WorldWideScience

Sample records for feedwater collector nozzles

  1. Thermal-hydraulics of PGV-4 water volume during damage of the feedwater collector nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S.A.; Titov, V.F. [OKB Gidropress (Russian Federation); Notaros, U.; Lenkei, I. [NPP Paks (Hungary)

    1995-12-31

    A number of VVER-440 plants has experienced the distributing nozzles of feedwater collector being damaged due to corrosion-erosion wearing. Such phenomenon could result in feedwater redistribution within the SG inventory with undesirable consequences. The collector with damaged nozzles has to be replaced but a certain time is needed for the preparatory works. The main objective of the investigation conducted is to assess if the safe operation of SG is possible before collector replacement. It was shown that the nozzle damage as observed did not result in the dangerous disturbances of thermobydraulics as compared with the conditions existing at the initial period of operation. (orig.).

  2. Thermal-hydraulics of PGV-4 water volume during damage of the feedwater collector nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S A; Titov, V F [OKB Gidropress (Russian Federation); Notaros, U; Lenkei, I [NPP Paks (Hungary)

    1996-12-31

    A number of VVER-440 plants has experienced the distributing nozzles of feedwater collector being damaged due to corrosion-erosion wearing. Such phenomenon could result in feedwater redistribution within the SG inventory with undesirable consequences. The collector with damaged nozzles has to be replaced but a certain time is needed for the preparatory works. The main objective of the investigation conducted is to assess if the safe operation of SG is possible before collector replacement. It was shown that the nozzle damage as observed did not result in the dangerous disturbances of thermobydraulics as compared with the conditions existing at the initial period of operation. (orig.).

  3. Ultrasonic pattern recognition study of feedwater nozzle inner radius indication

    International Nuclear Information System (INIS)

    Yoneyama, H.; Takama, S.; Kishigami, M.; Sasahara, T.; Ando, H.

    1983-01-01

    A study was made to distinguish defects on feed-water nozzle inner radius from noise echo caused by stainless steel cladding by using ultrasonic pattern recognition method with frequency analysis technique. Experiment has been successfully performed on flat clad plates and nozzle mock-up containing fatigue cracks and the following results which shows the high capability of frequency analysis technique are obtained

  4. BWR feedwater nozzle and control-rod-drive return line nozzle cracking

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In its 1978 Annual Report to Congress, the Nuclear Regulatory Commission identified as an unresolved safety issue the appearance of cracks in feedwater nozzles at boiling-water reactors (BWRs). Later similar cracking, detected in return water lines for control-rod-drive systems at BWRs, was designated Part II of the issue. This article outlines the resolution of these cracking problems

  5. Study of thermohydraulic characteristics of upgraded feedwater collector in PGV-440 steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Tarankov, G.A.; Trunov, N.B.; Titov, V.F. [OKB Gidropress (Russian Federation); Urbansky, V.V. [Rovno NPP (Ukraine); Lenkei, I.; Notarosh, M. [Paks NPP (Hungary)

    1995-12-31

    Reconstruction of feedwater distribution collector was performed at unit 1 of Rowno NPP. Main results of measurements of temperatures in water volume, reparation characteristics and impurities distribution are presented. Analysis of tests results and design criteria is given. (orig.).

  6. Study of thermohydraulic characteristics of upgraded feedwater collector in PGV-440 steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Tarankov, G A; Trunov, N B; Titov, V F [OKB Gidropress (Russian Federation); Urbansky, V V [Rovno NPP (Ukraine); Lenkei, I; Notarosh, M [Paks NPP (Hungary)

    1996-12-31

    Reconstruction of feedwater distribution collector was performed at unit 1 of Rowno NPP. Main results of measurements of temperatures in water volume, reparation characteristics and impurities distribution are presented. Analysis of tests results and design criteria is given. (orig.).

  7. Welding overlay analysis of dissimilar metal weld cracking of feedwater nozzle

    International Nuclear Information System (INIS)

    Tsai, Y.L.; Wang, Li. H.; Fan, T.W.; Ranganath, Sam; Wang, C.K.; Chou, C.P.

    2010-01-01

    Inspection of the weld between the feedwater nozzle and the safe end at one Taiwan BWR showed axial indications in the Alloy 182 weld. The indication was sufficiently deep that continued operation could not be justified considering the crack growth for one cycle. A weld overlay was decided to implement for restoring the structural margin. This study reviews the cracking cases of feedwater nozzle welds in other nuclear plants, and reports the lesson learned in the engineering project of this weld overlay repair. The overlay design, the FCG calculation and the stress analysis by FEM are presented to confirm that the Code Case structural margins are met. The evaluations of the effect of weld shrinkage on the attached feedwater piping are also included. A number of challenges encountered in the engineering and analysis period are proposed for future study.

  8. Device for detecting the water leak within a feedwater nozzle in water cooled reactors

    International Nuclear Information System (INIS)

    Hattori, Tsunekazu.

    1984-01-01

    Purpose: To enable exact recognition and detection for the state of water leak. Constitution: The detection device comprises a thermocouple disposed to the outer surface of a feedwater nozzle, a distortion meter for detecting the change in the outer diameter of a nozzle and an acoustic emission generator disposed to the inside of the nozzle for generating a signal upon temperature change. These sensors previously monitor the states during normal operation, and thus detect the change in each of the states upon occurrence of water leakage to issue an alarm. (Kamimura, M.)

  9. Collector feedwater supply and stability of the power distribution in a pressurized-water reactor

    International Nuclear Information System (INIS)

    Budnikov, V.I.; Kosolapov, S.V.; Kramerov, A.Ya.

    1980-01-01

    It is necessary to determine how the collector feedwater supply affects the disposition of the stability limits and the instability period for the power distribution in such a reactor. The main reason for the fluctuations in feedwater flow rate were shown by additional calculations with the general power regulator switched out to be due to instability on the fundamental in the neutron distribution. The power-level fluctuations are due to oscillation of the feed valve in the level regulator, and consequently to oscillations in the feedwater flow rate. If collector feed is to be employed, it is desirable to improve the response of the pressure control system for the separator drum, because under certain emergency conditions there will be a considerable fall in pressure in the separator drum. The deviation from saturation for the water in the separator drum tube is less in the second method than it is in the first, so the cavitation margin in the principal pumps may be reduced somewhat. Calculations show that this reduction will not occur if the time constant of the turbine synchronizer is about 10 sec. Also, the dynamic characteristics of the nuclear power station in these modes of feedwater supply are appreciably influenced by the parameters of the pressure-control system and the water-level control for the separator drum

  10. Development of methodology for evaluating and monitoring steam generator feedwater nozzle cracking in PWRs

    International Nuclear Information System (INIS)

    Shvarts, S.; Gerber, D.A.; House, K.; Hirschberg, P.

    1994-01-01

    The objective of this paper is to describe a methodology for evaluating and monitoring steam generator feedwater nozzle cracking in PWR plants. This methodology is based in part on plant test data obtained from a recent Diablo Canyon Power Plant (DCPP) Unit 1 heatup. Temperature sensors installed near the nozzle-to-pipe weld were monitored during the heatup, along with operational parameters such as auxiliary feedwater (AFW) flow rate and steam generator temperature. A thermal stratification load definition was developed from this data. Steady state characteristics of this data were used in a finite element analysis to develop relationship between AFW flow and stratification interface level. Fluctuating characteristics of this data were used to determine transient parameters through the application of a Green's Function approach. The thermal stratification load definition from the test data was used in a three-dimensional thermal stress analysis to determine stress cycling and consequent fatigue damage or crack growth during AFW flow fluctuations. The implementation of the developed methodology in the DCPP and Sequoyah Nuclear Plant (SNP) fatigue monitoring systems is described

  11. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  12. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    International Nuclear Information System (INIS)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage

  13. BWR feedwater nozzle and control rod drive return line nozzle cracking: resolution of generic technical activity A-10. Technical report

    International Nuclear Information System (INIS)

    Snaider, R.

    1980-11-01

    This report summarizes work performed by the NRC staff in the resolution of Generic Technical Activity A-10, 'BWR Nozzle Cracking'. Generic Technical Activity A-10 is one of the generic technical subjects designated as 'unresolved safety issues' pursuant to Section 210 of the Energy Reorganization Act of 1974. The report describes the technical issues, the technical studies and analyses performed by the General Electric Company and the NRC staff, the staff's technical positions based on these studies, and the staff's plans for continued implementation of its technical positions. It also provides information for further work to resolve the non-destructive examination issue

  14. Comparison of finite element and influence function methods for three-dimensional elastic analysis of boiling water reactor feedwater nozzle cracks. Phase report

    International Nuclear Information System (INIS)

    Besuner, P.M.; Caughey, W.R.

    1976-11-01

    The finite element (FE) and influence function (IF) methods are compared for a three-dimensional elastic analysis of postulated circular-shaped surface cracks in the feedwater nozzle of a typical boiling water reactor (BWR). These are two of the possible methods for determining stress intensity factors for nozzle corner cracks. The FE method is incorporated in a direct manner. The IF method is used to compute stress intensity factors only when the uncracked stress field (i.e., the stress in the uncracked solid at the locus of the crack to be eventually considered) has been computed previously. Both the IF and FE methods are described in detail and are applied to several test cases chosen for their similarity to the nozzle crack problem and for the availablility of an accurate published result obtained from some recognized third method of solution

  15. Comparison of finite element and influence function methods for three-dimensional elastic analysis of boiling water reactor feedwater nozzle cracks

    International Nuclear Information System (INIS)

    Besuner, P.M.; Caughey, W.R.

    1976-11-01

    The paper compares the finite element (FE) and influence function (IF) methods for a three-dimensional elastic analysis of postulated circular-shaped surface cracks in the feedwater nozzle of a typical boiling water reactor (BWR). The FE method is incorporated in a direct manner. The nozzle and crack geometry and the complex loading are all included in the model which simulates the structural crack problem. The IF method is used to compute stress intensity factors only when the uncracked stress field (that is, the stress in the uncracked solid at the locus of the crack to be eventually considered) has been computed previously. The IF method evaluates correctly the disturbance of this uncracked stress field caused by the crack by utilizing a method of elastic superposition. Both the IF and FE methods are described in detail in the paper and are applied to several test cases chosen for their similarity to the nozzle crack problem and for the availability of an accurate published result obtained from some recognized third method of solution. Results are given which summarize both the accuracy and the direct computer costs of the two methods

  16. Feedwater recycling system in BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To improve the reactor safety by preventing thermal stresses and cracks generated in structural materials due to the fluctuations in the temperature for high temperature water - low temperature water mixture near the feedwater nozzle. Method: Feedwater pipes are connected to a pressure vessel not directly but by way of a flow control valve. While the recycled water is circulated from an inlet nozzle to an outlet nozzle through a recycle pump, flow control valve and recycling pipeways, feedwater is fed from the feedwater pipes to the recycling pipeways by way of the flow control valve. More specifically, since the high temperature recycle water and the low temperature recycle water are mixed within the pipeways, the temperature fluctuations resulted from the temperature difference between the recycle water and the feedwater is reduced to prevent thermal fatigue and generation of cracks thereby securing the reactor safety. (Furukawa, Y.)

  17. Feedwater heater

    International Nuclear Information System (INIS)

    Murata, Shigeto; Minato, Akihiko; Yokomizo, Osamu; Masuhara, Yasuhiro.

    1991-01-01

    The present invention concerns a feedwater heater for a BWR type reactor. A cylinder is fit into the lower portion of a drain inlet pipe, to which drain water inflows from a turbine, and a disk is disposed to the lower end of the cylinder vertically to the axis of the cylinder, to constitute a drain water dispersing mechanism. Drain water inflown from the drain inlet pipe is fallen in the cylinder and collides against the disk. The collided drain water is splashed horizontally by its kinetic energy to reach the heat transfer pipe and conducts heat exchange. In this case, the drain water is converted into fine droplets by the collision against the disk and scattered in a wide range in the heater. As a result, sensible heat in the drain water can be transferred to feedwater effectively. Then, even the heat energy of the drain water can be utilized effectively for heat exchange, to improve the heat exchange efficiency. (I.N.)

  18. Feedwater control system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Excessive swing of the feedwater in nuclear reactor power supply apparatus on the occurrence of a transient is suppressed by injecting an anticipatory compensating signal (δWsub(fw)) into the control for the feedwater. Typical overshoot occurs on removal of a large part of the load, the steam flow is reduced so that the conventional control system reduces the flow of feedwater. At the same time there is a reduction of feedwater level in the steam generator because of the collapse of the bubbles under increased steam pressure. By the time the control responds to the drop in level, the apparatus has begun to stabilize so that there is overshoot. The anticipatory signal is derived from the boiling power (BP) which is a function of the nuclear power (Qsub(N)) developed, the enthalpy of saturated water (hsub(s)) and the enthalpy of the feedwater injected into the steam generator (hsub(fw)). From the boiling power (BP) and the increment in steam pressure resulting from the transient an anticipatory increment of feedwater flow is derived. This increment is added to the other parameters controlling the feedwater. (author)

  19. Reactor feedwater device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To suppress soluble radioactive corrosion products in a feedwater device. Method: In a light water cooled nuclear reactor, an iron injection system is connected to feedwater pipeways and the iron concentration in the feedwater or reactor coolant is adjusted between twice and ten times of the nickel concentration. When the nickel/iron ratio in the reactor coolant or feedwater goes nearer to 1/2, iron ions are injected together with iron particles to the reactor coolant to suppress the leaching of stainless steels, decrease the nickel in water and increase the iron concentration. As a result, it is possible to suppress the intrusion of nickel as one of parent nuclide of radioactive nuclides. Further, since the iron particles intruded into the reactor constitute nuclei for capturing the radioactive nuclides to reduce the soluble radioactive corrosion products, the radioactive nuclides deposited uniformly to the inside of the pipeways in each of the coolant circuits can be reduced. (Kawakami, Y.)

  20. Reactor feedwater system

    International Nuclear Information System (INIS)

    Kagaya, Hiroyuki; Tominaga, Kenji.

    1993-01-01

    In a simplified water type reactor using a gravitationally dropping emergency core cooling system (ECCS), the present invention effectively prevents remaining high temperature water in feedwater pipelines from flowing into the reactor upon occurrence of abnormal events. That is, (1) upon LOCA, if a feedwater pipeline injection valve is closed, boiling under reduced pressure of the remaining high temperature water occurs in the feedwater pipelines, generated steams prevent the remaining high temperature water from flowing into the reactor. Accordingly, the reactor is depressurized rapidly. (2) The feedwater pipeline injection valve is closed and a bypassing valve is opened. Steams generated by boiling under reduced pressure of the remaining high temperature water in the feedwater pipelines are released to a condensator or a suppression pool passing through bypass pipelines. As a result, the remaining high temperature water is prevented from flowing into the reactor. Accordingly, the reactor is rapidly depressurized and cooled. It is possible to accelerate the depressurization of the reactor by the method described above. Further, load on the depressurization valve disposed to a main steam pipe can be reduced. (I.S.)

  1. Reactor feedwater facility

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashi; Kinoshita, Shoichiro; Akatsu, Jun-ichi

    1996-04-30

    In a reactor feedwater facility in which one stand-by system and at least three ordinary systems are disposed in parallel, each of the feedwater pumps is driven by an electromotor, and has substantially the same capacity. At least two systems among the ordinary systems have a pump rotation number variable means. Since the volume of each of the feedwater pump of each system is determined substantially equal, standardization is enabled to facilitate the production. While the number of electromotors is increased, since they are driven by electromotors, turbines, steam pipelines and valves for driving feed water pumps can be eliminated. Therefore, the feedwater pumps can be disposed to a region of low radiation dose being separated from a main turbine and a main condensator, to improve the degree of freedom in view of the installation. In addition, accessibility to equipments during operation is improved to improve the maintenance of feed water facilities. The number of parts for equipments can be reduced compared with that in a turbine-driving system thereby capable of reducing the operation amount for the maintenance and inspection. (N.H.)

  2. Dependence of steam generator vibrations on feedwater pressure

    International Nuclear Information System (INIS)

    Sadilek, J.

    1989-01-01

    Vibration sensors are attached to the bottom of the steam generator jacket between the input and output primary circuit collectors. The effective vibration value is recorded daily. Several times higher vibrations were observed at irregular intervals; their causes were sought, and the relation between the steam generator vibrations measured at the bottom of its vessel and the feedwater pressure was established. The source of the vibrations was found to be in the feedwater tract of the steam generator. The feedwater tract is described and its hydraulic characteristics are given. Vibrations were measured on the S02 valve. It is concluded that vibrations can be eliminated by reducing the water pressure before the control valves and by replacing the control valves with ones with more suitable control characteristics. (E.J.). 3 figs., 1 tab., 3 refs

  3. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  4. Reactor feedwater pump control device

    International Nuclear Information System (INIS)

    Nishiyama, Hiroyuki.

    1990-01-01

    An amount of feedwater necessary for ensuring reactor inventory after scram is ensured automatically based on the reactor output before scram of a BWR type reactor. That is, if scram should occur, a feedwater flow rate just before the scram is stored by reactor output signals. Further, the amount of feedwater required after the scram is determined based on the output of the memory. The reactor power after the scram based on a feedwater flow rate and a main steam flow rate is inputted to an integrator, to calculate and output the amount of the feedwater flow rate (1) injected after the scram for the inventory. A coast down flowrate (2) in a case of pump trip is forecast by the output signals. Automatic trip is outputted to all turbine driving feedwater pumps when the sum of (1) and (2) exceeds a necessary and sufficient amount of feedwater required for ensuring inventory. For motor driving feedwater pumps, only a portion, for example, one of the pumps is automatically started while other pumps are stopped their operation, only in this case, to prevent excess water feeding. (I.S.)

  5. Monitor for reactor feedwater systems

    International Nuclear Information System (INIS)

    Takizawa, Yoji; Tomizawa, Teruaki

    1983-01-01

    Purpose: To improve the reliability of operator's procedures upon occurrence of the feedwater system abnormality in a BWR type reactor by presenting the operation with effective information to avoid such abnormality. Constitution: A feedwater temperature at the reactor inlet of a reactor feedwater system measured by a temperature detector and a predetermined value for the feedwater temperature at the reactor inlet determined depending on the reactor conditions are inputted to a start-up system. The start-up system outputs a start-up signal when the difference between the inputted values exceeds a predetermined value. Then, the start-up signal is inputted to a display device where information required for the operator is displayed in the device. Thus, the information required for the operator is rapidly provided upon abnormality of the feedwater system to thereby improve the reliability of the operator's procedures. (Moriyama, K.)

  6. Getting the most out of your new plant with a chordal ultrasonic feedwater flow measurement system

    International Nuclear Information System (INIS)

    Estrada, Herb; Hauser, Ernie

    2007-01-01

    The economic advantages of a chordal ultrasonic feedwater flow measurement system over conventional (flow nozzle-based) feedwater instrumentation are analyzed for new plants having ratings ranging from 1100 MWe to 1600 MWe. Specifically, each of the following topics is considered: The value of a 1.7% increase in the rating of the new plant, made possible by the reduced uncertainty in the determination of thermal power. The value of reduced startup time owing to enhanced steam supply water level control. The value of the reduced feedwater pumping power brought about by the elimination of flow nozzles. The value of the reduced calibration burden owing to the elimination of the feedwater flow differential pressure transmitters and resistance thermometers. The net difference in the acquisition costs of the ultrasonic system versus conventional feedwater flow instrumentation. The net savings in installation costs of the ultrasonic system vis-a-vis conventional feedwater flow instrumentation. The potential savings in outage time due to the reduced frequency of low steam supply water level trips (scrams) of the reactor. (author)

  7. Simulation of the behaviour of a servo actuated check valve upon rupture of the feedwater pipe

    International Nuclear Information System (INIS)

    Lucas, A.M. de; Perezagua, R.L.; Rosa, B. de la; Sanz, J.

    1995-01-01

    The steam generator replacement programme at Almaraz NPP, provides for the installation of a replacement damped non-return valve for the feedwater system. the function of this valve is to protect the steam generator in the event of a rupture in the feedwater pipe. Sudden closure of the check valve, against the flow and following rupture of the feedwater pipe, causes overpressure in the valve which is transmitted to the steam generator nozzle. It is therefore necessary to know this when designing the internal systems of the steam generator. Using the RELAP5/MODE3 code, it has been possible to simulate the dynamic behaviour of a check valve upon rupture of a feedwater pipe postulated outside the containment. The calculation model has been applied to different types of check valve. (Author)

  8. Feedwater system in a nuclear power plant

    International Nuclear Information System (INIS)

    Shimizu, Tadayuki.

    1975-01-01

    Object: To improve the control property of a steam turbine for a feedwater pump and plant operation characteristics where water is supplied at a low rate. Structure: In a nuclear power plant where feedwater pumps of the reactor are driven by a steam turbine, the main feedwater duct on the discharge side of the feedwater pumps is provided with a cut-off valve and is connected parallel with a bypass duct having a pressure compensated flow control valve. With this arrangement, at the time when the rate of feedwater is high the cut-off valve is open so that water supplied from the feedwater pumps driven by the steam turbine is supplied through the main feedwater duct to the reactor while in case when the rate of feedwater is low the flow control valve is opened to let the water be supplied through the bypass duct. (Kamimura, M.)

  9. Feedwater control system in nuclear power plants

    International Nuclear Information System (INIS)

    Masuyama, Hideo.

    1981-01-01

    Purpose: To enable switching operation for feedwater systems in a short time and with no fluctuations in the reactor water level by increasing or decreasing the flow rate in the feedwater systems during automatic operation by the amount of the fluctuations in the flow rate in the feedwater system during manual operation. Constitution: In a BWR type nuclear power plant having a plurality of feedwater systems to a nuclear reactor, a feedwater control system is constituted with a reactor water level controller, a M/A switcher for switching either of automatic flow rate demand signals or manual flow rate set signals from the reactor level controller to apply flow rate demand signals for each of the feedwater systems, a calculation device for calculating the flow rate set signals in the feedwater systems during manual operation and an adder for subtracting the flow rate set signals in the manual feedwater system calculated in the calculating device from the automatic flow rate demand signals for the feedwater systems during automatic operation. This enables rapid switching for the feedwater systems with no fluctuations in the reactor water level by increasing or decreasing the flow rate in the feedwater systems during automatic operation by the amount of fluctuations in the flow rate in the feedwater systems during manual operation and compensating the effects in upon manual and automatic switching by the M/A switcher. (Seki, T.)

  10. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L. [Inst. of Material Engineering, Ostrava (Switzerland)

    1995-12-31

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed.

  11. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Pappx, L.

    1994-01-01

    After modification of Dukovany NPP steam generator feedwater system, the increased concentration of minerals was measured in the cold leg of modified steam generator. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators, has focused this attention on the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of flow distribution in the secondary side of SG was developed. (Author)

  12. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L [Inst. of Material Engineering, Ostrava (Switzerland)

    1996-12-31

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed.

  13. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Papp, L.

    1995-01-01

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed

  14. Feedwater control method and device therefor

    International Nuclear Information System (INIS)

    Nakahara, Mitsugu; Ichikawa, Yoshiaki; Ishii, Yoshikazu; Suzuki, Katsuyuki; Tanikawa, Naoshi; Mizuki, Fumio.

    1997-01-01

    The present invention provides a method of and a device for easily changing the constitution of feedwater systems without causing change in the water level of a reactor even when a plurality of feedwater systems have imbalance points. Namely, a feedwater control device comprises at least two feedwater systems capable of feeding water to tanks independently respectively and a controller capable of controlling water level in the tanks by controlling these feedwater systems. There is disposed a means for outputting gradually increasing driving signals to other feedwater systems, when the water level controller automatically controls one of the feedwater systems. There is also disposed a means for switching from automatic control for one of the feedwater systems to automatic control for the other feedwater system by a water level controller when the other feedwater system is in a stable operation region. As a result, entire feedwater flow rate is not temporarily changed and the water level in the tanks can be maintained constant. (N.H.)

  15. Auxiliary feedwater system aging study

    International Nuclear Information System (INIS)

    Kueck, J.D.

    1992-01-01

    The Phase 1 Auxiliary Feedwater (AFW) System Aging Study, NUREG/CR-5404 V1, focused on how and to what extent the various AFW system component types fail, how the failures have been and can be detected, and on the value of current testing requirements and practices. This follow-on study, which will be provided in full in NUREG/CR-5404 V2, provides a closure to the Phase 1 Study. For each of the component types and for the various sources of component failure identified in the Phase 1 Study, the methods of failure detection were designated and tabulated and the following findings became evident: Instrumentation and Control (I and C) related failures dominated the group of failures that were detected during demand conditions; many of the potential failure sources not detectable by the current monitoring practices were related to the I and C portion of the system; some component failure modes are actually aggravated by conventional test methods; and several important system functions did not undergo any function verification test. The goal of this follow-on study was to categorize and evaluate the deficiencies in testing identified by Phase 1 and to make specific recommendations for corrective action. In addition, this study presents discussions of alternate, state-of-the-art test methods, and provides a proposed Auxiliary Feedwater Pump test at normal operating pressure which should do much to verify system operability while eliminating degradation

  16. 49 CFR 230.57 - Injectors and feedwater pumps.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Injectors and feedwater pumps. 230.57 Section 230... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water.... Injectors and feedwater pumps must be kept in good condition, free from scale, and must be tested at the...

  17. Nozzle seal

    International Nuclear Information System (INIS)

    Herman, R.F.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing members operatively disposed between the outlet nozzle and the hoop. The sealing members are biased against the pressure vessel and the hoop and are connected by a leak restraining member establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel

  18. Nozzle seal

    International Nuclear Information System (INIS)

    Walling, G.A.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing rings operatively disposed between the outlet nozzles and the hoop. The sealing rings connected by flexible members are biased against the pressure vessel and the hoop, establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel. 4 claims, 2 figures

  19. Auxiliary feedwater system aging study

    International Nuclear Information System (INIS)

    Kueck, J.D.

    1993-07-01

    This report documents the results of a Phase I follow-on study of the Auxiliary Feedwater (AFW) System that has been conducted for the US Regulatory Commission's Nuclear Plant Aging research Program. The Phase I study found a number of significant AFW System functions that are not being adequately tested by conventional test methods and some that are actually being degraded by conventional testing. Thus, it was decided that this follow-on study would focus on these testing omissions nd equipment degradation. The deficiencies in current monitoring and operating practice are categorized and evaluated. Areas of component degradation caused by current practice are discussed. Recommendations are made for improved diagnostic methods and test procedures

  20. Feedwater connection repair and modification at GKN

    Energy Technology Data Exchange (ETDEWEB)

    Witteman, C; Klees, J E

    1985-03-01

    From January to March 1983 the feedwater connection of GKN was repaired using a boring lathe, spark machining and semi-automatic welding. Nondestructive examination was performed by ultrasonic and eddy-current testing.

  1. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  2. Feedwater connection repair and modification at GKN

    International Nuclear Information System (INIS)

    Witteman, C.; Klees, J.E.

    1985-01-01

    From Jan. to March 1983 the feedwater connection of GKN was repaired using a boring lathe, spark machining and semi-automatic welding. Nondestructive examination was performed by ultrasonic and eddy-current testing

  3. Preliminary design of RDE feedwater pump impeller

    International Nuclear Information System (INIS)

    Sri Sudadiyo

    2018-01-01

    Nowadays, pumps are being widely used in the thermal power generation including nuclear power plants. Reaktor Daya Experimental (RDE) is a proposed nuclear reactor concept for the type of nuclear power plant in Indonesia. This RDE has thermal power 10 MW th , and uses a feedwater pump within its steam cycle. The performance of feedwater pump depends on size and geometry of impeller model, such as the number of blades and the blade angle. The purpose of this study is to perform a preliminary design on an impeller of feedwater pump for RDE and to simulate its performance characteristics. The Fortran code is used as an aid in data calculation in order to rapidly compute the blade shape of feedwater pump impeller, particularly for a RDE case. The calculations analyses is solved by utilizing empirical correlations, which are related to size and geometry of a pump impeller model, while performance characteristics analysis is done based on velocity triangle diagram. The effect of leakage, pass through the impeller due to the required clearances between the feedwater pump impeller and the volute channel, is also considered. Comparison between the feedwater pump of HTR-10 and of RDE shows similarity in the trend line of curve shape. These characteristics curves will be very useful for the values prediction of performance of a RDE feedwater pump. Preliminary design of feedwater pump provides the size and geometry of impeller blade model with 5-blades, inlet angle 14.5 degrees, exit angle 25 degrees, inside diameter 81.3 mm, exit diameter 275.2 mm, thickness 4.7 mm, and height 14.1 mm. In addition, the optimal values of performance characteristics were obtained when flow capacity was 4.8 kg/s, fluid head was 29.1 m, shaft mechanical power was 2.64 kW, and efficiency was 52 % at rotational speed 1750 rpm. (author)

  4. Dust collector

    Energy Technology Data Exchange (ETDEWEB)

    Sahourin, H.

    1988-03-22

    This invention relates to a dust collector or filter which may be used for large volume cleaning air for gases or for separating out industrial byproducts such as wood chips, sawdust, and shavings. It relies on filtration or separation using only a uniquely configured medium. A primary, but not exclusive, purpose of the invention is to enable very large throughput, capable of separating or filtering of gases containing up to three or more tons of byproduct with a minimum pressure-drop across the device. No preliminary cycloning, to remove major particulates is necessary. The collector generally comprises a continuous and integral filter medium which is suspended from a plurality of downwardly extending frames forming a series of separate elements having a triangular cross-section, each element being relatively wide at the top and narrow at the bottom to define, between adjacent elements, a divergent collecting space which is wide at the bottom. 11 figs.

  5. Magnetic collectors

    International Nuclear Information System (INIS)

    Frew, J.D.

    1980-01-01

    A collector for use in a magnetic separator is formed by isostatically pressing a metal which is resistant to attack by acid about ferromagnetic bodies whereby to encase the bodies in the metal. In one arrangement, as shown, the bodies are encapsulated between inner and outer cylinders. In other arrangements the encapsulating metal is in the form of a tube or planar sheets. The bodies are of Fe or an oxide thereof and the acid-resistant metal parts may be of stainless steel, Au, Pt, Pa or an alloy. The magnetic separator is intended for use in removing particles from liquids during the reprocessing of nuclear fuel materials. (author)

  6. ESBWR power maneuvering via feedwater temperature control

    International Nuclear Information System (INIS)

    Saha, P.; Marquino, W.; Tucker, L. J.

    2008-01-01

    The ESBWR is a Generation III+ Boiling Water Reactor (BWR) driven by natural circulation. For a given geometry/hardware, system pressure, downcomer water level and feedwater temperature, the core flow rate in the ESBWR is only a function of reactor power, controlled through the control blade movement. In order to provide operational flexibility, another method of core-wide or global power maneuvering via feedwater temperature control has been developed. This is independent of power maneuvering via control blade movement, and it lowers the linear heat generation rate (LHGR) changes near the tip of control blades, which improves fuel reliability. All required stability, anticipated operational occurrences (AOOs), infrequent events, special events including anticipated transients without scram (ATWS), and loss-of-coolant accident (LOCA) analyses have been performed for the 4500 MWt ESBWR. Based on the results of these analyses at 'high', nominal and 'low' feedwater temperatures, a safe Power - Feedwater Temperature operating domain has been developed. This paper summarizes the results of these analyses and presents the ESBWR Power - Feedwater Temperature operating domain or map. (authors)

  7. Feedwater device for nuclear power plant

    International Nuclear Information System (INIS)

    Ikekita, Iwao.

    1980-01-01

    Purpose: To conduct water feeding without using high pressure steam of the reactor and with no radiation exposure by the provision of each feedwater pump driven by each motor controlled from variable frequency thyristor-inverter to a feedwater pipe connecting a condensate pump and the reactor. Constitution: High pressure steams resulted from heat exchange in the reactor core are transferred by way of a main steam check valve in a main steam pipe to a high pressure turbine, drive the high pressure turbine, flow out of the turbine and then drive a low pressure turbine by way of a moisture separator. The steams thus used for the turbine driving are condensed in a condensator and then sent under pressure by way of each condensating pump to a feedwater pipe. Since each of the feedwater pumps provided in the route of the feedwater pipe is driven by each of the motors under the control of the variable frequency thyristor-inverter in starting, shut down and normal operation, water is fed to the reactor. (Horiuchi, T.)

  8. Feedwater temperature control methods and systems

    Science.gov (United States)

    Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip

    2014-04-22

    A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.

  9. Interim status report on the revision of ASME PTC 12.1 -- closed feedwater heaters

    International Nuclear Information System (INIS)

    Stellern, J.L.; Hoobler, J.V.; Milton, J.W.; Welch, T.; Kona, C.; Thompson, H.N.; Tsou, J.L.

    1993-01-01

    The ASME Performance Test Code (PTC) 12.1-1978 for the performance testing of feedwater heaters is being revised extensively and updated. The committee anticipates that the final draft of the proposed Code will be ready for industry review in 1993. This Code revision will greatly enhance the usefulness and cost effectiveness of feedwater heater performance testing. This paper has been prepared to report on the progress of the committee and to disseminate information on the nature of the revision. Included in this paper are some of the notable changes intended for the Code. The most extensive change is the calculation method, which is described in step-by-step detail. An approach is also described for using ultrasonic flow techniques to test individual or split-string feedwater heaters, when flow nozzles are not available. Additionally some educational information on the use and limitations of ultrasonic measurement instrumentation is included. Discussion is also included on the required uncertainty analysis. 3 refs., 2 figs., 2 tabs

  10. Aging assessment of auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Casada, D.A.

    1989-01-01

    A study of Pressurized Water Reactor Auxiliary Feedwater (AFW) Systems has been conducted by Oak Ridge National Laboratory (ORNL) under the auspices of the Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. The study has reviewed historical failure experience and current monitoring practices for the AFW System. This paper provides an overview of the study approach and results. 7 figs

  11. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  12. Tracer test method and process data reconciliation based on VDI 2048. Comparison of two methods for highly accurate determination of feedwater massflow at NPP Beznau

    International Nuclear Information System (INIS)

    Hungerbuehler, T.; Langenstein, M.

    2007-01-01

    The feedwater mass flow is the key measured variable used to determine the thermal reactor output in a nuclear power plant. Usually this parameter is recorded via venturi nozzles of orifice plates. The problem with both principles of measurement, however, is that an accuracy of below 1% cannot be reached. In order to make more accurate statements about the feedwater amounts recirculated in the water-steam cycle, tracer measurements that offer an accuracy of up to 0.2% are used. In the NPP Beznau both methods have been used in parallel to determine the feedwater flow rates in 2004 (unit 1) and 2005 (unit 2). Comparison of the results shows that a high level of agreement is obtained between the results of the reconciliation and the results of the tracer measurements. As a result of the findings of this comparison, a high level of acceptance of process data reconciliation based on VDI 2048 was achieved. (orig.)

  13. Open channel steam generator feedwater system

    International Nuclear Information System (INIS)

    Kim, R.F.; Min-Hsiung Hu.

    1985-01-01

    A steam generator which utilizes a primary fluid to vaporize a secondary fluid is provided with an open flow channel and elevated discharge nozzle for the introduction of secondary fluid. The discharge nozzle is positioned above a portion of the inlet line such that the secondary fluid passes through a vertical section of inlet line prior to its discharge into the open channel. (author)

  14. Loss-of-feedwater transients in PWRs

    International Nuclear Information System (INIS)

    Burns, R.D. III.

    1980-01-01

    Recent severe accident sequence analysis (SASA) work in LASL's Multifault Accident Analysis Section has focused on loss-of-feedwater (LOFW) transients at a 4-loop Westinghouse nuclear power reactor. In all transients studied, the initiator was loss of main feedwater and reactor coolant pump (RCP) trip, caused by temporary loss of off-site power. Subsequent automatic actions included reactor scram, closure of the main steam isolation valves, and initiation of auxiliary feedwater (AFW) flow. TRAC-PD2 calculations were designed to study the consequences of AFW delivery rates below the minimum specified in the emergency operating procedures (EOPs) for the reference 4-loop plant. Six types of LOFW scenarios have been studied, including (1) zero AFW availability (nominal case), (2) initially zero AFW but full recovery after 2 h, (3) zero AFW with steam generator (SG) atmospheric relief valve (ARV) malfunction, (4) zero AFW with high pressure charging flow initiated after 2 h, and (5) zero AFW with delay in reactor scram. Additional cases were considered to study the effects of uncertainties in pressurizer heater/spray operation, operator manual initiation of high pressure charging flow, reactor initial conditions, and RCP and power coastdown characteristics. Nominal case results, rationale for selections of other cases, and lessons learned are summarized

  15. A Smart Soft Sensor Predicting Feedwater Flow Rate

    International Nuclear Information System (INIS)

    Yang, Heon Young; Na, Man Gyun

    2009-01-01

    Since we evaluate thermal nuclear reactor power with secondary system calorimetric calculations based on feedwater flow rate measurements, we need to measure the feedwater flow rate accurately. The Venturi flow meters that are being used to measure the feedwater flow rate in most pressurized water reactors (PWRs) measure the flow rate by developing a differential pressure across a physical flow restriction. The differential pressure is then multiplied by a calibration factor that depends on various flow conditions in order to calculate the feedwater flow rate. The calibration factor is determined by the feedwater temperature and pressure. However, Venturi meters cause a buildup of corrosion products near the orifice of the meter. This fouling increases the measured pressure drop across the meter, thereby causing an overestimation of the feedwater flow rate

  16. Feedwater processing method in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izumitani, M; Tanno, K

    1976-09-06

    The purpose of the invention is to decrease a quantity of corrosion products moving from the feedwater system to the core. Water formed into vapor after heated in a reactor is fed to the turbine through a main steam line to drive a generator to return it to liquid-state water in a condenser. The water is then again cycled into the reactor via the condensate pump, desalting unit, low pressure feedwater heater, medium pressure feedwater heater, and high pressure feedwater heater. The reactor water is recycled by a recycling pump. At this time, the reactor water recycled by the recycling pump is partially poured into a middle point between the desalting unit and the low pressure feedwater heater through a reducing valve or the like. With the structure described above, the quantity of the corrosion products from the feedwater system may be decreased by the function of a large quantity of active oxygen contained in the reactor water.

  17. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  18. Garbage collector interface

    OpenAIRE

    Ive, Anders; Blomdell, Anders; Ekman, Torbjörn; Henriksson, Roger; Nilsson, Anders; Nilsson, Klas; Robertz, Sven

    2002-01-01

    The purpose of the presented garbage collector interface is to provide a universal interface for many different implementations of garbage collectors. This is to simplify the integration and exchange of garbage collectors, but also to support incremental, non-conservative, and thread safe implementations. Due to the complexity of the interface, it is aimed at code generators and preprocessors. Experiences from ongoing implementations indicate that the garbage collector interface successfully ...

  19. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  20. Nozzle airfoil having movable nozzle ribs

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  1. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency......This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  2. System Study: Auxiliary Feedwater 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the auxiliary feedwater (AFW) system at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AFW results.

  3. Ethanolamine properties and use for feedwater pH control: A pressurized water reactor case study

    International Nuclear Information System (INIS)

    Keeling, D.L.; Polidoroff, C.T.; Cortese, S.; Cushner, M.C.

    1995-01-01

    Ethanolamine (ETA) as a feedwater pH control additive has been recently used to minimize corrosion of secondary water components in the nuclear power industry pressurized water reactors (PWRs). The use of ETA is compared with ammonia. Relative volatility effects on various parts of the system are analyzed and chemistry changes are presented. Materials of construction and the use of existing plant equipment for ETA service are discussed. Properties of ETA as well as safety, storage and handling issues are compared with ammonia. Health d aquatic toxicity are reviewed. warnings, safety, handling guidelines, biodegradability an Diablo Canyon Power Plant used ammonia for pH control from 1985 until a change over to ETA in 1993/1994. Full flow condensate polishers that are required to protect the plant from saltwater cooling incursions limit the amount of pH additive. Iron levels in the secondary water systems are compared before and after changing to ETA and replacement of corrosion-susceptible piping. Iron reduction benefits are assessed along with other effects on the feedwater nozzles, low pressure turbine, polisher resin capacity and polisher regeneration system

  4. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  5. Radiation energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Bei Tse; Rabl, A

    1977-02-10

    The invention deals with a concentrating solar collector. Collectors of this kind often have considerable natural convection losses which are due, among other facts, to the location of the energy absorber at the outlet with the heated surface of the absorber facing the inlet opening of the collector. According to the invention, the collector is designed in such manner that the absorber is located inside a space in such a way that the radiation emitted by the absorber is reflected back to the absorber with the aid of mirror surfaces. Various designs are described.

  6. Aiding operator performance at low power feedwater control

    International Nuclear Information System (INIS)

    Woods, D.D.

    1986-01-01

    Control of the feedwater system during low power operations (approximately 2% to 30% power) is a difficult task where poor performance (excessive trips) has a high cost to utilities. This paper describes several efforts in the human factors aspects of this task that are underway to improve feedwater control. A variety of knowledge acquisition techniques have been used to understand the details of what makes feedwater control at low power difficult and what knowledge and skill distinguishes expert operators at this task from less experienced ones. The results indicate that there are multiple factors that contribute to task difficulty

  7. Secondary coolant circuit operation tests: steam generator feedwater supply

    International Nuclear Information System (INIS)

    Beroux, M.

    1985-01-01

    No one important accident occurred during the start-up tests of the 1300MWe P4 series, concerning the feedwater system of steam generators (SG). This communication comments on some incidents, that the tests allowed to detect very soon and which had no consequences on the operation of units: 1) Water hammer in feedwater tubes, and incidents met in the emergency steam generator water supply circuit. The technological differences between SG 900 and 1300 are pointed out, and the measures taken to prevent this problem are presented. 2) Incidents met on the emergency feedwater supply circuit of steam generators; mechanical or functional modifications involved by these incidents [fr

  8. Feedwater heater tube-to-tubesheet connections

    International Nuclear Information System (INIS)

    Yokell, S.

    1993-01-01

    This paper discusses some practical aspects of expanded, welded, and welded-and-expanded feedwater heater tube-to-tubesheet joints. It outlines elastic-plastic tube expanding theory. It examines uniform-pressure-expanded tube joint strength and correlating roller-expanded joint strength with wall reduction and rolling torque. For materials subject to stress-corrosion cracking (SCC), it recommends heat treating tube ends before expanding. For materials subject to fatigue and tube-end cracking, it advocates two-stage expanding: (1) expanding enough to create firm tube-hole contact over the full tubesheet thickness; and (2) re-expanding at full pressure or torque. The paper emphasizes the desirability of segregating heats of tubing, mapping the tube-heat locations and making the heat map a permanent part of the heater maintenance file. It recommends when to provide TEMA/HEI Power Plant Standard annular grooves for roller-expanding and provides an equation for determining optimum groove width for uniform-pressure expanding. The paper also reviews welding requirements for welds of tubes to tubesheets. The review covers front-face welding before and after expanding and the reasons for welding first. It outlines current thinking about definitions of strength- and seal-welds of front-face welded joint in terms of their functions and load-carrying abilities. It presents a proposal for determining the required size of strength welds for use in Section VIII of the ASME Boiler and Pressure Vessel Code (the Code). It shows why welded-and-expanded feedwater heater tube-to-tubesheet joints should be full-strength and full-depth expanded. It makes recommendations for pressure- and leak-testing. This work also proposes the industry consider butt welding the tubes to the steam-side face of the tubesheet as a regular method of tube joining. The results of a survey of manufacturers practices are appended. 30 refs., 14 figs

  9. Solar collector overheating protection

    NARCIS (Netherlands)

    Slaman, M.J.; Griessen, R.P.

    Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a

  10. Minimum throttling feedwater control in VVER-1000 and PWR NPPs

    International Nuclear Information System (INIS)

    Symkin, B.E.; Thaulez, F.

    2004-01-01

    This paper presents an approach for the design and implementation of advanced digital control systems that use a minimum-throttling algorithm for the feedwater control. The minimum-throttling algorithm for the feedwater control, i.e. for the control of steam generators level and of the feedwater pumps speed, is applicable for NPPs with variable speed feedwater pumps. It operates in such a way that the feedwater control valve in the most loaded loop is wide open, steam generator level in this loop being controlled by the feedwater pumps speed, while the feedwater control valves in the other loops are slightly throttling under the action of their control system, to accommodate the slight loop imbalances. This has the advantage of minimizing the valve pressure losses hence minimizing the feedwater pumps power consumption and increasing the net MWe. The benefit has been evaluated for specific plants as being roughly 0.7 and 2.4 MW. The minimum throttling mode has the further advantages of lowering the actuator efforts with potential positive impact in actuator life and of minimizing the feedwater pipelines vibrations. The minimum throttling mode of operation has been developed by the Ukrainian company LvivORGRES. It has been applied with great deal of success on several VVER-1000 NPPs, six units of Zaporizhzha in Ukraine plus, with participation of Westinghouse, Kozloduy 5 and 6 in Bulgaria and South Ukraine 1 to 3 in Ukraine. The concept operates with both ON-OFF valves and true control valves. A study, jointly conducted by Westinghouse and LvivORGRES, is ongoing to demonstrate the applicability of the concept to PWRs having variable speed feedwater pumps and having, or installing, digital feedwater control, standalone or as part of a global digital control system. The implementation of the algorithm at VVER-1000 plants provided both safety improvement and direct commercial benefits. The minimum-throttling algorithm will similarly increase the performance of PWRs. The

  11. Lead corrosion and transport in simulated secondary feedwater

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G.B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ross, K.J.; McDougall, T.E. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Turner, C.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1998-07-01

    The ubiquitous presence of lead at trace levels in secondary feedwater is a concern to all operators of steam generators and has prompted laboratory studies of its interaction with Inconel 600, Inconel 690, Monel 400 and Incoloy 800. Acute exposures of steam generator alloys to high levels of,lead in the laboratory and in the field have accelerated the degradation of these alloys. There is some disagreement over the role of lead when the exposure is to chronic levels. It has been proposed that most of the present degradation of steam generator tubes is due to low levels of lead although few if any failures have been experimentally linked to lead when sub-parts per billion levels are present in the feedwater. One reason for the difficulty in assigning the role of the lead is related to its possible immobilization on the surfaces of corrosion products or iron oxide films in the feedwater system. We have measured lead adsorption profiles on the three principal corrosion products in the secondary feedwater; magnetite, lepidocrocite and hematite. In all cases, essentially complete adsorption of the lead is achieved at pH values less than that of the feedwater (9-10). If lead is maintained in this adsorbed state, it may be more chemically benign than lead that is free to dissolve in the feedwater and subsequently adsorb on steam generator tube surfaces. In this paper, we report on lead adsorption onto simulated corrosion products under simulated feedwater conditions and propose a physical model for the transport and fate of lead under operating conditions. The nature of lead adsorption onto the surfaces of different corrosion products will be discussed. The desorption behaviour of lead from iron oxide surfaces following different treatment conditions will be used to propose a model for tile transport and probable fate of lead in the secondary feedwater system. (author)

  12. Lead corrosion and transport in simulated secondary feedwater

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G.B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ross, K.J.; McDougall, T.E. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Turner, C.W

    1999-07-01

    The ubiquitous presence of lead at trace levels in secondary feedwater is a concern to all operators of steam generators and has prompted laboratory studies of its interaction with Inconel 600, Inconel 690, Monel 400 and Incoloy 800. Acute exposures of steam generator alloys to high levels of lead in the laboratory and in the field have accelerated the degradation of these alloys. There is some disagreement over the role of lead when the exposure is to chronic levels. It has been proposed that most of the present degradation of steam generator tubes is caused by low levels of lead although few, if any, failures have been experimentally linked to lead when it is present in sub-parts per billion in the feedwater. One reason for the difficulty in assigning the role of the lead is related to its possible immobilization on the surfaces of corrosion products or iron oxide films in the feedwater system. We have measured lead adsorption profiles on the 3 principal corrosion products in the secondary feedwater: magnetite, lepidocrocite and hematite. In all cases, essentially complete adsorption of the lead is achieved at pH values that are lower than the pH of the feedwater (9 to 10). If lead is maintained in this adsorbed state, it may be more chemically benign than lead that is free to dissolve in the feedwater and subsequently adsorb on steam generator tube surfaces. In this paper, we report on lead adsorption onto simulated corrosion products under simulated feedwater conditions and propose a physical model for the transport and fate of lead under operating conditions. The nature of lead adsorption onto the surfaces of different corrosion products will be discussed. The desorption behaviour of lead from iron oxide surfaces after different treatment conditions will be used to propose a model for the transport and probable fate of lead in the secondary feedwater system. (author)

  13. Lead corrosion and transport in simulated secondary feedwater

    International Nuclear Information System (INIS)

    McGarvey, G.B.; Ross, K.J.; McDougall, T.E.; Turner, C.W.

    1998-01-01

    The ubiquitous presence of lead at trace levels in secondary feedwater is a concern to all operators of steam generators and has prompted laboratory studies of its interaction with Inconel 600, Inconel 690, Monel 400 and Incoloy 800. Acute exposures of steam generator alloys to high levels of,lead in the laboratory and in the field have accelerated the degradation of these alloys. There is some disagreement over the role of lead when the exposure is to chronic levels. It has been proposed that most of the present degradation of steam generator tubes is due to low levels of lead although few if any failures have been experimentally linked to lead when sub-parts per billion levels are present in the feedwater. One reason for the difficulty in assigning the role of the lead is related to its possible immobilization on the surfaces of corrosion products or iron oxide films in the feedwater system. We have measured lead adsorption profiles on the three principal corrosion products in the secondary feedwater; magnetite, lepidocrocite and hematite. In all cases, essentially complete adsorption of the lead is achieved at pH values less than that of the feedwater (9-10). If lead is maintained in this adsorbed state, it may be more chemically benign than lead that is free to dissolve in the feedwater and subsequently adsorb on steam generator tube surfaces. In this paper, we report on lead adsorption onto simulated corrosion products under simulated feedwater conditions and propose a physical model for the transport and fate of lead under operating conditions. The nature of lead adsorption onto the surfaces of different corrosion products will be discussed. The desorption behaviour of lead from iron oxide surfaces following different treatment conditions will be used to propose a model for tile transport and probable fate of lead in the secondary feedwater system. (author)

  14. Operating experiences and degradation detection for auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Casada, D.; Farmer, W.S.

    1992-01-01

    A study of Pressurized Water Reactor Auxiliary Feedwater (AFW) Systems has been conducted by Oak Ridge National Laboratory (ORNL) under the auspices of the Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. The results of the study are documented in NUREG/CR-5404, Vol. 1, Auxiliary Feedwater System Aging Study. The study reviewed historical failure experience and current monitoring practices for the AFW System. This paper provides an overview of the study approach and results

  15. Altitude Compensating Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; Jones, Daniel

    2015-01-01

    The dual-bell nozzle (fig. 1) is an altitude-compensating nozzle that has an inner contour consisting of two overlapped bells. At low altitudes, the dual-bell nozzle operates in mode 1, only utilizing the smaller, first bell of the nozzle. In mode 1, the nozzle flow separates from the wall at the inflection point between the two bell contours. As the vehicle reaches higher altitudes, the dual-bell nozzle flow transitions to mode 2, to flow full into the second, larger bell. This dual-mode operation allows near optimal expansion at two altitudes, enabling a higher mission average specific impulse (Isp) relative to that of a conventional, single-bell nozzle. Dual-bell nozzles have been studied analytically and subscale nozzle tests have been completed.1 This higher mission averaged Isp can provide up to a 5% increase2 in payload to orbit for existing launch vehicles. The next important step for the dual-bell nozzle is to confirm its potential in a relevant flight environment. Toward this end, NASA Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) have been working to develop a subscale, hot-fire, dual-bell nozzle test article for flight testing on AFRC's F15-D flight test bed (figs. 2 and 3). Flight test data demonstrating a dual-bell ability to control the mode transition and result in a sufficient increase in a rocket's mission averaged Isp should help convince the launch service providers that the dual-bell nozzle would provide a return on the required investment to bring a dual-bell into flight operation. The Game Changing Department provided 0.2 FTE to ER42 for this effort in 2014.

  16. Advanced exhaust nozzle technology

    Energy Technology Data Exchange (ETDEWEB)

    Glidewell, R J; Warburton, R E

    1981-01-01

    Recent developments in turbine engine exhaust nozzle technology include nonaxisymmetric nozzles, thrust reversing, and thrust vectoring. Trade studies have been performed to determine the impact of these developments on the thrust-to-weight ratio and specific fuel consumption of an advanced high performance, augmented turbofan engine. Results are presented in a manner which provides an understanding of the sources and magnitudes of differences in the basic elements of nozzle internal performance and weight as they relate to conventional, axisymmetric nozzle technology. Conclusions are presented and recommendations are made with regard to future directions of advanced development and demonstration. 5 refs.

  17. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  18. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Hao; Shih, Chunkuan [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science; Wang, Jong-Rong; Lin, Hao-Tzu [Atomic Energy Council, Taiwan (China). Inst. of Nuclear Energy Research

    2013-07-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  19. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    International Nuclear Information System (INIS)

    Chen, Che-Hao; Shih, Chunkuan; Wang, Jong-Rong; Lin, Hao-Tzu

    2013-01-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  20. Aging assessment of auxiliary feedwater pumps

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1987-01-01

    ORNL is conducting aging assessments of auxiliary feedwater pumps to provide recommendations for monitoring and assessing the severity of time-dependent degradation as well as to recommend maintenance and replacement practices. Cornerstones of these activities are the identification of failure modes and causes and ranking of causes. Failure modes and causes of interest are those due to aging and service wear. Design details, functional requirements, and operating experience data were used to identify failure modes and causes and to rank the latter. Based on this input, potentially useful inspection, surveillance, and condition monitoring methods that are currently available for use or in the developmental stage were examined and recommendations made. The methods selected are listed and discussed in terms of use and information to be obtained. Relationships between inspection, surveillance, and monitoring and maintenance practices entered prominently into maintenance recommendations. These recommendations, therefore, embrace predictive as well as corrective and preventative maintenance practices. The recommendations are described, inspection details are discussed, and periodic inspection and maintenance interval guidelines are given. Surveillance testing at low-flow conditions is also discussed. It is shown that this type of testing can lead to accelerated aging

  1. City sewer collectors biocorrosion

    Science.gov (United States)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  2. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    Nozzle reaction and hose tension are analyzed using conservation of fluid momentum and assuming steady, inviscid flow and a flexible hose in frictionless contact with the ground. An expression that is independent of the bend angle is derived for the hose tension. If this tension is exceeded owing...... to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  3. Pressurized water-reactor feedwater piping response to water hammer

    International Nuclear Information System (INIS)

    Arthur, D.

    1978-03-01

    The nuclear power industry is interested in steam-generator water hammer because it has damaged the piping and components at pressurized water reactors (PWRs). Water hammer arises when rapid steam condensation in the steam-generator feedwater inlet of a PWR causes depressurization, water-slug acceleration, and slug impact at the nearest pipe elbow. The resulting pressure pulse causes the pipe system to shake, sometimes violently. The objective of this study is to evaluate the potential structural effects of steam-generator water hammer on feedwater piping. This was accomplished by finite-element computation of the response of two sections of a typical feedwater pipe system to four representative water-hammer pulses. All four pulses produced high shear and bending stresses in both sections of pipe. Maximum calculated pipe stresses varied because the sections had different characteristics and were sensitive to boundary-condition modeling

  4. Manual for investigation and correction of feedwater heater failures

    International Nuclear Information System (INIS)

    Bell, R.J.; Diaz-Tous, I.A.; Bartz, J.A.

    1993-01-01

    The Electric Power Research Institute (EPRI) has sponsored the development of a recently published manual which is designed to assist utility personnel in identifying and correcting closed feedwater heater problems. The main portion of the manual describes common failure modes, probable means of identifying root causes and appropriate corrective actions. These include materials selection, fabrication practices, design, normal/abnormal operation and maintenance. The manual appendices include various data, intended to aid those involved in monitoring and condition assessment of feedwater heaters. This paper contains a detailed overview of the manual content and suggested means for its efficient use by utility engineers and operations and maintenance personnel who are charged with the responsibilities of performing investigations to identify the root cause(s) of closed feedwater problems/failures and to provide appropriate corrective actions. 4 refs., 3 figs., 2 tabs

  5. Loss of feedwater heater analysis for the South Texas Project

    International Nuclear Information System (INIS)

    Joyce, K.C.; Johnson, M.R.; Albury, C.R.

    1987-01-01

    The results of the steady state and transient analyses of the low pressure feedwater heater train for the South Texas Nuclear Project are presented. The South Texas Project consists of two 1250 MW Westinghouse PWR units. This analysis was performed using the Modular Modeling System (MMS) simulation code. The model presented will be incorporated into the secondary side model in support of the plant training simulator and the analysis of secondary side transients. Results of this analysis are considered preliminary until benchmarked against actual plant data. A model description of the feedwater heater train from the condensate pumps to the deaerator is presented. The methodology used to develop the model is also discussed. Results of the steady state run are presented, and a transient, the loss of extraction steam to feedwater heater 15A, is examined

  6. Tracking system for solar collectors

    Science.gov (United States)

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  7. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  8. A solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' yev, L.L.; Avakyan, Yu.V.; Bogdanov, V.M.; Gagiyan, L.A.; Grakovich, L.P.; Karapetyan, G.S.; Morgun, V.A.

    1984-01-01

    A collector whose primary component is a heating pipe is proposed. The evaporation zone located in the lower half of the heating pipe has an external absorption coating. Chambers that open upward and contain the evaporating fluid are mounted within this region along the top. In order to improve operational reliability of the collector, these chambers are mounted on one coated wall; the area of projection of each of the chambers onto the horizontal plane is greater than the area of the projection of each of the chambers placed above it. The coating may be in the form of photocells; a filter is mounted on the chamber side inside the evaporation zone. The evaporation zone may take the form of a cylinder with a segmented base; the photocells are mounted on a flat section of the lateral surface. The collector may be used to cool the photocells.

  9. Solar collector manufacturing activity, 1990

    International Nuclear Information System (INIS)

    1992-01-01

    The Solar Collector Manufacturing Activity 1990 report prepared by the Energy Information Administration (EIA) presents summary and detailed data provided by domestic manufacturers on shipments of solar thermal collectors and photovoltaic cells and modules. Summary data on solar thermal collector shipments are presented for the period 1974 through 1990. Summary data on photovoltaic cell and module shipments are presented for the period 1982 through 1990. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1990

  10. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  11. Flat plate collector. Solarflachkollektor

    Energy Technology Data Exchange (ETDEWEB)

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  12. Feedwater heater performance evaluation using the heat exchanger workstation

    International Nuclear Information System (INIS)

    Ranganathan, K.M.; Singh, G.P.; Tsou, J.L.

    1995-01-01

    A Heat Exchanger Workstation (HEW) has been developed to monitor the condition of heat exchanging equipment power plants. HEW enables engineers to analyze thermal performance and failure events for power plant feedwater heaters. The software provides tools for heat balance calculation and performance analysis. It also contains an expert system that enables performance enhancement. The Operation and Maintenance (O ampersand M) reference module on CD-ROM for HEW will be available by the end of 1995. Future developments of HEW would result in Condenser Expert System (CONES) and Balance of Plant Expert System (BOPES). HEW consists of five tightly integrated applications: A Database system for heat exchanger data storage, a Diagrammer system for creating plant heat exchanger schematics and data display, a Performance Analyst system for analyzing and predicting heat exchanger performance, a Performance Advisor expert system for expertise on improving heat exchanger performance and a Water Calculator system for computing properties of steam and water. In this paper an analysis of a feedwater heater which has been off-line is used to demonstrate how HEW can analyze the performance of the feedwater heater train and provide an economic justification for either replacing or repairing the feedwater heater

  13. Excessive heat removal due to feedwater system malfunction

    International Nuclear Information System (INIS)

    Beader, D.; Peterlin, G.

    1986-01-01

    Excessive heat removal transient of the Krsko Nuclear Power Plant, caused by steam generators feedwater system malfunctions was simulated by RELAP5/MOD1 computer code. The results are increase of power and reactor scram caused by high-high steam generator level. (author)

  14. Controllable deposition distance of aligned pattern via dual-nozzle near-field electrospinning

    Science.gov (United States)

    Wang, Zhifeng; Chen, Xindu; Zeng, Jun; Liang, Feng; Wu, Peixuan; Wang, Han

    2017-03-01

    For large area micro/nano pattern printing, multi-nozzle electrohydrodynamic (EHD) printing setup is an efficient method to boost productivity in near-field electrospinning (NFES) process. And controlling EHD multi-jet accurate deposition under the interaction of nozzles and other parameters are crucial concerns during the process. The influence and sensitivity of various parameters such as the needle length, needle spacing, electrode-to-collector distance, voltage etc. on the direct-write patterning performance was investigated by orthogonal experiments with dual-nozzle NFES setup, and then the deposition distance estimated based on a novel model was compared with measurement results and proven. More controllable deposition distance and much denser of aligned naofiber can be achieved by rotating the dual-nozzle setup. This study can be greatly contributed to estimate the deposition distance and helpful to guide the multi-nozzle NFES process to accurate direct-write pattern in manufacturing process in future.

  15. Operation of the main feedwater system turbopump following plant trip with total failure of the auxiliary feedwater system

    International Nuclear Information System (INIS)

    Lucas Alvaro, A.M. de; Rosa Martinez, B. de la; Alcaide, F.; Toledano Camara, C.

    1993-01-01

    The Auxiliary Feedwater System (AF) is a safeguard system which has been designed to supply feedwater to the steam generators, cool the primary system and remove decay heat from the reactor when the main feedwater pumps fail due to loss of power or any other reason. Thus, when plant trip occurs, the AF system pumps start up automatically, allowing removal of decay heat from the reactor. However, even though this system (2 motor-driven pumps and 1 turbopump) is highly reliable, injection of water to the steam generators must be ensured when it fails completely. To do this, if plant trip has not been caused by loss of off site power or failure of the Main Feedwater System (FW) turbopumps, one of these turbopumps can be used to achieve removal of decay heat. Since a large amount of steam is consumed by these turbopumps, an analysis has been performed to determine whether one of these pumps can be used and what actions are necessary to inject water into the steam generators. Results show that, for the case in question, a FW turbopump can be used to remove decay heat from the reactor. (author)

  16. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  17. An effect of downcomer feedwater fraction on steam generator performance with an axial flow economizer

    International Nuclear Information System (INIS)

    Jung, Byung Ryul; Park, Hu Shin; Chung, Duk Muk; Baik, Se Jin

    2000-01-01

    The effects of feedwater flow fraction introduced into the downcomer region have been evaluated in terms of steam generator performance based on the same steam generator thermal output for the Korea Standard Nuclear Power Plant (KSNP) steam generator. The KSNP steam generator design has an integral axial flow economizer which is designed such that most of the feedwater is introduced through the economizer region and only a portion of feedwater through the downcomer region. The feedwater flow introduced into the downcomer region is not normally controlled during the power operation. However, the actual feedwater fraction into the downcomer region may differ from the design flow depending on the as-built system and component characteristics. Investigated in this paper were the downcomer feedwater flow effects on the steam pressure, circulation ratio, internal void fraction and velocity distribution in the tube bundle region at the steady state operation using SAFE and ATHOS3 codes. The results show that the steam pressure increases and the resultant total feedwater flow increases with reducing the downcomer feedwater flow fraction for the same steam generator thermal output. The slight off-design condition of downcomer feedwater flow fraction renders no significant effect on the steam generator performance such as circulation ratios, steam qualities, void fractions and internal velocity distributions. The evaluation shows that the slight off-design downcomer feedwater flow fraction deviation up to ± 5% is acceptable for the steam generator performance

  18. Application of neural networks to validation of feedwater flow rate in a nuclear power plant

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1993-01-01

    Feedwater flow rate measurement in nuclear power plants requires periodic calibration. This is due to the fact that the venturi surface condition of the feedwater flow rate sensor changes because of a chemical reaction between the surface coating material and the feedwater. Fouling of the venturi surface, due to this chemical reaction and the deposits of foreign materials, has been observed shortly after a clean venturi is put in operation. A fouled venturi causes an incorrect measurement of feedwater flow rate, which in turn results in an inaccurate calculation of the generated power. This paper presents two methods for verifying incipient and continuing fouling of the venturi of the feedwater flow rate sensors. Both methods are based on the use of a set of dissimilar process variables dynamically related to the feedwater flow rate variable. The first method uses a neural network to generate estimates of the feedwater flow rate readings. Agreement, within a given tolerance, of the feedwater flow rate instrument reading, and the corresponding neural network output establishes that the feedwater flow rate instrument is operating properly. The second method is similar to the first method except that the neural network predicts the core power which is calculated from measurements on the primary loop, rather than the feedwater flow rates. This core power is referred to the primary core power in this paper. A comparison of the power calculated from the feedwater flow measurements in the secondary loop, with the calculated and neural network predicted primary core power provides information from which it can be determined whether fouling is beginning to occur. The two methods were tested using data from the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant

  19. Characterisation of subsonic axisymmetric nozzles

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2008-01-01

    Roč. 86, č. 11 (2008), s. 1253-1262 ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * characterisation * nozzle properties * nozzle invariants Subject RIV: BK - Fluid Dynamics Impact factor: 0.989, year: 2008

  20. Duplex tab exhaust nozzle

    Science.gov (United States)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  1. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    International Nuclear Information System (INIS)

    Burjorjee, D.; Gan, B.

    1992-01-01

    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops

  2. Boiler feedwater treatment using reverse osmosis at Suncor OSG

    International Nuclear Information System (INIS)

    Brown, T.

    1997-01-01

    The installation of a new 1000 cu m/hr reverse osmosis water treatment system for boiler feedwater at a Suncor plant was discussed. The selection process began in 1993 when Suncor identified a need to increase its boiler feedwater capacity. The company reviewed many options available to increase the treated water capacity. These included: contracting the supply of treated water, adding additional capacity, replacing the entire plant, reverse osmosis, and demineralization. The eventual decision was to build a new 1000 cu m/hr reverse osmosis water treatment plant with the following key components: a Degremont Infilco Ultra Pulsator Clarifier and a Glegg Water Conditioning multimedia filter, Amberpack softeners and reverse osmosis arrays. The reverse osmosis plant was environmentally favourable over an equivalent demineralization plant. A technical comparison was provided between demineralization and reverse osmosis. The system has proven to be successful and economical in meeting the plants needs. 5 figs

  3. Aging assessment of PWR [Pressurized Water Reactor] Auxiliary Feedwater Systems

    International Nuclear Information System (INIS)

    Casada, D.A.

    1988-01-01

    In support of the Nuclear Regulatory Commission's Nuclear Plant Aging Research (NPAR) Program, Oak Ridge National Laboratory is conducting a review of Pressurized Water Reactor Auxiliary Feedwater Systems. Two of the objectives of the NPAR Program are to identify failure modes and causes and identify methods to detect and track degradation. In Phase I of the Auxiliary Feedwater System study, a detailed review of system design and operating and surveillance practices at a reference plant is being conducted to determine failure modes and to provide an indication of the ability of current monitoring methods to detect system degradation. The extent to which current practices are contributing to aging and service wear related degradation is also being assessed. This paper provides a description of the study approach, examples of results, and some interim observations and conclusions. 1 fig., 1 tab

  4. Optimization algorithms intended for self-tuning feedwater heater model

    International Nuclear Information System (INIS)

    Czop, P; Barszcz, T; Bednarz, J

    2013-01-01

    This work presents a self-tuning feedwater heater model. This work continues the work on first-principle gray-box methodology applied to diagnostics and condition assessment of power plant components. The objective of this work is to review and benchmark the optimization algorithms regarding the time required to achieve the best model fit to operational power plant data. The paper recommends the most effective algorithm to be used in the model adjustment process.

  5. Feedwater flow measurements: challenges, current solutions, and 'soft' developments

    International Nuclear Information System (INIS)

    Ruan, D.; Roverso, D.; Fantoni, P.F.; Sanabrias, J.I.; Carrasco, J.A.; Fernandez, L.

    2002-07-01

    This report presents an early progress of a feasibility study of a computational intelligence approach to the enhancement of the accuracy of feedwater flow measurements in the framework of an ongoing cooperation between Tecnatom s.a. in Madrid and the OECD Halden Reactor Project (HRP) in Halden. The aim of this research project is to contribute to the development and validation of a flow sensor in a nuclear power plant (NPP). The basic idea is to combine the use of applied computational intelligence approaches (noise analysis, neural networks, fuzzy systems, wavelets etc.) with existing traditional flow measurements, and in particular with cross correlation flow meter concepts. In this report, Section 2 outlines relevant aspects of thermal power calculations on electrical power plants. Section 3 reviews from the available literature possible approaches and solutions for feedwater flow measurement, including ultrasonic flow meters, cross-correlation flow meters, and 'Virtural' flow meters with artificial neural networks. Section 4 reports typical experimental measurements at the Tecnatom's facility. Section 5 presents an integration approach and preliminary experimental tests. Section 6 discusses the role of soft computing techniques in the context of feedwater flow measurements related nuclear fields, and Section 7 highlights the future research direction. (Author)

  6. Analisis Termal High Pressure Feedwater Heater di PLTU PT. XYZ

    Directory of Open Access Journals (Sweden)

    Maria Ulfa Damayanti

    2017-01-01

    Full Text Available Abstrak- PT. XYZ mengoperasikan tiga unit Pembangkit Listrik Tenaga Uap (PLTU unit 3, 7 dan 8 berkapasitas 2.030 MegaWatt. Pada PLTU Paiton unit 7 dan 8 terdapat delapan buah feedwater heater yaitu empat buah Low Pressure Water Heater (LPWH, tiga buah High Pressure Water Heater (HPWH, dan sebuah dearator. Pada PLTU Paiton unit 7 dan 8 terdapat kerusakan pada HPWH 6 yang menyebabkan penurunan efisiensi dari siklus secara keseluruhan. Penurunan efisiensi dapat terjadi karena temperatur feedwater sebelum masuk ke boiler terlalu rendah, sehingga kalor yang dibutuhkan oleh boiler untuk memanaskan feedwater meningkat. Oleh karena itu konsumsi batubara akan meningkat dan menyebabkan terjadi kenaikan biaya operasional harian dalam sistem pembangkit. Dari data Divisi Produksi PT. XYZ Unit 7 dan 8 diperoleh spesifikasi HPWH 6, 7, dan 8 dan propertis fluida dalam HPWH 6, 7, dan 8. Data tersebut digunakan sebagai dasar analisis termal yang meliputi performa masing-masing HPH. Tahap selanjutnya dalam analisis termal adalah memvariasikan beban 25%, 50%, 75%, 100%, dan 105%. Tahap terakhir analisis adalah menghitung performa dengan variasi sumbatan (plug 5%, 10%, 15%, dan 20% sesuai dengan variasi beban. Hasil yang didapatkan dari penelitian tugas akhir ini adalah nilai effectiveness tertinggi tercapai pada pembebanan 100% serta menghasilkan pressure drop tertinggi pada pembebanan 105%, nilai effectiveness terbesar serta nilai pressure drop terkecil terjadi pada zona Condensing, serta sumbatan (plugging pada HPH akan menyebabkan penurunan nilai effectiveness dan kenaikan pressure drop sisi tube.

  7. Smart Soft-Sensing for the Feedwater Flowrate at PWRs Using a GMDH Algorithm

    Science.gov (United States)

    Lim, Dong Hyuk; Lee, Sung Han; Na, Man Gyun

    2010-02-01

    The thermal reactor power in pressurized water reactors (PWRs) is typically assessed using secondary system calorimetric calculations based on accurate measurements of the feedwater flowrate. Therefore, precise measurements of the feedwater flowrate are essential. In most PWRs, Venturi meters are used to measure the feedwater flowrate. However, the fouling phenomena of the Venturi meter deteriorate the accuracy of the existing hardware sensors. Consequently, it is essential to resolve the inaccurate measurements of the feedwater flowrate. In this study, in order to estimate the feedwater flowrate online with high precision, a smart soft sensing model for monitoring the feedwater flowrate was developed using a group method of data handling (GMDH) algorithm combined with a sequential probability ratio test (SPRT). The uncertainty of the GMDH model was also analyzed. The proposed sensing and monitoring algorithm was verified using the acquired real plant data from Yonggwang Nuclear Power Plant Unit 3.

  8. Turning collectors for solar radiation

    Science.gov (United States)

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  9. The CERN antiproton collector

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    The Antiproton Collector is a new ring of much larger acceptance than the present accumulator. It is designed to receive 10 8 antiprotons per PS cycle. In order to be compatible with the Antiproton Accumulator, the momentum spread and the emittances are reduced from 6% to 0.2% and from 200 π mm mrad to 25 π mm mrad respectively. In addition to the ring itself, the new target area and the modifications to the stochastic systems of the Antiproton Accumulator are described. (orig.)

  10. Considerations for surviving the loss of a main feedwater pump at full power

    International Nuclear Information System (INIS)

    Gaydos, K.A.; Calvo, R.; Conroy, P.W.; Klein, C.M.; Mellers, J.E.

    1990-01-01

    Today's economics dictate that nuclear power operational costs be contained by addressing frequently-occurring trips that might be minimized or avoided via specific upgrades. Much recent attention has focused on the significant percentage of plant trips related to feedwater flow regulation; however, another frequent feedwater-related trip stems from the loss of a single main feedwater pump while operating at high power levels, causing a plant trip on low steam generator water-level. This paper summarizes the results of several plant-specific studies that evaluate a unit's capabilities to consistently survive the loss of a main feedwater pump from full power, and outlines a methodology for analyzing this capability

  11. The PKI collector

    Science.gov (United States)

    Rice, M. P.

    1982-07-01

    The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.

  12. Premixed direct injection nozzle

    Science.gov (United States)

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  13. Limit loads in nozzles

    International Nuclear Information System (INIS)

    Zouain, N.

    1983-01-01

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author) [pt

  14. Modelling of Microclimate in collectors

    DEFF Research Database (Denmark)

    Holck, Ole

    1996-01-01

    Abstract It is important to avoid condensation in solar collectors, most of all because wetness of the absorber can damage the selective surface and cause corrosion on the absorber plate. During night time the cover of collectors will cool below ambient temperature due to thermal radiation...

  15. On-line validation of feedwater flow rate in nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1994-01-01

    On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%

  16. LHCb Tag Collector

    International Nuclear Information System (INIS)

    Fernández, Paloma Fuente; Clemencic, Marco; Cousin, Nicolas

    2011-01-01

    The LHCb physics software consists of hundreds of packages, each of which is developed by one or more physicists. When the developers have some code changes that they would like released, they commit them to the version control system, and enter the revision number into a database. These changes have to be integrated into a new release of each of the physics analysis applications. Tests are then performed by a nightly build system, which rebuilds various configurations of the whole software stack and executes a suite of run-time functionality tests. A Tag Collector system has been developed using solid standard technologies to cover both the use cases of developers and integration managers. A simple Web interface, based on an AJAX-like technology, is available. Integration with SVN and Nightly Build System, is possible via a Python API. Data are stored in a relational database with the help of an ORM (Object-Relational Mapping) library.

  17. Advanced evacuated tube collectors

    Science.gov (United States)

    Schertz, W. W.; Hull, J. R.; Winston, R.; Ogallagher, J.

    1985-04-01

    The essence of the design concept for these new collectors is the integration of moderate levels of nonimaging concentration inside the evacuated tube itself. This permanently protects the reflection surfaces and allows the use of highly reflecting front surface mirrors with reflectances greater than 95%. Previous fabrication and long term testing of a proof-of-concept prototype has established the technical success of the concept. Present work is directed toward the development of a manufacturable unit that will be suitable for the widest possible range of applications. Design alternatives include scaling up the original prototype's tube diameter from 5 cm to 10 cm, using an internal shaped metal concentrating reflector, using a variety of profile shapes to minimize so-called gap losses and accommodate both single ended and double-ended flow geometries, and allowing the use of heat pipes for the absorber tube.

  18. Multi-unit shutdown due to boiler feedwater chemical excursion

    International Nuclear Information System (INIS)

    Diebel, M.E.

    1991-01-01

    Ontario Hydro's Bruce Nuclear Generating Station 'B' consists of four 935 W CANDU units located on the east shore of Lake Huron in the province of Ontario, Canada. On July 25 and 26, 1989 three of the four operating units were shutdown due to boiler feedwater chemical excursions initiated by a process upset in the Water Treatment Plant that provides demineralized make-up water to all four units. The chemicals that escaped from an ion exchange vessel during a routine regeneration very quickly spread through the condensate make-up system and into the boiler feedwater systems. This resulted in boiler sulfate levels exceeding shutdown limits. A total of 260 GWH of electrical generation was unexpectedly made unavailable to the grid at a time of peak seasonal demand. This event exposed several unforeseen deficiencies and vulnerabilities in the automatic demineralized water make-up quality protection scheme, system designs, operating procedures and the ability of operating personnel to recognize and appropriately respond to such an event. The combination of these factors contributed towards turning a minor system upset into a major multi-unit shutdown. This paper provides the details of the actual event initiation in the Water Treatment Plant and describes the sequence of events that led to the eventual shutdown of three units and near shutdown of the fourth. The design inadequacies, procedural deficiencies and operating personnel responses and difficulties are described. The process of recovering from this event, the flushing out of system piping, boilers and the feedwater train is covered as well as our experiences with setting up supplemental demineralized water supplies including trucking in water and the use of rental trailer mounted demineralizing systems. System design, procedural and operational changes that have been made and that are still being worked on in response to this event are described. The latest evidence of the effect of this event on boiler tube

  19. Expert system for nuclear power plant feedwater system diagnosis

    International Nuclear Information System (INIS)

    Meguro, R.; Kinoshita, Y.; Sato, T.; Yokota, Y.; Yokota, M.

    1987-01-01

    The Expert System for Nuclear Power Plant Feedwater System Diagnosis has been developed to assist maintenance engineers in nuclear power plants. This system adopts the latest process computer TOSBAC G8050 and the expert system developing tool TDES2, and has a large scale knowledge base which consists of the expert knowledge and experience of engineers in many fields. The man-machine system, which has been developed exclusively for diagnosis, improves the man-machine interface and realizes the graphic displays of diagnostic process and path, stores diagnostic results and searches past reference

  20. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    International Nuclear Information System (INIS)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young; Sang, Seok Yoon

    2014-01-01

    Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical

  1. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Sang, Seok Yoon [Engineering and Technical Center, Korea Hydro, Daejeon (Korea, Republic of)

    2014-08-15

    Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical

  2. A probabilistic evaluation of the Shearon Harris Nuclear Power Plant auxiliary feedwater isolation system

    International Nuclear Information System (INIS)

    Anoba, R.C.

    1989-01-01

    This paper reports on a fault tree approach that was used to evaluate the safety significance of modifying the Shearon Harris Auxiliary Feedwater Isolation System. The design modification was a result of on-site reviews which identified a single failure in the Auxiliary Feedwater Isolation circuitry

  3. Current collectors for improved safety

    Science.gov (United States)

    Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.; Li, Jianlin; Simunovic, Srdjan; Wang, Hsin

    2017-12-19

    A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, and methods for operating a battery.

  4. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  5. Four-collector flux sensor

    International Nuclear Information System (INIS)

    Wiegand, W.J. Jr.; Bullis, R.H.; Mongeon, R.J.

    1980-01-01

    A flowmeter based on ion drift techniques was developed for measuring the rate of flow of a fluid through a given cross-section. Ion collectors are positioned on each side of an immediately adjacent to ion source. When air flows axially through the region in which ions are produced and appropriate electric fields are maintained between the collectors, an electric current flows to each collector due to the net motion of the ions. The electric currents and voltages and other parameters which define the flow are combined in an electric circuit so that the flux of the fluid can be determined. (DN)

  6. Aging and low-flow degradation of auxilary feedwater pumps

    International Nuclear Information System (INIS)

    Adams, M.L.

    1992-01-01

    This paper documents the results of research done under the auspices of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program. It examines the degradation imparted to safety related Auxiliary Feedwater System pumps at nuclear plants due to the low flow operation. The Auxiliary Feedwater (AFW) System is normally a stand-by system. As such it is operated most often in the test mode. Since few plants are equipped with full flow test loops, most testing is accomplished at minimum flow conditions in pump by-pass lines. It is the vibration and hydraulic forces generated at low flow conditions that have been shown to be the major causes of AFW pump aging and degradation. The wear can be manifested in a number of ways, such as impeller or diffuser breakage, thrust bearing and/or balance device failure due to excessive loading, cavitation damage on such stage impellers, increase seal leakage or failure, sear injection piping failure, shaft or coupling breakage, and rotating element seizure

  7. Aging and low-flow degradation of auxiliary feedwater pumps

    International Nuclear Information System (INIS)

    Adams, M.L.

    1991-01-01

    This paper documents the results of research done under the auspices of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program. It examines the degradation imparted to safety Auxiliary Feedwater System pumps at nuclear plants due to the low flow operation. The Auxiliary Feedwater (AFW) System is normally a stand-by system. As such it is operated most often in the test mode. Since few plants are equipped with full flow test loops, most testing is accomplished at minimum flow conditions in pump by-pass lines. It is the vibration and hydraulic forces generated at low flow conditions that have been shown to be the major causes of AFW pump aging and degradation. The wear can be manifested in a number of ways, such as impeller or diffuser breakage, thrust bearing and/or balance device failure due to excessive loading, cavitation damage on such stage impellers, increase seal leakage or failure, sear injection piping failure, shaft or coupling breakage, and rotating element seizure

  8. Inferential smart sensing for feedwater flowrate in PWRs

    International Nuclear Information System (INIS)

    Na, M. G.; Hwang, I. J.; Lee, Y. J.

    2006-01-01

    The feedwater flowrate that is measured by Venturi flow meters in most pressurized water reactors can be over-measured because of the fouling phenomena that make corrosion products accumulate in the Venturi meters. Therefore, in this work, two kinds of methods, a support vector regression method and a fuzzy modeling method, combined with a sequential probability ratio test, are used in order to accurately estimate online the feedwater flowrate, and also to monitor the status of the existing hardware sensors. Also, the data for training the support vector machines and the fuzzy model are selected by using a subtractive clustering scheme to use informative data from among all acquired data. The proposed inferential sensing and monitoring algorithm is verified by using the acquired real plant data of Yonggwang Nuclear Power Plant Unit 3. In the simulations, it was known that the root mean squared error and the relative maximum error are so small and the proposed method early detects the degradation of an existing hardware sensor. (authors)

  9. Simulation of a passive auxiliary feedwater system with TRACE5

    Energy Technology Data Exchange (ETDEWEB)

    Lorduy, María; Gallardo, Sergio; Verdú, Gumersindo, E-mail: maloral@upv.es, E-mail: sergalbe@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), València (Spain)

    2017-07-01

    The study of the nuclear power plant accidents occurred in recent decades, as well as the probabilistic risk assessment carried out for this type of facility, present human error as one of the main contingency factors. For this reason, the design and development of generation III, III+ and IV reactors, which include inherent and passive safety systems, have been promoted. In this work, a TRACE5 model of ATLAS (Advanced Thermal- Hydraulic Test Loop for Accident Simulation) is used to reproduce an accidental scenario consisting in a prolonged Station BlackOut (SBO). In particular, the A1.2 test of the OECD-ATLAS project is analyzed, whose purpose is to study the primary system cooling by means of the water supply to one of the steam generators from a Passive Auxiliary Feedwater System (PAFS). This safety feature prevents the loss of secondary system inventory by means of the steam condensation and its recirculation. Thus, the conservation of a heat sink allows the natural circulation flow rate until restoring stable conditions. For the reproduction of the test, an ATLAS model has been adapted to the experiment conditions, and a PAFS has been incorporated. >From the simulation test results, the main thermal-hydraulic variables (pressure, flow rates, collapsed water level and temperature) are analyzed in the different circuits, contrasting them with experimental data series. As a conclusion, the work shows the TRACE5 code capability to correctly simulate the behavior of a passive feedwater system. (author)

  10. Identification of BWR feedwater control system using autoregressive integrated model

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Andoh, Yasumasa; Yamamoto, Fumiaki; Idesawa, Masato; Itoh, Kazuo.

    1983-01-01

    With the view of contributing toward more reliable interpretation of noise behavior under normal operating conditions, which is essential for correct detection and/or diagnosis of incipient anomalies in nuclear power plants by noise analysis technique, studies has been undertaken of the noise behavior in a BWR feedwater control system, with use made of a multivariate autoregressive modeling technique. Noise propagation mechanisms as well as open- and closed-loop responses in the system are identified from noise data by a method in which an autoregressive integrated model is introduced. The closed-loop responses obtained with this method are compared with transient data from an actual test, and confirmed to be reliable in estimating semi-quantitative features. Other analyses performed with this model also yield results that appear most reasonable in their physical characteristics. These results have demonstrated the effectiveness of the noise analyses technique based on the autoregressive integrated model for evaluating and diagnosing the performance of feedwater control systems. (author)

  11. Operational challenges to feedwater/steam generator water level control

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.M.; Whaley, S.D.; Federico, P.A. [Westinghouse Electric Company, Cranberry Township, Pennsylvania (United States)

    2012-07-01

    Feedwater control and turbine control have historically been at the top of the list of contributors to unplanned outages and forced curtailments in the nuclear industry, and they remain so according to recent industry data. Much has been done and is available by way of measures to improve this area and, in spite of much progress, opportunities remain to extend implementation. Toward this end, this paper aims to focus upon feedwater control and provide background on associated characteristics and attributes as a context for identifying the issues which are key challenges that lie at the root of this concern. Primary groupings of these issues will be discussed in order to better define their nature and to establish a basis for a presentation of the range of solutions which have been implemented and remain available to address them. The need for a systems engineering approach, and the role of I&C and field-mounted equipment to application of these solutions will be discussed. (author)

  12. New collectors from all over the world

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Eva

    2008-07-01

    Flat-plate collectors are fashionable, even among customers in Shanghai, although China is considered the land of evacuated tubes. Elsewhere, fashion is also a consideration, which partly explains the switch from fin collectors to full-surface collectors. Sun and Wind Energy has put together a list of new collectors from various countries. (orig.)

  13. Analysis of ultrasound propagation in high-temperature nuclear reactor feedwater to investigate a clamp-on ultrasonic pulse doppler flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige; Sakai, Yukihiro

    2008-01-01

    The flow rate of nuclear reactor feedwater is an important factor in the operation of a nuclear power reactor. Venturi nozzles are widely used to measure the flow rate. Other types of flowmeters have been proposed to improve measurement accuracy and permit the flow rate and reactor power to be increased. The ultrasonic pulse Doppler system is expected to be a candidate method because it can measure the flow profile across the pipe cross section, which changes with time. For accurate estimation of the flow velocity, the incidence angle of ultrasound entering the fluid should be estimated using Snell's law. However, evaluation of the ultrasound propagation is not straightforward, especially for a high-temperature pipe with a clamp-on ultrasonic Doppler flowmeter. The ultrasound beam path may differ from what is expected from Snell's law due to the temperature gradient in the wedge and variation in the acoustic impedance between interfaces. Recently, simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation, using 3D-FEM simulation code plus the Kirchhoff method, as it relates to flow profile measurement in nuclear reactor feedwater with the ultrasonic pulse Doppler system. (author)

  14. Design package for concentrating solar collector panels

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The Northrup concentrating solar collector is a water/glycol/working fluid type, dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, fiber glass insulation and weighs 98 pounds. The gross collector area is about 29.4/sup 2/ per collector. A collector assembly includes four collector units within a tracking mount array.

  15. Solar radiation on a catenary collector

    Science.gov (United States)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  16. Design package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  17. A distributed garbage collector for active objects

    OpenAIRE

    Puaut , Isabelle

    1993-01-01

    This paper introduces an algorithm that performs garbage collection in distributed systems of active objects (i.e., objects having their own threads of control). The proposed garbage collector is made of a set of local garbage collectors, one per node, loosely coupled to a global garbage collector. The novelties of the proposed garbage collector come from the fact that local garbage collectors need not be synchronized with each other for detecting garbage objects and that faulty communication...

  18. Heat exchanger inventory cost optimization for power cycles with one feedwater heater

    International Nuclear Information System (INIS)

    Qureshi, Bilal Ahmed; Antar, Mohamed A.; Zubair, Syed M.

    2014-01-01

    Highlights: • Cost optimization of heat exchanger inventory in power cycles is investigated. • Analysis for an endoreversible power cycle with an open feedwater heater is shown. • Different constraints on the power cycle are investigated. • The constant heat addition scenario resulted in the lowest value of the cost function. - Abstract: Cost optimization of heat exchanger inventory in power cycles with one open feedwater heater is undertaken. In this regard, thermoeconomic analysis for an endoreversible power cycle with an open feedwater heater is shown. The scenarios of constant heat rejection and addition rates, power as well as rate of heat transfer in the open feedwater heater are studied. All cost functions displayed minima with respect to the high-side absolute temperature ratio (θ 1 ). In this case, the effect of the Carnot temperature ratio (Φ 1 ), absolute temperature ratio (ξ) and the phase-change absolute temperature ratio for the feedwater heater (Φ 2 ) are qualitatively the same. Furthermore, the constant heat addition scenario resulted in the lowest value of the cost function. For variation of all cost functions, the smaller the value of the phase-change absolute temperature ratio for the feedwater heater (Φ 2 ), lower the cost at the minima. As feedwater heater to hot end unit cost ratio decreases, the minimum total conductance required increases

  19. Analysis of a postulated pipe rupture and subsequent check valve slam of a PWR feedwater line

    International Nuclear Information System (INIS)

    Chang, K.C.; Adams, T.M.

    1983-01-01

    System designs criteria employed in the design of pressurized water reactors (PWR) requires that, for a postulated instantaneous guillotine rupture anywhere in the steam generator feedwater system, no more than one steam generator can be allowed to blowdown. Feedwater systems in many PWR's consist of pipe lines running from the feedwater pumps into a common feedwater header then branching into each steam generator from the header. The feedwater piping to each steam generator contains swing check valves to prevent reverse flow from the steam generator. This activation of some or all of these check valves significantly complicates the system structural analysis in that not only the blowdown forces resulting from the postulated pipe rupture, but also the water hammer loads resulting from closure of the check valve at high reverse flow velocities must be considered. The loads resulting from system blowdown and check valve closure are axial in nature. Peak loads ranging from 130000 lbs. to 180000 lbs. are not uncommon and are layout dependent. The analysis and design to withstand this transient loading deviates from the usual feedwater line design in that supports are required along the piping axis in the direction normal to the usual seismic supports. A brief and general discussion of the methods employed in the generation of the thermal-hydraulic loadings is presented. However, the discussion emphasizes the piping and piping support structural design and analysis method and approaches used in evaluating a selected portion of such a feedwater system. (orig./RW)

  20. Arcjet nozzle area ratio effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  1. Arcjet Nozzle Area Ratio Effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  2. A connection of the steam generator feedwater section of WWER type nuclear power plants

    International Nuclear Information System (INIS)

    Matal, O.; Sadilek, J.

    1989-01-01

    In the feedwater piping of each steam generator, a plate for additional water pressure reduction is inserted before the first closing valve. During a steady water flow, the plate gives rise to a constant hydraulic resistance, bringing about steady reduction of the feedwater pressure; this also contributes to a stabilization of the feedwater flow rate into the steam generator. The control valve thus is stressed by minimal hydrodynamic forces. In this manner its load is decreased, its vibrations are damped, and the frequency of failures - and thereby the frequency of the nuclear power plant unit outages -is reduced. (J.P.). 1 fig

  3. Review of the Shearon Harris Unit 1 auxiliary feedwater system reliability analysis

    International Nuclear Information System (INIS)

    Fresco, A.; Youngblood, R.; Papazoglou, I.A.

    1986-02-01

    This report presents the results of a review of the Auxiliary Feedwater System Reliability Analysis for the Shearon Harris Nuclear Power Plant (SHNPP) Unit 1. The objective of this report is to estimate the probability that the Auxiliary Feedwater System will fail to perform its mission for each of three different initiators: (1) loss of main feedwater with offsite power available, (2) loss of offsite power, (3) loss of all ac power except vital instrumentation and control 125-V dc/120-V ac power. The scope, methodology, and failure data are prescribed by NUREG-0611 for other Westinghouse plants

  4. Injection nozzle for a turbomachine

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  5. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  6. Flow-throttling orifice nozzle

    International Nuclear Information System (INIS)

    Sletten, H.L.

    1975-01-01

    A series-parallel-flow type throttling apparatus to restrict coolant flow to certain fuel assemblies of a nuclear reactor is comprised of an axial extension nozzle of the fuel assembly. The nozzle has a series of concentric tubes with parallel-flow orifice holes in each tube. Flow passes from a high pressure plenum chamber outside the nozzle through the holes in each tube in series to the inside of the innermost tube where the coolant, having dissipated most of its pressure, flows axially to the fuel element. (U.S.)

  7. Control of feedwater composition of BWR power plant

    International Nuclear Information System (INIS)

    Sturla, P.; D'Anna, A.; Borgese, D.

    1983-01-01

    Corrosion behaviour of fuel element cladding, cycle structural materials and dose rate increase are relevant to physico-chemical characteristics of process coolants and to adopted operational conditions. A careful control of cycle chemistry, during loading and shutdown periods, is necessary to verify material choices, the polishing system and chemistry specifications. For this purpose ENEL carried out some preliminary experimental tests employing continuous control system and samples for specific analytical determinations. The cycle points checked during about two months were: main condensate; condensate after polishing system; outlet of low pressure heathers; final feedwater; inlet and outlet of clean-up system; drains to condenser. The physico-chemical analysis were related to corrosion product levels (Cu, Fe, Ni, Co) and water chemistry (pH, conductivity, dissolved oxygen etc.). The preliminary results allow to express some considerations about sampling procedures, detection limits and reliability of analytical employed methods. The acquisition data time and some morphological oxide pictures are also showed. (author)

  8. Leak Detection of High Pressure Feedwater Heater Using Empirical Models

    International Nuclear Information System (INIS)

    Lee, Song Kyu; Kim, Eun Kee; Heo, Gyun Young; An, Sang Ha

    2009-01-01

    Even small leak from tube side or pass partition within the high pressure feedwater heater (HPFWH) causes a significant deficiency in its performance. Plant operation under the HPFWH leak condition for long time will result in cost increase. Tube side leak within HPFWH can produce the high velocity jet of water and it can cause neighboring tube failures. However, most of plants are being operated without any information for internal leaks of HPFWH, even though it is prone to be damaged under high temperature and high pressure operating conditions. Leaks from tubes and/or pass partition of HPFWH occurred in many nuclear power plants, for example, Mihama PS-2, Takahama PS-2 and Point Beach Nuclear Plant Unit 1. If the internal leaks of HPFWH are monitored, the cost can be reduced by inexpensive repairs relative to loss in performance and moreover plant shutdown as well as further tube damages can be prevented

  9. Analysis of KNU1 loss of normal feedwater

    International Nuclear Information System (INIS)

    Kim, Hho-Jung; Chung, Bub-Dong; Lee, Young-Jin; Kim, Jin-Soo

    1986-01-01

    Simulation of the system thermal-hydraulic parameters was carried out following the KNU1 (Korea Nuclear Unit-1) loss of normal feedwater transient sequence occurred on November 14, 1984. Results were compared with the plant transient data, and good agreements were obtained. Some deviations were found in the parameters such as the steam flowrate and the RCS (Reactor Coolant system) average temperature, around the time of reactor trip. It can be expected since the thermal-hydraulic parameters encounter rapid transitions due to the large reduction of the reactor thermal power in a short period of time and, thereby, the plant data involve transient uncertainties. The analysis was performed using the RELAP5/MOD1/NSC developed through some modifications of the interphase drag and the wall heat transfer modeling routines of the RELAP5/MOD1/CY018. (author)

  10. 'Better feedwater quality through heat exchange equipment renovation'

    International Nuclear Information System (INIS)

    Pouzenc, C.

    2002-01-01

    In a fossil-fired or nuclear steam power plant, the water secondary circuit is a critical part of its thermodynamic cycle, as it achieves conditioning, pressurizing and heating of the condensate to match the conditions required at the steam generator inlet. Furthermore, the power plant electrical output and efficiency depend on availability and performances of each component of this secondary circuit from the condenser to the steam generator. Erosion and corrosion phenomena are at the origin of most significant failures in these components and related interconnecting systems. Feedwater chemistry is, together with the selection of materials and optimization of fluid velocities, one of the key levers to protect, as efficiently as possible, the components of the water secondary. (authors)

  11. Ferromagnetic material inspection for feedwater heater and condenser tubes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In recent years, special ferritic stainless steels, such as AL29-4C/sup TM/, Sea-Cure/sup TM/, E-Brite/sup TM/, 439, and similar alloys have been introduced as tube material in condensers, feedwater heaters, moisture separator/reheaters, and other heat exchangers. In addition, carbon steel tubes are widely used in feedwater heaters and heat exchangers in chemical plants. The main problem with the in-service inspection of these ferritic alloys and carbon steel tubes lies in their highly ferromagnetic properties. These properties severely limit the application of the standard eddy current techniques. The effort was undertaken under EPRI sponsorship to develop a reliable technique for in-service inspection of ferromagnetic tubes. The new method combines the measurement of magnetic flux leakage generated around the defects with measurement of total flux in the tube wall. The heart of the inspection system is a special ID probe that magnetizes the tube and generates signals for any tube defect. A permanent record of inspection is provided with a strip-chart or magnetic tape recorder. The laboratory and field evaluation of this new system demonstrated its very good sensitivity to small defects, its reliability, and its ruggedness. Defects as small as 10% external wall loss in heavy wall carbon steel tube were detected. Tubes in the power plant were inspected at a rate of 300-500 tubes per eight-hour shift. The other advantages of this newly developed technique are its simplicity, low cost of instrumentation, easy data interpretation, and full portability

  12. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  13. Axisymmetric thrust-vectoring nozzle performance prediction

    International Nuclear Information System (INIS)

    Wilson, E. A.; Adler, D.; Bar-Yoseph, P.Z

    1998-01-01

    Throat-hinged geometrically variable converging-diverging thrust-vectoring nozzles directly affect the jet flow geometry and rotation angle at the nozzle exit as a function of the nozzle geometry, the nozzle pressure ratio and flight velocity. The consideration of nozzle divergence in the effective-geometric nozzle relation is theoretically considered here for the first time. In this study, an explicit calculation procedure is presented as a function of nozzle geometry at constant nozzle pressure ratio, zero velocity and altitude, and compared with experimental results in a civil thrust-vectoring scenario. This procedure may be used in dynamic thrust-vectoring nozzle design performance predictions or analysis for civil and military nozzles as well as in the definition of initial jet flow conditions in future numerical VSTOL/TV jet performance studies

  14. Equivalent nozzle in thermomechanical problems

    International Nuclear Information System (INIS)

    Cesari, F.

    1977-01-01

    When analyzing nuclear vessels, it is most important to study the behavior of the nozzle cylinder-cylinder intersection. For the elastic field, this analysis in three dimensions is quite easy using the method of finite elements. The same analysis in the non-linear field becomes difficult for designs in 3-D. It is therefore necessary to resolve a nozzle in two dimensions equivalent to a 3-D nozzle. The purpose of the present work is to find an equivalent nozzle both with a mechanical and thermal load. This has been achieved by the analysis in three dimensions of a nozzle and a nozzle cylinder-sphere intersection, of a different radius. The equivalent nozzle will be a nozzle with a sphere radius in a given ratio to the radius of a cylinder; thus, the maximum equivalent stress is the same in both 2-D and 3-D. The nozzle examined derived from the intersection of a cylindrical vessel of radius R=191.4 mm and thickness T=6.7 mm with a cylindrical nozzle of radius r=24.675 mm and thickness t=1.350 mm, for which the experimental results for an internal pressure load are known. The structure was subdivided into 96 finite, three-dimensional and isoparametric elements with 60 degrees of freedom and 661 total nodes. Both the analysis with a mechanical load as well as the analysis with a thermal load were carried out on this structure according to the Bersafe system. The thermal load consisted of a transient typical of an accident occurring in a sodium-cooled fast reactor, with a peak of the temperature (540 0 C) for the sodium inside the vessel with an insulating argon temperature constant at 525 0 C. The maximum value of the equivalent tension was found in the internal area at the union towards the vessel side. The analysis of the nozzle in 2-D consists in schematizing the structure as a cylinder-sphere intersection, where the sphere has a given relation to the

  15. Performance of evaporator-collector and air collector in solar assisted heat pump dryer

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Rahman, S.M.A.; Jahangeer, K.A.

    2008-01-01

    A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8-0.86 and 0.7-0.75, respectively, when operated under the meteorological conditions of Singapore

  16. Numerical Simulation of Twin Nozzle Injectors

    OpenAIRE

    Milak, Dino

    2015-01-01

    Fuel injectors for marine applications have traditionally utilized nozzles with symmetric equispaced orifice configuration. But in light of the new marine emission legislations the twin nozzle concept has arisen. The twin nozzle differs from the conventional configuration by utilizing two closely spaced orifices to substitute each orifice in the conventional nozzle. Injector manufacturers regard twin nozzle injectors as a promising approach to facilitate stable spray patterns independent of t...

  17. A decision theoretic approach to an accident sequence: when feedwater and auxiliary feedwater fail in a nuclear power plant

    International Nuclear Information System (INIS)

    Svenson, Ola

    1998-01-01

    This study applies a decision theoretic perspective on a severe accident management sequence in a processing industry. The sequence contains loss of feedwater and auxiliary feedwater in a boiling water nuclear reactor (BWR), which necessitates manual depressurization of the reactor pressure vessel to enable low pressure cooling of the core. The sequence is fast and is a major contributor to core damage in probabilistic risk analyses (PRAs) of this kind of plant. The management of the sequence also includes important, difficult and fast human decision making. The decision theoretic perspective, which is applied to a Swedish ABB-type reactor, stresses the roles played by uncertainties about plant state, consequences of different actions and goals during the management of a severe accident sequence. Based on a theoretical analysis and empirical simulator data the human error probabilities in the PRA for the plant are considered to be too small. Recommendations for how to improve safety are given and they include full automation of the sequence, improved operator training, and/or actions to assist the operators' decision making through reduction of uncertainties, for example, concerning water/steam level for sufficient cooling, time remaining before insufficient cooling level in the tank is reached and organizational cost-benefit evaluations of the events following a false alarm depressurization as well as the events following a successful depressurization at different points in time. Finally, it is pointed out that the approach exemplified in this study is applicable to any accident scenario which includes difficult human decision making with conflicting goals, uncertain information and with very serious consequences

  18. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  19. Design and transient analyses of passive emergency feedwater system of CPR1000. Part 1. Air cooling condition

    International Nuclear Information System (INIS)

    Zhang Yapei; Qiu Suizheng; Su Guanghui; Tian Wenxi; Cao Jianhua; Lu Donghua; Fu Xiangang

    2011-01-01

    The steam generator secondary passive emergency feedwater system is a new design for traditional generation Ⅱ + reactor CPR1000. The passive emergency feedwater system is designed to supply water to the SG shell side and improve the safety and reliability of CPR1000 by completely or partially replacing traditional emergency water cooling system in the event of the feed line break (FLB) or loss of heat sink accident. The passive emergency feedwater system consists of steam generator (SG), heat exchanger (HX), air cooling tower, emergency makeup tank (EMT), and corresponding pipes and valves for air cooling condition. In order to improve the safety and reliability of CPR1000, the model of the primary loop system and the passive emergency feedwater system was developed to investigate residual heat removal capability of the passive emergency feedwater system and the transient characteristics of the primary loop system affected by the passive emergency feedwater system using RELAP5/MOD3.4. The transient characteristics of the primary loop system and the passive emergency feedwater system were calculated in the event of feed line break accident. Sensitivity studies of the passive emergency feedwater system were also conducted to investigate the response of the primary loop and the passive emergency feedwater system on the main parameters of the passive emergency feedwater system. The passive emergency feedwater system could supply water to the SG shell side from the EMT successfully. The calculation results showed that the passive emergency feedwater system could take away the decay heat from the primary loop effectively for air cooling condition, and that the single-phase and two-phase natural circulations were established in the primary loop and passive emergency feedwater system loop, respectively. (author)

  20. Installation package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  1. Factors analysis of water hammer in FLOWMASTER for main feedwater systems of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xin; Han Weishi

    2010-01-01

    The main feedwater system of a nuclear power plant (NPP) is an important part in ensuring the cooling of a steam generator. It is the main pipe section where water hammers frequently occur. Studying the regulator patterns of water hammers in the main feedwater systems is significant to the stable operation of the system. This article focuses on a parametric study to avoid the consequences of water hammer effect in PWR by employing a general purpose fluid dynamic simulation software-FLOWMASTER. Through FLOWMASTER's transient calculating functions, a mathematical model is established with boundary conditions such as feedwater pumps, control valves, etc., calculations of water hammer pressure when feedwater pumps and control valves shut down, and simulations during instantaneous changes in water hammer pressure. Combining a plethora of engineering practical examples, this research verified the viability of calculating water hammer pressure through FLOWMASTER's transient functions and we found out that, increasing the periods of closure of control valves and feedwater pumps control water hammers effectively. We also found out that changing the intervals of closing signals to feedwater pumps and control valves aid to relieve hydraulic impact. This could be a guideline for practical engineering design and system optimization. (author)

  2. Water hammer calculation and analysis in main feedwater system of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xin; Han Weishi

    2010-01-01

    The main feedwater system of a nuclear power plant is an important part in ensuring the cooling of the steam generator. Moreover, it is the main pipe section where water hammers frequently occur. Studying the regular patterns of water hammers to the main feedwater system is significant to the stable operation of the system. The paper focuses on the study of water hammers through Flowmaster's transient calculating function to establish a mathematical model with boundary conditions such as a feedwater pump, control valves, etc.; calculation of the water hammers pressure when feedwater pumps and control valves shut down; exporting the instantaneous change in solution of pressure. Combined with engineering practical examples, the conclusions verify the viability of calculating the water hammers pressure through Flowmaster's transient function, increasing the periods of closure of control valves and feedwater pumps control water hammers effectively, changing the intervals of closing signals to feedwater pumps and control valves to relieve hydraulic impact. This could be a guideline for practical engineering design and system optimization. (authors)

  3. Characterization of cable gun plasma with a charge collector array

    International Nuclear Information System (INIS)

    Chen Yulan; Zeng Zhengzhong; Sun Fengju; Kuai Bin; Qiu Aici; Yin Jiahui; Cong Peitian; Liang Tianxue

    2003-01-01

    The density, drift velocity and reproducibility of the plasma produced by a cable plasma gun array have been measured with a charge collector array. The plasma is used to prefill a coaxial plasma-opening switch with a conducting time approaching 0.4 μs. The reproducibility of the plasma source in subsequent shots is better than 5%. Near the gun nozzle and the opposite electrode, the plasma density amounts to 10 15 cm -3 , which is 2 times to 3 times that in the gap between the two coaxial electrodes. A plasma drift velocity of about 2.4 cm/μs is observed from the time of flight of the charged particles. Both plasma density and drift velocity increase almost linearly with the rise in charge voltage

  4. Nuclear plant power up-rate study: feedwater heater evaluations

    International Nuclear Information System (INIS)

    Svensson, Eric; Catapano, Michael; Coakley, Michael; Thomas, Dan

    2014-01-01

    Given today's nuclear industry business climate, it has become common for Utility companies to consider increasing unit capacities through turbine replacement and power up-rates. An integral part of the studies conducted by many towards this end, involve the generation of a set of turbine cycle heat balances with predicted performance parameters for the up-rated condition. Once these tentative operating values are established, it becomes necessary to evaluate the suitability of the existing components within each system to ensure they are capable of continued safe and reliable operation. The ultimate cost for the up-rate, including the cost for any major required modifications or significant replacements is weighed against increased revenue generated from the up-rate over time. Exelon's Peach Bottom Atomic Power Station (PBAPS) is currently planning for an Extended Power up-rate (EPU) for both units. To ensure the existing Feedwater Heaters (FWH) could maintain the operating and transient response margins at the EPU condition, an engineering study was conducted. Powerfect Inc. in conjunction with SPX Heat Transfer LLC were contracted to provide engineering services to analyze the design, thermal performance, reliability and operating conditions at projected EPU conditions. Specifically, to address the following with regard to the station's Feedwater Heaters (FWHs): 1. Evaluate Drain Cooler (DC) Velocities - including zone inlet velocity, cross and window velocities and outlet velocities. 2. Evaluate Drain Cooler Zone Pressure Drop for effect on drain cooler margins to flashing. 3. Evaluate differential pressure allowable across the pass partition plate. 4. Evaluate Drain Cooler Tube Vibration Potential. 5. Perform detailed steam dome velocity calculations. The goal of the study was to identify the most susceptible areas within the heaters for problems and potential failures when operating at the higher duty of the EPU condition for the remaining life

  5. Investigations on efficiencies of HT solar collectors for different flow rates and collector tilts

    DEFF Research Database (Denmark)

    Chen, Ziqian; Perers, Bengt; Furbo, Simon

    2013-01-01

    Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between the abso......Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates and tilt. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rates are obtained. The calculated efficiencies are in good...

  6. Nozzle geometry for organic vapor jet printing

    Science.gov (United States)

    Forrest, Stephen R.; McGraw, Gregory

    2017-10-25

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  7. Simulation of main steam and feedwater system of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhao Xiaoyu

    1996-01-01

    The simulation of main steam and feedwater system is the most important and maximal part in secondary circuit model, including all of main steam and feedwater's thermal-hydraulic properties, except heat-exchange of secondary side of steam generator. It simulates main steam header, steam power in each stage of turbine, moisture separator-reheater, deaerator, condenser, high pressure and low pressure heater, auxiliary feedwater and main steam bypass in full scope

  8. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  9. Classification of Feedwater Heater Performance Degradation Using Residual Sign Matrix

    International Nuclear Information System (INIS)

    Ha, Gayeon; Heo, Gyunyoung; Song, Seok Yoon

    2016-01-01

    Since a performance of Feedwater Heater (FWH) is directly related to the thermodynamic efficiency of Nuclear Power Plants (NPPs), performance degradation of FWH results in loss of thermal power and ultimately business benefit. Nevertheless, it is difficult to diagnose its degradation of performance during normal operation due to its minor changes in process parameters, for instance, pressure, temperature, and flowrate. In this paper, six degradation modes have been analyzed and the performance indices for FWH such as Terminal Temperature Difference (TTD) and Drain Cooling Approach (DCA) have been used to diagnose degradation modes. PEPSE (Performance Evaluation of Power System Efficiencies) simulation, which is a plant simulation software simulating plant static characteristic and building energy balance model, has been used to generate the data of performance indices of FWH and actual measurements of FWH from NPPs was used to validate the classification model. In this paper, six degradation modes have been analyzed and the performance indices for FWH have been used to diagnose what degradation mode occurs. The RSM was proposed as a trend identifier of variables. Using RSM, it is possible to obtain appropriate information of the variables in noise environment since noise can be compressed while the original information is being converted to a trend. The SVC has been performed to classify the degradation mode of FWH, and then actual measurements of FWH from NPPs was used to validate the classification model. Performance indices under various leakage conditions show different patterns. In further study, tube leakage simulations for the various cases will be needed

  10. Classification of Feedwater Heater Performance Degradation Using Residual Sign Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Gayeon; Heo, Gyunyoung [Kyung Hee University, Seoul (Korea, Republic of); Song, Seok Yoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Since a performance of Feedwater Heater (FWH) is directly related to the thermodynamic efficiency of Nuclear Power Plants (NPPs), performance degradation of FWH results in loss of thermal power and ultimately business benefit. Nevertheless, it is difficult to diagnose its degradation of performance during normal operation due to its minor changes in process parameters, for instance, pressure, temperature, and flowrate. In this paper, six degradation modes have been analyzed and the performance indices for FWH such as Terminal Temperature Difference (TTD) and Drain Cooling Approach (DCA) have been used to diagnose degradation modes. PEPSE (Performance Evaluation of Power System Efficiencies) simulation, which is a plant simulation software simulating plant static characteristic and building energy balance model, has been used to generate the data of performance indices of FWH and actual measurements of FWH from NPPs was used to validate the classification model. In this paper, six degradation modes have been analyzed and the performance indices for FWH have been used to diagnose what degradation mode occurs. The RSM was proposed as a trend identifier of variables. Using RSM, it is possible to obtain appropriate information of the variables in noise environment since noise can be compressed while the original information is being converted to a trend. The SVC has been performed to classify the degradation mode of FWH, and then actual measurements of FWH from NPPs was used to validate the classification model. Performance indices under various leakage conditions show different patterns. In further study, tube leakage simulations for the various cases will be needed.

  11. Analysis of limit cycling on a boiler feedwater control system

    International Nuclear Information System (INIS)

    Thomas, P.J.; Harrison, T.A.; Hollywell, P.D.

    1986-01-01

    During operation of the UKAEA Prototype Fast Reactor, it was found that oscillations sometimes occurred in the boiler feedwater systems. These were normally of relatively low amplitude, but led to the adoption of low controller gains so that control was rather slack. While control performance proved generally adequate for steady running, the lack of tight control of steam drum levels sometimes led to difficulties during periods when plant conditions were undergoing major change. The paper discusses the methods used to gain a full understanding of the phenomena occurring, and describes how that knowledge is being used to improve the control system so as to eliminate the limit cycling modes and ensure good control of steam drum levels. A noteworthy feature of the study was the use of two independent representations of plant behaviour: (i) a frequency response model, FWRFREQ, and (ii) a time-domain simulation model, PFRTDM. The simplified analysis of FWRFREQ proved to be of enormous value in identifying modes of system behaviour; PFRTDM was used as a detailed check on the accuracy and validity of the results obtained. (author)

  12. Iron concentration controller in feedwater in nuclear plant

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Isaka, Yoshitaka

    1990-01-01

    The purpose of the present invention is to prevent chlorine ions from flowing into a reactor when sea water leakage accident should occur in a condenser upon control of Fe concentration in feedwater. That is, a sensor is disposed for detecting the leakage of the sea water at the exit of the condenser. The controller receives a detection signal as the input and delivers a control signal as the output. A control system receives the control signal and actuates valves in bypass systems. In view of the above, the electroconductivity or chlorine ion concentration of the condensate, which varies upon occurrence of sea water leakages in the condenser, is detected by the sensor, and then the controller closes a valve dispposed in the bypass systems in a processing device for filtering and desalting the condensates. Accordingly, the chlorine ions mixed into the condensates are removed by a desalting device without flowing into the reactor. In view of the above, an effect capable of keeping integrity of the plant is obtainable. (I.S.)

  13. Cleaning the feed-water pipeline internal surfaces

    International Nuclear Information System (INIS)

    Podkopaev, V.A.

    1984-01-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washing by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones

  14. Cleaning the feed-water pipeline internal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, V.A.

    1984-12-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washed by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water with the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones.

  15. Focusing liquid microjets with nozzles

    International Nuclear Information System (INIS)

    Acero, A J; Ferrera, C; Montanero, J M; Gañán-Calvo, A M

    2012-01-01

    The stability of flow focusing taking place in a converging–diverging nozzle, as well as the size of the resulting microjets, is examined experimentally in this paper. The results obtained in most aspects of the problem are similar to those of the classical plate-orifice configuration. There is, however, a notable difference between flow focusing in nozzles and in the plate-orifice configuration. In the former case, the liquid meniscus oscillates laterally (global whipping) for a significant area of the control parameter plane, a phenomenon never observed when focusing with the plate-orifice configuration. Global whipping may constitute an important drawback of flow focusing with nozzles because it reduces the robustness of the technique. (paper)

  16. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, R.; Harrell, J.

    1996-12-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves.

  17. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    International Nuclear Information System (INIS)

    Fuller, R.; Harrell, J.

    1996-01-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves

  18. Trace analysis of loss of feedwater flow event in Lungmen ABWR

    International Nuclear Information System (INIS)

    Wang Jongrong; Lin Haotzu; Wang Weichen; Yang Shuming; Shih Chunkuan

    2009-01-01

    TRACE (TRAC/RELAP Advanced Computational Engine) model of Lungmen Nuclear Power Plant was used to analyze the Loss of Feedwater Flow transient as defined in Lungmen FSAR Chapter 15. The results were compared with those from FSAR and RETRAN02. Lungmen TRACE model will have two models: In model A, vessel is divided into 11 axial levels, 4 radial rings and 1 azimuthal sectors; In model B, vessel is divided into 11 axial levels, 4 radial rings, and 6 azimuthal sectors. The above models include feedwater control system, narrow range water level control system, and wide range water level control system. The loss of feedwater flow (LOFW) transient began with the trip of two operating feedwater pumps either from the pump mechanical/electric failure, or the operator human error, or high water level signal. Feedwater flow was assumed to descend to 0 in 5 seconds and led to the decrease of reactor water level. At L3 low water level setpoint, the system actuated reactor scram signal and RIP trip signal for RIPs not connected to the M/G set. At L2 low-low water level setpoint, the system would trip the other six RIPs. This paper compares those important thermal parameters at steady state, such as the dome pressure and temperature of reactor vessel, steam flow, feedwater flow, core flow, and RIP flow, etc.. It also compares system parameters under transient conditions, such as core thermal power, core flow, steam flow, feedwater flow, Narrow Range Water Level (NRWL), Wide Range Water Level (WRWL) and RIP flow, etc.. It was concluded that the steady state and transient results of TRACE calculations are in good agreement with those from RETRAN02. In summary, our studies concluded that Lungmen TRACE model is correct and accurate enough for future safety analysis applications. (author)

  19. THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR

    Directory of Open Access Journals (Sweden)

    TABET I.

    2017-06-01

    Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.

  20. Prototype Morphing Fan Nozzle Demonstrated

    Science.gov (United States)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  1. Integral effect test and code analysis on the cooling performance of the PAFS (passive auxiliary feedwater system) during an FLB (feedwater line break) accident

    International Nuclear Information System (INIS)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyoung-Ho

    2014-01-01

    Highlights: • This study focuses on the experimental validation of the operational performance of the PAFS (passive auxiliary feedwater system). • A transient simulation of the FLB (feedwater line break) in the integral effect test facility, ATLAS-PAFS, was performed to investigate thermal hydraulic behavior during the PAFS actuation. • The test result confirmed that the APR+ has the capability of coping with the FLB scenario by adopting the PAFS and proper set-points for its operation. • The experimental result was utilized to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. - Abstract: APR+ (Advanced Power Reactor Plus), which is a GEN-III+ nuclear power plant developed in Korea, adopts PAFS (passive auxiliary feedwater system) as an advanced safety feature. The PAFS can completely replace an active auxiliary feedwater system by cooling down the secondary side of steam generators with a natural convection mechanism. This study focuses on experimental and analytical investigation for cooling and operational performance of the PAFS during an FLB (feedwater line break) transient with an integral effect test facility, ATLAS-PAFS. To realistically simulate the FLB accident of the APR+, the three-level scaling methodology was taken into account to design the test facility and determine the test condition. From the test result, the PAFS was actuated to successfully cool down the decay heat of the reactor core by the condensation heat transfer at the PCHX (passive condensation heat exchanger), and thus it could be confirmed that the APR+ has the capability of coping with a FLB scenario by adopting the PAFS and proper set-points for its operation. This integral effect test data were used to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. The code analysis result proved that it could reasonably predict the FLB transient including the actuation of the PAFS and the natural convection

  2. Multielement suppressor nozzles for thrust augmentation systems.

    Science.gov (United States)

    Lawrence, R. L.; O'Keefe, J. V.; Tate, R. B.

    1972-01-01

    The noise reduction and nozzle performance characteristics of large-scale, high-aspect-ratio multielement nozzle arrays operated at low velocities were determined by test. The nozzles are selected for application to high-aspect-ratio augmentor suppressors to be used for augmentor wing airplanes. Significant improvements in noise characteristics for multielement nozzles over those of round or high-aspect-ratio slot nozzles are obtained. Elliptical noise patterns typical of slot nozzles are presented for high-aspect-ratio multielement nozzle arrays. Additional advantages are available in OASPL noise reduction from the element size and spacing. Augmentor-suppressor systems can be designed for maximum beam pattern directivity and frequency spectrum shaping advantages. Measurements of the nozzle wakes show a correlation with noise level data and frequency spectrum peaks. The noise and jet wake results are compared with existing prediction procedures based on empirical jet flow equations, Lighthill relationships, Strouhal number, and empirical shock-induced screech noise effects.

  3. Collector ring project at FAIR

    International Nuclear Information System (INIS)

    Dolinskii, A; Blell, U; Dimopoulou, C; Gorda, O; Leibrock, H; Litvinov, S; Laier, U; Schurig, I; Weinrich, U; Berkaev, D; Koop, I; Starostenko, A; Shatunov, P

    2015-01-01

    The collector ring is a dedicated ring for fast cooling of ions coming from separators at the FAIR project. To accommodate optimal technical solutions, a structure of a magnet lattice was recently reviewed and modified. Consequently, more appropriate technical solutions for the main magnets could be adopted. A general layout and design of the present machine is shown. The demanding extraction schemes have been detailed and open design issues were completed. (paper)

  4. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Science.gov (United States)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  5. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    International Nuclear Information System (INIS)

    Nurkkala, P.; Hoikkanen, J.

    1997-01-01

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. 'grounded' and 'with goose neck'). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.)

  6. Simulation of a Downsized FDM Nozzle

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pimentel, Rodrigo; Pedersen, David B.

    2015-01-01

    This document discusses the simulat-ion of a downsized nozzle for fused deposition modelling (FDM), namely the E3D HotEnd Extruder with manufactured diameters of 200-400 μm in the nozzle tip. The nozzle has been simulated in terms of heat transfer and fluid flow giving an insight into the physical...

  7. Parametric Study of Sealant Nozzle

    Science.gov (United States)

    Yamamoto, Yoshimi

    It has become apparent in recent years the advancement of manufacturing processes in the aerospace industry. Sealant nozzles are a critical device in the use of fuel tank applications for optimal bonds and for ground service support and repair. Sealants has always been a challenging area for optimizing and understanding the flow patterns. A parametric study was conducted to better understand geometric effects of sealant flow and to determine whether the sealant rheology can be numerically modeled. The Star-CCM+ software was used to successfully develop the parametric model, material model, physics continua, and simulate the fluid flow for the sealant nozzle. The simulation results of Semco sealant nozzles showed the geometric effects of fluid flow patterns and the influences from conical area reduction, tip length, inlet diameter, and tip angle parameters. A smaller outlet diameter induced maximum outlet velocity at the exit, and contributed to a high pressure drop. The conical area reduction, tip angle and inlet diameter contributed most to viscosity variation phenomenon. Developing and simulating 2 different flow models (Segregated Flow and Viscous Flow) proved that both can be used to obtain comparable velocity and pressure drop results, however; differences are seen visually in the non-uniformity of the velocity and viscosity fields for the Viscous Flow Model (VFM). A comprehensive simulation setup for sealant nozzles was developed so other analysts can utilize the data.

  8. Process for manufacturing separating nozzles

    International Nuclear Information System (INIS)

    Bier, W.; Linder, G.; Mayer, E.

    1979-01-01

    The final form of the basic body and the unit consisting of the nozzle and peeling orifice provides immovable fixing of these parts. Surfaces of various components can then be milled, using milling tools, in one operation. Assembly can be made automatic. (DG) [de

  9. Nozzle for electric dispersion reactor

    Science.gov (United States)

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  10. Main feedwater valve diagnostics at Waterford 3 nuclear generating station

    International Nuclear Information System (INIS)

    Fitzgerald, W.V.

    1991-01-01

    Pneumatically-operated control valves are coming under increasing scrutiny in nuclear power plants because of their relatively high incident rate. The theory behind a device that could make performance evaluation of these valves simpler and more effective was first described at the original EPRI Power Plant Valve Symposium. The development of this Diagnostic System was completed in 1989, and it was recently used to troubleshoot two main feedwater valves at Louisiana Power and Light's Waterford 3 Power Station. During a cold snap last December, these valves failed to respond to the input signal and, as a result, the plant came off line. An incident report had to be filed, and the plant chose to contact the original equipment manufacturer (OEM) for assistance. This paper describes the original incident involving these valves and then gives a brief description of the diagnostic system and how it works. The balance of the paper then reviews how the OEM and plant personnel utilized the system to evaluate each component of the control valve assembly (I/P transducer, positioner, volume boosters, actuator, and valve body assembly). By simply stroking the valve and monitoring pneumatic signals and valve position, the problem was traced to a malfunctioning positioner and a volume booster that was leaking. The problems were corrected and new performance signatures run for the valves using the system to document their improved operation. This case study demonstrates how new Diagnostic Technology along with OEM involvement can effectively address problems with pneumatically-operated control valves so that root-cause solutions can be implemented

  11. A novel feedwater system for the RETRAN model of the Palo Verde nuclear generating station

    International Nuclear Information System (INIS)

    Secker, P.A.; Webb, J.R.

    1988-01-01

    This paper presents a feedwater system model which supplies realistic boundary conditions to the RETRAN model of a Palo Verde Nuclear Generating Station reactor plant. The RETRAN thermal hydraulic code is used to analyze nuclear reactor system transients through a generalized thermal hydraulic volume/junction network. The feedwater system model is implemented using the control block modeling option available in the RETRAN code. The output of the control block model is coupled to the thermal hydraulic network by a fill junction. A forward Euler integration scheme is used by RETRAN for control block variables. The feedwater system model is formulated to allow implicit integration within the existing code framework. The potential need for small integration time steps is, therefore, alleviated. The model results are compared with test data

  12. Evaluation of examination techniques for ferritic stainless steel feedwater heater tubing

    International Nuclear Information System (INIS)

    Nugent, M.J.; Catapano, M.C.

    1995-01-01

    Ferritic stainless steel has been finding increased application in utility plant feedwater heaters due to good strength and corrosion resistance and absence of potential copper contamination of feedwater system. Ferritic stainless steel is highly magnetic and is generally not inspectable using conventional eddy current testing techniques. A variety of techniques have been developed for inspection of this tubing material used in typical heat exchanger applications. Through a project funded by the Empire State Electric Energy Research Corporation (ESEERCO), the evaluation of data generated by four present state of the art NDE testing techniques were evaluated on a controlled mock-up of the heater tubing with service related defects. The primary objective was to determine the strengths and limitations of each method. The testing of two in service feedwater heaters at the Consolidated Edison Company of New York, Inc. (Con Edison's) Arthur Kill Generating Station also allowed further evaluations based on actual field conditions

  13. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  14. PV-hybrid and thermoelectric collectors

    Energy Technology Data Exchange (ETDEWEB)

    Rockendorf, G.; Sillmann, R. [Institut fuer Solarenergieforschung GmbH, Emmerthal (Germany); Podlowski, L.; Litzenburger, B. [SolarWerk GmbH, Teltow (Germany)

    1999-07-01

    Two different principles of thermoelectric cogeneration solar collectors have been realized and investigated. Concerning the first principle, the thermoelectric collector (TEC) delivers electricity indirectly by first producing heat and subsequently generating electricity by means of a thermoelectric generator. Concerning the second principle, the photovoltaic-hybrid collector (PVHC) uses photovoltaic cells, which are cooled by a liquid heat-transfer medium. The characteristics of both collector types are described. Simulation modules have been developed and implemented in TRNSYS 14.1 (1994), in order to simulate their behaviour in typical domestic hot-water systems. The discussion of the results shows that the electric output of the PV-hybrid collector is significantly higher than that of the thermoelectric collector. (author)

  15. Standardized performance tests of collectors of solar thermal energy: Prototype moderately concentrating grooved collectors

    Science.gov (United States)

    1976-01-01

    Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.

  16. Nozzle geometry variations on the discharge coefficient

    Directory of Open Access Journals (Sweden)

    M.M.A. Alam

    2016-03-01

    Full Text Available Numerical works have been conducted to investigate the effect of nozzle geometries on the discharge coefficient. Several contoured converging nozzles with finite radius of curvatures, conically converging nozzles and conical divergent orifices have been employed in this investigation. Each nozzle and orifice has a nominal exit diameter of 12.7×10−3 m. A 3rd order MUSCL finite volume method of ANSYS Fluent 13.0 was used to solve the Reynolds-averaged Navier–Stokes equations in simulating turbulent flows through various nozzle inlet geometries. The numerical model was validated through comparison between the numerical results and experimental data. The results obtained show that the nozzle geometry has pronounced effect on the sonic lines and discharge coefficients. The coefficient of discharge was found differ from unity due to the non-uniformity of flow parameters at the nozzle exit and the presence of boundary layer as well.

  17. Dynamic analysis of the condensate feedwater system in boiling water reactor plants

    International Nuclear Information System (INIS)

    Tanji, J.; Omori, T.

    1982-01-01

    The computer code, CONFAC, has been developed for dynamic analysis of the condensate feedwater system in boiling water reactor plants. This code simulates the hydrodynamics in the piping system, the pump dynamics, and the feedwater controller in order to clarify the system transient characteristics in such cases as pump trip incidents. Code verification was performed by comparison between analytical results and actual plant operational data. Satisfactory agreement was obtained. With the code, appropriate pump start/stop interlocks were estimated for preventing pump cavitation in pump trip incidents

  18. Depressed collectors for millimeter wave gyrotrons

    International Nuclear Information System (INIS)

    Singh, A.; Granatstein, V.L.

    1992-01-01

    The main issues relating to design of depressed collectors for millimeter wave gyrotrons are discussed. A flow diagram is presented and the interlinking steps are outlined. Design studies are given for two kinds of gyrotrons on which severe constraints on the maximum radii of the collectors had been imposed; namely, for a cavity type and a quasi-optical gyrotron. A collector efficiency of the order of 70 percent is shown to be feasible for either case using careful tailoring of magnetic field profiles. A code has been developed to assist in doing this. A general approach toward initial placement of collectors has been indicated

  19. Rising hopes for vacuum tube collectors

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-06-01

    The performance, feasibility and use of vacuum tube solar collectors for domestic hot water (DHW) systems are discussed. An introduction to the design of vacuum tube collectors is presented and comparisons are made with flat plate collectors in terms of effectiveness in DHW applications and cost. The use of vacuum tube collectors is well established for high temperature use such as process heat and absorption cooling applications; there is considerable debate concerning their use in DHW and these arguments are presented. It is pointed out that the accepted standardized comparison test (ASHRAE 93-77) is apparently biased towards the flat plate collectors in direct comparisons of collector efficiencies. Recent developments among manufacturers with regard to vacuum tube collectors and their thinking (pro and con) are discussed in some detail. Breakage and other problems are pointed out although advocates look ahead to lower costs, higher efficiencies, and broader markets (particularly in DHW). It is concluded by some that flat plate collector technology has reached its peak and that vacuum tube collectors will be very prominent in the future. (MJJ)

  20. Diagnosis of Feedwater Heater Performance Degradation using Fuzzy Approach

    International Nuclear Information System (INIS)

    Kim, Hyeonmin; Kang, Yeon Kwan; Heo, Gyunyoung; Song, Seok Yoon

    2014-01-01

    It is inevitable to avoid degradation of component, which operates continuously for long time in harsh environment. Since this degradation causes economical loss and human loss, it is important to monitor and diagnose the degradation of component. The diagnosis requires a well-systematic method for timely decision. Before this article, the methods using regression model and diagnosis table have been proposed to perform the diagnosis study for thermal efficiency in Nuclear Power Plants (NPPs). Since the regression model was numerically less-stable under changes of operating variables, it was difficult to provide good results in operating plants. Contrary to this, the diagnosis table was hard to use due to ambiguous points and to detect how it affects degradation. In order to cover the issues of previous researches, we proposed fuzzy approaches and applied it to diagnose Feedwater Heater (FWH) degradation to check the feasibility. The degradation of FWHs is not easy to be observed, while trouble such as tube leakage may bring simultaneous damage to the tube bundle. This study explains the steps of diagnosing typical failure modes of FWHs. In order to cover the technical issues of previous researches, we adopted fuzzy logic to suggest a diagnosis algorithm for the degradation of FHWs and performed feasibility study. In this paper, total 7 modes of FWH degradation modes are considered, which are High Drain Level, Low Shell Pressure, Tube Pressure Increase, Tube Fouling, Pass Partition Plate Leakage, Tube Leakage, Abnormal venting. From the literature survey and simulation, diagnosis table for FWH is made. We apply fuzzy logic based on diagnosis table. Authors verify fuzzy diagnosis for FWH degradation synthesized the random input sets from made diagnosis table. Comparing previous researches, suggested method more-stable under changes of operating variables, than regression model. On the contrary, the problem which ambiguous points and detect how it affects degradation

  1. Diagnosis of Feedwater Heater Performance Degradation using Fuzzy Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonmin; Kang, Yeon Kwan; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Song, Seok Yoon [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2014-05-15

    It is inevitable to avoid degradation of component, which operates continuously for long time in harsh environment. Since this degradation causes economical loss and human loss, it is important to monitor and diagnose the degradation of component. The diagnosis requires a well-systematic method for timely decision. Before this article, the methods using regression model and diagnosis table have been proposed to perform the diagnosis study for thermal efficiency in Nuclear Power Plants (NPPs). Since the regression model was numerically less-stable under changes of operating variables, it was difficult to provide good results in operating plants. Contrary to this, the diagnosis table was hard to use due to ambiguous points and to detect how it affects degradation. In order to cover the issues of previous researches, we proposed fuzzy approaches and applied it to diagnose Feedwater Heater (FWH) degradation to check the feasibility. The degradation of FWHs is not easy to be observed, while trouble such as tube leakage may bring simultaneous damage to the tube bundle. This study explains the steps of diagnosing typical failure modes of FWHs. In order to cover the technical issues of previous researches, we adopted fuzzy logic to suggest a diagnosis algorithm for the degradation of FHWs and performed feasibility study. In this paper, total 7 modes of FWH degradation modes are considered, which are High Drain Level, Low Shell Pressure, Tube Pressure Increase, Tube Fouling, Pass Partition Plate Leakage, Tube Leakage, Abnormal venting. From the literature survey and simulation, diagnosis table for FWH is made. We apply fuzzy logic based on diagnosis table. Authors verify fuzzy diagnosis for FWH degradation synthesized the random input sets from made diagnosis table. Comparing previous researches, suggested method more-stable under changes of operating variables, than regression model. On the contrary, the problem which ambiguous points and detect how it affects degradation

  2. Fluid flow nozzle energy harvesters

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim

    2015-04-01

    Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.

  3. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis is employed to compute Ksub(I) values from the uncracked structure's stress distribution. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The ulilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (Auth.)

  4. Foldable Frame Supporting Electromagnetic Radiation Collectors

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to flexible frames supporting electromagnetic radiation collectors, such as antennas, antenna reflectors, deflectors or solar collectors, for celestial or terrestrial applications, which can be folded to be stored and/or transported. The method for stowing deforms...

  5. EFFECT OF BLENDING VARIOUS COLLECTORS AT BULK ...

    African Journals Online (AJOL)

    Nkana Concentrator under the ownership of the then Zambia Consolidated Copper Mines Ltd (ZCCM) had been using Sodium Ethyl Xanthate (SEX) mainly as a collector, but with the coming of new Mopani Copper Mines Plc (M.C.M), it was felt that there was a need to test alternative collectors in an attempt to improve the ...

  6. Flat-plate solar collector - installation package

    Science.gov (United States)

    1978-01-01

    Package includes installation, operation and maintenance manual for collector, analysis of safety hazards, special handling instructions, materials list, installation drawings, and warranty and certification statement. Manual includes instructions for roof preparation and for preparing collector for installation. Several pages are devoted to major and minor repairs.

  7. Performance of an absorbing concentrating solar collectors

    International Nuclear Information System (INIS)

    Imadojemu, H.

    1990-01-01

    This paper reports on a comparison of the efficiency of an absorbing fluid parabolic trough concentrating solar collector and a traditional concentrating collector that was made. In the absorbing fluid collector, black liquid flows through a glass tube absorber while the same black liquid flows through a selective black coated copper tube absorber while the same black fluid flows through a selective black coated copper tube absorber in the traditional collector. After a careful study of the properties of available black liquids, a mixture of water and black ink was chosen as the black absorbing medium or transfer fluid. In the black liquid glass collector there is a slightly improved efficiency based on beam radiation as a result of the direct absorption process and an increase in the effective transmittance absorptance. At worst the efficiency of this collector equals that of the traditional concentrating collector when the efficiency is based on total radiation. The collector's reflecting surfaces were made of aluminum sheet, parabolic line focus and with cylindrical receivers. The ease of manufacture and reduced cost per unit energy collected, in addition to the clean and pollution free mode of energy conversion, makes it very attractive

  8. Cheap effective thermal solar-energy collectors

    Energy Technology Data Exchange (ETDEWEB)

    Highgate, D.J.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). Dept. of Applied Energy

    1996-04-01

    A light-weight flexible solar-collector, with a wavelength-selective absorption surface and an insolation-transparent thermal-insulation protecter for its aperture, was built and tested. Its cheapness and high performance, relative to a conventional flat-plate solar-collector, provide a prima-facie case for the more widespread adoption of its design. (author)

  9. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  10. OUT Success Stories: Transpired Solar Collectors

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Transpired solar collectors are a reliable, low-cost technology for preheating building ventilation air. With simple payback periods ranging from 3 to 12 years and an estimated 30-year life span, transpired collector systems offer building owners substantial cost savings

  11. VGB conference 'Chemistry in the power plant 1984' - VGB feedwater conditioning conference

    International Nuclear Information System (INIS)

    1984-01-01

    The conference bears various aspects of feedwater conditioning for power plant cooling systems and steam generators as well as on the analytical assessment of water quality and its translation into operational method approaches. 5 out of the total 14 papers were entered separately in the database. (RB) [de

  12. 77 FR 15812 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Science.gov (United States)

    2012-03-16

    ... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... Feedwater Systems for Light- Water Reactors.'' DG-1265 is proposed revision 2 of Regulatory Guide 1.68.1... Plants,'' dated January 1977. This regulatory guide is being revised to: (1) expand the scope of the...

  13. Experience feedback of an operation event during the experiment of feed-water pump switch

    International Nuclear Information System (INIS)

    Sun Shuhai; Li Huasheng; Zhang Hao

    2012-01-01

    In this paper an event is summarized and analyzed, which caused the quit of the high-pressure heaters and the nuclear power rising, during the experiment of the driven feed-water pump switch. The good experience feedback on this event is brought out through gathering related information of domestic nuclear plants. (authors)

  14. Reliability analysis of the auxiliary feedwater system; Analiza zanesljivosti sistema pomozne napajalne vode

    Energy Technology Data Exchange (ETDEWEB)

    Susnik, J; Dusic, M [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    The reliability of a NPP auxiliary feedwater system is evaluated using the fault tree analysis. The system is analyzed during the time interval 0 to 6 hours with the computer package program PREP/KITT which is described in more detail. (author)

  15. Stress analysis of LOFT containment vessel attachments for the mainsteam and feedwater piping support structures

    International Nuclear Information System (INIS)

    Finicle, D.P.

    1977-01-01

    The LOFT Containment Vessel attachments for the Mainsteam and Feedwater Piping Support Structures have been analyzed for operating and faulted loading conditions. This report contains the analysis of the connections to the containment vessel for the most current design and loading. Also contained in this report is the analysis of the piping supports

  16. The impact of feedwater and condensate return excursions on boiler system component failures

    Energy Technology Data Exchange (ETDEWEB)

    Esmacher, Mel J. [GE Water and Process Technologies, The Woodlands, TX (United States); Rossi, Anthony [GE Water and Process Technologies, Trevose, PA (United States)

    2010-02-15

    During boiler operation, the transport of contaminants in boiler feedwater or condensate return via hardness excursions or transport of metal oxides due to corrosion can cause fouling and subsequent tube failure due to under-deposit corrosion or overheating. Case histories are reviewed and suitable corrective actions discussed. (orig.)

  17. The Thermal Collector With Varied Glass Covers

    International Nuclear Information System (INIS)

    Luminosu, I.; Pop, N.

    2010-01-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  18. Behaviour of a pressure vessel nozzle with thermo-sleeve under thermal loading induced by stratified flow

    International Nuclear Information System (INIS)

    Kussmaul, K.; Mayinger, W.; Diem, H.; Katzenmeier, G.

    1993-01-01

    Startup at low reactor power may give rise to stratified flow conditions in pipes of boiling water and pressurized water reactors. Stratified flow regimes cause a steep temperature gradient between the cold and the hot fluid layer. This temperature gradient produces high axial stresses which, in the case of intermittent feeding of cold water and an appropriate number of repetitions, in principle may initiate cracking in the feedwater pipe and close to the feeding nozzle. Thermosleeves have been installed in a number of reactors to mitigate thermally induced stresses; they reduce the intensity of thermal transients by means of an insulating fluid annulus developing between the sleeve and the nozzle, in order to measure the temperature and stress gradients occurring in the region of the nozzle edge, the so-called TEMS experiments were carried out under realistic operating conditions, and with different cold water levels within the framework of German research activities in the field of reactor safety at the HDR test facility. The experiments served to simulate the physics phenomena by means of a FE-program and to verify the computational approach by comparisons of measurements and calculations

  19. Variable volume combustor with pre-nozzle fuel injection system

    Science.gov (United States)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  20. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  1. Signal validation and failure correction algorithms for PWR steam generator feedwater control

    International Nuclear Information System (INIS)

    Nasrallah, C.N.; Graham, K.F.

    1986-01-01

    A critical contributor to the reliability of a nuclear power plant is the reliability of the control systems which maintain plant operating parameters within desired limits. The most difficult system to control in a PWR nuclear power plant and the one which causes the most reactor trips is the control of the feedwater flow to the steam generators. The level in the steam generator must be held within relatively narrow limits, with reactor trips set for both too high and too low a level. The steam generator level is inherently unstable in that it is an open integrator of feedwater flow steam flow mismatch. The steam generator feedwater control system relies on sensed variables in order to generate the appropriate feedwater valve control signal. In current systems, each of these sensed variables comes from a single sensor which may be a separate control sensor or one of the redundant protection sensors that is manually selected by the operator. In case this single signal is false, either due to sensor malfunction or due to a test signal being substituted during periodic test and maintenance, the control system will generate a wrong control signal to the feedwater control valve. This will initiate a steam generator level upset. The solution to this problem is for the control system to sense a given variable with more than one redundant sensor. Normally there are three or four sensors for each variable monitored by the reactor protection system. The techniques discussed allow the control system to compare these redundant sensor signals and generate a validated signal for each measured variable that is insensitive to false signals

  2. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P; Hoikkanen, J [Imatran Voima Oy, Vantaa (Finland)

    1998-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  3. Laval nozzles for cluster-jet targets

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Silke; Bonaventura, Daniel; Hergemoeller, Ann-Katrin; Hetz, Benjamin; Koehler, Esperanza; Lessmann, Lukas; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2016-07-01

    Cluster-jet targets are highly suited for storage ring experiments due to the fact that they provide high and constant beam densities. Therefore, a cluster-jet target is planned to be the first internal target for the PANDA experiment at FAIR. A cluster source generates a continuous flow of cryogenic solid clusters by the expansion of pre-cooled gases within fine Laval nozzles. For the production of clusters the geometry of the nozzle is crucial. The production of such nozzles with their complex inner geometry represents a major technical challenge. The possibility to produce new fine Laval nozzles ensures the operation of cluster-jet targets, e.g. for the PANDA experiment, and opens the way for future investigations on the cluster production process to match the required targets performance. Optimizations on the recently developed production process and the fabrication of new glass nozzles were done. Initial measurements of these nozzles at the PANDA cluster-jet target prototype and the investigation of the cluster beam origin within the nozzle will be presented and discussed. For the future more Laval nozzles with different geometries will be produced and additional measurements with these new nozzles at the PANDA cluster-jet target prototype towards higher performance will be realized.

  4. Fractal analysis of agricultural nozzles spray

    Directory of Open Access Journals (Sweden)

    Francisco Agüera

    2012-02-01

    Full Text Available Fractal scaling of the exponential type is used to establish the cumulative volume (V distribution applied through agricultural spray nozzles in size x droplets, smaller than the characteristic size X. From exponent d, we deduced the fractal dimension (Df which measures the degree of irregularity of the medium. This property is known as 'self-similarity'. Assuming that the droplet set from a spray nozzle is self-similar, the objectives of this study were to develop a methodology for calculating a Df factor associated with a given nozzle and to determine regression coefficients in order to predict droplet spectra factors from a nozzle, taking into account its own Df and pressure operating. Based on the iterated function system, we developed an algorithm to relate nozzle types to a particular value of Df. Four nozzles and five operating pressure droplet size characteristics were measured using a Phase Doppler Particle Analyser (PDPA. The data input consisted of droplet size spectra factors derived from these measurements. Estimated Df values showed dependence on nozzle type and independence of operating pressure. We developed an exponential model based on the Df to enable us to predict droplet size spectra factors. Significant coefficients of determination were found for the fitted model. This model could prove useful as a means of comparing the behavior of nozzles which only differ in not measurable geometric parameters and it can predict droplet spectra factors of a nozzle operating under different pressures from data measured only in extreme work pressures.

  5. Impact of the operation of non-displaced feedwater heaters on the performance of Solar Aided Power Generation plants

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2017-01-01

    Highlights: • Impact of non-displaced feedwater heater on plant’s performance has been evaluated. • Two operation strategies for non-displaced feedwater heater has been proposed. • Constant temperature strategy is generally better. • Constant mass flow rate strategy is suit for rich solar thermal input. - Abstract: Solar Aided Power Generation is a technology in which low grade solar thermal energy is used to displace the high grade heat of the extraction steam in a regenerative Rankine cycle power plant for feedwater preheating purpose. The displaced extraction steam can then expand further in the steam turbine to generate power. In such a power plant, using the (concentrated) solar thermal energy to displace the extraction steam to high pressure/temperature feedwater heaters (i.e. displaced feedwater heaters) is the most popular arrangement. Namely the extraction steam to low pressure/temperature feedwater heaters (i.e. non-displaced feedwater heaters) is not displaced by the solar thermal energy. In a Solar Aided Power Generation plants, when solar radiation/input changes, the extraction steam to the displaced feedwater heaters requires to be adjusted according to the solar radiation. However, for the extraction steams to the non-displaced feedwater heaters, it can be either adjusted accordingly following so-called constant temperature strategy or unadjusted i.e. following so-called constant mass flow rate strategy, when solar radiation/input changes. The previous studies overlooked the operation of non-displaced feedwater heaters, which has also impact on the whole plant’s performance. This paper aims to understand/reveal the impact of the two different operation strategies for non-displaced feedwater heaters on the plant’s performance. In this paper, a 300 MW Rankine cycle power plant, in which the extraction steam to high pressure/temperature feedwater heaters is displaced by the solar thermal energy, is used as study case for this purpose. It

  6. Implementation of a digital feedwater control system at Dresden Nuclear Power Plant, Units 2 and 3: Final report

    International Nuclear Information System (INIS)

    Zapotocky, A.; Popovic, J.R.; Fournier, R.D.

    1988-12-01

    This report describes the Digital Feedwater Control System Implementation at the Dresden 2 or 3 Units of the BWR Nuclear Power Plant owned by the Commonwealth Edison Company. The digital system has been operational in Unit 3 since August 1986, and in Unit 2 since April 1987. The Bailey Control's Network 90 based digital control system replaced the obsolete GE/MAC 5000 analog control system in the reactor feedwater control loop as a ''like-for-like'' replacement. Operational experience from the Digital Feedwater Control installations has been good and the system demonstrated better performance than the old analog systems. 14 refs., 15 figs., 17 tabs

  7. Through an Annular Turbine Nozzle

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    1995-01-01

    is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect is localized to the immediate neighborhood of the involved blades. The effects on the wakes and on the inviscid flow are discussed separately. The mean velocities show a strong sensitivity to the changes of the pitch, which is due to a potential flow effect rather than a viscous effect.

  8. Axisymmetric nozzles with chamfered contraction

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2017-01-01

    Roč. 263, August (2017), s. 147-158 ISSN 0924-4247 Institutional support: RVO:61388998 Keywords : nozzles * chamfering * invariant Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S0924424716310329/1-s2.0-S0924424716310329-main.pdf?_tid=f953dc4c-873c-11e7-b8d0-00000aacb35d&acdnat=1503408341_51527a384c272a3c4e8f43e6046d789d

  9. Effects of location, thermal stress and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    McLean, J.L.; Cohen, L.M.; Besuner, P.M.

    1979-01-01

    The stress intensity factors (K 1 ) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure and a fluid quench in the nozzle. Conditions both with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute K 1 values from the uncracked stress distribution. For each type of loading K 1 values are given for cracks at 15 nozzle locations and for 6 crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced K 1 values. Comparisons are made to determine the effect on K 1 of crack location, thermal stress and residual stress, as compared with pressure stress. For the thermal transient it is shown that K 1 for small crack depths is maximised early in the transient, while K 1 for large cracks is maximised later under steady state conditions. Computation should, therefore, be made for several transient time points and the maximum K 1 for a given crack depth should be used for design analysis. It is concluded that the effects on K 1 of location, thermal stresses and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The utilised combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (author)

  10. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute Ksub(I) values from the uncracked structure's stress distribution. For each type of loading Ksub(I) values are given for cracks at 15 nozzle locations and for six crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced Ksub(I) values. Comparisons are made to determine the effect on Ksub(I) of crack location, thermal stress, and residual stress as compared to pressure stress. For the thermal transient it is shown that Ksub(I) for small crack depths is maximized early in the transient while Ksub(I) for large cracks is maximized later, under steady state conditions. Ksub(I) computations should, therefore, be made for several transient time points and the maximum Ksub(I) for a given crack depth should be used for design analysis. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evalute without advanced numerical procedures. The utilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated

  11. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  12. Single-stage depressed collectors for gyrotrons

    International Nuclear Information System (INIS)

    Piosczyk, B.; Iatrou, C.T.; Dammertz, G.; Thumm, M.; Univ. Karlsruhe

    1996-01-01

    Two 140 GHz gyrotrons with a single-step depressed collector have been operated. The different position of the isolating collector gap in the stray magnetic field causes the electron motion in the retarding region to be in one case adiabatic and in the other case nonadiabatic. The kind of motion within the retarding field influences strongly the behavior of the gyrotron with a depressed collector. In the case of nonadiabatic motion a significant amount of transverse momentum is given to the electrons reflected at the collector potential. This causes the reflected electrons to be trapped between the magnetic mirror and the collector. The electrons escape from the trap by diffusion across the magnetic field to the body of the tube thus contributing to the body current. Despite the high body current there is no observable influence of the collector voltage on the RF output power. In the case of adiabatic motion the reflected electrons do not gain a sufficient amount of transverse momentum to be trapped by the magnetic mirror. They pass the cavity toward the gun and they are trapped between the negative gun potential and the collector. The interaction with the RF field by electrons traveling through the cavity enhances the diffusion in the velocity space thus enabling the trapped electrons to overcome the potential barrier and escape toward the collector. Therefore the body current stays at low values since in this case the reflected electrons do not contribute to it. However, at higher collector voltages a reduction of RF power occurred and some noise in the electron beam was observed. The main motivation for the development of gyrotrons in the frequency range above 100 GHz with power levels in excess of several hundreds kW per tube, is the application in magnetic fusion devices for plasma heating and for electron current drive

  13. Thermo economical optimization of a jet nozzle cooling cycle assisted by solar energy; Otimizacao termoeconomica de ciclo de refrigeracao por compressao por ejetor auxiliado com energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, Gabriel I. Medina; Colle, Sergio [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mail: gabriel@emc.ufsc.br; colle@emc.ufsc.br

    2000-07-01

    The present work deals with the analysis of the jet nozzle cooling cycle assisted by solar energy. Both, a thermodynamic and economic optimization are carried out, for ammonia as working fluid. The optimization of the ejector is also focussed, for different values of the relevant design parameters. The method P{sub 1} - {sub P}2 for economical optimization of solar energy systems is used in order to find out the optimum collector area, which corresponds to the maximum value of the life time cost saving. The numerical results are presented in terms of the specific costs of the auxiliary energy, as well as the collector area. (author)

  14. Engineering design of 500KW CW collector

    International Nuclear Information System (INIS)

    Kumar, Ramesh; Mishra, Deepak; Prasad, M.; Hannuarakar, P.R.

    2006-01-01

    An electron beam collector for 500kW beam power has been designed to test the electron gun. The gun is designed for 250kW, 350MHz CW Klystron with 50% efficiency. This will also help in preliminary studies related to final collector design for Klystron. This paper presents the design parameters, thermal analysis and mechanical features of the design. Electron trajectory on inside wall of the collector is determined with EGUN and computational flow dynamics simulation was done on ANSYS for cooling requirements. (author)

  15. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  16. Pengaruh Jarak dan Posisi Nozzle terhadap Daya Turbin Pelton

    OpenAIRE

    Kurniawan, Yani; Pane, Erlanda Augupta; Ismail, Ismail

    2017-01-01

    Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position o...

  17. Pengaruh Jarak dan Posisi Nozzle Terhadap Daya Turbin Pelton

    OpenAIRE

    Yani Kurniawan; Erlanda Augupta Pane; Ismail

    2017-01-01

    Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position o...

  18. Improved Large Aperture Collector Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, Deven [Abengoa Solar LLC, Lakewood, CO (United States); Farr, Adrian [Abengoa Solar LLC, Lakewood, CO (United States)

    2015-12-01

    The parabolic trough is the most established CSP technology and carries a long history of design experimentation dating back to the 1970’s. This has led to relatively standardized collector architectures, a maturing global supply chain, and a fairly uniform cost reduction strategy. Abengoa has deployed more than 1,500MWe of CSP troughs across several countries and has built and tested full-scale prototypes of many R&D concepts. The latest trough R&D efforts involved efforts to internalize non-CSP industry experience including a preliminary DFMA principles review done with Boothroyd Dewhurst, a construction literature review by the Arizona State University School of Construction Management, and two more focused manufacturing engineering subcontracts done by Ricardo Inc. and the nonprofit Edison Welding Institute. The first two studies highlighted strong opportunities in lowering part count, standardizing components and fasteners, developing modular designs to support prefabrication and automation, and devising simple, error-proof manual assembly methods. These principles have delivered major new cost savings in otherwise “mature” products in analogous industries like automotive, truck trailer manufacture, metal building fabrication, and shipbuilding. For this reason, they were core in the design development of the SpaceTube® collector, and arguably key to its early successes. The latter two studies were applied specifically to the first-generation SpaceTube® design and were important in setting the direction of the present SolarMat project. These studies developed a methodology to analyze the costs of manufacture and assembly, and identify new tooling concepts for more efficient manufacture. Among the main opportunities identified in these studies were the automated mirror arm manufacturing concept and the need for a less infrastructure-intensive assembly line, both of which now form central pillars of the SolarMat project strategy. These new designs will be

  19. PSA effect analysis of a design modification of the auxiliary feedwater system for a Westinghouse type plant

    International Nuclear Information System (INIS)

    Bae, Yeon Kyoung; Lee, Eun Chan

    2012-01-01

    The auxiliary feedwater system is an important system used to mitigate most accidents considered in probabilistic safety assessment (PSA). The reference plant has produced electric power for about thirty years. Due to age related deterioration and lack of parts, a turbine driven auxiliary feedwater pump (TD AFWP), some valves, and piping of the auxiliary feedwater system should be replaced. This change includes relocation of some valves, installation of valves for maintenance of the steam generator, and a new cross tie line. According to the design change, the Final Safety Analysis Report (FSAR) has been revised. Therefore, this design modification affects the PSA. It is thus necessary to assess the improvement of plant safety. In this paper, the impact of the design change of the auxiliary feedwater system on the PSA is assessed. The results demonstrate that this modification considering the plant safety decreased the total CDF

  20. Palo Verde Unit 3 BMI nozzle modification

    International Nuclear Information System (INIS)

    Waskey, D.

    2015-01-01

    The 61 BMI (Bottom Mount Instrumentation) nozzles of the unit 3 of the Palo Verde plant have been examined through ASME Code Case N722. The nozzle 3 was the only one with leakage noted. The ultrasound testing results are characteristic of PWSCC (Primary Water Stress Corrosion Cracking). The initiation likely occurred at a weld defect which was exposed to the primary water environment resulting in PWSCC. All other nozzles (60) showed no unacceptable indications. Concerning nozzle 3 one crack in J-groove weld connected large defect to primary water. An environmental model has been used to simulate and optimize the repair. The AREVA crew was on site 18 days after contract award and the job was completed in 12 days, 30 hours ahead of baseline schedule. This series of slides describes the examination of the BMI nozzles, the repair steps, and alternative design concepts

  1. Instrument failure detection of flow measurement in the feedwater system of the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Racz, A.

    1990-12-01

    The applicability of two different methods for early detection of instrument failures of the flow measurement in feedwater systems are investigated. Both methods are based on Kalman filtering technique of stochastic processes. The reliability of the model for description of a feedwater system is checked by comparing calculated values with measured data. Possible instrument failures are simulated in order to show the capability of the proposed procedures. A practical measurement system arrangement is suggested. (author) 10 refs.; 16 figs.; 4 tabs

  2. Movable air solar collector and its efficiency

    International Nuclear Information System (INIS)

    Lauva, A.; Aboltinš, A.; Palabinskis, J.; Karpova Sadigova, N.

    2008-01-01

    Implementing the guidelines of the Latvian National Programme for Energy in the field of alternative energy, intensive research shall be carried on regarding the use of solar energy, as it can be successfully used not only for the purposes of water heating and production of electrical energy, but also for air warming. The amount of heat necessary for the drying of rough forage and grain drying by active aeration in June, July and August can be obtained using solar radiation. The Latvian Guidelines for the Energy Development 2006-2016 state that the solar radiance in Latvia is of quite low intensity. The total amount of solar energy is 1109 kWh m -2 per year. The period of usage of the solar thermal energy is beginning from the last decade of April, when the intensity of radiation is 120 kWh m -2 , until the first decade of September. Within this period (approximately 1800 hours), it is possible to use the solar thermal energy by placing solar collectors. The usage of solar collectors for in drying of agricultural production is topical from the viewpoint of decreasing the consumption of energy used for the drying, as electrical energy and fossil energy resources become more expensive and tend to run out. In the processes that concern drying of agricultural production, efficiently enough solar radiation energy can be used. Due to this reason researching continues and expands in the field of usage of solar energy for the processes of drying and heating. The efficiency factor of the existing solar collectors is not high, but they are of simple design and cheep for production and exploitation. By improving the design of the solar collectors and choosing modern materials that absorb the solar radiation energy, it is possible the decrease the efficiency factor of solar collectors and decrease the production costs. In the scientific laboratory of grain drying and storage of Latvia University of Agriculture, a pilot device movable folding solar collector pilot device

  3. Analysis of containment parameters during the main steam line break with the failure of the feedwater control valves

    International Nuclear Information System (INIS)

    Fabjan, L.; Petelin, S.; Mavko, B.; Gortnar, O.; Tiselj, I.

    1992-01-01

    U.S. Nuclear Regulatory Commission (NRC) information notice 91-69: 'Errors in Main Steam Line Break Analyses for Determining Containment Parameters' shows the possibility of an accident which could lead to beyond design containment pressure and temperature. Such accident would be caused by the continuation of feedwater flow following a main stream line break (MSLB) inside the containment. Krsko power plant already experienced problems with main feedwater control valves. For that reason, analysis of MSLB has been performed taking into account continuous feedwater addition scenario and different containment safety systems capabilities availability. Steam and water released into the containment during MSLB was calculated using RELAP5/MOD2 computer code. The containment response to MSLB was calculated using CONTEMPT-LT/028 computer code. The results indicated that the continuous feedwater flow following a MSLB could lead to beyond design containment pressure. The peak pressure and temperature depend on isolation time for main- and auxiliary-feedwater supply. In the case of low boron concentration injection, the core recriticality is characteristic for this type of accidents. It was concluded that the presented analysis of MSLB with continuous feedwater addition scenario is the worst case for containment design

  4. Optimal nonimaging integrated evacuated solar collector

    Science.gov (United States)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  5. External Cylindrical Nozzle with Controlled Vacuum

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2015-01-01

    Full Text Available There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice

  6. Remote Visual Testing (RVT) for the diagnostic inspection of feedwater heaters

    International Nuclear Information System (INIS)

    Nugent, M.J.; Pellegrino, B.A.

    1993-01-01

    Feedwater heaters are an important component in the overall plant heat rate, reliability, availability, performance and maintenance considerations at power stations. The ability to diagnose heater problems in-situ properly can lead to: (1) Preventative plugging of damaged, but unfailed tubes; (2) In-place repair procedures; (3) Incorporation of corrective actions into replacement designs or heater/unit operations. The benefits and limitations of Non-Destructive Testing (NDT) on feedwater heaters are briefly reviewed. All Remote Visual Testing (RVT) including borescopes, fiberscopes, videoborescopes and Closed Circuit Television (CCTV) cameras are discussed along with currently accepted formats for documentation. The benefits of a comprehensive in-place inspection involving Remote Visual Testing are discussed in relationship to its diagnostic capabilities. The results of eight post-service heater inspections are discussed along with the root cause of failure of seven unique failure mechanisms. These inspections, including FWH access, RVT tool and data analysis, are detailed. 13 figs

  7. Results and analysis of a loss-of-feedwater induced ATWS experiment in the LOFT Facility

    International Nuclear Information System (INIS)

    Grush, W.H.; Koizumi, Y.; Woerth, S.C.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by a loss of feedwater, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a two-position actuator relief valve to simulate a scaled power-operated relief valve (PORV) and safety relief valve (SRV) representative of those in a commercial PWR. Auxiliary feedwater injection was delayed during the experiment until the plant recovery phase where long-term shutdown was achieved by an operator-controlled plant recovery procedure without inserting the control rods. The system transient response predicted by the RELAP5/MOD1 computer code showed good agreement with the experimental data

  8. Using risk-informed asset management for feedwater system preventative maintenance optimization

    International Nuclear Information System (INIS)

    Kee, Ernest; Sun, Alice; Richards, Andrew; Grantom, Rick; Liming, James; Salter, James

    2004-01-01

    The initial development of a South Texas Project Nuclear Operating Company process for supporting preventative maintenance optimization by applying the Balance-Of-Plant model and Risk-Informed Asset Management alpha-level software applications is presented. Preventative maintenance activities are evaluated in the South Texas Project Risk-Informed Asset Management software while the plant maintains or improves upon high levels of nuclear safety. In the Balance-Of-Plant availability application, the level of detail in the feedwater system is enhanced to support plant decision-making at the component failure mode and human error mode level of indenture by elaborating on the current model at the super-component level of indenture. The enhanced model and modeling techniques are presented. Results of case studies in feedwater system preventative maintenance optimization sing plant-specific data are also presented. (author)

  9. Power-feedwater temperature operating domain for Sbwr applying Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar M, L. A.; Quezada G, S.; Espinosa M, E. G.; Vazquez R, A.; Varela H, J. R.; Cazares R, R. I.; Espinosa P, G., E-mail: sequega@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2014-10-15

    In this work the analyses of the feedwater temperature effects on reactor power in a simplified boiling water reactor (Sbwr) applying a methodology based on Monte Carlo simulation is presented. The Monte Carlo methodology was applied systematically to establish operating domain, due that the Sbwr are not yet in operation, the analysis of the nuclear and thermal-hydraulic processes must rely on numerical modeling, with the purpose of developing or confirming the design basis and qualifying the existing or new computer codes to enable reliable analyses. The results show that the reactor power is inversely proportional to the temperature of the feedwater, reactor power changes at 8% when the feed water temperature changes in 8%. (Author)

  10. Power-feedwater temperature operating domain for Sbwr applying Monte Carlo simulation

    International Nuclear Information System (INIS)

    Aguilar M, L. A.; Quezada G, S.; Espinosa M, E. G.; Vazquez R, A.; Varela H, J. R.; Cazares R, R. I.; Espinosa P, G.

    2014-10-01

    In this work the analyses of the feedwater temperature effects on reactor power in a simplified boiling water reactor (Sbwr) applying a methodology based on Monte Carlo simulation is presented. The Monte Carlo methodology was applied systematically to establish operating domain, due that the Sbwr are not yet in operation, the analysis of the nuclear and thermal-hydraulic processes must rely on numerical modeling, with the purpose of developing or confirming the design basis and qualifying the existing or new computer codes to enable reliable analyses. The results show that the reactor power is inversely proportional to the temperature of the feedwater, reactor power changes at 8% when the feed water temperature changes in 8%. (Author)

  11. The effects of parameter variation on MSET models of the Crystal River-3 feedwater flow system

    International Nuclear Information System (INIS)

    Miron, A.

    1998-01-01

    In this paper we develop further the results reported in Reference 1 to include a systematic study of the effects of varying MSET models and model parameters for the Crystal River-3 (CR) feedwater flow system The study used archived CR process computer files from November 1-December 15, 1993 that were provided by Florida Power Corporation engineers Fairman Bockhorst and Brook Julias. The results support the conclusion that an optimal MSET model, properly trained and deriving its inputs in real-time from no more than 25 of the sensor signals normally provided to a PWR plant process computer, should be able to reliably detect anomalous variations in the feedwater flow venturis of less than 0.1% and in the absence of a venturi sensor signal should be able to generate a virtual signal that will be within 0.1% of the correct value of the missing signal

  12. Qualitative and Quantitative Analysis of Organic Impurities in Feedwater of a Heat-Recovery Steam Generator

    Science.gov (United States)

    Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Gafiatullina, A. A.

    2018-03-01

    In recent years, combined-cycle units with heat-recovery steam generators have been constructed and commissioned extensively in the European part of Russia. By the example of the Kazan Cogeneration Power Station no. 3 (TETs-3), an affiliate of JSC TGK-16, the specific problems for most power stations with combined-cycle power units that stem from an elevated content of organic impurities in the feedwater of the heat-recovery steam generator (HRSG) are examined. The HRSG is fed with highly demineralized water in which the content of organic carbon is also standardized. It is assumed that the demineralized water coming from the chemical water treatment department of TETs-3 will be used. Natural water from the Volga River is treated to produce demineralized water. The results of a preliminary analysis of the feedwater demonstrate that certain quality indices, principally, the total organic carbon, are above the standard values. Hence, a comprehensive investigation of the feedwater for organic impurities was performed, which included determination of their structure using IR and UV spectroscopy techniques, potentiometric measurements, and element analysis; determination of physical and chemical properties of organic impurities; and prediction of their behavior in the HRSG. The estimation of the total organic carbon revealed that it exceeded the standard values in all sources of water comprising the feedwater for the HRSG. The extracted impurities were humic substances, namely, a mixture of humic and fulvic acids in a 20 : 80 ratio, respectively. In addition, an analysis was performed of water samples taken at all intermediate stages of water treatment to study the behavior of organic substances in different water treatment processes. An analysis of removal of the humus substances in sections of the water treatment plant yielded the concentration of organic substances on the HRSG condensate. This was from 100 to 150 μg/dm3. Organic impurities in boiler water can induce

  13. Developing the optimum boiler water and feedwater treatment for fossil plants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, B [Electric Power Research Inst., Palo Alto, California (United States)

    1996-12-01

    Over the last two years a new set of cycle chemistry guidelines has been developed for each of the treatments used in fossil plants. These revisions have been based on research conducted over the last ten years, much at the international collaborative level. By careful selection and optimization of the boiler water and feedwater treatments, it will be possible to accrue large financial, maintenance, availability and performance improvements. (au) 14 refs.

  14. Equipment reliability and life cycle optimization of a nuclear plant feedwater heater

    International Nuclear Information System (INIS)

    Thomas, Daniel; Coakley, Michael; Catapano, Michael; Svensson, Eric

    2006-01-01

    Many papers published over the last 25 years have strongly emphasized the need for an ongoing program of inspection and testing with subsequent failure cause analysis of feedwater heaters. Plants must be run more competitively; therefore, Utilities must lower operation and maintenance costs, while optimizing overall plant efficiency and capacity factor. One recognized area that needs to be addressed in accomplishing this goal is the heat cycle. This paper specifically deals with the feedwater heating system. Utility engineers must monitor feedwater heater performance in order to recognize degradation, identify and mitigate failure mechanisms, and prevent in-service failures thereby optimizing availability. Periodic tube plugging without complete analysis of the degraded/failed areas resolves the immediate need for return to service; however, heater life will not be optimized. This paper illustrates a complete life cycle management inspection, testing, and maintenance program implemented at Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data and lack of root cause analysis, justified a program that included: - Removal of previously installed plugs; - Video-probe inspection of failed areas; - Extraction of tube samples for further analysis; - Eddy current testing of selected tubes; - Evaluation of the condition of 'insurance' plugged tubes for return to service; - Hydrostatic testing of selected individual tubes; - Final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should solely be relied upon in establishing: - The extent of actual degraded conditions; - The mechanism(s) of failure; - The details of repair to be implemented. Evaluating all data affords the best chance in arresting problems and optimizing feedwater heater life. Problem heaters should be continuously monitored and inspected over time until the facts

  15. Device for the analysis of feedwater and condensation samples from power plants

    International Nuclear Information System (INIS)

    Mostofin, A.A.; Sorokina, N.S.

    1978-01-01

    An improved version of a device for automatic measurement of the salt and NH 3 contents of feedwater and condensate samples from nuclear power plants is described. Only one sample is required for determining both values. The invention proposes on the one hand to change the dimensions of a throttle opening and on the other to install a second measuring instrument (conductivity measuring instrument). (UWI) [de

  16. Plant data comparisons for Comanche Peak 1/2 main feedwater pump trip transient

    Energy Technology Data Exchange (ETDEWEB)

    Boatwright, W.J.; Choe, W.G; Hiltbrand, D.W. [TU Electric, Dallas, TX (United States)] [and others

    1995-09-01

    A RETRAN-02 MOD5 model of Comanche Peak Steam Electric Station was developed by TU Electric for the purpose of performing core reload safety analyses. In order to qualify this model, comparisons against plant transient data from a partial loss of main feedwater flow were performed. These comparisons demonstrated that good representations of the plant response could be obtained with RETRAN-02 and the user-developed models of the primary-to-secondary heat transfer and plant control systems.

  17. Common-cause failure analysis of McGuire Unit 2 auxiliary feedwater system

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Fowler, R.D.; Summitt, R.L.; Logan, B.W.

    1982-01-01

    A powerful method for qualitative common cause failure analysis (CCFA) of nuclear power plant systems was developed by EG and G Idaho at the Idaho National Engineering Laboratory. As a cooperative project to demonstrate and evaluate the usefulness of the method, the Duke Power Company agreed to allow a CCFA of the auxiliary feedwater system (AFWS) in their McGuire Nuclear Station Unit 2. The results of the CCFA are the subject of this discussion

  18. Evaluation of heatup and recovery in a loss of feedwater accident with multiple failure

    International Nuclear Information System (INIS)

    Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1991-01-01

    A loss of feedwater accident with multiple failure has been studied in order to identify the potential severity of the accident when compared with the design basis accident in PWR. The PCS heatup and recovery mode in a LOFA with multiple failure was evaluated using the LOFT L9-1/L3-3 experiment. From experimental result, 4 separable subphase were identified and the associated phenomena were also addressed

  19. Water-hammer in the feed-water pipes for PWR steam generators

    International Nuclear Information System (INIS)

    Gonnet, Bernard; Leroy, Claude; Oullion, Jean; Yazidjian, J.-C.

    1979-01-01

    PWR boiler water feed pipes have been known for several years to be affected by violent water-hammer during start-ups and operation of the plant. In view of the varying results of corrective design modifications in America and Europe, FRAMATOME undertook an experimental research programme which resulted in the adoption of cruciform tubes on the feed-water distributor as the most reliable solution. Subsequent tests at Fessenheim I confirmed the effectiveness of this device [fr

  20. Monitoring the performance of Aux. Feedwater Pump using Smart Sensing Model

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Many artificial intelligence (AI) techniques equipped with learning systems have recently been proposed to monitor sensors and components in NPPs. Therefore, the objective of this study is the development of an integrity evaluation method for safety critical components such as Aux. feedwater pump, high pressure safety injection (HPSI) pump, etc. using smart sensing models based on AI techniques. In this work, the smart sensing model is developed at first to predict the performance of Aux. feedwater pump by estimating flowrate using group method of data handing (GMDH) method. If the performance prediction is achieved by this feasibility study, the smart sensing model will be applied to development of the integrity evaluation method for safety critical components. Also, the proposed algorithm for the performance prediction is verified by comparison with the simulation data of the MARS code for station blackout (SBO) events. In this study, the smart sensing model for the prediction performance of Aux. feedwater pump has been developed. In order to develop the smart sensing model, the GMDH algorithm is employed. The GMDH algorithm is the way to find a function that can well express a dependent variable from independent variables. This method uses a data structure similar to that of multiple regression models. The proposed GMDH model can accurately predict the performance of Aux.

  1. Monitoring the performance of Aux. Feedwater Pump using Smart Sensing Model

    International Nuclear Information System (INIS)

    No, Young Gyu; Seong, Poong Hyun

    2015-01-01

    Many artificial intelligence (AI) techniques equipped with learning systems have recently been proposed to monitor sensors and components in NPPs. Therefore, the objective of this study is the development of an integrity evaluation method for safety critical components such as Aux. feedwater pump, high pressure safety injection (HPSI) pump, etc. using smart sensing models based on AI techniques. In this work, the smart sensing model is developed at first to predict the performance of Aux. feedwater pump by estimating flowrate using group method of data handing (GMDH) method. If the performance prediction is achieved by this feasibility study, the smart sensing model will be applied to development of the integrity evaluation method for safety critical components. Also, the proposed algorithm for the performance prediction is verified by comparison with the simulation data of the MARS code for station blackout (SBO) events. In this study, the smart sensing model for the prediction performance of Aux. feedwater pump has been developed. In order to develop the smart sensing model, the GMDH algorithm is employed. The GMDH algorithm is the way to find a function that can well express a dependent variable from independent variables. This method uses a data structure similar to that of multiple regression models. The proposed GMDH model can accurately predict the performance of Aux

  2. Analysis of Total Loss of Feedwater for APR1400 using SPACE

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Min; Park, Seok Jeong; Park, Chan Eok; Choi, Jong Ho; Lee, Gyu Cheon [KEPCO Engineering and Construction, Deajeon (Korea, Republic of)

    2016-10-15

    The Total Loss of FeedWater (TLOFW) event is an accident that main feedwater and auxiliary feedwater of secondary side are not supplied to steam generators. APR1400 uses the Safety Depressurization and Vent System (SDVS) for the F and B operation and SDVS is designed to perform the rapid depressurization function of Reactor Coolant System (RCS) through the remote manual operation when TLOFW is occurred. If RCS pressure falls below a Safety Injection Pump (SIP) working pressure, it can be possible to start the F and B operation which injects SIP flow to RCS and releases the RCS vapor and two-phase flow through Pilot Operated Safety Relief Valves (POSRVs) by opening the POSRVs, and then it can be possible to remove the decay heat. The design requirement of SDVS is that the core water level should be maintained at higher than 2 feet from the top of active core during the F and B operation. The TLOFW analysis was carried out to evaluate the capability of decay heat removal for APR1400 using newly developed SPACE code. The analysis results show that the F and B operation with 2 POSRVs and 2 SIPs and the F and B operation with 4 POSRVs and 4 SIPs meet the SDVS design requirement for the fuel cladding temperature. The comparison with RELAP5 shows good agreement and it validates the applicability of SPACE code for this type of accident analysis.

  3. Loss-of-normal-feedwater sensitivity studies for AP600 behavior characterization

    International Nuclear Information System (INIS)

    Saiu, G.

    1996-01-01

    Activity concerning the development of a RELAP5/MOD3 model to simulate the Westinghouse Electric Corporation AP600 is summarized. The aim is to gain initial insight into the capability of RELAP5 to simulate the behavior of AP600 safety features. A-loss-of-normal-feedwater event is studied. Of the transients that must be investigated, this transient has been chosen to be one of the most relevant because the response of the AP600 to a loss-of-normal-feedwater event differs significantly from that of current pressurized water reactors in the extensive use of passive safety features peculiar to the AP600. Also, strong interactions among the AP600 safety systems, which should be further analyzed to permit full optimization of the system actuation logic and operation, are shown. Finally, a loss of normal feedwater without reactor scram, performed to investigate short-term plant behavior, shows that the pressure peak is affected by critical discharge flow coefficients applied to the pressurizer safety valves, while a relatively small reduction of the pressure peak is observed when both heat exchangers of the passive heat removal system are operating as opposed to the case in which only one is available. The data used for this study are derived from the Standard Safety Analysis Report configuration of the Westinghouse AP600 as of 1992

  4. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  5. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors

    International Nuclear Information System (INIS)

    Chen, Meijie; He, Yurong; Zhu, Jiaqi; Wen, Dongsheng

    2016-01-01

    Highlights: • An analysis coupled with Radiation transfer, Maxwell and Energy equation is developed. • Plasmonic Au and Ag nanofluids show better photo-thermal conversion properties. • Collector height and particle concentration exist optimum solutions for efficiency. - Abstract: A one-dimensional transient heat transfer analysis was carried out to analyze the effects of the Nanoparticle (NP) volume fraction, collector height, irradiation time, solar flux, and NP material on the collector efficiency. The numerical results were compared with the experimental results obtained by silver nanofluids to validate the model, and good agreement was obtained. The numerical results show that the collector efficiency increases as the collector height and NP volume fraction increase and then reaches a maximum value. An optimum collector height (∼10 mm) and particle concentration (∼0.03%) achieving a collector efficiency of 90% of the maximum efficiency can be obtained under the conditions used in the simulation. However, the collector efficiency decreases as the irradiation time increases owing to the increased heat loss. A high solar flux is desirable to maintain a high efficiency over a wide temperature range, which is beneficial for subsequent energy utilization. The modeling results also show silver and gold nanofluids obtain higher photothermal conversion efficiencies than the titanium dioxide nanofluid because their absorption spectra are similar to the solar radiation spectrum.

  6. Two new designs of parabolic solar collectors

    Directory of Open Access Journals (Sweden)

    Karimi Sadaghiyani Omid

    2014-01-01

    Full Text Available In this work, two new compound parabolic trough and dish solar collectors are presented with their working principles. First, the curves of mirrors are defined and the mathematical formulation as one analytical method is used to trace the sun rays and recognize the focus point. As a result of the ray tracing, the distribution of heat flux around the inner wall can be reached. Next, the heat fluxes are calculated versus several absorption coefficients. These heat flux distributions around absorber tube are functions of angle in polar coordinate system. Considering, the achieved heat flux distribution are used as a thermal boundary condition. After that, Finite Volume Methods (FVM are applied for simulation of absorber tube. The validation of solving method is done by comparing with Dudley's results at Sandia National Research Laboratory. Also, in order to have a good comparison between LS-2 and two new designed collectors, some of their parameters are considered equal with together. These parameters are consist of: the aperture area, the measures of tube geometry, the thermal properties of absorber tube, the working fluid, the solar radiation intensity and the mass flow rate of LS-2 collector are applied for simulation of the new presented collectors. After the validation of the used numerical models, this method is applied to simulation of the new designed models. Finally, the outlet results of new designed collector are compared with LS-2 classic collector. Obviously, the obtained results from the comparison show the improving of the new designed parabolic collectors efficiency. In the best case-study, the improving of efficiency are about 10% and 20% for linear and convoluted models respectively.

  7. Bioinspired plate-based fog collectors.

    Science.gov (United States)

    Heng, Xin; Luo, Cheng

    2014-09-24

    In a recent work, we explored the feeding mechanism of a shorebird to transport liquid drops by repeatedly opening and closing its beak. In this work, we apply the corresponding results to develop a new artificial fog collector. The collector includes two nonparallel plates. It has three advantages in comparison with existing artificial collectors: (i) easy fabrication, (ii) simple design to scale up, and (iii) active transport of condensed water drops. Two collectors have been built. A small one with dimensions of 4.2 × 2.1 × 0.05 cm(3) (length × width × thickness) was first built and tested to examine (i) the time evolution of condensed drop sizes and (ii) the collection processes and efficiencies on the glass, SiO2, and SU-8 plates. Under similar experimental conditions, the amount of water collected per unit area on the small collector is about 9.0, 4.7, and 3.7 times, respectively, as much as the ones reported for beetles, grasses, and metal wires, and the total amount of water collected is around 33, 18, and 15 times. On the basis of the understanding gained from the tests on the small collector, a large collector with dimensions of 26 × 10 × 0.2 cm(3) was further built and tested, which was capable of collecting 15.8 mL of water during a period of 36 min. The amount of water collected, when it is scaled from 36 to 120 min, is about 878, 479, or 405 times more than what was collected by individual beetles, grasses, or metal wires.

  8. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  9. Droplet spectrum of a spray nozzle under different weather conditions

    Directory of Open Access Journals (Sweden)

    Christiam Felipe Silva Maciel

    Full Text Available ABSTRACT The application of pesticides is always susceptible to losses through evaporation and drift of the spray droplets. With these losses, a smaller amount of pesticide reaches the target, possibly impairing the efficiency of phytosanitary control. Due to these concerns, the aim of this study was to evaluate the interference of weather conditions in the droplet spectrum produced by hydraulic spraying. To carry out the work, it was necessary to build an experimental system. This consisted of a laser particle-size analyser, hydraulic nozzle (Jacto JSF 11002, stationary sprayer, gas heater, wind tunnel, climate chamber (with the aim of maintaining the internal psychrometry similar to that of the air exiting the wind tunnel, collector, and temperature and RH sensors. The weather conditions for the study included vapour pressure deficits (VPD of 5, 9.4, 20, 30.6 and 35 hPa, and air velocities of 2, 3.6, 7.4, 11.2 and 12.8 km h-1. A Rotatable Central Composite Design was used, and the data related using Response Surface Methodology. The wind caused such a sharp drift in the fine droplets, that it greatly affected the behaviour of the entire droplet spectrum, as well as hiding the effect of the VPD. However, the conclusion is that drift and evaporation both act on the coarser droplets.

  10. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  11. Efficiency of the Fermilab Electron Cooler's Collector

    CERN Document Server

    Prost, L R

    2005-01-01

    The newly installed high-energy Recycler Electron Cooling system (REC) at Fermilab will work at an electron energy of 4.34 MeV and a DC beam current of 0.5 A in an energy recovery scheme. For reliable operation of the system, the relative beam current loss must be maintained to levels < 3.e-5. Experiments have shown that the loss is determined by the performance of the electron beam collector, which must retain secondary electrons generated by the primary beam hitting its walls. As a part of the Electron cooling project, the efficiency of the collector for the REC was optimized, both with dedicated test bench experiments and on two versions of the cooler prototype. We find that to achieve the required relative current loss, an axially-symmetric collector must be immersed in a transverse magnetic field with certain strength and gradient prescriptions. Collector efficiencies in various magnetic field configurations, including without a transverse field on the collector, are presented and discussed

  12. Tube collector with integrated tracking parabolic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Grass, C.; Benz, N.; Hacker, Z.; Timinger, A. [ZAE Bayern, Bavarian Centre for Applied Energy Research, Muenchen (Germany)

    2000-07-01

    Low concentrating CPC collectors usually do not track the sun and are mounted in east-west direction with a latitude dependent slope angle. They are most suitable for maximum working temperatures up to 200 250 deg. C. We present a novel evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5 deg. at a geometrical concentration ratio of 3.2. The losses of evacuated tube collectors are dominated by the radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 400 deg. C. At temperatures of 300 deg. C we expect efficiencies of 65 %. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype was tested at the ZAE Bayern. The optical efficiency was measured to be 75 %. (au)

  13. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  14. Aerospike Nozzle for Rotating Detonation Engine Application

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a graduate MS research thesis on improving the efficiency of rotating detonation engines by using aerospike nozzle technologies. A rotating...

  15. Cross-talk effect in electrostatic based capillary array nozzles

    International Nuclear Information System (INIS)

    Choi, Kyung Hyun; Rahman, Khalid; Khan, Arshad; Kim, Dong Soo

    2011-01-01

    Electrohydrodynamic printing is a promising technique for printed electronics application. Most researchers working in this field are using a single nozzle configuration. However, for large area printing a multi-nozzle setup will be required for time and cost effective process. In this paper the influence of electric field and flow-rate on jetting angle on multi-nozzle array has been investigated experimentally. A three nozzle setup has been used in a linear array by using glass capillary as a nozzle with independent voltage applied on each nozzle and independent ink supply. The experiments are performed by changing the nozzle to nozzle gap and the effect on the jetting angle has been investigated. It has been observed that by increasing the applied voltage the jetting angle also increases at fixed flow-rate. In case of increasing the flow-rate, the jetting angle first increases with increase in flow-rate, but as the flow-rate increases at certain level the jetting angle decreases; moreover, at a high flow-rate the cone-jet length starts increasing. Numerical simulation has been performed to have a better understanding of the electric-field with respect to jetting angles. The influence of one nozzle on another nozzle is also investigated by operating the nozzle independently by using different operating cases. The cross-talk effect is also minimized by reducing the nozzle diameter. At 250 μm nozzle diameter the cross-talk effect was negligible for 5 mm nozzle-to-nozzle gap. This study will help in better understanding of the interaction between different nozzles in multi-nozzle cases and better design of the multi-nozzle system by minimizing the effects of adjacent nozzles for multi-nozzle electrohydrodynamic printing system

  16. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...

  17. A solar collector for air-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kose, E. [Microtherm Energietechnik GmbH, 25 - Lods (France)

    1999-03-01

    A high performance Compound Parabolic Concentrator (CPC) collector is presented. It comprises dewar type tubular vacuum tubes with an absorber coating of very low emittance, a moderately concentrating reflector and a simple thermosyphon heat removal system. The reflectors car be designed with respect to the specific needs; reflector material, concentration, truncation and symmetry car be chosen freely. The collector allows the construction of cooling systems with higher COP's without using tracking systems. Land use and costs are greatly reduced. For a certain application (optimum yearly gain in Munich with a constant collector temperature of 180 deg C) the reflector was optimized, it is a fairly asymmetrical design. A symmetrical design with a similar performance has been tested, the results are shown. (author)

  18. Optimum solar collector fluid flow rates

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1996-01-01

    Experiments showed that by means of a standard electronically controlled pump, type UPE 2000 from Grundfos it is possible to control the flow rate in a solar collector loop in such a way that the flow rate is strongly influenced by the temperature of the solar collector fluid passing the pump....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...... the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...

  19. Recent progress in terrestrial photovoltaic collector technology

    Science.gov (United States)

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  20. A stationary evacuated collector with integrated concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Snail, K.A.; O' Gallagher, J.J.; Winston, R.

    1984-01-01

    A comprehensive set of experimental tests and detailed optical and thermal models are presented for a newly developed solar thermal collector. The new collector has an optical efficiency of 65 per cent and achieves thermal efficiencies of better than 50 per cent at fluid temperatures of 200/sup 0/C without tracking the sun. The simultaneous features of high temperature operation and a fully stationary mount are made possible by combining vacuum insulation, spectrally selective coatings, and nonimaging concentration in a novel way. These 3 design elements are ''integrated'' together in a self containe unit by shaping the outer glass envelope of a conventional evacuated tube into the profile of a nonimaging CPC-type concentrator. This permits the use of a first surface mirror and eliminates the need for second cover glazing. The new collector has been given the name ''Integrated Stationary Evacuated Concentrator'', or ISEC collector. Not only is the peak thermal efficiency of the ISEC comparable to that of commercial tracking parabolic troughs, but projections of the average yearly energy delivery also show competitive performance with a net gain for temperatures below 200/sup 0/C. In addition, the ISEC is less subject to exposure induced degradation and could be mass produced with assembly methods similar to those used with fluorescent lamps. Since no tracking or tilt adjustments are ever required and because its sensitive optical surfaces are protected from the environment, the ISEC collector provides a simple, easily maintained solar thermal collector for the range 100-300/sup 0/C which is suitable for most climates and atmospheric conditions. Potential applications include space heating, air conditioning, and industrial process heat.

  1. Qualification test and analysis report: solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Test results show that the Owens-Illinois Sunpak/sup TM/ Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Performance Specification and Verification Plan of NASA/MSFC Contract NAS8-32259, dated October 28, 1976. The architectural and engineering firm of Smith, Hinchman and Grylls, Detroit, Michigan, acted in the capacity of the independent certification agency. The program calls for the development, fabrication, qualification and delivery of an air-liquid solar collector for solar heating, combined heating and cooling, and/or hot water systems.

  2. Short-Term Solar Collector Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2011-01-01

    This paper describes a new approach to online forecasting of power output from solar thermal collectors. The method is suited for online forecasting in many applications and in this paper it is applied to predict hourly values of power from a standard single glazed large area flat plate collector...... enabling tracking of changes in the system and in the surrounding conditions, such as decreasing performance due to wear and dirt, and seasonal changes such as leaves on trees. This furthermore facilitates remote monitoring and check of the system....

  3. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    Science.gov (United States)

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An estimation of reactor thermal power uncertainty using UFM-based feedwater flow rate in nuclear power plants

    International Nuclear Information System (INIS)

    Byung Ryul Jung; Ho Cheol Jang; Byung Jin Lee; Se Jin Baik; Woo Hyun Jang

    2005-01-01

    Most of Pressurized Water Reactors (PWRs) utilize the venturi meters (VMs) to measure the feedwater (FW) flow rate to the steam generator in the calorimetric measurement, which is used in the reactor thermal power (RTP) estimation. However, measurement drifts have been experienced due to some anomalies on the venturi meter (generally called the venturi meter fouling). The VM's fouling tends to increase the measured pressure drop across the meter, which results in indication of increased feedwater flow rate. Finally, the reactor thermal power is overestimated and the actual reactor power is to be reduced to remain within the regulatory limits. To overcome this VM's fouling problem, the Ultrasonic Flow Meter (UFM) has recently been gaining attention in the measurement of the feedwater flow rate. This paper presents the applicability of a UFM based feedwater flow rate in the estimation of reactor thermal power uncertainty. The FW and RTP uncertainties are compared in terms of sensitivities between the VM- and UFM-based feedwater flow rates. Data from typical Optimized Power Reactor 1000 (OPR1000) plants are used to estimate the uncertainty. (authors)

  5. Single nozzle spray drift measurements of drift reducing nozzles at two forward speeds

    NARCIS (Netherlands)

    Stallinga, H.; Zande, van de J.C.; Michielsen, J.G.P.; Velde, van P.

    2016-01-01

    In 2011‒2012 single nozzle field experiments were carried out to determine the effect of different flat fan spray nozzles of the spray drift reduction classes 50, 75, 90 and 95% on spray drift at two different forward speeds (7.2 km h-1 and 14.4 km h-1). Experiments were performed with a single

  6. Comparison of three different collectors for process heat applications

    Science.gov (United States)

    Brunold, Stefan; Frey, R.; Frei, Ulrich

    1994-09-01

    In general vacuum tube collectors are used in solar process heat systems. Another possibility is to use transparent insulated flat plate collectors. A critical point however, is that most of the common transparent insulating materials can not withstand high temperatures because they consist of plastics. Thus, temperature resistive collector covers combining a high tranmisivity with a low U-value are required. One possibility is to use capillaries made of glass instead of plastics. Measurement results of collector efficiency and incident angle modifier will be presented as well as calculated energy gains for three different collectors: a vacuum tube collector (Giordano Ind., France), a CPC vacuum tube collector (microtherm Energietechnik Germany; a new flat plate collector using glass capillary as transparent insulation (SET, Germany).

  7. Behavior of a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon

    2015-01-01

    A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....

  8. Two-axis movable concentrating solar energy collector

    Science.gov (United States)

    Perkins, G. S.

    1977-01-01

    Proposed solar-tracker collector assembly with boiler in fixed position, allows use of hard line connections, capable of withstanding optimum high temperature fluid flow. System thereby eliminates need for flexible or slip connection previously used with solar collector systems.

  9. Implementation of an advanced digital feedwater control system at the Prairie Island nuclear generating station

    International Nuclear Information System (INIS)

    Paris, R.E.; Gaydos, K.A.; Hill, J.O.; Whitson, S.G.; Wirkkala, R.

    1990-05-01

    EPRI Project RP2126-4 was a cooperative effort between TVA, EPRI, and Westinghouse which resulted in the demonstration of a prototype of a full range, fully automatic feedwater control system, using fault tolerant digital technology, at the TVA Sequoyah simulator site. That prototype system also included advanced signal validation algorithms and an advanced man-machine interface that used CRT-based soft-control technology. The Westinghouse Advanced Digital Feedwater Control System (ADFCS) upgrade, which contains elements that were part of that prototype system, has since been installed at Northern States Power's Prairie Island Unit 2. This upgrade was very successful due to the use of an advanced control system design and the execution of a well coordinated joint effort between the utility and the supplier. The project experience is documented in this report to help utilities evaluate the technical implications of such a project. The design basis of the Prairie Island ADFCS signal validation for input signal failure fault tolerance is outlined first. Features of the industry-proven system control algorithms are then described. Pre-shipment hardware-in-loop and factory acceptance testing of the Prairie Island system are summarized. Post-shipment site testing, including preoperational and plant startup testing, is also summarized. Plant data from the initial system startup is included. The installation of the Prairie Island ADFCS is described, including both the feedwater control instrumentation and the control board interface. Modification of the plant simulator and operator and I ampersand C personnel training are also discussed. 6 refs., 14 figs., 3 tabs

  10. Assessment of a potential rapid condensation induced water hammer in a passive auxiliary feedwater system

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Byung Soo; Do, Kyu Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Moody, Frederick J. [General Electric (Retired), CA (United States)

    2012-10-15

    A passive auxiliary feedwater system (PAFS) which is incorporated in the APR+ system is a kind of closed natural circulation loop. The PAFS has no operating functions during normal plant operation, but it has a dedicated safety function of the residual heat removal following initiating events, including the unlikely event of the most limiting single failure occurring coincident with a loss of offsite power, when the feedwater system becomes inoperable or unavailable. Even in the unlikely event of a station blackout, the isolation valves can be opened either by DC power or manual operation and then the PAFS can also provide adequate condensate to the steam generator (SG). The PAFS piping in the vicinity of each of the two SGs is designed to minimize the potential for destructive water hammer during start up operation by setting the stroke time for full close or full open of the condensate isolation valves upon receipt of a passive auxiliary feedwater actuation signal. The temperature of the stagnant condensate water and its surrounding tubes and piping during the reactor normal operation modes may fall to the ambient temperature. A possible concern is the introduction of saturated steam into the PAFS recirculation pipe downstream of the PCHX in the beginning of the PAFS operation. Although the steam introduction rate is expected to be slow, a rapid condensation rate is expected due to the initial cold surrounding temperature in the pipe, which could result in a localized pressure reduction and the propagation of decompression and velocity disturbances into the condensate water leg, which might cause the sudden closure of check valves and associated water hammer. Thus, it is requisite for the licensing review of the PAFS design to confirm if destructive water hammers will not be produced due to such rapid condensation induced decompressions in the system. This paper addresses an assessment of the potential local decompressions which could result from the steam

  11. Computational study of performance characteristics for truncated conical aerospike nozzles

    Science.gov (United States)

    Nair, Prasanth P.; Suryan, Abhilash; Kim, Heuy Dong

    2017-12-01

    Aerospike nozzles are advanced rocket nozzles that can maintain its aerodynamic efficiency over a wide range of altitudes. It belongs to class of altitude compensating nozzles. A vehicle with an aerospike nozzle uses less fuel at low altitudes due to its altitude adaptability, where most missions have the greatest need for thrust. Aerospike nozzles are better suited to Single Stage to Orbit (SSTO) missions compared to conventional nozzles. In the current study, the flow through 20% and 40% aerospike nozzle is analyzed in detail using computational fluid dynamics technique. Steady state analysis with implicit formulation is carried out. Reynolds averaged Navier-Stokes equations are solved with the Spalart-Allmaras turbulence model. The results are compared with experimental results from previous work. The transition from open wake to closed wake happens in lower Nozzle Pressure Ratio for 20% as compared to 40% aerospike nozzle.

  12. Replacement of the feedwater pipe system in reactor building outside containment at the nuclear power plant Philippsburg; Austausch der Speisewasserleitung im Reaktorgebaeude ausserhalb SHB im Kernkraftwerk Philippsburg I

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, A. [Energie-Versorgung Schwaben AG, Stuttgart (Germany); Labes, M. [Siemens AG Unternehmensbereich KWU, Offenbach am Main (Germany); Schwenk, B. [Kernkraftwerk Philippsburg GmbH (Germany)

    1998-11-01

    After full replacement of the feedwater pipe system during the inspection period in 1997, combined with a modern materials, manufacturing and analysis concept, the entire pipe system of the water/steam cycle in the reactor building of KKP 1 now consists of high-toughness materials. The safety level of the entire plant has been increased by leaving aside postulation of F2 breaks in the reactor building and providing for protection against 0.1 leaks. Based on fluid-dynamic calculations for the cases of pump failure and pipe break, as well as pipe system calculations in 5 extensive calculation cycles, about 130 documents were filed for inspection and approval (excluding preliminary test documents on restraints). Points of main interest for safety analysis in this context were the optimised closing performance of the 3rd check valves and the integrity of the nozzle region at the RPV. (oirg./CB) [Deutsch] Durch den Restaustausch der Speisewasserleitungen in der Revision 1997, verbunden mit einem modernen Werkstoff-, Fertigungs- und Nachweiskonzept, sind im Reaktorgebaeude von KKP 1 in den Hauptleitungen des Wasser-Dampf-Kreislaufes nur noch hochzaehe Werkstoffe eingesetzt. Durch den Verzicht auf das Postulat von 2F-Bruechen im Reaktorgebaeude und durch die Auslegung gegen 0,1F-Lecks wird das Sicherheitsniveau der Anlage insgesamt gesteigert. Ausgehend von fluiddynamischen Berechnungen fuer Pumpenausfall und Rohrbruch sowie Rohrsystem-Berechnungen in 5 umfangreichen Berechnungskreisen wurden fuer die Genehmigung und Begutachtung ca. 130 Unterlagen (ohne Halterungs-Vorpruefunterlagen) eingereicht und vom Gutachter geprueft. Schwerpunkte der Nachweisfuehrung waren die Optimierung des Schliessverhaltens der 3. Rueckschlagarmaturen sowie der Integritaetsnachweis des RDB-Anschlusses. (orig./MM)

  13. Life cycle management, design review, and condition assessment of feedwater heaters

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, D.; Idvorian, N. [Babcock & Wilcox Canada Ltd., Cambridge, Ontario (Canada)

    2012-07-01

    OPEX from both the Nuclear and Fossil Power Generation Industries shows that Feedwater Heaters (FWHs) are subject to several degradation mechanisms and that this degradation commonly leads to replacement of these vessels in order to ensure reliable, efficient operation of the plants. Loss of feedwater heating will impact plant thermal performance. In response to inspection results showing on-going degradation as well as other factors, B&W Canada completed a project in conjunction with a US PWR utility to review the design, condition, and Life Cycle Management of their FWHs. This project involved a multi-disciplinary approach in order to consider all aspects of the FWHs in order to provide insight into the Life Cycle Management Plan (LCMP) so that the FWHs can be operated reliably into the future and so that adequate inspections can be conducted in order to produce a detailed condition assessment. The utility was interested in evaluating their FWH LCMP to determine if it was adequate in its requirements to enable reliable, leak-free operation of their FWH equipment. As inputs to this evaluation, it was required that B&W Canada evaluate both confirmed and plausible degradation mechanisms. They also required that the thermal hydraulic and functional design be evaluated for their particular FWHs. It was important to also incorporate industry OPEX in order to provide proper trending information for tube plugging. Out of this evaluation there were several findings and recommendations that could be used to update the utilities’ LCMP as it was apparent that the current version may not be truly reflective of the current condition of the equipment or of current industry OPEX of such FWHs. Several recommendations came from this evaluation, the most significant were: • Performing thermal/hydraulic, FIV (flow-induced vibration), and tube/shell interaction calculations to determine how the FWHs operate and how their performance can change over time as a function of tube

  14. Application of TRAC-BD1/MOD1 to a BWR/4 feedwater control failure ATWS

    International Nuclear Information System (INIS)

    Rouhani, S.Z.; Giles, M.M.; Mohr, C.M. Jr.; Weaver, W.L. III.

    1984-01-01

    This paper begins with a short description of the Transient Reactor Analysis Code for Boiling Water Reactors (TRAC-BWR), briefly mentioning some of its main features such as specific BWR models and input structure. Next, an input model of a BWR/4 is described, and, the assumptions used in performing an analysis of the loss of a feedwater controller without scram are listed. The important features of the calculated trends in flows, pressure, reactivity, and power are shown graphically and commented in the text. A comparison of some of the main predicted trends with the calculated results from a similar study by General Electric is also presented

  15. Power-feedwater enthalpy operating domain for SBWR applying Monte Carlo simulation

    International Nuclear Information System (INIS)

    Quezada-Garcia, S.; Espinosa-Martinez, E.-G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G.

    2014-01-01

    In this work the analyses of the feedwater enthalpy effects on reactor power in a simplified boiling water reactor (SBWR) applying a methodology based on Monte Carlo's simulation (MCS), is presented. The MCS methodology was applied systematically to establish operating domain, due that the SBWR are not yet in operation, the analysis of the nuclear and thermalhydraulic processes must rely on numerical modeling, with the purpose of developing or confirming the design basis and qualifying the existing or new computer codes to enable reliable analyses. (author)

  16. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges

    1998-01-01

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  17. Aging and service wear of auxiliary feedwater pumps for PWR nuclear power plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    This paper describes investigations on auxiliary feedwater pumps being done under the Nuclear Plant Aging Research (NPAR) Program. Objectives of these studies are: to identify and evaluate practical, cost-effective methods for detecting, monitoring, and assessing the severity of time-dependent degradation (aging and service wear); recommend inspection and maintenance practices; establish acceptance criteria; and help facilitate use of the results. Emphasis is given to identifying and assessing methods for detecting failure in the incipient stage and to developing degradation trends to allow timely maintenance, repair or replacement actions. 3 refs

  18. Application of a Long Term Asset Management Strategy for HP Feedwater Heaters

    International Nuclear Information System (INIS)

    Won, Se Youl; Yun, Eun Sub; Park, Young Sheop

    2008-01-01

    As the commercial operating year of nuclear power plants is increased, it becomes imperative to develop integrated cost-effective asset management and to improve plans for degraded Structures, Systems, and Components (SSCs) in terms of safety and economical consideration. A long-term asset management (LTAM) strategy can improve the condition of nuclear plants, maximize their value, and optimize their operational life by maintaining their safety. This paper presents an optimized LTAM plan for HP feedwater heaters at a specific nuclear power plant

  19. Remote visual testing (RVT) for the diagnostic inspection of feedwater heaters

    International Nuclear Information System (INIS)

    Nugent, M.J.; Pellegrino, B.A.

    1991-01-01

    In this paper the benefits and limitations of Non-Destructive Testing (NDT) on feedwater heaters will be briefly reviewed. All Remote Visual Testing (RVT) devices including borescopes, fiberscopes, videoborescopes and Closed Circuit Television (CCTV) cameras will be discussed along with currently accepted formats for documentation. The benefits of a comprehensive in-place inspection involving Remote Visual Testing will be discussed in relationship to its diagnostic capabilities. The results of eight post-service heater inspections will be discussed along with the root cause of failure of seven unique failure mechanisms. These inspections, including FWH access, RVT tool and data analysis, will be detailed

  20. Boiler feedwater quality improvement by replacing conventional pre-treatment with advanced membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Bernhard [Process Systems Pall GmbH, Dreieich (Germany). Marketing; Venkatadri, Ramraj [Pall Corporation, Port Washington, NY (United States). Global Marketing Energy

    2013-09-01

    Two case studies in different application fields highlight significant economical and operational improvements that were achieved by replacing conventional water treatment technologies by highly-sophisticated membrane systems. The first case study deals with boiler feedwater in a power plant, focusing on the challenges faced as well as the direct and indirect benefits gained by the new system within a utility station. The second case study deals with the conventional water treatment scheme for groundwater from 13 wells at a major oil sands facility. Operational performance as well as the cost improvements gained in both cases will be presented. (orig.)

  1. Life cycle management, design review, and condition assessment of feedwater heaters

    International Nuclear Information System (INIS)

    Gammage, D.; Idvorian, N.

    2012-01-01

    OPEX from both the Nuclear and Fossil Power Generation Industries shows that Feedwater Heaters (FWHs) are subject to several degradation mechanisms and that this degradation commonly leads to replacement of these vessels in order to ensure reliable, efficient operation of the plants. Loss of feedwater heating will impact plant thermal performance. In response to inspection results showing on-going degradation as well as other factors, B&W Canada completed a project in conjunction with a US PWR utility to review the design, condition, and Life Cycle Management of their FWHs. This project involved a multi-disciplinary approach in order to consider all aspects of the FWHs in order to provide insight into the Life Cycle Management Plan (LCMP) so that the FWHs can be operated reliably into the future and so that adequate inspections can be conducted in order to produce a detailed condition assessment. The utility was interested in evaluating their FWH LCMP to determine if it was adequate in its requirements to enable reliable, leak-free operation of their FWH equipment. As inputs to this evaluation, it was required that B&W Canada evaluate both confirmed and plausible degradation mechanisms. They also required that the thermal hydraulic and functional design be evaluated for their particular FWHs. It was important to also incorporate industry OPEX in order to provide proper trending information for tube plugging. Out of this evaluation there were several findings and recommendations that could be used to update the utilities’ LCMP as it was apparent that the current version may not be truly reflective of the current condition of the equipment or of current industry OPEX of such FWHs. Several recommendations came from this evaluation, the most significant were: • Performing thermal/hydraulic, FIV (flow-induced vibration), and tube/shell interaction calculations to determine how the FWHs operate and how their performance can change over time as a function of tube

  2. Feed-water heaters alternative design comparison; Comparacion de disenos alternativos de calentadores

    Energy Technology Data Exchange (ETDEWEB)

    Torres Toledano, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    A procedure is presented for the alternative design comparison of feed water heaters, based in the failure records of damaged tubes during operation. The procedure is used for cases in which non-continuous or random inspections are made to the feed-water heaters. [Espanol] Se presenta un procedimiento para comparar disenos alternativos de calentadores, basandose en los registros de fallas de los tubos rotos acumuladas durante su operacion. El procedimiento se emplea para casos en los que se realizan inspecciones a los calentadores no continuas, ya sea periodicas o al azar.

  3. Probabilistic analysis of reactor safety - The auxiliary feedwater system of Angra I

    International Nuclear Information System (INIS)

    Oliveira, L.C.R. da L.C. de.

    1981-09-01

    The unavailability of the auxiliary feedwater system (AFWS) of Angra-1, was calculated. The fault tree analysis technique was used, considering two diferent types of contribution to system unavailability: The one due to hard-ware failure and the contribution due to test and maintenance which was separately analysed. The COMBO-and SAMPLE computer codes were used. The results have shown that the AFWS of Angra-1 contains enough redundancy to guarantee a safe operation under the conditions analysed, best values having been obtained for the unavailability of AFWS of Angra 1 with those codes than with the WASH-1400. (E.G.) [pt

  4. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations....

  5. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    OpenAIRE

    M. Norhafana; Ahmad Faris Ismail; Z. A. A. Majid

    2015-01-01

    Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of...

  6. Local Reasoning about a Copying Garbage Collector

    DEFF Research Database (Denmark)

    Torp-Smith, Noah; Birkedal, Lars; Reynolds, John C.

    2008-01-01

    We present a programming language, model, and logic appropriate for implementing and reasoning about a memory management system. We state semantically what is meant by correctness of a copying garbage collector, and employ a variant of the novel separation logics to formally specify partial corre...

  7. 31 CFR 203.17 - Collector depositaries.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Collector depositaries. 203.17 Section 203.17 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE PAYMENT OF FEDERAL TAXES AND THE TREASURY...

  8. Copyright, Property and the Film Collector

    Science.gov (United States)

    Nevins, Francis M., Jr.

    1975-01-01

    Legal issues surrounding the collecting of movies are analyzed with the conclusion that neither law nor public policy supports a cause for action against the ultimate consumer of film prints and that it is not in a studio's economic interest to bring such actions against collectors. (JT)

  9. Regulatory analysis for the resolution of Generic Issue 125.II.7 ''Reevaluate Provision to Automatically Isolate Feedwater from Steam Generator During a Line Break''

    International Nuclear Information System (INIS)

    Basdekas, D.L.

    1988-09-01

    Generic Issue 125.II.7 addresses the concern related to the automatic isolation of auxiliary feedwater (AFW) to a steam generator with a broken steam or feedwater line. This regulatory analysis provides a quantitative assessment of the costs and benefits associated with the removal of the AFW automatic isolation and concludes that no new regulatory requirements are warranted. 21 refs., 7 tabs

  10. Colored solar collectors - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2007-12-15

    The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause an excessive degradation of the collector efficiency. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation, and are manufactured by sol-gel dip-coating or magnetron sputtering. The novel colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. Due to the tunability of the refractive index, nanostructured materials such as SiO{sub 2}:TiO{sub 2} composites and porous SiO{sub 2} are very useful for application in multilayer interference stacks. Novel quaternary Mg-F-Si-O films exhibit a surprisingly low refractive index and are therefore promising candidates for highly transparent coatings on solar collector glazing. The nanostructure of these thin films is studied by transmission electron microscopy, while the optical constants are measured precisely by ellipsometry. For a convincing demonstration, sufficiently large samples of high quality are imperatively needed. The fabrication of nanocomposite SiO{sub 2}:TiO{sub 2} films has been demonstrated by sol-gel dip-coating of A4-sized glass panes. The produced coatings exhibit a colored reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure will result in speeding up the sol-gel process and saving energy, thereby reducing costs significantly. The infrastructure for UV-curing has been established. A UV C radiation source can now be attached to the

  11. Transient simulation of feedwater vaporization during a DBA LOP/LOCA using RELAP5/MOD3.1

    International Nuclear Information System (INIS)

    Harrell, J.R.; Fuller, R.W.

    1996-01-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station (GGNS) are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. The original design and testing requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. Given this condition, the appropriate testing criteria would be based on air with a relatively tight allowable limit. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leakage flow exists from the reactor vessel to the condenser through the feedwater piping during the reactor vessel blowdown phase. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves

  12. Robotic cleaning of radwaste tank nozzles

    International Nuclear Information System (INIS)

    Boughman, G.; Jones, S.L.

    1992-01-01

    The Susquehanna radwaste processing system includes two reactor water cleanup phase separator tanks and one waste sludge phase separator tank. A system of educator nozzles and associated piping is used to provide mixing in the tanks. The mixture pumped through the nozzles is a dense resin-and-water slurry, and the nozzles tend to plug up during processing. The previous method for clearing the nozzles had been for a worker to enter the tanks and manually insert a hydrolaser into each nozzle, one at a time. The significant radiation exposure and concern for worker safety in the tank led the utility to investigate alternate means for completing this task. The typical tank configuration is shown in a figure. The initial approach investigated was to insert a manipulator arm in the tank. This arm would be installed by workers and then teleoperated from a remote control station. This approach was abandoned because of several considerations including educator location and orientation, excessive installation time, and cost. The next approach was to use a mobile platform that would operate on the tank floor. This approach was selected as being the most feasible solution. After a competitive selection process, REMOTEC was selected to provide the mobile platform. Their proposal was based on the commercial ANDROS Mark 5 platform

  13. Lower nozzle of PWR fuel assembly

    International Nuclear Information System (INIS)

    Furutani, Nobuo.

    1994-01-01

    A lower nozzle comprises a regular square plate and legs. The plate has a plurality of holes for securing thimble tubes and a great number of water flowing ports. Ridges each having a lower end surface inclined toward inner side of the plate are disposed at the outer circumference of the plate. The legs suspend downwardly from the corners of the plate and support the plate at a predetermined gap between a lower reactor core plate and the plate. The inclined surfaces of the ridges disposed at the outer circumference of the plate retain coolants, that were caused to flow to the outside passing between the legs of the nozzle, while dividing them to the inside of the nozzle and circulate the coolants upwardly passing through the water flowing ports of the plate. Further, since obstacles abut against the inclined surfaces of the ridges and flow to the inner side of the lower nozzle, obstacles in the coolants can be captured substantially entirely by the lower nozzle. (I.N.)

  14. Aeroelastic Modeling of a Nozzle Startup Transient

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  15. Integrated TRAC/MELPROG analysis of core damage from a severe feedwater transient in the Oconee-1 PWR

    International Nuclear Information System (INIS)

    Henninger, R.J.; Boyack, B.E.

    1986-01-01

    A postulated complete loss-of-feedwater event in the Oconee-1 pressurized water reactor has been analyzed. With an initial version of the lonked TRAC and MELPROG codes, we have modeled the loss-of-feedwater event from initiation to the time of complete disruption of the core, which was calculated to occur by 6800 s. The highest structure temperatures otuside the vessel are on the flow path from the vessel to the pressurizer relief valve. Temperatures in excess of 1200 K could result in failure and depressurization of the primary system before vessel failure

  16. Loss of main and auxiliary feedwater event at the Davis-Besse Plant on June 9, 1985

    International Nuclear Information System (INIS)

    1985-07-01

    On June 9, 1985, Toledo Edison Company's Davis-Besse Nuclear Power Plant, located in Ottawa County, Ohio, experienced a partial loss of feedwater while the plant was operating at 90% power. Following a reactor trip, a loss of all feedwater occurred. The event involved a number of equipment malfunctions and extensive operator actions, including operator actions outside the control room. Several operator errors also occurred during the event. This report documents the findings of an NRC Team sent to Davis-Besse by the NRC Executive Director for Operations in conformance with the staff-proposed Incident Investigation Program

  17. Automatic regulation of the feedwater turbo-pump capacity for the single-turbine 1000 MW NPP unit

    International Nuclear Information System (INIS)

    Pavlysh, O.N.; Garbuzov, I.P.; Reukov, Yu.N.

    1985-01-01

    A schematic of the flow regulators (FR) of feedwater turbo-pumps (FTP) for the single-turbine 1000 MW NPP unit is presented. The FR operate in response to feedwoter signals from FTP or in response to FTP rotor rotational speed and control automatic speed governars. The FR automatic regulation ensures limitation of FTP rotor maximum rotational speed at a feedwater flow rate excess equal to 3600 T/h. The transients in the automatic regulation system are considered. Production tests of FTP FR confirmed the FR operation reliability and the right choice of the regulator concept and structure

  18. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  19. Standardized performance tests of collectors of solar thermal energy: A selectively coated, steel collector with one transparent cover

    Science.gov (United States)

    1976-01-01

    Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.

  20. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  1. Li/Li2 supersonic nozzle beam

    International Nuclear Information System (INIS)

    Wu, C.Y.R.; Crooks, J.B.; Yang, S.C.; Way, K.R.; Stwalley, W.C.

    1977-01-01

    The characterization of a lithium supersonic nozzle beam was made using spectroscopic techniques. It is found that at a stagnation pressure of 5.3 kPa (40 torr) and a nozzle throat diameter of 0.4 mm the ground state vibrational population of Li 2 can be described by a Boltzmann distribution with T/sub v/ = 195 +- 30 0 K. The rotational temperature is found to be T/sub r/ = 70 +- 20 0 K by band shape analysis. Measurements by quadrupole mass spectrometer indicates that approximately 10 mole per cent Li 2 dimers are formed at an oven body temperature of 1370 0 K n the supersonic nozzle expansion. This measured mole fraction is in good agreement with the existing dimerization theory

  2. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  3. Operational experience on reduction of feedwater iron and liquid radwaste input for Kuosheng Nuclear Power Plant

    International Nuclear Information System (INIS)

    Wen, T.J.; Huang, Theresa Chen; Liu, Wen Tsung; Liu, T.C.; Shyur, Tzu Sheng; Shen, S.C.

    1998-01-01

    Other than cobalt alloys, or low cobalt materials, feedwater iron content plays an important role in crud activation and transport causing the growth of out-of-core radiation fields and associated with radwaste generation. Before installing prefilter in the upstream of condensate deep-bed demineralizer, increasing demand for suspended solid removal required new backwash and regeneration technique in Kuosheng Nuclear Power Plant. At steady state full power operation, the average iron concentration in condensate demineralizer influent was 8-15 ppb. Considering both the necessity of backwash and reduction of liquid radwaste input, several actions had been taken to promote the crud removal capabilities without using ultrasonic resin cleaner and controlled feedwater iron content between 0.5 and 2.0 ppb. This modified resin backwash technique would also generate minimum liquid radwaste. Meanwhile, significant efforts have been made to promote the quality of waste water by carefully control input streams as well as backwash modification to reduce liquid radwaste generation. The daily quantity of liquid radwaste has decreased dramatically in the past two years and is effectively controlled under the expected average daily input of design basis. (author)

  4. Evaluation method for two-phase flow and heat transfer in a feed-water heater

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Minato, Akihiko

    1993-01-01

    A multidimensional analysis code for two-phase flow using a two-fluid model was improved by taking into consideration the condensation heat transfer, film thickness, and film velocity, in order to develop an evaluation method for two-phase flow and heat transfer in a feed-water heater. The following results were obtained by a two-dimensional analysis of a feed-water heater for a power plant. (1) In the model, the film flowed downward in laminar flow due to gravity, with droplet entrainment and deposition. For evaluation of the film thickness, Fujii's equation was used in order to account for forced convection of steam flow. (2) Based on the former experimental data, the droplet deposition coefficient and droplet entrainment rate of liquid film were determined. When the ratio at which the liquid film directly flowed from an upper heat transfer tube to a lower heat transfer tube was 0.7, the calculated total heat transfer rate agreed with the measured value of 130 MW. (3) At the upper region of a heat transfer tube bundle where film thickness was thin, and at the outer region of a heat transfer tube bundle where steam velocity was high, the heat transfer rate was large. (author)

  5. ATWS analysis for total loss of feedwater sequence in UCN 3 and 4

    International Nuclear Information System (INIS)

    Park, S. H.; Song, Y. M.; Kim, D. H.; Kim, S. D.; Park, S. Y.

    1999-01-01

    ATWS is a trip-failed severe accident initiated from the transients like a turbine trip, a control bank withdrawal, and a loss of feedwater which are expected to occur comparatively often (one or two occurrences / year). In this study, an ATWS sequence in Ulchin 3 and 4 is analyzed and the effects of the important systems are studied for accident management purpose using a MIDAS/PK computer code. The MIDAS/PK code has been developed via coupling a point kinetics module with the MELCOR code. The code calculates a primary peak pressure of about 24MPa at 240 seconds for the ATWS initiated by a TLOF (Total Loss of Feedwater) transient. Along with the basic ATWS analysis, several sensitivity runs are performed. From these, the turbines and the safety depressurization system (SDS) are judged to be important. The turbine trip resulting in a loss of offsite power and a RCP trip, degrades primary heat transfer to the secondary sides, and in turn, increases primary coolant temperature which reduces the reactor power due to the negative moderator temperature coefficient. Manual operation of SDS has an effect to lower the primary peak pressure considerably via supplementary depressurization in addition to the PORVs

  6. Simulation of loss of feedwater transient of MASLWR test facility by MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juyeop [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    MASLWR test facility is a mock-up of a passive integral type reactor equipped with helical coil steam generator. Since SMART reactor which is being current developed domestically also adopts helical coil steam generator, KINS has joined this ICSP to evaluate performance of domestic regulatory audit thermal-hydraulic code (MARS-KS code) in various respects including wall-to-fluid heat transfer model modification implemented in the code by independent international experiment database. In the ICSP, two types of transient experiments have been focused and they are loss of feedwater transient with subsequent ADS operation and long term cooling (SP-2) and normal operating conditions at different power levels (SP-3). In the present study, KINS simulation results by the MARS-KS code (KS-002 version) for the SP-2 experiment are presented in detail and conclusions on MARS-KS code performance drawn through this simulation is described. Performance of the MARS-KS code is evaluated through the simulation of the loss of feedwater transient of the MASLWR test facility. Steady state run shows helical coil specific heat transfer models implemented in the code is reasonable. However, through the transient run, it is also found that three-dimensional effect within the HPC and axial conduction effect through the HTP are not well reproduced by the code.

  7. Condensation heat transfer of a feed-water heater and improvement of its performance

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Murase, Michio; Baba, Yoshikazu; Aihara, Tsuyoshi

    1995-01-01

    In this study, a condensation heat transfer model, coupled with a three-dimensional two-phase flow analysis, was developed. In the heat transfer model, the liquid film flow rate on the heat transfer tubes was calculated by a mass balance equation and the liquid film thickness was calculated from the liquid film flow rate using Nusselt's laminar flow model and Fujii's equation for the steam velocity effect. The model was verified by condensation heat transfer experiments. In the experiments, 112 horizontal, staggered tubes with an outer diameter of 16mm and length of 0.55m were used. The calculated over-all heat transfer coefficients agreed with the data within ±5% under the inlet quality conditions of 13-100%. Based on a three-dimensional two-phase flow analysis, an improved feed-water heater with support plates, which have flow holes between the upper and lower tube bundles, was designed. The total heat exchange capacity of the improved feed-water heater increased about 6%. (author)

  8. Biannular Airbreathing Nozzle Rig (BANR) facility checkout and plug nozzle performance test data

    Science.gov (United States)

    Cummings, Chase B.

    2010-09-01

    The motivation for development of a supersonic business jet (SSBJ) platform lies in its ability to create a paradigm shift in the speed and reach of commercial, private, and government travel. A full understanding of the performance capabilities of exhaust nozzle configurations intended for use in potential SSBJ propulsion systems is critical to the design of an aircraft of this type. Purdue University's newly operational Biannular Airbreathing Nozzle Rig (BANR) is a highly capable facility devoted to the testing of subscale nozzles of this type. The high accuracy, six-axis force measurement system and complementary mass flowrate measurement capabilities of the BANR facility make it rather ideally suited for exhaust nozzle performance appraisal. Detailed accounts pertaining to methods utilized in the proper checkout of these diagnostic capabilities are contained herein. Efforts to quantify uncertainties associated with critical BANR test measurements are recounted, as well. Results of a second hot-fire test campaign of a subscale Gulfstream Aerospace Corporation (GAC) axisymmetric, shrouded plug nozzle are presented. Determined test article performance parameters (nozzle thrust efficiencies and discharge coefficients) are compared to those of a previous test campaign and numerical simulations of the experimental set-up. Recently acquired data is compared to published findings pertaining to plug nozzle experiments of similar scale and operating range. Suggestions relating to the future advancement and improvement of the BANR facility are provided. Lessons learned with regards to test operations and calibration procedures are divulged in an attempt to aid future facility users, as well.

  9. Arrangement, manufacturing process and use of solar heat collectors

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, H W

    1978-03-30

    Solar collectors generally have a timber or metal frame where the transparent front cover, usually of glass, is replaceable. In order to prevent great deformation, such a frame must be relatively stable and of heavy construction, which may lead to difficulties in mounting the collector on the roofs or front walls of houses. The present invention proposes a light but nevertheless rigid collector frame, which consists of plastic material and is constructed so that the installation and replacement of collectors can be realized. Further, collectors are proposed which guarantee a minimum of reflection and are so designed that an optimum architectural effect is produced.

  10. Solar collector design with respect to moisture problems

    DEFF Research Database (Denmark)

    Holck, Ole; Svendsen, Svend; Brunold, Stefan

    2003-01-01

    more ventilation openings should be made and what influence the insulation material has. Guidelines for collector designers are proposed. The design guidelines provide some suggestions to be considered during the design of solar collectors.The work was carried out within the framework of the working...... group Materials in Solar Thermal Collectors of the International Energy Agency-Solar Heating and Cooling Programme....... the design of the collector, the location and size of ventilation holes, properties of the insulation materials and dimension of the solar collector box are parameters that have to be taken into account for the optimisation in order to achieve the most favourable microclimate to prevent corrosion...

  11. Evolution of carbon steel corrosion in feedwater conditions reproduce by the Fortrand loop

    International Nuclear Information System (INIS)

    Delaunay, Sophie; Bescond, Aurelien; Mansour, Carine; Bretelle, Jean-Luc

    2012-09-01

    Fouling and tubes support plate blockage of steam generators (SG) are major problems in the secondary circuit of pressurized water reactor (PWR) plants. Corrosion products (CP) responsible of these phenomena are mainly constituted of magnetite. Limit the amount of these CP, generated in the feedwater system and transported to SG, constitutes one way to limit fouling and blockage of SGs. This work requires the understanding of CP behaviour in the feedwater system conditions. A specific experimental circulating water loop, FORTRAND, was built at EDF to follow the formation, the transport and the deposition of iron oxides in representative conditions of the secondary circuit feedwater system. The test section operating at high temperature (up to 250 deg. C) is made in carbon steel and includes three removable segments while all the other parts of the loop are made in stainless steel. First results confirm the formation of iron oxides on carbon steel and stainless steel surface in the conditions of PWR secondary circuits. The surface characterizations show that magnetite is the corrosion product formed on carbon steel and stainless steel at 220 deg. C and goethite is formed at room temperature on stainless steel. The aim of the most recent tests performed in FORTRAND loop was to follow the evolution of corrosion in the feedwater conditions. Tests were performed in one-phase flow conditions at 150 L.h -1 with a linear velocity of 0.82 m/s at 220 deg. C in morpholine/ammonia/hydrazine medium, at pH 25C equal to 9.2. To conduct this study, a removable segment constituted by ten tubes was added to the loop. Several tests were performed to follow the deposit thickness, the iron lost in solution and the oxide morphology with time from two to nine hundred sixty hours. Chemical conditions were controlled and the reproducibility of the results was confirmed by the observation of three tubes at each test. SEM pictures present kinetics with three steps: after the first hours the

  12. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  13. Integrated Design of Undepressed Collector for Low Power Gyrotron

    Science.gov (United States)

    Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.

    2011-06-01

    A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.

  14. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  15. Turbocharger with variable nozzle having vane sealing surfaces

    Science.gov (United States)

    Arnold, Philippe [Hennecourt, FR; Petitjean, Dominique [Julienrupt, FR; Ruquart, Anthony [Thaon les Vosges, FR; Dupont, Guillaume [Thaon les Vosges, FR; Jeckel, Denis [Thaon les Vosges, FR

    2011-11-15

    A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.

  16. Effect of Injector Nozzle Holes on Diesel Engine Performance

    OpenAIRE

    Semin,; Yusof, Mohd Yuzri Mohd; Arof, Aminuddin Md; Shaharudin, Daneil Tomo; Ismail, Abdul Rahim

    2010-01-01

    All of the injector nozzle holes have examined and the results are shown that the seven holes nozzle have provided the best burning result for the fuel in-cylinder burned in any different engine speeds and the best burning is in low speed engine. In engine performance effect, all of the nozzles have examined and the five holes nozzle provided the best result in indicted power, indicated torque and ISFC in any different engine speeds.

  17. Preheating of tap water with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Granum, H; Raaen, H

    1992-05-05

    In 1991 SINTEF Architecture and Building Technology won the second prize in 'The Nordic Competition for Low Energy Buildings' with a project proposal named 'LOWe'. The paper gives a description of the energy-saving features of this project, particularly the use of a solar collector for preheating of tap water. Compared with the economic profitability of other saving efforts in the project, such as good thermal insulation and efficient heat recovering system, the system for solar preheating of tap water does not seem very attractive for the time being. Loose estimates indicate a cost of close of NOK 1.00 per kWh for the produced energy in the solar collector, while the present price for electricity in Norway is about NOK 0.50 per kWh. Compared with a heat pump solution however the energy cost is not unreasonable.

  18. Assessment of musculoskeletal load in refuse collectors

    Directory of Open Access Journals (Sweden)

    Zbigniew W. Jóźwiak

    2013-08-01

    Full Text Available Background: The aim of this work was to assess the load on the musculoskeletal system and its effects in the collectors of solid refuse. The rationale behind this study was to formulate proposals how to reduce excessive musculoskeletal load in this group of workers. Material and Methods: The study group comprised 15 refuse collectors aged 25 to 50 years. Data about the workplace characteristics and subjective complaints of workers were collected by the free interview and questionnaire. During the survey the photorecording of the workpostures, the distance and velocity by GPS recorders, measurements of forces necessary to move containers, energy expenditure (lung ventilation method, workload estimation using the Firstbeat system and REBA method and stadiometry were done. Results: The distance walked daily by the collectors operating in terms of 2 to 3 in urban areas was about 15 km, and in rural areas about 18 km. The most frequent musculoskeletal complaints concerned the feet (60% subjects, knees, wrists and shoulders (over 40% subjects. After work-shift all examined workers had vertebral column shorter by 10 to 14 mm (11.4 mm mean. Conclusions: The results of our study show that the refuse collectors are subjected to a very high physical load because of the work organization and the way it is performed. To avoid adverse health effects and overload it is necessary to undertake ergonomic interventions, involving training of workers to improve the way of their job performance, active and passive leisure, technical control of the equipment and refuse containers, as well as the renegotiation of contracts with clients, especially those concerning non-standard containers. Med Pr 2013;64(4:507–519

  19. Theoretical study of fluidized solar collector performance

    Energy Technology Data Exchange (ETDEWEB)

    Adulla, S. H; Kassem, M A; El-Refaie, M. F. [Cairo University, Giza (Egypt)

    2000-07-01

    This work presents a proposed novel design aiming to increasing the absorber-to-fluid heat transfer coefficient. This is accomplished by introducing small solid particles inside the collector tubes. When the collector liquid flows, it causes the particles to be fluidized and spread in the tubes. The particles material, size and total number should be turned together with the fluid mass flow rate to keep the bed, or particle dispersion, length within the physical length of collector tubes. Thus, the particles would be confined in the collector only; and not carried over to other parts of the circulation loop. While moving, the particles erode the thermal boundary layer formed on the tube inner surface, hence increasing the heat transfer coefficient. [Spanish] Este articulo presenta un diseno novedoso destinado a aumentar el coeficiente de trasferencia de calor de absorbedor a fluido. Esto se lleva a cabo mediante la introduccion de particulas solidas dentro de los tubos del colector. Cuando fluye el liquido del colector origina que las particulas se fluidicen y se diseminen en los tubos. El material de las particulas, tamano y numero total debera de ser puesto en movimiento junto con el regimen de flujo de masa de fluido para mantener el lecho o la dispersion de particulas por largo tiempo dentro de la longitud fisica de los tubos de colector. De esta manera las particulas seran confinadas solamente en el colector y no seran arrastradas a otras partes del anillo de circulacion. Al moverse, las particulas erosionan la capa de frontera termica formada en la superficie interior del tubo, aumentando por tanto el coeficiente de transmision de calor.

  20. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...

  1. Modernization of the feedwater heaters control level of the Almaraz I Nuclear Power Plant by OVATION system

    International Nuclear Information System (INIS)

    Madronal Rodriguez, E.; Cabrero Munoz, J. E.

    2010-01-01

    As a result of the process of technological renovation of the heaters system and the power increase project, Almaraz Nuclear Power Plant has made several design changes in the feedwater heaters system. Within these changes, the old heaters control loops are replaced because the new power will increase the heaters drainage caudal. This modernization is carried out using the OVATION control system.

  2. CFD Analysis On The Performance Of Wind Turbine With Nozzles

    Directory of Open Access Journals (Sweden)

    Chunkyraj Kh

    2015-08-01

    Full Text Available In this paper an effort has been made in dealing with fluid characteristic that enters a converging nozzle and analysis of the nozzle is carried out using Computational Fluid Dynamics package ANSYS WORKBENCH 14.5. The paper is the continuation of earlier work Analytical and Experimental performance evaluation of Wind turbine with Nozzles. First the CFD analysis will be carried out on nozzle in-front of wind turbine where streamline velocity at the exit volume flow rate in the nozzle and pressure distribution across the nozzle will be studied. Experiments were conducted on the Wind turbine with nozzles and the corresponding power output at different air speed and different size of nozzles were calculated. Different shapes and dimensions with special contours and profiles of nozzles were studied. It was observed that the special contour nozzles have superior outlet velocity and low pressure at nozzle exit the design has maximum Kinetic energy. These indicators conclude that the contraction designed with the new profile is a good enhancing of the nozzle performance.

  3. A fundamental study of a variable critical nozzle flow

    International Nuclear Information System (INIS)

    Kim, Jea Hyung; Kim, Heuy Dong; Park, Kyung Am

    2003-01-01

    The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle

  4. Improved Collectors for High Power Gyrotrons

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Philipp; Neilson, Jeff

    2009-01-01

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  5. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  6. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  7. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  8. Fabrication of Microglass Nozzle for Microdroplet Jetting

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2015-02-01

    Full Text Available An ejection aperture nozzle is the essential part for all microdrop generation techniques. The diameter size, the flow channel geometry, and fluid impedance are the key factors affecting the ejection capacity. A novel low-cost fabrication method of microglass nozzle involving four steps is developed in this work. In the first heating step, the glass pipette is melted and pulled. Then, the second heating step is to determine the tip cone angle and modify the flow channel geometry. The desired included angle is usually of 30~45 degrees. Fine grind can determine the exact diameter of the hole. Postheating step is the final process and it can reduce the sharpness of the edges of the hole. Micronozzles with hole diameters varying from 30 to 100 µm are fabricated by the homemade inexpensive and easy-to-operate setup. Hydrophobic treating method of microglass nozzle to ensure stable and accurate injection is also introduced in this work. According to the jetting results of aqueous solution, UV curing adhesive, and solder, the fabricated microglass nozzle can satisfy the need of microdroplet jetting of multimaterials.

  9. Microalgal cell disruption via ultrasonic nozzle spraying.

    Science.gov (United States)

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  10. Design criteria for piping and nozzles program

    International Nuclear Information System (INIS)

    Moore, S.E.; Bryson, J.W.

    1977-01-01

    This report reviews the activities and accomplishments of the Design Criteria for Piping and Nozzles program being conducted by the Oak Ridge National Laboratory for the period July 1, 1975, to September 30, 1976. The objectives of the program are to conduct integrated experimental and analytical stress analysis studies of piping system components and isolated and closely-spaced pressure vessel nozzles in order to confirm and/or improve the adequacy of structural design criteria and analytical methods used to assure the safe design of nuclear power plants. Activities this year included the development of a finite-element program for analyzing two closely spaced nozzles in a cylindrical pressure vessel; a limited-parameter study of vessels with isolated nozzles, finite-element studies of piping elbows, a fatigue test of an out-of-round elbow, summary and evaluation of experimental studies on the elastic-response and fatigue failure of tees, parameter studies on the behavior of flanged joints, publication of fifteen topical reports and papers on various experimental and analytical studies; and the development and acceptance of a number of design rules changes to the ASME Code. 2 figures, 2 tables

  11. Extensive feedwater quality control and monitoring concept for preventing chemistry-related failures of boiler tubes in a subcritical thermal power plant

    International Nuclear Information System (INIS)

    Vidojkovic, Sonja; Onjia, Antonije; Matovic, Branko; Grahovac, Nebojsa; Maksimovic, Vesna; Nastasovic, Aleksandra

    2013-01-01

    Prevention and minimizing corrosion processes on steam generating equipment is highly important in the thermal power industry. The maintenance of feedwater quality at a level corresponding to the standards of technological designing, followed by timely respond to the fluctuation of measured parameters, has a decisive role in corrosion prevention. In this study, the comprehensive chemical control of feedwater quality in 210 MW Thermal Power Plant (TPP) was carried out in order to evaluate its potentiality to assure reliable function of the boiler and discover possible irregularity that might be responsible for frequent boiler tube failures. Sensitive on-line and off-line analytical instruments were used for measuring key and diagnostic parameters considered to be crucial for boiler safety and performances. Obtained results provided evidences for exceeded levels of oxygen, silica, sodium, chloride, sulfate, copper, and conductivity what distinctly demonstrated necessity of feedwater control improvement. Consequently, more effective feedwater quality monitoring concept was recommended. In this paper, the explanation of presumable root causes of corrosive contaminants was given including basic directions for their maintenance in proscribed limits. -- Highlights: • Feedwater quality monitoring practice in a thermal power plant has been evaluated. • The more efficient feedwater quality control have been applied. • Analysis of feedwater quality parameters has been performed. • Exceeded levels of corrosive contaminants were found. • Recommendations for their maintenance at proscribed values were given

  12. Evaluation of Test Method for Solar Collector Efficiency

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximat...... and the sky temperature. Based on the investigations, recommendations for change of the test methods and test conditions are considered. The investigations are carried out within the NEGST (New Generation of Solar Thermal Systems) project financed by EU.......The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated...... equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approximation determined as a constant equal to the specific heat of the solar collector fluid at the temperature Tm...

  13. Thermal performance of a transpired solar collector updraft tower

    International Nuclear Information System (INIS)

    Eryener, Dogan; Hollick, John; Kuscu, Hilmi

    2017-01-01

    Highlights: • Transpired solar collector updraft tower has been studied experimentally. • Transpired solar collector updraft tower efficiency ranges from 60 to 80%. • A comparison has been made with other SUT prototypes. • Three times higher efficiency compared to the glazed collectors of conventional solar towers. - Abstract: A novel solar updraft tower prototype, which consists of transpired solar collector, is studied, its function principle is described and its experimental thermal performance is presented for the first time. A test unit of transpired solar collector updraft tower was installed at the campus of Trakya University Engineering Faculty in Edirne-Turkey in 2014. Solar radiation, ambient temperature, collector cavity temperatures, and chimney velocities were monitored during summer and winter period. The results showed that transpired solar collector efficiency ranges from 60% to 80%. The maximum temperature rise in the collector area is found to be 16–18 °C on the typical sunny day. Compared to conventional solar tower glazed collectors, three times higher efficiency is obtained. With increased thermal efficiency, large solar collector areas for solar towers can be reduced in half or less.

  14. Considerations on the question of applying ion exchange or reverse osmosis methods in boiler feedwater processing

    International Nuclear Information System (INIS)

    Marquardt, K.; Dengler, H.

    1976-01-01

    This consideration is to show that the method of reverse osmosis presents in many cases an interesting and economical alternative to part and total desolination plants using ion exchangers. The essential advantages of the reverse osmosis are a higher degree of automization, no additional salting of the removed waste water, small constructional volume of the plant as well as favourable operational costs with increasing salt content of the crude water to be processed. As there is a relatively high salt breakthrough compared to the ion exchange method, the future tendency in boiler feedwater processing will be more towards a combination of methods of reverse osmosis and post-purification through continuous ion exchange methods. (orig./LH) [de

  15. San Onofre/Zion auxiliary feedwater system seismic fault tree modeling

    International Nuclear Information System (INIS)

    Najafi, B.; Eide, S.

    1982-02-01

    As part of the study for the seismic evaluation of the San Onofre Unit 1 Auxiliary Feedwater System (AFWS), a fault tree model was developed capable of handling the effect of structural failure of the plant (in the event of an earthquake) on the availability of the AFWS. A compatible fault tree model was developed for the Zion Unit 1 AFWS in order to compare the results of the two systems. It was concluded that if a single failure of the San Onofre Unit 1 AFWS is to be prevented, some weight existing, locally operated locked open manual valves have to be used for isolation of a rupture in specific parts of the AFWS pipings

  16. Mobile polishing system of feedwater at start-up feedback from the implementation and future prospects

    International Nuclear Information System (INIS)

    Faure, Celine; Eade, Kevin; Fontan, Guillaume

    2012-09-01

    The reduction of the quantity of Steam Generator (SG) metallic oxides deposits, and maintaining a good chemical composition of the secondary side of SG tubes are some of the main objectives being looked at, in order to reduce the risk of SG corrosion, regardless of the alloy used, right from the start-up phase. For all types of outage, obtaining and maintaining sufficient chemical cleanliness at the start-up requires treatment of the water. The treatments are notably: - Water movements using the purge / make-up water method until the chemical criteria have been met. This method can be long and generate large volumes of discharge. - Using suitable resins to remove pollutants from the water. The advantage of this method is that it is selective. - Filtration, allowing for the removal of any insoluble agent. In order to optimise the start-up process, Gravelines and Blayais Nuclear Power Plants (NPPs) put trials in place towards the end of the 1980s. These trials lead to a water supply treatment installation (mobile polishing system- in French Systeme Mobile d'Epuration, SME) being put in place for the start-up phase, made up of an up-stream filter, a mixed-bed resin pollutant trap and a down-stream filter to prevent losing the fines into the feedwater. At the same time, the manifestation of cracking on the secondary side of the steam generator tubes lead EDF to roll out a water treatment for the feedwater dedicated to the start-up. The choice was made not to install a condensate polishing plant, in order to limit notably the pollution risks (resin leaks or waste from the regeneration in the backwater) following difficulties during regeneration. The positive results from the first trials validated for EDF the choice to give priority to the roll-out of the SME to the NPPs judged to be most critical due to the SG material. The SME, installed on a mobile base, can be used on different units at the same station; this reduced the investment and maintenance costs, and

  17. Evaluation of total loss of feedwater accident/recovery phase and investigation of the associated EOP

    International Nuclear Information System (INIS)

    Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1993-01-01

    To evaluate the sequence of event and the thermohydraulic behavior during total loss of feedwater accident and recovery procedure, a RELAP5/MOD3 calculation is performed and compared with the LOFT L9-1/L3-3 experiment. Also, the predictability of the code for the major thermohydraulic phenomena following the accident is assessed. As a result, it is found that a pressure control using the spray until the time the water level reaches the top of the pressurizer, an overpressure protection by pressurizer PORV, a recovery of the secondary heat removal capability by refilling steam generator, and an effective cooldown by the continued natural circulation can be perfomed without core uncovery. It is also found that the plantspecific evaluation is necessary to confirm the effectiveness of the current symptom-oriented emergency operating procedure, especially in an overpressure protection performance and steam generator recovery performance. (Author)

  18. Analysis Of Feedwater Line Break Of APR1400 By MARS Code

    International Nuclear Information System (INIS)

    Nguyen Thi Thanh Thuy; Le Dai Dien, Hoang Minh Giang

    2011-01-01

    This paper will deal with analysis of Feed water Line Break problem (FWLB) of the APR 1400 NPP with initial conditions: operation at 100% of power, double-ended break area of 0.058 m 2 and the break location of the feedwater line between the check valve and the steam generator. The analysis was simulated by MARS code through two step: calculation for steady state and calculation for transient state with initial condition mentioned. Some output result were presented with explanation: sequence of events corresponding to the time of the accident, the system behavior as temperature, pressure, steam generator water levels as well as DNBR, etc. before and after the accident. (author)

  19. Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants

    International Nuclear Information System (INIS)

    Goldberg, A.; Streit, R.D.

    1981-05-01

    Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads

  20. Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy......A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...

  1. Steady state flow evaluations for passive auxiliary feedwater system of APR

    International Nuclear Information System (INIS)

    Park, Jongha; Kim, Jaeyul; Seong, Hoje; Kang, Kyoungho

    2012-01-01

    This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results

  2. Design and analysis approach for linear aerospike nozzle

    International Nuclear Information System (INIS)

    Khan, S.U.; Khan, A.A.; Munir, A.

    2014-01-01

    The paper presents an aerodynamic design of a simplified linear aerospike nozzle and its detailed exhaust flow analysis with no spike truncation. Analytical method with isentropic planar flow was used to generate the nozzle contour through MATLAB . The developed code produces a number of outputs comprising nozzle wall profile, flow properties along the nozzle wall, thrust coefficient, thrust, as well as amount of nozzle truncation. Results acquired from design code and numerical analyses are compared for observing differences. The numerical analysis adopted an inviscid model carried out through commercially available and reliable computational fluid dynamics (CFD) software. Use of the developed code would assist the readers to perform quick analysis of different aerodynamic design parameters for the aerospike nozzle that has tremendous scope of application in future launch vehicles. Keyword: Rocket propulsion, Aerospike Nozzle, Control Design, Computational Fluid Dynamics. (author)

  3. Nuclear thermal rocket nozzle testing and evaluation program

    International Nuclear Information System (INIS)

    Davidian, K.O.; Kacynski, K.J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within plus or minus 1.17%

  4. Simulation of HPIB propagation in biased charge collector

    International Nuclear Information System (INIS)

    Li Hongyu; Qiu Aici

    2004-01-01

    A 2.5D PIC simulation using KARAT code for inner charge propagation within biased charge collector for measuring HPIB is presented. The simulation results indicate that the charges were neutralized but the current non-neutralized in the biased charge collector. The influence of ions collected vs biased voltage of the collector was also simulated. -800 V biased voltage can meet the measurement of 500 keV HPIB, and this is consistent with the experimental results

  5. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  6. A comparison of two cloudwater/fogwater collectors: The rotating arm collector and the caltech active strand cloudwater collector

    Science.gov (United States)

    Collett, Jeffrey L.; Daube, Bruce C.; Munger, J. William; Hoffmann, Michael R.

    A side-by-side comparison of the Rotating Arm Collector (RAC) and the Caltech Active Strand Cloudwater Collector (CASCC) was conducted at an elevated coastal site near the eastern end of the Santa Barbara Channel in southern California. The CASCC was observed to collect cloudwater at rates of up to 8.5 ml min -1. The ratio of cloudwater collection rates was found to be close to the theoretical prediction of 4.2:1 (CASCC:RAC) over a wide range of liquid water contents (LWC). At low LWC, however, this ratio climbed rapidly, possibly reflecting a predominance of small droplets under these conditions, coupled with a greater collection efficiency of small droplets by the CASCC. Cloudwater samples collected by the RAC had significantly higher concentrations of Na +, Ca 2+, Mg 2+ and Cl - than those collected by the CASCC. These higher concentrations may be due to differences in the chemical composition of large vs small droplets. No significant differences were observed in concentrations of NO 3-, SO 42- or NH 4+ in samples collected by the two instruments.

  7. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  8. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  9. Combined solar collector and storage systems

    International Nuclear Information System (INIS)

    Norton, B.; Smyth, M.; Eames, P.; Lo, S.N.G.

    2000-01-01

    The article discusses reasons why fossil-fuelled water heating systems are included in new houses but solar systems are not. The technology and market potential for evacuated tube systems and integral collector storage systems (ICSS) are explained. The challenge for the designers of ICSSWH has been how to reduce heat loss without compromising solar energy collection. A new concept for enhanced energy storage is described in detail and input/output data are given for two versions of ICSSWH units. A table compares the costs of ICSSWH in houses compared with other (i.e. fossil fuel) water heating systems

  10. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1992-01-01

    Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.

  11. Reactor vessel nozzle cracks: a photoelastic study

    International Nuclear Information System (INIS)

    Smith, C.W.

    1979-01-01

    A method consisting of a marriage between the ''frozen stress'' photoelastic approach and the local stress field equations of linear elastic fracture mechanics for estimating stress intensity factor distributions in three dimensional, finite cracked body problems is reviewed and extensions of the method are indicated. The method is then applied to the nuclear reactor vessel nozzle corner crack problem for both Intermediate Test Vessel and Boiling Water Reactor geometries. Results are compared with those of other investigators. 35 refs

  12. Nozzle flow calculation for real gases

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Hartz, U.; Kissau, G.

    1977-01-01

    The flow of CHF 2 Cl vapor (refrigerant R 22) through a Laval nozzle of annular geometry has been investigated in the region near the saturation line with stagnation pressures up to 85 per cent of the critical pressure. Static pressure profiles measured along the nozzle axis were found in good agreement with profiles calculated for one-dimensional isentropic flow of the real gas the thermal properties of which were derived from an equation of state proposed previously by Rombusch. Minor deviations between measured and calculated static pressure curves occur in the supersonic part of the mozzle, especially when supersaturated states of the vapour are passed. These deviations can be attributed to uncertainties in the calculation of the enthalpy and to a small influence of the static pressure probe. An additional investigation was concerned with an approximate calculation of the nozzle flow of real gases. In this approximation the well known relations of ideal gas dynamics are applied, the ratio of specific heats for the ideal gas being replaced, however, by a suitably adapted isentropic exponent, which can be determined e.g. from measured values of the Laval pressure or of the mass flow. For pressure ratios p/po between 1 and approximately 0.1, corresponding to Mach numbers up to approximately 2.2, all the interesting properties of the investigated flow of CHF 2 Cl vapour are approximated within a few per cent. (orig.) [de

  13. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  14. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  15. Stress analysis of PCV nozzle junction

    International Nuclear Information System (INIS)

    Uchiyama, Shoichi; Oikawa, Tsuneo; Hoshino, Seizo

    1976-01-01

    Most of various pressure vessels comprise each one cylindrical shell and one or more nozzles. In this study, in order to analyze the stress in the structures of this type as minutely and exactly as possible, the program for stress analysis by the finite element method was made, which is required for the strength analysis for three-dimensional structures. Especially, the problem of the stress distribution around nozzle junctions was solved theoretically with the program. The program for the analysis developed in this study is provided with various functions, such as the input generator for cylindrical, conical and spherical shells, and plotter, and is very covenient. The accuracy of analysis is very good. The method of analysis and the calculation of the rigidity matrices for the deformation in plane and bending are explained. The result of the stress analysis around the nozzle junctions of a containment vessel with this program was in good agreement with experimental data and the result with SAP-4 code, therefore the propriety of the calculated result with this program was proved. Also calculations were carried out on three cases, namely a flat plate fixed at one end with distributed load, a cylinder fixed at one end with internal pressure, and an I-beam fixed at one end with concentrated load. The calculated results agreed well with theoretical solutions in all cases. (Kako, I.)

  16. Flow energy piezoelectric bimorph nozzle harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary

    2014-04-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  17. Pengaruh Jarak dan Posisi Nozzle Terhadap Daya Turbin Pelton

    Directory of Open Access Journals (Sweden)

    Yani Kurniawan

    2017-12-01

    Full Text Available Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position of nozzle with three variations, first position is the right side horizontal of bottom shaft turbine, second position is vertical to down direction, and third position is the left side horizontal of upper shaft turbine. The parameter of nozzle distance used five variations was 24 cm, 23 cm, 22 cm, 21 cm, dan 20 cm, which measured from the end of position nozzle to blade turbine. The result shows that the right side horizontal of bottom shaft turbine with distance of nozzle 23 cm had the maximum performance to produce a power 125 Watt with the rotation of shaft turbine 263 rpm.

  18. DT results of TFTR's alpha collector

    International Nuclear Information System (INIS)

    Herrmann, H.W.; Zweben, S.J.; Darrow, D.S.; Timberlake, J.R.; Macaulay-Newcombe, R.G.

    1996-01-01

    An escaping alpha collector probe has been developed for TFTR's DT phase to complement the results of the lost alpha scintillator detectors which have been operating on TFTR since 1988. Measurements of the energy distribution of escaping alphas have been made by measuring the range of alphas implanted into nickel foils located within the alpha collector. Exposed samples have been analyzed for 4 DT plasma discharges at plasma currents of 1.0 and 1.8 MA. The results at 1.0 MA are in good agreement with predictions for first orbit alpha loss at 3.5 MeV. The 1.8 MA results, however, indicate a large anomalous loss of partially thermalized alphas at an energy ∼30% below the birth energy and at a total fluence nearly an order of magnitude above expected first orbit loss. This anomalous loss is not observed with the lost alpha scintillator detectors in DT plasmas but does resemble the anomalous delayed loss seen in DD plasmas. Several potential explanations for this loss process are examined. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations

  19. Protecting solar collector systems from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main cause of the reduced life of a solar heating system is corrosion of the exterior parts and the internal components. This report outlines ways of reducing the cost of solar heating by reducing the corrosion in solar heating systems, and hence increasing the system's service life. Mechanisms for corrosion are discussed: these include galvanic corrosion and crevice corrosion. Means of minimizing corrosion at the design stage are then described. Such methods, when designing the solar collector, involve ensuring proper drainage of exterior water; eliminating situations where moisture, dirt and pollutants may collect; preventing condensation inside the collector; using proper gaskets and sealants at appropriate places; and selecting optimum materials and coatings. Interior corrosion can be minimized at the design stage by choosing a good heat transfer fluid and corrosion inhibitor, in the case of systems where liquids are used; ensuring a low enough flow rate to avoid erosion; designing the system to avoid crevices; and avoiding situations where galvanic corrosion could occur. Other procedures are given for minimizing corrosion in the construction and operation of solar heating systems. 7 figs., 7 tabs.

  20. Study on applicability of evaluation model of manpower needs for dismantling of equipments in FUGEN-1. Dismantling process in 3rd/4th feedwater heater room

    International Nuclear Information System (INIS)

    Shibahara, Yuji; Izumi, Masanori; Nanko, Takashi; Tachibana, Mitsuo; Ishigami, Tsutomu

    2010-10-01

    Manpower needs for the dismantling process on the dismantling of equipments in FUGEN 3rd/4th feedwater heater room was calculated with the management data evaluation system (PRODIA Code), and it was inspected whether the conventional evaluation model had applicability for FUGEN or not. It was confirmed that the conventional evaluation model for feedwater heater had no applicability. In comparison of the calculated value with the actual data, we found two difference: 1) the calculated value were significantly larger than the actual data, 2) the actual data for the dismantling of 3rd feedwater heater was twice larger than that of 4th feedwater heater, though these equipments were almost same weight. It was found that these were brought 1) by the difference in the work descriptions of dismantling between JPDR and FUGEN, and 2) by that in the cutting number between 3rd feedwater heater and 4th one. The manpower needs for the dismantling of both feedwater heaters were calculated with a new calculation equation reflecting the descriptions of dismantling, and it was found that these results showed the good agreement with the actual data. (author)

  1. Simulation of the fault transitory of the feedwater controller in a Boiling water reactor with the Ramona-3B code

    International Nuclear Information System (INIS)

    Hernandez M, J.L.; Ortiz V, J.

    2005-01-01

    The obtained results when carrying out the simulation of the fault transitory of the feedwater controller (FCAA) with the Ramona-3B code, happened in the Unit 2 of the Laguna Verde power plant (CNLV), in September of the year 2000 are presented. The transitory originates as consequence of the controller's fault of speed of a turbo pump of feedwater. The work includes a short description of the event, the suppositions considered for the simulation and the obtained results. Also, a discussion of the impact of the transitory event is presented on aspects of reactor safety. Although the carried out simulation is limited by the capacities of the code and for the lack of available information, it was found that even in a conservative situation, the power was incremented only in 12% above the nominal value, while that the thermal limit determined by the minimum reason of the critical power, MCPR, always stayed above the limit values of operation and safety. (Author)

  2. Investigation into sensitivity of Darlington boiler 2 feedwater flow calibration factor to boiler level control valve configuration

    Energy Technology Data Exchange (ETDEWEB)

    Coppens, D. [Darlington Nuclear Generating Station, Ontario Power Generation, Bowmanville, Ontario (Canada); Gurevich, Y. [Daystar Technologies Inc., Toronto, Ontario (Canada); Ton, V. [Inspection and Maintenance Services Div., Ontario Power Generation, Ajax, Ontario (Canada); Zobin, D. [AMEC NSS Ltd., Toronto, Ontario (Canada)

    2009-07-01

    The Ultrasonic Cross-Correlation Flow Meter (USCCFM) has been used for regular feedwater flow calibration at Darlington NGS since the early nineties. Typical measurement repeatability over the duration of a calibration run (normally several weeks long) is within {+-}0.2%. However, it was recently noticed that BO2 calibration factor experienced sudden changes of close to 1%. The paper will describe several different approaches used for identifying the reason for the observed effect. The investigation has revealed that changes in USCCFM readings are due to the complicated geometry of BO2 feedwater piping and that its accuracy can be as high as a fraction of percent if several readings are averaged around the pipe. (author)

  3. Assessment of RELAP5/MOD2 against a main feedwater turbopump trip transient in the Vandellos II Nuclear Power Plant

    International Nuclear Information System (INIS)

    Llopis, C.; Casals, A.; Perez, J.; Mendizabal, R.

    1993-12-01

    The Consejo de Seguridad Nuclear (CSN) and the Asociacion Nuclear Vandellos (ANV) have developed a model of Vandellos II Nuclear Power Plant. The ANV collaboration consisted in the supply of design and actual data, the cooperation in the simulation of the control systems and other model components, as well as in the results analysis. The obtained model has been assessed against the following transients occurred in plant: A trip from the 100% power level (CSN); a load rejection from 100% to 50% (CSN); a load rejection from 75% to 65% (ANV); and, a feedwater turbopump trip (ANV). This copy is a report of the feedwater turbopump trip transient simulation. This transient actually occurred in the plant on June 19, 1989

  4. Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation

    Science.gov (United States)

    Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.

  5. Generic evaluation of feedwater transients and small break loss-of-coolant accidents in combustion engineering designed operating plants

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this report is to summarize the results of a generic evaluation of feedwater transients, small break loss-of-coolant accidents (LOCAs), and other TMI-2-related events in the Combustion Engineering (CE)-designed operating plants and to establish or confirm the bases for their continued operation. The results of this evaluation are presented in this report in the form of a set of findings and recommendations in each of the principal review areas

  6. An evaluation of the Davis-Besse loss of feedwater event (June 1985) from an accident management perspective

    International Nuclear Information System (INIS)

    Di Salvo, R.; Leonard, M.T.; Wreathall, J.

    1986-01-01

    An accident management perspective is used to analyze events associated with a total loss-of-feedwater at the Davis-Besse nuclear power plant in June 1985. The relationships of accident management to the closely associated concepts of risk management and emergency management are delineated. The analysis shows that the principal contributors to the event's occurrence were shortcomings in risk management. Successful performance by the operators in accident management was principally responsible for terminating the event without consequence to public health

  7. Pressure waves transient occurred in the steam generators feedwater lines of the Atucha-1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Balino, J.L.; Carrica, P.M.; Larreteguy, A.E.

    1993-01-01

    The pressure transient occurred at Atucha I Nuclear Power Plant in March 1990 is simulated. The transient was due to the fast closure of a flow control valve at the steam generators feedwater lines. The system was modelled, including the actuation of the relief valves. The minimum closure time for no actuation of the relief valves and the evolution of the velocity and piezo metric head for different cases were calculated. (author)

  8. Physically absorbable reagents-collectors in elementary flotation

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Kondrat' ev; I.G. Bochkarev [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute of Mining

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  9. Preliminary design package for solar collector and solar pump

    Science.gov (United States)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  10. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  11. Efficiency improvement of flat plate solar collector using reflector

    Directory of Open Access Journals (Sweden)

    Himangshu Bhowmik

    2017-11-01

    Full Text Available Solar collectors are the main components of a solar heating system. The collectors collect the sun’s energy, transform this radiation into heat, and then transfer this heat into a fluid, water or air, which has many household or industrial applications. This paper introduces a new technology to improve the performance of the solar thermal collectors. The solar reflector used here with the solar collector to increase the reflectivity of the collector. Thus, the reflector concentrates both direct and diffuse radiation of the sun toward the collector. To maximize the intensity of incident radiation, the reflector was allowed to change its angle with daytime. The radiations coming from the sun’s energy were converted into heat, and then this heat was transferred to the collector fluid, water. A prototype of a solar water heating system was constructed and obtained the improvement of the collector efficiency around 10% by using the reflector. Thus, the present solar water heating systems having the best thermal performance compared to the available systems.

  12. Direct-heating solar-collector dump valve

    Science.gov (United States)

    Howikman, T. C.

    1977-01-01

    Five-port ganged valve isolates collector from primary load system pressure and drains collectors, allowing use of direct heating with all its advantages. Valve is opened and closed by same switch that controls pump or by temperature sensor set at O C, while providing direct dump option.

  13. Diagnostics of defeats of venous collectors of brain

    International Nuclear Information System (INIS)

    Timofeeva, T.V.; Polunina, I.S.; Shcherbakova, E.Ya.; Kuldakova, S.V.

    1997-01-01

    Comparative data of transcranial ultrasonic dopplerography (170 patients) and radionuclidous antroscintigraphy (124), received during diagnostics of defects of venous collectors of brain are analyzed. Five variants of defeats of venous collectors (cross, sigmoid, internal of jugular of jugular vein), but also unpaired sine (direct, confluent) are described. Received results permit to reveal interrelation of infringements of venous outflow and increase of intracranial pressure

  14. Advances in design of air-heating collectors

    CSIR Research Space (South Africa)

    Johannsen, A

    1982-11-01

    Full Text Available Principles of the operation of air-heating collectors are discussed. The fundamental differences between the design principles of air-heating as opposed to water-heating collectors are highlighted. The main requirement is the transfer of heat from...

  15. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  16. A study of the flat plate solar collector in Guinea

    International Nuclear Information System (INIS)

    Boye Barry, M.

    1990-12-01

    In this paper, we study a collector, made by cheap local materials (wood, aluminium, etc.), and prepared in the carpenteries, and in the mechanic work rooms with a simple technology. The efficiency of our collector is compared with several variants made in other countries. (author). 9 refs, 6 figs, 2 tabs

  17. Development of top nozzle for Korean standard LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K.; Kim, I. K.; Choi, K. S.; Kim, Y. H.; Lee, J. N.; Kim, H. K. [KNFC, Taejon (Korea, Republic of)

    2001-10-01

    Performance evaluation was executed for each component and its assembly for the deduced Top Nozzles to develop the new Top Nozzle for LWR. This new Top Nozzle is composed of the optimum components among the derived Top Nozzles that have been evaluated in the viewpoint of structural integrity, simpleness of dismantle and assembly, manufacturability etc. In this study, the developed Top Nozzle satisfied all the related design criteria. In special, it makes fuel repair time reduced by assembling and disassembling itself as one body, and improves Fuel Assembly holddown ability by revising the design parameters of its spring and the structural integrity through the betterment of its geometrical shpae of Flange and Holddown Plate as compared with the existing LWR Top Nozzles.

  18. Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    Flat plate collectors have relatively low efficiency at the typical supply temperatures of district heating networks (70–95 °C). Parabolic trough collectors retain their high efficiency at these temperatures. To maximize the advantages of flat plate collectors and parabolic trough collectors in l...... for this type of hybrid solar district heating plants with flat plate collectors and parabolic trough collectors in the Nordic region, but also introduce a novel design concept of solar district heating plants to other high solar radiation areas....... in large solar heating plants for a district heating network, a hybrid solar collector field with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was constructed in Taars, Denmark. The design principle is that the flat plate collectors preheat the return water from...

  19. Numerical simulation of a 374 tons/h water-tube steam boiler following a feedwater line break

    International Nuclear Information System (INIS)

    Deghal Cheridi, Amina Lyria; Chaker, Abla; Loubar, Ahcène

    2016-01-01

    Highlights: • We simulate the behavior of a steam boiler during feed-water line break accident. • To perform accident analysis of the steam boiler, Relap5/Mod3.2 system code is used. • A Relap5 model of the boiler is developed and qualified at the steady state level. • A good agreement between Relap5 results and available experimental data. • The Relap5 model predicts well the main transient features of the boiler. - Abstract: To ensure the operational safety of an industrial water-tube steam boiler it is very important to assess various accident scenarios in real plant working conditions. One of the most challenging scenarios is the loss of feedwater to the steam boiler. In this paper, a simulation of the behavior of an industrial water-tube radiant steam boiler during feedwater line break accident is discussed. The simulation is carried out using the RELAP5 system code. The steam boiler is installed in an Algerian natural gas liquefaction complex. The simulation shows the capabilities of RELAP5 system code in predicting the behavior of the steam boiler at both steady state and transient working conditions. From another side, the behavior of the steam boiler following the accident shows how the control system can successfully mitigate the effects and consequences of such accident and how the evaporator tubes can undergo a severe damage due to an uncontrolled increase of the wall temperature in case of failure of this system.

  20. Changes in feedwater organic matter concentrations based on intake type and pretreatment processes at SWRO facilities, Red Sea, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah

    2015-03-01

    Transparent exopolymer particles (TEP), natural organic matter, and bacterial concentrations in feedwater are important factors that can lead to membrane biofouling in seawater reverse osmosis (SWRO) systems. Two methods for controlling these concentrations in the feedwater prior to pretreatment have been suggested; use of subsurface intake systems or placement of the intake at a greater depth in the sea. These proposed solutions were tested at two SWRO facilities located along the Red Sea of Saudi Arabia. A shallow well intake system was very effective in reducing the algae and bacterial concentrations and somewhat effective in reducing TEP concentrations. An intake placed at a depth of 9. m below the surface was found to have limited impact on improving water quality compared to a surface intake. The algae and bacteria concentration in the feedwater (deep) was lower compared to the surface seawater, but the overall TEP concentration was higher. Bacteria and TEP measurements made in the pretreatment process train in the plant and after the cartridge filters suggest that regrowth of bacteria is occurring within the cartridge filters.

  1. Influence of the loop design of the feedwater- and steam quality in a power plant with pressurized water reactor

    International Nuclear Information System (INIS)

    Bennert, J.; Becher, L.

    1977-01-01

    At nuclear power plants with pressurized water reactors, condensate occurs on the high pressure part of the water-steam circuit, caused by the operation with low steam parameters. The behaviour of the electrolytes which entered into the circuit (solubility, distribution in water and/or steam) shows that these electrolytes (salts) are to be found mainly in the condensate. The insinuated electrolytes are reconcentrated during the common arrangements with 'Small Circuit' - consisting of steam generator, high pressure turbine, water separator, feedwater vessel, and have a negative influence on the feedwater - boiler water - and the steam quality. Remedy is possible by modified arrangements, during which these electrolyte-containing condensates will be treated and traced back into the main circuit. Nevertheless that the efficiency decrease is insignificant and additional efforts are necessary, a change over to these arrangements is recommendable, due to the fact that the feedwater quality, the boiler water quality, the steam quality in front of the turbine, and finally also the operational safety, as well as the availability will be improved. (orig.) [de

  2. Development of a multi-path ultrasonic flow meter for the application to feedwater flow measurement in nuclear power plants

    International Nuclear Information System (INIS)

    Jong, J. C.; Ha, J. H.; Kim, Y. H.; Jang, W. H.; Park, K. S.; Park, M. S.; Park, M. H.

    2002-01-01

    In this work, we propose a method to measure the feedwater flow using multi-path ultrasonic flow meter (UFM). Since the UFM measures a path velocity at which the ultrasonic wave is propagated, the flow profile may be important to convey the path velocity to the velocity averaged over the entire cross section of the flowing medium. The conventional UFM has used the smooth-wall circular pipe model presented by Nikurades. However, this model covers a lower range which is less than 3.2 million while the Reynolds number of the feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we proposed the non-linear correlation model that combines the ratio between the DP output and proposed the non-linear correlation model that combines the ratio between the DP output and UFM output. Experiments were performed using both computer simulation and newly constructed NPPs' test data. The uncertainty analysis result shows that the proposed method has reasonably lower uncertainty than conventional UFM

  3. Changes in feedwater organic matter concentrations based on intake type and pretreatment processes at SWRO facilities, Red Sea, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah; Li, Sheng; Almashharawi, Samir; Winters, Harvey; Missimer, Thomas M.

    2015-01-01

    Transparent exopolymer particles (TEP), natural organic matter, and bacterial concentrations in feedwater are important factors that can lead to membrane biofouling in seawater reverse osmosis (SWRO) systems. Two methods for controlling these concentrations in the feedwater prior to pretreatment have been suggested; use of subsurface intake systems or placement of the intake at a greater depth in the sea. These proposed solutions were tested at two SWRO facilities located along the Red Sea of Saudi Arabia. A shallow well intake system was very effective in reducing the algae and bacterial concentrations and somewhat effective in reducing TEP concentrations. An intake placed at a depth of 9. m below the surface was found to have limited impact on improving water quality compared to a surface intake. The algae and bacteria concentration in the feedwater (deep) was lower compared to the surface seawater, but the overall TEP concentration was higher. Bacteria and TEP measurements made in the pretreatment process train in the plant and after the cartridge filters suggest that regrowth of bacteria is occurring within the cartridge filters.

  4. Selective flotation of phosphate minerals with hydroxamate collectors

    Science.gov (United States)

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  5. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine

    The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...

  6. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  7. Analysis of a solar collector field water flow network

    Science.gov (United States)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  8. Thermal analysis of gyrotron traveling-wave tube collector

    International Nuclear Information System (INIS)

    Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong

    2013-01-01

    In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)

  9. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    DEFF Research Database (Denmark)

    Bunea, M.; Perers, Bengt; Eicher, S.

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  10. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  11. Project 'Colored solar collectors' - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J. -L.

    2005-12-15

    The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause excessive performance degradation. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation and shall be manufactured by the sol-gel dip-coating process. The proposed colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. The availability of thin film materials with a refractive index lower than that of silicon favors a higher solar transmission at a given value of visible reflectance. The feasibility of the sol-gel deposition of such low refractive index materials has been demonstrated. For the development of nanostructured materials, analytical methods such as electron microscopy are extremely helpful. Important techniques of substrate pretreatment, sample cleaving, polishing, mounting, and microscope handling have been acquired. First measurements yield images of nanostructures produced by the sol-gel dip-coating process. Nanocomposite Ti{sub x}Si{sub 1-x}O{sub 2} thin films provide a large range of refractive indices. Aiming a high efficiency of the colored reflection, Ti{sub x}Si{sub 1-x}O{sub 2} based multilayered coatings have been designed and subsequently prepared by sol-gel dip-coating. The energy efficiency M = R{sub VIS}/(100%-T{sub sol}) of the obtained colored reflection amounts up to 2.4. For a convincing demonstration sufficiently large samples of high quality are imperatively needed. An infrastructure for the handling of A4 sized samples has been established

  12. Mounting apparatus for a nozzle guide vane assembly

    Science.gov (United States)

    Boyd, Gary L.; Shaffer, James E.

    1995-01-01

    The present invention provides a ceramic nozzle guide assembly with an apparatus for mounting it to a metal nozzle case that includes an intermediate ceramic mounting ring. The mounting ring includes a plurality of projections that are received within a plurality of receptacles formed in the nozzle case. The projections of the mounting ring are secured within the receptacles by a ceramic retainer that allows contact between the two components only along arcuate surfaces thus eliminating sliding contact between the components.

  13. Fluidized-bed calciner with combustion nozzle and shroud

    International Nuclear Information System (INIS)

    Wielang, J.A.; Palmer, W.B.; Kerr, W.B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition. 4 claims, 2 figures

  14. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  15. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  16. Experimental study of subsonic microjet escaping from a rectangular nozzle

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.

    2016-10-01

    The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.

  17. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  18. Parabolic dish collectors - A solar option

    Science.gov (United States)

    Truscello, V. C.

    1981-05-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  19. Analysis of WWER 1000 collector cracking mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, K.; Wozniak, J. [Vitkovice J.S.C., Ostrava (Switzerland)

    1997-12-31

    The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.

  20. Analysis of WWER 1000 collector cracking mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, K; Wozniak, J [Vitkovice J.S.C., Ostrava (Switzerland)

    1998-12-31

    The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.

  1. Study of Cylindrical Honeycomb Solar Collector

    Directory of Open Access Journals (Sweden)

    Atish Mozumder

    2014-01-01

    Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.

  2. Nozzle evaluation for Project W-314

    International Nuclear Information System (INIS)

    Galbraith, J.D.

    1998-01-01

    Revisions to the waste transfer system piping to be implemented by Project W-314 will eliminate the need to access a majority of interfarm jumper connections associated with specific process pits. Additionally, connections that formerly facilitated waste transfers from the Plutonium-Uranium Extraction (PUREX) Plant are no longer required. This document identified unneeded process pit jumper connections, describes former designated routing, denotes current status (i.e., open or blanked), and recommends appropriate disposition for all. Blanking of identified nozzles should be accomplished by Project W-314 upon installation of jumpers and acceptance by Tank Waste Remediation System (TWRS) Tank Farm Operations

  3. Bottom nozzle of a LWR fuel assembly

    International Nuclear Information System (INIS)

    Leroux, J.C.

    1991-01-01

    The bottom nozzle consists of a transverse element in form of box having a bending resistant grid structure which has an outer peripheral frame of cross-section corresponding to that of the fuel assembly and which has walls defining large cells. The transverse element has a retainer plate with a regular array of openings. The retainer plate is fixed above and parallel to the grid structure with a spacing in order to form, between the grid structure and the retainer plate a free space for tranquil flow of cooling water and for debris collection [fr

  4. Airfoil shape for a turbine nozzle

    Science.gov (United States)

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  5. Application of a power plant simplification methodology: The example of the condensate feedwater system

    International Nuclear Information System (INIS)

    Seong, P.H.; Manno, V.P.; Golay, M.W.

    1988-01-01

    A novel framework for the systematic simplification of power plant design is described with a focus on the application for the optimization of condensate feedwater system (CFWS) design. The evolution of design complexity of CFWS is reviewed with emphasis upon the underlying optimization process. A new evaluation methodology which includes explicit accounting of human as well as mechanical effects upon system availability is described. The unifying figure of merit for an operating system is taken to be net electricity production cost. The evaluation methodology is applied to the comparative analysis of three designs. In the illustrative examples, the results illustrate how inclusion in the evaluation of explicit availability related costs leads to optimal configurations. These are different from those of current system design practices in that thermodynamic efficiency and capital cost optimization are not overemphasized. Rather a more complete set of design-dependent variables is taken into account, and other important variables which remain neglected in current practices are identified. A critique of the new optimization approach and a discussion of future work areas including improved human performance modeling and different optimization constraints are provided. (orig.)

  6. ECOSIM - Applied to a study on the thermo-hydraulic behaviour of feedwater heaters

    International Nuclear Information System (INIS)

    Huelamo Martinez, E.; Casado Flores, E.; Bosch Aparicio, F.

    1998-01-01

    In order to carry out a behaviour study on the secondary circuit of a nuclear power plant operating at a load level higher than originally planned, it is essential to know if the cycle heaters are valid from the thermo-dynamic point of view. This paper describes the models which were used for the study of certain heaters; these models were validated by checking that they faithfully reproduced the behaviour of the equipment (TTD and DCA) in areas where data from the manufacturer was available. The behaviour of said equipment was later obtained in the foreseen operating range. The calculations necessary for these studies were carried out by building ECOSIM models, taking into account that the behaviour of the feedwater heaters depends both on the entry conditions of the extraction steam and also on the remaining mass and energy inputs. For this reason the actual plant layout was taken into consideration, as it was different from the original design. This paper describes the starting hypothesis, the correlations used, the results obtained, an analysis of said results, and a comparison with the manufacturer's data where available. (Author)

  7. Auxiliary feedwater system risk-based inspection guide for the North Anna nuclear power plants

    International Nuclear Information System (INIS)

    Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1992-10-01

    In a study sponsored by the US Nuclear regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. North Anna was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the North Anna plant

  8. Single-tube condensation experiment in Passive Auxiliary Feedwater System of APR1400+

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Wook; No, Hee Cheon; Yun, Bong Yo; Jeon, Byong Guk [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Conventional Korean nuclear power plants, Advanced Power Reactors (APR), are characterized by an active cooling system. However, Active cooling system may not prevent significant damage without any AC power source available for its operation as vividly illustrated through the recent Fukushima incident. In the APR1400+ to be designed, an independent passive cooling system was added in order to overcome the aforementioned shortcomings. In the Passive Auxiliary Feedwater System (PAFS), gravity force and density difference between steam and water are used. The system comprises of 240 condensation tubes to efficiently remove decay heat. Before applying the PAFS to APR1400+, the system's safety and heat removal performance must be verified. The present study experimentally evaluates the heat removal performance of a single tube in the PAFS. The objectives of SCOP (Single-tube Condensation experiment facility of PAFS) are the evaluation of the heat removal performance in the tube of the PAFS and database construction under various tube designs and test conditions. Reaching these objectives, we developed advanced measurement techniques for the amount of moisture, heat flux, and water film thickness.

  9. Influence of reactor vessel nodalization in the coupled code analysis of Asymmetric Main Feedwater Isolation

    International Nuclear Information System (INIS)

    Bencik, V.; Feretic, D.; Grgic, D.

    2001-01-01

    Asymmetric Main Feedwater Isolation (AMFWI) transient in one Steam Generator (SG) for NPP Krsko using RELAP5 standalone code and coupled code RELAP5- QUABOX/CUBBOX (R5QC) was analyzed. In the RELAP5 standalone calculation, a point kinetics model was used, while in the coupled code a three-dimensional (3D) neutronics model of QUABOX with different RELAP5 nodalization schemes of reactor vessel was used. Both code versions use best-estimate thermal-hydraulic system code for all components in the plant and include realistic description of plant protection and control systems. Two different types of calculations were performed: with and without automatic control rod system available. The AMFWI transient causes the great asymmetry of the transferred heat in the SGs and subsequently the asymmetry of the power produced across the core due to different reactivity feedback resulting from the thermal-hydraulic channels assigned to different loops. The work presented in the paper is a part of validation of the 3D coupled code R5QC in the analysis of asymmetric transients.(author)

  10. Probabilistic common cause failure modeling for auxiliary feedwater system after the introduction of flood barriers

    International Nuclear Information System (INIS)

    Zheng, Xiaoyu; Yamaguchi, Akira; Takata, Takashi

    2013-01-01

    Causal inference is capable of assessing common cause failure (CCF) events from the viewpoint of causes' risk significance. Authors proposed the alpha decomposition method for probabilistic CCF analysis, in which the classical alpha factor model and causal inference are integrated to conduct a quantitative assessment of causes' CCF risk significance. The alpha decomposition method includes a hybrid Bayesian network for revealing the relationship between component failures and potential causes, and a regression model in which CCF parameters (global alpha factors) are expressed by explanatory variables (causes' occurrence frequencies) and parameters (decomposed alpha factors). This article applies this method and associated databases needed to predict CCF parameters of auxiliary feedwater (AFW) system when defense barriers against internal flood are introduced. There is scarce operation data for functionally modified safety systems and the utilization of generic CCF databases is of unknown uncertainty. The alpha decomposition method has the potential of analyzing the CCF risk of modified AFW system reasonably based on generic CCF databases. Moreover, the sources of uncertainty in parameter estimation can be studied. An example is presented to demonstrate the process of applying Bayesian inference in the alpha decomposition process. The results show that the system-specific posterior distributions for CCF parameters can be predicted. (author)

  11. Auxiliary feedwater system risk-based inspection guide for the Palo Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Sloan, J.A.

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Palo Verde was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Palo Verde plants

  12. Reliability analysis of 2 types of auxiliary feedwater system for PWR

    International Nuclear Information System (INIS)

    Ekariansyah, Andi Sofrany

    2002-01-01

    This paper will explain the application of Fault Three Method for analyzing the system reliability of Auxiliary Feedwater System with 2 different configurations taken from PWR type nuclear power plant (NPP) in the USA. The first configuration of Braidwood NPP (design A) basically consists of 1 motor driven pump and 1 diesel driven pump. The second configuration of Haddam Neck NPP (Design B) consists of 2 turbine driven pumps. Based on the P and ID and success criteria the fault trees are constructed to estimate the system failure probabilities quantified from software code PIRAS 1.0. The result shows the second configuration (Design B) with 2 turbine driven pumps have the higher failure probability of 1,06 x 10 - 2 compared with design A of 1,09 x 10 - 3 . The modification of both systems are also tried to analyze its effect to the end result. Qualitatively, the common cause failures of 2 turbine driven pumps contribute to the highest risk of system failure probability. Combination with 1 turbine driven pump and 1 motor driven pump or 1 diesel driven pump will increase the system reliability about 80% and 50% without considering if this configuration is possible to realize in a real plant

  13. Auxiliary feedwater system risk-based inspection guide for the McGuire nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1994-05-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. McGuire was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the McGuire plant

  14. Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1993-12-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant

  15. Auxiliary feedwater system risk-based inspection guide for the Maine Yankee Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gore, B.F.; Vo, T.V.; Moffitt, N.E.; Bumgardner, J.D.

    1992-10-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. The information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Maine Yankee was selected as one of a series of plants for study. ne product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Maine Yankee plant

  16. Audit calculation of the limiting CESSAR feedwater-line-break transient with RELAP5/MOD1

    International Nuclear Information System (INIS)

    Chung, K.S.; Kennedy, M.F.; Guttmann, J.

    1983-01-01

    Argonne National Laboratory (ANL) performed a series of audit calculations of the limiting FLB transient presented in Appendix 15B to the CESSAR FSAR, supported by a limited number of additional calculations to investigate the sensitivity of the results (in terms of peak primary reactor system pressure) to break area and reactor trip time. The latter calculations were performed to quantify potential benefits in crediting reactor tip on low steam generator downcomer water level, which occurs earlier than the trip shown in the limiting FSAR transient, which tripped on high pressurizer pressure. These calculations were performed to verify the break spectrum results presented by C-E and to insure that C-E did indeed analyze the limiting transient. All of the ANL calculations were performed with RELAP5/MOD1 (cycle 18) using an input deck developed at ANL from CESSAR plant data provided by C-E. In this paper we compare the results and provide insight into the generic behavior of a Feedwater Line Break transient

  17. Auxiliary feedwater system risk-based inspection guide for the Byron and Braidwood nuclear power plants

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1991-07-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Byron and Braidwood were selected for the fourth study in this program. The produce of this effort is a prioritized listing of AFW failures which have occurred at the plants and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Byron/Braidwood plants. 23 refs., 1 fig., 1 tab

  18. Auxiliary feedwater system risk-based inspection guide for the H. B. Robinson nuclear power plant

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Lloyd, R.C.; Gore, B.F.; Vo, T.V.; Garner, L.W.

    1993-08-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. H. B. Robinson was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the H. B. Robinson plant

  19. Auxiliary feedwater system risk-based inspection guide for the Point Beach nuclear power plant

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Vehec, T.A.

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Point Beach was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Point Beach plant

  20. Auxiliary feedwater system risk-based inspection guide for the Ginna Nuclear Power Plant

    International Nuclear Information System (INIS)

    Pugh, R.; Gore, B.F.; Vo, T.V.; Moffitt, N.E.

    1991-09-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Ginna was selected as the eighth plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Ginna plant. 23 refs., 1 fig., 1 tab

  1. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  2. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  3. EURCYL. A program to generate finite element meshes for pressure vessel nozzles

    International Nuclear Information System (INIS)

    De Windt, P.; Reynen, J.

    1974-12-01

    EURCYL is a program dealing with the automatic generation of finite element meshes for pressure vessel nozzles, using isoparametric elements with 8, 20 or 32 nodes. Options exist to generate BWR nozzles as well as PWR nozzles

  4. Air solar collectors in building use - A review

    Science.gov (United States)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu

    2018-02-01

    In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  5. Pathways toward a low cost evacuated collector system

    Science.gov (United States)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  6. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  7. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  8. Air solar collectors in building use - A review

    Directory of Open Access Journals (Sweden)

    Bejan Andrei-Stelian

    2018-01-01

    Full Text Available In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  9. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1993-01-01

    This report summarizes the findings on the NASA contract NAG8-212, Task No. 3. The overall project consists of three tasks, all of which have been successfully completed. In addition, some supporting supplemental work, not required by the contract, has been performed and is documented herein. Task 1 involved the modification of the wall functions in the code FDNS (Finite Difference Navier-Stokes) to use a Reynolds Analogy-based method. This task was completed in August, 1992. Task 2 involved the verification of the code against experimentally available data. The data chosen for comparison was from an experiment involving the injection of helium from a wall jet. Results obtained in completing this task also show the sensitivity of the FDNS code to unknown conditions at the injection slot. This task was completed in September, 1992. Task 3 required the computation of the flow of hot exhaust gases through the P&W 40K subscale nozzle. Computations were performed both with and without film coolant injection. This task was completed in July, 1993. The FDNS program tends to overpredict heat fluxes, but, with suitable modeling of backside cooling, may give reasonable wall temperature predictions. For film cooling in the P&W 40K calorimeter subscale nozzle, the average wall temperature is reduced from 1750R to about 1050R by the film cooling. The average wall heat flux is reduced by a factor of 3.

  10. Fuzzy Approximate Model for Distributed Thermal Solar Collectors Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the problem of controlling concentrated solar collectors where the objective consists of making the outlet temperature of the collector tracking a desired reference. The performance of the novel approximate model based on fuzzy theory, which has been introduced by the authors in [1], is evaluated comparing to other methods in the literature. The proposed approximation is a low order state representation derived from the physical distributed model. It reproduces the temperature transfer dynamics through the collectors accurately and allows the simplification of the control design. Simulation results show interesting performance of the proposed controller.

  11. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL FINS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2005-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal fins. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...

  12. Theoretical flow investigations of an all glass evacuated tubular collector

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    Heat transfer and flow structures inside all glass evacuated tubular collectors for different operating conditions are investigated by means of computational fluid dynamics. The investigations are based on a collector design with horizontal tubes connected to a vertical 14 manifold channel. Three...... the highest efficiency, the optimal inlet flow rate was around 0.4-1 kg/min, the flow structures in the glass tubes were relatively uninfluenced by the inlet flow rate, Generally, the results showed only small variations in the efficiencies. This indicates that the collector design is well working for most...

  13. Solar collector wall with active curtain system; Lasikatteinen massiivienen aurinkokeraeaejaeseinae

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, T.; Heimonen, I. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1998-12-01

    Integration of solar collector into the building envelope structure brings many advantages. The disadvantage of a passive solar collector wall is that its thermal performance can not be controlled, which may cause temporary overheating and low thermal efficiency of the collector. The thermal performance of the collector wall can be improved by using controllable, active collector systems. In this paper a solar collector wall with a controllable curtain between the transparent and absorption layers is investigated. The curtain is made of several low-emissivity foil layers, which ensures low radiation heat transfer through the curtain. The curtain decreases the heat losses out from the collector wall and it improves the U-value of the wall. The curtain is used when the solar radiation intensity to the wall is not high enough or when the wall needs protection against overheating during warm weather conditions. The materials and building components used in the collector wall, except those of the curtain, are ordinary in buildings. The transparent layer can be made by using normal glazing technology and the thermal storage layer can be made out of brick or similar material. The solar energy gains through the glazing can be utilised better than in passive systems, because the curtain provides the wall with high thermal resistance outside the solar radiation periods. The thermal performance of the collector wall was studied experimentally using a Hot-Box apparatus equipped with a solar lamp. Numerical simulations were carried out to study the yearly performance of the collector wall under real climate conditions. The objectives were to determine the thermal performance of the collector wall and to study how to optimise the use of solar radiation in this system. When the curtain with high thermal resistance is used actively, the temperature level of the thermal storage layer in the wall is relatively high also during dark periods and the heat losses out from the storage

  14. Grit blasting nozzle fabricated from mild tool steel proves satisfactory

    Science.gov (United States)

    Mc Farland, J. E.; Turbitt, B.

    1966-01-01

    Dry blasting with glass beads through a nozzle assembly descales both the outside and inside surfaces of tubes of Inconel 718 used for the distribution of gaseous oxygen. The inside of the nozzle is coated with polyurethane and the deflector with a commercially available liquid urethane rubber.

  15. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    Choked converging nozzle flow and heat transfer characteristics are numerically investigated by means of a recent computational model that integrates the axisymmetric continuity, state, momentum and energy equations. To predict the combined effects of nozzle geometry, friction and heat transfer rates, analyses are ...

  16. Multi-orifice deposition nozzle for additive manufacturing

    Science.gov (United States)

    Lind, Randall F.; Post, Brian K.; Cini, Colin L.

    2017-11-21

    An additive manufacturing extrusion head includes a nozzle for accepting and depositing a heated material onto a work surface and/or part. The nozzle includes a valve body and an internal poppet body moveable between positions to permit deposition of at least two bead sizes of heated material onto a work surface and/or part.

  17. Noise from Aft Deck Exhaust Nozzles: Differences in Experimental Embodiments

    Science.gov (United States)

    Bridges, James E.

    2014-01-01

    Two embodiments of a rectangular nozzle on an aft deck are compared. In one embodiment the lower lip of the nozzle was extended with the sidewalls becoming triangles. In a second embodiment a rectangular nozzle was fitted with a surface that fit flush to the lower lip and extended outward from the sides of the nozzle, approximating a semi-infinite plane. For the purpose of scale-model testing, making the aft deck an integral part of the nozzle is possible for relatively short deck lengths, but a separate plate model is more flexible, accounts for the expanse of deck to the sides of the nozzle, and allows the nozzle to stand off from the deck. Both embodiments were tested and acoustic far-field results were compared. In both embodiments the extended deck introduces a new noise source, but the amplitude of the new source was dependent upon the span (cross-stream dimension) of the aft deck. The noise increased with deck length (streamwise dimension), and in the case of the beveled nozzle it increased with increasing aspect ratio. In previous studies of slot jets in wings it was noted that the increased noise from the extended aft deck appears as a dipole at the aft deck trailing edge, an acoustic source type with different dependence on velocity than jet mixing noise. The extraneous noise produced by the aft deck in the present studies also shows this behavior both in directivity and in velocity scaling.

  18. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  19. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  20. Study on steam pressure characteristics in various types of nozzles

    Science.gov (United States)

    Firman; Anshar, Muhammad

    2018-03-01

    Steam Jet Refrigeration (SJR) is one of the most widely applied technologies in the industry. The SJR system was utilizes residual steam from the steam generator and then flowed through the nozzle to a tank that was containing liquid. The nozzle converts the pressure energy into kinetic energy. Thus, it can evaporate the liquid briefly and release it to the condenser. The chilled water, was produced from the condenser, can be used to cool the product through a heat transfer process. This research aims to study the characteristics of vapor pressure in different types of nozzles using a simulation. The Simulation was performed using ANSYS FLUENT software for nozzle types such as convergent, convrgent-parallel, and convergent-divergent. The results of this study was presented the visualization of pressure in nozzles and was been validated with experiment data.

  1. TMI-2 instrument nozzle examinations at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Neimark, L.A.; Shearer, T.L.; Purohit, A.; Hins, A.G.

    1993-09-01

    Six of the 14 instrument-penetration-tube nozzles removed from the lower head of TMI-2 were examined to identify damage mechanisms, provide insight to the fuel relocation scenario, and provide input data to the margin-to-failure analysis. Visual inspection, gamma scanning, metallography, microhardness measurements, and scanning electron microscopy were used to obtain the desired information. The results showed varying degrees of damage to the lower head nozzles, from ∼50% melt-off to no damage at all to near-neighbor nozzles. The elevations of nozzle damage suggested that the lower elevations (near the lower head) were protected from molten fuel, apparently by an insulating layer of fuel debris. The pattern of nozzle damage was consistent with fuel movement toward the hot-spot location identified in the vessel wall. Evidence was found for the existence of a significant quantity of control assembly debris on the lower head before the massive relocation of fuel occurred

  2. Modeling and simulation of the feedwater system, associated controller and interface with the user for the SUN-RAH nucleo electric plants university student simulator

    International Nuclear Information System (INIS)

    Sanchez B, A.

    2003-01-01

    The simulation process of the component systems of the feedwater of a nucleo electric plant is presented, using several models of reduced order that represent the diverse elements that compose the systems like: the heaters of feedwater, the condenser, the feedwater pump, etc. The integration of the same ones in one simulative structure, and the development of a platform that to give the appearance of to be executed in continuous time, it is the objective of the feedwater simulator, as well as of the SUN-RAH simulator, of which is part. The simulator uses models of reduced order that respond to the observed behavior of a nuclear plant of BWR type. Likewise, it is presented a model of a flow controller of feedwater that will be the one in charge of regulating the demand of the system according to the characteristics and criticize restrictions of safety and controllability, assigned according to those wanted parameters of performance of this system inside the nucleo electric plant. The integration of these models, the adaptation of the variables and parameters, are presented in a way that the integration with the other ones models of the remaining systems of the plant (reactor, steam lines, turbine, etc.), be direct and coherent with the principles of thermodynamic cycles relative to this type of generation plants. The design of those graphic interfaces and the environment where the simulator works its are part of those developments of this work. The reaches and objectives of the simulator complement the description of the simulator. (Author)

  3. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  4. Flat solar collector an approach to its evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sonino, T [Israel Atomic Energy Commission, Yavne. Soreq Nuclear Research Center

    1977-01-01

    The flat solar collector is the most widely used device for the utilization of solar energy, but its energetic and economic values are still debated. A preliminary energy and economic analysis is presented. The energy analysis indicates that the energy needed to produce one solar collector is equivalent to the electricity consumed by an electric water heater in roughly three months. The economic analysis indicates that the pay-back time for a solar collector varies from 5.5 to 7.7 yr. according to the discount rate. The economic analysis from a national point of view indicates that the use of solar collectors for domestic purposes could only reduce electricity consumption in Israel by 10%.

  5. Performance of jet impingement in unglazed air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia)

    2008-05-15

    Jet impingement is effective at improving the heat transfer between air and a heated surface. Studies have shown that jet impingement can marginally improve the thermal efficiency of a glazed collector. However, little attention has been placed on applying jet impingement to an unglazed solar air collector. This paper presents a theoretical and experimental investigation identifying the performance characteristics of jet impingement. Overall, jet impingement was able to improve the thermal efficiency of the collector by 21%. An increase in the pressure loss was also measured but found to be small. The flow distribution of jets along the collector was the most significant factor in determining the efficiency. Increasing the hole spacing was found to improve the efficiency. (author)

  6. Integrated function nonimaging concentrating collector tubes for solar thermal energy

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1982-09-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.

  7. Bilinear reduced order approximate model of parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low

  8. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  9. Mathematical Modeling of Dual Intake Transparent Transpired Solar Collector

    Directory of Open Access Journals (Sweden)

    Thomas Semenou

    2015-01-01

    Full Text Available Nowadays, in several types of commercial or institutional buildings, a significant rise of transpired solar collectors used to preheat the fresh air of the building can be observed. Nevertheless, when the air mass flow rate is low, the collector efficiency collapses and a large amount of energy remains unused. This paper presents a simple yet effective mathematical model of a transparent transpired solar collector (TTC with dual intake in order to remove stagnation problems in the plenum and ensure a better thermal efficiency and more heat recovery. A thermal model and a pressure loss model were developed. Then, the combined model was validated with experimental data from the Solar Rating and Certification Corporation (SRCC. The results show that the collector efficiency can be up to 70% and even 80% regardless of operating conditions. The temperature gain is able to reach 20°K when the solar irradiation is high.

  10. [Naturalists, collectors and theoreticians of museology].

    Science.gov (United States)

    Arabas, Iwona

    2009-01-01

    The origins of the contemporary collectorship dates from times when the sameness of art and science was commonly accepted. In those days relics of the ancient past and natural individuals of newly discovered lands were presented at the same time. Cosmological character of the collections manifested the tenacity of recognition and representation of the surrounding reality. A great impact on completion of collections of curiosities in Europe had Netherlands, and in the basin of Baltic Sea a remarkable significance was gained by Hanseatic Gdańsk. Collections of Jakub Breyn, Jakub Klein and Gotfryd Reyger became famous then. In the same way were imported individuals for Anna Jabłonowska that composed one of the most interesting European collections. In course of time merging such a great multiplicity of collections was beyond collectors' power and museum pieces from collections of curiosities were parcelled out. It was a real beginning of specialistic museums. A role of museum for science results from its function of methodical organizing collections that can be used by research workers. However, although the aims of scientific and museum centres are different, they come together on the occasion of museum recognition works when museums' workers borrow essential knowledge and methods from resources of science, and scientists search for useful research materials in museum resources.

  11. Parabolic Trough Solar Collector Initial Trials

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2012-03-01

    Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively. 

  12. Performance evaluation for solar collectors in Taiwan

    International Nuclear Information System (INIS)

    Chang, T.P.

    2009-01-01

    In this paper, the global irradiation observed in Taiwan from 1990 to 1999 was used to estimate the optimal tilt angle for solar collectors. The observed data are resolved into diffusion and beam components, and transformed into instantaneous time frames using mathematical models. The energy gain on installing a single-axis tracked panel as compared to a traditional fixed panel is originally analyzed theoretically. In addition to the observation data, both types of radiation will be taken into account for comparison, i.e. both extraterrestrial radiation and global radiation predicted using empirical models. The results show that the yearly optimal angles for six selected stations are about 0.95 and 0.88 times their latitudes for extraterrestrial and predicted radiation, respectively. All of the observed irradiations are less than the predicted values for all times and stations, consequently resulting in a flatter tilt angle, with a few exceptions in summer. Since Taipei has the lowest clearness index, its yearly optimal angle calculated from observed data shows the greatest discrepancy when compared to its latitude. By employing a tracked panel, the yearly gains calculated from the observed data lie between 14.3% and 25.3%, which is significantly less than those from the extraterrestrial and predicted radiations

  13. Molecular design of flotation collectors: A recent progress.

    Science.gov (United States)

    Liu, Guangyi; Yang, Xianglin; Zhong, Hong

    2017-08-01

    The nature of froth flotation is to selectively hydrophobize valuable minerals by collector adsorption so that the hydrophobized mineral particles can attach air bubbles. In recent years, the increasing commercial production of refractory complex ores has been urgent to develop special collectors for enhancing flotation separation efficiency of valuable minerals from these ores. Molecular design methods offer an effective way for understanding the structure-property relationship of flotation collectors and developing new ones. The conditional stability constant (CSC), molecular mechanics (MM), quantitative structure-activity relationship (QSAR), and first-principle theory, especially density functional theory (DFT), have been adopted to build the criteria for designing flotation collectors. Azole-thiones, guanidines, acyl thioureas and thionocarbamates, amide-hydroxamates, and double minerophilic-group surfactants such as Gemini, dithiourea and dithionocarbamate molecules have been recently developed as high-performance collectors. To design hydrophobic groups, the hydrophilic-hydrophobic balance parameters have been extensively used as criteria. The replacement of aryl group with aliphatic group or CC single bond(s) with CC double bond(s), reduction of carbon numbers, introduction of oxygen atom(s) and addition of trisiloxane to the tail terminal have been proved to be useful approaches for adjusting the surface activity of collectors. The role of molecular design of collectors in practical flotation applications was also summarized. Based on the critical review, some comments and prospects for further research on molecular design of flotation collectors were also presented in the paper. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Means of increasing efficiency of CPC solar energy collector

    Science.gov (United States)

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  15. Proceedings of the solar thermal concentrating collector technology symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.P.; Kreith, F. (eds.)

    1978-08-01

    The purpose of the symposium was to review the current status of the concentrating collector technology, to disseminate the information gained from experience in operating solar systems, and to highlight the significant areas of technology development that must be vigorously pursued to foster early commercialization of concentrating solar collectors. Separate abstracts were prepared for thirteen invited papers and working group summaries. Two papers were previously abstracted for EDB.

  16. Comparison of thermal solar collector technologies and their applications

    OpenAIRE

    Alarcón Villamil, Alexander; Hortúa, Jairo Eduardo; López, Andrea

    2013-01-01

    This paper presents the operation of different thermal solar collector technologies and their main characteristics. It starts by providing a brief description of the importance of using solar collectors as an alternative to reduce the environmental impact caused by the production of non-renewable sources like coal and oil. Subsequently, it focuses on each solar concentrator technology and finishes with a theoretical analysis hub application in different industrial processes. En este artícu...

  17. Transient analysis of the double pass photovoltaic thermal solar collector

    International Nuclear Information System (INIS)

    Alfegi, Ebrahim M.; Sopian, Kamaruzzaman; Abakr, Yousif A.

    2006-01-01

    A mathematical model of a double pass photovoltaic thermal (PV/T) solar collector is reported in this work. It is composed of five couple unsteady nonlinear partial differential equations which are solved by using Gear implicit numerical scheme. That model was validated against experimental data and was found to accurately predict the temperature of the circulated air as well as the temperature distribution of every static elements in a two-pass PV/T solar collector.(Author)

  18. Interaction of regulation and innovation: Solar air heating collectors

    OpenAIRE

    Kramer, K.

    2012-01-01

    Solar Air Heating Collectors have still a very small share of 0.8% of the nominal installed capacity in the solar heating and cooling market (151.7 GWth) [1]. Although constituting a niche market, the potential of those kind of collectors to provide heat for industrial processes, processing food, room heating, air preheating, drying processes or air conditioning could be significant. However, the technical potentials of the various technological solutions are not easy to compare. Such a compa...

  19. Ground collectors for heat pumps; Grondcollectoren voor warmtepompen

    Energy Technology Data Exchange (ETDEWEB)

    Van Krevel, A. [Techneco, Leidschendam (Netherlands)

    1999-10-01

    The dimensioning and cost optimisation of a closed vertical ground collector system has been studied. The so-called Earth Energy Designer (EED) computer software, specially developed for the calculations involved in such systems, proved to be a particularly useful tool. The most significant findings from the first part of the study, 'Heat extraction from the ground', are presented and some common misconceptions about ground collector systems are clarified. 2 refs.

  20. A Basic Study on the Ejection of ICI Nozzle under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Rae; Bae, Ji Hoon; Bang, Kwang Hyun [Korea Maritime and Ocean University, Busan (Korea, Republic of); Park, Jong Woong [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    Nozzle injection should be blocked because it affect to the environment if its melting core exposes outside. The purpose of this study is to carry out the thermos mechanical analysis due to debris relocation under severe accidents and to predict the nozzle ejection calculated considering the contact between the nozzle and lower head, and the supports of pipe cables. As a result of analyzing process of severe accidents, there was melting reaction between nozzle and the lower head. In this situation, we might predict the non-uniform contact region of nozzle hole of lower head and nozzle outside, delaying ejection of nozzles. But after melting, the average remaining length of the nozzle was 120mm and the maximum vertical displacement of lower nozzle near the weld is 3.3mm so there would be no nozzle this model, because the cable supports restrains the vertical displacement of nozzle.

  1. PULSED MOLECULAR BEAM PRODUCTION WITH NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Otto-Friedrich

    1963-05-15

    Molecular beam experiments that can be carried out in pulsed operation may be performed at considerably reduced expense for apparatus if, for pulse generation, the gas supply to the beam production system is interrupted as opposed to the usual steady molecular beam. This technique is studied by measuring intensity vs time of molecular beam impulses of varying length, how fast and through which intermediate states the initial intensity of the impulse attains equilibrium, and in which way the intensity of the molecular-beam impulse is affected by the pulse length and by increasing pressure in the first pressure stage. For production of pulses, a magnetically actuated, quick shutting, valve is used whose scaling area is the inlet cone of the nozzle used for the beam generation. The shortest pulses produced had a pulse length of 1.6 ms. (auth)

  2. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    Boulitrop, D.; Gauchon, J.P.; Lecoffre, Y.

    1984-05-01

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel [fr

  3. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  4. Noise Prediction Module for Offset Stream Nozzles

    Science.gov (United States)

    Henderson, Brenda S.

    2011-01-01

    A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.

  5. Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    Kyu Cho, Hyoung; Cho, Yun Je; Yoon, Han Young

    2014-01-01

    Graphical abstract: - Highlights: • PAFS is designed to replace a conventional active auxiliary feedwater system. • Multi-D T/H analysis code, CUPID was coupled with the 1-D system analysis code MARS. • The coupled CUPID and MARS was applied for the multi-scale analysis of the PAFS test facility. • The simulation result showed that the coupled code can reproduce important phenomena in PAFS. - Abstract: For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. In the present study, the CUPID code was coupled with a system analysis code MARS in order to apply it for the multi-scale thermal-hydraulic analysis of the passive auxiliary feedwater system (PAFS). The PAFS is one of the advanced safety features adopted in the Advanced Power Reactor Plus (APR+), which is intended to completely replace the conventional active auxiliary feedwater system. For verification of the coupling and validation of the coupled code, the PASCAL test facility was simulated, which was constructed with an aim of validating the cooling and operational performance of the PAFS. The two-phase flow phenomena of the steam supply system including the condensation inside the heat exchanger tube were calculated by MARS while the natural circulation and the boil-off in the large water pool that contains the heat exchanger tube were simulated by CUPID. This paper presents the description of the PASCAL facility, the coupling method and the simulation results using the coupled code

  6. An improved dynamic test method for solar collectors

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Wang, Zhifeng; Fan, Jianhua

    2012-01-01

    A comprehensive improvement of the mathematical model for the so called transfer function method is presented in this study. This improved transfer function method can estimate the traditional solar collector parameters such as zero loss coefficient and heat loss coefficient. Two new collector...... parameters t and mfCf are obtained. t is a time scale parameter which can indicate the heat transfer ability of the solar collector. mfCf can be used to calculate the fluid volume content in the solar collector or to validate the regression process by comparing it to the physical fluid volume content...... for the second-order differential term with 6–9min as the best averaging time interval. The measured and predicted collector power output of the solar collector are compared during a test of 13days continuously both for the ITF method and the QDT method. The maximum and averaging error is 53.87W/m2 and 5.22W/m2...

  7. Dual curvature acoustically damped concentrating collector. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.A.; Rausch, R.A.

    1980-05-01

    A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.

  8. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  9. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  10. Energy Analysis of Solar Collector With perforated Absorber Plate

    Directory of Open Access Journals (Sweden)

    Ammar A. Farhan

    2017-09-01

    Full Text Available The thermal performance of three solar collectors with 3, 6 mm and without perforation absorber plate was assessed experimentally. The experimental tests were implemented in Baghdad during the January and February 2017. Five values of airflow rates range between 0.01 – 0.1 m3/s were used through the test with a constant airflow rate during the test day. The variation of the following parameters air temperature difference, useful energy, absorber plate temperature, and collector efficiency was recorded every 15 minutes. The experimental data reports that the increases the number of absorber plate perforations with a small diameter is more efficient rather than increasing the hole diameter of the absorber plate with decreasing the perforation numbers. Maximum air temperature difference throughout the solar collector with 3, 6 mm perforations and without perforations are 17, 15, and 12 oC, respectively. Also, it can be concluded that the energy gained from the solar collector with 3 mm perforation absorber plate is 28.2 % more than the energy gained from solar collector without holes per day for 0.1 m3/s airflow rate. The maximum values of the thermal performance curves are 0.67, 0.64, and 0.56 for the solar collector with 3, 6 mm, and without perforations, respectively.

  11. Reliability analysis of the auxiliary feedwater system of Angra-1 including common cause failures using the multiple greek letter model

    International Nuclear Information System (INIS)

    Lapa, Celso Marcelo Franklin.

    1996-05-01

    The use of redundancy to increase the reliability of industrial systems make them subject to the occurrence of common cause events. The industrial experience and the results of safety analysis studies have indicated that common cause failures are the main contributors to the unreliability of plants that have redundant systems, specially in nuclear power plants. In this Thesis procedures are developed in order to include the impact of common cause failures in the calculation of the top event occurrence probability of the Auxiliary Feedwater System in a typical two-loop Nuclear Power Plant (PWR). For this purpose the Multiple Greek Letter Model is used. (author). 14 refs., 10 figs., 11 tabs

  12. TRAC-PF1 analysis of LOFT steam-generator feedwater transient test L9-1

    International Nuclear Information System (INIS)

    Meier, J.K.

    1983-01-01

    The Transient Reactor Analysis Code (TRAC-PF1) calculations were compared to test data from Loss-of-Fluid Test (LOFT) L9-1, which was a loss-of-feedwater transient. This paper includes descriptions of the test and the TRAC input and compares the TRAC-calculated results with the test data. We conclude that the code predicted the experiment well, given the uncertainties in the boundary conditions. The analysis indicates the need to model all the flow paths and heat structures, and to improve the TRAC wall condensation heat-transfer model

  13. Flame Interactions and Thermoacoustics in Multiple-Nozzle Combustors

    Science.gov (United States)

    Dolan, Brian

    The first major chapter of original research (Chapter 3) examines thermoacoustic oscillations in a low-emission staged multiple-nozzle lean direct injection (MLDI) combustor. This experimental program investigated a relatively practical combustor sector that was designed and built as part of a commercial development program. The research questions are both practical, such as under what conditions the combustor can be safely operated, and fundamental, including what is most significant to driving the combustion oscillations in this system. A comprehensive survey of operating conditions finds that the low-emission (and low-stability) intermediate and outer stages are necessary to drive significant thermoacoustics. Phase-averaged and time-resolved OH* imaging show that dramatic periodic strengthening and weakening of the reaction zone downstream of the low-emission combustion stages. An acoustic modal analysis shows the pressure wave shapes and identifies the dominant thermoacoustic behavior as the first longitudinal mode for this combustor geometry. Finally, a discussion of the likely significant coupling mechanisms is given. Periodic reaction zone behavior in the low-emission fuel stages is the primary contributor to unsteady heat release. Differences between the fuel stages in the air swirler design, the fuel number of the injectors, the lean blowout point, and the nominal operating conditions all likely contribute to the limit cycle behavior of the low-emission stages. Chapter 4 investigates the effects of interaction between two adjacent swirl-stabilized nozzles using experimental and numerical tools. These studies are more fundamental; while the nozzle hardware is the same as the lean direct injection nozzles used in the MLDI combustion concept, the findings are generally applicable to other swirl-stabilized combustion systems as well. Much of the work utilizes a new experiment where the distance between nozzles was varied to change the level of interaction

  14. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    Science.gov (United States)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  15. Coloured solar collectors. Phase II : from laboratory samples to collector prototypes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A; Roecker, Ch; Chambrier, E de; Munari Probst, M

    2007-07-01

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) deals with the second phase of a project concerning the architectural integration of glazed solar collectors into the facades of buildings for heat production. The factors that limit the integration of photovoltaic panels in facades are discussed. The authors state that, for a convincing demonstration, sufficiently large samples and high quality levels are needed. The sol-gel deposition of the multi-layered coatings on A4-sized glass panes demonstrated in the laboratory by EPFL-LESO are discussed. The coatings produced exhibit a coloured reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure is discussed: This should result in the speeding up of the sol-gel process and thus save energy, thereby significantly reducing costs. Collaboration with industry is discussed in which full-scale glass panes are to be coated with novel multiple layers. The novel glazing is to be integrated into first prototype collectors. The manufacturing and test processes for the prototypes manufactured are discussed in detail.

  16. Application of LBB to a nozzle-pipe interface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  17. Analysis of collector-emitter offset voltage of InGaP/GaAs composite collector double heterojunction bipolar transistor

    Science.gov (United States)

    Lew, K. L.; Yoon, S. F.

    2002-04-01

    The Ebers-Moll-like terminal current expressions of a composite collector double heterojunction bipolar transistor (DHBT), which takes the recombination effect into account, have been formulated and an expression for collector-emitter offset voltage [VCE(offset)] has been derived. Factors affecting the VCE(offset) of a composite collector DHBT are investigated and good agreement between the calculated and reported experimental results is shown. Analytical results showed that the transmission coefficient of the base-collector (B-C) junction does not have a considerable effect on the VCE(offset), provided that the B-C junction is of good quality. Thus, despite its asymmetric structure, the VCE(offset) of an optimally designed composite collector DHBT could be as low as that of a conventional DHBT. Hence a composite collector DHBT with low saturation voltage and negligible VCE(offset) is possible if the two conditions: (i) good quality B-C junction, (ii) base transport factor, α≈1, are fulfilled.

  18. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  19. Solar energy collector/storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  20. CISBAT 2007 - Solar collectors (heat and electricity)

    International Nuclear Information System (INIS)

    2007-01-01

    This is the third part of the proceedings of the 2007 CISBAT conference on Renewables in a changing climate, held in Lausanne, Switzerland. On the subject of Building and urban integration of renewables the following oral contributions are summarised: 'Facade integration of solar thermal collectors: present and future', 'Long term experiences with a versatile PV in roof system', 'Development of a design and performance prediction tool for the ground source heat pump and underground thermal storage system', 'Hygrothermal performance of earth-to-air heat exchanger: long-term data evaluation and short-term simulation' as well as 'The real cost of heating your home: a comparative assessment of home energy systems with external costs'. Poster-sessions on the subject include 'Central solar heating plants with seasonal heat storage', 'Analysis of forced convection for evaporative air flow and heat transfer in PV cooling channels', 'Renewable energy technology in Mali: constraints and options for a sustainable development', 'Effect of duct width in ducted photovoltaic facades', 'Design and actual measurement of a ground source heat pump system using steel foundation piles as ground heat exchangers', 'Development of an integrated water-water heat pump unit for low energy house and its application', 'PV effect in multilayer cells and blending of fullerene/poly (3-hexylthiophene) and phthalocyanine having NIR charge transfer absorption band', 'CdTe photovoltaic systems - an alternative energetic', 'Integration of renewable energy sources in a town, examples in Grenoble', 'A prospective analysis method for the conception of solar integration solutions in buildings' and 'Energy and aesthetic improvements for building integration of cost effective solar energy systems'. Further groups of presentations at the conference are reported on in separate database records. An index of authors completes the proceedings