tuning range, the output efficiency, and magnetic field tuning. During the report period the previous experimental results were analyzed and compared to computational results and new components were designed, to make the BWO ready for further experiments. In addition, the BWO-gyrotron was mounted in a new superconducting magnet and initial magnetic field profile measurements were made

  18. Quadrupole magnets for IR-FEL at RRCAT

    International Nuclear Information System (INIS)

    Ruwali, Kailash; Singh, Kushraj; Mishra, Anil Kumar; Biswas, Bhaskar

    2013-01-01

    The IR-FEL project at RRCAT needs quadrupole magnets for focusing 15 to 35 MeV electron beam through a dog-leg type beam line. This bend needs tighter relative tolerances on the central quadrupole triplet . The magnetic design, fabrication and magnetic characterization of five quadrupole magnets were carried out. The poles are detachable and wider than the coils. This significantly improves the good field region of the magnet. The magnet cross-section was optimized using 2D POISON code and entry-exit tapers were optimized using 3D code TOSCA.. The aperture radius of the magnet is 30 mm and the total core length is 180 mm. The integrated gradient of magnet is 0.51 T. The magnetic measurements were carried out using Danfysik make rotating coil bench model 690. Integrated gradient and multipoles present in the magnet aperture were measured at various excitation levels. The details of magnetic development and the magnetic measurements are discussed in this paper. (author)

  19. Commissioning of an electro-optic electron bunch length monitor at FLASH

    International Nuclear Information System (INIS)

    Breunlin, Jonas

    2011-03-01

    The demands on the electron beam qualities for free-electron lasers (FEL) are challenging in terms of high peak currents. At FLASH, the high-gain FEL in Hamburg, longitudinal bunch compression is performed to achieve the requested high charge densities in short bunches. The precise control of the bunch compression process requires advanced diagnostics on the longitudinal bunch profile. The bunch length monitor presented in this thesis is based on a non-destructive detection using the electro-optic effect. The focus is on a compact and reliable system for permanent bunch diagnostics. The monitor provides single-shot measurements of the longitudinal bunch profiles with lengths of a few picoseconds by spectrally encoding their charge distribution. First measurements for characterization purpose have been performed. It has been shown that the monitor is suitable for monitoring the longitudinal bunch profile behind the first bunch compressor at FLASH. Electron bunch profiles with slopes corresponding to a full width half maximum of about 1.4 ps have been detected. That is the intrinsic resolution limit of the utilized method. (orig.)

  20. A superconducting short period undulator for a harmonic generation FEL experiment

    International Nuclear Information System (INIS)

    Ingold, G.; Solomon, L.; Ben-Zvi, I.; Krinsky, S.; Li, D.; Lynch, D.; Sheehan, J.; Woodle, M.; Qiu, X.Z.; Yu, L.H.

    1993-01-01

    A three stage superconducting (SC) undulator for a high gain harmonic generation (HGE) FEL experiment in the infrared is under construction at the NSLS in collaboration with Grumman Corporation. A novel undulator technology suitable for short period (6-40mm) undulators will be employed for all three stages, the modulator, the dispersive section and the radiator. The undulator triples the frequency of a 10.4μm CO 2 seed laser. So far a 27 period (one third of the final radiator) prototype radiator has been designed, built and tested

  1. Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.

    2017-09-01

    The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.

  2. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    CERN Document Server

    Neuman, C P; Barnett, G A; Madey, J M J; O'Shea, P G

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 sup 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these m...

  3. Towards diffractive imaging with single pulses of FEL radiation. Dynamics within irradiatied samples and their influence on the analysis of imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fenglin

    2010-08-15

    3D single particle coherent diffraction imaging (CDI) of bioparticles (such as proteins, macromolecules and viruses) is one of the main possible applications of the new generation of light sources: free-electron lasers (FELs), which are now available at FLASH (Hamburg, Germany) and LCLS (Stanford, U.S.A.). The extremely bright and ultrashort FEL pulses potentially enable CDI to achieve high resolution down to subnanometer length scale. However, intense FEL pulses cause serious radiation damage in bioparticles, even during single shots, which may set the resolution limits for CDI with FELs. Currently, since the signal-to-noise ratio is very low for small biological particles, direct experimental study of radiation damage in the single particle imaging is fairly difficult. Single atomic (noble gas) clusters become good objects to reveal effects of radiation damage processes on CDI with FEL radiation. This thesis studies three aspects of the radiation damage problem, which are treated in three independent chapters: (1) Molecular Dynamics simulations to quantitively describe radiation damage processes within irradiated atomic clusters during single pulses; (2) reconstruction analysis of single-shot CDI diffraction patterns of atomic clusters, which may potentially help to understand the radiation damage occurring in biological samples; and (3) testing the effects of coating water layers in CDI, which is supposed to minimize the radiation damage in irradiated bioparticles. (orig.)

  4. Electron gun for the Fel Clio

    International Nuclear Information System (INIS)

    Chaput, R.

    1990-01-01

    A triode electron gun has been developed and manufactured at LURE (Laboratoire pour l'Utilisation du Rayonnement Electromagnetique) and LAL (Laboratoire de l'Accelerateur Lineaire) for the free electron laser CLIO 1 (Collaboration pour un laser a electrons libres dans l'infrarouge a Orsay) now under construction: this gun involves a grid-cathode assembly manufactured by EIMAC, currently used in the SLAC gun family. For the FEL requirements, the gun must be able to yield a train of short pulses at accuracy frequency or a continuous pulse. Driving together the cathode and the grid the gun produces a continous beam of 12 μs or a pulsed beam of very short pulse of 1 ns at 250 MHz, 125 MHz, 62.5 MHz or 31.25 MHz. The performances of the gun has been tested on a testing bench. A peak current of 1 Amp. for 1 ns width at any frequencies was achieved at an injection voltage of 90 kV

  5. New results of the high-gain harmonic generation free-electron laser experiment

    International Nuclear Information System (INIS)

    Doyuran, A.; Babzien, M.; Shaftan, T.; Biedron, S.G.; Yu, L.H.; Ben-Zvi, I.; DiMauro, L.F.; Graves, W.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; Skaritka, J.; Rakowsky, G.; Wang, X.J.; Woodle, M.; Yakimenko, V.; Jagger, J.; Sajaev, V.; Vasserman, I.

    2001-01-01

    We report on the experimental investigation of high-gain harmonic generation carried out at the Accelerator Test Facility at Brookhaven National Laboratory. A seed CO 2 laser at a wavelength of 10.6 μm was used to generate FEL output at a 5.3-μm wavelength. The duration of the output pulse was measured using a second-harmonic intensity autocorrelator, and the coherence length was measured using an interferometer. We also measured the energy distribution of the electron beam after it exited the second undulator, observing behavior consistent with that is expected at saturation. The intensity of the harmonic components of the output at 2.65 and 1.77 μm was determined relative to that of the 5.3-μm fundamental. Finally, using a corrector magnet upstream of the radiator, steering effects on the trajectories of the electron and light beams were studied

  6. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    International Nuclear Information System (INIS)

    Prosnitz, D.; Scharlemann, E.T.; Sheaffer, M.K.

    1991-10-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by π radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments

  7. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    Energy Technology Data Exchange (ETDEWEB)

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  8. Harmonic operation of high gain harmonic generation free electron laser

    International Nuclear Information System (INIS)

    Deng Haixiao; Chinese Academy of Sciences, Beijing; Dai Zhimin

    2008-01-01

    In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy. (authors)

  9. Analysis of the superconducting wiggler magnets for the ATF Harmonic Generation FEL experiment

    International Nuclear Information System (INIS)

    Zhang, X.; Ben-Zvi, I.; Ingold, G.; Krinsky, S.; Yu, L.H.

    1992-01-01

    In this paper, we consider the superconducting wiggler magnet under construction for the High Gain Harmonic Generation experiment (HGHG) at the Accelerator Test Facility (ATF) at BNL. This wiggler consists of an energy modulation section, a dispersion magnet and a radiator section. We present an analysis of the dispersion magnet and the end effects in the other wiggler sections. The purpose of the dispersion magnet is to convert energy modulation of the electron beam into spatial bunching. For the dispersion magnet, we discuss the physical requirements, analyze the magnetic design, determine the focusing properties, and consider the effect of departures from ideal behavior on the FEL gain. In the modulator and radiator wigglers we analyze the effects due to the ends of the wiggler and discuss their correction. In addition, the localized field produced by a trim coil for horizontal beam steering is investigated

  10. Effect of FEL induced ionization on X-ray reflectivity of multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany)

    2009-07-01

    The VUV-FEL in Hamburg (FLASH) emits short-pulse radiation with wavelengths from 6 to 30 nm and a pulse length of 10-50 fs. The FLASH wavelength allows x-ray diffraction experiments at periodical multilayer's structures acting as 1D crystal. The probe of depth selective interaction of the high-intense x-ray short pulse with these objects can be used to obtain information about possible electronic excitation and various recombination processes inside multilayers. As known from recent experiments at FLASH, the later ones are most likely using highly intense FEL radiation. The ML reflectivity is analyzed for case of that the optical parameters are changing as function of the depth of the penetrating incident pulse into the multilayer. The response is studied for the model system La/B{sub 4}C using two experimental conditions both at fixed incidence angle: 1) the energy of the incident pulses, E, coincides with the energy of the 1st order multilayer Bragg peak, E{sub B}, of the reflection curve, and 2) the energy of incident pulse differs by a small dE from E{sub B}. The ML response to a given sub-pulse differs for both conditions. However, there is a clear fingerprint of ionization for both conditions for the case that E is close to the K-absorption edge of B-atoms. Our results support respective efforts to measure the optical parameters of solids under high-intense FEL radiation.

  11. Optical klystron FELs based on tandem electrostatic accelerators

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.

    1989-01-01

    The operation of tandem electrostatic accelerator FELs in an optical klystron configuration makes it possible to take advantage of the high quality (low emittance and low energy spread) of the electron beam in electrostatic accelerators. With evolving microwiggler technology, state-of-the-art moderate energy (6-14-MeV) tandem electrostatic accelerators may be used for the development of highly coherent tunable radiation sources in the entire IR region. The authors present the general design considerations and the predicted operating characteristics of such devices and refer in specifics to a design of a 10-1000-μm FEL based on the parameters of a 5-6-MeV high current tandem accelerator. The operating wavelength of FELs is determined by the Doppler shift formula

  12. FERMI(at)Elettra FEL Design Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno, Giovanni; Graves, William

    2006-01-01

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI(at)ELETTRA project. The FERMI(at)ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn

  13. The FEL development at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Arnold, N. D.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Chae, Y. C.; Crosbie, E. A.; Decker, G.; Dejus, R. J.; Den Hartog, P.; Deriy, B.; Dortwegt, R.; Edrmann, M.; Freund, H. P.; Friedsam, H.; Galayda, J. N.; Gluskin, E.; Goeppner, G. A.; Grelick, A.; Huang, Z.; Jones, J.; Kang, Y.; Kim, K.-J.; Kim, S.; Kinoshita, K.; Lewellen, J. W.; Lill, R.; Lumpkin, A. H.; Makarov, O.; Markovich, G. M.; Milton, S. V.; Moog, E. R.; Nassiri, A.; Ogurtsov, V.; Pasky, S.; Power, J.; Tieman, B.; Trakhtenberg, E.; Travish, G.; Vasserman, I.; Walters, D. R.; Wang, J.; Xu, S.; Yang, B.

    1999-01-01

    Construction of a single-pass free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) mode of operation is nearing completion at the Advanced Photon Source (APS) with initial experiments imminent. The APS SASE FEL is a proof-of-principle fourth-generation light source. As of January 1999 the undulator hall, end-station building, necessary transfer lines, electron and optical diagnostics, injectors, and initial undulatory have been constructed and, with the exception of the undulatory, installed. All preliminary code development and simulations have also been completed. The undulator hall is now ready to accept first beam for characterization of the output radiation. It is the project goal to push towards fill FEL saturation, initially in the visible, but ultimately to W and VUV, wavelengths

  14. Towards the Fourier limit on the super-ACO Storage Ring FEL

    International Nuclear Information System (INIS)

    Couprie, M.E.; De Ninno, G.; Moneron, G.; Nutarelli, D.; Hirsch, M.; Garzella, D.; Renault, E.; Roux, R.; Thomas, C.

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit

  15. Towards the Fourier limit on the super-ACO Storage Ring FEL

    CERN Document Server

    Couprie, Marie Emmanuelle; Garzella, D; Hirsch, M; Moneron, G; Nutarelli, D; Renault, E; Roux, R; Thomas, C

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit.

  16. Beam transport design for a recirculating-linac FEL driver

    International Nuclear Information System (INIS)

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-01-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed

  17. Beam profile diagnostics system for SDUV-FEL

    International Nuclear Information System (INIS)

    Xu Yichao; Han Lifeng; Chen Yongzhong

    2010-01-01

    A new beam profile diagnostics system for Shanghai Deep Ultraviolet Free Electron Laser (SDUV-FEL) has been developed based on industrial Ethernet, with good versatility and scalability. The system includes three major subsystems for image acquisition,pneumatic control and stepper motor control, respectively. Virtual instrument technology is adopted to drive the devices, and to develop the measurement software. In this paper,we describe the system structure, and its hardware and software design. The results of system commissioning are given as well. As an important diagnostic tool and data acquisition method, the system has been successfully applied to the measurement and control of the SDUV-FEL.(authors)

  18. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography

    CERN Document Server

    Pagani, C; Schneidmiller, E A; Yurkov, M V

    2001-01-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry road map, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not clear. The problem of construction of extreme ultraviolet (EUV) quantum lasers for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant breakthrough in the near future. Nevertheless, there is clear path for optical lithography to take us to sub-100 nm dimensions. Theoretical and experimental work in Self-Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) physics and the physics of superconducting linear accelerators over the last 10 years has pointed to the possibility of the generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain SASE FEL at 100 nm wavelength (J. Andr...

  19. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017, Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Dalla Betta, G.-F. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M.; Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10{sup 4} photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  20. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10"4 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  1. A pixelated x-ray detector for diffraction imaging at next-generation high-rate FEL sources

    Science.gov (United States)

    Lodola, L.; Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Batignani, G.; Bettarini, S.; Forti, F.; Casarosa, G.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M. A.; Dalla Betta, G.-F.; Mendicino, R.; Pancheri, L.; Verzellesi, G.; Xu, H.

    2017-08-01

    The PixFEL collaboration has developed the building blocks for an X-ray imager to be used in applications at FELs. In particular, slim edge pixel detectors with high detection efficiency over a broad energy range, from 1 to 12 keV, have been developed. Moreover, a multichannel readout chip, called PFM2 (PixFEL front-end Matrix 2) and consisting of 32 × 32 cells, has been designed and fabricated in a 65 nm CMOS technology. The pixel pitch is 110 μm, the overall area is around 16 mm2. In the chip, different solutions have been implemented for the readout channel, which includes a charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper and an A-to-D converter with a 10 bit resolution. The CSA can be configured in four different gain modes, so as to comply with photon energies in the 1 to 10 keV range. The paper will describe in detail the channel architecture and present the results from the characterization of PFM2. It will discuss the design of a new version of the chip, called PFM3, suitable for post-processing with peripheral, under-pad through silicon vias (TSVs), which are needed to develop four-side buttable chips and cover large surfaces with minimum inactive area.

  2. Performance of an undulator for visible and UV FELs at FELI

    Energy Technology Data Exchange (ETDEWEB)

    Miyauchi, Y.; Zako, A.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two infrared free electron lasers (FELs) of the FELI project are now operating in the wavelength range of 1-20{mu}m. A 2.68-m undulator has been constructed for visible and UV FELs covering the wavelength of 1-0.2{mu}m for 100-165 MeV electron beams. It generates alternating, horizontal magnetic field, and wiggles electron beam on a vertical plane. The undulator length and period are 2.68m and 40mm, respectively. The gap of undulator magnets can be changed remotely by using servomotors with an accuracy of 1 {mu}m from the control room. The maximum K-value and related magnetic field strength are 1.9 and 0.5T, respectively, when its gap is set to the minimum value of 16mm. In order to minimize magnetic field reduction due to radiation damage, Sm-Co permanent magnet was adopted. Its structure and the results of magnetic field measurement will be reported.

  3. The Physics and Applications of High Brightness Beams: Working Group C Summary on Applications to FELS

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    2003-01-01

    This is the summary of the activities in working group C, ''Application to FELs,'' which was based in the Bithia room at the Joint ICFA Advanced Accelerator and Beam Dynamics Workshop on July 1-6, 2002 in Chia Laguna, Sardinia, Italy. Working group C was small in relation to the other working groups at that workshop. Attendees include Enrica Chiadroni, University of Rome ape with an identical pulse length. ''La Sapienza'', Luca Giannessi, ENEA, Steve Lidia, LBNL, Vladimir Litvinenko, Duke University, Patrick Muggli, UCLA, Alex Murokh, UCLA, Heinz-Dieter Nuhn, SLAC, Sven Reiche, UCLA, Jamie Rosenzweig, UCLA, Claudio Pellegrini, UCLA, Susan Smith, Daresbury Laboratory, Matthew Thompson, UCLA, Alexander Varfolomeev, Russian Research Center, plus a small number of occasional visitors. The working group addressed a total of nine topics. Each topic was introduced by a presentation, which initiated a discussion of the topic during and after the presentation. The speaker of the introductory presentation facilitated the discussion. There were six topics that were treated in stand-alone sessions of working group C. In addition, there were two joint sessions, one with working group B, which included one topic, and one with working group C, which included two topics. The presentations that were given in the joint sessions are summarized in the working group summary reports for groups B and D, respectively. This summary will only discuss the topics that were addressed in the stand-alone sessions, including Start-To-End Simulations, SASE Experiment, PERSEO, ''Optics Free'' FEL Oscillators, and VISA II

  4. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  5. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  6. Study of Coherence Limits and Chirp Control in Long Pulse FEL Oscillator

    CERN Document Server

    Gover, Avraham; Socol, Yehoshua; Volshonok, Mark

    2004-01-01

    Electrostatic Accelerator FELs have the capacity to generate long pulses of tens microseconds and more, that in principle can be elongated indefinitely (CW operation). This allows the generation of very coherent radiation. The fundamental linewidth is extremely narrow [1], and in practice the spectral width is limited by the pulse duration (Fourier transform limit) and e-beam stability. Practical problems such as the accelerator terminal voltage drop due to a non-ideal electron beam transport may reduce the length of the radiation pulse and hence create a limiting factor for coherence measurement. The current status of the Israeli Tandem Electrostatic Accelerator FEL allows the generation of pulses of tens microseconds duration. It has been operated recently past saturation, and produces single mode coherent radiation of relative linewidth ~Δf/f=10-5 at frequencies near 100GHz. A clear frequency chirp is observed during pulses of tens of microseconds (0.1-1 MHz/mS), and is directly proportional to th...

  7. Certain features of FELs with short bunches

    International Nuclear Information System (INIS)

    Lebedev, A.N.

    2006-01-01

    The report is devoted to physics of free electron lasers operating in the short-wave domain where the bunch length could be less than the undulator length in the proper frame. Then the current component of the signal is locked within the bunch as in a cavity, while the electromagnetic component propagates freely. In contrast with gyrotrons where this regime can be of interest only for wavelengths comparable with the bunch length, we consider short waves in a bunch of arbitrary profile. Both amplification of an external harmonic signal and SASE regime, i.e. selective amplification of proper noises, are investigated

  8. Optimization Studies of the FERMI at ELETTRA FEL Design

    International Nuclear Information System (INIS)

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.; Graves, William

    2005-01-01

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation including vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported

  9. Status of the project of Novosibirsk high power FEL

    Energy Technology Data Exchange (ETDEWEB)

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)] [and others

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  10. Colorado State University (CSU) accelerator and FEL facility

    NARCIS (Netherlands)

    Milton, S.; Biedron, S.; Harris, J.; Martinez, J.; D'Audney, A.; Edelen, J.; Einstein, J.; Hall, C.; Horovitz, K.; Morin, A.; Sipahi, N.; Sipahi, T.; Williams, J.; Carrico, C.; Van Der Slot, P. J M

    2014-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band (1.3 GHz) electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test laboratory, and a magnetic test laboratory.

  11. Towards imaging of ultrafast molecular dynamics using FELs

    NARCIS (Netherlands)

    Rouzee, A.; Johnsson, P.; Rading, L.; Siu, W.; Huismans, Y.; Duesterer, S.; Redlin, H.; Tavella, F.; Stojanovic, N.; Al-Shemmary, A.; Lepine, F.; Holland, D. M. P.; Schlathölter, Thomas; Hoekstra, R.; Fukuzawa, H.; Ueda, K.; Vrakking, M. J. J.; Hundertmark, A.

    2013-01-01

    The dissociation dynamics induced by a 100 fs, 400 nm laser pulse in a rotationally cold Br-2 sample was characterized by Coulomb explosion imaging (CEI) using a time-delayed extreme ultra-violet (XUV) FEL pulse, obtained from the Free electron LASer in Hamburg (FLASH). The momentum distribution of

  12. The FEL-TNO uniform open systems model

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Overbeek, P.L.

    1989-01-01

    The FEL-TNO Uniform Open Systems Model is based upon the IS0/0SI Basic Reference Model and integrates operating systems, (OSI) networks, equipment and media into one single uniform nodel. Usage of the model stimulates the development of operating systen and network independent applications and puts

  13. Optimization Studies of the FERMI at ELETTRA FEL Design

    CERN Document Server

    De Ninno, G

    2005-01-01

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of a seeded harmonic cascade and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in the 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second phase, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and will involve two cascade stages. FEL design assumes wavelength tunability over the full wavelength range and polarization tunability of the output radiation including helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We discuss how the interplay between various limitations and self-consistent accelerator simulations [1,2] have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and und...

  14. FEL-Oscillator simulations with Genesis 1.3

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Verschuur, Jeroen W.J.; Volokhine, I.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the propagation of the light outside the undulator. We present a paraxial Optical Propagation Code (OPC) based on the Spectral Method and Fresnel Diffraction Integral,

  15. Some issues and subtleties in numerical simulation of X-ray FEL's

    International Nuclear Information System (INIS)

    Fawley, William M.

    2002-01-01

    Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime)

  16. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Paladino, A.; Paoloni, E.; Comotti, D.; Grassi, M.; Lodola, L.; Malcovati, P.; Ratti, L.; Vacchi, C.; Fabris, L.; Manghisoni, M.; Re, V.; Traversi, G.; Morsani, F.; Betta, G.-F. Dalla; Pancheri, L.

    2015-01-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 10 4 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC

  17. Optical techniques for electron-beam characterizations on the APS SASE FEL project

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Yang, B.X.; Berg, W.J.; White, M.; Lewellen, J.W.; Milton, S.V.

    1998-01-01

    At the Advanced Photon Source (APS) the injector linac's DC thermionic gun is being supplemented by a low-emittance rf thermionic gun that will support the SASE FEL project. To address the anticipated smaller beam sizes, the standard Chromox beam-profiling screens are being complemented by optical transition radiation (OTR) and Ce-doped YAG single-crystal converters. Direct comparisons of the effective conversion efficiency, spatial resolution, and time response of the three converter screen types have been performed using the DC thermionic gun's beam accelerated to 400 to 650 MeV. An apparent blurring of observed beam size with increasing incident charge areal density in the YAG crystal was observed for the first time. Only the OTR was prompt enough for the few-ps domain micropulse bunch length measurements performed with a stream camera. Initial beam images of the rf-thermionic gun beam have also been obtained

  18. Field Encapsulation Library The FEL 2.2 User Guide

    Science.gov (United States)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  19. Cavity-mirror degradation in the deep-UV FEL

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Yamazaki, T.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    It is known that the degradation of dielectric multilayer mirrors used in short wavelength free-electron lasers (FELs) is caused by the carbon contamination on the mirror surface and the defects inside the dielectrics. We reported last year that the degraded dielectric multilayer mirrors can be repaired with both surface treatment by RF-induced oxygen plasma and thermal annealing. However, such a mirror degradation is still one of the most critical issues in the deep ultraviolet (UV) FELs, because the fundamental undulator radiation resonating in the laser cavity, the intensity of which is much higher than that of higher harmonics, can be sufficiently energetic to cause the mirror degradation through photochemical reactions. We are investigating the mirror degradation mainly in the deep UV region down to 240 nm. The experimental results will be shown. The mirror degradation mechanism will be discussed.

  20. A wiggler magnet for FEL low voltage operation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  1. Locking Lasers to RF in an Ultrafast FEL

    International Nuclear Information System (INIS)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  2. Energy stability in a high average power FEL

    International Nuclear Information System (INIS)

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples

  3. Feedback Control Of Dynamical Instabilities In Classical Lasers And Fels

    CERN Document Server

    Bielawski, S; Szwaj, C

    2005-01-01

    Dynamical instabilities lead to unwanted full-scale power oscillations in many classical lasers and FEL oscillators. For a long time, applications requiring stable operation were typically performed by working outside the problematic parameter regions. A breakthrough occurred in the nineties [1], when emphasis was made on the practical importance of unstable states (stationary or periodic) that coexist with unwanted oscillatory states. Indeed, although not observable in usual experiments, unstable states can be stabilized, using a feedback control involving arbitrarily small perturbations of a parameter. This observation stimulated a set of works leading to successful suppression of dynamical instabilities (initially chaos) in lasers, sometimes with surprisingly simple feedback devices [2]. We will review a set of key results, including in particular the recent works on the stabilization of mode-locked lasers, and of the super-ACO, ELETTRA and UVSOR FELs [3].

  4. Physical optics simulations with PHASE for SwissFEL beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, U.; Follath, R.; Reiche, S. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland); Bahrdt, J. [Helmholtz Zentrum Berlin (Germany)

    2016-07-27

    PHASE is a software tool for physical optics simulation based on the stationary phase approximation method. The code is under continuous development since about 20 years and has been used for instance for fundamental studies and ray tracing of various beamlines at the Swiss Light Source. Along with the planning for SwissFEL a new hard X-ray free electron laser under construction, new features have been added to permit practical performance predictions including diffraction effects which emerge with the fully coherent source. We present the application of the package on the example of the ARAMIS 1 beamline at SwissFEL. The X-ray pulse calculated with GENESIS and given as an electrical field distribution has been propagated through the beamline to the sample position. We demonstrate the new features of PHASE like the treatment of measured figure errors, apertures and coatings of the mirrors and the application of Fourier optics propagators for free space propagation.

  5. Help system for control of JAERI FEL (Free Electron laser)

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1993-01-01

    The control system of JAERI FEL (Free Electron Laser) has a help system to provide the information necessary to operate the machine and to develop the new user interface. As the control software is constructed on the MS-Windows 3.x, the hyper-text feature of the Windows help system can be accessed. It consists of three major parts: (1) on-line help, (2) full document, and (3) tutorial system. (author)

  6. Status of the tandem FEL project development in Israel

    International Nuclear Information System (INIS)

    Benzvi, I.; Sokolowski, J.; Jerby, E.; Chomski, D.; Ruschin, S.

    1989-01-01

    The authors report the status of a collaborative research project development aimed toward construction of an IR FEL based on the EN tandem electrostatic accelerator of the Weizmann Institute of Science. A preliminary feasibility demonstration project yielded encouraging progress in three aspects: (1) Electron gun and accelerator conversion: A 50-kV 1-A electron gun injector was designed, built, tested, and assembled on the 6-MeV tandem accelerator which was previously converted and conditioned to operate as an electron accelerator in a positively charged HV terminal configuration. Contrary to the configuration of the only electrostatic accelerator FEL demonstrated so far, the electron gun and multistage depressed collector are connected to the ground, and the wiggler is placed in the HV terminal of the straight geometry tandem accelerator. This configuration promises to provide a high current high quality e-beam. (2) Electron-beam transport: The first installation of the electron optical beam recovery system yielded transport efficiency of 80%. Substantial improvement is expected with planned electron optics modifications. An effect, highly significant for realizing long pulse (quasi-cw) FEL operation, was observed experimentally. Due to the damping effect of the accelerator column capacitance network, the voltage terminal stayed constant for milliseconds even with poor beam transport efficiency. This points to the possibility of developing a long pulse FEL which may operate at a single longitudinal mode. (3) Wiggler development: A conventional 4.4-cm period SmCo planar wiggler was acquired and evaluated using a recently constructed floating wire magnetic field measurement setup

  7. The JAERI superconducting RF linac-based FELS and THEIR cryogenics

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    In the 21st century, we need a powerful and efficient free-electron laser (FEL) for academic and industrial uses in almost all fields. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil off super-conducting rf linac with an energy-recovery geometry. Our discussions on the JAERI FEL and cryogenics will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil off cryostat concept and operational experiences over these 9 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry. (author)

  8. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  9. Mode distortion measurements on the Jefferson lab IR FEL

    CERN Document Server

    Benson, S V; Shinn, M

    2002-01-01

    We have previously reported on the analytical calculations of mirror distortion in a high-power FEL with a near-concentric cavity. This analysis allowed us to estimate the power level at which the FEL interaction would be affected, though no exact theory of FEL power vs. distortion exists at this point. Recently we have directly measured the mode size and beam quality as a function of power using a resonator with a center wavelength of 5 mu m. The resonator mirrors were calcium fluoride. This particular material exhibits a large amount of distortion for a given power but, due to the negative slope of refractive index vs. temperature, adds almost no optical phase distortion on the laser output. The mode in the cavity can thus be directly calculated from the measurements at the resonator output. The presence of angular jitter produced raw measurements inconsistent with cold cavity expectations. Removing the effects of the angular jitter, we derive results in agreement with cold cavity measurements. The result i...

  10. Lattice Design for a High-Power Infrared FEL

    Science.gov (United States)

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  11. An advanced UV optical cavity for the European FEL project

    CERN Document Server

    Poole, M W; Chesworth, A A; Clarke, J A; Fell, B; Hill, C; Marl, R; Mullacrane, I D; Reid, R J

    2000-01-01

    A European collaboration is constructing a short wavelength FEL for the ELETTRA storage ring. The optical cavity has been designed and constructed at Daresbury Laboratory for delivery to Sincrotrone Trieste in Autumn 1999, following commissioning tests over the Summer. Initial FEL operation will be at 350 nm but subsequently down to 200 nm or less and mirrors will be 40 mm diameter. The 32 m optical cavity is controllable to 0.01 mu rad in mirror pitch and yaw using digital piezo translators. A novel feature is the simultaneous presence of three remotely interchangeable mirrors to extend the tuning range and also to interchange damaged mirrors immediately. In addition, a transfer arm and load-lock arrangement will permit a mirror to be withdrawn from the chamber and replaced without disruption to the UHV system. The FEL is designed to operate at high power (1-10 W) and multi-watt spontaneous emission is also present: power loading has been investigated by FEA analysis and has necessitated specification of a w...

  12. Storage-ring FEL for the vuv

    International Nuclear Information System (INIS)

    Peterson, J.M.; Bisognano, J.J.; Garren, A.A.; Halbach, K.; Kim, K.J.; Sah, R.C.

    1984-09-01

    A free-electron laser for the vuv operating in a storage ring requires an electron beam of high density and low energy spread and a short wavelength, narrow-gap undulator. These conditions tend to produce longitudinal and transverse beam instabilities, excessive beam growth through multiple intrabeam scattering, and a short gas-scattering lifetime. Passing the beam only occasionally through the undulator in a by-pass straight section, as proposed by Murphy and Pellegrini, allows operation in a high-gain, single-pass mode and a long gas-scattering lifetime. Several storage ring designs have been considered to see how best to satisfy the several requirements. Each features a by-pass, a low-emittance lattice, and built-in wigglers for enhanced damping to counteract the intra-beam scattering. 15 references, 3 figures, 2 tables

  13. Present status and future directions of the JAERI superconducting RF linac-based FEL

    International Nuclear Information System (INIS)

    Minehara, EJ.; Yamauchi, T.; Sugimori, M.; Sawamura, M.; Hajima, R.; Nagai, R.; Kikuzawa, N.; Nishimori, N.; Shizuma, T.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 2.34kW FEL light and l00kW electron beam output in quasi continuous wave operation in February 2000. Twice larger output than the present program goal of 1kW was achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 2 years program goal is the 100kW class FEL light and a few MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual and engineering design options needed for such a very high power operation will be discussed to improve and to upgrade the existing facility. Finally, several applications, table-top superconducting rf linac based FELs, and an X-ray FEL R and D will be discussed as a next-five years program at JAERI-FEL laboratory. (author)

  14. A study of phase control in the FEL [free electron laser] two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Whittum, D.H.; Wurtele, J.S.

    1989-08-01

    A formalism is developed for the analysis of a steady-state free electron laser (FEL) and is applied to the two-beam accelerator (TBA). Conditions are derived for the design of a FEL TBA with rf output power and phase insensitive to errors in both beam current and energy. An example is presented of a suitably phase insensitive TBA design with 100 reaccelerations employing untapered FEL sections and with low power rf input to each section. The theoretical analysis is confirmed by a single particle FEL simulations. 9 refs., 2 tabs

  15. UV-VUV FEL program at DUKE storage ring with OK-4 optical klystron

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Madey, J.M.J.; Vinokurov, N.A.

    1993-01-01

    A 1 GeV electron storage ring dedicated for UV-VUV FEL operation is under construction at the Duke University Free Electron Laser Laboratory. The UV-VUV-FEL project, based on the collaboration of the Duke FEL Laboratory and Budker Institute for Nuclear Physics is described. The main parameters of the DFELL storage ring, of the OK-4 optical klystron, and the experimental set-up are presented. The parameters of UV-VUV FEL are given and the possible future upgrades to this system are discussed

  16. Magnetic measurements and tuning of undulators for the APS FEL project

    International Nuclear Information System (INIS)

    Vasserman, I. B.

    1999-01-01

    Two insertion device magnetic structures have been prepared for the Advanced Photon Source (APS) FEL project [1]. The magnetic structures are standard APS undulatory, 2.4 m long with a 3.3-cm period. Measurements and tuning of the undulatory have been completed at a magnetic gap of about 9.3 mm, where K is 3.1. Special measurement and tuning techniques were used to satisfy the tight trajectory straightness requirement that the second field integral be less than 3.3 kG-cm 2 . The magnetic field strengths of the undulators must be well matched; this leads to the requirement that the magnetic gap must be controlled to better than 10 microns. Proper phasing between the undulatory is ensured by adjusting the length of the drift space between the undulatory. The drift space length that is needed is strongly affected by the end fields of the magnetic structures. The results of measurements of the magnetic field and calculations of the drift length are provided

  17. R and D Requirements, RF Gun Mode Studies, FEL-2 Steady-State Studies, Preliminary FEL-1 Time-Dependent Studies, and Preliminary Layout Option Investigation

    International Nuclear Information System (INIS)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-01-01

    This report constitutes the third deliverable of LBNLs contracted role in the FERMI (at) Elettra Technical Optimization study. It describes proposed RandD activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac

  18. Radially resolved simulation of a high-gain free electron laser amplifier

    International Nuclear Information System (INIS)

    Fawley, W.M.; Prosnitz, D.; Doss, S.; Gelinas, R.

    1983-01-01

    The results of a two-dimensional simulation of a high-gain free electron laser (FEL) amplifier is presented. The simulation solves the inhomogeneous paraxial wave equation. The source term is radially resolved and is obtained by tracking the interaction of the laser field with localized macroparticles

  19. Parametric x-ray FEL operating with external Bragg reflectors

    International Nuclear Information System (INIS)

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-01-01

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10 2 -10 4 times up to 10 9 . One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times

  20. Theoretical analysis of experimental results on SG-1 FEL

    International Nuclear Information System (INIS)

    Yang Zhenhua; Wu Shangqing; Tian Shihong; Dong Zhiwei; Wu Yupu

    1994-01-01

    In order to study the SG-1 FEL and the beam transport thoroughly, and draw certain quantitative conclusions, we developed 3-D WAGFEL code to describe the FEL evolution and 3-D CEBQ code to describe the beam transport. The CEBQ code can simulate the 3-D transport of the electron beam in the modulation section with linear approximation of space charge. According to the first ASE experiments results, the LIA provided a 2 kA, 3.0 MeV beam with a normalized emittance of 0.6 πrad·cm, an energy spread (FWHM) of 4%, resulting in a beam brightness nearly 10 8 A/(πm·rad) 2 . The numerical simulation showed that the quality of the beam was good enough to abandon the 9-m long beam line and substitute it with a 2-m long drifting and focusing region. The second series of ASE and amplifier experiments began in October 1992. The beam transport section was modified. The ASE output power, the amplifier output power and detuning curve was measured. We analysed the experimental results using the WAGFEL and CEBQ codes with parameters equal to those of experiments. Firstly we followed 4096 electrons to simulate the transport process of the beam in the beam line under the condition of I = 2 kA, r b = 1 cm, γ = 6.8, Δγ/γ 4%, ε rms = 0.6 (πrad·cm). Through the simulation, we predicted that the beam current injected into the wiggler was about 611 A. Based on these beam parameters at the entrance of the wiggler, we simulated the FEL process with P in = 300 W. The results are also in Fig.7,8,9

  1. Wavelength dependent delay in the onset of FEL tissue ablation

    International Nuclear Information System (INIS)

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-01-01

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 μm and 6.45 μm pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 μm as compared to 6.45 μm. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process

  2. Real time diagnostic for operation at a CW low voltage FEL

    Energy Technology Data Exchange (ETDEWEB)

    Balfour, C.; Shaw, A.; Mayhew, S.E. [and others

    1995-12-31

    At Liverpool University, a system for single user control of an FEL has been designed to satisfy the low voltage FEL (ie 200kV) operational requirements. This system incorporates many aspects of computer automation for beam diagnostics, radiation detection and vacuum system management. In this paper the results of the development of safety critical control systems critical control systems are reported.

  3. Towards attosecond X-ray pulses from the FEL

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Fawley, William M.

    2004-01-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10 18 sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results

  4. Lattice design for a high-power infrared FEL

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1997-01-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is being built at Jefferson Lab. It will be driven by a compact energy-recovering CW superconducting radio-frequency (SRF)-based linear accelerator. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. This report addresses these issues and presents a design solution for an accelerator transport lattice meeting the requirements imposed by physical phenomena and operational necessities

  5. Characteristics of the FEL project for the MUH experiment

    International Nuclear Information System (INIS)

    Ciocci, F.; Doria, A.; Fascetti, M.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Picardi, L.; Renieri, A.; Ronci, G.; Ronsivalle, C.; Vignati, A.

    1999-01-01

    The design characteristics of a compact Free Electron Laser (FEL) operating in the far infrared spectral range between 200 and 600 μm are presented in this report. The device can be employed in a fundamental physics experiment to be performed in collaboration with INFN-Trieste and the Paul Sherrer Institute- Villigen. Spectroscopic measurements in the above spectral region will allow one to determine the energy difference between the levels 3D-3P in the μP system with great accuracy [it

  6. Electron beam acceleration and compression for short wavelength FELs

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1994-11-01

    A single pass UV or X-ray FEL will require a low emittance electron beam with high peak current and relatively high beam energy, a few hundred MeV to many GeV. To achieve the necessary peak current and beam energy, the beams must be bunch compressed and they must be accelerated in long transport lines where dispersive and wakefield emittance dilutions are important. In this paper, we will describe the sources and significance of the dilutions during acceleration, bunch compression, and transport through the undulator. In addition, we will discuss sources of jitter, especially effects arising from the bunch compressions, and the possible cancellation techniques

  7. The FERMI-Elettra FEL Photon Transport System

    International Nuclear Information System (INIS)

    Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.

    2010-01-01

    The FERMI-Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI-Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.

  8. Development of BPM Electronics at the JLAB FEL

    Science.gov (United States)

    Sexton, D.; Evtushenko, P.; Jordan, K.; Yan, J.; Dutton, S.; Moore, W.; Evans, R.; Coleman, J.

    2006-11-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reduced to 1.17 MHz, which corresponds to about 160 μA of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 μm is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.

  9. Advanced Electron Beam Diagnostics for the FERMI FEL

    CERN Document Server

    Ferianis, M; D'Auria, G; Di Mitri, S

    2005-01-01

    Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool ...

  10. Options for the Cryogenic System for the BESSY-FEL

    International Nuclear Information System (INIS)

    Kutzschbach, A.; Quack, H.; Haberstroh, Ch.; Knobloch, J.; Anders, W.; Pflueckhahn, D.

    2004-01-01

    The Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung (BESSY GmbH), in January 1999, started operation of BESSY II, a third-generation synchrotron light source delivering world-class, high-brilliance photon beams in the VUV to XUV spectral range. Based on this experience, BESSY has recently proposed the construction of a free-electron laser (FEL), covering a photon-energy range from 20 eV to 1 keV.To reduce the development time and cost, BESSY intends to use proven cavity and cryostat technology developed for the TESLA linear collider. However, the cryogenic load per cavity is approximately 15 to 20 times higher than that anticipated for the (pulsed) TESLA operation. This paper describes possible modifications of the cryostat design to accommodate these additional losses.Superconducting RF cavities are the basis of the FEL accelerator providing the driving electron beam with 2.25 GeV. The accelerator consists of five cold sections separated by warm sections reserved for bunch compression and beam extraction. The total refrigeration load will be covered by a single refrigerator. Several possible layouts of the cryogenic system are described and their advantages and disadvantages are discussed

  11. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    International Nuclear Information System (INIS)

    Jianxun Yan; Daniel Sexton; Steven Moore; Albert Grippo; Kevin Jordan

    2006-01-01

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller was built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug and play-like ease of installation and flexibility, and provides a much more localized solution

  12. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    Science.gov (United States)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun

    2017-12-01

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.

  13. Comprehensive z-dependent measurements of electron-beam microbunching using COTR in a saturated SASE FEL

    CERN Document Server

    Lumpkin, Alex H; Lewellen, J W; Berg, W; Biedron, S G; Borland, M; Chae, Y; Erdmann, M; Huang, Z; Kim, K J; Li, Y; Milton, S V; Moog, E; Rule, D W; Sajaev, Vadim; Yang, B X

    2002-01-01

    We report the initial, comprehensive set of z-dependent measurements of electron-beam microbunching using coherent optical transition radiation (Cot) in a saturated self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiment. In this case the FEL was operated near 530 nm using an enhanced facility including a bunch-compressed photocathode gun electron beam, linac, and 21.6 m of undulator length. The longitudinal microbunching was tracked by inserting a metal foil and mirror after each of the nine 2.4-m-long undulators and measuring the visible COTR spectra, intensity, angular, distribution, and spot size. We observed for the first time the z-dependent transition of the COTR spectra from simple lines to complex structure/sidebands near saturation. We also observed the change in the microbunching fraction after saturation, multiple fringes in the COTR interferogram that are consistent with involvement of a smaller core of the e-beam transverse distribution, and the second harmonic content of...

  14. Characteristics of the FEL project for the MUH experiment; Stato del progetto FEL per l`esperimeto MUH

    Energy Technology Data Exchange (ETDEWEB)

    Ciocci, F.; Doria, A.; Fascetti, M.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Picardi, L.; Renieri, A.; Ronci, G.; Ronsivalle, C.; Vignati, A. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1999-01-01

    The design characteristics of a compact Free Electron Laser (FEL) operating in the far infrared spectral range between 200 and 600 {mu}m are presented in this report. The device can be employed in a fundamental physics experiment to be performed in collaboration with INFN-Trieste and the Paul Sherrer Institute- Villigen. Spectroscopic measurements in the above spectral region will allow one to determine the energy difference between the levels 3D-3P in the {mu}P system with great accuracy. [Italiano] In questo rapporto vengono presentate le caratteristiche di progetto di un Laser ad Elettroni Liberi (FEL) compatto operante nel lontano infrarosso a lunghezze d`onda comprese tra 200 e 600 {mu}m. Tale laser potra` essere impiegato in un esperimento di fisica fondamentale su idrogeno muonico in collaborazione con INFN-Trieste ed il Paul Sherrer Institute-Villigen. Le misure spettroscopiche nella regione spettrale del lontano infrarosso consentiranno di determinare con grande accuratezza la differenza di energia dei livelli 3D-3P nel sistema {mu}P. Attraverso la misura di questa transizione sara` possibile effettuare un test delle correzioni di Meccanica Quantistica (QED) alle energie di legame, migliorando di un ordine di grandezza l`accuratezza della misura della polarizzazione del vuoto.

  15. Proceedings of the 3rd topical meeting on FEL and high power radiation

    International Nuclear Information System (INIS)

    Hiramatsu, Shigenori

    1994-01-01

    The meeting was held on June 10 and 11, 1993, at the National Laboratory for High Energy Physics. This is the joint study meeting with 31st large power microwave-milliwave study meeting. At the meeting, lectures were given on the report of 1st Asia FEL study meeting, infrared free electron laser (FEL) project in JAERI, present state of Free Electron Laser Research Institute Inc., infrared FEL experiment in the Institute of Scientific and Industrial Research, Osaka University, FEL experiment in UVSOR storage ring, NIJI-4 SRFEL, simulation of FEL oscillation in photo-klystron, vacuum UVFEL in PF, beam characteristics of small photon storage ring, micro-cherenkov FEL using field emission array, coherent spontaneous emission and radiation build-up in FEL oscillator, stability of soft X-ray multilayers under exposure to multipole Wigger radiation, long life Zn 2 excimer excited with relativistic electron beam, development of large power klystron in KEK, design of 1 THz gyrotron and first experiment, experiment of relativistic peniotron, experiments of 3rd and 10th cyclotron harmonic peniotron oscillators and others. (K.I.)

  16. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  17. Dynamical behaviour of FEL devices operating with two undulators having opposite circular polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Rome (Italy); Ottaviani, P.L. [ENEA, Divisione Fisica Applicata, Centro Ricerche, Bologna (Italy); Bucci, L. [ENEA, Guest Rome (Italy)

    2000-07-01

    Optical-Klystron FELs operating with undulators having opposite circular polarizations are characterized by a spontaneous emission spectrum which does not exhibit the characteristic interference pattern. The use of the Madey theorem may allow the conclusion that, for such configuration, the dispersive section does not provide any gain enhancement. In this paper it has been analyzed the problem from a dynamical point of view and clarify how the optical field evolve, what is the role of the bunching and how the consequences of the Madey theorem should be correctly understood. [Italian] Klystron ottici operanti con ondulatori aventi polarizzazione elicoidali opposte, sono caratterizzati da uno spettro di emissione spontanea senza il termine interferenziale dovuto alla sezione dispersiva. L'uso del teorema di Madey indurrebbe alla conclusione che, per una tale configurazione, la sezione dispersiva non induce nessun aumento del guadagno. In questo lavoro analizziamo il problema da un punto di vista dinamico che chiarisce l'evoluzione del campo ottico, quale e' il ruolo del bunching e come le conseguenze del teorema di Madey debbano essere interpretate.

  18. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  19. VUV Optics Development for the Elettra Storage Ring FEL

    CERN Document Server

    Guenster, Stefan

    2004-01-01

    Vacuum ultraviolet optical components for the storage ring FEL at Elettra are under continuous development in the European research consortium EUFELE. Target of the project is the progress to shorter lasing wavelengths in the VUV spectral range. The current status allows lasing with oxide mirror systems down to 190 nm. The main obstacles for the development of optical coatings for shorter wavelengths is the high energetic background of the synchrotron radiation impinging onto the front mirror in the laser cavity. Investigations in single layer systems and multilayer stacks of oxide or fluoride materials demonstrate that fluoride mirrors reach highest reflectivity values down to 140 nm, and oxide coatings possess a satisfactory resistance against the high energetic background irradiation. However, pure oxide multilayer stacks exhibit significant absorption below 190 nm and pure fluoride stacks suffer from strong degradation effects under synchrotron radiation. A solution could be hybrid systems, combining fluo...

  20. Jefferson Lab IR demo FEL photocathode quantum efficiency scanner

    CERN Document Server

    Gubeli, J; Grippo, A; Jordan, K; Shinn, M; Siggins, T

    2001-01-01

    Jefferson Laboratory's Free Electron Laser (FEL) incorporates a cesiated gallium arsenide (GaAs) DC photocathode gun as its electron source. By using a set of scanning mirrors, the surface of the GaAs wafer is illuminated with a 543.5nm helium-neon laser. Measuring the current flow across the biased photocathode generates a quantum efficiency (QE) map of the 1-in. diameter wafer surface. The resulting QE map provides a very detailed picture of the efficiency of the wafer surface. By generating a QE map in a matter of minutes, the photocathode scanner has proven to be an exceptional tool in quickly determining sensitivity and availability of the photocathode for operation.

  1. A 300-nm compact mm-wave linac FEL design

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Kustom, R.L.; Kang, Y.W. [Argonne National Lab., IL (United States)

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  2. Development of web database system for JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Kikuzawa, Nobuhiro

    2005-01-01

    The accelerator control system for the JAERI ERL-FEL is a PC-based distributed control system. The accelerator status record is stored automatically through the control system to analyze the influence on the electron beam. In order to handle effectively a large number of stored data, it is necessary that the required data can be searched and visualized in easy operation. For this reason, a web database (DB) system which can search of the required data and display visually on a web browser was developed by using open source software. With introduction of this system, accelerator operators can monitor real-time information anytime, anywhere through a web browser. Development of the web DB system is described in this paper. (author)

  3. Development of web database system for JAERI ERL-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Kikuzawa, Nobuhiro [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Tokai, Ibaraki (Japan)

    2005-06-01

    The accelerator control system for the JAERI ERL-FEL is a PC-based distributed control system. The accelerator status record is stored automatically through the control system to analyze the influence on the electron beam. In order to handle effectively a large number of stored data, it is necessary that the required data can be searched and visualized in easy operation. For this reason, a web database (DB) system which can search of the required data and display visually on a web browser was developed by using open source software. With introduction of this system, accelerator operators can monitor real-time information anytime, anywhere through a web browser. Development of the web DB system is described in this paper. (author)

  4. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Attwood, David [University of California Berkeley

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  5. High-harmonic relativistic gyrotron as an alternative to FEL

    Energy Technology Data Exchange (ETDEWEB)

    Bratman, V L; Kalynov, Yu K; Kolganov, N G; Manuilov, V N; Ofitserov, M M; Samsonov, S V; Volkov, A B [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. of Applid Physics

    1997-12-31

    A submillimeter wave gyrotron operating at moderately relativistic electron energies of 200-300 keV is proposed as a simple alternative to FEL. It is shown that high pulsed magnetic fields of 20-30 T and selective excitation of separate modes for resonances up to the 5-7 th harmonics will make it possible to obtain in a single device the coherent radiation with broadband frequency step tuning within the whole submillimeter wavelength range. At large pitch angles the coupling of the electron beam with cavity modes at higher harmonics should be as strong as at the fundamental one. In order to check the theoretical predictions, two gyrotrons were designed: LOG-1 (250 kV, 10 A, 10 ms) with a thermionic emission cathode and LOG-2 (350 kV, 35 A, 20 ns) with an explosive emission cathode. (J.U.). 7 refs.

  6. Lasing attempts with a microwiggler on the Los Alamos FEL

    International Nuclear Information System (INIS)

    Warren, R.W.; O'Shea, P.G.; Bender, S.C.; Carlsten, B.E.; Early, J.W.; Feldman, D.W.; Fortgang, C.M.; Goldstein, J.C.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.; Newnam, B.E.; Sheffield, R.L.

    1992-01-01

    The APEX FEL normally lases near a wavelength of 3μm using a permanent magnet wiggler with a 2.7-cm period and a linear accelerator of 40-MeV energy. Los Alamos National Laboratory is conducting a series of experiments with the goal of lasing at significantly shorter wavelengths with the same accelerator and the same kind of near-concentric resonator, but using a novel pulsed microwiggler of 0.5-cm period capable of generating a peak field of several tesla. We plan to lase on a fundamental wavelength of ∼0.8 μm and on the third harmonic at 0.25 μm

  7. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  8. First measurements of electron-beam transit times and micropulse elongation in a photoelectric injector at the High-Brightness Accelerator FEL (HIBAF)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Carlsten, B.E.; Feldman, R.B.

    1990-01-01

    Key aspects of the dynamics of a photoelectric injector (PEI) on the Los Alamos High-Brightness Accelerator FEL (HIBAF) facility have been investigated using a synchroscan streak camera. By phase-locking the streak camera sweep to the reference 108.3 MHz rf signal, the variations of micropulse temporal elongations (30 to 80% over the drive-laser pulse length) and of transit times (25 ps for a 16{degree}-phase change) were observed for the first time. These results were in good agreement with PARMELA simulations. 2 refs., 8 figs.

  9. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Robin, E-mail: robin.engel@uni-oldenburg.de [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany); Düsterer, Stefan; Brenner, Günter [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Teubner, Ulrich [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany)

    2016-01-01

    Considering the second-order spectral correlation function of SASE-FEL radiation allows a real-time observation of the photon pulse duration during spectra acquisition. For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded.

  10. Sustained lasing of HHG-seeded FEL by using EOS-based timing control

    International Nuclear Information System (INIS)

    Watanabe, Takahiro; Okayasu, Yuichi; Togashi, Tadashi; Hara, Toru; Tomizawa, Hiromitsu; Matsubara, Shinichi; Aoyama, Makoto; Yamakawa, Koichi; Iwasaki, Atsushi; Ohwada, Shigeki; Sato, Takahiro; Yamauchi, Kaoru; Otake, Yuji; Ohshima, Takashi; Ogawa, Kanade; Togawa, Kazuaki; Tanaka, Takashi; Takahashi, Eiji; Midorikawa, Katsumi; Yabashi, Makina; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2013-01-01

    High-harmonic-generation (HHG) based seeded FEL experiments were demonstrated at SCSS, SPring-8. Seeded FEL has advantageous features against SASE such that there is no intrinsic nature of shot-noise fluctuation and output FEL pulses are in principle fully coherent in both transverse and longitudinal axes. In practical user experiments, however, an overlap between electron bunches and seed laser pulses in six-dimensional phase space needs to be precisely maintained for securing the stable lasing. Otherwise, the overlap could be quickly lost and the lasing is no more sustained. For the stable lasing, we have developed an EO (electro-optic) based timing control system, which enables to observe a timing drift between electron bunches and laser pulses, and compensate for it. Experimental results of the seeded FEL with and without the EO timing control are compared, and the effectiveness of the timing system is discussed. (author)

  11. Start-to-end simulations of SASE FEL at the TESLA Test Facility

    International Nuclear Information System (INIS)

    Dohlus, M.; Floettmann, K.; Limberg, T.; Saldin, E.L; Schneidmiller, E.A.; Kozlov, O.S.; Yurkov, M.V.; Piot, Ph.

    2004-01-01

    VUV SASE FEL at the TESLA Test Facility (Phase 1) was successfully running and reached saturation in the wavelength range 80-120 nm. We present a posteriori start-to-end simulations of this machine. The codes Astra and elegant are used to track particle distribution from the cathode to the undulator entrance. An independent simulation of the beam dynamics in the bunch compressor is performed with the code CSRtrack. SASE FEL process is simulated with the code FAST. The simulation results are in good agreement with the measured properties of SASE FEL radiation. It is shown that the beam dynamics after the bunch compressor is mainly defined by space charge fields. FEL radiation is produced by the head of the electron bunch having a peak current of about 3 kA and a duration of 100 fs

  12. Status and Future Plans of JAERI Eergy-Recovery Linac FEL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    An energy-recovery linac for a high-power free-electron laser is in operation at Japan Atomic Energy Research Institute (JAERI). In this paper, we report results of research activities and future plans of JAERI ERL-FEL, which are the construction of FEL transport line, the operation of newly-installed RF controller and IOTs, the development of super-lattice photo cathode.

  13. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency

    OpenAIRE

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D.

    2013-01-01

    Background Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The “face expressive lifting” (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related nega...

  14. Research opportunities at the proposed Los Alamos XUV-FEL user facility

    International Nuclear Information System (INIS)

    Conradson, S.D.; Newman, B.E.

    1990-01-01

    This paper reports that within the last several years a number of meetings and conferences have addressed the unique scientific opportunities which would result from the development of an RF-linac FEL user facility accessing the XUV and mid-IR spectral regions. The capabilities of a number of linear and nonlinear spectroscopies would be enhanced by one or more features of the FEL output, e.g., its free tunability in these regions, transform-limited linewidth, high peak power and brightness, time structure, and the possibility of multi-color pump-probe experiments utilizing the coordinated output from more than one FEL oscillator. These advances would in turn benefit a variety of scientific areas. In the realm of basic science, experiments or measurements which ether require an FEL or where increased sensitivity would be advantageous can be found in quantum, atomic, cluster, molecular, and condensed matter physics, magnetic materials, surface science and catalysis, non-linear spectroscopy, and biophysics and -chemistry and physics, advanced fabrication processes, medical applications, and others. These applications form the basis for the specifications of the FEL and for the design of the laboratories for the proposed FEL user facility at Los Alamos

  15. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    Science.gov (United States)

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  16. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  17. Design and test of SX-FEL cavity BPM

    International Nuclear Information System (INIS)

    Yuan Renxian; Zhou Weimin; Chen Zhichu; Yu Luyang; Wang Baopen; Leng Yongbin

    2013-01-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM 010 mode in the output signal. The isolation of TM 010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM 110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test. (authors)

  18. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  19. Management system of ELHEP cluster machine for FEL photonics design

    Science.gov (United States)

    Zysik, Jacek; Poźniak, Krzysztof; Romaniuk, Ryszard

    2006-10-01

    A multipurpose, distributed MatLab calculations oriented, cluster machine was assembled in PERG/ELHEP laboratory at ISE/WUT. It is predicted mainly for advanced photonics and FPGA/DSP based systems design for Free Electron Laser. It will be used also for student projects for superconducting accelerator and FEL. Here we present one specific side of cluster design. For an intense, distributed daily work with the cluster, it is important to have a good interface and practical access to all machine resources. A complex management system was implemented in PERG laboratory. It helps all registered users to work using all necessary applications, communicate with other logged in people, check all the news and gather all necessary information about what is going on in the system, how it is utilized, etc. The system is also very practical for administrator purposes, it helps to keep controlling who is using the resources and for how long. It provides different privileges for different applications and many more. The system is introduced as a freeware, using open source code and can be modified by system operators or super-users who are interested in nonstandard system configuration.

  20. Beam dynamics simulations for linacs driving short-wavelength FELs

    International Nuclear Information System (INIS)

    Ferrario, M.; Tazzioli, F.

    1999-01-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)

  1. Optical modeling of the Jefferson Lab IR Demo FEL

    International Nuclear Information System (INIS)

    Neil, G.; Benson, S.; Shinn, M.; Davidson, P.; Kloppel, P.

    1997-01-01

    The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of pecosecond pulses at a 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been mode led using the GLAD code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distorium for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed

  2. Validity and reliability of the Fels physical activity questionnaire for children.

    Science.gov (United States)

    Treuth, Margarita S; Hou, Ningqi; Young, Deborah R; Maynard, L Michele

    2005-03-01

    The aim was to evaluate the reliability and validity of the Fels physical activity questionnaire (PAQ) for children 7-19 yr of age. A cross-sectional study was conducted among 130 girls and 99 boys in elementary (N=70), middle (N=81), and high (N=78) schools in rural Maryland. Weight and height were measured on the initial school visit. All the children then wore an Actiwatch accelerometer for 6 d. The Fels PAQ for children was given on two separate occasions to evaluate reliability and was compared with accelerometry data to evaluate validity. The reliability of the Fels PAQ for the girls, boys, and the elementary, middle, and high school age groups range was r=0.48-0.76. For the elementary school children, the correlation coefficient examining validity between the Fels PAQ total score and Actiwatch (counts per minute) was 0.34 (P=0.004). The correlation coefficients were lower in middle school (r=0.11, P=0.31) and high school (r=0.21, P=0.006) adolescents. The sport index of the Fels PAQ for children had the highest validity in the high school participants (r=0.34, P=0.002). The Fels PAQ for children is moderately reliable for all age groups of children. Validity of the Fels PAQ for children is acceptable for elementary and high school students when the total activity score or the sport index is used. The sport index was similar to the total score for elementary students but was a better measure of physical activity among high school students.

  3. Rational design of hypoallergens applied to the major cat allergen Fel d 1.

    Science.gov (United States)

    Saarne, T; Kaiser, L; Grönlund, H; Rasool, O; Gafvelin, G; van Hage-Hamsten, M

    2005-05-01

    Allergen-specific immunotherapy is the only treatment for allergic disease providing long-lasting symptom relief. Currently, it is mainly based on the use of crude allergen extracts. The treatment may be improved by the use of genetically engineered allergens, hypoallergens, aiming at a more effective and safer therapy. The aim of this study was to provide a rational design of hypoallergen candidates for immunotherapy by using structural information and knowledge of B and T cell epitopes of an allergen. The three-dimensional structure of the major cat allergen Fel d 1 was systematically altered by duplication of selected T cell epitopes and disruption of disulphide bonds. Seven Fel d 1 derivatives were generated and screened for allergenic reactivity in comparison with recombinant Fel d 1 in competition-ELISA. The allergenicity was further evaluated in basophil activation experiments and T cell reactivity was assessed in a lymphoproliferation assay. Three out of seven Fel d 1 derivatives, with two duplicated T cell epitopes and one or two disulphide bonds disrupted, were carefully evaluated. The three derivatives displayed a strong reduction in allergenicity with 400-900 times lower IgE-binding capacity than recombinant Fel d 1. In addition, they induced a lower degree of basophil activation and similar or stronger T cell proliferation than recombinant Fel d 1. By a rational approach, we have constructed three Fel d 1 hypoallergens with reduced IgE-binding capacities and retained T cell reactivities. This strategy may be applied to any well-characterized allergen to improve immunotherapy for allergic patients.

  4. Physically transparent formulation of a free-electron laser in the linear gain regime

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.; Yu, L.H.

    1992-08-01

    The recent 2-dimensional analytic theories of a free-electron laser (FEL) in the linear regime are reformulated in terms of three dimensionless ratios that describe the degree to which the characteristics of the electron beam deviate from the cold beam limit of a beam with no emittance or energy spread. In terms of these ratios, algebraic model equations of a fit that combines features of both of the 2-dimensional analyses are given as a convenient computational tool. Graphs of the FEL gain eigenvalue computed with the combined 2-D formulation illustrate that the gain and the output power at saturation are reduced from the 1-D value, when any of the ratios is larger than unity

  5. Effects of bunch density gradient in high-gain free-electron lasers

    International Nuclear Information System (INIS)

    Huang, Z.; Kim, K.-J.

    1999-01-01

    The authors investigate effects of the bunch density gradient in self-amplified spontaneous emission (SASE), including the role of coherent spontaneous emission (CSE) in the evolution of the free-electron laser (FEL) process. In the exponential gain regime, the authors solve the coupled Maxwell-Vlasov equations and extend the linear theory to a bunched beam with energy spread. A time-dependent, nonlinear simulation algorithm is used to study the CSE effect and the nonlinear evolution of the radiation pulse

  6. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    Science.gov (United States)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  7. X-FEL revolution - X-ray lasers to probe matter

    International Nuclear Information System (INIS)

    Collet, E.; Cammarata, M.; Harmand, M.; Couprie, M.E.

    2015-01-01

    X-ray free electron lasers (X-FEL) are now able to generate X-ray pulses of a few femto-seconds (1 fs = 10"-"1"5 s), which allows the real-time observation of the movements of atoms. The changes in the structure of a material can be seen whatever the material, this is illustrated with the PYP protein (that is the photo-receptor of a bacterium), the changes between an initial state and 100 ps after light excitation show the displacement of the atoms of the protein. The brightness of X-FEL can be so high that it allows the study of nano-metric structures but it enables X-FEL radiation to ionize matter and the crystal sample may be destroyed, this becomes the new limit of X-FEL applied to crystallography. Another application of X-FEL to structure studies is to allow the study of systems that are not crystal systems like macromolecules, proteins or even viruses. Hundreds of patterns of X-ray diffractions of an object are combined to form a 3-dimensional image of the object in the wave vector space and it is then possible but very complex to deduce the real 3-dimensional structure of the object. (A.C.)

  8. Design considerations of a MW-scale, high-efficiency, industrial-use, ultraviolet FEL amplifier

    International Nuclear Information System (INIS)

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2000-01-01

    Theoretical and experimental work in free electron laser (FEL) physics, and the physics of particle accelerators over the last 10 years has pointed to the possibility of the generation of MW-level optical beams with laser-like characteristics in the ultraviolet (UV) spectral range. The concept is based on generation of the radiation in the master oscillator-power FEL amplifier (MOPA) configuration. The FEL amplifier concept eliminates the need for an optical cavity. As a result, there are no thermal loading limitations to increase the average output power of this device up to the MW-level. The problem of a tunable master oscillator can be solved with available conventional quantum lasers. The use of a superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 20% that spans wavelengths from the visible to the deep ultraviolet regime. The stringent electron beam qualities required for UV FEL amplifier operation can be met with a conservative injector design (using a conventional thermionic gun and subharmonic bunchers) and the beam compression and linear acceleration technology, recently developed in connection with high-energy linear collider and X-ray FEL programs

  9. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency.

    Science.gov (United States)

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D

    2014-01-01

    Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The "face expressive lifting" (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related negative facial expressions. On the other hand, FEL incorporates novel bipolar RF technology aiming to correct local skin distension. One hundred twenty-six patients underwent FEL procedure. Facial expression and local skin distension were assessed with 2 years follow-up. There was a correction of negative facial expression for 96 patients (76 %) and a tightening of local skin distension in 100 % of cases. FEL is an effective procedure taking into account and able to correct both age-related negative changes in facial expression and local skin distension using radiofrequency. Level of Evidence: Level IV, therapeutic study.

  10. Design of compressors for FEL pulses using deformable gratings

    Science.gov (United States)

    Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca

    2017-06-01

    We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.

  11. The DarkLight Experiment at the JLab FEL

    Science.gov (United States)

    Fisher, Peter

    2013-10-01

    DarkLight will study the production of gauge bosons associated with Dark Forces theories in the scattering of 100 MeV electrons on proton a target. DarkLight is a spectrometer to measure all the final state particles in e- + p -->e- + p +e- +e+ . QED allows this process and the invariant mass distribution of the e+e- pair is a continuum from nearly zero to nearly the electron beam energy. Dark Forces theories, which allow the dark matter mass scale to be over 1 TeV, predict a gauge boson A' in the mass range of 10-1,000 MeV and decays to an electron-positron pair with an invariant mass of mA'. We aim to search for this process using the 100 MeV, 10 mA electron beam at the JLab Free Electron Laser impinging on a hydrogen target with a 1019 cm-2 density. The resulting luminosity of 6 ×1035/cm2-s gives the experiment enough sensitivity to probe A' couplings of 10-9 α . DarkLight is unique in its design to detect all four particles in the final state. The leptons will be measured in a large high-rate TPC and a silicon sensor will measure the protons. A 0.5 T solenoidal magnetic field provides the momentum resolution and focuses the copious Møller scattering background down the beam line, away from the detectors. A first beam test has shown the FEL beam is compatible with the target design and that the hall backgrounds are manageable. The experiment has been approved by Jefferson Lab for first running in 2017.

  12. Development of an alternative testing strategy for the fish early life-stage (FELS) test using the AOP framework

    Science.gov (United States)

    Currently, the fish early life-stage (FELS) test (OECD 210) is the primary guideline used to estimate chronic toxicity of regulated chemicals. Although already more cost-efficient than adult fish tests, the FELS test has some important drawbacks. Both industry and regulatory inst...

  13. Scientific opportunities for FEL amplifier based VUV and X-ray research

    International Nuclear Information System (INIS)

    Johnson, E.D.

    1994-01-01

    It has become increasingly clear to a wide cross section of the synchrotron radiation research community that FELs will be the cornerstone of Fourth Generation Radiation Sources. Through the coherent generation of radiation, they provide as much as 12 orders of magnitude increase in peak power over the third generation storage ring machines of today. Facilities have been proposed which will extend the operating wavelength of these devices well beyond the reach of existing solid state laser technology. In addition, it appears possible to generate pulses of unprecedented brevity, down to a few femtoseconds, with mJ pulse energies. The combination of these attributes has stimulated considerable interest in short wavelength FELs for experiments in chemical, surface, and solid state physics, biology and materials science. This paper provides a brief overview of how the features of these FEL's relate to the experimental opportunities

  14. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  15. A photocathode rf gun design for a mm-wave linac-based FEL

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  16. A photocathode rf gun design for a mm-wave linac-based FEL

    International Nuclear Information System (INIS)

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  17. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  18. Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2013-08-15

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.

  19. Status of FEL-SUT project, and the experimental setup for multiphoton dissociation and isotope separation in the gaseous phase

    CERN Document Server

    Chernyshev, A V; Petrov, A K; Kawai, M; Toyoda, K; Nakai, K; Kuroda, H

    2001-01-01

    The IR FEL Research Center of the Science University of Tokyo (FEL-SUT) is open for users to develop new applications of IR FEL in a wide field of material science, chemical technology and bio-chemical applications. The FEL is based on 35 MeV linac operated at the frequency of 2856 MHz (s-band). The FEL covers the wavelength range from 5 to 16 mu m with the micropulse duration of 1-2 ps, macropulse duration of 1 mu s, macropulse repetition rate of 10 Hz and the overall average power of 1 W. We report the present status of the Center and an experimental setup designed and constructed for the experiments on multiphoton dissociation and isotope separation.

  20. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar

    2015-10-15

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  1. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    International Nuclear Information System (INIS)

    Serkez, Svitozar

    2015-10-01

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  2. A high-power rf linear accelerator for FELS [free-electron lasers

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Watson, J.M.

    1987-01-01

    This paper describes the design of a high average current rf linear accelerator suitable for driving short-wavelength free-electron lasers (FEL). It is concluded that the design of a room-temperature rf linear acelerator that can meet the stringent requirements of a high-power short-wavelength FEL appears possible. The accelerator requires the use of an advanced photoelectric injector that is under development; the accelerator components, however, do not require appreciable development. At these large beam currents, low-frequency, large-bore room-temperature cavities can be highly efficient and give all specified performance with minimal risk. 20 refs

  3. X-ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser II: Special Topics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-09-01

    In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.

  4. Photoionization of atoms and molecules by intense EUV-FEL pulses and FEL seeded by high-order harmonic of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Iwasaki, Atsushi; Owada, Shigeki; Yamanouchi, Kaoru; Sato, Takahiro; Nagasono, Mitsuru; Yabashi, Makina; Ishikawa, Tetsuya; Togashi, Tadashi; Takahashi, Eiji J.; Midorikawa, Katsumi; Aoyama, Makoto; Yamakawa, Koichi; Kannari, Fumihiko; Yagishita, Akira

    2012-01-01

    The advantages of SPring-8 Compact SASE Source as a light source for spectroscopic measurements in the extreme ultraviolet (EUV) wavelength region are introduced by referring to our recent study of non-linear photoionization processes of He, in which the absolute two-photon ionization cross sections of He at four different wavelengths in the 54 - 62 nm region were determined using intense pulses of the free-election laser (FEL). In addition, our recent effort to generate intense full-coherent EUV light pulses are introduced, in which significant amplification of the 13th harmonic of ultrashort laser pulses at 800 nm was achieved by FEL seeded with the 13th harmonic. (author)

  5. PixFEL: developing a fine pitch, fast 2D X-ray imager for the next generation X-FELs

    International Nuclear Information System (INIS)

    Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M.A.; Dalla Betta, G.-F.; Mendicino, R.

    2015-01-01

    The PixFEL project is conceived as the first stage of a long term research program aiming at the development of advanced X-ray imaging instrumentation for applications at the free electron laser (FEL) facilities. The project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging by exploring cutting-edge solutions for sensor development, for integration processes and for readout channel architectures. The main focus is on the development of the fundamental microelectronic building blocks for detector readout and on the technologies for the assembly of a multilayer module with minimum dead area. This work serves the purpose of introducing the main features of the project, together with the simulation results leading to the first prototyping run

  6. Preliminary results of the Adone storage ring FEL experiment, LELA

    International Nuclear Information System (INIS)

    Barbini, R.; Vignola, G.; Trillo, S.

    1983-01-01

    A short description of the LELA (Free Electron Laser on Adone) experiment is given. Results on the spontaneous radiation angle and energy spectra and preliminary results on optical gain measurements are also discussed

  7. Experimental results of two stage harmonic generation with picosecond pulses on the Stanford Mark III FEL

    International Nuclear Information System (INIS)

    Hooper, B.A.; Utah Univ., Salt Lake City; Stanford Univ., CA; Benson, S.V.; Madey, M.J.; Cutolo, A.; Naples Univ.

    1988-01-01

    We report experimental results on upper harmonic conversion using a lithium niobate and a beta barium borate crystal to quadruple the FEL light up into the visible and near infrared. The effects of finite linewidth, birefringent walk-off, and group velocity walk-off on conversion efficiency will be discussed with reference to the experimental results. (orig.)

  8. Magnetic measurement, sorting optimization and adjustment of SDUV-FEL hybrid undulator

    International Nuclear Information System (INIS)

    Wang Tao; Jia Qika

    2007-01-01

    Construction of an undulator includes magnet block measurement, sorting, field measurement and adjustment. Optimizing SDUV-FEL undulator by simulated annealing algorithm using measurement results of the magnet blocks by Helmholtz coil before installing undulator magnets, the cost function can be reduced by three orders of magnitude. The practical parameters of one segment meet the design specifications after adjusting the magnetic field. (authors)

  9. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    CERN Document Server

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  10. Status and prospects of a compact FIR FEL driven by a magnetron-based microtron

    International Nuclear Information System (INIS)

    Jeong, Young Uk; Kazakevitch, Grigori M.; Lee, Byung Cheol; Kim, Sun Kook; Cho, Sung Oh; Gavrilov, Nicolai G.; Lee, Jongmin

    2002-01-01

    A magnetron-based microtron as a driver of FIR FEL has several prominent advantages in cost, size, beam quality and operation convenience. However, it has some disadvantages due to the instability of the RF frequency and a low current. In order to overcome these disadvantages, the frequency stability of the magnetron was improved, and the interaction between the electron beam and the FIR radiation was enhanced by using a high-performance undulator and a low-loss waveguide-mode optical resonator. The FEL is now under upgrade in order to extend the wavelength range to cover 90-300 μm, which can be done by increasing the energy range of electron beam to 4.3-7 MeV. In this paper, we report the results of investigations on output characteristics of the FEL depending on cavity detuning, electron beam matching, and RF instability. Based on the results, we discuss the prospects of wide-band FIR FELs driven by magnetron-based microtrons as potent sources of radiation for scientific applications

  11. Study on wavelength shortening and upgrading of the free electron laser (FEL)

    International Nuclear Information System (INIS)

    Yamazaki, Tetsuo; Yamada, Kawakatsu; Sei, Norihiro; Ohgaki, Hideaki; Sugiyama, Suguru; Mikado, Tomohisa

    1997-01-01

    This study is a task of ''Comprehensive study'' in ''nuclear energy basic technology research'', which is promoted under cooperation of four research institutes. The Electrotechnical Laboratory conducted, in 1991 in the first period of colaboration, on successful oscillation at visible region (598 nm) as the first case in Japan, construction of small type accumulation ring NIJI-IV for FEL, successful oscillation of visible range from 595 to 488 nm by installing optical krystron with maximum frequency in the world, and successful emittance lowering of accumulation beam by wide improvement of the ring. In the optical resonator, studies on minute loss measuring technique and on recovery from mirror deterioration were promoted. In the second period started from fiscal year of 1994, studies on FEL oscillation technique in short wavelength and upgrading of FEL corresponding to a frontier area were started, to succeed an oscillation experiment at 350 nm in ultraviolet area on April, 1994. Then, studies on generation of high luminescence x-ray owing to laser Compton scattering using FEL as a future plan, on design of a new accumulation ring and on the others as well as studies on further quality improvement of electron beam and on optical resonator have been promoted. (G.K.)

  12. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C.; Chiadroni, E.; Ferrario, M.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Venturini, C.; Migliorati, M.; Dattoli, G.

    2010-05-23

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  13. Single-pass high-gain tapered free-electron laser with transverse diffraction in the postsaturation regime

    Directory of Open Access Journals (Sweden)

    Cheng-Ying Tsai

    2018-06-01

    Full Text Available It has been well known that the resonant interaction of an ultrarelativistic electron beam and the radiation field in the single-pass high-gain free electron laser (FEL amplifier leads to the optical gain guiding. The transverse Laplacian term of the slowly varying wave equation in the linear regime can be approximated as a constant detuning parameter, i.e., |∇_{⊥}^{2}|∼k_{R}/z_{R} where k_{R} is the resonant wave number and z_{R} is the Rayleigh range of the laser. In the post-saturation regime, the radiation power begins to oscillate about an equilibrium for the untapered case while continues to grow by undulator tapering. Moreover, in this regime the gain guiding decreases and the simple constant detune is no longer valid. In this paper we study the single-pass high-gain FEL performance in the post-saturation regime with inclusion of diffraction effect and undulator tapering. Our analysis relies upon two constants of motion, one from the energy conservation and the other from the adiabatic invariant of the action variable. By constructing a two-dimensional axisymmetric wave equation and the coupled one-dimensional electron dynamical equations, the performance of a tapered FEL in the postsaturation regime can be analyzed, including the fundamental mode profile, the power efficiency and the scaled energy spread. We begin the analytical investigation with two different axisymmetric electron beam profiles, the uniform and bounded parabolic ones. It is found that the tapered FEL power efficiency can be smaller but close to the taper ratio provided the resonant phase remains constant and the beam-wave is properly matched. Such a tapered efficiency is nearly independent of transverse electron beam size before significant electron detrapping occurs. This is essentially different from the untapered case, where the power extraction efficiency is around the essential FEL gain bandwidth (or ρ, the Pierce or FEL parameter and depends on the beam

  14. Should I Gain Weight?

    Science.gov (United States)

    ... Videos for Educators Search English Español Should I Gain Weight? KidsHealth / For Teens / Should I Gain Weight? ... something about it. Why Do People Want to Gain Weight? Some of the reasons people give for ...

  15. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    International Nuclear Information System (INIS)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J.; Mesot, J.; Shiroka, T.; Veen, J.F. van der; Mesot, J.

    2009-09-01

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over the past few years and by

  16. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2017-08-01

    Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  17. Application of nonlinear models to estimate the gain of one-dimensional free-electron lasers

    Science.gov (United States)

    Peter, E.; Rizzato, F. B.; Endler, A.

    2017-06-01

    In the present work, we make use of simplified nonlinear models based on the compressibility factor (Peter et al., Phys. Plasmas, vol. 20 (12), 2013, 123104) to predict the gain of one-dimensional (1-D) free-electron lasers (FELs), considering space-charge and thermal effects. These models proved to be reasonable to estimate some aspects of 1-D FEL theory, such as the position of the onset of mixing, in the case of a initially cold electron beam, and the position of the breakdown of the laminar regime, in the case of an initially warm beam (Peter et al., Phys. Plasmas, vol. 21 (11), 2014, 113104). The results given by the models are compared to wave-particle simulations showing a reasonable agreement.

  18. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  19. Influences of finite gain bandwidth on pulse propagation in parabolic fiber amplifiers with distributed gain profiles

    International Nuclear Information System (INIS)

    Zhao Jia-Sheng; Li Pan; Chen Xiao-Dong; Feng Su-Juan; Mao Qing-He

    2012-01-01

    The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear Schrödinger equation. The results show that the parabolic pulse propagations in both the decreasing and the increasing gain amplifiers are restricted by the finite gain bandwidth. For a given input pulse, by choosing a small initial gain coefficient and gain variation rate, the whole gain for the pulse amplification limited by the gain bandwidth may be higher, which is helpful for the enhancement of the output linearly chirped pulse energy. Compared to the decreasing gain distributed fiber amplifier, the increasing gain distributed amplifier may be more conducive to suppress the pulse spectral broadening and increase the critical amplifier length for achieving a larger output linearly chirped pulse energy

  20. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    International Nuclear Information System (INIS)

    O'Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-01-01

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with γγ colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered γ-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized γ-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a γ-flux enhancement of approximately 10 3 over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate γ-rays up to 200 MeV in energy with an average flux in excess of 10 7 /s/MeV, using a modest scattering beam of 10-mA average stored current. The γ-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the γ-ray beam. We will discuss the characteristics of the device and its research opportunities

  1. Enhancement of Permeation in Transdermal Drug Delivery System by 6μm Wavelength Area Using an MIR-FEL

    Science.gov (United States)

    Uchizono, T.; Ishii, K.; Iwao, Y.; Itou, Y.; Maruo, H.; Hori, M.; Awazu, K.

    2005-03-01

    Ablation of the stratum corneum (SC) by pulsed-laser irradiation is one method of enhancing transdermal drug delivery (TD). For non-invasive laser TD treatment, we have tried to enhance TD without ablation of the SC using an MIR-FEL (6-μm wavelength) (FEL : free electron laser). Lidocaine was used as the drug in this study. The enhancement of TD was measured by HPLC. It was found that the lidocaine TD of the sample irradiated by MIR-FEL was enhanced 10 fold faster than the non-irradiated sample with a flux at 0.5 μg/cm2/h, measured by HPLC. We have demonstrated the effectiveness of TD enhancement by an MIR-FEL (6-μm wavelength) irradiation.

  2. A hybrid type undulator for far-infrared FELs at FELI

    Energy Technology Data Exchange (ETDEWEB)

    Zako, A.; Miyauchi, Y.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two FEL facilities of the FELI are now operating in the wavelength range of 1-20 {mu}m. A 3.2-m hybrid type undulator ({lambda}{sub u}=80mm, N=40) has been designed for far-infrared FELs and will be installed in December. It can cover the wavelength of 20-60 {mu}m by changing K-value from 1 to 2.7 for a 28.0-MeV electron beam. It is composed of ferrite magnetic poles and Sm-Co permanent magnets. Commonly wound coils induce alternating magnetic field in ferrite poles. Combination of the induced field and the permanent magnet field can controls the magnetic field between the undulator gap.

  3. EUV stimulated emission from MgO pumped by FEL pulses

    Directory of Open Access Journals (Sweden)

    Philippe Jonnard

    2017-09-01

    Full Text Available Stimulated emission is a fundamental process in nature that deserves to be investigated and understood in the extreme ultra-violet (EUV and x-ray regimes. Today, this is definitely possible through high energy density free electron laser (FEL beams. In this context, we give evidence for soft-x-ray stimulated emission from a magnesium oxide solid target pumped by EUV FEL pulses formed in the regime of travelling-wave amplified spontaneous emission in backward geometry. Our results combine two effects separately reported in previous works: emission in a privileged direction and existence of a material-dependent threshold for the stimulated emission. We develop a novel theoretical framework, based on coupled rate and transport equations taking into account the solid-density plasma state of the target. Our model accounts for both observed mechanisms that are the privileged direction for the stimulated emission of the Mg L2,3 characteristic emission and the pumping threshold.

  4. First operation of a powerful FEL with two-dimensional distributed feedback

    CERN Document Server

    Agarin, N V; Bobylev, V B; Ginzburg, N S; Ivanenko, V G; Kalinin, P V; Kuznetsov, S A; Peskov, N Yu; Sergeev, A S; Sinitsky, S L; Stepanov, V D

    2000-01-01

    A W-band (75 GHz) FEL of planar geometry driven by a sheet electron beam was realised using the pulse accelerator ELMI (0.8 MeV/3 kA/5 mu s). To provide the spatial coherence of radiation from different parts of the electron beam with a cross-section of 0.4x12 cm two-dimensional distributed feedback systems have been employed using a 2-D Bragg resonator of planar geometry. The resonator consisted of two 2-D Bragg reflectors separated by a regular waveguide section. The total energy in the microwave pulse of microsecond duration was 100 J corresponding to a power of approx 100 MW. The main component of the FEL radiation spectrum was at 75 GHz that corresponded to the zone of effective Bragg reflection found from 'cold' microwave testing of the resonator. The experimental data compared well with the results of theoretical analysis.

  5. Wavelength and power stability measurements of the Stanford SCA/FEL

    International Nuclear Information System (INIS)

    van der Geer, B.; de Loos, M.J.; Conde, M.E.; Leemans, W.P.

    1994-08-01

    Wavelength and power stability of the Stanford infrared SCA/FEL operating with the TRW wiggler have been measured using a high-resolution spectrometer and an image dissector system. The image dissector is capable of reading the spectrum of every single micropulse at 12 MHz throughout a macropulse of up to 2 ms duration. The intrinsic wavelength and power stability of the SCA/FEL are found to be δλ/λ=0.035% and δP/P=18%. The use of a feedback control system to stabilize the wavelength, and an acousto-optic modulator for output power smoothing, improves the performance to δλ/λ=0.012% and δP/P=7%

  6. Design of RF chopper system for improving beam quality in FEL injector with thermionic gun

    International Nuclear Information System (INIS)

    Chen, Q.; Qin, B.; Tan, P.; Hu, T.; Pei, Y.; Zhang, F.

    2014-01-01

    For a linac-based Free Electron Laser (FEL), good beam quality largely contributes to the success of the final radiation. An imperfection confronted with the HUST THz-FEL facility is the long beam tail that emerges in the electron gun and exists through the whole beam line. This paper proposes to deploy a chopper system after the electron gun to truncate the beam tails before they enter into the linac. Physical dimensions of the chopper cavity are discussed in detail and we have developed and derived new analytical expressions applying to all frequencies for the optimal design. Also, technical issues of the cavity are considered. Beam dynamic simulation is performed to examine the truncation effect and the results show that more than 78% of the beam tail can be removed effectively, while preserving the emittance and energy spread in acceptable level

  7. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    CERN Document Server

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  8. Diode readout electronics for beam intensity and position monitors for FELs

    International Nuclear Information System (INIS)

    Herrmann, S; Hart, P; Freytag, M; Pines, J; Weaver, M; Sapozhnikov, L; Nelson, S; Koglin, J; Carini, G A; Tomada, A; Haller, G

    2014-01-01

    LCLS uses Intensity-Position Monitors (IPM) to measure intensity and position of the FEL x-ray pulses. The primary beam passes through a silicon nitride film and four diodes, arranged in quadrants, detect the backscattered x-ray photons. The position is derived from the relative intensity of the four diodes, while the sum provides beam intensity information. In contrast to traditional synchrotron beam monitors, where diodes measure a DC current signal, the LCLS beam monitors have to cope with the pulsed nature of the FEL, which requires a large single shot dynamic range. A key component of these beam monitors is the readout electronics. The first generation of beam monitors showed some limitations. A new scheme with upgraded electronics, firmware and software was implemented resulting in a more robust and reliable measuring tool.

  9. Weight Gain during Pregnancy

    Science.gov (United States)

    ... Global Map Premature Birth Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal ... fitness > Weight gain during pregnancy Weight gain during pregnancy E-mail to a friend Please fill in ...

  10. Preventing Weight Gain

    Science.gov (United States)

    ... Local Programs Related Topics Diabetes Nutrition Preventing Weight Gain Language: English (US) Español (Spanish) Recommend on Facebook ... cancer. Choosing an Eating Plan to Prevent Weight Gain So, how do you choose a healthful eating ...

  11. Status of RF system for the JAERI energy-recovery linac FEL

    International Nuclear Information System (INIS)

    Sawamura, Masaru; Nagai, Ryoji

    2006-01-01

    The two types of the RF sources are used for the JAERI ERL-FEL. One is an all-solid state amplifier and the other is an inductive output tube (IOT). There are advantages of little failure and wide bandwidth for the all-solid state amplifier, low cost and high efficiency for IOT. The property of low cost with the IOT is suitable for a large machine like an energy recovery linac (ERL)

  12. Nonlinear absorption and transmission properties of Ge, Te and InAs using tuneable IR FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Becker, K.; Brau, C.A. [Vanderbilt Univ., Nashville, TN (United States)

    1995-12-31

    Nonlinear absorption properties of Ge, Te and InAs are being investigated using the transmission of FEL optical pulses through these semiconductors (z-scan method). Wavelength, intensity and macropulse dependence are used to differentiate between two-photon and free-carrier absorption properties of these materials. Macropulse dependence is resolved by using a Pockles Cell to chop the 4-{mu}s macropulse down to 100 ns. Results of these experiments will be presented and discussed.

  13. Luminescence from ZnSe excited by picosecond mid-infrared FEL pulses

    International Nuclear Information System (INIS)

    Mitsuyu, T.; Suzuki, T.; Tomimasu, T.

    1998-01-01

    We have observed blue band-edge emission from a ZnSe crystal under irradiation of mid-infrared picosecond free electron laser (FEL) pulses. The emission characteristics including spectrum, excitation power dependence, excitation wavelength dependence, and decay time have been investigated. The experimental results have indicated that it is difficult to understand the excitation process by multiphoton excitation, thermal excitation, or excitation through mid-gap levels. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    International Nuclear Information System (INIS)

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-01-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  15. Selected applications of planar permanent magnet multipoles in FEL insertion device design

    International Nuclear Information System (INIS)

    Tatchyn, R.

    1993-08-01

    In recent work, a new class of magnetic multipoles based on planar configurations of permanent magnet (PM) material has been developed. These structures, in particular the quadrupole and sextupole, feature fully open horizontal apertures, and are comparable in effectiveness to conventional iron multipole structures. In this paper results of recent measurements of planar PM quadrupoles and sextupoles are reported and selected applications to FEL insertion device design are considered

  16. FTIR Spectroscopy on Basic Materials in THz Region for Compact FEL-Based Imaging

    CERN Document Server

    Cha, H J; Lee, B C; Park, S H

    2005-01-01

    We are making experiments on THz(terahertz) imaging using a compact high power FEL (free-electron laser) which is operating as a users facility at KAERI. The wavelength range of output pulses is 100~1200 μm, which corresponds to 0.3~3 THz in the frequency region. We should select the optimum wavelength for the constituents of specimens to realize the imaging based on the THz FEL. A FTIR (Fourier-transform infrared) spectrometer was modified to measure the optical constants of the specimens in THz region. A polyester film of which thickness is 3.7 μm was used as a beam splitter of the spectrometer. In the case of normal incidence, the transmittance of the film was measured to be more than 90%, and the estimated loss by absorption was approximately 2% at the FEL frequency of 3 THz. Several tens of nanometer-thick-silver was coated on the polyester film to balance both transmission and reflection of THz waves in the beam splitter. We investigated FTIR spectroscopy on air, vapor and liquid water...

  17. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    CERN Document Server

    Biao, Z J; Gao Xue Ju; He Wei; Huang Yu Ying; Li Yong Gui; LiuNianQing; Wang Min Kai; Wu Gan; Yan Xue Pin; Zhang Guo Qing

    2001-01-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 mu m, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO sub 2 laser. FTIR absorption spectra in the range of 2.5-15.4 mu m for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results w...

  18. The Posterior Sustained Negativity Revisited—An SPN Reanalysis of Jacobsen and Höfel (2003

    Directory of Open Access Journals (Sweden)

    Thomas Jacobsen

    2018-01-01

    Full Text Available Symmetry is an important cue for the aesthetic judgment of beauty. Using a binary forced-choice format in a cued mixed design, Jacobsen and Höfel (2003 compared aesthetic judgments of beauty and symmetry judgments of novel graphic patterns. A late posterior sustained negativity elicited by symmetric patterns was observed in the symmetry judgment condition, but not in the beauty judgement condition. Therefore, this negativity appeared to be mainly driven by the task.In a series of studies, Bertamini, Makin, and colleagues observed a comparable sustained posterior negativity (SPN to symmetric stimuli, mainly taken to reflect obligatory symmetry processing independent of task requirements. We reanalyzed the data by Jacobsen and Höfel (2003 using similar parameters for data analysis as Bertamini, Makin, and colleagues to examine these apparent differences. The reanalysis confirmed both a task-driven effect on the posterior sustained negativity/SPN to symmetric patterns in the symmetry judgment condition and a strong symmetry-driven SPN to symmetric patterns. Differences between the references used for analyses of the electroencephalogram (EEG had an effect. Based on the reanalysis, the Jacobsen and Höfel (2003 data also fit well with Bertamini’s, Makin’s, and colleagues’ account of obligatory symmetry processing.

  19. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    Directory of Open Access Journals (Sweden)

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  20. Commissioning experience and beam physics measurements at the SwissFEL Injector test Facility

    CERN Document Server

    Schietinger, T.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, Bernd; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-26

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including atransverse deflecting rf cavity. It delivered electron bunchesof up to200 pC chargeand up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of a FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measureme...

  1. Energy stability in recirculating, energy-recovering linacs in the presence of a FEL

    International Nuclear Information System (INIS)

    Merminga, L.; Bisognano, J.; Delayen, J.R.

    1996-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs (free electron lasers). Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M 56 , phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. An analytical model which includes amplitude and phase feedback, has been developed to study the stability of the system for small perturbations from equilibrium. The interaction of the electron beam with the FEL is a major perturbation which affects both the stability of the system and development of startup and recovery scenarios. To simulate the system's response to such large parameter variations, a numerical model of the beam-cavity interaction has been developed which includes low level rf feedback, phase oscillations and beam loss instabilities and the FEL interaction. Agreement between the numerical model and the linear theory has been demonstrated in the limit of small perturbations. In addition, the model has been benchmarked against experimental data obtained during CEBAF's high current operation. Numerical simulations have been performed for the high power IR DEMO approved for construction at CEBAF

  2. The SPARX Project R&D Activity towards X-rays FEL Sources

    CERN Document Server

    Alesini, David; Bertolucci, Sergio; Biagini, M E; Boni, R; Boscolo, Manuela; Castellano, Michele; Clozza, A; Di Pirro, G; Drago, A; Esposito, A; Ferrario, Massimo; Filippetto, D; Fusco, V; Gallo, A; Ghigo, A; Guiducci, Susanna; Incurvati, M; Ligi, C; Marcellini, F; Migliorati, Mauro; Mostacci, Andrea; Palumbo, Luigi; Pellegrino, L; Preger, Miro; Raimondi, Pantaleo; Ricci, R; Sanelli, C; Serio, Mario; Sgamma, F; Spataro, Bruno; Stecchi, A; Stella, A; Tazzioli, Franco; Vaccarezza, Cristina; Vescovi, Mario; Vicario, C

    2004-01-01

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Università di Roma Tor Vergata aiming at the construction of a FEL-SASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on the R&D activity on critical components and techniques for future X-ray facilities. The R&D plans for the FEL source will be developped along two lines: (a) use of the SPARC high brightness photo-injector to develop experimental test on RF compression techniques and other beam physics issues, like emittance degradation in magnetic compressors due to CSR; (b) development of new undulator design concepts and up-grading of the FEL SPARC source to enhance the non linear harmonic generation mechanism, design and test of e-beam conditioning, prebunching and seeding. A parallel program will be aimed at the development of high repetition rate S-band gun, high Quantum Efficiency cathodes, high gradient X-band RF acceleratin...

  3. FERMI @ Elettra A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    CERN Document Server

    Bocchetta, C J; Craievich, P; D'Auria, G; Danailov, M B; De Ninno, G; Di Mitri, S; Diviacco, B; Ferianis, M; Gomezel, A; Iazzourene, F; Karantzoulis, E; Penco, G; Trovò, M

    2005-01-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing sys...

  4. Technical Design and Optimization Study for the FERMI at Elettra FEL Photoinjector

    International Nuclear Information System (INIS)

    Lidia, Steven M.; Penco, Giuseppe; Trovo', Mauro

    2006-01-01

    The FERMI (at) Elettra FEL project will provide a novel, x-ray free electron laser user facility at Sincrotrone Trieste based on seeded and cascade FEL techniques. The electron beam source and injector systems play a crucial role in the success of the facility by providing the highest quality electron beams to the linac and FEL undulators. This Technical Note examines the critical technology components that make up the injector system, and demonstrates optimum beam dynamics solutions to achieve the required high quality electron beams. Section 2 provides an overview of the various systems and subsystems that comprise the photoinjector. The different operating modes of the injector are described as they pertain to the different linac configurations driven by the FEL and experimental design. For each mode, the required electron beam parameters are given. Sections 3 and 4 describe the critical beamline elements in the injector complex: the photocathode and drive laser, and the RF gun. The required drive laser parameters are given at the end of Section 3. Additional details on the design of the photoinjector drive laser systems are presented in a separate Technical Note. Design considerations for the RF gun are extensively presented in Section 4. There, we describe the variation of the cavity geometry to optimize the efficiency of the energy transfer to the electron beam. A study of the power coupling into the various cavity modes that interact within the bandwidth of the RF drive pulse is presented, followed by a study of the transient cavity response under several models and, finally, the effects on extracted beam quality. Section 5 describes the initial design for the low energy, off-axis diagnostic beamline. Beam dynamics simulations using ASTRA, elegant, and MAD are presented. Section 6 presents the optimization studies for the beam dynamics in the various operating modes. The optimized baseline configurations for the beamline and incident drive laser pulse are

  5. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J. [Paul Scherrer Intitute (PSI), Villigen (Switzerland); Mesot, J.; Shiroka, T.; Veen, J.F. van der [Swiss Federal Institute of Technology (ETHZ), Zuerich (Switzerland); Mesot, J. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2009-09-15

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over

  6. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...

  7. Weight gain following treatment of hyperthyroidism.

    Science.gov (United States)

    Dale, J; Daykin, J; Holder, R; Sheppard, M C; Franklyn, J A

    2001-08-01

    Patients frequently express concern that treating hyperthyroidism will lead to excessive weight gain. This study aimed to determine the extent of, and risk factors for, weight gain in an unselected group of hyperthyroid patients. We investigated 162 consecutive hyperthyroid patients followed for at least 6 months. Height, weight, clinical features, biochemistry and management were recorded at each clinic visit. Documented weight gain was 5.42 +/- 0.46 kg (mean +/- SE) and increase in BMI was 8.49 +/- 0.71%, over a mean 24.2 +/- 1.6 months. Pre-existing obesity, Graves' disease causing hyperthyroidism, weight loss before presentation and length of follow-up each independently predicted weight gain. Patients treated with thionamides or radioiodine gained a similar amount of weight (thionamides, n = 87, 5.16 +/- 0.63 kg vs. radioiodine, n = 62, 4.75 +/- 0.57 kg, P = 0.645), but patients who underwent thyroidectomy (n = 13) gained more weight (10.27 +/- 2.56 kg vs. others, P = 0.007). Development of hypothyroidism (even transiently) was associated with weight gain (never hypothyroid, n = 102, 4.57 +/- 0.52 kg, transiently hypothyroid, n = 29, 5.37 +/- 0.85 kg, on T4, n = 31, 8.06 +/- 1.42 kg, P = 0.014). This difference remained after correcting for length of follow-up. In the whole cohort, weight increased by 3.95 +/- 0.40 kg at 1 year (n = 144) to 9.91 +/- 1.62 kg after 4 years (n = 27) (P = 0.008), representing a mean weight gain of 3.66 +/- 0.44 kg/year. We have demonstrated marked weight gain after treatment of hyperthyroidism. Pre-existing obesity, a diagnosis of Graves' disease and prior weight loss independently predicted weight gain and weight continued to rise with time. Patients who became hypothyroid, despite T4 replacement, gained most weight.

  8. Gestational weight gain.

    Science.gov (United States)

    Kominiarek, Michelle A; Peaceman, Alan M

    2017-12-01

    Prenatal care providers are advised to evaluate maternal weight at each regularly scheduled prenatal visit, monitor progress toward meeting weight gain goals, and provide individualized counseling if significant deviations from a woman's goals occur. Today, nearly 50% of women exceed their weight gain goals with overweight and obese women having the highest prevalence of excessive weight gain. Risks of inadequate weight gain include low birthweight and failure to initiate breast-feeding whereas the risks of excessive weight gain include cesarean deliveries and postpartum weight retention for the mother and large-for-gestational-age infants, macrosomia, and childhood overweight or obesity for the offspring. Prenatal care providers have many resources and tools to incorporate weight and other health behavior counseling into routine prenatal practices. Because many women are motivated to improve health behaviors, pregnancy is often considered the optimal time to intervene for issues related to eating habits and physical activity to prevent excessive weight gain. Gestational weight gain is a potentially modifiable risk factor for a number of adverse maternal and neonatal outcomes and meta-analyses of randomized controlled trials report that diet or exercise interventions during pregnancy can help reduce excessive weight gain. However, health behavior interventions for gestational weight gain have not significantly improved other maternal and neonatal outcomes and have limited effectiveness in overweight and obese women. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. JAERI 10kW High Power ERL-FEL and Its Applications in Nuclear Energy Industries

    CERN Document Server

    Minehara, E J; Iijima, H; Kikuzawa, N; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    The JAERI high power ERL-FEL has been extended to the more powerful and efficient free-electron laser (FEL) than 10kW for nuclear energy industries, and other heavy industries like defense, shipbuilding, chemical industries, environmental sciences, space-debris, and power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand-alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the ERL-FEL will cover the current status of the 10kW upgrading and its applications of non-thermal peeling, cutting, and drilling to decommission the nuclear power plants, and to demonstrate successfully the proof of principle prevention of cold-worked stress-corrosion cracking failures in nuclear power reactors under routine operation using small cubic low-Carbon stainless steel samples.

  10. First lasings at IR-and FIR range using hybrid type undulator (FEL facility 4) and Halbach type undulator

    International Nuclear Information System (INIS)

    Takii, T.; Oshita, E.; Okuma, S.; Wakita, K.; Koga, A.; Tomimasu, T.; Ohasi, K.

    1997-01-01

    First lasing at 18μm was achieved by using a 2.7-m long hybrid type undulator (undulator 4) for far-infrared FELs and a 6.72-m long optical cavity installed at the 33-MeV beam line of the downstream of the FEL facility 1 (FEL-1). We are challenged at two-color FEL oscillation in mid-infrared range using the undulator 1 (λ u=3.4mm) and in far-infrared range using the undulator 4 (λ u=9mm). At first, a 30-MeV, 60-A beam passed through the undulator 1 without lasing is transported using a QFQDBQFQDBQFQDQF system and is used for lasing at the undulator 4. However, six pairs of steering coils had to be attached on the beam duct to reduce the deviation of the electron beam trajectory due to the vertical field distribution induced by the built-in electromagnets. The minimum gap of the undulator 4 was designed to be 35mm. However, the steering coils attached on the beam duct increased the gap up to 52mm. Therefore, the hybrid type undulator was replaced by a new Halbach type one (λ u=8mm, N=30) after the first lasing at 18μm on October 24, '96. The New FEL facility 4 was installed in the middle of December and first lasing at 18.6μm was achieved on December 26, within 10 hours operation. (author)

  11. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    International Nuclear Information System (INIS)

    Manghisoni, M.; Re, V.; Traversi, G.; Fabris, L.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.

    2016-01-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm 2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  12. Femtosecond resolution timing jitter correction on a TW scale Ti:sapphire laser system for FEL pump-probe experiments.

    Science.gov (United States)

    Csatari Divall, Marta; Mutter, Patrick; Divall, Edwin J; Hauri, Christoph P

    2015-11-16

    Intense ultrashort pulse lasers are used for fs resolution pump-probe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device.

  13. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika

    2016-09-11

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  14. Heat treatment of long pulse operation for the JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Sawamura, Masaru; Nagai, Ryoji; Kikuzawa, Nobuhiro; Hajima, Ryoichi; Minehara, Eisuke

    2005-01-01

    RF power sources are replaced from all-solid-state amplifiers to IOT amplifiers for the superconducting accelerators (SCAs) and a vacuum tube amplifier for the SHB of the JAERI ERL-FEL. A long pulse operation increased the pressure in the cryostat of the SCA. The single-cell SCA can be operated in 9% duty according to the time constant of the pressure decay in the cryostat. SHB can be operated in 4% duty which is limited by the frequency range of the tuners. The result of the ABAQUS calculation shows the more duty operation. (author)

  15. New autocorrelation technique for the IR FEL optical pulse width measurements

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, K.A.; Becker, C. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1995-12-31

    We have developed a new technique for the autocorrelation measurement of optical pulse width at the Vanderbilt University FEL center. This method is based on nonlinear absorption and transmission characteristics of semiconductors such as Ge, Te and InAs suitable for the wavelength range from 2 to over 6 microns. This approach, aside being simple and low cost, removes the phase matching condition that is generally required for the standard frequency doubling technique and covers a greater wavelength range per nonlinear material. In this paper we will describe the apparatus, explain the principal mechanism involved and compare data which have been acquired with both frequency doubling and two-photon absorption.

  16. A new undulator for the extension of the spectral range of the CLIO FEL

    Energy Technology Data Exchange (ETDEWEB)

    Marcouille, O.; Berset, J.M.; Glotin, F. [LURE, Orsay (France)] [and others

    1995-12-31

    We built a new undulator in order to extend the lasing range of the CLIO infrared FEL. Presently, CLIO operates in the wavelength range 2 - 17 {mu}m. Beyond 14 {mu}m, the power decreases rapidly, because of the diffraction losses of the vacuum chamber (7 mm height and 2 m long). Thus, lasing at higher wavelengths implies installing a chamber with a height approximately twice. Then the minimum gap is increased and the maximum deflection parameter, K, is reduced from 2 to 1 : the laser tunability is greatly reduced. This is why a new undulator has been built.

  17. Three years of biomedical FEL use in medicine and surgery How far have we come?

    Science.gov (United States)

    Jean, Benedikt

    1997-02-01

    Since the FEL has been made available for biophysical research in the IR, it has revolutionized the optimization strategies of laser-tissue interaction and the minimizing of adverse effects, in particular for photoablative use in surgery. Its tunability together with the free combination of wavelength and energy made it an efficient research tool, allowing the reduction of risks and costs of preclinical biomedical research. New computer-assisted surgical techniques evolved and the broader data basis of IR photothermal ablation allows more accurate predictive modelling of the efficiency and the adverse effects of photoablation. New applications for diagnostic imaging as well as the first clinical applications in neurosurgery lay ahead.

  18. Three dimensional modelling and numerical analysis of super-radiant harmonic emission in FEL (optical klystron)

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.; Luccio, A.

    1986-09-01

    A full 3-D Analysis of super-radiant (bunched electron) free electron harmonic radiation is presented. A generalized form of the FEL pendulum equation was derived and numerically solved. Both spectral and phasor formulation were developed to treat the radiation in the time domain. In space the radiation field is expanded in terms of either a set of free space discrete modes or plane waves. The numerical solutions reveal some new distinctly 3-D effects to which we provide a physical explanation. 12 refs., 9 figs., 5 tabs

  19. Rf system modeling for the high average power FEL at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Fugitt, J.; Neil, G.; Simrock, S.

    1995-01-01

    High beam loading and energy recovery compounded by use of superconducting cavities, which requires tight control of microphonic noise, place stringent constraints on the linac rf system design of the proposed high average power FEL at CEBAF. Longitudinal dynamics imposes off-crest operation, which in turn implies a large tuning angle to minimize power requirements. Amplitude and phase stability requirements are consistent with demonstrated performance at CEBAF. A numerical model of the CEBAF rf control system is presented and the response of the system is examined under large parameter variations, microphonic noise, and beam current fluctuations. Studies of the transient behavior lead to a plausible startup and recovery scenario

  20. Wavefront propagation through the beamline designed for seeding the DESY XUV FEL

    CERN Document Server

    Reininger, R; Gürtler, P; Bahrdt, J

    2001-01-01

    A beamline designed to reduce the spectral bandwidth of the DESY XUV FEL is described. The beamline is intended to cover the wavelength range from 6.4 to 50 nm with three variable line spacing gratings. A plane mirror in front of the grating is used to maintain constant magnification in the dispersion direction. The electric field generated by the first undulator at three wavelengths, 6.4, 13, and 25 nm, is propagated through the beamline. The results show that the beamline has the resolution and imaging properties required for seeding the second undulator at these wavelengths.

  1. High-efficiency FEL with Bragg resonator driven by linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N S; Kaminskij, A A; Kaminskij, A K; Peskov, N Yu; Sedykh, S N; Sergeev, A P; Sergeev, A S [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    1997-12-31

    A narrow-band high-efficiency FEL-oscillator with a Bragg resonator was constructed based on a linear induction accelerator which formed a 1 MeV, 200 A, 200 ns electron beam. At the frequency of 31 GHz, radiation with a power of 31 MW and efficiency of 25% was measured. A high efficiency and a narrow width of the spectrum were achieved owing to the selective properties of the Bragg resonator in combination with the high quality of the helical electron beam formed in the reversed guide field regime. (author). 3 figs., 3 refs.

  2. Upgrade of a control system for the JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Kikuzawa, Nobuhiro

    2004-01-01

    The accelerator control system used for the JAERI ERL-FEL is a PC-based distributed control system that has been in operation since 1992. Since an interface bus of the PCs is obsolete, interface boards for the PCs are difficult to obtain in recent years. Thus we have been developing the CAMAC controller with μITRON operating system to replace the old PCs connected with CAMAC. We will introduce a Java and CORBA environment in the new control system. The control system upgrade, including hardware upgrading and applications rewriting, is described in this paper. (author)

  3. Design and test of a trial undulator for a compact FEL THz radiation source

    International Nuclear Information System (INIS)

    Xiang Shuhua; Xiong Yongqian; Yang Lei; Liu Xialing; Wei Wei; Chen Jinhua

    2012-01-01

    The undulator is the key component in the THz radiation source based on FEL. We created a trial undulator in order to verify the feasibility of property requirements, and the accumulation of engineering experience. With the use of the finite element calculation software OPERA3D, we modify the structural parameters of the undulator gradually to meet the requirements of the peak, width of the good field and first integration. We also proved that the correction magnet could make the field meet the requirement of the second integration by calculation. After fabrication and acceptance, the electron trajectory is calculated based on the measured field. (authors)

  4. Magnetic Measurement of the 10 kW, IR FEL Dipole Magnets

    International Nuclear Information System (INIS)

    Tommy Hiatt; Kenneth Baggett; J. Beck; George Biallas; David Douglas; Kevin Sullivan; C. Tennant

    2003-01-01

    Magnetic measurements have been performed on several families of dipoles for the 10 kW IR-FEL presently under construction at the Thomas Jefferson National Accelerator Facility. The requirements for these magnets include varying field strengths, large horizontal apertures and parts in 10,000 field homogeneity as well as setability of core and integrated field. Measurements were made to quantify the magnets according to these requirements and to determine the hysteresis protocol, ramp rate dependence, and field clamp settings that are used. This paper will describe the results of these measurements and the procedures used to accomplish them

  5. Hipertensão Arterial Experimental e Prenhez em Ratas: Repercussões sobre o Peso, Comprimento e Órgãos dos Recém-nascidos Experimental Arterial Hypertension and Pregnancy in Rats: Repercussion Regarding Body Weight Gain, Body Length and Organs of Offspring

    Directory of Open Access Journals (Sweden)

    Rogério Dias

    2000-10-01

    Full Text Available Objetivo: estudar as repercussões da hipertensão arterial sobre o peso e comprimento corpóreo e sobre o peso do fígado e do cérebro de recém-nascidos (RN. Métodos: foram utilizadas 82 ratas virgens da raça Wistar em idade de reprodução. Após a indução da hipertensão arterial experimental (modelo Goldblatt I: 1 rim - 1 clipe as ratas foram sorteadas para compor os quatro grandes grupos experimentais (controle (C, manipulação (M, nefrectomia (N e hipertensão (H. A seguir, as ratas foram distribuídas por sorteio em 8 subgrupos, sendo quatro grupos prenhes e quatro grupos não-prenhes. Após acasalamento dos quatro grupos prenhes, obtivemos com o nascimento dos recém-nascidos os seguintes grupos: RN-C, RN-M, RN-N e RN-H, respectivamente controle, manipulação, nefrectomia e hipertensão. Resultados: quanto ao peso e comprimento corpóreo dos recém-nascidos observamos que os grupos RN-N e RN-H apresentaram os menores pesos ( = 3,64 ± 0,50 e ou = 3,37 ± 0,44, respectivamente e comprimentos ( = 3,89 ± 0,36 e ou = 3,68 ± 0,32, respectivamente em relação ao seus controles ( = 5,40 ± 0,51 e ou = 4,95 ± 0,23, respectivamente. Quanto ao peso do fígado os RN-H apresentaram os menores pesos ( = 0,22 ± 0,03 em relação a todos os demais grupos em estudo, e quanto ao peso do encéfalo os RN-N e RN-H apresentaram os menores pesos ( = 0,16 ± 0,01 e ou = 0,16 ± 0,05, respectivamente em relação aos seus controles ( = 0,22 ± 0,04. Conclusão: a hipertensão arterial determinou redução no peso corpóreo, no comprimento, no peso do fígado e no peso do encéfalo dos recém-nascidos.Purpose: to study the repercussion of arterial hypertension regarding body weight gain and body length, as well as liver and brain weight of offspring. Methods: a total of 82 animals in reproductive age were used. They were randomly assigned to 4 different groups (control, handled, nephrectomized and hypertensive. Renal hypertension was produced by a

  6. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    International Nuclear Information System (INIS)

    Hardy, D.; Benson, S.V.; Shinn, M.D.; Zhang, S.

    2005-01-01

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS

  7. Antidepressants and Weight Gain

    Science.gov (United States)

    ... 2015;37:46. Blumenthal SR, et al. An electronic health records study of long-term weight gain following antidepressant ... your agreement to the Terms and Conditions and Privacy Policy linked below. Terms and Conditions Privacy Policy ...

  8. Weight gain - unintentional

    Science.gov (United States)

    ... diabetes Hormone changes or medical problems can also cause unintentional weight gain. This may be due to: Cushing syndrome Underactive thyroid, or low thyroid (hypothyroidism) Polycystic ovary syndrome Menopause Pregnancy Bloating, or swelling ...

  9. Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli.

    Science.gov (United States)

    Grönlund, Hans; Bergman, Tomas; Sandström, Kristofer; Alvelius, Gunvor; Reininger, Renate; Verdino, Petra; Hauswirth, Alexander; Liderot, Karin; Valent, Peter; Spitzauer, Susanne; Keller, Walter; Valenta, Rudolf; van Hage-Hamsten, Marianne

    2003-10-10

    Dander from the domestic cat (Felis domesticus) is one of the most common causes of IgE-mediated allergy. Attempts to produce tetrameric folded major allergen Fel d 1 by recombinant methods with structural features similar to the natural allergen have been only partially successful. In this study, a recombinant folded Fel d 1 with molecular and biological properties similar to the natural counterpart was produced. A synthetic gene coding for direct fusion of the Fel d 1 chain 2 N-terminally to chain 1 was constructed by overlapping oligonucleotides in PCR. Escherichia coli expression resulted in a non-covalently associated homodimer with an apparent molecular mass of 30 kDa defined by size exclusion chromatography. Furthermore, each 19,177-Da subunit displayed a disulfide pattern identical to that found in the natural Fel d 1, i.e. Cys3(1) Cys73(2), Cys44(1)-Cys48(2), Cys70(1)-Cys7(2), as determined by electrospray mass spectrometry after tryptic digestion. Circular dichroism analysis showed identical folds of natural and recombinant Fel d 1. Furthermore, recombinant Fel d l reacted specifically with serum IgE, inducing expression of CD203c on basophils and lymphoproliferative responses in cat-allergic patients. The results show that the overall fold and immunological properties of the recombinant Fel d 1 are very similar to those of natural Fel d 1. Moreover, the recombinant Fel d 1 construct provides a tool for defining the three-dimensional structure of Fel d 1 and represents a reagent for diagnosis and allergen-specific immunotherapy of cat allergy.

  10. Mode Dynamics in the Bragg FEL Based on Coupling of Propagating and Trapped Waves

    CERN Document Server

    Ginzburg, N S; Peskov, N Yu; Rozental, R M; Sergeev, A; Zaslavsky, V Yu

    2005-01-01

    A novel Bragg FEL scheme is discussed in which an electron beam synchronously interacts with a propagating wave, and the latter is coupled to a quasi cut-off mode. This coupling is realized by either helical or asimuthally symmetric corrugation of the waveguide walls. The quasi cut-off mode provides feedback in the system leading to self-excitation of the whole system while the efficiency in steady-state regime of generation is almost completely determined by the propagating mode, synchronous to the beam. Analysis based on averaged time domain approach as well as on direct PIC code simulation shows that the efficiency of such a device in the single mode single frequency regime can be rather high. The main advantage of the novel Bragg resonator is provision of higher selectivity over transverse index than traditional scheme of Bragg FEL. The cold microwave testing of the Bragg structure based on coupling of propagating and trapped waves in the Ka band demonstrated a good agreement with theoretical consideratio...

  11. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C., E-mail: claudio.serpico@elettra.eu [Elettra - Sincrotrone Trieste, Trieste (Italy); Grudiev, A. [CERN, Geneva (Switzerland); Vescovo, R. [University of Trieste, Trieste (Italy)

    2016-10-11

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  12. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Science.gov (United States)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  13. End-to-end simulation of a visible 1 kW FEL

    International Nuclear Information System (INIS)

    Parazzoli, Claudio G.; Koltenbah, Benjamin E.C.

    2000-01-01

    In this paper we present the complete numerical simulation of the 1 kW visible Free Electron Laser under construction in Seattle. We show that the goal of producing 1.0 kW at 0.7 μm is well within the hardware capabilities. We simulate in detail the evolution of the electron bunch phase space in the entire e-beam line. The e-beam line includes the photo-injector cavities, the 433.33 MHz accelerator, the magnetic buncher, the 1300 MHz accelerator, the 180 deg. bend and the matching optics into the wiggler. The computed phase space is input for a three-dimensional time-dependent code that predicts the FEL performance. All the computations are based on state of the art software, and the limitations of the current software are discussed. We believe that this is the first time that such a thorough numerical simulation has been carried out and that such a realistic electron phase space has been used in FEL performance calculations

  14. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  15. Production and detection of axion-like particles at the VUV-FEL. Letter of intent

    International Nuclear Information System (INIS)

    Koetz, U.; Ringwald, A.; Tschentscher, T.

    2006-06-01

    Recently, the PVLAS collaboration has reported evidence for an anomalously large rotation of the polarization of light generated in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero particle coupled to two photons. In this Letter of Intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of the Vacuum-UltraViolet Free-Electron Laser VUV-FEL, sent along the transverse magnetic field of a linear arrangement of dipole magnets of size B L ∼ 30 Tm. The high photon energies available at the VUV-FEL increase substantially the expected photon regeneration rate in the mass range implied by the PVLAS anomaly, in comparison to the rate expected at visible lasers of similar power. We find that the particle interpretation of the PVLAS result can be tested within a short running period. The pseudoscalar vs. scalar nature can be determined by varying the direction of the magnetic field with respect to the laser polarization. The mass of the particle can be measured by running at different photon energies. The proposed experiment offers a window of opportunity for a firm establishment or exclusion of the particle interpretation of the PVLAS anomaly before other experiments can compete. (Orig.)

  16. Two-bunch operation with ns temporal separation at the FERMI FEL facility

    Science.gov (United States)

    Penco, Giuseppe; Allaria, Enrico; Bassanese, Silvano; Cinquegrana, Paolo; Cleva, Stefano; Danailov, Miltcho B.; Demidovich, Alexander; Ferianis, Mario; Gaio, Giulio; Giannessi, Luca; Masciovecchio, Claudio; Predonzani, Mauro; Rossi, Fabio; Roussel, Eleonore; Spampinati, Simone; Trovò, Mauro

    2018-05-01

    In the last decade, a continuous effort has been dedicated to extending the capabilities of existing free-electron lasers (FELs) operating in the x-ray and vacuum ultraviolet regimes. In this framework, the generation of two-color (or multi-color) temporally separated FEL pulses, has paved the way to new x-ray pump and probe experiments and several two-color two-pulse schemes have been implemented at the main facilities, but with a generally limited time-separation between the pulses, from 0 to few hundreds of fs. This limitation may be overcome by generating light with two independent electron bunches, temporally separated by integral multiples of the radio-frequency period. This solution was investigated at FERMI, measurements and characterization of this two-bunch mode of operation are presented, including trajectory control, impact of longitudinal and transverse wakefields, manipulation of the longitudinal phase space and finally a demonstration of suitability of the scheme to provide extreme ultraviolet light by using both bunches.

  17. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  18. Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime

    Directory of Open Access Journals (Sweden)

    G. Penn

    2006-06-01

    Full Text Available One scheme for harmonic generation employs free electron lasers (FELs with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beam line in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica® package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast x-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.

  19. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    International Nuclear Information System (INIS)

    Faatz, B.; Fateev, A.A.; Feldhaus, J.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2001-01-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice versa

  20. Receiver gain function: the actual NMR receiver gain

    OpenAIRE

    Mo, Huaping; Harwood, John S.; Raftery, Daniel

    2010-01-01

    The observed NMR signal size depends on the receiver gain parameter. We propose a receiver gain function to characterize how much the raw FID is amplified by the receiver as a function of the receiver gain setting. Although the receiver is linear for a fixed gain setting, the actual gain of the receiver may differ from what the gain setting suggests. Nevertheless, for a given receiver, we demonstrate that the receiver gain function can be calibrated. Such a calibration enables accurate compar...

  1. Improvement of the crossed undulator design for effective circular polarization control in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-01-15

    The production of X-ray radiation with a high degree of circular polarization constitutes an important goal at XFEL facilities. A simple scheme to obtain circular polarization control with crossed undulators has been proposed so far. In its simplest configuration the crossed undulators consist of pair of short planar undulators in crossed position separated by an electromagnetic phase shifter. An advantage of this configuration is a fast helicity switching. A drawback is that a high degree of circular polarization (over 90 %) can only be achieved for lengths of the insertion devices significantly shorter than the gain length, i.e. at output power significantly lower than the saturation power level. The obvious and technically possible extension considered in this paper, is to use a setup with two or more crossed undulators separated by phase shifters. This cascade crossed undulator scheme is distinguished, in performance, by a fast helicity switching, a high degree of circular polarization (over 95%) and a high output power level, comparable with the saturation power level in the baseline undulator at fundamental wavelength. We present feasibility study and exemplifications for the LCLS baseline in the soft X-ray regime. (orig.)

  2. Receiver Gain Modulation Circuit

    Science.gov (United States)

    Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen

    2011-01-01

    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by

  3. Polarization dependence of the optical modal gain in ZnO

    International Nuclear Information System (INIS)

    Kim, Bumjin; Kyhm, Kwangseuk; Cho, Chaeryong

    2010-01-01

    The modal gain spectrum due to the electron-hole plasma in ZnO was measured using a variable stripe length method. A modal gain contour map for energy and stripe length allowed the modal gain saturation to be analyzed in terms of the spectral and the stripe length dependences. The modal gain was observed to be more significant in the TE mode than in the TM mode due to the polarization asymmetry of the wurtzite structure. We also found that the degree of polarization are enhanced as the stripe length increased, despite of modal gain saturation.

  4. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  5. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    International Nuclear Information System (INIS)

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov, Gennady; Fawley, William M.; Reiche, Sven

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., ∼ 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2

  6. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    CERN Document Server

    Fawley, W M; Emma, P; Huang, Z; Nuhn, H D; Reiche, S; Stupakov, G

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber wall material (e.g. Cu) and its radius. Of recent interest [1] is the so-called "AC" component of the resistive wake which can lead to strong variations on very short timescales (e.g. ~20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well a...

  7. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    International Nuclear Information System (INIS)

    Renault, Eric; Nahon, Laurent; Garzella, David; Nutarelli, Daniele; De Ninno, Giovanni; Hirsch, Matthias; Couprie, Marie Emmanuelle

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out, such as the time-resolved absorption study of the first excited state of Acridine

  8. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    CERN Document Server

    Renault, E; De Ninno, G; Garzella, D; Hirsch, M; Nahon, L; Nutarelli, D

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out,...

  9. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam.

    Science.gov (United States)

    Feng, Y; Schafer, D W; Song, S; Sun, Y; Zhu, D; Krzywinski, J; Robert, A; Wu, J; Decker, F J

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.

  10. Optimization of the LCLS X-Rray FEL Output Performance in the Presence of Strong Undulator Wakefields

    CERN Document Server

    Reiche, Sven; Emma, Paul; Fawley, William M; Huang, Zhirong; Nuhn, Heinz-Dieter; Stupakov, Gennady

    2005-01-01

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of "start-to-end" simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch ...

  11. Discovering and annotating fish early life-stage (FELS) adverse outcome pathways: Putting the research strategy into practice

    Science.gov (United States)

    In May 2012, a HESI-sponsored expert workshop yielded a proposed research strategy for systematically discovering, characterizing, and annotating fish early life-stage (FELS) adverse outcome pathways (AOPs) as well as prioritizing AOP development in light of current restrictions ...

  12. Establishment of a laboratory for spectroscopic investigation of radioactive samples at the ELBE-FEL facility. Intentions and perspectives

    International Nuclear Information System (INIS)

    Foerstendorf, H.; Friedrich, H.; Heise, K.H.

    2002-01-01

    The Institute of Radiochemistry is setting up a radionuclide laboratory for optical spectroscopy at the free electron laser facility of the ELBE electron accelerator (ELBE-FEL). The quality of the infrared light source opens up new fields of analytical research in radiochemistry. Some aspects of future applications are introduced. (orig.)

  13. Photomultiplier gain stabilisation

    International Nuclear Information System (INIS)

    Le Baud, P.; Sautiez, B.

    1958-07-01

    By the control and adjustment of magnetic deflection applied to the electron beam of a photomultiplier it has proved possible to flatten the gain curve, forming plateaux at levels dependent upon the voltage at intake. It should be possible to add this simple device to most photomultipliers on the market today. (author) [fr

  14. Experimental characteristics of a high-gain free-electron laser amplifier operating at 8-mm and 2-mm wavelengths

    International Nuclear Information System (INIS)

    Throop, A.L.; Orzechowski, T.J.; Anderson, B.R.

    1987-01-01

    The Electron Laser Facility (ELF) at the Lawrence Livermore National Laboratory (LLNL) uses a high-current induction linac (3.5 MeV, 1000 A), in conjunction with a pulsed electromagnetic wiggler (4.0 M, 4000 G), to operate a free electron laser (FEL) that produces intense radiation in the microwave regime (2 to 8 mm). ELF is a high-gain, single-pass amplifier, using a commercial microwave source as an oscillator input (200 W-50 kW). Previous experiments at 35 GHz produced exponential gains of 40 dB/m, peak powers exceeding 1 GW, and beam-to-rf conversion efficiencies of 34%. Recent experiments at 140 GHz have demonstrated exponential gains of 22 dB/m, peak powers exceeding 50 MW, and total gains of 65 dB. In this paper, we describe the experimental results at these two frequencies and compare then with the predictions of simulation codes

  15. Neutron dose rate at the SwissFEL injector test facility: first measurements

    International Nuclear Information System (INIS)

    Hohmann, E.; Frey, N.; Fuchs, A.; Harm, C.; Hoedlmoser, H.; Luescher, R.; Mayer, S.; Morath, O.; Philipp, R.; Rehmann, A.; Schietinger, T.

    2014-01-01

    At the Paul Scherrer Institute, the new SwissFEL Free Electron Laser facility is currently in the design phase. It is foreseen to accelerate electrons up to a maximum energy of 7 GeV with a pulsed time structure. An injector test facility is operated at a maximum energy of 300 MeV and serves as the principal test and demonstration plant for the SwissFEL project. Secondary radiation is created in unavoidable interactions of the primary beam with beamline components. The resulting ambient dose-equivalent rate due to neutrons was measured along the beamline with different commercially available survey instruments. The present study compares the readings of these neutron detectors (one of them is specifically designed for measurements in pulsed fields). The experiments were carried out in both, a normal and a diagnostic mode of operation of the injector. Measurements were taken at the SwissFEL injector test facility using three different types of commercially available survey instruments for normal and diagnostic mode of operation at different positions inside the accelerator vault. During normal operation, the doses indicated by the different instruments agree within the measurement uncertainty except for the beam dump region. There, due to its limited energy range and high sensitivity, the LB6411 shows significantly lower dose values than the other instruments. The photon background in the vault associated with each pulse causes the scintillator used by the LB6419 to saturate. As a result, only the channel using the delayed 12 C(n,p)12-reaction could be used during the measurements. The highest doses per pulse were measured next to the beam dump and the bunch compressor. For the optimisation of the accelerator, luminescent screens can be inserted into the beam path causing a dose distributed over several metres depending on the screen type. The dose arise to 40 % from neutrons with energies of >20 MeV. Although the charge of each pulse were reduced to decrease

  16. Economic issues of broiler production length

    Directory of Open Access Journals (Sweden)

    Szőllősi László

    2014-01-01

    Full Text Available The length of broiler production cycle is also an important factor when profitability is measured. This paper is to determine the effects of different market ages and down-time period, overall broiler production cycle length on performance and economic parameters based on Hungarian production and financial circumstances. A deterministic model was constructed to manage the function-like correlations of age-related daily weight gain, daily feed intake and daily mortality data. The results show that broiler production cycle length has a significant effect on production and economic performance. Cycle length is determined by the length of down-time and grow-out periods. If down-time period is reduced by one day, an average net income of EUR 0.55 per m2 is realizable. However, the production period is not directly proportional either with emerging costs or obtainable revenues. Profit maximization is attainable if the production period is 41-42 days.

  17. Design and Micromagnetic Simulation of Fe/L10-FePt/Fe Trilayer for Exchange Coupled Composite Bit Patterned Media at Ultrahigh Areal Density

    Directory of Open Access Journals (Sweden)

    Warunee Tipcharoen

    2015-01-01

    Full Text Available Exchange coupled composite bit patterned media (ECC-BPM are one candidate to solve the trilemma issues, overcome superparamagnetic limitations, and obtain ultrahigh areal density. In this work, the ECC continuous media and ECC-BPM of Fe/L10-FePt/Fe trilayer schemes are proposed and investigated based on the Landau-Lifshitz-Gilbert equation. The switching field, Hsw, of the hard phase in the proposed continuous ECC trilayer media structure is reduced below the maximum write head field at interlayer exchange coupling between hard and soft phases, Aex, higher than 20 pJ/m and its value is lower than that for continuous L10-FePt single layer media and L10-FePt/Fe bilayer. Furthermore, the Hsw of the proposed ECC-BPM is lower than the maximum write head field with exchange coupling coefficient between neighboring dots of 5 pJ/m and Aex over 10 pJ/m. Therefore, the proposed ECC-BPM trilayer has the highest potential and is suitable for ultrahigh areal density magnetic recording technology at ultrahigh areal density. The results of this work may be gainful idea for nanopatterning in magnetic media nanotechnology.

  18. The effects of betatron motion on the preservation of FEL microbunching

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-05-15

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  19. First experimental data on the FEL - RF interaction at the Jefferson Lab IRFEL

    International Nuclear Information System (INIS)

    L. Merminga; P. Alexeev; S.V. Benson; A. Bolshakov; L.R. Doolittle; D.R. Douglas; C. Hovater; G.R. Neil

    1999-01-01

    High power FELs driven by recirculating, energy-recovering linacs can exhibit instabilities in the beam energy and laser output power. Fluctuations in the accelerating cavity fields can cause beam loss on apertures, phase oscillations and optical cavity detuning. These can affect the laser power and in turn the beam-induced voltage to further enhance the fluctuations of the rf fields. A theoretical model was developed to study the dynamics of the coupled system and was presented last year. Recently, a first set of experimental data was obtained at the Jefferson Lab IRFEL for direct comparisons with the model. The authors describe the experiment, present the data together with the modeling predictions and outline future directions

  20. Breakdown Localization Studies on the SwissFEL C-band Test Structures

    CERN Document Server

    Klavins, J; Le Pimpec, F; Locans, U; Shipman, N; Stingelin, L; Wohlmuther, M; Zennaro, R

    2013-01-01

    The SwissFEL main LINAC will consist of 104 Cband structures with a nominal accelerating gradient of 28MV/m. First power tests were performed on short constant impedance test-structures composed of eleven double-rounded cups. In order to localize breakdowns, two or three acoustic emission sensors were installed on the test-structures. In order to localize breakdowns we have analysed, in addition to acoustic measurements, the delay and phase of the RF power signals. Parasitic, acoustic noise emitted from the loads of the structure complicated the data interpretation and necessitated appropriate processing of the acoustic signals. The Goals of the experiments were to identify design and manufacturing errors of the structures. The results indicate that breakdowns occur mostly at the input power coupler, as also confirmed by vacuumevents at the same location. The experiments show that the LINAC test-structures fulfil the requirements in breakdown probability. Moreover developing a detection system based on acoust...

  1. Photocathode driven linac at UCLA for FEL and plasma wakefield acceleration experiments

    International Nuclear Information System (INIS)

    Hartman, S.; Aghamir, F.; Barletta, W.; Cline, D.; Dodd, J.; Katsouleas, T.; Kolonko, J.; Park, S.; Pellegrini, C.; Rosenzweig, J.; Smolin, J.; Terrien, J.; Davis, J.; Hairapetian, G.; Joshi, C.; Luhmann, N. Jr.; McDermott, D.

    1991-01-01

    The UCLA compact 20-MeV/c electron linear accelerator is designed to produce a single electron bunch with a peak current of 200 A, an rms energy spread of 0.2% or less, and a short 1.2 picosecond rms pulse duration. The linac is also designed to minimize emittance growth down the beamline so as to obtain emittances of the order of 8πmm-mrad in the experimental region. The linac will feed two beamlines, the first will run straight into the undulator for FEL experiments while the second will be used for diagnostics, longitudinal bunch compression, and other electron beam experiments. Here the authors describe the considerations put into the design of the accelerating structures and the transport to the experimental areas

  2. The application of FEL-EXPERT system in the interpretation of boron compounds toxicity

    International Nuclear Information System (INIS)

    Strouf, O.; Marik, V.

    1990-01-01

    The effect of substructural features of boron compounds on their toxicity (LD 50 , mice, i.p.) was studied using the FEL-EXPERT system developed by the Czech Technical University of Prague. A set of 108 compounds containing one or two boron atoms in their molecule was arbitrarily divided into three classes: compounds with high toxicity (LD 50 50 50 ≥1000 mg/kg). The compounds were represented by 70 substructural fragments, 27 of them being ''central substructures'' containing boron atom(s). The inference net consisted of 118 nodes (74 of the Bayesian type), 362 production rules and 74 context links. The total classification correctness was 98%. As a case-study, the classification of p-tolylboronic acid (LD 50 =520 mg/kg) and 4-carboxyphenylboronic acid (LD 50 =3838 mg/kg) was discussed. 4 figs., 2 tabs., 11 refs

  3. The effects of betatron motion on the preservation of FEL microbunching

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-05-01

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  4. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  5. First lasing of a high-gain harmonic generation free-electron laser experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Babzien, M.; Ben-Zvi, I.; Biedron, S. G.; DiMauro, L. F.; Douryan, A.; Galayda, J. N.; Gluskin, E.; Graves, W.; Jagger, J.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; Rakowsky, G.; Sajaev, V.; Skaritka, J.; Solomon, L.; Vasserman, I.; Wang, X. L.; Woodle, M.; Yakimenko, V.; Yu, L.-H.

    1999-09-11

    We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2 x 10{sup 7} times larger than the spontaneous radiation, In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance ({approximately}2 m) through the same wiggler. This means the HGHG signal is 2 x 10{sup 6} times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).

  6. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-11-15

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  7. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  8. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-03-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  9. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-11-01

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  10. Learn and gain

    CERN Document Server

    Al-Alami, Suhair Eyad Jamal

    2013-01-01

    Initiating the slogan ""love it, live it"", Learn and Gain includes eight short stories, chosen to illustrate various modes of narration, as well as to provoke reflection and discussion on a range of issues. All texts utilized here illustrate how great writers can, with their insight and gift for words, help us to see the world we live in, in new probing and exciting ways. What characterises the book, the author believes, is the integration of the skills of literary competence, communicative c...

  11. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  12. Gains from quota trade

    DEFF Research Database (Denmark)

    Andersen, Jesper Levring; Bogetoft, Peter

    2007-01-01

    We provide a framework for evaluating potential effects of introducing tradable quotas to a sector. The effects depend on the economies of scale and scope of the production technology, and on firms' ability and willingness to learn best practice methods (catching up) and to change their input...... and output composition (mix). To illustrate our approach, data from the Danish fishery are used to calculate the potential gains from introducing individually transferable fishing quotas. Data envelopment analysis is used to model the production technology. We find that pure reallocation is as important...

  13. Gaining Relational Competitive Advantages

    DEFF Research Database (Denmark)

    Hu, Yimei; Zhang, Si; Li, Jizhen

    2015-01-01

    Establishing strategic technological partnerships (STPs) with foreign partners is an increasingly studied topic within the innovation management literature. Partnering firms can jointly create sources of relational competitive advantage. Chinese firms often lack research and development (R......&D) capabilities but are increasingly becoming preferred technological partners for transnational corporations. We investigate an STP between a Scandinavian and a Chinese firm and try to explore how to gain relational competitive advantage by focusing on its two essential stages: relational rent generation...... and appropriation. Based on an explorative case study, we develop a conceptual framework that consists of process, organizational alliance factors, and coordination modes that we propose lead to relational competitive advantage....

  14. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  15. Comparison of a ZGP OPO with a Mark-III FEL as a Potential Replacement for Mid-Infrared Soft Tissue Ablation Applications

    CERN Document Server

    Mackanos, M A

    2005-01-01

    A Mark-III FEL, tuned to 6.45 μm has demonstrated minimal collateral damage and high ablation yield in soft tissue. Further clinical advances are limited due to the overhead associated with an FEL; alternative mid-IR sources are needed. The FEL parameters needed to carry out efficient ablation with minimal damage must be determined. Studies by this author have shown that the unique pulse structure of the FEL does not play a role in this process [1]. We focused on comparing the macropulse duration of the FEL with a ZGP-OPO. No difference in pulse structure between the two laser sources with respect to the ablation threshold of water and mouse dermis was seen. There is a difference between the sources with respect to the crater depths in gelatin and mouse dermis. At 6.1 μm, the OPO craters are 8 times the depth of the FEL ones. Brightfield imaging shows the classic ablation mechanism. The timescale of the crater formation, ejection, and collapse occurs on a faster scale for the OPO. Histology ...

  16. The Israeli EA-FEL Upgrade Towards Long Pulse Operation for Ultra-High Resolution Single Pulse Coherent Spectroscopy

    CERN Document Server

    Gover, A; Kanter, M; Kapilevich, B; Litvak, B; Peleg, S; Socol, Y; Volshonok, M

    2005-01-01

    The Israeli Electrostatic Accelerator FEL (EA-FEL) is now being upgraded towards long pulse (1005s) operation and ultra-high resolution (10(-6)) single pulse coherent spectroscopy. We present quantitative estimations regarding the applications of controlled radiation chirp for spectroscopic applications with pulse-time Fourier Transform limited spectral resolution. Additionally, we describe a novel extraction-efficiency-improving scheme based on increase of accelerating voltage (boosting) after saturation is achieved. The efficiency of the proposed scheme is confirmed by theoretical and numerical calculations. The latter are performed using software, based on 3D space-frequency domain model. The presentation provides an overview of the upgrade status: the high-voltage terminal is being reconfigured to accept the accelerating voltage boost system; a new broad band low-loss resonator is being manufactured; multi-stage depressed collector is assembled.

  17. Millimeter-wave FEL-oscillator with a new type Bragg resonator: advantages in efficiency and selectivity

    CERN Document Server

    Ginzburg, N S; Kaminsky, A K; Peskov, N Yu; Sedykh, S N; Sergeev, A P

    2000-01-01

    An FEL-oscillator with a new type of Bragg resonator was realized on the basis of linac LIU-3000 (JINR, Dubna) (0.8 MeV/200 A/200 ns). This resonator consists of two corrugated waveguide sections having a step of phase pi between the corrugations at the point of connection. The selective properties of a resonator of this type are significantly improved in comparison with a traditional two-mirror Bragg resonator. The output power was about 50 MW at a frequency of 30.7 GHz with the optimal parameters of the resonator, which corresponds to the efficiency of 35%, which is the highest for millimeter wavelength FEL. Radiation at the fundamental mode and the two side modes with the frequencies coincided to the 'cold' microwave testing was separately observed depending on the magnetic fields of the wiggler and solenoid.

  18. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Mokso, R.

    2013-01-01

    Roč. 729, NOV (2013), s. 85-89 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffractive-refractive optics * hard X-ray FEL * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168900213009613

  19. Stronger influence of maternal than paternal obesity on infant and early childhood body mass index: the Fels Longitudinal Study.

    Science.gov (United States)

    Linabery, A M; Nahhas, R W; Johnson, W; Choh, A C; Towne, B; Odegaard, A O; Czerwinski, S A; Demerath, E W

    2013-06-01

    Excessive early childhood adiposity is a prevalent and increasing concern in many parts of the world. Parental obesity is one of the several factors previously associated with infant and early childhood weight, length and adiposity. Parental obesity represents a surrogate marker of the complex interplay among genetic, epigenetic and shared environmental factors, and is potentially modifiable. The relative contributions of maternal and paternal body mass index (BMI) to infant and early childhood growth, as well as the timing of such effects, have not been firmly established. Utilizing serial infant measurements and growth curve modelling, this is the largest study to fully characterize and formally compare associations between maternal and paternal BMI and offspring growth across the entire infancy and early childhood period. Maternal obesity is a stronger determinant of offspring BMI than paternal obesity at birth and from 2 to 3 years of age, suggesting that prevention efforts focused particularly on maternal lifestyle and BMI may be important in reducing excess infant BMI. The observation that maternal BMI effects are not constant, but rather present at birth, wane and re-emerge during late infancy, suggests that there is a window of opportunity in early infancy when targeted interventions on children of obese mothers may be most effective. Parental obesity influences infant body size. To fully characterize their relative effects on infant adiposity, associations between maternal and paternal body mass index (BMI) category (normal: ≤25 kg m(-2) , overweight: 25 - obese: ≥30 kg m(-2) ) and infant BMI were compared in Fels Longitudinal Study participants. A median of 9 serial weight and length measures from birth to 3.5 years were obtained from 912 European American children born in 1928-2008. Using multivariable mixed effects regression, contributions of maternal vs. paternal BMI status to infant BMI growth curves were evaluated. Cubic spline models

  20. Extended fuel cycle length

    International Nuclear Information System (INIS)

    Bruyere, M.; Vallee, A.; Collette, C.

    1986-09-01

    Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated

  1. Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings

    Science.gov (United States)

    Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun

    2018-03-01

    Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.

  2. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  3. Acting to gain information

    Science.gov (United States)

    Rosenchein, Stanley J.; Burns, J. Brian; Chapman, David; Kaelbling, Leslie P.; Kahn, Philip; Nishihara, H. Keith; Turk, Matthew

    1993-01-01

    This report is concerned with agents that act to gain information. In previous work, we developed agent models combining qualitative modeling with real-time control. That work, however, focused primarily on actions that affect physical states of the environment. The current study extends that work by explicitly considering problems of active information-gathering and by exploring specialized aspects of information-gathering in computational perception, learning, and language. In our theoretical investigations, we analyzed agents into their perceptual and action components and identified these with elements of a state-machine model of control. The mathematical properties of each was developed in isolation and interactions were then studied. We considered the complexity dimension and the uncertainty dimension and related these to intelligent-agent design issues. We also explored active information gathering in visual processing. Working within the active vision paradigm, we developed a concept of 'minimal meaningful measurements' suitable for demand-driven vision. We then developed and tested an architecture for ongoing recognition and interpretation of visual information. In the area of information gathering through learning, we explored techniques for coping with combinatorial complexity. We also explored information gathering through explicit linguistic action by considering the nature of conversational rules, coordination, and situated communication behavior.

  4. Development of control and data processing system for JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Kikuzawa, Nobuhiro

    2005-03-01

    A personal computer (PC) based distributed control system has been developed for Free Electron Laser (FEL) at Japan Atomic Energy Research Institute (JAERI) and operated since 1992. The control system was implemented on Ethernet LAN of PCs, Nippon Electric Company (NEC Corp.) PC-9800 series 32 bit personal computers. It became troublesome to maintain the control system, because many application programs did not work on outdated hardware interfaces and operating system. Furthermore, since security updates of the operating system (OS) were no longer provided, the problem was in network security when many PCs were connected with the LAN. We have to solve these problems and to improve the reliability and the safety of the control system, an ITRON-based controller was developed. In Japan, the ITRON is very popular and embedded in many products such as industrial instruments or household appliances that are demanded of its high reliability. When the local controller was installed, a new control program was developed by Java language which had high compatibility on many platforms so that replacement of the computer for consoles might become easy in future. High reliability and interchangeability have been successfully realized by them, and the control system made long continuous operation possible. (author)

  5. Heavy ions acceleration in RF wells of 2-frequency electromagnetic field and in the inverted FEL

    International Nuclear Information System (INIS)

    Dzergach, A.I.; Kabanov, V.S.; Nikulin, M.G.; Vinogradov, S.V.

    1995-03-01

    Last results of the study of heavy ions acceleration by electrons trapped in moving 2-frequency 3-D RF wells are described. A linearized theoretical model of ions acceleration in a polarized spheroidal plasmoid is proposed. The equilibrium state of this plasmoid is described by the modified microcanonical distribution of the Courant-Snyder invariant (open-quotes quasienergyclose quotes of electrons). Some new results of computational simulation of the acceleration process are given. The method of computation takes into account the given cylindrical field E 011 (var-phi,r,z) and the self fields of electrons and ions. The results of the computation at relatively short time intervals confirm the idea and estimated parameters of acceleration. The heavy ion accelerator using this principle may be constructed with the use of compact cm band iris-loaded and biperiodical waveguides with double-sided 2-frequency RF feeding. It can accelerate heavy ions with a charge number Z i from small initial energies ∼ 50 keV/a.u. with the rate ∼ Z i · 10 MeV/m. Semirelativistic ions may be accelerated with similar rate also in the inverted FEL

  6. Performance of a DC GaAs photocathode gun for the Jefferson lab FEL

    CERN Document Server

    Siggins, T; Bohn, C L; Bullard, D; Douglas, D; Grippo, A; Gubeli, J; Krafft, G A; Yunn, B

    2001-01-01

    The performance of the 320 kV DC photocathode gun has met the design specifications for the 1 kW IR Demo FEL at Jefferson Lab. This gun has shown the ability to deliver high average current beam with outstanding lifetimes. The GaAs photocathode has delivered 135 pC per bunch, at a bunch repetition rate of 37.425 MHz, corresponding to 5 mA average CW current. In a recent cathode lifetime measurement, 20 h of CW beam was delivered with an average current of 3.1 mA and 211 C of total charge from a 0.283 cm sup 2 illuminated spot. The cathode showed a 1/e lifetime of 58 h and a 1/e extracted charge lifetime of 618 C. We have achieved quantum efficiencies of 5% from a GaAs wafer that has been in service for 13 months delivering in excess 2400 C with only three activation cycles.

  7. Magnetic shielding for FEL microwave electric field diagnostic in MTX tokamak

    International Nuclear Information System (INIS)

    Yamada, Shinichi; Odajima, Kazuo; Ishida, Hiroyasu

    1991-07-01

    A diagnostic system for measurement of microwave electric field from free electron laser (FEL) is in preparation at JAERI under JAERI-DOE collaborative program in the Microwave Tokamak Experiment (MTX) being held at Lawrence Livermore National Laboratory in U.S.A.. That is called LAPPS (Laser Aided Particle Probe Spectroscopy). This is consist of helium neutral beam source, a dye laser and viewing optics. It is required that 1000 gauss of the magnetic field must be shielded to less than 1 gauss in order to operate these LAPPS components. New high performance soft ferrous magnetic material 'FERROPERM' and PERMALLOY are used on this purpose. This paper proposes a new method to estimate a required thickness of the magnetic shielding in a saturated region of B-H curve, that is, 'magnetic shielding calculation by Virtual Divided Layers Method (VDLM)', where the shielding layer is virtually divided in many layers in the calculation. The results are compared with a computer simulation using 'three dimensional static magnetic field code' and with experimental results in a uniform static field. (author)

  8. Phase-Space Tomography of Giant Pulses in Storage Ring FEL Theory and Experiment

    CERN Document Server

    Chalut, K

    2005-01-01

    The use of giant pulses in storage ring FEL provides for high peak power at the fundamental wavelength and for effective generating of high VUV harmonics. This process is accompanied by a complex nonlinear dynamics of electron beam, which cannot be described by simple models. In this paper we compare the results of numerical simulations, performed by self-consistent #uvfel code, with experimental observations of electron beam evolution in the longitudinal phase space. The evolution of the electron beam distribution was obtained from the images recorded by dual-sweep streak-camera. The giant pulse process occurs on a short fast time scale compared with synchrotron oscillation period, which make standard methods of tomography inapplicable. We had developed a novel method of reconstruction, an SVD-Based Phase-Space Tomography, which allows to reconstruct phase space distribution from as few as two e-bunch profiles separated by about 3 degrees of rotation in the phase space. This technique played critical role in...

  9. Production of high power microwaves for particle acceleration with an FEL bunched electron beam

    CERN Document Server

    Gardelle, J; Marchese, G; Padois, M; Rullier, J L; Donohue, J T

    1999-01-01

    Among the studies in the framework of high gradient linear electron-positron collider research, the Two-Beam Accelerator (TBA) is a very promising concept, and two projects are in progress, the Compact Linear Collider project at CERN (W. Schnell, Report no. CERN SL/92-51 and CLIC note 184; K. Huebner, CERN/PS 92-43, CLIC note 176; S. Van der Meer, CERN/PS 89-50, CLIC note 97.) and the Relativistic Klystron-TBA project at LBNL (Technical Review Committee, International Linear Collider Technical Review Committee Report 1995, SLAC-R-95-471, 1995). In a TBA an extremely intense low-energy electron beam, called the drive beam, is bunched at the desired operating frequency, and upon passing through resonant cavities generates radio-frequency power for accelerating the main beam. Among the different approaches to the production of a suitable drive beam, the use of an FEL has been proposed and is under active study at CEA/CESTA.

  10. Research on DC-RF superconducting photocathode injector for high average power FELs

    International Nuclear Information System (INIS)

    Zhao Kui; Hao Jiankui; Hu Yanle; Zhang Baocheng; Quan Shengwen; Chen Jiaer; Zhuang Jiejia

    2001-01-01

    To obtain high average current electron beams for a high average power Free Electron Laser (FEL), a DC-RF superconducting injector is designed. It consists of a DC extraction gap, a 1+((1)/(2)) superconducting cavity and a coaxial input system. The DC gap, which takes the form of a Pierce configuration, is connected to the 1+((1)/(2)) superconducting cavity. The photocathode is attached to the negative electrode of the DC gap. The anode forms the bottom of the ((1)/(2)) cavity. Simulations are made to model the beam dynamics of the electron beams extracted by the DC gap and accelerated by the superconducting cavity. High quality electron beams with emittance lower than 3 π-mm-mrad can be obtained. The optimization of experiments with the DC gap, as well as the design of experiments with the coaxial coupler have all been completed. An optimized 1+((1)/(2)) superconducting cavity is in the process of being studied and manufactured

  11. Transport studies of LPA electron beam towards the FEL amplification at COXINEL

    Energy Technology Data Exchange (ETDEWEB)

    Khojoyan, M., E-mail: martin.khojoyan@synchrotron-soleil.fr; Briquez, F.; Labat, M.; Loulergue, A.; Marcouillé, O.; Marteau, F.; Sharma, G.; Couprie, M.E.

    2016-09-01

    Laser Plasma Acceleration (LPA) [1] is an emerging concept enabling to generate electron beams with high energy, high peak current and small transverse emittance within a very short distance. The use of LPA can be applied to the Free Electron Laser (FEL) [2] case in order to investigate whether it is suitable for the light amplification in the undulator. However, capturing and guiding of such beams to the undulator is very challenging, because of the large divergence and high energy spread of the electron beams at the plasma exit, leading to large chromatic emittances. A specific beam manipulation scheme was recently proposed for the COXINEL (Coherent X-ray source inferred from electrons accelerated by laser) setup, which makes an advantage from the intrinsically large chromatic emittance of such beams [3]. The electron beam transport is studied using two simulation codes: a SOLEIL in-house one and ASTRA [4]. The influence of the collective effects on the electron beam performance is also examined.

  12. Picked FEL Micro Pulse for Nano-Second Interaction with Bio-Molecule

    CERN Document Server

    Suzuki, Sachiko; Ishii, Katsonuri; Kanai, T; Naito, Y

    2004-01-01

    Laser pulse duration is a very important parameter to determine the threshold between thermal and nonthermal effects in laser surgery of biomedical tissue. Free Electron Laser (FEL) at Osaka University, Japan, has a pulse structure in which a macropulse (pulse width : 15μs) consists of equally separated micropulses, whose width and interval are ~5ps and 44.8ns, respectively. Precise control of micropulse train may establish fast optic processes because thermal relaxation time in the tissue is about 1us. A pulse-picking system was designed in order to extract single or a few micropulses from an entire macropulse using an acousto-optic modulator (AOM) in which the light path can be temporally diffracted by an external gate signal. An extracted micropulse train was monitored by a mercury-cadmium-telluride (MCT) photodetector with ~1ns response time and recorded on digital oscilloscope. A single micropulse was extracted as a result of adjusting duration of the RF wave to 50 ns which is nearly equal to the ...

  13. Split-And-Delay Unit for FEL Interferometry in the XUV Spectral Range

    Directory of Open Access Journals (Sweden)

    Sergey Usenko

    2017-05-01

    Full Text Available In this work we present a reflective split-and-delay unit (SDU developed for interferometric time-resolved experiments utilizing an (extreme ultraviolet XUV pump–XUV probe scheme with focused free-electron laser beams. The developed SDU overcomes limitations for phase-resolved measurements inherent to conventional two-element split mirrors by a special design using two reflective lamellar gratings. The gratings produce a high-contrast interference signal controlled by the grating displacement in every diffraction order. The orders are separated in the focal plane of the focusing optics, which enables one to avoid phase averaging by spatially selective detection of a single interference state of the two light fields. Interferometry requires a precise relative phase control of the light fields, which presents a challenge at short wavelengths. In our setup the phase delay is determined by an in-vacuum white light interferometer (WLI that monitors the surface profile of the SDU in real time and thus measures the delay for each laser shot. The precision of the WLI is 1 nm as determined by optical laser interferometry. In the presented experimental geometry it corresponds to a time delay accuracy of 3 as, which enables phase-resolved XUV pump–XUV probe experiments at free-electron laser (FEL repetition rates up to 60 Hz.

  14. Leading Gainful Employment Metric Reporting

    Science.gov (United States)

    Powers, Kristina; MacPherson, Derek

    2016-01-01

    This chapter will address the importance of intercampus involvement in reporting of gainful employment student-level data that will be used in the calculation of gainful employment metrics by the U.S. Department of Education. The authors will discuss why building relationships within the institution is critical for effective gainful employment…

  15. Linear Gain and Gain Saturation in a Photonic Free-Electron Laser

    NARCIS (Netherlands)

    Denis, T.; Boller, Klaus J.; Lee, J.H.H.; van der Slot, P.J.M.; van Dijk, Marc

    2012-01-01

    Photonic crystals are used to manipulate the generation of light, for example, stimulated emission can be enhanced. A photonic free-electron laser (pFEL) applies this enhancement to generate widely tunable coherent Cerenkov radiation from low energy electrons (keV) streaming through the photonic

  16. Minimal Length Scale Scenarios for Quantum Gravity.

    Science.gov (United States)

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  17. Minimal Length Scale Scenarios for Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Sabine Hossenfelder

    2013-01-01

    Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  18. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  19. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  20. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  1. Energy performance of windows based on the net energy gain

    DEFF Research Database (Denmark)

    Svendsen, Svend; Kragh, Jesper; Laustsen, Jacob Birck

    2005-01-01

    The paper presents a new method to set up energy performance requirements and energy classes for windows of all dimensions and configurations. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating season. The net energy gain can be calculated for one...... be expressed as a function of two parameters representing the energy performance and two parameters representing the geometry of the window. The two energy performance parameters are the net energy gain per area of the glazing unit and the sum of the heat losses through the frame and the assembly per length...... of the frame. The two geometry numbers are the area of the glazing unit relative to the window area and the length of the frame profiles relative to the window area. Requirements and classes for the energy performance of the window can be given by assigning values to the two energy performance parameters...

  2. Optimization of a dedicated bio-imaging beamline at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We recently proposed a basic concept for design and layout of the undulator source for a dedicated bio-imaging beamline at the European XFEL. The goal of the optimized scheme proposed here is to enable experimental simplification and performance improvement. The core of the scheme is composed by soft and hard X-ray self-seeding setups. Based on the use of an improved design for both monochromators it is possible to increase the design electron energy up to 17.5 GeV in photon energy range between 2 keV and 13 keV, which is the most preferable for life science experiments. An advantage of operating at such high electron energy is the increase of the X-ray output peak power. Another advantage is that 17.5 GeV is the preferred operation energy for SASE1 and SASE2 beamline users. Since it will be necessary to run all the XFEL lines at the same electron energy, this choice will reduce the interference with other undulator lines and increase the total amount of scheduled beam time. In this work we also propose a study of the performance of the self-seeding scheme accounting for spatiotemporal coupling caused by the use of a single crystal monochromator. Our analysis indicates that this distortion is easily suppressed by the right choice of diamond crystal planes and that the proposed undulator source yields about the same performance as in the case for a X-ray seed pulse with no coupling. Simulations show that the FEL power reaches 2 TW in the 3 keV-5 keV photon energy range, which is the most preferable for single biomolecule imaging.

  3. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.

    2005-09-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. Ths paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (orig.)

  4. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.D.

    2006-03-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. This paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (Orig.)

  5. Optimization of a dedicated bio-imaging beamline at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2012-09-01

    We recently proposed a basic concept for design and layout of the undulator source for a dedicated bio-imaging beamline at the European XFEL. The goal of the optimized scheme proposed here is to enable experimental simplification and performance improvement. The core of the scheme is composed by soft and hard X-ray self-seeding setups. Based on the use of an improved design for both monochromators it is possible to increase the design electron energy up to 17.5 GeV in photon energy range between 2 keV and 13 keV, which is the most preferable for life science experiments. An advantage of operating at such high electron energy is the increase of the X-ray output peak power. Another advantage is that 17.5 GeV is the preferred operation energy for SASE1 and SASE2 beamline users. Since it will be necessary to run all the XFEL lines at the same electron energy, this choice will reduce the interference with other undulator lines and increase the total amount of scheduled beam time. In this work we also propose a study of the performance of the self-seeding scheme accounting for spatiotemporal coupling caused by the use of a single crystal monochromator. Our analysis indicates that this distortion is easily suppressed by the right choice of diamond crystal planes and that the proposed undulator source yields about the same performance as in the case for a X-ray seed pulse with no coupling. Simulations show that the FEL power reaches 2 TW in the 3 keV-5 keV photon energy range, which is the most preferable for single biomolecule imaging.

  6. Odd Length Contraction

    Science.gov (United States)

    Smarandache, Florentin

    2013-09-01

    Let's denote by VE the speed of the Earth and byVR the speed of the rocket. Both travel in the same direction on parallel trajectories. We consider the Earth as a moving (at a constant speed VE -VR) spacecraft of almost spherical form, whose radius is r and thus the diameter 2r, and the rocket as standing still. The non-proper length of Earth's diameter, as measured by the astronaut is: L = 2 r√{ 1 -|/VE -VR|2 c2 } rocket! Also, let's assume that the astronaut is laying down in the direction of motion. Therefore, he would also shrink, or he would die!

  7. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  8. Production of transform-limited X-ray pulses through self-seeding at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-09-15

    An important goal for any advanced X-ray FEL is an option for providing Fourier-limited X-ray pulses. In this way, no monochromator is needed in the experimental hall. Self-seeding is a promising approach to significantly narrow the SASE bandwidth to produce nearly transform-limited pulses. These are important for many experiments including 3D diffraction imaging.We discuss the implementation of a single-crystal self-seeding scheme in the hard X-ray lines of the European XFEL. For this facility, transform-limited pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap baseline undulators. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations dealing with the up-to-date parameters of the European XFEL, we show that the FEL power reaches about 400 GW, or one order of magnitude higher power than the SASE saturation level (20 GW). This analysis indicates that our self-seeding scheme is not significantly affected by non-ideal electron phase-space distribution, and yields about the same performance as in the case for an electron beam with ideal parameters. The self-seeding scheme with a single crystal monochromator is extremely compact (about 5 m long), and cost estimations are low enough to consider adding it to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  9. Production of transform-limited X-ray pulses through self-seeding at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-09-01

    An important goal for any advanced X-ray FEL is an option for providing Fourier-limited X-ray pulses. In this way, no monochromator is needed in the experimental hall. Self-seeding is a promising approach to significantly narrow the SASE bandwidth to produce nearly transform-limited pulses. These are important for many experiments including 3D diffraction imaging.We discuss the implementation of a single-crystal self-seeding scheme in the hard X-ray lines of the European XFEL. For this facility, transform-limited pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap baseline undulators. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations dealing with the up-to-date parameters of the European XFEL, we show that the FEL power reaches about 400 GW, or one order of magnitude higher power than the SASE saturation level (20 GW). This analysis indicates that our self-seeding scheme is not significantly affected by non-ideal electron phase-space distribution, and yields about the same performance as in the case for an electron beam with ideal parameters. The self-seeding scheme with a single crystal monochromator is extremely compact (about 5 m long), and cost estimations are low enough to consider adding it to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  10. Coherent Smith-Purcell radiation as a pulse length diagnostic

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1997-01-01

    Recently, Smith-Purcell radiation has been studied as a candidate for laser-type radiation production in the submillimeter regime. With appropriate choices of beam energy, impact parameter, and grating spacing, there is good coupling to strongly polarized, forward directed radiation. Another regime of possible interest is to use Smith-Purcell radiation as a pulse length diagnostic for medium to high energy electron beams of extremely short pulse duration, on the order of tens of femtoseconds to 1000 fs. Strongly in favor of development of such a diagnostic is its relatively non-destructive nature. With the electron beam passing near, but not through, a metal grating, reaction of the beam distribution itself to the production of the radiation is reduced relative to the much stronger scattering induced by passage through a foil. By careful choice of parameters usable diagnostic radiation ought to be produced with acceptably small emittance growth for an on-line beam monitor, even for the extremely bright electron beams proposed for X-ray FELs, Compton backscatter X-ray sources, or laser/plasma accelerator schemes. In this paper coherent and incoherent Smith-Purcell radiation is examined for reasonable operating parameters of the SATURNUS system at UCLA, with comparisons with results reported from the accelerator test facility (ATF) at Brookhaven National Laboratory. (orig.)

  11. Operational gain : measuring the capture of genetic gain ...

    African Journals Online (AJOL)

    The concept of operational gain is more than the weighted average of the genetic quality of planted hectares, and encompasses tree breeding efficiencies, propagation efficiencies, matching of species and genotype to site, plant use efficiency and early measures of stand density and growth. To test the operational gain ...

  12. Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility

    Science.gov (United States)

    Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong

    2017-10-01

    The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

  13. Influence of the partial temporal coherence of short FEL pulses on two-colour photoionization and photoinduced Auger decay of atoms

    International Nuclear Information System (INIS)

    Kazansky, A K; Sazhina, I P; Kabachnik, N M

    2013-01-01

    The influence of the partial temporal coherence of free electron laser (FEL) radiation on the sidebands arising in the electron spectra of laser-assisted photoionization and photoinduced Auger decay of atoms is theoretically analysed. A simple model is developed which describes the inner-shell photoionization by a short (femtosecond) FEL pulse and the following Auger decay in a strong field of an infrared laser. The model is based on the time-dependent approach and uses the strong field approximation for both photo- and Auger electrons. Particular calculations have been carried out for Ne 1s photoionization and KLL Auger emission. We demonstrate that the temporal coherence of FEL pulses influences the line widths in the photoelectron spectrum. For a small coherence time the sidebands in this spectrum cannot be resolved. On the other hand, our calculations show that in the Auger electron spectrum the sidebands are practically independent of the coherence time of the ionizing pulse.

  14. A soft x-ray free electron laser (FEL) using a two-beam elliptical pill-box wake-field cavity

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1988-01-01

    Stimulated bremsstrahlung in an undulating electric field in the lasing beam direction (electric wiggler) was shown to be possible from the quantum- mechanical viewpoint. Herein, this possibility is scrutinized from the viewpoint of classical electrodynamics. It is found that if stimulated bremsstrahlung in a transverse undulating magnetic field (magnetic wiggler) occurs, stimulated bremsstrahlung in the electric wiggler must also occur. We further show that a free electron laser (FEL) using a magnetic wiggler to provide a catalyzer field for stimulated bremsstrahlung cannot serve as a practical FEL operating in the soft x-ray region from both theoretical and experimental viewpoints. On the other hand, the authors demonstrate that the FEL using a traveling wake field in a two-beam elliptical pill-box cavity is well suited as a source of coherent radiation in the soft x-ray region

  15. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  16. Preliminary evaluation of 1′-[18F]fluoroethyl-β-D-lactose ([18F]FEL) for detection of pancreatic cancer in nude mouse orthotopic xenografts

    International Nuclear Information System (INIS)

    Arumugam, Thiruvengadam; Paolillo, Vincenzo; Young, Daniel; Wen, XiaoXia; Logsdon, Craig D.; De Palatis, Louis; Alauddin, Mian M.

    2014-01-01

    Introduction: Early detection of pancreatic cancer could save many thousands of lives. Non-invasive diagnostic imaging, including PET with [ 18 F]FDG, has inadequate resolution for detection of small (2–3 mm) pancreatic tumours. We demonstrated the efficacy of PET imaging with an 18 F-labelled lactose derivative, [ 18 F]FEDL, that targets HIP/PAP, a biomarker that is overexpressed in the peritumoural pancreas. We developed another analogue, 1-[ 18 F]fluoroethyl lactose ([ 18 F]FEL), which is simpler to synthesise, for the same application. We conducted a preliminary evaluation of the new probe and its efficacy in detecting orthotopic pancreatic carcinoma xenografts in mice. Methods: Xenografts were developed in nude mice by injecting L3.6pl/GL + pancreatic carcinoma cells into the pancreas of each mouse. Tumour growth was monitored by bioluminescence imaging (BLI); accuracy of BLI tumour size estimates was verified by MRI in two representative mice. When the tumour size reached approximately 2–3 mm, the animals were injected with [ 18 F]FEL (3.7 MBq) and underwent static PET/CT scans. Blood samples were collected at 2, 5, 10, 20 and 60 min after [ 18 F]FEL injection to track blood clearance. Following imaging, animals were sacrificed and their organs and tumours/pancreatic tissue were collected and counted on a gamma counter. Pancreas, including tumour, was frozen, sliced and used for autoradiography and immunohistochemical analysis of HIP/PAP expression. Results: Tumour growth was rapid, as observed by BLI and MRI. Blood clearance of [ 18 F]FEL was bi-exponential, with half-lives of approximately 3.5 min and 40 min. Mean accumulation of [ 18 F]FEL in the peritumoural pancreatic tissue was 1.29 ± 0.295 %ID/g, and that in the normal pancreas of control animals was 0.090 ± 0.101 %ID/g. [ 18 F]FEL was cleared predominantly by the kidneys. Comparative analysis of autoradiographic images and immunostaining results demonstrated a correlation between [ 18 F]FEL

  17. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    Science.gov (United States)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  18. High Gain Advanced GPS Receiver

    National Research Council Canada - National Science Library

    Brown, Alison; Zhang, Gengsheng

    2006-01-01

    NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to 10 dBi of additional antenna gain over a conventional receiver solution...

  19. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches

    Science.gov (United States)

    Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding. PMID:29771985

  20. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches.

    Science.gov (United States)

    Durairaj, Rajesh; Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.

  1. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    Science.gov (United States)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  2. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    International Nuclear Information System (INIS)

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.; Zholents, A.

    2003-01-01

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at ∼200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence

  3. Design considerations and analysis of potential applications of a high power ultraviolet FEL at the TESLA test facility at DESY

    International Nuclear Information System (INIS)

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1999-01-01

    A possibility of constructing a high power ultraviolet free electron laser at the TESLA test facility at DESY is discussed. The proposed facility consists of a tunable master oscillator (P av ∼10 mW, P peak ∼10 kW, λ≅200-350 nm) and an FEL amplifier with a tapered undulator. The average and peak radiation power at the exit of the FEL amplifier is about 7 kW and 220 GW, respectively. Installation of such a facility can significantly extend scientific potential of the TESLA test facility. The UV free electron laser can be used to construct a polarized, monochromatic gamma-source with the ultimate yield up to 10 12 gamma-quanta per second and the maximal energy of about 100 MeV. An intensive gamma-source can also form the base for constructing the test facility for the TESLA positron generation system. Another accelerator application of the proposed facility is verification of the main technical solutions for the laser and the optical system to be used in the gamma-gamma option of the TESLA collider. A high average power UV laser is also promising for industrial applications

  4. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    Science.gov (United States)

    Li, Yaoran; Geary, David C

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  5. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    Directory of Open Access Journals (Sweden)

    Yaoran Li

    Full Text Available Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4 were larger than gains in the capacity of the central executive (d = 1.6 that in turn were larger than gains in phonological memory span (d = 1.1. First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  6. Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement

    Science.gov (United States)

    Li, Yaoran; Geary, David C.

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning. PMID:23936154

  7. The 18-kDa form of cat allergen Felis domesticus 1 (Fel d 1) is associated with gelatin- and fibronectin-degrading activity

    DEFF Research Database (Denmark)

    Ring, P C; Wan, H; Schou, C

    2000-01-01

    BACKGROUND: Fel d 1, an important allergen from domestic cats, is a significant cause of asthma. In addition to directly promoting IgE synthesis, other biological activities of allergens may contribute to either allergic sensitization or the magnitude of allergic effector responses. For example...

  8. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  9. Relativistic acceleration and retardation effects on photoemission of intense electron short pulses, in RF-FEL photoinjectors

    International Nuclear Information System (INIS)

    Dolique, J.M.; Coacolo, M.

    1991-01-01

    In high-power free electron lasers, self-field effects in the electron beam are often the most important phenomenon on which the beam quality depends. These effects are generally conceived as space-charge effects, and described by a Poisson equation in a beam frame. In RF-FEL photoinjectors, the electrons of the intense short pulse produced by laser irradiation are submitted, just after their photoemission, to such a strong acceleration that relativistic acceleration and retardation effects are discussed, from the rigorous calculation of the Lienard-Wiechert velocity- and acceleration electric and magnetic fields, as a function of RF-electric field and beam parameters. The beam pulse is assumed to be axisymmetric, with a constant photoemitted current density. Consequences for the maximum current density that can be extracted are considered (the 'self-field limit,' a name more appropriate than 'space-charge limit' for the present conditions where electro-dynamic phenomena play an important role)

  10. CeB6 electron gun for the soft X-ray FEL project at SPring-8

    International Nuclear Information System (INIS)

    Togawa, K.; Baba, H.; Onoe, K.; Inagaki, T.; Shintake, T.; Matsumoto, H.

    2004-01-01

    A pulsed high-voltage electron gun with a thermionic cathode is under development for the injector system of the soft X-ray FEL project at SPring-8 (SCSS project). A CeB 6 single crystal of 3 mm diameter was chosen as a thermionic cathode because of its excellent emission properties, i.e., high resistance against contamination, uniform emission density and smooth surface. The CeB 6 cathode can produce a 3 A beam with 2 μs FWHM. A gun voltage of -500 kV was chosen as a compromise between the need for controlling emittance growth and minimizing the risks of high-voltage arcing. We have constructed a 500 kV electron gun test stand and have begun performance tests. This paper describes the basic design and the current status of the hardware R and D on the CeB 6 gun

  11. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oberta, P., E-mail: peter.oberta@rigaku.com [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, Praha 8, CZ-18221 (Czech Republic); Rigaku, Novodvorská 994, Praha 4, CZ-14221 (Czech Republic); Mokso, R. [Swiss Light Source, Paul Scherrer Institut, Villigen, CH-5232 Villigen (Switzerland)

    2013-11-21

    A new configuration of diffractive–refractive optics for beam splitting is investigated. The set-up can be applied to perform imaging with two beams simultaneously. It brings advantages toward dynamic studies using image guided diffraction or fluorescence spectroscopy. The optimal energy range of operation for the beam-splitter is between 7 keV and 24 keV, reaching best efficiency at an energy of 10 keV. Due to the long focusing distances (several tens of meters) created by the diffractive–refractive optics and the higher refraction efficiency in the softer energy range, the presented set-ups are ideal for hard X-ray FEL sources.

  12. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Han [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiong, Yongqian, E-mail: yqxiong@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Pei, Yuanji [National Synchrotron Radiation laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China)

    2014-11-11

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.

  13. A 700 MHZ, 1 MW CW RF System for a FEL 100mA RF Photoinjector

    CERN Document Server

    Roybal, William; Reass, William; Rees, Daniel; Tallerico, Paul J; Torrez, Phillip A

    2005-01-01

    This paper describes a 700 MHz, 1 Megawatt CW, high efficiency klystron RF system utilized for a Free Electron Laser (FEL) high-brightness electron photoinjector (PI). The E2V klystron is mod-anode tube that operates with a beam voltage of 95 kV. This tube, operating with a 65% efficiency, requires ~96 watts of input power to produce in excess of 1 MW of output power. This output drives the 3rd cell of a 2½-cell, p-mode PI cavity through a pair of planar waveguide windows. Coupling is via a ridge-loaded tapered waveguide section and "dog-bone" iris. This paper will present the design of the RF, RF transport, coupling, and monitoring/protection systems that are required to support CW operations of the 100 mA cesiated, semi-porous SiC photoinjector.

  14. The Effect of Length of Exposure to CALL Technology on Young Iranian EFL Learners' Grammar Gain

    Science.gov (United States)

    Sadeghi, Karim; Dousti, Masoumeh

    2013-01-01

    In the twenty-first century, integration of technology into education is a force worthy of contemplation. Among all the possible technological tools that can be integrated into EFL classes, computers seem to have achieved a more dominant position. One of the outstanding features of computers is their potential to present educational games and to…

  15. Opportunities and challenges for photon diagnostics at the soft X-ray FEL FLASH in simultaneous operation mode (Conference Presentation)

    Science.gov (United States)

    Kuhlmann, Marion; Treusch, Rolf; Plönjes-Palm, Elke; Faatz, Bart; Tiedtke, Kai; Braune, Markus; Keitel, Barbara

    2017-06-01

    FLASH operates two distinguished undulator sections driven by one linear accelerator. In the 11th year of user operation the grown demands for detailed photon beam performances are doubled approached. The more complex machine settings and setup times require a more and more efficient determination of its characteristics concerning electron- and photon-beams. The photon diagnostics systems, e.g. gas monitor detection, photon-ion spectroscopy, or diffractive tools, not only have to deal on a regular basis with fundamental wavelengths between 4nm and 90nm, also they have to be reliable from 1µJ up to 1mJ of average single pulse energy. For the success of the experiments the error bars of many diagnostics measurements need to be pushed into their current limits and developments to go further are always issued. Especial, the pulse duration in conjunction with the spectral width has been accessed in the last year. Direct approaches of fundamental wavelengths below the Nitrogene K-edge and higher harmonics in and below the water window were achieved. While in principal distinguished to each other, the photon diagnostics tools of FLASH1 and FLASH2 add-up to a more complete understanding of the other. Together they allow for a better perspective towards further developments and a more suitable use of beam times. The intermingled knowledge of electron- and photon-beams is essential for an FEL particular in simultaneous operation mode. Examples out of regular user operation and distinguished FEL-studies are given to illustrate the current state of the photon diagnostics at FLASH.

  16. FTO associations with obesity and telomere length.

    Science.gov (United States)

    Zhou, Yuling; Hambly, Brett D; McLachlan, Craig S

    2017-09-01

    This review examines the biology of the Fat mass- and obesity-associated gene (FTO), and the implications of genetic association of FTO SNPs with obesity and genetic aging. Notably, we focus on the role of FTO in the regulation of methylation status as possible regulators of weight gain and genetic aging. We present a theoretical review of the FTO gene with a particular emphasis on associations with UCP2, AMPK, RBL2, IRX3, CUX1, mTORC1 and hormones involved in hunger regulation. These associations are important for dietary behavior regulation and cellular nutrient sensing via amino acids. We suggest that these pathways may also influence telomere regulation. Telomere length (TL) attrition may be influenced by obesity-related inflammation and oxidative stress, and FTO gene-involved pathways. There is additional emerging evidence to suggest that telomere length and obesity are bi-directionally associated. However, the role of obesity risk-related genotypes and associations with TL are not well understood. The FTO gene may influence pathways implicated in regulation of TL, which could help to explain some of the non-consistent relationship between weight phenotype and telomere length that is observed in population studies investigating obesity.

  17. Derivation of Conditions for the Normal Gain Behavior of Conical Horns

    Directory of Open Access Journals (Sweden)

    Chin Yeng Tan

    2007-01-01

    Full Text Available Monotonically increasing gain-versus-frequency pattern is in general expected to be a characteristic of aperture antennas that include the smooth-wall conical horn. While optimum gain conical horns do naturally exhibit this behavior, nonoptimum horns need to meet certain criterion: a minimum axial length for given aperture diameter, or, alternatively, a maximum aperture diameter for the given axial length. In this paper, approximate expressions are derived to determine these parameters.

  18. Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement

    OpenAIRE

    Li, Yaoran; Geary, David C.

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusiv...

  19. Dispersion relation of Raman FEL with helical Wiggler and ion channel

    International Nuclear Information System (INIS)

    Hosseinalinezhad, M.; Bahmani, M.; Hasanbeigi, A.; Salehkoutahi, M.

    2012-01-01

    In this paper the theory of free electron laser with helical wiggler and ion channel guiding has been presented. The equations of motion for an electron have been analyzed. A formula for the dispersion relation is then derived in the low-gain-per-pass limit. The results of a numerical study of the growth rate enhancement due to the ion channel are presented and discussed.

  20. Optomechanical transistor with mechanical gain

    Science.gov (United States)

    Zhang, X. Z.; Tian, Lin; Li, Yong

    2018-04-01

    We study an optomechanical transistor, where an input field can be transferred and amplified unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical resonator is coupled simultaneously to two cavity modes. We show that it only requires a finite mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by the phase difference between the linearized optomechanical couplings that breaks the time-reversal symmetry of this system. The amplification arises from the mechanical gain, which provides an effective phonon bath that pumps the mechanical mode coherently. This effect is analogous to the stimulated emission of atoms, where the probe field can be amplified when its frequency is in resonance with that of the anti-Stokes transition. We show that by choosing optimal parameters, this optomechanical transistor can reach perfect unidirectionality accompanied with strong amplification. In addition, the presence of the mechanical gain can result in ultralong delay in the phase of the probe field, which provides an alternative to controlling light transport in optomechanical systems.

  1. High gain free electron laser at ETA

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Prosnitz, D.; Halbach, K.

    1983-01-01

    A single pass, tapered electron wiggler and associated beam transport has been constructed at the Experimental Test Accelerator (ETA) at Lawrence Livermore National Laboratory (LLNL). The system is designed to transport 1 kA of 4.5 MeV electrons with an emittance of 30 millirad-cm. The planar wiggler is provided by a pulsed electromagnet. The interaction region is an oversized rectangular waveguide. Quadrupole fields stabilize the beam in the plane parallel to the wiggler field. The 3 meter long wiggler has a 9.8 cm period. The Free Electron Laser (FEL) will serve as an amplifier for input frequencies of 35 GHz and 140 GHz. The facility is designed to produce better than 500 Megawatts peak power

  2. Extending the photon energy coverage of an x-ray self-seeding FEL via the reverse taper enhanced harmonic generation technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kaiqing; Qi, Zheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Feng, Chao, E-mail: fengchao@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Haixiao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Dong, E-mail: wangdong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Zhentang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    In this paper, a simple method is proposed to extend the photon energy range of a soft x-ray self-seeding free-electron laser (FEL). A normal monochromator is first applied to purify the FEL spectrum and provide a coherent seeding signal. This coherent signal then interacts with the electron beam in the following reverse tapered undulator section to generate strong coherent microbunchings while maintain the good quality of the electron beam. After that, the pre-bunched electron beam is sent into the third undulator section which resonates at a target high harmonic of the seed to amplify the coherent radiation at shorter wavelength. Three dimensional simulations have been performed and the results demonstrate that the photon energy gap between 1.5 keV and 4.5 keV of the self-seeding scheme can be fully covered and 100 GW-level peak power can be achieved by using the proposed technique.

  3. The FERMI @ Elettra Technical Optimization Study: General Layoutand Parameters and Physics Studies of Longitudinal Space Charge, theSpreader, the Injector, and Preliminary FEL Performance

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox,Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-09-01

    The FERMI {at} Elettra facility will make use of the existing GeV linac at Sincrotrone Elettra, which will become available for dedicated FEL applications following the completion of construction of a new injector booster complex for the storage ring. With a new rf photocathode injector, and some additional accelerating sections, this linac will be capable of providing high brightness bunches at 1.2 GeV and up to 50 Hz repetition rates.

  4. The FERMI (at) Elettra Technical Optimization Study: General Layout and Parameters and Physics Studies of Longitudinal Space Charge, the Spreader, the Injector, and Preliminary FEL Performance

    International Nuclear Information System (INIS)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox, Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-01-01

    The FERMI (at) Elettra facility will make use of the existing GeV linac at Sincrotrone Elettra, which will become available for dedicated FEL applications following the completion of construction of a new injector booster complex for the storage ring. With a new rf photocathode injector, and some additional accelerating sections, this linac will be capable of providing high brightness bunches at 1.2 GeV and up to 50 Hz repetition rates

  5. Design and TCAD simulation of planar p-on-n active-edge pixel sensors for the next generation of FELs

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, G.-F., E-mail: gianfranco.dallabetta@unitn.it [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [TIFPA INFN, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017 Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Latreche, S. [University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017 Constantine (Algeria); Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    We report on the design and TCAD simulations of planar p-on-n sensors with active edge aimed at a four-side buttable X-ray detector module for future FEL applications. Edge terminations with different number of guard rings were designed to find the best trade-off between breakdown voltage and border gap size. The methodology of the sensor design, the optimization of the most relevant parameters to maximize the breakdown voltage and the final layout are described.

  6. Free-Electron Laser (FEL) Utilization in Space Applications (Ship-Borne Pointing Accuracy, Deep-Space Communications, and Orbital Debris Tracking)

    Science.gov (United States)

    2011-12-01

    the energy to the target. From the stand point of weapon system considerations, the amount of available ammunition and the cost of running the...fired repeatedly for a minimal total cost . 7 Figure 1.3 FEL Efficiency. From [1] D. SHIP-BORNE EMPLOYMENT There are currently two primary possible...provided in [32]. This method requires three different geocentric vectors and their associated elevation angles with respect to the laser bore sight

  7. Design and TCAD simulation of planar p-on-n active-edge pixel sensors for the next generation of FELs

    International Nuclear Information System (INIS)

    Dalla Betta, G.-F.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    We report on the design and TCAD simulations of planar p-on-n sensors with active edge aimed at a four-side buttable X-ray detector module for future FEL applications. Edge terminations with different number of guard rings were designed to find the best trade-off between breakdown voltage and border gap size. The methodology of the sensor design, the optimization of the most relevant parameters to maximize the breakdown voltage and the final layout are described.

  8. Selection of high-brightness, laser-driven cathodes for electron accelerators and FELS

    International Nuclear Information System (INIS)

    Oettinger, P.E.

    1987-01-01

    Very intense, low emittance pulsed beams of electrons can be generated from laser-driven cathodes either by thermionic- or photo-emission. Several hundreds of amperes of electrons per square centimeter were observed for pulse lengths up to 50 ns. A normalized beam brightness of 10 7 A/cm 2 /rad 2 has been measured. These beams can be emission-gated at the cathode surface by modulating the laser-beam. Such beam bunching will generate picosecond-to-microsecond-long pulses at the source. A variety of cathodes are described, and a method of selection for specific applications is presented

  9. GAIN Technology Workshops Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is required to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.

  10. GAIN Technology Workshops Summary Report

    International Nuclear Information System (INIS)

    Braase, Lori Ann

    2016-01-01

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is required to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.

  11. Commutated automatic gain control system

    Science.gov (United States)

    Yost, S. R.

    1982-01-01

    A commutated automatic gain control (AGC) system was designed and built for a prototype Loran C receiver. The receiver uses a microcomputer to control a memory aided phase-locked loop (MAPLL). The microcomputer also controls the input/output, latitude/longitude conversion, and the recently added AGC system. The circuit designed for the AGC is described, and bench and flight test results are presented. The AGC circuit described actually samples starting at a point 40 microseconds after a zero crossing determined by the software lock pulse ultimately generated by a 30 microsecond delay and add network in the receiver front end envelope detector.

  12. [Fast food promotes weight gain].

    Science.gov (United States)

    Stender, Steen; Dyerberg, Jørn; Astrup, Arne V

    2007-05-07

    The total amounts of fat in a fast food menu consisting of French fries and fried Chicken Nuggets from McDonald's and KFC, respectively, bought in 35 different countries vary from 41 to 71 gram. In most countries the menu contained unacceptably high amounts of industrially-produced trans fat which contributes to an increased risk of ischaemic heart disease, weight gain, abdominal fat accumulation and type 2 diabetes. The quality of the ingredients in fast food ought to be better and the size of the portions smaller and less energy-dense so that frequent fast food meals do not increase the risk of obesity and diseases among customers.

  13. Theoretical analysis of saturation and limit cycles in short pulse FEL oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Piovella, N.; Chaix, P.; Jaroszynski, D. [Commissariat a l`Energie Atomique, Bruyeres-le-Chatel (France)] [and others

    1995-12-31

    We derive a model for the non linear evolution of a short pulse oscillator from low signal up to saturation in the small gain regime. This system is controlled by only two independent parameters: cavity detuning and losses. Using a closure relation, this model reduces to a closed set of 5 non linear partial differential equations for the EM field and moments of the electron distribution. An analysis of the linearised system allows to define and calculate the eigenmodes characterising the small signal regime. An arbitrary solution of the complete nonlinear system can then be expanded in terms of these eigenmodes. This allows interpreting various observed nonlinear behaviours, including steady state saturation, limit cycles, and transition to chaos. The single mode approximation reduces to a Landau-Ginzburg equation. It allows to obtain gain, nonlinear frequency shift, and efficiency as functions of cavity detuning and cavity losses. A generalisation to two modes allows to obtain a simple description of the limit cycle behaviour, as a competition between these two modes. An analysis of the transitions to more complex dynamics is also given. Finally, the analytical results are compared to the experimental data from the FELIX experiment.

  14. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  15. Development of a Pump-Probe System using a Non-Coated ZnSe Beam Splitter Cube for an MIR-FEL

    CERN Document Server

    Heya, Manabu; Horiike, Hiroshi; Ishii, Katsonuri; Suzuki, Sachiko

    2004-01-01

    A pump-probe technique is essential for a proper understanding of laser interaction with tissue and material. Our pump-probe system divides the incident mid-infrared Free Electron Laser (MIR-FEL) into two beams with equal intensity, and crosses simultaneously the two incoming beams at the same position. One is for a pump beam, another is for a probe beam. Time-resolved absorption spectroscopy involving this technique gives us information on the vibrational dynamics of molecules. We have developed this system for an MIR-FEL using a non-coating ZnSe beam splitter cube. The beam splitter cube is composed of two ZnSe prisms in the shape like a trapezoid. The two pulses with equal intensity are generated due to Fresnel reflection and transmission at the boundary between two prisms, then are reflected due to total reflection at other side boundaries between each prism and air, and illuminate simultaneously the same spot. We have conducted a proof-of-concept of experiment of this system using an MIR-FEL. We showed t...

  16. Start-effect measurement of high FEL [free-electron laser] electric fields in MTX [Microwave Tokamak Experiment] by laser-aided particle-probe spectroscopy

    International Nuclear Information System (INIS)

    Oda, T.; Takiyama, K.; Odajima, K.; Ohasa, K.; Shiho, M.; Mizuno, K.; Foote, J.H.; Nilson, D.G.

    1990-01-01

    We are constructing a diagnostic system to measure the electric field (>100 kV/cm) of a free-electron laser (FEL) beam when injected into the plasma of the Microwave Tokamak Experiment (MTX). The apparatus allows a crossed-beam measurement, with 2-cm spatial resolution in the plasma, involving the FEL beam (with 140-GHz, ∼1-GW ECH pulses), a neutral-helium beam, and a dye-laser beam. After the laser beam pumps metastable helium atoms to higher excited states, their decay light is detected by an efficient optical system. Because of the Stark effect arising from the FEL electric field (rvec E), a forbidden transition can be strongly induced. The intensity of emitted light resulting from the forbidden transition is proportional to E 2 . Because photon counting rates are estimated to be low, extra effort is made to minimize background and noise levels. It is possible that the lower rvec E of an MTX gyrotron-produced ECH beam with its longer-duration pulses can also be measured using this method. Other applications of the apparatus described here may include measurements of ion temperature (using charge-exchange recombination), edge-density fluctuations, and core impurity concentrations

  17. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-07-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scattering. The self-seeding scheme with the wake monochromator is extremely compact, and takes almost no cost and time to be implemented. The upgrade proposed in this paper could take place during the commissioning stage of the European XFEL, opening a vast new range of applications from the very beginning of operations.We present feasibility study and examplifications for the SASE2 line of the European XFEL. (orig.)

  18. Can Beta Blockers Cause Weight Gain?

    Science.gov (United States)

    ... cause weight gain? Can beta blockers cause weight gain? Answers from Sheldon G. Sheps, M.D. Yes. Weight gain can occur as a side effect of some ... and metoprolol (Lopressor, Toprol-XL). The average weight gain is about 2.6 pounds (about 1.2 ...

  19. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  20. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    Science.gov (United States)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.