WorldWideScience

Sample records for feedback loop motifs

  1. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    OpenAIRE

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and rec...

  2. Functional characteristics of a double positive feedback loop coupled with autorepression

    International Nuclear Information System (INIS)

    Banerjee, Subhasis; Bose, Indrani

    2008-01-01

    We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic β-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the β-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the β-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON → OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out

  3. Functional characteristics of a double positive feedback loop coupled with autorepression

    Science.gov (United States)

    Banerjee, Subhasis; Bose, Indrani

    2008-12-01

    We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic β-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the β-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the β-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON → OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out.

  4. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...

  5. Feedback loop compensates for rectifier nonlinearity

    Science.gov (United States)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  6. SA-Mot: a web server for the identification of motifs of interest extracted from protein loops.

    Science.gov (United States)

    Regad, Leslie; Saladin, Adrien; Maupetit, Julien; Geneix, Colette; Camproux, Anne-Claude

    2011-07-01

    The detection of functional motifs is an important step for the determination of protein functions. We present here a new web server SA-Mot (Structural Alphabet Motif) for the extraction and location of structural motifs of interest from protein loops. Contrary to other methods, SA-Mot does not focus only on functional motifs, but it extracts recurrent and conserved structural motifs involved in structural redundancy of loops. SA-Mot uses the structural word notion to extract all structural motifs from uni-dimensional sequences corresponding to loop structures. Then, SA-Mot provides a description of these structural motifs using statistics computed in the loop data set and in SCOP superfamily, sequence and structural parameters. SA-Mot results correspond to an interactive table listing all structural motifs extracted from a target structure and their associated descriptors. Using this information, the users can easily locate loop regions that are important for the protein folding and function. The SA-Mot web server is available at http://sa-mot.mti.univ-paris-diderot.fr.

  7. Asymmetric positive feedback loops reliably control biological responses.

    Science.gov (United States)

    Ratushny, Alexander V; Saleem, Ramsey A; Sitko, Katherine; Ramsey, Stephen A; Aitchison, John D

    2012-04-24

    Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.

  8. Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times

    International Nuclear Information System (INIS)

    Tiwari, Abhinav; Igoshin, Oleg A

    2012-01-01

    Biochemical regulatory networks governing diverse cellular processes such as stress-response, differentiation and cell cycle often contain coupled feedback loops. We aim at understanding how features of feedback architecture, such as the number of loops, the sign of the loops and the type of their coupling, affect network dynamical performance. Specifically, we investigate how bistability range, maximum open-loop gain and switching times of a network with transcriptional positive feedback are affected by additive or multiplicative coupling with another positive- or negative-feedback loop. We show that a network's bistability range is positively correlated with its maximum open-loop gain and that both quantities depend on the sign of the feedback loops and the type of feedback coupling. Moreover, we find that the addition of positive feedback could decrease the bistability range if we control the basal level in the signal-response curves of the two systems. Furthermore, the addition of negative feedback has the capacity to increase the bistability range if its dissociation constant is much lower than that of the positive feedback. We also find that the addition of a positive feedback to a bistable network increases the robustness of its bistability range, whereas the addition of a negative feedback decreases it. Finally, we show that the switching time for a transition from a high to a low steady state increases with the effective fold change in gene regulation. In summary, we show that the effect of coupled feedback loops on the bistability range and switching times depends on the underlying mechanistic details. (paper)

  9. Parallel arrangements of positive feedback loops limit cell-to-cell variability in differentiation.

    Science.gov (United States)

    Dey, Anupam; Barik, Debashis

    2017-01-01

    Cellular differentiations are often regulated by bistable switches resulting from specific arrangements of multiple positive feedback loops (PFL) fused to one another. Although bistability generates digital responses at the cellular level, stochasticity in chemical reactions causes population heterogeneity in terms of its differentiated states. We hypothesized that the specific arrangements of PFLs may have evolved to minimize the cellular heterogeneity in differentiation. In order to test this we investigated variability in cellular differentiation controlled either by parallel or serial arrangements of multiple PFLs having similar average properties under extrinsic and intrinsic noises. We find that motifs with PFLs fused in parallel to one another around a central regulator are less susceptible to noise as compared to the motifs with PFLs arranged serially. Our calculations suggest that the increased resistance to noise in parallel motifs originate from the less sensitivity of bifurcation points to the extrinsic noise. Whereas estimation of mean residence times indicate that stable branches of bifurcations are robust to intrinsic noise in parallel motifs as compared to serial motifs. Model conclusions are consistent both in AND- and OR-gate input signal configurations and also with two different modeling strategies. Our investigations provide some insight into recent findings that differentiation of preadipocyte to mature adipocyte is controlled by network of parallel PFLs.

  10. Virtual grasping: closed-loop force control using electrotactile feedback.

    Science.gov (United States)

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  11. Virtual Grasping: Closed-Loop Force Control Using Electrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Nikola Jorgovanovic

    2014-01-01

    Full Text Available Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously “unseen” objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  12. Parallel arrangements of positive feedback loops limit cell-to-cell variability in differentiation.

    Directory of Open Access Journals (Sweden)

    Anupam Dey

    Full Text Available Cellular differentiations are often regulated by bistable switches resulting from specific arrangements of multiple positive feedback loops (PFL fused to one another. Although bistability generates digital responses at the cellular level, stochasticity in chemical reactions causes population heterogeneity in terms of its differentiated states. We hypothesized that the specific arrangements of PFLs may have evolved to minimize the cellular heterogeneity in differentiation. In order to test this we investigated variability in cellular differentiation controlled either by parallel or serial arrangements of multiple PFLs having similar average properties under extrinsic and intrinsic noises. We find that motifs with PFLs fused in parallel to one another around a central regulator are less susceptible to noise as compared to the motifs with PFLs arranged serially. Our calculations suggest that the increased resistance to noise in parallel motifs originate from the less sensitivity of bifurcation points to the extrinsic noise. Whereas estimation of mean residence times indicate that stable branches of bifurcations are robust to intrinsic noise in parallel motifs as compared to serial motifs. Model conclusions are consistent both in AND- and OR-gate input signal configurations and also with two different modeling strategies. Our investigations provide some insight into recent findings that differentiation of preadipocyte to mature adipocyte is controlled by network of parallel PFLs.

  13. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs.

    Science.gov (United States)

    Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude

    2011-06-20

    One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  14. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2011-06-01

    Full Text Available Abstract Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet, which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i ubiquitous motifs, shared by several superfamilies and (ii superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  15. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    Science.gov (United States)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  16. Two-component feedback loops and deformed mechanics

    International Nuclear Information System (INIS)

    Tourigny, David S.

    2015-01-01

    It is shown that a general two-component feedback loop can be viewed as a deformed Hamiltonian system. Some of the implications of using ideas from theoretical physics to study biological processes are discussed. - Highlights: • Two-component molecular feedback loops are viewed as q-deformed Hamiltonian systems. • Deformations are reversed using Jackson derivatives to take advantage of working in the Hamiltonian limit. • New results are derived for the particular examples considered. • General deformations are suggested to be associated with a broader class of biological processes

  17. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    Science.gov (United States)

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  18. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kim Man-Sun

    2012-05-01

    Full Text Available Abstract Background Network motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts. Results On the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns. Conclusions Taken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks.

  19. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    Science.gov (United States)

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  20. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair.

    Science.gov (United States)

    Hofmann, H P; Limmer, S; Hornung, V; Sprinzl, M

    1997-01-01

    RNA molecules with high affinity for immobilized Ni2+ were isolated from an RNA pool with 50 randomized positions by in vitro selection-amplification. The selected RNAs preferentially bind Ni2+ and Co2+ over other cations from first series transition metals. Conserved structure motifs, comprising about 15 nt, were identified that are likely to represent the Ni2+ binding sites. Two conserved motifs contain an asymmetric purine-rich internal loop and probably a mismatch G-A base pair. The structure of one of these motifs was studied with proton NMR spectroscopy and formation of the G-A pair at the junction of helix and internal loop was demonstrated. Using Ni2+ as a paramagnetic probe, a divalent metal ion binding site near this G-A base pair was identified. Ni2+ ions bound to this motif exert a specific stabilization effect. We propose that small asymmetric purine-rich loops that contain a G-A interaction may represent a divalent metal ion binding site in RNA. PMID:9409620

  1. Feedback - closing the loop digitally

    International Nuclear Information System (INIS)

    Zagel, J.; Chase, B.

    1992-01-01

    Many feedback and feedforward systems are now using microprocessors within the loop. We describe the wide range of possibilities and problems that arise. We also propose some ideas for analysis and testing, including examples of motion control in the Flying Wire systems in Main Ring and Tevatron and Low Level RF control now being built for the Fermilab Linac upgrade. (author)

  2. Closed-loop multiple antenna aided wireless communications using limited feedback

    OpenAIRE

    Yang, Du

    2010-01-01

    The aim of this thesis is to study the design of closed-loop multiple antenna aided wireless communications relying on limited feedback. Multiple antennas may be employed either/both at the transmitter or/and at the receiver, here the latter periodically feeds back some information about the time-varying wireless channel using a limited number of bits. Furthermore, the transmitter then pre-processes the signals to be transmitted according to the received feedback information. This closed-loop...

  3. Finding Positive Feedback Loops in Environmental Models: A Mathematical Investigation

    Science.gov (United States)

    Sheikholeslami, R.; Razavi, S.

    2016-12-01

    Dynamics of most earth and environmental systems are generally governed by interactions between several hydrological (e.g., soil moisture and precipitation), geological (e.g., and erosion), geochemical (e.g., nutrient loading), and atmospheric (e.g., temperature) processes which operate on a range of spatio-temporal scales. These interactions create numerous feedback mechanisms with complex behaviours, and their understanding and representation can vary depending on the scale in space and/or time at which the system is analyzed. One of the most crucial characteristics of such complex systems is the existence of positive feedback loops. The presence of positive feedbacks may increase complexity, accelerate change, or trigger multiple stable states in the underlying dynamical system. Furthermore, because of the inherent non-linearity, it is often very difficult to obtain a general idea of their complex dynamics. Feedback loops in environmental systems have been well recognized and qualitatively discussed. With a quantitative/mathematical view, in this presentation, we address the question of how the positive feedback loops can be identified/implemented in environmental models. We investigate the nature of different feedback mechanisms and dynamics of simple example case studies that underlie fundamental processes such as vegetation, precipitation and soil moisture. To do this, we apply the concept of "interaction graph" from mathematics which is built from the Jacobian matrix of the dynamical system. The Jacobian matrix contains information on how variations of one state variable depends on variations of other variables, and thus can be used to understand the dynamical possibilities of feedback mechanisms in the underlying system. Moreover, this study highlights that there are some situations where the existence of positive feedback loops can cause multiple stable states, and thereby regime shifts in environmental systems. Systems with multiple stable states are

  4. No evidence for an elephant-termite feedback loop in Sand Forest, South Africa

    NARCIS (Netherlands)

    Lagendijk, D. D G; Davies, A. B.; Eggleton, P.; Slotow, R.

    2016-01-01

    Termites and mammalian herbivores might derive mutual benefit from each other through positive feedback loops, but empirical evidence is lacking. One suggested positive feedback loop is between termites and elephant, both ecosystem engineers. Termites, as decomposer organisms, contribute to nutrient

  5. The double-loop feedback for active learning with understanding

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2004-01-01

    Learning is an active process, and in engineering education authentic projects is often used to activate the students and promote learning. However, it is not all activity that leads to deep learning; and in a rapid changing society deep understanding is necessary for life-long learning. Empirical...... findings at DTU question the direct link between high activity and a deep approach to learning. Active learning is important to obtain engineering competencies, but active learning requires more than activity. Feedback and reflection is crucial to the learning process, since new knowledge is built...... on the student’s existing understanding. A model for an active learning process with a double-loop feedback is suggested - the first loop gives the student experience through experimentation, the second conceptual understanding through reflection. Students often miss the second loop, so it is important...

  6. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    Science.gov (United States)

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation.

  7. Construction and modelling of an inducible positive feedback loop stably integrated in a mammalian cell-line.

    Directory of Open Access Journals (Sweden)

    Velia Siciliano

    2011-06-01

    Full Text Available Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL by generating a clonal population of mammalian cells (CHO carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA, whose expression is regulated by a tTA responsive promoter (CMV-TET, thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP, thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL, by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off, and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the "switch off" times, as compared to the non-autoregulated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour.

  8. Construction and modelling of an inducible positive feedback loop stably integrated in a mammalian cell-line.

    Science.gov (United States)

    Siciliano, Velia; Menolascina, Filippo; Marucci, Lucia; Fracassi, Chiara; Garzilli, Immacolata; Moretti, Maria Nicoletta; di Bernardo, Diego

    2011-06-01

    Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL) by generating a clonal population of mammalian cells (CHO) carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA), whose expression is regulated by a tTA responsive promoter (CMV-TET), thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP), thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL), by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off), and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the "switch off" times, as compared to the non-autoregulated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour.

  9. Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.

    Science.gov (United States)

    Felt, Wyatt; Chin, Khai Yi; Remy, C David

    2017-09-01

    This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.

  10. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder.

    Science.gov (United States)

    Wittenborn, A K; Rahmandad, H; Rick, J; Hosseinichimeh, N

    2016-02-01

    Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention.

  11. Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery

    Science.gov (United States)

    Gomez-Rodriguez, M.; Peters, J.; Hill, J.; Schölkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M.

    2011-06-01

    The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.

  12. Interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory.

    Science.gov (United States)

    Smolen, Paul; Baxter, Douglas A; Byrne, John H

    2009-03-01

    Multiple interlinked positive feedback loops shape the stimulus responses of various biochemical systems, such as the cell cycle or intracellular Ca2+ release. Recent studies with simplified models have identified two advantages of coupling fast and slow feedback loops. This dual-time structure enables a fast response while enhancing resistances of responses and bistability to stimulus noise. We now find that (1) the dual-time structure similarly confers resistance to internal noise due to molecule number fluctuations, and (2) model variants with altered coupling, which better represent some specific biochemical systems, share all the above advantages. We also develop a similar bistable model with coupling of a fast autoactivation loop to a slow loop. This model's topology was suggested by positive feedback proposed to play a role in long-term synaptic potentiation (LTP). The advantages of fast response and noise resistance are also present in this autoactivation model. Empirically, LTP develops resistance to reversal over approximately 1h . The model suggests this resistance may result from increased amounts of synaptic kinases involved in positive feedback.

  13. Analysis of beam feedback loops of RF acceleration system at TARN II

    International Nuclear Information System (INIS)

    Katayama, Takeshi.

    1992-08-01

    Two beam-feedback-loops are prepared for the frequency control of RF acceleration system at cooler-synchrotron TARN II. One is the phase-loop and the other the radial-position-loop. In the present paper, the effects of these loops on the beam dynamics in the synchrotron are studied on the basis of Laplace transformation approach as well as the numerical values for the synchrotron acceleration at TARN II. (author)

  14. Benefits of Subliminal Feedback Loops in Human-Computer Interaction

    OpenAIRE

    Walter Ritter

    2011-01-01

    A lot of efforts have been directed to enriching human-computer interaction to make the user experience more pleasing or efficient. In this paper, we briefly present work in the fields of subliminal perception and affective computing, before we outline a new approach to add analog communication channels to the human-computer interaction experience. In this approach, in addition to symbolic predefined mappings of input to output, a subliminal feedback loop is used that provides feedback in evo...

  15. Pyrene functionalized molecular beacon with pH-sensitive i-motif in a loop.

    Science.gov (United States)

    Dembska, Anna; Juskowiak, Bernard

    2015-01-01

    In this work, we present a spectral characterization of pH-sensitive system, which combines the i-motif properties with the spatially sensitive fluorescence signal of pyrene molecules attached to hairpin ends. The excimer production (fluorescence max. ∼480 nm) by pyrene labels at the ends of the molecular beacon is driven by pH-dependent i-motif formation in the loop. To illustrate the performance and reversible work of our systems, we performed the experiments with repeatedly pH cycling between pH values of 7.5±0.3 and 6.5±0.3. The sensor gives analytical response in excimer-monomer switching mode in narrow pH range (1.5 pH units) and exhibits high pH resolution (0.1 pH unit). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training

    Science.gov (United States)

    Zhang, Yili; Smolen, Paul; Alberini, Cristina M.; Baxter, Douglas A.; Byrne, John H.

    2016-01-01

    Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins…

  17. A social feedback loop for speech development and its reduction in autism.

    Science.gov (United States)

    Warlaumont, Anne S; Richards, Jeffrey A; Gilkerson, Jill; Oller, D Kimbrough

    2014-07-01

    We analyzed the microstructure of child-adult interaction during naturalistic, daylong, automatically labeled audio recordings (13,836 hr total) of children (8- to 48-month-olds) with and without autism. We found that an adult was more likely to respond when the child's vocalization was speech related rather than not speech related. In turn, a child's vocalization was more likely to be speech related if the child's previous speech-related vocalization had received an immediate adult response rather than no response. Taken together, these results are consistent with the idea that there is a social feedback loop between child and caregiver that promotes speech development. Although this feedback loop applies in both typical development and autism, children with autism produced proportionally fewer speech-related vocalizations, and the responses they received were less contingent on whether their vocalizations were speech related. We argue that such differences will diminish the strength of the social feedback loop and have cascading effects on speech development over time. Differences related to socioeconomic status are also reported. © The Author(s) 2014.

  18. Interlinked Dual-Time Feedback Loops can Enhance Robustness to Stochasticity and Persistence of Memory

    OpenAIRE

    Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2012-01-01

    Multiple interlinked positive feedback loops shape the stimulus responses of various biochemical systems, such as the cell cycle or intracellular Ca2+ release. Recent studies with simplified models have identified two advantages of coupling fast and slow feedback loops. This dual-time structure enables a fast response while enhancing resistances of responses and bistability to stimulus noise. We now find that: 1) the dual-time structure similarly confers resistance to internal noise due to mo...

  19. A dynamic-biased dual-loop-feedback CMOS LDO regulator with fast transient response

    International Nuclear Information System (INIS)

    Wang Han; Sun Maomao

    2014-01-01

    This paper presents a low-dropout regulator (LDO) for portable applications with dual-loop feedback and a dynamic bias circuit. The dual-loop feedback structure is adopted to reduce the output voltage spike and the response time of the LDO. The dynamic bias circuit enhances the slew rate at the gate of the power transistor. In addition, an adaptive miller compensation technique is employed, from which a single pole system is realized and over a 59° phase margin is achieved under the full range of the load current. The proposed LDO has been implemented in a 0.6-μm CMOS process. From the experimental results, the regulator can operate with a minimum dropout voltage of 200 mV at a maximum 300 mA load and I Q of 113 μA. The line regulation and load regulation are improved to 0.1 mV/V and 3.4 μV/mA due to the sufficient loop gain provided by the dual feedback loops. Under a full range load current step, the voltage spikes and the recovery time of the proposed LDO is reduced to 97 mV and 0.142 μs respectively. (semiconductor integrated circuits)

  20. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  1. Practical Loop-Shaping Design of Feedback Control Systems

    Science.gov (United States)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the

  2. An evaluation of the feedback loops in the poverty focus of world bank operations.

    Science.gov (United States)

    Fardoust, Shahrokh; Kanbur, Ravi; Luo, Xubei; Sundberg, Mark

    2018-04-01

    The World Bank Group in 2013 made the elimination of extreme poverty by 2030 a central institutional focus and purpose. This paper, based on an evaluation conducted by the Independent Evaluation Group of the World Bank Group, examines how, and how well, the Bank uses feedback loops to enhance the poverty focus of its operations. Feedback loops are important for every element of the results chain running from data, to diagnostics, to strategy formulation and finally to strategy implementation. The evaluation uses a range of instruments, including surveys of stakeholders and World Bank staff, focus group meetings, country case studies and systematic reviews of Bank lending and non-lending operations. We find that while the Bank generates useful information on poverty reduction from its projects and programs, the feedback loops - from outcomes to data analysis to diagnostics to strategy formulation and implementation - have generally been weak, with sizable variation across countries. Copyright © 2017 The World Bank. Published by Elsevier Ltd.. All rights reserved.

  3. Beam stability in synchrotrons with digital filters in the feedback loop of a transverse damper

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2009-01-01

    The stability of an ion beam in synchrotrons with digital filters in the feedback loop of a transverse damper is treated. Solving the characteristic equation allows one to calculate the achievable damping rates as a function of instability growth rate, feedback gain and parameters of the signal processing. A transverse feedback system (TFS) is required in synchrotrons to stabilize the high intensity ion beams against transverse instabilities and to damp the beam injection errors. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit at the location of the beam position monitor (BPM). The digital signal processing unit in the feedback loop between BPM and DK ensures a condition to achieve optimal damping. Damping rates of the feedback systems with digital notch, Hilbert and all-pass filters are analyzed in comparison with those in an ideal feedback system

  4. Closed loop kinesthetic feedback for postural control rehabilitation.

    Science.gov (United States)

    Vérité, Fabien; Bachta, Wael; Morel, Guillaume

    2014-01-01

    Postural control rehabilitation may benefit from the use of smart devices providing biofeedback. This approach consists of increasing the patients perception of their postural state. Namely, postural state is monitored and fed back in real time to the patients through one or more sensory channels. This allows implementing rehabilitation exercises where the patients control their posture with the help of additional sensory inputs. In this paper, a closed loop control of the Center-Of-Pressure (CoP) based on kinesthetic feedback is proposed as a new form of biofeedback. The motion of a one Degree of Freedom (DoF) translational device, lightly touched by the patient's forefinger, is servoed to the patient's CoP position extracted from the measurements of a force plate on which he/she stands. As a result, the patient's CoP can be controllably displaced. A first set of experiments is used to prove the feasibility of this closed-loop control under ideal conditions favoring the perception of the kinesthetic feedback, while the subject is totally unaware of the context. A second set of experiments is then proposed to evaluate the robustness of this approach under experimental conditions that are more realistic with regards to the clinical context of a rehabilitation program involving biofeedback-based exercises.

  5. A computational model clarifies the roles of positive and negative feedback loops in the Drosophila circadian clock

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junwei, E-mail: wangjunweilj@yahoo.com.c [Cisco School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhou Tianshou [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-06-14

    Previous studies showed that a single negative feedback structure should be sufficient for robust circadian oscillations. It is thus pertinent to ask why current cellular clock models almost universally have interlocked negative feedback loop (NFL) and positive feedback loop (PFL). Here, we propose a molecular model that reflects the essential features of the Drosophila circadian clock to clarify the different roles of negative and positive feedback loops. In agreement with experimental observations, the model can simulate circadian oscillations in constant darkness, entrainment by light-dark cycles, as well as phenotypes of per{sup 01} and clk{sup Jrk} mutants. Moreover, sustained oscillations persist when the PFL is removed, implying the crucial role of NFL for rhythm generation. Through parameter sensitivity analysis, it is revealed that incorporation of PFL increases the robustness of the system to regulatory processes in PFL itself. Such reduced models can aid understanding of the design principles of circadian clocks in Drosophila and other organisms with complex transcriptional feedback structures.

  6. A computational model clarifies the roles of positive and negative feedback loops in the Drosophila circadian clock

    International Nuclear Information System (INIS)

    Wang Junwei; Zhou Tianshou

    2010-01-01

    Previous studies showed that a single negative feedback structure should be sufficient for robust circadian oscillations. It is thus pertinent to ask why current cellular clock models almost universally have interlocked negative feedback loop (NFL) and positive feedback loop (PFL). Here, we propose a molecular model that reflects the essential features of the Drosophila circadian clock to clarify the different roles of negative and positive feedback loops. In agreement with experimental observations, the model can simulate circadian oscillations in constant darkness, entrainment by light-dark cycles, as well as phenotypes of per 01 and clk Jrk mutants. Moreover, sustained oscillations persist when the PFL is removed, implying the crucial role of NFL for rhythm generation. Through parameter sensitivity analysis, it is revealed that incorporation of PFL increases the robustness of the system to regulatory processes in PFL itself. Such reduced models can aid understanding of the design principles of circadian clocks in Drosophila and other organisms with complex transcriptional feedback structures.

  7. Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks

    Science.gov (United States)

    Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2018-04-01

    A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.

  8. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  9. Extended Cognition: Feedback Loops and Coupled Systems

    Directory of Open Access Journals (Sweden)

    Olga Markic

    2017-12-01

    Full Text Available The article explores two waves of active externalism. I first introduce the distinction between passive and active externalism and analyse a proposal of active externalism based on the principle of parity proposed by Clark and Chalmers. There are two main obstacles, causal-constitution fallacy and cognitive bloat, that threaten the extended cognition hypothesis. The second wave of discussions based on the complementarity principle deals with cognitive systems with feedback loops between internal and external elements and is a more radical departure from functionalism and traditional thinking about cognition. I conclude with some remarks on potential ethical considerations of extended cognition.

  10. A transimpedance amplifier using a novel current mode feedback loop

    CERN Document Server

    Anghinolfi, Francis; Delagnes, E; Jarron, Pierre; Scharfetter, L H H

    1995-01-01

    We present a transimpedance amplifier stage based on a novel current mode feedback topology. This circuit employs NMOS and PMOS transistors exclusively and requires neither capacitor for stabilizing the transimpedance loop nor resistor for the transresistance feedback and transistor loading. This amplifier circuit is fully compatible with submicron digital CMOS processes. The active feedback network consists of two grounded-gate MOS devices which split the output current in both the feedback and output branches. The transresistance and the phase margin are adjustable through external DC signals. The measured rise time of the impulse response of the amplifier implemented in an industrial 0,7µm CMOS process is 18 ns for a transresistance of 180 k‡ and 30 ns for a transresistance of 560 k‡. The measured Equivalent Noise Charge (ENC) is 800 rms e¯ for an input capacitance of 20 pF with the transresistance adjusted to 560 k‡.

  11. Molecular dynamics simulations of electrostatics and hydration distributions around RNA and DNA motifs

    Science.gov (United States)

    Marlowe, Ashley E.; Singh, Abhishek; Semichaevsky, Andrey V.; Yingling, Yaroslava G.

    2009-03-01

    Nucleic acid nanoparticles can self-assembly through the formation of complementary loop-loop interactions or stem-stem interactions. Presence and concentration of ions can significantly affect the self-assembly process and the stability of the nanostructure. In this presentation we use explicit molecular dynamics simulations to examine the variations in cationic distributions and hydration environment around DNA and RNA helices and loop-loop interactions. Our simulations show that the potassium and sodium ionic distributions are different around RNA and DNA motifs which could be indicative of ion mediated relative stability of loop-loop complexes. Moreover in RNA loop-loop motifs ions are consistently present and exchanged through a distinct electronegative channel. We will also show how we used the specific RNA loop-loop motif to design a RNA hexagonal nanoparticle.

  12. Asymmetric dual-loop feedback to suppress spurious tones and reduce timing jitter in self-mode-locked quantum-dash lasers emitting at 155 μm

    Science.gov (United States)

    Asghar, Haroon; McInerney, John G.

    2017-09-01

    We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.

  13. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Directory of Open Access Journals (Sweden)

    Christopher L Buckley

    2018-01-01

    Full Text Available During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results

  14. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Science.gov (United States)

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence

  15. Interaction between beam control and rf feedback loops for high Q cavities an heavy beam loading. Revision A

    International Nuclear Information System (INIS)

    Mestha, L.K.; Kwan, C.M.; Yeung, K.S.

    1994-04-01

    An open-loop state space model of all the major low-level rf feedback control loops is derived. The model has control and state variables for fast-cycling machines to apply modern multivariable feedback techniques. A condition is derived to know when exactly we can cross the boundaries between time-varying and time-invariant approaches for a fast-cycling machine like the Low Energy Booster (LEB). The conditions are dependent on the Q of the cavity and the rate at which the frequency changes with time. Apart from capturing the time-variant characteristics, the errors in the magnetic field are accounted in the model to study the effects on synchronization with the Medium Energy Booster (MEB). The control model is useful to study the effects on beam control due to heavy beam loading at high intensities, voltage transients just after injection especially due to time-varying voltages, instability thresholds created by the cavity tuning feedback system, cross coupling between feedback loops with and without direct rf feedback etc. As a special case we have shown that the model agrees with the well known Pedersen model derived for the CERN PS booster. As an application of the model we undertook a detailed study of the cross coupling between the loops by considering all of them at once for varying time, Q and beam intensities. A discussion of the method to identify the coupling is shown. At the end a summary of the identified loop interactions is presented

  16. Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders

    Science.gov (United States)

    Zhong, Li-Xin; Xu, Wen-Juan; Chen, Rong-Da; Zhong, Chen-Yang; Qiu, Tian; Ren, Fei; He, Yun-Xing

    2018-03-01

    By incorporating market impact and momentum traders into an agent-based model, we investigate the conditions for the occurrence of self-reinforcing feedback loops and the coevolutionary mechanism of prices and strategies. For low market impact, the price fluctuations are originally large. The existence of momentum traders has little impact on the change of price fluctuations but destroys the equilibrium between the trend-following and trend-rejecting strategies. The trend-following herd behaviors become dominant. A self-reinforcing feedback loop exists. For high market impact, the existence of momentum traders leads to an increase in price fluctuations. The trend-following strategies of rational individuals are suppressed while the trend-following strategies of momentum traders are promoted. The crowd-anticrowd behaviors become dominant. A negative feedback loop exists. A theoretical analysis indicates that, for low market impact, the majority effect is beneficial for the trend-followers to earn more, which in turn promotes the trend-following strategies. For high market impact, the minority effect causes the trend-followers to suffer great losses, which in turn suppresses the trend-following strategies.

  17. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available University of Stellenbosch WWW.LASER-RESEARCH.CO.ZA University of Stellenbosch Pulse Energy Control Through Dual Loop Electronic Feedback Cobus Jacobs, Steven Kriel Christoph Bollig, Thomas Jones Cobus Jacobs et al. Overview head2righthead2right...What is Laser Pulse Energy Control? head2righthead2rightWhy do we need it? head2righthead2rightHow do we get it? head2righthead2rightSimulation head2righthead2rightExperimental Setup head2righthead2rightResults Cobus Jacobs et al. head2righthead2right...

  18. Can we observe open loop transfer functions in a stochastic feedback system ?

    International Nuclear Information System (INIS)

    Kishida, Kuniharu; Suda, Nobuhide.

    1991-01-01

    There are two kinds of problems concerning open loop and closed loop transfer functions in a feedback system. One is a problem even in the deterministic case, and the other is in the stochastic case. In the deterministic case it is guaranteed under a necessary and sufficient condition that total sum of degrees of sub-transfer functions coincides to the degree of the total system. In the stochastic case a systematic understanding of a physical state model, a theoretical innovation model and a data-oriented innovation model is indispensable for determination of open loop transfer functions from time series data. Undesirable factors appear in determination of open loop transfer functions, since a transfer function matrix from input noises to output variables has a redundancy factor of diagonal matrix. (author)

  19. Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit.

    Directory of Open Access Journals (Sweden)

    Tiffany Kee

    2015-10-01

    Full Text Available Inhibitory interneurons play critical roles in shaping the firing patterns of principal neurons in many brain systems. Despite difference in the anatomy or functions of neuronal circuits containing inhibition, two basic motifs repeatedly emerge: feed-forward and feedback. In the locust, it was proposed that a subset of lateral horn interneurons (LHNs, provide feed-forward inhibition onto Kenyon cells (KCs to maintain their sparse firing--a property critical for olfactory learning and memory. But recently it was established that a single inhibitory cell, the giant GABAergic neuron (GGN, is the main and perhaps sole source of inhibition in the mushroom body, and that inhibition from this cell is mediated by a feedback (FB loop including KCs and the GGN. To clarify basic differences in the effects of feedback vs. feed-forward inhibition in circuit dynamics we here use a model of the locust olfactory system. We found both inhibitory motifs were able to maintain sparse KCs responses and provide optimal odor discrimination. However, we further found that only FB inhibition could create a phase response consistent with data recorded in vivo. These findings describe general rules for feed-forward versus feedback inhibition and suggest GGN is potentially capable of providing the primary source of inhibition to the KCs. A better understanding of how inhibitory motifs impact post-synaptic neuronal activity could be used to reveal unknown inhibitory structures within biological networks.

  20. The kissing-loop motif is a preferred site of 5' leader recombination during replication of SL3-3 murine leukemia viruses in mice

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Mikkelsen, J G; Schmidt, J

    1999-01-01

    , and the upstream part of the 5' untranslated region, enabled us to map recombination sites, guided by distinct scattered nucleotide differences. In 30 of 44 analyzed sequences, recombination was mapped to a 33-nucleotide similarity window coinciding with the kissing-loop stem-loop motif implicated in dimerization...... of the diploid genome. Interestingly, the recombination pattern preference found in replication-competent viruses from T-cell tumors is very similar to the pattern previously reported for retroviral vectors in cell culture experiments. The data therefore sustain the hypothesis that the kissing loop, presumably...

  1. The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches

    International Nuclear Information System (INIS)

    Pfeuty, Benjamin; Kaneko, Kunihiko

    2009-01-01

    A wide range of cellular processes require molecular regulatory pathways to convert a graded signal into a discrete response. One prevalent switching mechanism relies on the coexistence of two stable states (bistability) caused by positive feedback regulations. Intriguingly, positive feedback is often supplemented with negative feedback, raising the question of whether and how these two types of feedback can cooperate to control discrete cellular responses. To address this issue, we formulate a canonical model of a protein–protein interaction network and analyze the dynamics of a prototypical two-component circuit. The appropriate combination of negative and positive feedback loops can bring a bistable circuit close to the oscillatory regime. Notably, sharply activated negative feedback can give rise to a bistable regime wherein two stable fixed points coexist and may collide pairwise with two saddle points. This specific type of bistability is found to allow for separate and flexible control of switch-on and switch-off events, for example (i) to combine fast and reversible transitions, (ii) to enable transient switching responses and (iii) to display tunable noise-induced transition rates. Finally, we discuss the relevance of such bistable switching behavior, and the circuit topologies considered, to specific biological processes such as adaptive metabolic responses, stochastic fate decisions and cell-cycle transitions. Taken together, our results suggest an efficient mechanism by which positive and negative feedback loops cooperate to drive the flexible and multifaceted switching behaviors arising in biological systems

  2. Sp1-CD147 positive feedback loop promotes the invasion ability of ovarian cancer.

    Science.gov (United States)

    Zhao, Jing; Ye, Wei; Wu, Juan; Liu, Lijuan; Yang, Lina; Gao, Lu; Chen, Biliang; Zhang, Fanglin; Yang, Hong; Li, Yu

    2015-07-01

    CD147 is a novel cancer biomarker that has been confirmed to be overexpressed in ovarian carcinoma, which is significantly associated with poor prognosis. Although the Sp1 protein regulates the expression level of CD147, it remains unclear whether Sp1 phosphorylation plays a role in this regulation. A dual-luciferase assay revealed that T453 and T739 mutations decreased the activity of Sp1 binding to the promoter of CD147, followed by a decrease in CD147 mRNA and protein expression. Western blot analysis showed that CD147 promoted Sp1 phosphorylation at T453 and T739 through the PI3K/AKT and MAPK/ERK pathways. In addition, blocking the Sp1-CD147 positive feedback loop reduced the invasion ability of HO-8910pm cells. Immunohistochemical staining showed that the components of the feedback loop were overexpressed in ovarian cancer tissues. The correlation analysis revealed a significant correlation between phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression levels, with correlation coefficients of r=0.477 and r=0.461, respectively. Collectively, our results suggest that a Sp1-CD147 positive feedback loop plays a critical role in the invasion ability of ovarian cancer cells.

  3. A closed-loop analysis of the tubuloglomerular feedback mechanism

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1991-01-01

    The tubuloglomerular feedback (TGF) mechanism is of importance in the regulation of glomerular filtration rate (GFR). A second mechanism of potential importance is the change in proximal pressure caused by a change, for example, in the rate of proximal fluid reabsorption. The quantitative contrib...... and the late proximal flow rate, with changes in the proximal pressure of lesser importance. Furthermore, under closed-loop conditions the operating point for the TGF mechanism is at or close to the point of maximal sensitivity....... nl/min in steps of 5 nl/min. The open-loop gain (OLG) was 3.1 (range 1.5-9.9, n = 13) at the unperturbed tubular flow rate, and decreased as the tubular flow rate was either increased or decreased. The proximal pressure increased by 0.21 +/- 0.03 mmHg per unit increase in late proximal flow rate (nl...

  4. Feedback versus open-loop leader/fringe models of the oil supply market

    International Nuclear Information System (INIS)

    Pelot, R.P.; Fuller, J.D.

    1991-01-01

    A multiperiod feedback Stackelberg model of exhaustible resources is presented. The results of the feedback model are compared with those from a corresponding open-loop formulation to determine whether the solution to the latter, and much simpler, model produces the same or similar outcomes. An analysis of the world oil market with OPEC as leader dictating the price to a competitive fringe comprised of the remaining oil suppliers demonstrates the features of the model. It permits variable length periods and cumulative extraction cost functions

  5. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Directory of Open Access Journals (Sweden)

    Hong Zeng

    2017-10-01

    Full Text Available Brain-machine interface (BMI can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback over the open-loop system (with visual inspection only have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes.

  6. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Science.gov (United States)

    Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng

    2017-01-01

    Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123

  7. Uncovering the spatially distant feedback loops of global trade: A network and input-output approach.

    Science.gov (United States)

    Prell, Christina; Sun, Laixiang; Feng, Kuishuang; He, Jiaying; Hubacek, Klaus

    2017-05-15

    Land-use change is increasingly driven by global trade. The term "telecoupling" has been gaining ground as a means to describe how human actions in one part of the world can have spatially distant impacts on land and land-use in another. These interactions can, over time, create both direct and spatially distant feedback loops, in which human activity and land use mutually impact one another over great expanses. In this paper, we develop an analytical framework to clarify spatially distant feedbacks in the case of land use and global trade. We use an innovative mix of multi-regional input-output (MRIO) analysis and stochastic actor-oriented models (SAOMs) for analyzing the co-evolution of changes in trade network patterns with those of land use, as embodied in trade. Our results indicate that the formation of trade ties and changes in embodied land use mutually impact one another, and further, that these changes are linked to disparities in countries' wealth. Through identifying this feedback loop, our results support ongoing discussions about the unequal trade patterns between rich and poor countries that result in uneven distributions of negative environmental impacts. Finally, evidence for this feedback loop is present even when controlling for a number of underlying mechanisms, such as countries' land endowments, their geographical distance from one another, and a number of endogenous network tendencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop

    International Nuclear Information System (INIS)

    Kucera, M; Bittner, A; Schmid, U; Manzaneque, T; Sánchez-Rojas, J L

    2013-01-01

    This paper presents a robust Q-control approach based on an all-electrical feedback loop enhancing the quality factor of a resonant microstructure by using the self-sensing capability of a piezoelectric thin film actuator made of aluminium nitride. A lock-in amplifier is used to extract the feedback signal which is proportional to the piezoelectric current. The measured real part is used to replace the originally low-quality and noisy feedback signal to modulate the driving voltage of the piezoelectric thin-film actuator. Since the lock-in amplifier reduces the noise in the feedback signal substantially, the proposed enhancement loop avoids the disadvantage of a constant signal-to-noise ratio, which an analogue feedback circuit usually suffers from. The quality factor was increased from the intrinsic value of 1766 to a maximum of 34 840 in air. These promising results facilitate precise measurements for self-actuated and self-sensing MEMS cantilevers even when operated in static viscous media. (paper)

  9. Power flow control based solely on slow feedback loop for heart pump applications.

    Science.gov (United States)

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  10. Dynamical behaviors of Rb-E2F pathway including negative feedback loops involving miR449.

    Science.gov (United States)

    Yan, Fang; Liu, Haihong; Hao, Junjun; Liu, Zengrong

    2012-01-01

    MiRNAs, which are a family of small non-coding RNAs, regulate a broad array of physiological and developmental processes. However, their regulatory roles have remained largely mysterious. E2F is a positive regulator of cell cycle progression and also a potent inducer of apoptosis. Positive feedback loops in the regulation of Rb-E2F pathway are predicted and shown experimentally. Recently, it has been discovered that E2F induce a cluster of miRNAs called miR449. In turn, E2F is inhibited by miR449 through regulating different transcripts, thus forming negative feedback loops in the interaction network. Here, based on the integration of experimental evidence and quantitative data, we studied Rb-E2F pathway coupling the positive feedback loops and negative feedback loops mediated by miR449. Therefore, a mathematical model is constructed based in part on the model proposed in Yao-Lee et al. (2008) and nonlinear dynamical behaviors including the stability and bifurcations of the model are discussed. A comparison is given to reveal the implication of the fundamental differences of Rb-E2F pathway between regulation and deregulation of miR449. Coherent with the experiments it predicts that miR449 plays a critical role in regulating the cell cycle progression and provides a twofold safety mechanism to avoid excessive E2F-induced proliferation by cell cycle arrest and apoptosis. Moreover, numerical simulation and bifurcation analysis shows that the mechanisms of the negative regulation of miR449 to three different transcripts are quite distinctive which needs to be verified experimentally. This study may help us to analyze the whole cell cycle process mediated by other miRNAs more easily. A better knowledge of the dynamical behaviors of miRNAs mediated networks is also of interest for bio-engineering and artificial control.

  11. Stress-specific response of the p53-Mdm2 feedback loop

    Directory of Open Access Journals (Sweden)

    Jensen Mogens H

    2010-07-01

    Full Text Available Abstract Background The p53 signalling pathway has hundreds of inputs and outputs. It can trigger cellular senescence, cell-cycle arrest and apoptosis in response to diverse stress conditions, including DNA damage, hypoxia and nutrient deprivation. Signals from all these inputs are channeled through a single node, the transcription factor p53. Yet, the pathway is flexible enough to produce different downstream gene expression patterns in response to different stresses. Results We construct a mathematical model of the negative feedback loop involving p53 and its inhibitor, Mdm2, at the core of this pathway, and use it to examine the effect of different stresses that trigger p53. In response to DNA damage, hypoxia, etc., the model exhibits a wide variety of specific output behaviour - steady states with low or high levels of p53 and Mdm2, as well as spiky oscillations with low or high average p53 levels. Conclusions We show that even a simple negative feedback loop is capable of exhibiting the kind of flexible stress-specific response observed in the p53 system. Further, our model provides a framework for predicting the differences in p53 response to different stresses and single nucleotide polymorphisms.

  12. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    Science.gov (United States)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  13. Trade typhoon over Japan: Turbulence metaphor and spatial production cycles feedback loops of the Japanese economy, 1980–85–90

    Directory of Open Access Journals (Sweden)

    M. Sonis

    2002-01-01

    Full Text Available This paper deals with the turbulence similitude between whirlpool structure of atmosphere disturbances and the spatial production cycles. Such an analogy leads to the production cycles feedback loops superposition analysis of trade feedbacks reflecting the economic phenomena of horizontal and vertical trade specifications. Moreover, the visualization of this process is achieved with the help of coloring the different permutation matrices presenting the hierarchy of production cycles feedback loops. In this manner the qualitative presentation of Japan inter-regional and inter-industry trade, 1980–85–90, is visualized and interpreted.

  14. Dynamical consequences of bandpass feedback loops in a bacterial phosphorelay.

    Directory of Open Access Journals (Sweden)

    Shaunak Sen

    Full Text Available Under conditions of nutrient limitation, Bacillus subtilis cells terminally differentiate into a dormant spore state. Progression to sporulation is controlled by a genetic circuit consisting of a phosphorelay embedded in multiple transcriptional feedback loops, which is used to activate the master regulator Spo0A by phosphorylation. These transcriptional regulatory interactions are "bandpass"-like, in the sense that activation occurs within a limited band of Spo0A∼P concentrations. Additionally, recent results show that the phosphorelay activation occurs in pulses, in a cell-cycle dependent fashion. However, the impact of these pulsed bandpass interactions on the circuit dynamics preceding sporulation remains unclear. In order to address this question, we measured key features of the bandpass interactions at the single-cell level and analyzed them in the context of a simple mathematical model. The model predicted the emergence of a delayed phase shift between the pulsing activity of the different sporulation genes, as well as the existence of a stable state, with elevated Spo0A activity but no sporulation, embedded within the dynamical structure of the system. To test the model, we used time-lapse fluorescence microscopy to measure dynamics of single cells initiating sporulation. We observed the delayed phase shift emerging during the progression to sporulation, while a re-engineering of the sporulation circuit revealed behavior resembling the predicted additional state. These results show that periodically-driven bandpass feedback loops can give rise to complex dynamics in the progression towards sporulation.

  15. OncomiR addiction is generated by a miR-155 feedback loop in Theileria-transformed leukocytes.

    Directory of Open Access Journals (Sweden)

    Justine Marsolier

    Full Text Available The intracellular parasite Theileria is the only eukaryote known to transform its mammalian host cells. We investigated the host mechanisms involved in parasite-induced transformation phenotypes. Tumour progression is a multistep process, yet 'oncogene addiction' implies that cancer cell growth and survival can be impaired by inactivating a single gene, offering a rationale for targeted molecular therapies. Furthermore, feedback loops often act as key regulatory hubs in tumorigenesis. We searched for microRNAs involved in addiction to regulatory loops in leukocytes infected with Theileria parasites. We show that Theileria transformation involves induction of the host bovine oncomiR miR-155, via the c-Jun transcription factor and AP-1 activity. We identified a novel miR-155 target, DET1, an evolutionarily-conserved factor involved in c-Jun ubiquitination. We show that miR-155 expression led to repression of DET1 protein, causing stabilization of c-Jun and driving the promoter activity of the BIC transcript containing miR-155. This positive feedback loop is critical to maintain the growth and survival of Theileria-infected leukocytes; transformation is reversed by inhibiting AP-1 activity or miR-155 expression. This is the first demonstration that Theileria parasites induce the expression of host non-coding RNAs and highlights the importance of a novel feedback loop in maintaining the proliferative phenotypes induced upon parasite infection. Hence, parasite infection drives epigenetic rewiring of the regulatory circuitry of host leukocytes, placing miR-155 at the crossroads between infection, regulatory circuits and transformation.

  16. Dynamical behaviors of Rb-E2F pathway including negative feedback loops involving miR449.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available MiRNAs, which are a family of small non-coding RNAs, regulate a broad array of physiological and developmental processes. However, their regulatory roles have remained largely mysterious. E2F is a positive regulator of cell cycle progression and also a potent inducer of apoptosis. Positive feedback loops in the regulation of Rb-E2F pathway are predicted and shown experimentally. Recently, it has been discovered that E2F induce a cluster of miRNAs called miR449. In turn, E2F is inhibited by miR449 through regulating different transcripts, thus forming negative feedback loops in the interaction network. Here, based on the integration of experimental evidence and quantitative data, we studied Rb-E2F pathway coupling the positive feedback loops and negative feedback loops mediated by miR449. Therefore, a mathematical model is constructed based in part on the model proposed in Yao-Lee et al. (2008 and nonlinear dynamical behaviors including the stability and bifurcations of the model are discussed. A comparison is given to reveal the implication of the fundamental differences of Rb-E2F pathway between regulation and deregulation of miR449. Coherent with the experiments it predicts that miR449 plays a critical role in regulating the cell cycle progression and provides a twofold safety mechanism to avoid excessive E2F-induced proliferation by cell cycle arrest and apoptosis. Moreover, numerical simulation and bifurcation analysis shows that the mechanisms of the negative regulation of miR449 to three different transcripts are quite distinctive which needs to be verified experimentally. This study may help us to analyze the whole cell cycle process mediated by other miRNAs more easily. A better knowledge of the dynamical behaviors of miRNAs mediated networks is also of interest for bio-engineering and artificial control.

  17. A Platform for Closing the Open Data Feedback Loop Based on Web2.0 Functionality

    Directory of Open Access Journals (Sweden)

    Charalampos Alexopoulos

    2014-11-01

    Full Text Available One essential element of open data ecosystems concerns their development through feedback loops, discussions and dynamic supplier and user interactions. These user-centric features communicate the users’ needs to the open data community as well to the public sector bodies responsible for data publication. Addressing these needs by the corresponding public sector bodies or even by utilising the power of the community as ENGAGE supports will actually accelerate innovation. However, these elements appear barely to be part of existing open data practices. We conducted a survey which showed that most professional open data users did not know at least one open data infrastructure that enabled five specific types of discussion and feedback mechanisms. The survey showed that much can still be done to improve feedback and discussion on open data infrastructures. In this paper we discuss an open data platform which has started to contribute to filling this gap and present a usage scenario explaining the sequence of the underlined functionality. The discussed ENGAGE open data infrastructure combines functionalities to close the feedback loop and to return information to public authorities for better open data use and publication as well as establishing communication channels between stakeholders. This may effectively lead to the stimulation and facilitation of value generation from open data, as such functionality position the user at the centre of the open data publication process.

  18. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Richard Moore

    2015-12-01

    Full Text Available The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53.

  19. Designing Dialogic E-Learning in Pharmacy Professionalism Using Calibrated Feedback Loops (CFLs

    Directory of Open Access Journals (Sweden)

    Sue Roff

    2013-09-01

    Full Text Available The feedback analytics of online software including Articulate and Bristol Online Surveys can be used to facilitate dialogic learning in a community of practice such as Pharmacy and, thereby, promote reflective learning by the creation of formative calibrated feedback loops. Based on work with medical, dental, nursing, osteopathic, and social work students, trainees, and registrants, the paper shows how an online learning community can be created along the continuum from undergraduate to registrant to develop authentic dialogic e-learning around standards of Professionalism. The Dundee PolyProfessionalism inventories and Situational Judgement Scenarios (SJSs can be customised for Pharmacy Professionalism learning to support evidence-based curriculum design along benchmarked learning curves and to profile Professionalism learning in individuals and cohorts.

  20. MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92

    Science.gov (United States)

    Li, Yichen; Li, Yumin; Zhang, Hui; Chen, Yong

    2011-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in many key biological processes, including development, cell differentiation, the cell cycle and apoptosis, as central post-transcriptional regulators of gene expression. Recent studies have shown that miRNAs can act as oncogenes and tumor suppressors depending on the context. The present work focuses on the physiological significance of miRNAs and their role in regulating the switching behavior. We illustrate an abstract model of the Myc/E2F/miR-17-92 network presented by Aguda et al. (2008), which is composed of coupling between the E2F/Myc positive feedback loops and the E2F/Myc/miR-17-92 negative feedback loop. By systematically analyzing the network in close association with plausible experimental parameters, we show that, in the presence of miRNAs, the system bistability emerges from the system, with a bistable switch and a one-way switch presented by Aguda et al. instead of a single one-way switch. Moreover, the miRNAs can optimize the switching process. The model produces a diverse array of response-signal behaviors in response to various potential regulating scenarios. The model predicts that this transition exists, one from cell death or the cancerous phenotype directly to cell quiescence, due to the existence of miRNAs. It was also found that the network involving miR-17-92 exhibits high noise sensitivity due to a positive feedback loop and also maintains resistance to noise from a negative feedback loop. PMID:22022595

  1. A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Michèle Moes

    Full Text Available BACKGROUND: The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT, cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic process resides in unraveling regulatory networks involving master transcription factors (e.g. SNAI1/2, ZEB1/2 and TWIST1 and microRNAs. Here we investigated microRNAs regulated by SNAI1 and their potential role in the regulatory networks underlying epithelial plasticity. RESULTS: By a large-scale analysis on epithelial plasticity, we highlighted miR-203 and its molecular link with SNAI1 and the miR-200 family, key regulators of epithelial homeostasis. During SNAI1-induced EMT in MCF7 breast cancer cells, miR-203 and miR-200 family members were repressed in a timely correlated manner. Importantly, miR-203 repressed endogenous SNAI1, forming a double negative miR203/SNAI1 feedback loop. We integrated this novel miR203/SNAI1 with the known miR200/ZEB feedback loops to construct an a priori EMT core network. Dynamic simulations revealed stable epithelial and mesenchymal states, and underscored the crucial role of the miR203/SNAI1 feedback loop in state transitions underlying epithelial plasticity. CONCLUSION: By combining computational biology and experimental approaches, we propose a novel EMT core network integrating two fundamental negative feedback loops, miR203/SNAI1 and miR200/ZEB. Altogether our analysis implies that this novel EMT core network could function as a switch controlling epithelial cell plasticity during differentiation and cancer progression.

  2. Feedback loops and temporal misalignment in component-based hydrologic modeling

    Science.gov (United States)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  3. Silicon photonic dynamic optical channel leveler with external feedback loop.

    Science.gov (United States)

    Doylend, J K; Jessop, P E; Knights, A P

    2010-06-21

    We demonstrate a dynamic optical channel leveler composed of a variable optical attenuator (VOA) integrated monolithically with a defect-mediated photodiode in a silicon photonic waveguide device. An external feedback loop mimics an analog circuit such that the photodiode directly controls the VOA to provide blind channel leveling within +/-1 dB across a 7-10 dB dynamic range for wavelengths from 1530 nm to 1570 nm. The device consumes approximately 50 mW electrical power and occupies a 6 mm x 0.1 mm footprint per channel. Dynamic leveling is accomplished without tapping optical power from the output path to the photodiode and thus the loss penalty is minimized.

  4. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent

    2007-03-01

    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  5. Genome-wide identification of basic helix-loop-helix and NF-1 motifs underlying GR binding sites in male rat hippocampus

    DEFF Research Database (Denmark)

    Pooley, John R.; Flynn, Ben P.; Grøntved, Lars

    2017-01-01

    linked to structural and organizational roles, an absence of major tethering partners for GRs, and little or no evidence for binding at negative glucocorticoid response elements. A basic helix-loop-helix motif closely resembling a NeuroD1 or Olig2 binding site was found underlying a subset of GR binding......Glucocorticoids regulate hippocampal function in part by modulating gene expression through the glucocorticoid receptor (GR). GR binding is highly cell type specific, directed to accessible chromatin regions established during tissue differentiation. Distinct classes of GR binding sites...

  6. The Double Feedback Loop and the Parameter Theory of Text Genres

    DEFF Research Database (Denmark)

    Bundgaard, Peer; Østergaard, Svend

    2014-01-01

    on the first feedback loop: the way genres develop as deviations from existing text types and then stabilize as text types proper with a normative import. The second scope of this article consists in developing a typological apparatus consistent with the dynamic approach to the emergence of genres. This is our...... parameter theory of genres which is presented in Section 3. Here we consider genres as governed by parameters external to them and intrinsic to the situations they are dynamically related to. Genres should thus be understood not simply in terms of inherent textual or formal traits, but also relative...

  7. Mining protein loops using a structural alphabet and statistical exceptionality

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2010-02-01

    Full Text Available Abstract Background Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied. Results We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times. Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words. These structural words have low structural variability (mean RMSd of 0.85 Å. As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues and long loops. Moreover, half of

  8. Mining protein loops using a structural alphabet and statistical exceptionality.

    Science.gov (United States)

    Regad, Leslie; Martin, Juliette; Nuel, Gregory; Camproux, Anne-Claude

    2010-02-04

    Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied. We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 A). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level of

  9. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun [Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai (China); Gu, Wei, E-mail: krisgu70@163.com [Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai (China); Wan, Xiao-Ping, E-mail: wanxp@sjtu.edu.cn [Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to Tong Ji University, Shanghai (China)

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  10. An Integrated Loop Model of Corrective Feedback and Oral English Learning: A Case of International Students in the United States

    Science.gov (United States)

    Lee, Eun Jeong

    2017-01-01

    The author in this study introduces an integrated corrective feedback (CF) loop to schematize the interplay between CF and independent practice in L2 oral English learning among advanced-level adult ESL students. The CF loop integrates insights from the Interaction, Output, and Noticing Hypotheses to show how CF can help or harm L2 learners'…

  11. Systematic comparison of the response properties of protein and RNA mediated gene regulatory motifs.

    Science.gov (United States)

    Iyengar, Bharat Ravi; Pillai, Beena; Venkatesh, K V; Gadgil, Chetan J

    2017-05-30

    We present a framework enabling the dissection of the effects of motif structure (feedback or feedforward), the nature of the controller (RNA or protein), and the regulation mode (transcriptional, post-transcriptional or translational) on the response to a step change in the input. We have used a common model framework for gene expression where both motif structures have an activating input and repressing regulator, with the same set of parameters, to enable a comparison of the responses. We studied the global sensitivity of the system properties, such as steady-state gain, overshoot, peak time, and peak duration, to parameters. We find that, in all motifs, overshoot correlated negatively whereas peak duration varied concavely with peak time. Differences in the other system properties were found to be mainly dependent on the nature of the controller rather than the motif structure. Protein mediated motifs showed a higher degree of adaptation i.e. a tendency to return to baseline levels; in particular, feedforward motifs exhibited perfect adaptation. RNA mediated motifs had a mild regulatory effect; they also exhibited a lower peaking tendency and mean overshoot. Protein mediated feedforward motifs showed higher overshoot and lower peak time compared to the corresponding feedback motifs.

  12. Feedback systems in the SLC

    International Nuclear Information System (INIS)

    Thompson, K.A.; Jobe, R.K.; Johnson, R.; Phinney, N.

    1987-02-01

    Two classes of computer-controlled feedback have been implemented to stabilize parameters in subsystems of the SLC: (1) ''slow'' (time scales ∼ minutes) feedback, and (2) ''fast'', i.e., pulse-to-pulse, feedback. The slow loops run in a single FEEDBACK process in the SLC host VAX, which acquires signals and sets control parameters via communication with the database and the network of normal SLC microprocessors. Slow loops exist to stabilize beam energy and energy spread, beam position and angle, and timing of kicker magnets, and to compensate for changes in the phase length of the rf drive line. The fast loops run in dedicated microprocessors, and may sample and/or feedback on particular parameters as often as every pulse of the SLC beam. The first implementations of fast feedback are to control transverse beam blow-up and to stabilize the energy and energy spread of bunches going into the SLC arcs. The overall architecture of the feedback software and the operator interface for controlling loops are discussed

  13. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  14. Pierced Lasso Bundles are a new class of knot-like motifs.

    Directory of Open Access Journals (Sweden)

    Ellinor Haglund

    2014-06-01

    Full Text Available A four-helix bundle is a well-characterized motif often used as a target for designed pharmaceutical therapeutics and nutritional supplements. Recently, we discovered a new structural complexity within this motif created by a disulphide bridge in the long-chain helical bundle cytokine leptin. When oxidized, leptin contains a disulphide bridge creating a covalent-loop through which part of the polypeptide chain is threaded (as seen in knotted proteins. We explored whether other proteins contain a similar intriguing knot-like structure as in leptin and discovered 11 structurally homologous proteins in the PDB. We call this new helical family class the Pierced Lasso Bundle (PLB and the knot-like threaded structural motif a Pierced Lasso (PL. In the current study, we use structure-based simulation to investigate the threading/folding mechanisms for all the PLBs along with three unthreaded homologs as the covalent loop (or lasso in leptin is important in folding dynamics and activity. We find that the presence of a small covalent loop leads to a mechanism where structural elements slipknot to thread through the covalent loop. Larger loops use a piercing mechanism where the free terminal plugs through the covalent loop. Remarkably, the position of the loop as well as its size influences the native state dynamics, which can impact receptor binding and biological activity. This previously unrecognized complexity of knot-like proteins within the helical bundle family comprises a completely new class within the knot family, and the hidden complexity we unraveled in the PLBs is expected to be found in other protein structures outside the four-helix bundles. The insights gained here provide critical new elements for future investigation of this emerging class of proteins, where function and the energetic landscape can be controlled by hidden topology, and should be take into account in ab initio predictions of newly identified protein targets.

  15. Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs

    Directory of Open Access Journals (Sweden)

    Daniel P. Aalberts

    2011-11-01

    Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.

  16. Efficient phase locking of two dual-wavelength fiber amplifiers by an all-optical self-feedback loop

    Science.gov (United States)

    Lei, Bing; Chen, Keshan; Yao, Tianfu; Shi, Jianhua; Hu, Haojun

    2017-10-01

    Efficient phase locking of two dual-wavelength fiber amplifiers has been demonstrated by using a self-feedback coupling and intracavity filtering configuration, and the effect of bandwidth and wavelength spacing on their phase locking performances have been investigated in experiment. Two independent fiber lasers with different operating wavelength were combined incoherently by a 3 dB fiber coupler to form a dual-wavelength seed source laser, which was injected into the fiber amplifiers' coupling array through the self-feedback loop. The effect of bandwidth and wavelength spacing was researched by altering the seed laser's pump power and operating wavelengths respectively. As long as the feedback loop and the single-mode fiber filtering configuration were well constructed in the unidirectional ring laser cavity, stable phase locking states and high fringe visibility interference patterns could always be obtained in our experiment. When the spacing of two operating wavelength was varied from 1.6 nm to 19.6 nm, the fringe visibility decreased slightly with the increase of wavelength spacing, and the corresponding fringe visibility was always larger than 0.6. In conclusion, we believe that efficient phase locking of several multi-wavelength laser sources is also feasible by passive self-adjusting methods, and keeping the component laser beams' phase relationship stable and fixed is more important than controlling their operating wavelengths.

  17. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  18. Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance

    CSIR Research Space (South Africa)

    Sastrawan, J

    2016-08-01

    Full Text Available (2016) Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance J. Sastrawan,1 C. Jones,1 I. Akhalwaya,2 H. Uys,2 and M. J. Biercuk1,* 1ARC Centre for Engineered Quantum Systems, School of Physics...) that probes and is locked to the atomic transition. The LO frequencymay evolve randomly in time due to intrinsic noise processes in the underlying hardware [10,11], leading to time-varying deviations of the LO frequency from that of the stable atomic reference...

  19. Triadic motifs in the dependence networks of virtual societies

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  20. Triadic motifs in the dependence networks of virtual societies.

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  1. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    Science.gov (United States)

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  2. Study of an accelerating superconducting module and its feedback loop systems for the MYRRHA project

    International Nuclear Information System (INIS)

    Bouly, F.

    2011-11-01

    The MYRRHA ( Multi-purpose hybrid Research Reactor for High-tech Applications ) project aims at constructing an accelerator driven system (ADS) demonstrator (50 a 100 MWth) to explore the feasibility of nuclear waste transmutation. Such a subcritical reactor requires an extremely reliable accelerator which delivers a CW high power protons beam (600 MeV, 4 mA). The reference solution for this machine is a superconducting linear accelerator. This thesis presents the work - undertaken at IPN Orsay in October 2008 - on the study of a prototypical superconducting module and the feedback control systems of its cavity for the high energy part of the MYRRHA linac. First, the optimization and the design of 5-cell elliptical cavities (β=0,65), operating at 704.4 MHz, are presented. Then, the experimental work focuses on a reliability oriented study of the 'cryo-module' which hold a prototypical 5-cell cavity (β=0,47). In this study, the dynamic behavior of the fast tuning system of the cavity was measured and qualified. The 'field flatness' issue in 'low beta' multi-cell cavity was also brought to light. Finally, a fault-tolerance analysis of the linac was carried out. Toward this goal, a model of the cavity, its RF feedback loop system and its tuning system feedback loop was developed. This study enabled to determine the RF power needs, the tuning system requirements and as well as to demonstrate the feasibility of fast fault-recovery scenarios to minimize the number of beam interruptions in the MYRRHA linac. (author)

  3. Improved i-motif thermal stability by insertion of anthraquinone monomers

    DEFF Research Database (Denmark)

    Gouda, Alaa S; Amine, Mahasen S.; Pedersen, Erik Bjerregaard

    2017-01-01

    In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA...... loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends...... unlocked nucleic acid monomers or twisted intercalating nucleic acid. The 2,6-disubstituted anthraquinone linker replacing T10 enabled a significant increase of i-motif thermal melting by 8.2 °C. A substantial increase of 5.0 °C in i-motif thermal melting was recorded when both A6 and T16 were modified...

  4. Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2018-04-01

    The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.

  5. Negative feedback loops leading to nitrate homeostasis and oscillatory nitrate assimilation in plants and fungi.

    OpenAIRE

    Huang, Yongshun

    2011-01-01

    Master's thesis in Biological Chemistry Nitrate is an important nutrient for plants and fungi. For plants it has been shown that cytosolic nitrate levels are under homeostatic control. Here we describe two networks that can obtain robust, i.e. perturbation independent, homeostatic behavior in cytosolic nitrate concentration. One of the networks, a member in the family of outflow controllers, is based on a negative feedback loop containing a nitrate-induced activation of a controller molecu...

  6. Osteoclasts and CD8 T cells form a negative feedback loop that contributes to homeostasis of both the skeletal and immune systems.

    Science.gov (United States)

    Buchwald, Zachary S; Aurora, Rajeev

    2013-01-01

    There are a number of dynamic regulatory loops that maintain homeostasis of the immune and skeletal systems. In this review, we highlight a number of these regulatory interactions that contribute to maintaining homeostasis. In addition, we review data on a negative regulatory feedback loop between osteoclasts and CD8 T cells that contributes to homeostasis of both the skeletal and immune systems.

  7. Pulse oximeter improvement with an ADC-DAC feedback loop and a radial reflectance sensor.

    Science.gov (United States)

    Thompson, David; Wareing, Austin; Day, Dwight; Warren, Steve

    2006-01-01

    Pulse oximeter circuitry must meet several design constraints, including the ability to separate a small pulsatile signal component from a large signal baseline. This paper describes pulse oximeter design changes that produced order-of-magnitude improvements in signal quality. The primary changes were (a) the replacement of an analog sample-and-hold-based differentiator circuit with an ADC-DAC feedback loop and (b) the replacement of a side-by-side reflectance sensor design with a radial sensor arrangement that maximizes the pulsatile-to-baseline signal ratio.

  8. Quality-factor amplification in piezoelectric MEMS resonators applying an all-electrical feedback loop

    International Nuclear Information System (INIS)

    Manzaneque, T; Hernando-García, J; Sánchez-Rojas, J L; Ababneh, A; Schwarz, P; Seidel, H; Schmid, U

    2011-01-01

    An all-electrical velocity feedback control to enhance the quality factor of piezoelectric aluminium nitride (AlN)-based microcantilevers and microbridges was implemented. Two alternatives to obtain a velocity-proportional signal were demonstrated depending on the top electrode configuration. For a straightforward electrode design in one-port configuration (i.e. self-actuation and self-sensing), a velocity signal, proportional to the piezoelectric current, was used in the feedback loop by cancelling out the dielectric current electronically. For top electrodes allowing a two-port configuration (i.e. one for actuation and one for sensing), the piezoelectric current is directly extracted and its relationship with velocity is analysed taking the symmetry of the modal shape into account. Standard operational amplifier-based configurations for the feedback circuits were implemented on a printed circuit board. Quality factors were determined from the transient electrical response of the devices. Comparable results were obtained from the displacement spectrum applying a laser Doppler vibrometer. Quality factors as high as 2 × 10 5 , corresponding to an enhancement factor of about 200, were achieved in air for the lowest gain margin achievable before the circuit becomes unstable, making this kind of device more competitive for mass sensor applications due to enhanced spectral resolution.

  9. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.

    Science.gov (United States)

    Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming

    2016-12-12

    A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.

  10. The paracrine feedback loop between vitamin D₃ (1,25(OH)₂D₃) and PTHrP in prehypertrophic chondrocytes

    NARCIS (Netherlands)

    Bach, Frances C; Rutten, Kirsten; Hendriks, Kristyanne; Riemers, Frank M; Cornelissen, Peter; de Bruin, Alain; Arkesteijn, Ger J; Wubbolts, Richard; Horton, William A; Penning, Louis C; Tryfonidou, Marianna A

    2014-01-01

    The endocrine feedback loop between vitamin D3(1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH-related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine

  11. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    Science.gov (United States)

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  12. Positive and negative feedback loops in nutrient phytoplankton interactions related to climate dynamics factors in a shallow temperate estuary (Vistula Lagoon, southern Baltic)

    Science.gov (United States)

    Kruk, Marek; Kobos, Justyna; Nawrocka, Lidia; Parszuto, Katarzyna

    2018-04-01

    This study aims to demonstrate that factors associated with climate dynamics, such as temperature and wind, affect the ecosystem of the shallow Vistula Lagoon in the southern Baltic and cause nutrient forms phytoplankton interactions: the growth of biomass and constraints of it. This occurs through a network of direct and indirect relationships between environmental and phytoplankton factors, including interactions of positive and negative feedback loops. Path analysis supported by structural equation modeling (SEM) was used to test hypotheses regarding the impact of climate factors on algal assemblages. Increased phytoplankton biomass was affected directly by water temperature and salinity, while the wind speed effect was indirect as it resulted in increased concentrations of suspended solids (SS) in the water column. Simultaneously, the concentration of SS in the water was positively correlated with particulate organic carbon (POC), particulate nitrogen (PN), and particulate phosphorus (PP), and was negatively correlated with the total nitrogen to phosphorus (N:P) ratio. Particulate forms of C, N, and phosphorus (P), concentrations of soluble reactive phosphorus (SRP) and nitrate and nitrite nitrogen (NO3-N + NO2-N), and ratios of the total N:P and DIN:SRP, all indirectly effected Cyanobacteria C concentrations. These processes influence other phytoplankton groups (Chlorophyta, Bacillariophyceae and the picophytoplankton fraction). Increased levels of SRP associated with organic matter (POC), which stemmed from reduced DIN:SRP ratios, contributed to increased Cyanoprokaryota and picophytoplankton C concentrations, which created a positive feedback loop. However, a simultaneous reduction in the total N:P ratio could have inhibited increases in the biomass of these assemblages by limiting N, which likely formed a negative feedback loop. The study indicates that the nutrients-phytoplankton feedback loop phenomenon can intensify eutrophication in a temperate lagoon

  13. [Leptin and the feedback regulation of body weight].

    Science.gov (United States)

    Wang, X; Ye, G; Sun, J

    1999-09-30

    Body weight may be controlled by a negative feedback loop. Recent studies have identified that the ob gene product, leptin, apparently and exclusively expressed in adipose tissue, is a part of the negative feedback loop. Leptin is proposed to act as an afferent signal in the negative feedback loop to hypothalamus that limiting food-intake, controlling energy homeostasis and regulating the mass of adipose tissue. The dificiency of or resistance to leptin causes severe obesity.

  14. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...

  15. Stochastic Resonance in Neuronal Network Motifs with Ornstein-Uhlenbeck Colored Noise

    Directory of Open Access Journals (Sweden)

    Xuyang Lou

    2014-01-01

    Full Text Available We consider here the effect of the Ornstein-Uhlenbeck colored noise on the stochastic resonance of the feed-forward-loop (FFL network motif. The FFL motif is modeled through the FitzHugh-Nagumo neuron model as well as the chemical coupling. Our results show that the noise intensity and the correlation time of the noise process serve as the control parameters, which have great impacts on the stochastic dynamics of the FFL motif. We find that, with a proper choice of noise intensities and the correlation time of the noise process, the signal-to-noise ratio (SNR can display more than one peak.

  16. RF feedback development for the PEP-II B Factory

    Energy Technology Data Exchange (ETDEWEB)

    Corredoura, P.; Sapozhnikov, L.; Tighe, R.

    1994-06-01

    In PEP-II heavy beam loading along with a relatively long revolution period combine to strongly drive lower coupled-bunch modes through interaction with the fundamental cavity mode. Feedback techniques can be applied to reduce the cavity impedance seen by the beam. Several RF feedback loops are planned to reduce the growth rates down to a level which can be damped by the relatively low power bunch-by-bunch longitudinal feedback system. This paper describes the RF feedback loops as well as hardware tests using a 500 kW klystron, analog and digital feedback loops, and a low power test cavity.

  17. RF feedback development for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Corredoura, P.; Sapozhnikov, L.; Tighe, R.

    1994-06-01

    In PEP-II heavy beam loading along with a relatively long revolution period combine to strongly drive lower coupled-bunch modes through interaction with the fundamental cavity mode. Feedback techniques can be applied to reduce the cavity impedance seen by the beam. Several RF feedback loops are planned to reduce the growth rates down to a level which can be damped by the relatively low power bunch-by-bunch longitudinal feedback system. This paper describes the RF feedback loops as well as hardware tests using a 500 kW klystron, analog and digital feedback loops, and a low power test cavity

  18. Role of an Absolutely Conserved Tryptophan Pair in the Extracellular Domain of Cys-Loop Receptors

    DEFF Research Database (Denmark)

    Braun, Nina; Lynagh, Timothy; Yu, Rilei

    2016-01-01

    Cys-loop receptors mediate fast synaptic transmission in the nervous system, and their dysfunction is associated with a number of diseases. While some sequence variability is essential to ensure specific recognition of a chemically diverse set of ligands, other parts of the underlying amino acid...... sequences show a high degree of conservation, possibly to preserve the overall structural fold across the protein family. In this study, we focus on the only two absolutely conserved residues across the Cys-loop receptor family, two Trp side chains in the WXD motif of Loop D and in the WXPD motif of Loop A...

  19. Time Optimal Synchronization Procedure and Associated Feedback Loops

    CERN Document Server

    Angoletta, Maria Elena; CERN. Geneva. ATS Department

    2016-01-01

    A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.

  20. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    Science.gov (United States)

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  1. Controlling Unknown Saddle Type Steady States of Dynamical Systems with Latency in the Feedback Loop

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Bumeliene, Skaidra; Tamaseviciute, Elena

    2009-01-01

    We suggest an adaptive control technique for stabilizing saddle type unstable steady states of dynamical systems. The controller is composed of an unstable and a stable high-pass filters operating in parallel. The mathematical model is considered analytically and numerically. The conjoint...... controller is sufficiently robust to time latencies in the feedback loop. In addition, it is not sensitive to the damping parameters of the system and is relatively fast. Experiments have been performed using a simplified version of the electronic Young-Silva circuit imitating behavior of the Duffing...

  2. Pdlim7 is required for maintenance of the mesenchymal/epidermal Fgf signaling feedback loop during zebrafish pectoral fin development

    Directory of Open Access Journals (Sweden)

    Klosowiak Julian

    2010-10-01

    Full Text Available Abstract Background Vertebrate limb development involves a reciprocal feedback loop between limb mesenchyme and the overlying apical ectodermal ridge (AER. Several gene pathways participate in this feedback loop, including Fgf signaling. In the forelimb lateral plate mesenchyme, Tbx5 activates Fgf10 expression, which in turn initiates and maintains the mesenchyme/AER Fgf signaling loop. Recent findings have revealed that Tbx5 transcriptional activity is regulated by dynamic nucleocytoplasmic shuttling and interaction with Pdlim7, a PDZ-LIM protein family member, along actin filaments. This Tbx5 regulation is critical in heart formation, but the coexpression of both proteins in other developing tissues suggests a broader functional role. Results Knock-down of Pdlim7 function leads to decreased pectoral fin cell proliferation resulting in a severely stunted fin phenotype. While early gene induction and patterning in the presumptive fin field appear normal, the pectoral fin precursor cells display compaction and migration defects between 18 and 24 hours post-fertilization (hpf. During fin growth fgf24 is sequentially expressed in the mesenchyme and then in the apical ectodermal ridge (AER. However, in pdlim7 antisense morpholino-treated embryos this switch of expression is prevented and fgf24 remains ectopically active in the mesenchymal cells. Along with the lack of fgf24 in the AER, other critical factors including fgf8 are reduced, suggesting signaling problems to the underlying mesenchyme. As a consequence of perturbed AER function in the absence of Pdlim7, pathway components in the fin mesenchyme are misregulated or absent, indicating a breakdown of the Fgf signaling feedback loop, which is ultimately responsible for the loss of fin outgrowth. Conclusion This work provides the first evidence for the involvement of Pdlim7 in pectoral fin development. Proper fin outgrowth requires fgf24 downregulation in the fin mesenchyme with subsequent

  3. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  4. Dynamics of nonlinear feedback control.

    Science.gov (United States)

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  5. Steady state statistical correlations predict bistability in reaction motifs.

    Science.gov (United States)

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  6. Generalized fast feedback system in the SLC

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Himel, T.; Krauter, K.; Rouse, F.; Sass, R.; Shoaee, H.

    1991-11-01

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine

  7. CompariMotif: quick and easy comparisons of sequence motifs.

    Science.gov (United States)

    Edwards, Richard J; Davey, Norman E; Shields, Denis C

    2008-05-15

    CompariMotif is a novel tool for making motif-motif comparisons, identifying and describing similarities between regular expression motifs. CompariMotif can identify a number of different relationships between motifs, including exact matches, variants of degenerate motifs and complex overlapping motifs. Motif relationships are scored using shared information content, allowing the best matches to be easily identified in large comparisons. Many input and search options are available, enabling a list of motifs to be compared to itself (to identify recurring motifs) or to datasets of known motifs. CompariMotif can be run online at http://bioware.ucd.ie/ and is freely available for academic use as a set of open source Python modules under a GNU General Public License from http://bioinformatics.ucd.ie/shields/software/comparimotif/

  8. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures

    Science.gov (United States)

    Sloma, Michael F.; Mathews, David H.

    2016-01-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924

  9. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Barabási Albert-László

    2004-01-01

    Full Text Available Abstract Background Transcriptional regulation of cellular functions is carried out through a complex network of interactions among transcription factors and the promoter regions of genes and operons regulated by them.To better understand the system-level function of such networks simplification of their architecture was previously achieved by identifying the motifs present in the network, which are small, overrepresented, topologically distinct regulatory interaction patterns (subgraphs. However, the interaction of such motifs with each other, and their form of integration into the full network has not been previously examined. Results By studying the transcriptional regulatory network of the bacterium, Escherichia coli, we demonstrate that the two previously identified motif types in the network (i.e., feed-forward loops and bi-fan motifs do not exist in isolation, but rather aggregate into homologous motif clusters that largely overlap with known biological functions. Moreover, these clusters further coalesce into a supercluster, thus establishing distinct topological hierarchies that show global statistical properties similar to the whole network. Targeted removal of motif links disintegrates the network into small, isolated clusters, while random disruptions of equal number of links do not cause such an effect. Conclusion Individual motifs aggregate into homologous motif clusters and a supercluster forming the backbone of the E. coli transcriptional regulatory network and play a central role in defining its global topological organization.

  10. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  11. In vivo argon laser vascular welding using thermal feedback: open and closed loop patency and collagen crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Small, W., LLNL

    1997-02-28

    An in vivo study of vascular welding with a fiber-delivered argon laser was conducted using a canine model. Longitudinal arteriotomies and venotomies were treated on femoral vein and artery. Laser energy was delivered to the vessel wall via a 400 {micro}m optical fiber. The surface temperature at the center of the laser spot was monitored in real time using a hollow glass optical fiber-based two-color infrared thermometer. The surface temperature was limited by either a room-temperature saline drip or direct feedback control of the laser using a mechanical shutter to alternately pass and block the laser. Acute patency was evaluated either visually (leak/no leak) or by in vivo burst pressure measurements. Biochemical assays were performed to investigate the possible laser-induced formation or destruction of enzymatically mediated covalent crosslinks between collagen molecules. Viable welds were created both with and without the use of feedback control. Tissues maintained at 50 C using feedback control had an elevated crosslink count compared to controls, while those irradiated without feedback control experienced a decrease. Differences between the volumetric heating associated with open and closed loop protocols may account for the different effects on collagen crosslinks. Covalent mechanisms may play a role in argon laser vascular fusion.

  12. Generalized fast feedback system in the SLC

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Himel, T.; Krauter, K.; Rouse, F.; Sass, R.; Shoaee, H.

    1992-01-01

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine. (author)

  13. MicroRNA miR-308 regulates dMyc through a negative feedback loop in Drosophila

    Directory of Open Access Journals (Sweden)

    Kaveh Daneshvar

    2012-10-01

    The abundance of Myc protein must be exquisitely controlled to avoid growth abnormalities caused by too much or too little Myc. An intriguing mode of regulation exists in which Myc protein itself leads to reduction in its abundance. We show here that dMyc binds to the miR-308 locus and increases its expression. Using our gain-of-function approach, we show that an increase in miR-308 causes a destabilization of dMyc mRNA and reduced dMyc protein levels. In vivo knockdown of miR-308 confirmed the regulation of dMyc levels in embryos. This regulatory loop is crucial for maintaining appropriate dMyc levels and normal development. Perturbation of the loop, either by elevated miR-308 or elevated dMyc, caused lethality. Combining elevated levels of both, therefore restoring balance between miR-308 and dMyc levels, resulted in lower apoptotic activity and suppression of lethality. These results reveal a sensitive feedback mechanism that is crucial to prevent the pathologies caused by abnormal levels of dMyc.

  14. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease

    Science.gov (United States)

    Gorzelic, P.; Schiff, S. J.; Sinha, A.

    2013-04-01

    Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  15. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Directory of Open Access Journals (Sweden)

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  16. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  17. Ciliate telomerase RNA loop IV nucleotides promote hierarchical RNP assembly and holoenzyme stability.

    Science.gov (United States)

    Robart, Aaron R; O'Connor, Catherine M; Collins, Kathleen

    2010-03-01

    Telomerase adds simple-sequence repeats to chromosome 3' ends to compensate for the loss of repeats with each round of genome replication. To accomplish this de novo DNA synthesis, telomerase uses a template within its integral RNA component. In addition to providing the template, the telomerase RNA subunit (TER) also harbors nontemplate motifs that contribute to the specialized telomerase catalytic cycle of reiterative repeat synthesis. Most nontemplate TER motifs function through linkage with the template, but in ciliate and vertebrate telomerases, a stem-loop motif binds telomerase reverse transcriptase (TERT) and reconstitutes full activity of the minimal recombinant TERT+TER RNP, even when physically separated from the template. Here, we resolve the functional requirements for this motif of ciliate TER in physiological RNP context using the Tetrahymena thermophila p65-TER-TERT core RNP reconstituted in vitro and the holoenzyme reconstituted in vivo. Contrary to expectation based on assays of the minimal recombinant RNP, we find that none of a panel of individual loop IV nucleotide substitutions impacts the profile of telomerase product synthesis when reconstituted as physiological core RNP or holoenzyme RNP. However, loop IV nucleotide substitutions do variably reduce assembly of TERT with the p65-TER complex in vitro and reduce the accumulation and stability of telomerase RNP in endogenous holoenzyme context. Our results point to a unifying model of a conformational activation role for this TER motif in the telomerase RNP enzyme.

  18. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles.

    Science.gov (United States)

    Heyward, Catherine A; Pettitt, Trevor R; Leney, Sophie E; Welsh, Gavin I; Tavaré, Jeremy M; Wakelam, Michael J O

    2008-05-20

    Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  19. Klystron equalization for RF feedback

    International Nuclear Information System (INIS)

    Corredoura, P.

    1993-01-01

    The next generation of colliding beam storage rings support higher luminosities by significantly increasing the number of bunches and decreasing the spacing between respective bunches. The heavy beam loading requires large RF cavity detuning which drives several lower coupled bunch modes very strongly. One technique which has proven to be very successful in reducing the coupled bunch mode driving impedance is RF feedback around the klystron-cavity combination. The gain and bandwidth of the feedback loop is limited by the group delay around the feedback loop. Existing klystrons on the world market have not been optimized for this application and contribute a large portion of the total loop group delay. This paper describes a technique to reduce klystron group delay by adding an equalizing filter to the klystron RF drive. Such a filter was built and tested on a 500 kill klystron as part of the on going PEP-II R ampersand D effort here at SLAC

  20. Current control loop design and analysis based on resonant regulators for microgrid applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michelle; de Sousa Ribeiro, Luiz Antonio

    2015-01-01

    Voltage and current control loops play an important role in the performance of microgrids employing power electronics voltage source inverters. Correct design of feedback loops is essential for the proper operation of these systems. This paper analyzes the influence of state feedback cross......-coupling in the design of resonant regulators for inner current loops in power converters operating in standalone microgrids. It is also demonstrated that the effect of state feedback cross-coupling degrades the performance of the control loops by increasing the steady-state error. Different resonant regulators...

  1. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  2. The light cycle controls the hatching rhythm in Bombyx mori via negative feedback loop of the circadian oscillator.

    Science.gov (United States)

    Tao, Hui; Li, Xue; Qiu, Jian-Feng; Liu, Heng-Jiang; Zhang, Da-Yan; Chu, Feng; Sima, Yanghu; Xu, Shi-Qing

    2017-10-01

    Hatching behavior is a key target in silkworm (Bombyx mori) rearing, especially for the control of Lepidoptera pests. According to previous research, hatching rhythms appear to be controlled by a clock mechanism that restricts or "gates" hatching to a particular time. However, the underlying mechanism remains elusive. Under 12-h light:12-h dark photoperiod (LD) conditions, the transcriptional levels of the chitinase5 (Cht5) and hatching enzyme-like (Hel) genes, as well as the enzymatic activities of their gene products, oscillated in time with ambient light cycles, as did the transcriptional levels of the cryptochrome 1, cryptochrome 2, period (per), and timeless genes, which are key components of the negative feedback loop of the circadian rhythm. These changes were related to the expression profile of the ecdysteroid receptor gene and the hatching behavior of B. mori eggs. However, under continuous light or dark conditions, the hatching behavior, the expression levels of Cht5 and Hel, as well as the enzymatic activities of their gene products, were not synchronized unlike under LD conditions. In addition, immunohistochemistry experiments showed that light promoted the translocation of PER from the cytoplasm to the nucleus. In conclusion, LD cycles regulate the hatching rhythm of B. mori via negative feedback loop of the circadian oscillator. © 2017 Wiley Periodicals, Inc.

  3. Feedback control of atomic motion in an optical lattice

    International Nuclear Information System (INIS)

    Morrow, N.V.; Dutta, S.K.; Raithel, G.

    2002-01-01

    We demonstrate a real-time feedback scheme to manipulate wave-packet oscillations of atoms in an optical lattice. The average position of the atoms in the lattice wells is measured continuously and nondestructively. A feedback loop processes the position signal and translates the lattice potential. Depending on the feedback loop characteristics, we find amplification, damping, or an entire alteration of the wave-packet oscillations. Our results are well supported by simulations

  4. Coherent-feedback-induced controllable optical bistability and photon blockade

    International Nuclear Information System (INIS)

    Liu, Yu-Long; Liu, Zhong-Peng; Zhang, Jing

    2015-01-01

    It is well known that some nonlinear phenomena such as strong photon blockade are difficult to observe in optomechanical systems with current experimental technology. Here we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers quantum nonlinearity from the controller to the controlled cavity causing destructive quantum interference to occur, and making it possible to observe strong nonlinear effects. With the help of the coherent feedback loop, large and tunable bistability and strong photon blockade of the cavity modes can be achieved even in the optomechanical weak coupling regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomena. We hope that our work can give new perspectives on engineering nonlinear interactions in quantum systems. (paper)

  5. Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization

    International Nuclear Information System (INIS)

    Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua

    2014-01-01

    Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuator’s step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical. (paper)

  6. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage

    DEFF Research Database (Denmark)

    Stella, Stefano; Alcón, Pablo; Montoya, Guillermo

    2017-01-01

    involved in DNA unwinding to form a CRISPR RNA (crRNA)-DNA hybrid and a displaced DNA strand. The protospacer adjacent motif (PAM) is recognized by the PAM-interacting domain. The loop-lysine helix-loop motif in this domain contains three conserved lysine residues that are inserted in a dentate manner...... and the crRNA-DNA hybrid, avoiding DNA re-annealing. Mutations in key residues reveal a mechanism linking the PAM and DNA nuclease sites. Analysis of the Cpf1 structures proposes a singular working model of RNA-guided DNA cleavage, suggesting new avenues for redesign of Cpf1....

  7. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles

    Directory of Open Access Journals (Sweden)

    Welsh Gavin I

    2008-05-01

    Full Text Available Abstract Background Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Results Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. Conclusion The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  8. Stem loop sequences specific to transposable element IS605 are found linked to lipoprotein genes in Borrelia plasmids.

    Directory of Open Access Journals (Sweden)

    Nicholas Delihas

    Full Text Available BACKGROUND: Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level. METHODOLOGY/PRINCIPAL FINDINGS: In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found "free-standing" and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3' ends of lipoprotein genes (PFam12 and PFam60, however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place. CONCLUSIONS/SIGNIFICANCE: Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in

  9. Multi-bunch Feedback Systems

    OpenAIRE

    Lonza, M.; Schmickler, H.

    2016-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides importa...

  10. Generalized modal analysis for closed-loop piezoelectric devices

    International Nuclear Information System (INIS)

    Giraud-Audine, Christophe; Giraud, Frédéric; Amberg, Michel; Lemaire-Semail, Betty

    2015-01-01

    Stress in a piezoelectric material can be controlled by imposing an electrical field. Thanks to feedback, this electrical field can be a function of some strain-related measurement so as to confer on the piezoelectric device a closed-loop macroscopic behaviour. In this paper we address the modelling of such a system by extending the modal decomposition methods to account for the closed loop. To do so, the boundary conditions are modified to include the electrical feedback circuit, hence allowing a closed-loop modal analysis. A case study is used to illustrate the theory and to validate it. The main advantage of the method is that design issues such as the coupling factor of the device and closed-loop stability are simultaneously captured. (paper)

  11. Noise transmission and delay-induced stochasticoscillations in biochemical network motifs

    Institute of Scientific and Technical Information of China (English)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Fumihiko Sakata

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations,we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation.We systematically analyse the effects of time delays,the feedback mechanism,and biological stochasticity on the power spectra.It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator.Delay-induced stochastic resonance can be expected,which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations.Through the analysis of the power spectrum,a new approach is proposed to estimate the oscillation period.

  12. MotifNet: a web-server for network motif analysis.

    Science.gov (United States)

    Smoly, Ilan Y; Lerman, Eugene; Ziv-Ukelson, Michal; Yeger-Lotem, Esti

    2017-06-15

    Network motifs are small topological patterns that recur in a network significantly more often than expected by chance. Their identification emerged as a powerful approach for uncovering the design principles underlying complex networks. However, available tools for network motif analysis typically require download and execution of computationally intensive software on a local computer. We present MotifNet, the first open-access web-server for network motif analysis. MotifNet allows researchers to analyze integrated networks, where nodes and edges may be labeled, and to search for motifs of up to eight nodes. The output motifs are presented graphically and the user can interactively filter them by their significance, number of instances, node and edge labels, and node identities, and view their instances. MotifNet also allows the user to distinguish between motifs that are centered on specific nodes and motifs that recur in distinct parts of the network. MotifNet is freely available at http://netbio.bgu.ac.il/motifnet . The website was implemented using ReactJs and supports all major browsers. The server interface was implemented in Python with data stored on a MySQL database. estiyl@bgu.ac.il or michaluz@cs.bgu.ac.il. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop.

    Science.gov (United States)

    Bacqué-Cazenave, Julien; Chung, Bryce; Cofer, David W; Cattaert, Daniel; Edwards, Donald H

    2015-03-15

    Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. The hybrid neuromechanical preparation consisted of a computational model of the fifth crayfish leg driven in real time by the experimentally recorded activity of the levator and depressor (Lev/Dep) nerves of an in vitro preparation of the crayfish thoracic nerve cord. Up and down movements of the model leg evoked by motor nerve activity released and stretched the model coxobasal chordotonal organ (CBCO); variations in the CBCO length were used to drive identical variations in the length of the live CBCO in the in vitro preparation. CBCO afferent responses provided proprioceptive feedback to affect the thoracic motor output. Experiments performed with this hybrid neuromechanical preparation were simulated with a neuromechanical model in which a computational circuit model represented the relevant thoracic circuitry. Model simulations were able to reproduce the hybrid neuromechanical experimental results to show that proposed circuit mechanisms with sensory feedback could account for resistance reflexes displayed in the quiescent state and for reflex reversal and spontaneous Lev/Dep bursting seen in the active state. Copyright © 2015 the American Physiological Society.

  14. Closing the Feedback Loop: Physics Undergraduates' Use of Feedback Comments on Laboratory Coursework

    Science.gov (United States)

    Donovan, Pam

    2014-01-01

    The laboratory notebooks of physics undergraduates taking two second-year practical courses were audited to discover whether they had used feedback comments in their subsequent coursework. Ninety-five per cent of the 37 students on the first course and 100% of the 14 students on the second course whose work was audited had used feedback. The…

  15. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    Science.gov (United States)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  16. Closed orbit feedback with digital signal processing

    International Nuclear Information System (INIS)

    Chung, Y.; Kirchman, J.; Lenkszus, F.

    1994-01-01

    The closed orbit feedback experiment conducted on the SPEAR using the singular value decomposition (SVD) technique and digital signal processing (DSP) is presented. The beam response matrix, defined as beam motion at beam position monitor (BPM) locations per unit kick by corrector magnets, was measured and then analyzed using SVD. Ten BPMs, sixteen correctors, and the eight largest SVD eigenvalues were used for closed orbit correction. The maximum sampling frequency for the closed loop feedback was measured at 37 Hz. Using the proportional and integral (PI) control algorithm with the gains Kp = 3 and K I = 0.05 and the open-loop bandwidth corresponding to 1% of the sampling frequency, a correction bandwidth (-3 dB) of approximately 0.8 Hz was achieved. Time domain measurements showed that the response time of the closed loop feedback system for 1/e decay was approximately 0.25 second. This result implies ∼ 100 Hz correction bandwidth for the planned beam position feedback system for the Advanced Photon Source storage ring with the projected 4-kHz sampling frequency

  17. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    Science.gov (United States)

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  18. A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context

    Science.gov (United States)

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  19. Particle tracking code of simulating global RF feedback

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1991-09-01

    It is well known in the ''control community'' that a good feedback controller design is deeply rooted in the physics of the system. For example, when accelerating the beam we must keep several parameters under control so that the beam travels within the confined space. Important parameters include the frequency and phase of the rf signal, the dipole field, and the cavity voltage. Because errors in these parameters will progressively mislead the beam from its projected path in the tube, feedback loops are used to correct the behavior. Since the feedback loop feeds energy to the system, it changes the overall behavior of the system and may drive it to instability. Various types of controllers are used to stabilize the feedback loop. Integrating the beam physics with the feedback controllers allows us to carefully analyze the beam behavior. This will not only guarantee optimal performance but will also significantly enhance the ability of the beam control engineer to deal effectively with the interaction of various feedback loops. Motivated by this theme, we developed a simple one-particle tracking code to simulate particle behavior with feedback controllers. In order to achieve our fundamental objective, we can ask some key questions: What are the input and output parameters? How can they be applied to the practical machine? How can one interface the rf system dynamics such as the transfer characteristics of the rf cavities and phasing between the cavities? Answers to these questions can be found by considering a simple case of a single cavity with one particle, tracking it turn-by-turn with appropriate initial conditions, then introducing constraints on crucial parameters. Critical parameters are rf frequency, phase, and amplitude once the dipole field has been given. These are arranged in the tracking code so that we can interface the feedback system controlling them

  20. Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells.

    Science.gov (United States)

    Morita, Ken; Noura, Mina; Tokushige, Chieko; Maeda, Shintaro; Kiyose, Hiroki; Kashiwazaki, Gengo; Taniguchi, Junichi; Bando, Toshikazu; Yoshida, Kenichi; Ozaki, Toshifumi; Matsuo, Hidemasa; Ogawa, Seishi; Liu, Pu Paul; Nakahata, Tatsutoshi; Sugiyama, Hiroshi; Adachi, Souichi; Kamikubo, Yasuhiko

    2017-11-30

    Although runt-related transcription factor 1 (RUNX1) and its associating core binding factor-β (CBFB) play pivotal roles in leukemogenesis, and inhibition of RUNX1 has now been widely recognized as a novel strategy for anti-leukemic therapies, it has been elusive how leukemic cells could acquire the serious resistance against RUNX1-inhibition therapies and also whether CBFB could participate in this process. Here, we show evidence that p53 (TP53) and CBFB are sequentially up-regulated in response to RUNX1 depletion, and their mutual interaction causes the physiological resistance against chemotherapy for acute myeloid leukemia (AML) cells. Mechanistically, p53 induced by RUNX1 gene silencing directly binds to CBFB promoter and stimulates its transcription as well as its translation, which in turn acts as a platform for the stabilization of RUNX1, thereby creating a compensative RUNX1-p53-CBFB feedback loop. Indeed, AML cells derived from relapsed cases exhibited higher CBFB expression levels compared to those from primary AML cells at diagnosis, and these CBFB expressions were positively correlated to those of p53. Our present results underscore the importance of RUNX1-p53-CBFB regulatory loop in the development and/or maintenance of AML cells, which could be targeted at any sides of this triangle in strategizing anti-leukemia therapies.

  1. Mutations of the kissing-loop dimerization sequence influence the site specificity of murine leukemia virus recombination in vivo

    DEFF Research Database (Denmark)

    Mikkelsen, J G; Lund, Anders Henrik; Duch, M

    2000-01-01

    synthesis in newly infected cells. We have previously shown that template shifts within the 5' leader of murine leukemia viruses occur preferentially within the kissing stem-loop motif, a cis element crucial for in vitro RNA dimer formation. By use of a forced recombination approach based on single......-cycle transfer of Akv murine leukemia virus-based vectors harboring defective primer binding site sequences, we now report that modifications of the kissing-loop structure, ranging from a deletion of the entire sequence to introduction of a single point mutation in the loop motif, significantly disturb site...... specificity of recombination within the highly structured 5' leader region. In addition, we find that an intact kissing-loop sequence favors optimal RNA encapsidation and vector transduction. Our data are consistent with the kissing-loop dimerization model and suggest that a direct intermolecular RNA...

  2. A review of control strategies in closed-loop neuroprosthetic systems

    Directory of Open Access Journals (Sweden)

    James Wright

    2016-07-01

    Full Text Available It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability and greater embodiment have all been reported in systems utilizing some form of feedback. However the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems.

  3. Closed loop identification of a piezoelectrically controlled radial gas bearing: Theory and experiment

    DEFF Research Database (Denmark)

    Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2018-01-01

    Gas bearing systems have extremely small damping properties. Feedback control is thus employed to increase the damping of gas bearings. Such a feedback loop correlates the input with the measurement noise which in turn makes the assumptions for direct identification invalid. The originality...... of this article lies in the investigation of the impact of using different identification methods to identify a rotor-bearing systems’ dynamic model when a feedback loop is active. Two different identification methods are employed. The first method is open loop Prediction Error Method, while the other method...

  4. An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

    Science.gov (United States)

    West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C

    2017-08-07

    In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    Science.gov (United States)

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  6. Grid-Current-Feedback Control for LCL-Filtered Grid Converters With Enhanced Stability

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2017-01-01

    This paper proposes a Second-Order-Generalized- Integrator (SOGI)-based time delay compensation method for extending the stable region of dual-loop Grid-Current-Feedback (GCF) control system. According to the analysis, stable region of the dual-loop system should be designed below a certain...... critical frequency, before time delay compensation method can be applied. To always meet the requirement, relationship between single-loop converter-current-feedback and dual-loop GCF control is clarified, before a robust inner-loop gain for the dualloop GCF scheme is determined. Enforcing this gain allows...

  7. BayesMotif: de novo protein sorting motif discovery from impure datasets.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Fan

    2010-01-18

    Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of

  8. Numerical study on identification of transfer functions in a feedback system and model reduction

    International Nuclear Information System (INIS)

    Kishida, Kuniharu

    1997-01-01

    Identification of transfer function matrices in a feedback system is discussed by using the singular value decomposition of Hankel matrix from the viewpoint of inverse problems. A method of model reduction is considered, and selection criteria are proposed for identification of them. Transformation formula between open loop and closed loop transfer function matrices are determined from the feedback loop structure, and they are needed for identification of open loop transfer function matrices under such a condition where the feedback system is in a minimum phase. Though the identifiability of open loop transfer function matrices can be examined in the framework of innovation model equivalent to the feedback system, there are pole-zero cancellations in the identification of them. The method to reduce a model order of an open loop transfer function is discussed by using the singular value decomposition of a gramian given by the open loop transfer function with higher degree. To check reliability of the present algorithm, a simulation study is performed for an example. (author)

  9. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA

    Directory of Open Access Journals (Sweden)

    Eric R. Gamache

    2017-04-01

    Full Text Available The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5′ terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT. To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1, a 1-nucleotide interhelical loop and an 8-bp stem (S2 that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.

  10. Tutorial on beam-based feedback systems for linacs

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Ross, M.; Sass, R.; Shoaee, H.

    1994-08-01

    A generalized fast feedback system stabilizes beams in the SLC. It performs measurements and modifies actuator settings to control beam states such as position, angle, energy and intensity on a pulse to pulse basis. An adaptive cascade feature allows communication between a series of linac loops, avoiding overcorrection problems. The system is based on the state space formalism of digital control theory. Due to the database-driven design, new loops are added without requiring software modifications. Recent enhancements support the monitoring and control of nonlinear states such as beam phase using excitation techniques. In over three years of operation, the feedback system has grown from its original eight loops to more than fifty loops, and it has been invaluable in stabilizing the machine

  11. Computational investigation of feedback loop as a potential source of neuromechanical wave speed discrepancy in swimming animals

    Science.gov (United States)

    Patel, Namu; Patankar, Neelesh A.

    2017-11-01

    Aquatic locomotion relies on feedback loops to generate the flexural muscle moment needed to attain the reference shape. Experimentalists have consistently reported a difference between the electromyogram (EMG) and curvature wave speeds. The EMG wave speed has been found to correlate with the cross-sectional moment wave. The correlation, however, remains unexplained. Using feedback dependent controller models, we demonstrate two scenarios - one at higher passive elastic stiffness and another at lower passive elastic stiffness of the body. The former case becomes equivalent to the penalty type mathematical model for swimming used in prior literature and it does not reproduce neuromechanical wave speed discrepancy. The latter case at lower elastic stiffness does reproduce the wave speed discrepancy and appears to be biologically most relevant. These findings are applied to develop testable hypotheses about control mechanisms that animals might be using at during low and high Reynolds number swimming. This work is supported by NSF Grants DMS-1547394, CBET-1066575, ACI-1460334, and IOS-1456830. Travel for NP is supported by Institute for Defense Analyses.

  12. The Y-located gonadoblastoma gene TSPY amplifies its own expression through a positive feedback loop in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kido, Tatsuo; Lau, Yun-Fai Chris, E-mail: Chris.Lau@UCSF.edu

    2014-03-28

    Highlights: • Y-encoded proto-oncoprotein TSPY amplifies its expression level via a positive feedback loop. • TSPY binds to the chromatin/DNA at exon 1 of TSPY gene. • TSPY enhances the gene expression in a TSPY exon 1 sequence dependent manner. • The conserved SET/NAP-domain is essential for TSPY transactivation. • Insights on probable mechanisms on TSPY exacerbation on cancer development in men. - Abstract: The testis-specific protein Y-encoded (TSPY) is a repetitive gene located on the gonadoblastoma region of the Y chromosome, and has been considered to be the putative gene for this oncogenic locus on the male-only chromosome. It is expressed in spermatogonial cells and spermatocytes in normal human testis, but abundantly in gonadoblastoma, testicular germ cell tumors and a variety of somatic cancers, including melanoma, hepatocellular carcinoma and prostate cancer. Various studies suggest that TSPY accelerates cell proliferation and growth, and promotes tumorigenesis. In this report, we show that TSPY could bind directly to the chromatin/DNA at exon 1 of its own gene, and greatly enhance the transcriptional activities of the endogenous gene in the LNCaP prostate cancer cells. Domain mapping analyses of TSPY have localized the critical and sufficient domain to the SET/NAP-domain. These results suggest that TSPY could efficiently amplify its expression and oncogenic functions through a positive feedback loop, and contribute to the overall tumorigenic processes when it is expressed in various human cancers.

  13. The feed-back regulation of erythropoietin production in healthy humans

    International Nuclear Information System (INIS)

    Klausen, T.

    1998-01-01

    The proposed oxygen-dependent feed-back loop regulation of EPO (erythropoietin) production is mainly supported by data from studies in animals and cell cultures. The feed-back loop and its dependence on oxygen was therefore challenged by studies in healthy humans: Exposure of humans to different levels of acute and continued altitude hypobaria provided evidence for an oxygen dependence of the EPO response. This response is consistent with the proposed feed-back loop regulation of EPO production; Exposure to continued altitude hypobaria demonstrated that the decline in human EPO production is initiated before an EPO-induced erythopoiesis is detectable, and that this decline is related to a concomitant decrease in the haemoglobin-oxygen affinity. Contrary to the feed-back loop, this time-relation indicate that the feed-back regulation of EPO production during continued hypobaric hypoxia is exerted primarily through a decrease in the haemoglobin-oxygen affinity, rather than by the effects of an EPO-stimulated erythropoiesis; Increased circulating levels of the proinflammatory cytokine IL-6 was found in healthy humans during four days of altitude exposure as compared with sea level. The other proinflammatory cytokines IL-1 beta, and TNF alpha remained unchanged, and the increased serum IL-6 did not induce production of c-reactive protein; Comparable circadian variations in human EPO production were shown in sedentary subjects, athletes, and healthy but hypoxaemic subjects. Human EPO production could not be triggered by one hour of high-intensity exercise, whereas longitudinal changes in exercise showed a trend of relation between human EPO production, serum concentration of free testosterone, and indices of body composition. These results have demonstrated and endogenous, probably hormonal, and oxygen-independent regulation of human EPO production, which is at variance with the oxygen dependent feed-back loop regulation of EPO production. Conclusively, the present

  14. Peatland plant communities under global change: negative feedback loops counteract shifts in species composition.

    Science.gov (United States)

    Hedwall, Per-Ola; Brunet, Jörg; Rydin, Håkan

    2017-01-01

    Mires (bogs and fens) are nutrient-limited peatland ecosystems, the vegetation of which is especially sensitive to nitrogen deposition and climate change. The role of mires in the global carbon cycle, and the delivery of different ecosystem services can be considerably altered by changes in the vegetation, which has a strong impact on peat-formation and hydrology. Mire ecosystems are commonly open with limited canopy cover but both nitrogen deposition and increased temperatures may increase the woody vegetation component. It has been predicted that such an increase in tree cover and the associated effects on light and water regimes would cause a positive feed-back loop with respect to the ground vegetation. None of these effects, however, have so far been confirmed in large-scale spatiotemporal studies. Here we analyzed data pertaining to mire vegetation from the Swedish National Forest Inventory collected from permanent sample plots over a period of 20 yr along a latitudinal gradient covering 14°. We hypothesized that the changes would be larger in the southern parts as a result of higher nitrogen deposition and warmer climate. Our results showed an increase in woody vegetation with increases in most ericaceous dwarf-shrubs and in the basal area of trees. These changes were, in contrast to our expectations, evenly distributed over most of the latitudinal gradient. While nitrogen deposition is elevated in the south, the increase in temperatures during recent decades has been larger in the north. Hence, we suggest that different processes in the north and south have produced similar vegetation changes along the latitudinal gradient. There was, however, a sharp increase in compositional change at high deposition, indicating a threshold effect in the response. Instead of a positive feed-back loop caused by the tree layer, an increase in canopy cover reduced the changes in composition of the ground vegetation, whereas a decrease in canopy cover lead to larger changes

  15. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer.

    Science.gov (United States)

    Weinberger, Leor S; Shenk, Thomas

    2007-01-01

    Animal viruses (e.g., lentiviruses and herpesviruses) use transcriptional positive feedback (i.e., transactivation) to regulate their gene expression. But positive-feedback circuits are inherently unstable when turned off, which presents a particular dilemma for latent viruses that lack transcriptional repressor motifs. Here we show that a dissipative feedback resistor, composed of enzymatic interconversion of the transactivator, converts transactivation circuits into excitable systems that generate transient pulses of expression, which decay to zero. We use HIV-1 as a model system and analyze single-cell expression kinetics to explore whether the HIV-1 transactivator of transcription (Tat) uses a resistor to shut off transactivation. The Tat feedback circuit was found to lack bi-stability and Tat self-cooperativity but exhibited a pulse of activity upon transactivation, all in agreement with the feedback resistor model. Guided by a mathematical model, biochemical and genetic perturbation of the suspected Tat feedback resistor altered the circuit's stability and reduced susceptibility to molecular noise, in agreement with model predictions. We propose that the feedback resistor is a necessary, but possibly not sufficient, condition for turning off noisy transactivation circuits lacking a repressor motif (e.g., HIV-1 Tat). Feedback resistors may be a paradigm for examining other auto-regulatory circuits and may inform upon how viral latency is established, maintained, and broken.

  16. Active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2005-01-01

    Active fault diagnosis (AFD) of parametric faults is considered in connection with closed loop feedback systems. AFD involves auxiliary signals applied on the closed loop system. A fault signature matrix is introduced in connection with AFD and it is shown that if a limited number of faults can...

  17. Operation of the transverse feedback system at the CERN SPS

    International Nuclear Information System (INIS)

    Bossart, R.; Louwerse, R.; Mourier, J.; Vos, L.

    1987-01-01

    To prevent transverse instabilities at high beam intensity in the SPS, the transverse feedback system for damping the betatron oscillations has been upgraded for larger damping decrements and for increased system's bandwidth. The feedback loop now contains a digital delay line cancellor, so that the damper works with a velocity feedback Δx/Δt, unaffected by the closed orbit position x at the pick-up station. The digital processing of the feedback signal facilitates nonlinear feedback techniques such as antidamping and ''band-bang'' feedback. The ''bang-bang'' feedback provides the maximum possible damping rate of the injection oscillations in the SPS-collider, in order to minimize the emittance increase caused by filamentation. The antidamping nonlinearity provides small continuous beam oscillations of 50 μm amplitude for tracking the machine tune Q with a phase locked loop

  18. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    Science.gov (United States)

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  19. Quantifying the ice-albedo feedback through decoupling

    Science.gov (United States)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  20. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  1. Dynamics of nonlinear feedback control

    OpenAIRE

    Snippe, H.P.; Hateren, J.H. van

    2007-01-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input step...

  2. Cytokine loops driving senescence

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk; Lukáš, Jan

    2008-01-01

    Roč. 10, č. 8 (2008), s. 887-889 ISSN 1465-7392 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * cytokines * autocrine feedback loop Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 17.774, year: 2008

  3. Noise transmission and delay-induced stochastic oscillations in biochemical network motifs

    International Nuclear Information System (INIS)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Sakata Fumihiko

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations, we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation. We systematically analyse the effects of time delays, the feedback mechanism, and biological stochasticity on the power spectra. It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator. Delay-induced stochastic resonance can be expected, which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations. Through the analysis of the power spectrum, a new approach is proposed to estimate the oscillation period. (interdisciplinary physics and related areas of science and technology)

  4. Approximate Models for Closed-Loop Trajectory Tracking in Underactuated Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Control of robotic systems, as a field, spans both traditional closed-loop feedback techniques and modern machine learning strategies, which are primarily open-loop....

  5. Feedback Augmented Sub-Ranging (FASR) Quantizer

    Science.gov (United States)

    Guilligan, Gerard

    2012-01-01

    This innovation is intended to reduce the size, power, and complexity of pipeline analog-to-digital converters (ADCs) that require high resolution and speed along with low power. Digitizers are important components in any application where analog signals (such as light, sound, temperature, etc.) need to be digitally processed. The innovation implements amplification of a sampled residual voltage in a switched capacitor amplifier stage that does not depend on charge redistribution. The result is less sensitive to capacitor mismatches that cause gain errors, which are the main limitation of such amplifiers in pipeline ADCs. The residual errors due to mismatch are reduced by at least a factor of 16, which is equivalent to at least 4 bits of improvement. The settling time is also faster because of a higher feedback factor. In traditional switched capacitor residue amplifiers, closed-loop amplification of a sampled and held residue signal is achieved by redistributing sampled charge onto a feedback capacitor around a high-gain transconductance amplifier. The residual charge that was sampled during the acquisition or sampling phase is stored on two or more capacitors, often equal in value or integral multiples of each other. During the hold or amplification phase, all of the charge is redistributed onto one capacitor in the feedback loop of the amplifier to produce an amplified voltage. The key error source is the non-ideal ratios of feedback and input capacitors caused by manufacturing tolerances, called mismatches. The mismatches cause non-ideal closed-loop gain, leading to higher differential non-linearity. Traditional solutions to the mismatch errors are to use larger capacitor values (than dictated by thermal noise requirements) and/or complex calibration schemes, both of which increase the die size and power dissipation. The key features of this innovation are (1) the elimination of the need for charge redistribution to achieve an accurate closed-loop gain of two

  6. Structure-Based Analysis of Toxoplasma gondii Profilin: A Parasite-Specific Motif Is Required for Recognition by Toll-Like Receptor 11

    Energy Technology Data Exchange (ETDEWEB)

    K Kucera; A Koblansky; L Saunders; K Frederick; E De La Cruz; S Ghosh; Y Modis

    2011-12-31

    Profilins promote actin polymerization by exchanging ADP for ATP on monomeric actin and delivering ATP-actin to growing filament barbed ends. Apicomplexan protozoa such as Toxoplasma gondii invade host cells using an actin-dependent gliding motility. Toll-like receptor (TLR) 11 generates an innate immune response upon sensing T. gondii profilin (TgPRF). The crystal structure of TgPRF reveals a parasite-specific surface motif consisting of an acidic loop, followed by a long {beta}-hairpin. A series of structure-based profilin mutants show that TLR11 recognition of the acidic loop is responsible for most of the interleukin (IL)-12 secretion response to TgPRF in peritoneal macrophages. Deletion of both the acidic loop and the {beta}-hairpin completely abrogates IL-12 secretion. Insertion of the T. gondii acidic loop and {beta}-hairpin into yeast profilin is sufficient to generate TLR11-dependent signaling. Substitution of the acidic loop in TgPRF with the homologous loop from the apicomplexan parasite Cryptosporidium parvum does not affect TLR11-dependent IL-12 secretion, while substitution with the acidic loop from Plasmodium falciparum results in reduced but significant IL-12 secretion. We conclude that the parasite-specific motif in TgPRF is the key molecular pattern recognized by TLR11. Unlike other profilins, TgPRF slows nucleotide exchange on monomeric rabbit actin and binds rabbit actin weakly. The putative TgPRF actin-binding surface includes the {beta}-hairpin and diverges widely from the actin-binding surfaces of vertebrate profilins.

  7. MotifMark: Finding regulatory motifs in DNA sequences.

    Science.gov (United States)

    Hassanzadeh, Hamid Reza; Kolhe, Pushkar; Isbell, Charles L; Wang, May D

    2017-07-01

    The interaction between proteins and DNA is a key driving force in a significant number of biological processes such as transcriptional regulation, repair, recombination, splicing, and DNA modification. The identification of DNA-binding sites and the specificity of target proteins in binding to these regions are two important steps in understanding the mechanisms of these biological activities. A number of high-throughput technologies have recently emerged that try to quantify the affinity between proteins and DNA motifs. Despite their success, these technologies have their own limitations and fall short in precise characterization of motifs, and as a result, require further downstream analysis to extract useful and interpretable information from a haystack of noisy and inaccurate data. Here we propose MotifMark, a new algorithm based on graph theory and machine learning, that can find binding sites on candidate probes and rank their specificity in regard to the underlying transcription factor. We developed a pipeline to analyze experimental data derived from compact universal protein binding microarrays and benchmarked it against two of the most accurate motif search methods. Our results indicate that MotifMark can be a viable alternative technique for prediction of motif from protein binding microarrays and possibly other related high-throughput techniques.

  8. Robust fault detection in open loop vs. closed loop

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.

    1997-01-01

    The robustness aspects of fault detection and isolation (FDI) for uncertain systems are considered. The FDI problem is considered in a standard problem formulation. The FDI design problem is analyzed both in the case where the control input signal is considered as a known external input signal (o...... (open loop) and when the input signal is generated by a feedback controller...

  9. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Directory of Open Access Journals (Sweden)

    Réka Albert

    2017-09-01

    several predictions of the model with regard to reactive oxygen species, cytosolic Ca2+ (Ca2+c, and heterotrimeric G-protein signaling. We analyzed dynamics-determining positive and negative feedback loops, thereby elucidating the attractor (dynamic behavior repertoire of the system and the groups of nodes that determine each attractor. Based on this analysis, we predict the likely presence of a previously unrecognized feedback mechanism dependent on Ca2+c. This mechanism would provide model agreement with 10 additional experimental observations, for a validation rate of 85%. Our research underscores the importance of feedback regulation in generating robust and adaptable biological responses. The high validation rate of our model illustrates the advantages of discrete dynamic modeling for complex, nonlinear systems common in biology.

  10. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Science.gov (United States)

    Albert, Réka; Acharya, Biswa R; Jeon, Byeong Wook; Zañudo, Jorge G T; Zhu, Mengmeng; Osman, Karim; Assmann, Sarah M

    2017-09-01

    of the model with regard to reactive oxygen species, cytosolic Ca2+ (Ca2+c), and heterotrimeric G-protein signaling. We analyzed dynamics-determining positive and negative feedback loops, thereby elucidating the attractor (dynamic behavior) repertoire of the system and the groups of nodes that determine each attractor. Based on this analysis, we predict the likely presence of a previously unrecognized feedback mechanism dependent on Ca2+c. This mechanism would provide model agreement with 10 additional experimental observations, for a validation rate of 85%. Our research underscores the importance of feedback regulation in generating robust and adaptable biological responses. The high validation rate of our model illustrates the advantages of discrete dynamic modeling for complex, nonlinear systems common in biology.

  11. A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach

    Science.gov (United States)

    Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.

    2014-06-01

    It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for models of socio-hydrology applicable to agricultural catchments, made up of six key components that combine to form the coupled system dynamics: namely, catchment hydrology, population, economics, environment, socioeconomic sensitivity and collective response. The conceptual framework posits two novel constructs: (i) a composite socioeconomic driving variable, termed the Community Sensitivity state variable, which seeks to capture the perceived level of threat to a community's quality of life, and acts as a key link tying together one of the fundamental feedback loops of the coupled system, and (ii) a Behavioural Response variable as the observable feedback mechanism, which reflects land and water management decisions relevant to the hydrological context. The framework makes a further contribution through the introduction of three macro-scale parameters that enable it to normalise for differences in climate, socioeconomic and political gradients across study sites. In this way, the framework provides for both macro-scale contextual parameters, which allow for comparative studies to be undertaken, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two socio-hydrological case studies, taken from the Australian experience, are presented

  12. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  13. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.

    Science.gov (United States)

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-11-12

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis.

  14. Investigation of Inner Loop Flight Control Strategies for High-Speed Research

    Science.gov (United States)

    Newman, Brett; Kassem, Ayman

    1999-01-01

    This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.

  15. Error analysis of acceleration control loops of a synchrotron

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Weng, W.T.

    1991-01-01

    For beam control during acceleration, it is conventional to derive the frequency from an external reference, be it a field marker or an external oscillator, to provide phase and radius feedback loops to ensure the phase stability, radial position and emittance integrity of the beam. The open and closed loop behaviors of both feedback control and their response under the possible frequency, phase and radius errors are derived from fundamental principles and equations. The stability of the loops is investigated under a wide range of variations of the gain and time delays. Actual system performance of the AGS Booster is analyzed and compared to commissioning experiences. Such analysis is useful for setting design criteria and tolerances for new proton synchrotrons. 4 refs., 13 figs

  16. Gastric Cancer Cell Proliferation and Survival Is Enabled by a Cyclophilin B/STAT3/miR-520d-5p Signaling Feedback Loop.

    Science.gov (United States)

    Li, Ting; Guo, Hanqing; Zhao, Xiaodi; Jin, Jiang; Zhang, Lifeng; Li, Hong; Lu, Yuanyuan; Nie, Yongzhan; Wu, Kaichun; Shi, Yongquan; Fan, Daiming

    2017-03-01

    Molecular links between inflammation and cancer remain obscure despite their great pathogenic significance. The JAK2/STAT3 pathway activated by IL6 and other proinflammatory cytokines has garnered attention as a pivotal link in cancer pathogenesis, but the basis for its activation in cancer cells is not understood. Here we report that an IL6-triggered feedback loop involving STAT3-mediated suppression of miR-520d-5p and upregulation of its downstream target cyclophilin B (CypB) regulate the growth and survival of gastric cancer cells. In clinical specimens of gastric cancer, we documented increased expression of CypB and activation of STAT3. Mechanistic investigations identified miR-520d-5p as a regulator of CypB mRNA levels. This signaling axis regulated gastric cancer growth by modulating phosphorylation of STAT3. Furthermore, miR-520d-5p was identified as a direct STAT3 target and IL6-mediated inhibition of miR-520d-5p relied upon STAT3 activity. Our findings define a positive feedback loop that drives gastric carcinogenesis as influenced by H. pylori infections that involve proinflammatory IL6 stimulation. Cancer Res; 77(5); 1227-40. ©2016 AACR . ©2016 American Association for Cancer Research.

  17. Study of CMOS micromachined self-oscillating loop utilizing a phase-locked loop-driving circuit

    International Nuclear Information System (INIS)

    Li, Hsin-Chih; Tseng, Sheng-Hsiang; Lu, Michael S.-C.; Huang, Po-Chiun

    2012-01-01

    This work describes the design and characterization of integrated CMOS (complementary metal oxide semiconductor) oscillators comprising a capacitively transduced micromechanical resonator and a phase-locked loop (PLL) driving circuit. Three oscillator schemes are studied and compared, including direct feedback, direct feedback containing a PLL and hybrid direct feedback plus a PLL. PLL is known for its capability in automatic tuning and tracking of a reference signal. Inclusion of a PLL is beneficial for sustaining oscillations at resonant frequencies within its capture range. The micromechanical resonator has a measured resonant frequency of 117.3 kHz. The CMOS PLL circuit has a closed-loop bandwidth of 1.8 kHz with a capture range between 111 kHz and 118.4 kHz. The start-up times for oscillation are shortened in the two schemes utilizing a PLL, since it provides an initial driving signal at its free-running frequency. The lock-in time is also reduced by increasing the proportion of PLL drive in the hybrid scheme. The measured noises for the three oscillator schemes are similar with a value of −75 dB below the resonant peak at a 10 Hz offset. (paper)

  18. Digital limiter for a self-excited loop

    International Nuclear Information System (INIS)

    Joshi, G.; Singh, P.; Agarwal, V.; Kumar, G.

    2015-01-01

    Limiter is one of the main signal processing modules of a self-excited loop (SEL). It plays a crucial role in initiating and stabilizing the amplitude of the RF field in a free running SEL. In a recently reported implementation of a self excited loop in digital domain, the limiter has been realized at based band in the form of a feedback loop. This feedback loop stabilizes the amplitude of the RF phasor present at its input without affecting its phase. In the present work we study the suitability of this implementation of limiter through analysis and simulations. An approximate equivalent model of an SEL, incorporating the digital limiter, is created in analog domain. It is demonstrated that even in the presence for large transients, such as, at the start up of oscillations, SEL continues to exhibit smooth and predictable response. In free running mode of operation the coupling from loop oscillation frequency change to resonator field amplitude change is absent, thus avoiding instability due to electro-mechanical coupling. In the locked mode, the transmission of amplitude jitter through the limiter is far exceeded by that through the controller gain thereby keeping the behavior of the digital SEL close to its analog counterpart. (author)

  19. ProMES: A method for "accepted control loops"

    NARCIS (Netherlands)

    Tuijl, van H.F.J.M.

    1997-01-01

    ProMES, a method for the measurement and feedback of performance data is related to the concepts of goal setting and feedback (Locke, 1991; Locke and Latham, 1990), and to the concept of self-control (Bandura, 1991). The result is a model for self-management: the "accepted control loop". Whether

  20. Defining the RNA Internal Loops Preferred by Benzimidazole Derivatives via Two-Dimensional Combinatorial Screening and Computational Analysis

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Seedhouse, Steven J.; French, Jonathan

    2011-01-01

    RNA is an important therapeutic target, however, RNA targets are generally underexploited due to a lack of understanding of the small molecules that bind RNA and the RNA motifs that bind small molecules. Herein, we describe the identification of the RNA internal loops derived from a 4096-member 3×3 nucleotide loop library that are the most specific and highest affinity binders to a series of four designer, drug-like benzimidazoles. These studies establish a potentially general protocol to define the highest affinity and most specific RNA motif targets for heterocyclic small molecules. Such information could be used to target functionally important RNAs in genomic sequence. PMID:21604752

  1. Supporting graduate nurse transition to practice through a quality assurance feedback loop.

    Science.gov (United States)

    Phillips, Craig; Kenny, Amanda; Esterman, Adrian

    2017-11-01

    This mixed-method study focused on new graduate nurses and their transition to practice. Transition to practice can be a time of heightened stress and anxiety, leaving many new graduates disillusioned and dissatisfied with their work. The study explored how satisfaction levels with transition may improve during their first year, using a unique approach of a continuous quality assurance feedback loop. This assurance framework is utilised in hospitality, automotive and supply chain logistics and in health, primarily to monitor patient outcomes. However, an association with graduate nurse satisfaction has not been previously reported. Graduate nurses from two health services completed a short survey questionnaire every four weeks for 12 months. De-identified aggregated data was sent to health service management, giving them an opportunity to integrate the findings with the objective of potentially increasing graduate satisfaction ratings. Quantitative findings showed no statistical significance of graduate nurse satisfaction scores between health services, however, one health service consistently outperformed the other. Qualitative findings drawn from a seminar and interviews confirmed that one health service took a more proactive stance with the monthly reports, communicating the results to ward managers. Outcomes reflected a greater commitment of support and an overall increase of satisfaction scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Virtual sensory feedback for gait improvement in neurological patients

    Directory of Open Access Journals (Sweden)

    Yoram eBaram

    2013-10-01

    Full Text Available We review a treatment modality for movement disorders by sensory feedback. The natural closed-loop sensory-motor feedback system is imitated by a wearable virtual reality apparatus, employing body-mounted inertial sensors and responding dynamically to the patient’s own motion. Clinical trials have shown a significant gait improvement in patients with Parkinson's disease using the apparatus. In contrast to open-loop devices, which impose constant-velocity visual cues in a treadmill fashion, or rhythmic auditory cues in a metronome fashion, requiring constant vigilance and attention strategies, and in some cases, instigating freezing in Parkinson’s patients, the closed-loop device improved gait parameters and eliminated freezing in most patients, without side effects. Patients with multiple sclerosis, previous stroke, senile gait and cerebral palsy using the device also improved their balance and gait substantially. Training with the device has produced a residual improvement, suggesting virtual sensory feedback for the treatment of neurological movement disorders.

  3. Quantum feedback for rapid state preparation in the presence of control imperfections

    International Nuclear Information System (INIS)

    Combes, Joshua; Wiseman, Howard M

    2011-01-01

    Quantum feedback control protocols can improve the operation of quantum devices. Here we examine the performance of a purification protocol when there are imperfections in the controls. The ideal feedback protocol produces an x-eigenstate from a mixed state in the minimum time, and is known as rapid state preparation. The imperfections we examine include time delays in the feedback loop, finite strength feedback, calibration errors and inefficient detection. We analyse these imperfections using the Wiseman-Milburn feedback master equation and related formalism. We find that the protocol is most sensitive to time delays in the feedback loop. For systems with slow dynamics, however, our analysis suggests that inefficient detection would be the bigger problem. We also show how system imperfections, such as dephasing and damping, can be included in a model via the feedback master equation.

  4. Novel and deviant Walker A ATP-binding motifs in bacteriophage large terminase-DNA packaging proteins

    International Nuclear Information System (INIS)

    Mitchell, Michael S.; Rao, Venigalla B.

    2004-01-01

    Bacteriophage terminases constitute a very interesting class of viral-coded multifunctional ATPase 'motors' that apparently drive directional translocation of DNA into an empty viral capsid. A common Walker A motif and other conserved signatures of a critical ATPase catalytic center are identified in the N-terminal half of numerous large terminase proteins. However, several terminases, including the well-characterized λ and SPP1 terminases, seem to lack the classic Walker A in the N-terminus. Using sequence alignment approaches, we discovered the presence of deviant Walker A motifs in these and many other phage terminases. One deviation, the presence of a lysine at the beginning of P-loop, may represent a 3D equivalent of the universally conserved lysine in the Walker A GKT/S signature. This and other novel putative Walker A motifs that first came to light through this study help define the ATPase centers of phage and viral terminases as well as elicit important insights into the molecular functioning of this fundamental motif in biological systems

  5. A Negative Feedback Loop Between Autophagy and Immune Responses in Mycobacterium leprae Infection.

    Science.gov (United States)

    Ma, Yuelong; Zhang, Li; Lu, Jie; Shui, Tiejun; Chen, Jia; Yang, Jun; Yuan, Joanna; Liu, Yeqiang; Yang, Degang

    2017-01-01

    The obligate intracellular bacterium Mycobacterium leprae is the causative agent of leprosy and primarily infects macrophages, leading to irreversible nerve damage and deformities. So far, the underlying reasons allowing M. leprae to persist and propagate in macrophages, despite the presence of cellular immunity, are still a mystery. Here, we investigated the role of autophagy, a cellular process that degrades cytosolic materials and intracellular pathogens, in M. leprae infection. We found that live M. leprae infection of macrophages resulted in significantly elevated autophagy level. However, macrophages with high autophagy levels preferentially expressed lower levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-12, and tumor necrosis factor-α, and preferentially primed anti-inflammatory T cells responses, characterized by high IL-10 and low interferon-γ, granzyme B, and perforin responses. These anti-inflammatory T cells could suppress further induction of autophagy, leading to improved survival of intracellular M. leprae in infected macrophages. Therefore, these data demonstrated that although autophagy had a role in eliminating intracellular pathogens, the induction of autophagy resulted in anti-inflammatory immune responses, which suppressed autophagy in a negative feedback loop and allowed the persistence of M. leprae.

  6. RF feedback simulation results for PEP-II

    International Nuclear Information System (INIS)

    Tighe, R.; Corredoura, P.

    1995-06-01

    A model of the RF feedback system for PEP-II has been developed to provide time-domain simulation and frequency-domain analysis of the complete system. The model includes the longitudinal beam dynamics, cavity fundamental resonance, feedback loops, and the nonlinear klystron operating near saturation. Transients from an ion clearing gap and a reference phase modulation from the longitudinal feedback system are also studied. Growth rates are predicted and overall system stability examined

  7. Explicit knowledge about the availability of visual feedback affects grasping with the left but not the right hand.

    Science.gov (United States)

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2014-01-01

    Previous research (Whitwell et al. in Exp Brain Res 188:603-611, 2008; Whitwell and Goodale in Exp Brain Res 194:619-629, 2009) has shown that trial history, but not anticipatory knowledge about the presence or absence of visual feedback on an upcoming trial, plays a vital role in determining how that feedback is exploited when grasping with the right hand. Nothing is known about how the non-dominant left hand behaves under the same feedback regimens. In present study, therefore, we compared peak grip aperture (PGA) for left- and right-hand grasps executed with and without visual feedback (i.e., closed- vs. open-loop conditions) in right-handed individuals under three different trial schedules: the feedback conditions were blocked separately, they were randomly interleaved, or they were alternated. When feedback conditions were blocked, the PGA was much larger for open-loop trials as compared to closed-loop trials, although this difference was more pronounced for right-hand grasps than left-hand grasps. Like Whitwell et al., we found that mixing open- and closed-loop trials together, compared to blocking them separately, homogenized the PGA for open- and closed-loop grasping in the right hand (i.e., the PGAs became smaller on open-loop trials and larger on closed-loop trials). In addition, the PGAs for right-hand grasps were entirely determined by trial history and not by knowledge of whether or not visual feedback would be available on an upcoming trial. In contrast to grasps made with the right hand, grasps made by the left hand were affected both by trial history and by anticipatory knowledge of the upcoming visual feedback condition. But these effects were observed only on closed-loop trials, i.e., the PGAs of grasps made with the left hand on closed-loop trials were smaller when participants could anticipate the availability of feedback on an upcoming trial (alternating trials) than when they could not (randomized trials). In contrast, grasps made with the

  8. Closed-loop feedback of MHD instabilities on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.D.; Johnson, L.C.; Manickam, J.; Okabayashi, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Bialek, J.; Garofalo, A.M.; Navratil, G.A. [Columbia University, New York, NY 10027 (United States); La Haye, R.J.; Scoville, J.T.; Strait, E.J. [General Atomics, La Jolla, CA 92186 (United States); Lazarus, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2001-03-01

    A system of coils, sensors and amplifiers has been installed on the DIII-D tokamak to study the physics of feedback stabilization of low-frequency MHD modes such as the resistive wall mode (RWM). Experiments are being performed to assess the effectiveness of this minimal system and benchmark the predictions of theoretical models and codes. In the last campaign the experiments had been extended to a regime where the RWM threshold is lowered by a fast ramp of the plasma current. In these experiments the onset time of the RWM is very reproducible. With this system, the onset of the RWM had been delayed by up to 100 ms without degrading the plasma performance. The growth rate of the mode increases proportional to the length of the delay, suggesting that the plasma is evolving towards a more unstable configuration. The present results have suggested directions for improving the feedback system, including better sensors and improved feedback algorithms. (author)

  9. Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System

    Science.gov (United States)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2004-01-01

    The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

  10. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    Science.gov (United States)

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  11. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains.

    Science.gov (United States)

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.

  12. Role of the ERC motif in the proximal part of the second intracellular loop and the C-terminal domain of the human prostaglandin F2alpha receptor (hFP-R) in G-protein coupling control.

    Science.gov (United States)

    Pathe-Neuschäfer-Rube, Andrea; Neuschäfer-Rube, Frank; Püschel, Gerhard P

    2005-05-15

    The human FP-R (F2alpha prostaglandin receptor) is a Gq-coupled heptahelical ectoreceptor, which is of significant medical interest, since it is a potential target for the treatment of glaucoma and preterm labour. On agonist exposure, it mediates an increase in intracellular inositol phosphate formation. Little is known about the structures that govern the agonist-dependent receptor activation. In other prostanoid receptors, the C-terminal domain has been inferred in the control of agonist-dependent receptor activation. A DRY motif at the beginning of the second intracellular loop is highly conserved throughout the G-protein-coupled receptor family and appears to be crucial for controlling agonist-dependent receptor activation. It is replaced by an ERC motif in the FP-R and no evidence for the relevance of this motif in ligand-dependent activation of prostanoid receptors has been provided so far. The aim of the present study was to elucidate the potential role of the C-terminal domain and the ERC motif in agonist-controlled intracellular signalling in FP-R mutants generated by site-directed mutagenesis. It was found that substitution of the acidic Glu(132) in the ERC motif by a threonine residue led to full constitutive activation, whereas truncation of the receptor's C-terminal domain led to partial constitutive activation of all three intracellular signal pathways that had previously been shown to be activated by the FP-R, i.e. inositol trisphosphate formation, focal adhesion kinase activation and T-cell factor signalling. Inositol trisphosphate formation and focal adhesion kinase phosphorylation were further enhanced by ligand binding in cells expressing the truncation mutant but not the E132T (Glu132-->Thr) mutant. Thus C-terminal truncation appeared to result in a receptor with partial constitutive activation, whereas substitution of Glu132 by threonine apparently resulted in a receptor with full constitutive activity.

  13. Open loop thanks to direct torque control (DTC). Motor control without feedback loop; Open loop dank direkter Drehmomentregelung (DTC). Hochwertige Motorregelung ohne Rueckfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Link, Michael [ABB Automation Products GmbH, Ladenburg (Germany)

    2009-07-01

    Servo drives are used in various applications. The range of applications is huge and thus also requirements to the drive system. Mainly, a fast torque and speed control is required. This is the domaine of direct torque control (DTC). In many applications DTC can meet this challenge to control the motor with full torque at zero speed. The servo converter based on DTC technology provides a control concept for synchronous and asynchronous motors for both closed loop and open loop control. DTC controlled drives support the whole range from open loop up to high performance motion control applications. (orig.)

  14. Closed-loop model identification of cooperative manipulators holding deformable objects

    Science.gov (United States)

    Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.

    2017-11-01

    This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.

  15. Watch what you type: the role of visual feedback from the screen and hands in skilled typewriting.

    Science.gov (United States)

    Snyder, Kristy M; Logan, Gordon D; Yamaguchi, Motonori

    2015-01-01

    Skilled typing is controlled by two hierarchically structured processing loops (Logan & Crump, 2011): The outer loop, which produces words, commands the inner loop, which produces keystrokes. Here, we assessed the interplay between the two loops by investigating how visual feedback from the screen (responses either were or were not echoed on the screen) and the hands (the hands either were or were not covered with a box) influences the control of skilled typing. Our results indicated, first, that the reaction time of the first keystroke was longer when responses were not echoed than when they were. Also, the interkeystroke interval (IKSI) was longer when the hands were covered than when they were visible, and the IKSI for responses that were not echoed was longer when explicit error monitoring was required (Exp. 2) than when it was not required (Exp. 1). Finally, explicit error monitoring was more accurate when response echoes were present than when they were absent, and implicit error monitoring (i.e., posterror slowing) was not influenced by visual feedback from the screen or the hands. These findings suggest that the outer loop adjusts the inner-loop timing parameters to compensate for reductions in visual feedback. We suggest that these adjustments are preemptive control strategies designed to execute keystrokes more cautiously when visual feedback from the hands is absent, to generate more cautious motor programs when visual feedback from the screen is absent, and to enable enough time for the outer loop to monitor keystrokes when visual feedback from the screen is absent and explicit error reports are required.

  16. General, database-driven fast-feedback system for the Stanford Linear Collider

    International Nuclear Information System (INIS)

    Rouse, F.; Allison, S.; Castillo, S.; Gromme, T.; Hall, B.; Hendrickson, L.; Himel, T.; Krauter, K.; Sass, B.; Shoaee, H.

    1991-05-01

    A new feedback system has been developed for stabilizing the SLC beams at many locations. The feedback loops are designed to sample and correct at the 60 Hz repetition rate of the accelerator. Each loop can be distributed across several of the standard 80386 microprocessors which control the SLC hardware. A new communications system, KISNet, has been implemented to pass signals between the microprocessors at this rate. The software is written in a general fashion using the state space formalism of digital control theory. This allows a new loop to be implemented by just setting up the online database and perhaps installing a communications link. 3 refs., 4 figs

  17. Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics

    Directory of Open Access Journals (Sweden)

    Dubljević Stevan

    2003-01-01

    Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.

  18. Passive mode locking and formation of dissipative solitons in electron oscillators with a bleaching absorber in the feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Kocharovskaya, E. R.; Vilkov, M. N.; Sergeev, A. S. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2017-01-15

    The mechanisms of passive mode locking and formation of ultrashort pulses in microwave electron oscillators with a bleaching absorber in the feedback loop have been analyzed. It is shown that in the group synchronism regime in which the translational velocity of particles coincides with the group velocity of the electromagnetic wave, the pulse formation can be described by the equations known in the theory of dissipative solitons. At the same time, the regimes in which the translational velocity of electrons differs from the group velocity and the soliton being formed and moving along the electron beam consecutively (cumulatively) receives energy from various electron fractions are optimal for generating pulses with the maximal peak amplitudes.

  19. Multi-bunch feedback systems

    CERN Document Server

    Lonza, M

    2008-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. The advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. The lecture will first introduce coupled-bunch instabilities analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedbacks systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback sy...

  20. Multi-bunch Feedback Systems

    CERN Document Server

    Lonza, M.

    2014-12-19

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main co...

  1. Closed-Loop and Robust Control of Quantum Systems

    Directory of Open Access Journals (Sweden)

    Chunlin Chen

    2013-01-01

    Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  2. Closed-loop and robust control of quantum systems.

    Science.gov (United States)

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  3. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    Science.gov (United States)

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-02-20

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

  4. The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response

    International Nuclear Information System (INIS)

    Tiwari, Abhinav; Igoshin, Oleg A; Balázsi, Gábor; Gennaro, Maria Laura

    2010-01-01

    Bacterial persistence is the phenomenon in which a genetically identical fraction of a bacterial population can survive exposure to stress by reduction or cessation of growth. Persistence in mycobacteria has been recently linked to a stress-response network, consisting of the MprA/MprB two-component system and alternative sigma factor σ E . This network contains multiple positive transcriptional feedback loops which may give rise to bistability, making it a good candidate for controlling the mycobacterial persistence switch. To analyze the possibility of bistability, we develop a method that involves decoupling of the network into transcriptional and post-translational interaction modules. As a result we reduce the dimensionality of the dynamical system and independently analyze input–output relations in the two modules to formulate a necessary condition for bistability in terms of their logarithmic gains. We show that neither the positive autoregulation in the MprA/MprB network nor the σ E -mediated transcriptional feedback is sufficient to induce bistability in a biochemically realistic parameter range. Nonetheless, inclusion of the post-translational regulation of σ E by RseA increases the effective cooperativity of the system, resulting in bistability that is robust to parameter variation. We predict that overexpression or deletion of RseA, the key element controlling the ultrasensitive response, can eliminate bistability

  5. URS DataBase: universe of RNA structures and their motifs.

    Science.gov (United States)

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA-protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification.Database URL: http://server3.lpm.org.ru/urs/. © The Author(s) 2016. Published by Oxford University Press.

  6. An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction.

    Science.gov (United States)

    Adams, Scott D; Kouzani, Abbas Z; Tye, Susannah J; Bennet, Kevin E; Berk, Michael

    2018-02-13

    Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.

  7. Engineering the on-axis intensity of Bessel beam by a feedback tuning loop

    Science.gov (United States)

    Li, Runze; Yu, Xianghua; Yang, Yanlong; Peng, Tong; Yao, Baoli; Zhang, Chunmin; Ye, Tong

    2018-02-01

    The Bessel beam belongs to a typical class of non-diffractive optical fields that are characterized by their invariant focal profiles along the propagation direction. However, ideal Bessel beams only rigorously exist in theory; Bessel beams generated in the lab are quasi-Bessel beams with finite focal extensions and varying intensity profiles along the propagation axis. The ability to engineer the on-axis intensity profile to the desired shape is essential for many applications. Here we demonstrate an iterative optimization-based approach to engineering the on-axis intensity of Bessel beams. The genetic algorithm is used to demonstrate this approach. Starting with a traditional axicon phase mask, in the design process, the computed on-axis beam profile is fed into a feedback tuning loop of an iterative optimization process, which searches for an optimal radial phase distribution that can generate a generalized Bessel beam with the desired onaxis intensity profile. The experimental implementation involves a fine-tuning process that adjusts the originally targeted profile so that the optimization process can optimize the phase mask to yield an improved on-axis profile. Our proposed method has been demonstrated in engineering several zeroth-order Bessel beams with customized on-axis profiles. High accuracy and high energy throughput merit its use in many applications.

  8. Possible hysteresis loops of resonatorless optical bistability

    International Nuclear Information System (INIS)

    Nguyen Ba An; Le Thi Cat Tuong.

    1990-05-01

    We qualitatively show that hysteresis loops of intrinsic optical bistability phenomena without any additional feedback may be of various shapes including those of a butterfly and a three-winged bow. (author). 15 refs, 4 figs

  9. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling.

    Science.gov (United States)

    Khan, Sumbul Jawed; Abidi, Syeda Nayab Fatima; Skinner, Andrea; Tian, Yuan; Smith-Bolton, Rachel K

    2017-07-01

    Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth.

  10. Role of the EHD2 unstructured loop in dimerization, protein binding and subcellular localization.

    Directory of Open Access Journals (Sweden)

    Kriti Bahl

    Full Text Available The C-terminal Eps 15 Homology Domain proteins (EHD1-4 play important roles in regulating endocytic trafficking. EHD2 is the only family member whose crystal structure has been solved, and it contains an unstructured loop consisting of two proline-phenylalanine (PF motifs: KPFRKLNPF. In contrast, despite EHD2 having nearly 70% amino acid identity with its paralogs, EHD1, EHD3 and EHD4, the latter proteins contain a single KPF or RPF motif, but no NPF motif. In this study, we sought to define the precise role of each PF motif in EHD2's homo-dimerization, binding with the protein partners, and subcellular localization. To test the role of the NPF motif, we generated an EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. We demonstrated that this mutant lost both its ability to dimerize and bind to Syndapin2. However, it continued to localize primarily to the cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants displayed normal dimerization and Syndapin2 binding, but exhibited markedly increased nuclear localization and reduced association with the plasma membrane. We then hypothesized that the single PF motif of EHD1 (that aligns with the KPF of EHD2 might be responsible for both binding and localization functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, interaction with MICAL-L1 and Syndapin2, as well as localization to tubular recycling endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. Overall, our data suggest that the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the plasma membrane, whereas the proline residue is essential for EHD2 dimerization and binding. These studies support the recently proposed model in which the EHD2 N-terminal region may regulate the availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus promoting

  11. Commissioning of FPGA-based Transverse and Longitudinal Bunch-by-Bunch Feedback System for the TLS

    International Nuclear Information System (INIS)

    Hu, K. H.; Kuo, C. H.; Lau, W. K.; Yeh, M. S.; Hsu, S. Y.; Chou, P. J.; Wang, M. H.; Lee, Demi; Chen, Jenny; Wang, C. J.; Hsu, K. T.; Kobayashi, K.; Nakamura, T.; Dehler, M.

    2006-01-01

    Multi-bunch instabilities deteriorate beam quality, increasing beam emittance, or even causing beam loss in the synchrotron light source. The feedback system is essential to suppress multi-bunch instabilities caused by the impedances of beam ducts, and trapped ions. A new FPGA based transverse and longitudinal bunch-by-bunch feedback system have been commissioned at the Taiwan Light Source recently, A single feedback loop is used to simultaneously suppress the horizontal and the vertical multi-bunch instabilities. Longitudinal instabilities caused by cavity-like structures are suppressed by the longitudinal feedback loop. The same FPGA processor is employed in the transverse feedback and the longitudinal feedback system respectively. Diagnostic memory is included in the system to capture the bunch oscillation signal, which supports various studies

  12. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    Science.gov (United States)

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  13. Extended Impact of Pin1 Catalytic Loop Phosphorylation Revealed by S71E Phosphomimetic.

    Science.gov (United States)

    Mahoney, Brendan J; Zhang, Meiling; Zintsmaster, John S; Peng, Jeffrey W

    2018-03-02

    Pin1 is a two-domain human protein that catalyzes the cis-trans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs in numerous cell-cycle regulatory proteins. These pS/T-P motifs bind to Pin1's peptidyl-prolyl isomerase (PPIase) domain in a catalytic pocket, between an extended catalytic loop and the PPIase domain core. Previous studies showed that post-translational phosphorylation of S71 in the catalytic loop decreases substrate binding affinity and isomerase activity. To define the origins for these effects, we investigated a phosphomimetic Pin1 mutant, S71E-Pin1, using solution NMR. We find that S71E perturbs not only its host loop but also the nearby PPIase core. The perturbations identify a local network of hydrogen bonds and salt bridges that is more extended than previously thought, and includes interactions between the catalytic loop and the α2/α3 turn in the PPIase core. Explicit-solvent molecular dynamics simulations and phylogenetic analysis suggest that these interactions act as conserved "latches" between the loop and PPIase core that enhance binding of phosphorylated substrates, as they are absent in PPIases lacking pS/T-P specificity. Our results suggest that S71 is a hub residue within an electrostatic network primed for phosphorylation, and may illustrate a common mechanism of phosphorylation-mediated allostery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Modeling and simulation of Indus-2 RF feedback control system

    International Nuclear Information System (INIS)

    Sharma, D.; Bagduwal, P.S.; Tiwari, N.; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Indus-2 synchrotron radiation source has four RF stations along with their feedback control systems. For higher beam energy and current operation amplitude and phase feedback control systems of Indus-2 are being upgraded. To understand the behaviour of amplitude and phase control loop under different operating conditions, modelling and simulation of RF feedback control system is done. RF cavity baseband I/Q model has been created due to its close correspondence with actual implementation and better computational efficiency which makes the simulation faster. Correspondence between cavity baseband and RF model is confirmed by comparing their simulation results. Low Level RF (LLRF) feedback control system simulation is done using the same cavity baseband I/Q model. Error signals are intentionally generated and response of the closed loop system is observed. Simulation will help us in optimizing parameters of upgraded LLRF system for higher beam energy and current operation. (author)

  15. Multi-bunch Feedback Systems

    International Nuclear Information System (INIS)

    Lonza, M; Schmickler, H

    2014-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main components of a feedback system and the related issues will also be analysed. Finally, we shall focus on digital feedback systems, their characteristics, and features, as well as on how they can be concretely exploited for both the optimization of feedback performance and for beam dynamics studies

  16. Comparison of squashing and self-consistent input-output models of quantum feedback

    Science.gov (United States)

    Peřinová, V.; Lukš, A.; Křepelka, J.

    2018-03-01

    The paper (Yanagisawa and Hope, 2010) opens with two ways of analysis of a measurement-based quantum feedback. The scheme of the feedback includes, along with the homodyne detector, a modulator and a beamsplitter, which does not enable one to extract the nonclassical field. In the present scheme, the beamsplitter is replaced by the quantum noise evader, which makes it possible to extract the nonclassical field. We re-approach the comparison of two models related to the same scheme. The first one admits that in the feedback loop between the photon annihilation and creation operators, unusual commutation relations hold. As a consequence, in the feedback loop, squashing of the light occurs. In the second one, the description arrives at the feedback loop via unitary transformations. But it is obvious that the unitary transformation which describes the modulator changes even the annihilation operator of the mode which passes by the modulator which is not natural. The first model could be called "squashing model" and the second one could be named "self-consistent model". Although the predictions of the two models differ only a little and both the ways of analysis have their advantages, they have also their drawbacks and further investigation is possible.

  17. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infectio...

  18. A novel approach to negative feedback in RX front-ends

    DEFF Research Database (Denmark)

    Vandi, Luca; Andreani, Pietro; Tired, Tobias

    2006-01-01

    A new approach to negative feedback is proposed and applied to active mixer cells based on Gilbert multiplier. The feedback can be exploited in several ways, and different configurations are derived. A dual-loop topology provides a solution for inductor-less broad-band receiver stages. The nature...

  19. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  20. The application of system identification techniques to an R.F. Cavity tuning loop

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1989-09-01

    System identification is the terminology used for the process of characterising a given control system. A mathematical representation of the frequency response characteristic is obtained to utilise all the known design techniques to arrange the feed-back loop to meet required control performance criterion. This is known as parametric system identification. The intention of this paper is to speed up the process of identifying the R.F. Cavity tuning system of the 800 MeV accelerator, ISIS. While achieving this goal the computer must not disturb noticeably the normal function set out by the system. This task of automatic characterisation is necessary so that a self-adapting feed-back loop can be arranged to adjust itself without human interference and meet severe R.F. tuning requirements on ISIS. In any case the results of parametric identifications are useful in designing a robust feed-back loop with appropriate gain and phase margins. The approach using a Pseudo Random Signal is currently practised in Process Industries. (author)

  1. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs and 'functional' (partial subgraphs. Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  2. A Quasi-Type-1 Phase-Locked Loop Structure

    DEFF Research Database (Denmark)

    Golestan, Saeed; Fernandez, Francisco Daniel Freijedo; Vidal, Ana

    2014-01-01

    The grid voltage phase and frequency are crucial information in control of most grid connected power electronic based equipment. Most often, a phase-locked loop (PLL) is employed for this purpose. A PLL is a closed-loop feedback control system that the phase of its output signal is related...... to the phase of its input signal. Arguably, the simplest PLL is a type-1 PLL. The type-1 PLLs are characterized by having only one integrator in their control loop and therefore having a high stability margin. However, they suffer from a serious drawback: they cannot achieve zero average steady-state phase...

  3. Shaping meiotic chromosomes with SUMO: a feedback loop controls the assembly of the synaptonemal complex in budding yeast

    Directory of Open Access Journals (Sweden)

    Hideo Tsubouchi

    2016-02-01

    Full Text Available The synaptonemal complex (SC is a meiosis-specific chromosomal structure in which homologous chromosomes are intimately linked through arrays of specialized proteins called transverse filaments (TF. Widely conserved in eukaryote meiosis, the SC forms during prophase I and is essential for accurate segregation of homologous chromosomes at meiosis I. However, the basic mechanism overlooking formation and regulation of the SC has been poorly understood. By using the budding yeast Saccharomyces cerevisiae, we recently showed that SC formation is controlled through the attachment of multiple molecules of small ubiquitin-like modifier (SUMO to a regulator of TF assembly. Intriguingly, this SUMOylation is activated by TF, implicating the involvement of a positive feedback loop in the control of SC assembly. We discuss the implication of this finding and possible involvement of a similar mechanism in regulating other processes.

  4. Computational advantages of reverberating loops for sensorimotor learning.

    Science.gov (United States)

    Fortney, Kristen; Tweed, Douglas B

    2012-03-01

    When we learn something new, our brain may store the information in synapses or in reverberating loops of electrical activity, but current theories of motor learning focus almost entirely on the synapses. Here we show that loops could also play a role and would bring advantages: loop-based algorithms can learn complex control tasks faster, with exponentially fewer neurons, and avoid the problem of weight transport. They do all this at a cost: in the presence of long feedback delays, loop algorithms cannot control very fast movements, but in this case, loop and synaptic mechanisms can complement each other-mixed systems quickly learn to make accurate but not very fast motions and then gradually speed up. Loop algorithms explain aspects of consolidation, the role of attention, and the relapses that are sometimes seen after a task has apparently been learned, and they make further predictions.

  5. GNG Motifs Can Replace a GGG Stretch during G-Quadruplex Formation in a Context Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Kohal Das

    Full Text Available G-quadruplexes are one of the most commonly studied non-B DNA structures. Generally, these structures are formed using a minimum of 4, three guanine tracts, with connecting loops ranging from one to seven. Recent studies have reported deviation from this general convention. One such deviation is the involvement of bulges in the guanine tracts. In this study, guanines along with bulges, also referred to as GNG motifs have been extensively studied using recently reported HOX11 breakpoint fragile region I as a model template. By strategic mutagenesis approach we show that the contribution from continuous G-tracts may be dispensible during G-quadruplex formation when such motifs are flanked by GNGs. Importantly, the positioning and number of GNG/GNGNG can also influence the formation of G-quadruplexes. Further, we assessed three genomic regions from HIF1 alpha, VEGF and SHOX gene for G-quadruplex formation using GNG motifs. We show that HIF1 alpha sequence harbouring GNG motifs can fold into intramolecular G-quadruplex. In contrast, GNG motifs in mutant VEGF sequence could not participate in structure formation, suggesting that the usage of GNG is context dependent. Importantly, we show that when two continuous stretches of guanines are flanked by two independent GNG motifs in a naturally occurring sequence (SHOX, it can fold into an intramolecular G-quadruplex. Finally, we show the specific binding of G-quadruplex binding protein, Nucleolin and G-quadruplex antibody, BG4 to SHOX G-quadruplex. Overall, our study provides novel insights into the role of GNG motifs in G-quadruplex structure formation which may have both physiological and pathological implications.

  6. Online Reconstruction and Calibration with Feedback Loop in the ALICE High Level Trigger

    Directory of Open Access Journals (Sweden)

    Rohr David

    2016-01-01

    at the Large Hadron Collider (LHC at CERN. The High Level Trigger (HLT is an online computing farm, which reconstructs events recorded by the ALICE detector in real-time. The most computing-intensive task is the reconstruction of the particle trajectories. The main tracking devices in ALICE are the Time Projection Chamber (TPC and the Inner Tracking System (ITS. The HLT uses a fast GPU-accelerated algorithm for the TPC tracking based on the Cellular Automaton principle and the Kalman filter. ALICE employs gaseous subdetectors which are sensitive to environmental conditions such as ambient pressure and temperature and the TPC is one of these. A precise reconstruction of particle trajectories requires the calibration of these detectors. As our first topic, we present some recent optimizations to our GPU-based TPC tracking using the new GPU models we employ for the ongoing and upcoming data taking period at LHC. We also show our new approach to fast ITS standalone tracking. As our second topic, we present improvements to the HLT for facilitating online reconstruction including a new flat data model and a new data flow chain. The calibration output is fed back to the reconstruction components of the HLT via a feedback loop. We conclude with an analysis of a first online calibration test under real conditions during the Pb-Pb run in November 2015, which was based on these new features.

  7. Adaptive cascaded beam-based feedback at the SLC

    International Nuclear Information System (INIS)

    Himel, T.; Allison, S.; Grossberg, P.; Hendrickson, L.; Sass, R.; Shoaee, H.

    1993-05-01

    The SLAC Linear Collider now has a total of twenty-four beam-steering feedback loops used to keep the electron and positron beams on their desired trajectories. Seven of these loops measure and control the same beam as it proceeds down the linac through the arcs to the final focus. Ideally each loop should correct only for disturbances that occur between it and the immediate upstream loop. In fact, in the original system each loop corrected for all upstream disturbances. This resulted in undesirable over-correction and ringing. We added MIMO (Multiple Input Multiple Output) adaptive noise cancellers to separate the signal we wish to correct from disturbances further up-stream. This adaptive control improved performance in the 1992 run

  8. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.

    2014-01-01

    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback

  9. Parallelizing More Loops with Compiler Guided Refactoring

    DEFF Research Database (Denmark)

    Larsen, Per; Ladelsky, Razya; Lidman, Jacob

    2012-01-01

    an interactive compilation feedback system that guides programmers in iteratively modifying their application source code. This helps leverage the compiler’s ability to generate loop-parallel code. We employ our system to modify two sequential benchmarks dealing with image processing and edge detection...

  10. Control-structure interaction in precision pointing servo loops

    Science.gov (United States)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  11. Feedback control of chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Lin Chaung; Leou, K.-C.; Shiao, K.-M.

    2005-01-01

    Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2 2 factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained

  12. Electrotactile feedback improves performance and facilitates learning in the routine grasping task

    Directory of Open Access Journals (Sweden)

    Milica Isaković

    2016-06-01

    Full Text Available Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels. First (baseline and the last (validation session were performed in open loop, while the second and the third session (training included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  13. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task.

    Science.gov (United States)

    Isaković, Milica; Belić, Minja; Štrbac, Matija; Popović, Igor; Došen, Strahinja; Farina, Dario; Keller, Thierry

    2016-06-13

    Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels). First (baseline) and the last (validation) session were performed in open loop, while the second and the third session (training) included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  14. LncRNA FIRRE/NF-kB feedback loop contributes to OGD/R injury of cerebral microglial cells.

    Science.gov (United States)

    Zang, Yunhua; Zhou, Xiyan; Wang, Qun; Li, Xia; Huang, Hailiang

    2018-04-28

    Stroke is one of the leading causes for serious long-term neurological disability. LncRNAs have been investigated to be dysregulated in ischemic stroke. However, the underlying mechanisms of some specific lncRNAs have not been clearly clarified. To determine lncRNA-mediated regulatory mechanism in ischemic stroke, we constructed OGD/R injury model of cerebral microglial cells. Microarray analysis was carried out and analyzed that lncRNA functional intergenic repeating RNA element (FIRRE) was associated with OGD/R injury. Based on the molecular biotechnology, we demonstrated that FIRRE could activate NF-kB signal pathway. Meanwhile, the activated NF-kB promoted FIRRE expression in OGD/R-treated cerebral microglial cells. Therefore, FIRRE and NF-kB formed a positive feedback loop to promote the transcription of NLRP3 inflammasome, thus contributed to the OGD/R injury of cerebral microglial cells. All findings in this study may help to explore novel and specific therapeutic target for ischemic stroke. Copyright © 2018. Published by Elsevier Inc.

  15. The role of feedback resistors and tid effects in the ASET response of a high speed current feedback amplifier

    International Nuclear Information System (INIS)

    Roig, F.; Dusseau, L.; Privat, A.; Vaille, J.R.; Boch, J.; Saigne, F.; Ribeiro, P.; Auriel, G.; Roche, N.J.H.; Marec, R.; Calvel, P.; Bezerra, F.; Ecoffet, R.; Azais, B.

    2014-01-01

    The influence of external circuit designs on ASET shapes in a high speed current feedback amplifier (CFA) (AD844) is investigated by means of the pulsed laser single event effect (PLSEE) simulation technique. Changes of the feedback resistors modify circuit's electrical parameters such as closed-loop gain and bandwidth, affecting amplifier stability and so ASET shapes. Qualitative explanations based on general electronic rules and feedback theories enable the understanding of a CFA operation establishing a correlation between the evolution of external feedback resistor values and ASET parameters. TID effects on the ASET sensitivity in AD844 CFA are also investigated in this work highlighting different behaviors according to the impacted bipolar transistor in the integrated circuit. (authors)

  16. A comparative approach to closed-loop computation.

    Science.gov (United States)

    Roth, E; Sponberg, S; Cowan, N J

    2014-04-01

    Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    The temporal dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback is studied experimentally. Different dynamics are observed when different lateral modes are selected. When the feedback mirror is aligned perfectly and high-order modes are selected, in most....... When the feedback mirror is aligned non-perfectly, pulse-package oscillation is observed, for the first time to our knowledge, in a diode laser with long-cavity feedback....... of the cases, the output of the laser shows a periodic oscillation corresponding to a single roundtrip external-cavity loop, but the dynamic behavior disappears in some case; when the zero-order lateral-mode is selected, periodic oscillation corresponding to a double roundtrip external-cavity loop is observed...

  18. Feedback stabilization of electrostatic reactive instabilities

    International Nuclear Information System (INIS)

    Richards, R.K.

    1976-01-01

    A general theory for the feedback stabilization of electrostatic reactive instabilities is developed which includes the effects of dissipation in the plasma and frequency dependence in the sensor-suppressor elements and in the external feedback circuit. This theory is compared to experiments involving particular reactive instability, an interchange mode, found in a magnetic mirror device; these results are found to be in good agreement with theory. One noteworthy result is that a frequency dependence in the overall gain and phase shift of the feedback loop can cause destabilization at large gain. Multimode feedback stabilization is studied using the spatial variation of two interchange modes to separate them such that each can be acted upon individually by the feedback system. The transfer function of the plasma is also examined. This analysis is used for mode identification and location of the pole positions. As an example of using feedback as a diagnostic tool, instability induced transport is studied. Here feedback is used to control the amplitude of fluctuations at saturation

  19. Healthy Change Processes-A Diary Study of Five Organizational Units. Establishing a Healthy Change Feedback Loop.

    Science.gov (United States)

    Lien, Mathilde; Saksvik, Per Øystein

    2016-10-01

    This paper explores a change process in the Central Norway Regional Health Authority that was brought about by the implementation of a new economics and logistics system. The purpose of this paper is to contribute to understanding of how employees' attitudes towards change develop over time and how attitudes differ between the five health trusts under this authority. In this paper, we argue that a process-oriented focus through a longitudinal diary method, in addition to action research and feedback loops, will provide greater understanding of the evaluation of organizational change and interventions. This is explored through the assumption that different units will have different perspectives and attitudes towards the same intervention over time because of different contextual and time-related factors. The diary method aims to capture the context, events, reflections and interactions when they occur and allows for a nuanced frame of reference for the different phases of the implementation process and how these phases are perceived by employees. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Active Control of Thermal Convection in a Rectangular Loop by Changing its Spatial Orientation

    Science.gov (United States)

    Bratsun, Dmitry A.; Krasnyakov, Ivan V.; Zyuzgin, Alexey V.

    2018-02-01

    The problem of the automatic control of the fluid flow in a rectangular convective loop heated from below is studied theoretically and experimentally. The control is performed by using a feedback subsystem which changes the convection regimes by introducing small discrete changes in the spatial orientation of the loop with respect to gravity. We focus on effects that arise when the feedback controller operates with an unavoidable time delay, which is cause by the thermal inertia of the medium. The mathematical model of the phenomenon is developed. The dynamic regimes of the convection in the thermosyphon loop under control are studied. It is shown that the proposed control method can successfully stabilize not only a no-motion state of the fluid, but also time-dependent modes of convection including the irregular fluid flow at high values of the Rayleigh number. It is shown that the excessive gain of the proportional feedback can result in oscillations in the loop orientation exciting the unsteady convection modes. The comparison of the experimental data obtained for dielectric oil and dodecane with theory is given, and their good agreement is demonstrated.

  1. Bandwidth limitations in current mode and voltage mode integrated feedback amplifiers

    DEFF Research Database (Denmark)

    Bruun, Erik

    1995-01-01

    loop bandwidth remains constant for a feedback amplifier. The constant-bandwidth relations of such amplifier designs are reviewed in this paper and they are combined with the constraints imposed by technology when the feedback amplifier is to be designed in an integrated technology. From this analysis...

  2. Combining experimental observations and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using

  3. Combining experimental observation and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using

  4. The hardware implementation of the CERN SPS ultrafast feedback processor demonstrator

    CERN Document Server

    Dusakto, J E; Fox, J D; Olsen, J; Rivetta, C H; Höfle, W

    2013-01-01

    An ultrafast 4GSa/s transverse feedback processor has been developed for proof-of-concept studies of feedback control of e-cloud driven and transverse mode coupled intra-bunch instabilities in the CERN SPS. This system consists of a high-speed ADC on the front end and equally fast DAC on the back end. All control and signal processing is implemented in FPGA logic. This system is capable of taking up to 16 sample slices across a single SPS bunch and processing each slice individually within a reconfigurable signal processor. This demonstrator system is a rapidly developed prototype, consisting of both commercial and custom-design components. It can stabilize the motion of a single particle bunch using closed loop feedback. The system can also run open loop as a high-speed arbitrary waveform generator and contains diagnostic features including a special ADC snapshot capture memory. This paper describes the overall system, the feedback processor and focuses on the hardware architecture, design ...

  5. Inner Current Loop Analysis and Design Based on Resonant Regulators for Isolated Microgrids

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Soares Lima, Marcel

    2015-01-01

    Inner current and voltage loops are fundamental in achieving good performance of microgrids based on power electronics voltage source inverters. The analysis and design of these loops are essential for the adequate operation of these systems. This paper investigates the effect of state feedback...

  6. Frequency domain indirect identification of AMB rotor systems based on fictitious proportional feedback gain

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hyeong Joon [Dept. of Mechanical Engineering, Soongsil University, Seoul (Korea, Republic of); Kim, Chan Jung [Dept. of Mechanical Design Engineering, Pukyong National University, Busan(Korea, Republic of)

    2016-12-15

    It is very difficult to directly identify an unstable system with uncertain dynamics from frequency domain input-output data. Hence, in these cases, closed-loop frequency responses calculated using a fictitious feedback could be more identifiable than open-loop data. This paper presents a frequency domain indirect identification of AMB rotor systems based on a Fictitious proportional feedback gain (FPFG). The closed-loop effect due to the FPFG can enhance the detectability of the system by moving the system poles, and significantly weigh the target mode in the frequency domain. The effectiveness of the proposed identification method was verified through the frequency domain identification of active magnetic bearing rotor systems.

  7. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo

    Science.gov (United States)

    Bolus, M. F.; Willats, A. A.; Whitmire, C. J.; Rozell, C. J.; Stanley, G. B.

    2018-04-01

    Objective. Controlling neural activity enables the possibility of manipulating sensory perception, cognitive processes, and body movement, in addition to providing a powerful framework for functionally disentangling the neural circuits that underlie these complex phenomena. Over the last decade, optogenetic stimulation has become an increasingly important and powerful tool for understanding neural circuit function, owing to the ability to target specific cell types and bidirectionally modulate neural activity. To date, most stimulation has been provided in open-loop or in an on/off closed-loop fashion, where previously-determined stimulation is triggered by an event. Here, we describe and demonstrate a design approach for precise optogenetic control of neuronal firing rate modulation using feedback to guide stimulation continuously. Approach. Using the rodent somatosensory thalamus as an experimental testbed for realizing desired time-varying patterns of firing rate modulation, we utilized a moving average exponential filter to estimate firing rate online from single-unit spiking measured extracellularly. This estimate of instantaneous rate served as feedback for a proportional integral (PI) controller, which was designed during the experiment based on a linear-nonlinear Poisson (LNP) model of the neuronal response to light. Main results. The LNP model fit during the experiment enabled robust closed-loop control, resulting in good tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. Closed-loop control also enabled manipulation of trial-to-trial variability. Significance. Because neuroscientists are faced with the challenge of dissecting the functions of circuit components, the ability to maintain control of a region of interest in spite of changes in ongoing neural activity will be important for disambiguating function within networks. Closed-loop stimulation strategies are ideal for control that is robust to such changes

  8. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    Science.gov (United States)

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2014-10-01

    Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide ‘tactile’ sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  9. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade.

    Directory of Open Access Journals (Sweden)

    Elena Papaleo

    Full Text Available The ubiquitin (Ub system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3. E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3, and influencing the ultimate fate of the substrates. Several E2s are characterized by an extended acidic insertion in loop 7 (L7, which if mutated is known to impair the proper E2-related functions. In the present contribution, we show that acidic loop is a conserved ancestral motif in E2s, relying on the presence of alternate hydrophobic and acidic residues. Moreover, the dynamic properties of a subset of family 3 E2s, as well as their binary and ternary complexes with Ub and the cognate E3, have been investigated. Here we provide a model of L7 role in the different steps of the ubiquitination cascade of family 3 E2s. The L7 hydrophobic residues turned out to be the main determinant for the stabilization of the E2 inactive conformations by a tight network of interactions in the catalytic cleft. Moreover, phosphorylation is known from previous studies to promote E2 competent conformations for Ub charging, inducing electrostatic repulsion and acting on the L7 acidic residues. Here we show that these active conformations are stabilized by a network of hydrophobic interactions between L7 and L4, the latter being a conserved interface for E3-recruitment in several E2s. In the successive steps, L7 conserved acidic residues also provide an interaction interface for both Ub and the Rbx1 RING subdomain of the cognate E3. Our data therefore suggest a crucial role for L7 of family 3 E2s in all the E2-mediated steps of the ubiquitination cascade. Its different functions are exploited thank to its conserved hydrophobic and acidic residues in a finely orchestrate mechanism.

  10. PROGRESS IN TUNE, COUPLING, AND CHROMATICITY MEASUREMENT AND FEEDBACK DURING RHIC RUN 7

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON,P.; DELLAPENNA, A.; HOFF, L.; LUO, Y.; MARUSIC, A.; SCHULTHEISS, C.; TEPIKIAN, S.; ET AL.

    2007-06-25

    Tune feedback was first implemented in RHIC in 2002, as a specialist activity. The transition of the tune feedback system to full operational status was impeded by dynamic range problems, as well as by overall loop instabilities driven by large coupling. The dynamic range problem was solved by the CERN development of the Direct Diode Detection Analog Front End. Continuous measurement of all projections of the betatron eigenmodes made possible the world's first implementation of coupling feedback during beam acceleration, resolving the problem of overall loop instabilities. Simultaneous tune and coupling feedbacks were utilized as specialist activities for ramp development during the 2006 RHIC run. At the beginning of the 2007 RHIC run there remained two obstacles to making these feedbacks fully operational in RHIC - chromaticity measurement and control, and the presence of strong harmonics of the power line frequency in the betatron spectrum. We report on progress in tune, coupling, and chromaticity measurement and feedback, and discuss the relevance of our results to LHC commissioning.

  11. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.

    Science.gov (United States)

    Strbac, Matija; Isakovic, Milica; Belic, Minja; Popovic, Igor; Simanic, Igor; Farina, Dario; Keller, Thierry; Dosen, Strahinja

    2017-11-01

    Human motor control relies on a combination of feedback and feedforward strategies. The aim of this study was to longitudinally investigate artificial somatosensory feedback and feedforward control in the context of grasping with myoelectric prosthesis. Nine amputee subjects performed routine grasping trials, with the aim to produce four levels of force during four blocks of 60 trials across five days. The electrotactile force feedback was provided in the second and third block using multipad electrode and spatial coding. The first baseline and last validation block (open-loop control) evaluated the effects of long- (across sessions) and short-term (within session) learning, respectively. The outcome measures were the absolute error between the generated and target force, and the number of force saturations. The results demonstrated that the electrotactile feedback improved the performance both within and across sessions. In the validation block, the performance did not significantly decrease and the quality of open-loop control (baseline) improved across days, converging to the performance characterizing closed-loop control. This paper provides important insights into the feedback and feedforward processes in prosthesis control, contributing to the better understanding of the role and design of feedback in prosthetic systems.

  12. In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop?

    Science.gov (United States)

    Wangpraseurt, Daniel; Holm, Jacob B; Larkum, Anthony W D; Pernice, Mathieu; Ralph, Peter J; Suggett, David J; Kühl, Michael

    2017-01-01

    Climate change-related coral bleaching, i.e., the visible loss of zooxanthellae from the coral host, is increasing in frequency and extent and presents a major threat to coral reefs globally. Coral bleaching has been proposed to involve accelerating light stress of their microalgal endosymbionts via a positive feedback loop of photodamage, symbiont expulsion and excess in vivo light exposure. To test this hypothesis, we used light and O 2 microsensors to characterize in vivo light exposure and photosynthesis of Symbiodinium during a thermal stress experiment. We created tissue areas with different densities of Symbiodinium cells in order to understand the optical properties and light microenvironment of corals during bleaching. Our results showed that in bleached Pocillopora damicornis corals, Symbiodinium light exposure was up to fivefold enhanced relative to healthy corals, and the relationship between symbiont loss and light enhancement was well-described by a power-law function. Cell-specific rates of Symbiodinium gross photosynthesis and light respiration were enhanced in bleached P. damicornis compared to healthy corals, while areal rates of net photosynthesis decreased. Symbiodinium light exposure in Favites sp. revealed the presence of low light microniches in bleached coral tissues, suggesting that light scattering in thick coral tissues can enable photoprotection of cryptic symbionts. Our study provides evidence for the acceleration of in vivo light exposure during coral bleaching but this optical feedback mechanism differs between coral hosts. Enhanced photosynthesis in relation to accelerating light exposure shows that coral microscale optics exerts a key role on coral photophysiology and the subsequent degree of radiative stress during coral bleaching.

  13. Design of Cognitive Interfaces for Personal Informatics Feedback

    DEFF Research Database (Denmark)

    Jensen, Camilla Birgitte Falk

    to personal informatics systems, and propose an approach to design cognitive interfaces, which considers both users’ motivations, needs, and goals. In this thesis I propose a new personal informatics framework, the feedback loop, which incorporates lean agile design principles. Including hierarchical modeling...... of goals, activities, and tasks to create minimal viable products. While considering how micro-interactions based on an understanding of data, couples with user needs and the context they appear in, can contribute to creating cognitive interfaces. Designing cognitive interfaces requires a focus....... For instance, examining emotional responses to pleasant and unpleasant media content from brain activity, reveals the large amount of data and extensive analysis required to apply this to future personal informatics systems. In addition we analyse challenges related to temporal aspects of the feedback loop...

  14. Augmenting Environmental Interaction in Audio Feedback Systems

    Directory of Open Access Journals (Sweden)

    Seunghun Kim

    2016-04-01

    Full Text Available Audio feedback is defined as a positive feedback of acoustic signals where an audio input and output form a loop, and may be utilized artistically. This article presents new context-based controls over audio feedback, leading to the generation of desired sonic behaviors by enriching the influence of existing acoustic information such as room response and ambient noise. This ecological approach to audio feedback emphasizes mutual sonic interaction between signal processing and the acoustic environment. Mappings from analyses of the received signal to signal-processing parameters are designed to emphasize this specificity as an aesthetic goal. Our feedback system presents four types of mappings: approximate analyses of room reverberation to tempo-scale characteristics, ambient noise to amplitude and two different approximations of resonances to timbre. These mappings are validated computationally and evaluated experimentally in different acoustic conditions.

  15. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    Science.gov (United States)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  16. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  17. Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif

    OpenAIRE

    Shchedrina, Valentina A.; Novoselov, Sergey V.; Malinouski, Mikalai Yu.; Gladyshev, Vadim N.

    2007-01-01

    Selenocysteine (Sec, U) insertion into proteins is directed by translational recoding of specific UGA codons located upstream of a stem-loop structure known as Sec insertion sequence (SECIS) element. Selenoproteins with known functions are oxidoreductases containing a single redox-active Sec in their active sites. In this work, we identified a family of selenoproteins, designated SelL, containing two Sec separated by two other residues to form a UxxU motif. SelL proteins show an unusual occur...

  18. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  19. The effects of plasma deformability on the feedback stabilization of axisymmetric modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Ward, D.J.; Jardin, S.C.

    1991-09-01

    The effects of plasma deformability on the feedback stabilization of axisymmetric modes of tokamak plasmas are studied. It is seen that plasmas with strongly shaped cross sections have unstable motion different from a rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the eigenfunction in a way that reduces the stabilizing eddy currents in these conductors. Passive feedback results using several equilibria of varying shape are presented. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the position of the flux loops which are used to determine plasma vertical position for the active feedback system. The variations of these non-rigid components of the eigenfunction always serve to reduce the stabilizing effect of the active feedback system by reducing the measurable poloidal flux at the flux-loop locations. Active feedback results are presented for the PBX-M tokamak configuration. (author) 19 figs., 2 tabs., 30 refs

  20. Self-starting and overclocking a harmonically mode-locking WRC-FPLD with a dual-loop feedback controller for 10 Gb s−1 pulse-data transmission

    International Nuclear Information System (INIS)

    Lin, Chun-Ju; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The self-starting and overclocking of a harmonically mode-locked weak-resonant-cavity Fabry–Perot laser diode (WRC-FPLD) with a dual-loop coupled optoelectronic oscillator (COEO) based feedback controller is demonstrated to perform a clock-free pulsed data transmission at 10 Gb s −1 . The WRC-FPLD is considered as the preferred candidate for harmonic mode-locking due to its highly asymmetric cavity architecture, whereby the spontaneous noise can be significantly suppressed without inducing large intra-cavity loss. With the dual-loop COEO configuration, the WRC-FPLD can be boosted to four times of its original modulation bandwidth such that the pulsed carrier quality can be refined. The structure-optimizing principle with the closed-loop model is corroborated by the effective spurious-noise-suppression. The lowest phase noises as low as −100 dBc Hz −1 at 10 kHz with corresponding RMS timing jitter of 0.67 ps are measured. This is achieved by individually inserting 100 and 120 m long single mode fiber segments into two decoupled arms, the dual-loop COEO before the optical receiver pair. The BER performance reaches a minimum with the optimized SMF segment lengths. However, the spurious peaks arise to degrade the BER performance as the phase noise and jitter are inevitably enlarged when inserting longer SMF segments. After modulating the optimized output pulse train with the pseudo-random-bit-sequence data triggered by the same COEO clock, the SNR can achieve 10.9 dB and the receiving sensitivity is −19.2 dBm. (letter)

  1. Stability, gain, and robustness in quantum feedback networks

    International Nuclear Information System (INIS)

    D'Helon, C.; James, M. R.

    2006-01-01

    In this paper we are concerned with the problem of stability for quantum feedback networks. We demonstrate in the context of quantum optics how stability of quantum feedback networks can be guaranteed using only simple gain inequalities for network components and algebraic relationships determined by the network. Quantum feedback networks are shown to be stable if the loop gain is less than one--this is an extension of the famous small gain theorem of classical control theory. We illustrate the simplicity and power of the small gain approach with applications to important problems of robust stability and robust stabilization

  2. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation

    DEFF Research Database (Denmark)

    Rishi, Loveena; Hannon, Maura; Salomè, Mara

    2014-01-01

    α (C/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop......The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein...... for E2F1, C/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C/EBPα-p42, and in normal granulocyte/macrophage progenitor cells, we detect C/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle...

  3. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.

  4. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993

  5. Kopi dan Kakao dalam Kreasi Motif Batik Khas Jember

    Directory of Open Access Journals (Sweden)

    Irfa'ina Rohana Salma

    2015-06-01

    Full Text Available ABSTRAK Batik Jember selama ini identik dengan motif daun tembakau. Visualisasi daun tembakau dalam motif Batik Jember cukup lemah, yaitu kurang berkarakter karena motif yang muncul adalah seperti gambar daun pada umumnya. Oleh karena itu perlu diciptakan desain motif batik khas Jember yang sumber inspirasinya digali dari kekayaan alam lainnya dari Jember yang mempunyai bentuk spesifik dan karakteristik sehingga identitas motif bisa didapatkan dengan lebih kuat. Hasil alam khas Jember tersebut adalah kopi dan kakao. Tujuan penciptaan seni ini adalah untuk menghasilkan motif batik  baru yang mempunyai ciri khas Jember. Metode yang digunakan yaitu pengumpulan data, pengamatan mendalam terhadap objek penciptaan, pengkajian sumber inspirasi, pembuatan desain motif, dan perwujudan menjadi batik. Dari penciptaan seni ini berhasil dikreasikan 6 (enam motif batik yaitu: (1 Motif Uwoh Kopi; (2 Motif Godong Kopi;  (3 Motif Ceplok Kakao; (4 Motif Kakao Raja; (5 Motif Kakao Biru; dan (6 Motif Wiji Mukti. Berdasarkan hasil penilaian “Selera Estetika” diketahui bahwa motif yang paling banyak disukai adalah Motif Uwoh Kopi dan Motif Kakao Raja. Kata kunci: Motif Woh Kopi, Motif Godong Kopi, Motif Ceplok Kakao, Motif Kakao Raja, Motif Kakao Biru, Motif Wiji Mukti ABSTRACTBatik Jember is synonymous with tobacco leaf motif. Tobacco leaf shape is quite weak in the visual appearance characterized as that motif emerges like a picture of leaves in general. Therefore, it is necessary to create a distinctive design motif extracted from other natural resources of Jember that have specific shapes and characteristics that can be obtained as the stronger motif identity. The typical natural resources from Jember are coffee and cocoa. The purpose of the creation of this art is to produce the unique, creative and innovative batik and have specific characteristics of Jember. The method used are data collection, observation of the object, reviewing inspiration sources

  6. Review article: closed-loop systems in anesthesia: is there a potential for closed-loop fluid management and hemodynamic optimization?

    Science.gov (United States)

    Rinehart, Joseph; Liu, Ngai; Alexander, Brenton; Cannesson, Maxime

    2012-01-01

    Closed-loop (automated) controllers are encountered in all aspects of modern life in applications ranging from air-conditioning to spaceflight. Although these systems are virtually ubiquitous, they are infrequently used in anesthesiology because of the complexity of physiologic systems and the difficulty in obtaining reliable and valid feedback data from the patient. Despite these challenges, closed-loop systems are being increasingly studied and improved for medical use. Two recent developments have made fluid administration a candidate for closed-loop control. First, the further description and development of dynamic predictors of fluid responsiveness provides a strong parameter for use as a control variable to guide fluid administration. Second, rapid advances in noninvasive monitoring of cardiac output and other hemodynamic variables make goal-directed therapy applicable for a wide range of patients in a variety of clinical care settings. In this article, we review the history of closed-loop controllers in clinical care, discuss the current understanding and limitations of the dynamic predictors of fluid responsiveness, and examine how these variables might be incorporated into a closed-loop fluid administration system.

  7. Evidence of extra-telomeric effects of hTERT and its regulation involving a feedback loop

    International Nuclear Information System (INIS)

    Lai, Serene R.; Cunningham, Amanda P.; Huynh, Vu Q.; Andrews, Lucy G.; Tollefsbol, Trygve O.

    2007-01-01

    The human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the enzyme telomerase which is responsible for telomeric maintenance and extension. Using RNA interference to knock down hTERT mRNA expression, we provide evidence that hTERT exerts extra-telomeric effects on the cell cycle and on its own regulatory proteins, specifically: p53 and p21. We tested our hypothesis that hTERT regulates its own expression through effects on upstream regulatory genes using transformed human embryonic kidney (HEK 293) cells, p53 and p16 INK4a null human ovarian cancer SKOV-3 cells, and p53-null MDA-MB-157 human mammary cancer cells. In HEK 293 cells, hTERT knockdown resulted in elevated p53 and p21 transcription and a decrease in cellular proliferation. Similar results were observed in the MDA-MB-157 cell line where p21 was upregulated, correlating with cell growth inhibition. In contrast, we observed a decrease in expression of p21 in SKOV-3 cells with hTERT knockdown and cell growth appeared to be unaffected. These findings suggest that hTERT may be involved in a feedback loop system, thereby playing a role in its own regulation

  8. Automatic Loop Parallelization via Compiler Guided Refactoring

    DEFF Research Database (Denmark)

    Larsen, Per; Ladelsky, Razya; Lidman, Jacob

    For many parallel applications, performance relies not on instruction-level parallelism, but on loop-level parallelism. Unfortunately, many modern applications are written in ways that obstruct automatic loop parallelization. Since we cannot identify sufficient parallelization opportunities...... for these codes in a static, off-line compiler, we developed an interactive compilation feedback system that guides the programmer in iteratively modifying application source, thereby improving the compiler’s ability to generate loop-parallel code. We use this compilation system to modify two sequential...... benchmarks, finding that the code parallelized in this way runs up to 8.3 times faster on an octo-core Intel Xeon 5570 system and up to 12.5 times faster on a quad-core IBM POWER6 system. Benchmark performance varies significantly between the systems. This suggests that semi-automatic parallelization should...

  9. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    Science.gov (United States)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  10. MSDmotif: exploring protein sites and motifs

    Directory of Open Access Journals (Sweden)

    Henrick Kim

    2008-07-01

    Full Text Available Abstract Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures.

  11. Design and Implementation of Output Feedback Control for Piezo Actuated Structure Using Embedded System

    Directory of Open Access Journals (Sweden)

    R.Maheswari

    2008-06-01

    Full Text Available This paper presents the design of periodic output feedback control using state feedback gain to control the vibration of piezo actuated cantilever beam. The effectiveness of the controller is evaluated through simulation and experimentally by exciting the structure at resonance. Real time implementation of the controller is done using microcontroller. The closed loop eigen values of the system with periodic output feedback and state feedback are identical.

  12. State Feedback Decoupling with In-Loop Lead Compensator in Stand-Alone VSIs

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; de Sousa Ribeiro, Luiz Antonio

    2016-01-01

    The performance of current and voltage regulators during transients and steady-state is of primary concern for power converters intended for stand-alone applications. Dynamics performance and command tracking capability are enhanced by actively decoupling the controlled states variables. To further...... widen the current loop bandwidth while still preserving a well-damped system a lead compensator structure on the forward loop is proposed. A 3 kHz bandwidth with 0.707 damping factor is achieved for the inner current controller. Accordingly, also the voltage regulator bandwidth can be widen, thus...

  13. Improving Convergence of Iterative Feedback Tuning using Optimal External Perturbations

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Hjalmarsson, Håkon; Poulsen, Niels Kjølstad

    2008-01-01

    Iterative feedback tuning constitutes an attractive control loop tuning method for processes in the absence of sufficient process insight. It is a purely data driven approach to optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost...... function gradient, which is used in a search algorithm. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the information content in data...

  14. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Mao, Yao; Ren, Ge

    2017-08-01

    In the optical stabilization control system (OSCS) control system based on a charge-coupled device (CCD), stabilization performance of the line-of-sight is severely limited by the mechanical resonance and the low sampling rate of the CCD. An approach to improve the stabilization performance of the OSCS control system with load restriction based on three loops, including an acceleration loop, a virtual velocity loop, and a position loop, by using MEMS accelerometers and a CCD is proposed. The velocity signal is obtained by accelerators instead of gyro sensors. Its advantages are low power, low cost, small size, and wide measuring range. A detailed analysis is provided to show how to design the virtual velocity loop and correct virtual velocity loop drift. Experimental results show that the proposed multiloop feedback control method with virtual velocity loop in which the disturbance suppression performance is better than that of the dual loop control with only an acceleration loop and a position loop at low frequency.

  15. Multi-model MPC with output feedback

    Directory of Open Access Journals (Sweden)

    J. M. Perez

    2014-03-01

    Full Text Available In this work, a new formulation is presented for the model predictive control (MPC of a process system that is represented by a finite set of models, each one corresponding to a different operating point. The general case is considered of systems with stable and integrating outputs in closed-loop with output feedback. For this purpose, the controller is based on a non-minimal order model where the state is built with the measured outputs and the manipulated inputs of the control system. Therefore, the state can be considered as perfectly known and, consequently, there is no need to include a state observer in the control loop. This property of the proposed modeling approach is convenient to extend previous stability results of the closed loop system with robust MPC controllers based on state feedback. The controller proposed here is based on the solution of two optimization problems that are solved sequentially at the same time step. The method is illustrated with a simulated example of the process industry. The rigorous simulation of the control of an adiabatic flash of a multi-component hydrocarbon mixture illustrates the application of the robust controller. The dynamic simulation of this process is performed using EMSO - Environment Model Simulation and Optimization. Finally, a comparison with a linear MPC using a single model is presented.

  16. Velocity feedback control with a flywheel proof mass actuator

    Science.gov (United States)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  17. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  18. Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab

    International Nuclear Information System (INIS)

    Crisp, J.

    1990-01-01

    The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs

  19. Efficient Closed-Loop Schemes for MIMO-OFDM-Based WLANs

    Directory of Open Access Journals (Sweden)

    Jiang Yi

    2006-01-01

    Full Text Available The single-input single-output (SISO orthogonal frequency-division multiplexing (OFDM systems for wireless local area networks (WLAN defined by the IEEE 802.11a standard can support data rates up to 54 Mbps. In this paper, we consider deploying two transmit and two receive antennas to increase the data rate up to 108 Mbps. Applying our recent multiple-input multiple-output (MIMO transceiver designs, that is, the geometric mean decomposition (GMD and the uniform channel decomposition (UCD schemes, we propose simple and efficient closed-loop MIMO-OFDM designs for much improved performance, compared to the standard singular value decomposition (SVD based schemes as well as the open-loop V-BLAST (vertical Bell Labs layered space-time based counterparts. In the explicit feedback mode, precoder feedback is needed for the proposed schemes. We show that the overhead of feedback can be made very moderate by using a vector quantization method. In the time-division duplex (TDD mode where the channel reciprocity is exploited, our schemes turn out to be robust against the mismatch between the uplink and downlink channels. The advantages of our schemes are demonstrated via extensive numerical examples.

  20. Thermodynamics of single polyethylene and polybutylene glycols with hydrogen-bonding ends: A transition from looped to open conformations

    Science.gov (United States)

    Lee, Eunsang; Paul, Wolfgang

    2018-02-01

    A variety of linear polymer precursors with hydrogen bonding motifs at both ends enable us to design supramolecular polymer systems with tailored macroscopic properties including self-healing. In this study, we investigate thermodynamic properties of single polyethylene and polybutylene glycols with hydrogen bonding motifs. In this context, we first build a coarse-grained model of building blocks of the supramolecular polymer system based on all-atom molecular structures. The density of states of the single precursor is obtained using the stochastic approximation Monte Carlo method. Constructing canonical partition functions from the density of states, we find the transition from looped to open conformations at transition temperatures which are non-monotonously changing with an increasing degree of polymerization due to the competition between chain stiffness and loop-forming entropy penalty. In the complete range of chain length under investigation, a coexistence of the looped and open morphologies at the transition temperature is shown regardless of whether the transition is first-order-like or continuous. Polyethylene and polybutylene glycols show similar behavior in all the thermodynamic properties but the transition temperature of the more flexible polybutylene glycol is shown to change more gradually.

  1. Structural Variation and Uniformity among Tetraloop-Receptor Interactions and Other Loop-Helix Interactions in RNA Crystal Structures

    Science.gov (United States)

    Wu, Li; Chai, Dinggeng; Fraser, Marie E.; Zimmerly, Steven

    2012-01-01

    Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48) were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the “standard” GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature. PMID:23152878

  2. Laser cooling in a feedback-controlled optical shaker

    International Nuclear Information System (INIS)

    Vilensky, Mark Y.; Averbukh, Ilya Sh.; Prior, Yehiam

    2006-01-01

    We explore the prospects of optical shaking, a recently suggested generic approach to laser cooling of neutral atoms and molecules. Optical shaking combines elements of Sisyphus cooling and of stochastic cooling techniques and is based on feedback-controlled interaction of particles with strong nonresonant laser fields. The feedback loop guarantees a monotonous energy decrease without a loss of particles. We discuss two types of feedback algorithms and provide an analytical estimation of their cooling rate. We study the robustness of optical shaking against noise and establish minimal stability requirements for the lasers. The analytical predictions are in a good agreement with the results of detailed numerical simulations

  3. JMJD3 Is Crucial for the Female AVPV RIP-Cre Neuron-Controlled Kisspeptin-Estrogen Feedback Loop and Reproductive Function.

    Science.gov (United States)

    Song, Anying; Jiang, Shujun; Wang, Qinghua; Zou, Jianghuan; Lin, Zhaoyu; Gao, Xiang

    2017-06-01

    The hypothalamic-pituitary-gonadal axis controls development, reproduction, and metabolism. Although most studies have focused on the hierarchy from the brain to the gonad, many questions remain unresolved concerning the feedback from the gonad to the central nervous system, especially regarding the potential epigenetic modifications in hypothalamic neurons. In the present report, we generated genetically modified mice lacking histone H3 lysine 27 (H3K27) demethylase Jumonji domain-containing 3 (JMJD3) in hypothalamic rat-insulin-promoter-expressing neurons (RIP-Cre neurons). The female mutant mice displayed late-onset obesity owing to reduced locomotor activity and decreased energy expenditure. JMJD3 deficiency in RIP-Cre neurons also results in delayed pubertal onset, an irregular estrous cycle, impaired fertility, and accelerated ovarian failure in female mice owing to the dysregulation of the hypothalamic-ovarian axis. We found that JMJD3 directly regulates Kiss1 gene expression by binding to the Kiss1 promoter and triggering H3K27me3 demethylation in the anteroventral periventricular (AVPV) nucleus. Further study confirmed that the aberrations arose from impaired kisspeptin signaling in the hypothalamic AVPV nucleus and subsequent estrogen deficiency. Estrogen replacement therapy can reverse obesity in mutant mice. Moreover, we demonstrated that Jmjd3 is an estrogen target gene in the hypothalamus. These results provide direct genetic and molecular evidence that JMJD3 is a key mediator for the kisspeptin-estrogen feedback loop. Copyright © 2017 Endocrine Society.

  4. Estimation of Parametric Fault in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The aim of this paper is to present a method for estimation of parametric faults in closed-loop systems. The key technology applied in this paper is coprime factorization of both the dynamic system as well as the feedback controller. Using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization...

  5. A closed-loop photon beam control study for the Advanced Light Source

    International Nuclear Information System (INIS)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared -- a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices

  6. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  7. Assisted closed-loop optimization of SSVEP-BCI efficiency

    Directory of Open Access Journals (Sweden)

    Jacobo eFernandez-Vargas

    2013-02-01

    Full Text Available We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain computer interfaces (BCI based on steady state visually evoked potentials (SSVEP. In traditional paradigms, the control over the BCI-performance completely depends on the subjects’ ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (i a closed-loop search for the best set of SSVEP flicker frequencies and (ii feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects’ state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g. under the new protocol, baseline resting state EEG measures predict subjects’ BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g. as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  8. Performance Measure as Feedback Variable in Image Processing

    Directory of Open Access Journals (Sweden)

    Ristić Danijela

    2006-01-01

    Full Text Available This paper extends the view of image processing performance measure presenting the use of this measure as an actual value in a feedback structure. The idea behind is that the control loop, which is built in that way, drives the actual feedback value to a given set point. Since the performance measure depends explicitly on the application, the inclusion of feedback structures and choice of appropriate feedback variables are presented on example of optical character recognition in industrial application. Metrics for quantification of performance at different image processing levels are discussed. The issues that those metrics should address from both image processing and control point of view are considered. The performance measures of individual processing algorithms that form a character recognition system are determined with respect to the overall system performance.

  9. Identity and functions of CxxC-derived motifs.

    Science.gov (United States)

    Fomenko, Dmitri E; Gladyshev, Vadim N

    2003-09-30

    Two cysteines separated by two other residues (the CxxC motif) are employed by many redox proteins for formation, isomerization, and reduction of disulfide bonds and for other redox functions. The place of the C-terminal cysteine in this motif may be occupied by serine (the CxxS motif), modifying the functional repertoire of redox proteins. Here we found that the CxxC motif may also give rise to a motif, in which the C-terminal cysteine is replaced with threonine (the CxxT motif). Moreover, in contrast to a view that the N-terminal cysteine in the CxxC motif always serves as a nucleophilic attacking group, this residue could also be replaced with threonine (the TxxC motif), serine (the SxxC motif), or other residues. In each of these CxxC-derived motifs, the presence of a downstream alpha-helix was strongly favored. A search for conserved CxxC-derived motif/helix patterns in four complete genomes representing bacteria, archaea, and eukaryotes identified known redox proteins and suggested possible redox functions for several additional proteins. Catalytic sites in peroxiredoxins were major representatives of the TxxC motif, whereas those in glutathione peroxidases represented the CxxT motif. Structural assessments indicated that threonines in these enzymes could stabilize catalytic thiolates, suggesting revisions to previously proposed catalytic triads. Each of the CxxC-derived motifs was also observed in natural selenium-containing proteins, in which selenocysteine was present in place of a catalytic cysteine.

  10. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr......(P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified...

  11. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    David ePerruchoud; Micah M Murray; Micah M Murray; Jeremie eLefebvre; Silvio eIonta

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characteriz...

  12. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    Perruchoud David; Murray Micah; Lefebvre Jeremie; Ionta Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized b...

  13. Brain-actuated gait trainer with visual and proprioceptive feedback

    Science.gov (United States)

    Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Millán, José del R.

    2017-10-01

    Objective. Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. Approach. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. Main results. (i) For real-time classification, the average accuracy was 62.33 +/- 4.95 % and 63.89 +/- 6.41 % for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback (69.45 +/- 9.95 %) was significantly better than with visual feedback (62.89 +/- 9.20 %), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. Significance. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that

  14. RF feedback simulation for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Tighe, R.

    1994-06-01

    A model, of the beam and RF system for PEP-11 has been developed to allow both time-domain simulation and frequency-domain analysis of the complete system. The model includes the full set of feedback loops and nonlinear elements such as the beam and klystron. The model may be used to predict beam and feedback stability in the presence of nonlinearities through time-domain simulation as well as system frequency response about a given operating point

  15. Closing the Loop on Student Feedback: The Case of Australian and Scottish Universities

    Science.gov (United States)

    Shah, Mahsood; Cheng, Ming; Fitzgerald, Robert

    2017-01-01

    Universities have a long history of collecting student feedback using surveys and other mechanisms. The last decade has witnessed a significant shift in how student feedback is systematically collected, analysed, reported, and used by governments and institutions. This shift is due to a number of factors, including changes in government policy…

  16. Mathematical Modeling of the Pituitary-Thyroid Feedback Loop: Role of a TSH-T3-Shunt and Sensitivity Analysis.

    Science.gov (United States)

    Berberich, Julian; Dietrich, Johannes W; Hoermann, Rudolf; Müller, Matthias A

    2018-01-01

    Despite significant progress in assay technology, diagnosis of functional thyroid disorders may still be a challenge, as illustrated by the vague upper limit of the reference range for serum thyrotropin ( TSH ). Diagnostical problems also apply to subjects affected by syndrome T, i.e., those 10% of hypothyroid patients who continue to suffer from poor quality of life despite normal TSH concentrations under substitution therapy with levothyroxine ( L - T 4 ). In this paper, we extend a mathematical model of the pituitary-thyroid feedback loop in order to improve the understanding of thyroid hormone homeostasis. In particular, we incorporate a TSH - T 3 -shunt inside the thyroid, whose existence has recently been demonstrated in several clinical studies. The resulting extended model shows good accordance with various clinical observations, such as a circadian rhythm in free peripheral triiodothyronine ( FT 3 ). Furthermore, we perform a sensitivity analysis of the derived model, revealing the dependence of TSH and hormone concentrations on different system parameters. The results have implications for clinical interpretation of thyroid tests, e.g., in the differential diagnosis of subclinical hypothyroidism.

  17. Mathematical Modeling of the Pituitary–Thyroid Feedback Loop: Role of a TSH-T3-Shunt and Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Julian Berberich

    2018-03-01

    Full Text Available Despite significant progress in assay technology, diagnosis of functional thyroid disorders may still be a challenge, as illustrated by the vague upper limit of the reference range for serum thyrotropin (TSH. Diagnostical problems also apply to subjects affected by syndrome T, i.e., those 10% of hypothyroid patients who continue to suffer from poor quality of life despite normal TSH concentrations under substitution therapy with levothyroxine (L-T4. In this paper, we extend a mathematical model of the pituitary–thyroid feedback loop in order to improve the understanding of thyroid hormone homeostasis. In particular, we incorporate a TSH-T3-shunt inside the thyroid, whose existence has recently been demonstrated in several clinical studies. The resulting extended model shows good accordance with various clinical observations, such as a circadian rhythm in free peripheral triiodothyronine (FT3. Furthermore, we perform a sensitivity analysis of the derived model, revealing the dependence of TSH and hormone concentrations on different system parameters. The results have implications for clinical interpretation of thyroid tests, e.g., in the differential diagnosis of subclinical hypothyroidism.

  18. Mathematical Modeling of the Pituitary–Thyroid Feedback Loop: Role of a TSH-T3-Shunt and Sensitivity Analysis

    Science.gov (United States)

    Berberich, Julian; Dietrich, Johannes W.; Hoermann, Rudolf; Müller, Matthias A.

    2018-01-01

    Despite significant progress in assay technology, diagnosis of functional thyroid disorders may still be a challenge, as illustrated by the vague upper limit of the reference range for serum thyrotropin (TSH). Diagnostical problems also apply to subjects affected by syndrome T, i.e., those 10% of hypothyroid patients who continue to suffer from poor quality of life despite normal TSH concentrations under substitution therapy with levothyroxine (L-T4). In this paper, we extend a mathematical model of the pituitary–thyroid feedback loop in order to improve the understanding of thyroid hormone homeostasis. In particular, we incorporate a TSH-T3-shunt inside the thyroid, whose existence has recently been demonstrated in several clinical studies. The resulting extended model shows good accordance with various clinical observations, such as a circadian rhythm in free peripheral triiodothyronine (FT3). Furthermore, we perform a sensitivity analysis of the derived model, revealing the dependence of TSH and hormone concentrations on different system parameters. The results have implications for clinical interpretation of thyroid tests, e.g., in the differential diagnosis of subclinical hypothyroidism. PMID:29619006

  19. A Complete Parametric Solutions of Eigenstructure Assignment by State-Derivative Feedback for Linear Control Systems

    Directory of Open Access Journals (Sweden)

    T. H. S. Abdelaziz

    2005-01-01

    Full Text Available In this paper we introduce a complete parametric approach for solving the problem of eigenstructure assignment via state-derivative feedback for linear systems. This problem is always solvable for any controllable systems iff the open-loop system matrix is nonsingular. In this work, two parametric solutions to the feedback gain matrix are introduced that describe the available degrees of freedom offered by the state-derivative feedback in selecting the associated eigenvectors from an admissible class. These freedoms can be utilized to improve robustness of the closed-loop system. Accordingly, the sensitivity of the assigned eigenvalues to perturbations in the system and gain matrix is minimized. Numerical examples are included to show the effectiveness of the proposed approach. 

  20. COMMISSIONING OF THE DIGITAL TRANSVERSE BUNCH-BY-BUNCH FEEDBACK SYSTEM FOR THE TLS

    International Nuclear Information System (INIS)

    HU, K.H.; KUO, C.H.; CHOU, P.J.; LEE, D.; HSU, S.Y.; CHEN, J.; WANG, C.J.; HSU, K.T.; KOBAYASHI, K.; NAKAMURA, T.; CHAO, A.W.; WENG, W.T.

    2006-01-01

    Multi-bunch instabilities degrade beam quality through increased beam emittance, energy spread and even beam loss. Feedback systems are used to suppress multi-bunch instabilities associated with the resistive wall of the beam ducts, cavity-like structures, and trapped ions. A new digital transverse bunch-by-bunch feedback system has recently been commissioned at the Taiwan Light Source, and has replaced the previous analog system. The new system has the advantages that it enlarges the tune acceptance and improves damping for transverse instability at high currents, such that top-up operation is achieved. After a coupled-bunch transverse instability was suppressed, more than 350 mA was successfully stored during preliminary commissioning. In this new system, a single feedback loop simultaneously suppresses both horizontal and vertical multi-bunch instabilities. Investigating the characteristics of the feedback loop and further improving the system performances are the next short-term goals. The feedback system employs the latest generation of field-programmable gate array (FPGA) processor to process bunch signals. Memory has been installed to capture up to 250 msec of bunch oscillation signal, considering system diagnostics suitable to support various beam physics studies

  1. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  2. Directional R-Loop Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site Rejection

    Directory of Open Access Journals (Sweden)

    Marius Rutkauskas

    2015-03-01

    Full Text Available CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against foreign nucleic acids. In type I CRISPR-Cas systems, invading DNA is detected by a large ribonucleoprotein surveillance complex called Cascade. The crRNA component of Cascade is used to recognize target sites in foreign DNA (protospacers by formation of an R-loop driven by base-pairing complementarity. Using single-molecule supercoiling experiments with near base-pair resolution, we probe here the mechanism of R-loop formation and detect short-lived R-loop intermediates on off-target sites bearing single mismatches. We show that R-loops propagate directionally starting from the protospacer-adjacent motif (PAM. Upon reaching a mismatch, R-loop propagation stalls and collapses in a length-dependent manner. This unambiguously demonstrates that directional zipping of the R-loop accomplishes efficient target recognition by rapidly rejecting binding to off-target sites with PAM-proximal mutations. R-loops that reach the protospacer end become locked to license DNA degradation by the auxiliary Cas3 nuclease/helicase without further target verification.

  3. Temporal motifs in time-dependent networks

    International Nuclear Information System (INIS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-01-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological–temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network

  4. RF Feedback Analysis for 4 cavities per klystron in PEP-II

    International Nuclear Information System (INIS)

    Corredoura, P.; Tighe, R.

    1994-06-01

    Lattice changes in the PEP-II high energy ring have made the concept of driving four cavities with a single klystron an attractive option. This paper examines the topology from a RF feedback point of view. Sources of error are identified and their magnitudes are estimated. The effect on the performance of the longitudinal impedance reducing feedback loops is calculated using control theory and Mathematica

  5. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Klug, Gabriele

    2013-03-01

    Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail.

  6. Block compressed sensing for feedback reduction in relay-aided multiuser full duplex networks

    KAUST Repository

    Elkhalil, Khalil

    2016-08-11

    Opportunistic user selection is a simple technique that exploits the spatial diversity in multiuser relay-aided networks. Nonetheless, channel state information (CSI) from all users (and cooperating relays) is generally required at a central node in order to make selection decisions. Practically, CSI acquisition generates a great deal of feedback overhead that could result in significant transmission delays. In addition to this, the presence of a full-duplex cooperating relay corrupts the fed back CSI by additive noise and the relay\\'s loop (or self) interference. This could lead to transmission outages if user selection is based on inaccurate feedback information. In this paper, we propose an opportunistic full-duplex feedback algorithm that tackles the above challenges. We cast the problem of joint user signal-to-noise ratio (SNR) and the relay loop interference estimation at the base-station as a block sparse signal recovery problem in compressive sensing (CS). Using existing CS block recovery algorithms, the identity of the strong users is obtained and their corresponding SNRs are estimated. Numerical results show that the proposed technique drastically reduces the feedback overhead and achieves a rate close to that obtained by techniques that require dedicated error-free feedback from all users. Numerical results also show that there is a trade-off between the feedback interference and load, and for short coherence intervals, full-duplex feedback achieves higher throughput when compared to interference-free (half-duplex) feedback. © 2016 IEEE.

  7. Block compressed sensing for feedback reduction in relay-aided multiuser full duplex networks

    KAUST Repository

    Elkhalil, Khalil; Eltayeb, Mohammed; Kammoun, Abla; Al-Naffouri, Tareq Y.; Bahrami, Hamid Reza

    2016-01-01

    Opportunistic user selection is a simple technique that exploits the spatial diversity in multiuser relay-aided networks. Nonetheless, channel state information (CSI) from all users (and cooperating relays) is generally required at a central node in order to make selection decisions. Practically, CSI acquisition generates a great deal of feedback overhead that could result in significant transmission delays. In addition to this, the presence of a full-duplex cooperating relay corrupts the fed back CSI by additive noise and the relay's loop (or self) interference. This could lead to transmission outages if user selection is based on inaccurate feedback information. In this paper, we propose an opportunistic full-duplex feedback algorithm that tackles the above challenges. We cast the problem of joint user signal-to-noise ratio (SNR) and the relay loop interference estimation at the base-station as a block sparse signal recovery problem in compressive sensing (CS). Using existing CS block recovery algorithms, the identity of the strong users is obtained and their corresponding SNRs are estimated. Numerical results show that the proposed technique drastically reduces the feedback overhead and achieves a rate close to that obtained by techniques that require dedicated error-free feedback from all users. Numerical results also show that there is a trade-off between the feedback interference and load, and for short coherence intervals, full-duplex feedback achieves higher throughput when compared to interference-free (half-duplex) feedback. © 2016 IEEE.

  8. Motif enrichment tool.

    Science.gov (United States)

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. A loop-based neural architecture for structured behavior encoding and decoding.

    Science.gov (United States)

    Gisiger, Thomas; Boukadoum, Mounir

    2018-02-01

    We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects of the mammal brain. Its main novelty lies in its topological structure which is built as an array of interacting elementary motifs shaped like loops. These loops come in various types and can implement functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each loop features two sets of neurons and a control region, linked together by non-recurrent projections. The two neural sets do the bulk of the loop's computations while the control unit specifies the timing and the conditions under which the computations implemented by the loop are to be performed. By functionally linking many such loops together, a neural network is obtained that may perform complex cognitive computations. To demonstrate the potential offered by such a system, we present two neural network simulations. The first illustrates the structure and dynamics of a single loop implementing a simple gating mechanism. The second simulation shows how connecting four loops in series can produce neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that this network reproduces electrophysiological measurements gathered in various regions of the brain of monkeys performing similar tasks. We also demonstrate connections between this type of neural network and recurrent or long short-term memory network models, and suggest ways to generalize them for future artificial intelligence research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of State Feedback Coupling and System Delays on the Transient Performance of Stand-Alone VSI with LC Output Filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    The influence of state feedback coupling in the dynamics performance of power converters for stand-alone microgrids is investigated. Computation and PWM delays are the main factors that limit the achievable bandwidth of current regulators in digital implementations. In particular, the performance...... of state feedback decoupling is degraded because of these delays. Two decoupling techniques to improve the transient response of the system are investigated, named non-ideal and ideal capacitor voltage decoupling respectively. In particular, the latter solution consists in leading the capacitor voltage...... on the state feedback decoupling path in order to compensate for system delays. Practical implementation issues are discussed with reference to both the decoupling techniques. A design methodology for the voltage loop, that considers the closed loop transfer functions developed for the inner loop, is also...

  11. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity

    Directory of Open Access Journals (Sweden)

    Yuhuan Luo

    2018-06-01

    Full Text Available As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2 channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

  12. Numerical static state feedback laws for closed-loop singular optimal control

    NARCIS (Netherlands)

    Graaf, de S.C.; Stigter, J.D.; Straten, van G.

    2005-01-01

    Singular and non-singular control trajectories of agricultural and (bio) chemical processes may need to be recalculated from time to time for use in closed-loop optimal control, because of unforeseen changes in state values and noise. This is time consuming. As an alternative, in this paper,

  13. R-loops and initiation of DNA replication in human cells: a missing link?

    Directory of Open Access Journals (Sweden)

    Rodrigo eLombraña

    2015-04-01

    Full Text Available The unanticipated widespread occurrence of stable hybrid DNA/RNA structures (R-loops in human cells and the increasing evidence of their involvement in several human malignancies have invigorated the research on R-loop biology in recent years. Here we propose that physiological R-loop formation at CpG island promoters can contribute to DNA replication origin specification at these regions, the most efficient replication initiation sites in mammalian cells. Quite likely, this occurs by the strand-displacement reaction activating the formation of G-quadruplex structures that target the Origin Recognition Complex (ORC in the single-stranded conformation. In agreement with this, we found that R-loops co-localize with the ORC within the same CpG island region in a significant fraction of these efficient replication origins, precisely at the position displaying the highest density of G4 motifs. This scenario builds on the connection between transcription and replication in human cells and suggests that R-loop dysregulation at CpG island promoter-origins might contribute to the phenotype of DNA replication abnormalities and loss of genome integrity detected in cancer cells.

  14. Reduction of the elevator illusion from continued hypergravity exposure and visual error-corrective feedback

    Science.gov (United States)

    Welch, R. B.; Cohen, M. M.; DeRoshia, C. W.

    1996-01-01

    Ten subjects served as their own controls in two conditions of continuous, centrifugally produced hypergravity (+2 Gz) and a 1-G control condition. Before and after exposure, open-loop measures were obtained of (1) motor control, (2) visual localization, and (3) hand-eye coordination. During exposure in the visual feedback/hypergravity condition, subjects received terminal visual error-corrective feedback from their target pointing, and in the no-visual feedback/hypergravity condition they pointed open loop. As expected, the motor control measures for both experimental conditions revealed very short lived underreaching (the muscle-loading effect) at the outset of hypergravity and an equally transient negative aftereffect on returning to 1 G. The substantial (approximately 17 degrees) initial elevator illusion experienced in both hypergravity conditions declined over the course of the exposure period, whether or not visual feedback was provided. This effect was tentatively attributed to habituation of the otoliths. Visual feedback produced a smaller additional decrement and a postexposure negative after-effect, possible evidence for visual recalibration. Surprisingly, the target-pointing error made during hypergravity in the no-visual-feedback condition was substantially less than that predicted by subjects' elevator illusion. This finding calls into question the neural outflow model as a complete explanation of this illusion.

  15. Closed-Loop Tension Control System for Injection Moulding Machine

    African Journals Online (AJOL)

    When the mould unit is full, this drive keeps transporting filament materials without proper control. This project developed a closed loop feedback tension control system and it is to replace servo motor drive system for the transportation of filament and it demonstrated a new technological advancement and the theory of ...

  16. Joint angle sensors for closed-loop control

    Science.gov (United States)

    Ko, Wen H.; Miao, Chih-Lei

    In order to substitute braces that have built-in goniometers and to provide feedback signals for closed loop control of lower extremity Functional Neuromuscular System in paraplegics, a stretchable capacitive sensor was developed to accurately detect angular movement in joints. Promising clinical evaluations on the knee joints of a paraplegic and a volunteer were done. The evaluations show great promise for the possibility of implantation applications.

  17. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time-delay

    Science.gov (United States)

    Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun

    2015-12-01

    This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.

  18. Linking Multimodal Communication and Feedback Loops to Reinforce Plagiarism Awareness

    Science.gov (United States)

    O'Donnell, Kerri

    2011-01-01

    In this article, the author describes the use of an electronic quiz on a trial basis as a means of improving students' awareness of academic misconduct issues and their understanding of how to avoid those issues. The quiz integrated several new factors into information-sharing processes, increasing feedback to both students and staff. It was by no…

  19. UKIRAN KERAWANG ACEH GAYO SEBAGAI INSPIRASI PENCIPTAAN MOTIF BATIK KHAS GAYO

    Directory of Open Access Journals (Sweden)

    Irfa ina Rohana Salma

    2016-12-01

    Full Text Available ABSTRAK Industri batik mulai berkembang di Gayo, tetapi belum memiliki motif batik khas daerah. Oleh karena itu perlu diciptakan motif batik khas Gayo, dengan mengambil inspirasi dari ukiran yang terdapat pada rumah tradisional yang biasa disebut ukiran kerawang Gayo. Tujuan penciptaan seni ini adalah untuk menciptakan motif batik yang memiliki ciri khas Gayo. Metode yang digunakan yaitu eksplorasi ide, perancangan, dan perwujudan menjadi motif batik. Dalam kegiatan ini telah diciptakan enam motif batik khas Gayo yaitu: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif Gayo Lurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. Hasil uji kesukaan terhadap motif kepada lima puluh responden menunjukkan bahwa Motif Ceplok Gayo paling banyak dipilih oleh responden yaitu sebesar 19%, sedangkan Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo Lurus 15% dan Motif Gayo Tegak 14%. Rata-rata motif yang dihasilkan mendapatkan apresiasi yang baik dari responden, sehingga semua motif layak diproduksi sebagai batik khas Gayo.Kata kunci: batik Gayo, Motif Ceplok Gayo, Motif Parang Gayo.ABSTRACTBatik industry began to develop in Gayo, but have not had a typical batik motif itself. Therefore, it is necessary to create batik motifs of Gayo, by taking inspiration from the carvings found in traditional houses commonly called kerawang Gayo. The purpose of this art is to create motifs those have a Gayo characteristic. The method used are the idea exploration, design, and motifs embodiment. In this activity has created six Gayo batik motifs, namely: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif GayoLurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. The test results fondness of the motives to fifty respondents indicated that the Motif Ceplok Gayo most preferred by respondents ie 19%, while Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo

  20. Feedback stabilization of the axisymmetric instability of a deformable tokamak plasma

    International Nuclear Information System (INIS)

    Pomphrey, N.; Jardin, S.C.; Ward, D.J.

    1989-01-01

    The paper presents an analysis of the magnetohydrodynamic stability of the axisymmetric system consisting of a free boundary tokamak plasma with non-circular cross-section, finite resistivity passive conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with gain G and current carrying poloidal field coils. A numerical simulation of the system when G is set to zero identifies flux loop locations which correctly sense the plasma motion. However, when certain of these locations are incorporated into an active feedback scheme, the plasma fails to be stabilized, no matter what value of the gain is chosen. Analysis on the basis of an extended energy principle indicates that this failure is due to the deformability of the plasma cross-section. (author). 14 refs, 7 figs

  1. Including model uncertainty in the model predictive control with output feedback

    Directory of Open Access Journals (Sweden)

    Rodrigues M.A.

    2002-01-01

    Full Text Available This paper addresses the development of an efficient numerical output feedback robust model predictive controller for open-loop stable systems. Stability of the closed loop is guaranteed by using an infinite horizon predictive controller and a stable state observer. The performance and the computational burden of this approach are compared to a robust predictive controller from the literature. The case used for this study is based on an industrial gasoline debutanizer column.

  2. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Nanyu Han

    Full Text Available Neuraminidase (NA of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1 was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150 of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  3. Normal mode approach to modelling of feedback stabilization of the resistive wall mode

    International Nuclear Information System (INIS)

    Chu, M.S.; Chance, M.S.; Okabayashi, M.; Glasser, A.H.

    2003-01-01

    Feedback stabilization of the resistive wall mode (RWM) of a plasma in a general feedback configuration is formulated in terms of the normal modes of the plasma-resistive wall system. The growth/damping rates and the eigenfunctions of the normal modes are determined by an extended energy principle for the plasma during its open (feedback) loop operation. A set of equations are derived for the time evolution of these normal modes with currents in the feedback coils. The dynamics of the feedback system is completed by the prescription of the feedback logic. The feasibility of the feedback is evaluated by using the Nyquist diagram method or by solving the characteristic equations. The elements of the characteristic equations are formed from the growth and damping rates of the normal modes, the sensor matrix of the perturbation fluxes detected by the sensor loops, the excitation matrix of the energy input to the normal modes by the external feedback coils, and the feedback logic. (The RWM is also predicted to be excited by an external error field to a large amplitude when it is close to marginal stability.) This formulation has been implemented numerically and applied to the DIII-D tokamak. It is found that feedback with poloidal sensors is much more effective than feedback with radial sensors. Using radial sensors, increasing the number of feedback coils from a central band on the outboard side to include an upper and a lower band can substantially increase the effectiveness of the feedback system. The strength of the RWM that can be stabilized is increased from γτ w = 1 to 30 (γ is the growth rate of the RWM in the absence of feedback and τ w is the resistive wall time constant) Using poloidal sensors, just one central band of feedback coils is sufficient for the stabilization of the RWM with γτ w = 30. (author)

  4. Impact of biogenic emissions on feedbacks in the climate system

    Science.gov (United States)

    Krüger, Olaf

    2017-04-01

    Impact of biogenic emissions on feedbacks in the climate system Bio-geophysical feedback between marine or continental ecosystems and the atmosphere potentially can alter climate change. A prominent feedback loop which is under discussion since 1983 bases on the emission of biologically produced gases - molecular oxygen, sulphur containing compounds and possibly isoprene, supersaturated in oceanic waters - into the marine troposphere. These by-products of phytoplankton metabolism lead to aerosol production and procure sustained influence on climate via modulation of cloud optical properties. In this contribution some findings related to the above mentioned climate processes are presented with special emphasis on marine ecosystems. A comparison of marine and continental ecosystems is made and different processes with major impact on feedbacks in the climate system are discussed.

  5. Feedbacks in human-landscape systems

    Science.gov (United States)

    Chin, Anne

    2015-04-01

    As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled

  6. HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance

    Directory of Open Access Journals (Sweden)

    Babak Nami

    2017-04-01

    Full Text Available HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs. HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2, which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab.

  7. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study.

    Science.gov (United States)

    Irimia, Danut C; Cho, Woosang; Ortner, Rupert; Allison, Brendan Z; Ignat, Bogdan E; Edlinger, Guenter; Guger, Christoph

    2017-11-01

    Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment. The patients were instructed to imagine the movement of either the left or right hand in random order. During these two MI tasks, two types of feedback were provided: a bar extending to the left or right side of a monitor as visual feedback and passive hand opening stimulated from FES as proprioceptive feedback. Both types of feedback relied on the BCI classification result achieved using common spatial patterns and a linear discriminant analysis classifier. After 10 sessions of recoveriX training, one patient partially regained control of wrist extension in her paretic wrist and the other patient increased the range of middle finger movement by 1 cm. A controlled group study is planned with a new version of the recoveriX system, which will have several improvements. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    a linear system to be controlled by linear state feedback control. The advantage of using a nonlinear approach as feedback linearization is the ability of this method to cope with nonlinearities and different operating points. However, the model describing the GMAW process is not exact, and therefore......In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  9. Towards the use of Structural Loop Analysis to Study System Behaviour of Socio-Ecological Systems.

    Science.gov (United States)

    Abram, Joseph; Dyke, James

    2016-04-01

    Maintaining socio-ecological systems in desirable states is key to developing a growing economy, alleviating poverty and achieving a sustainable future. While the driving forces of an environmental system are often well known, the dynamics impacting these drivers can be hidden within a tangled structure of causal chains and feedback loops. A lack of understanding of a system's dynamic structure and its influence on a system's behaviour can cause unforeseen side-effects during model scenario testing and policy implementation. Structural Loop analysis of socio-ecological system models identifies dominant feedback structures during times of behavioural shift, allowing the user to monitor key influential drivers during model simulation. This work carries out Loop Eigenvalue Elasticity Analysis (LEEA) on three system dynamic models, exploring tipping points in lake systems undergoing eutrophication. The purpose is to explore the potential benefits and limitations of the technique in the field of socio-ecology. The LEEA technique shows promise for socio-ecological systems which undergo regime shifts or express oscillatory trends, but shows limited usefulness with large models. The results of this work highlight changes in feedback loop dominance, years prior to eutrophic tipping events in lake systems. LEEA could be used as an early warning signal to impending system changes, complementary to other known early warning signals. This approach could improve our understanding during critical times of a system's behaviour, changing how we approach model analysis and the way scenario testing and policy implementation are addressed in socio-ecological system models.

  10. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down

    2007-01-01

    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  11. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif....... A special viewing feature, MHC fight, allows for display of the specificity of two different MHC molecules side by side. We show how the web server can be used to discover and display surprising similarities as well as differences between MHC molecules within and between different species. The MHC motif...

  12. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    Science.gov (United States)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  13. Feedback-Controlled LED Photobioreactor for Photophysiological Studies of Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Stolyar, Sergey; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.

    2013-04-09

    A custom photobioreactor (PBR) was designed to enable automatic light adjustments using computerized feedback control. A black anodized aluminum enclosure, constructed to surround the borosilicate reactor vessel, prevents the transmission of ambient light and serves as a mount for arrays of light-emitting diodes (LEDs). The high-output LEDs provide narrow-band light of either 630 or 680 nm for preferential excitation of the cyanobacterial light-harvesting pigments, phycobilin or chlorophyll a, respectively. Custom developed software BioLume provides automatic control of optical properties and a computer feedback loop can automatically adjust the incident irradiance as necessary to maintain a fixed transmitted light through the culture, based on user-determined set points. This feedback control serves to compensate for culture dynamics which have optical effects, (e.g., changing cell density, pigment adaptations) and thus can determine the appropriate light conditions for physiological comparisons or to cultivate light-sensitive strains, without prior analyses. The LED PBR may also be controlled as a turbidostat, using a feedback loop to continuously adjust the rate of media-dilution based on the transmitted light measurements, with a fast and precise response. This cultivation system gains further merit as a high-performance analytical device, using non-invasive tools (e.g., dissolved gas sensors, online mass spectrometry) to automate real-time measurements, thus permitting unsupervised experiments to search for optimal growth conditions, to monitor physiological responses to perturbations, as well as to quantitate photophysiological parameters using an in situ light-saturation response routine.

  14. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.

    2016-01-01

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only the level of steady-state generation but also, in the optimal case, the power of the driving electron beam.

  15. Individualising Media Practice Education Using a Feedback Loop and Instructional Videos Within an eLearning Environment.

    Directory of Open Access Journals (Sweden)

    Trevor Harris

    2012-06-01

    Full Text Available This paper explores the development and impact of the author’s TELE (Technology Enhanced Learning Environment action research project for individualising media practice education. The latest iteration of different classroom methodologies being employed to develop high-level skills in media production, the author has combined an interactive eLearning approach with instructional videos and, crucially, an individual feedback loop in order to widen access to the curriculum and create a more efficient teaching and learning environment. The focus therefore is on student engagement and organisational efficiencies as a result of the research. It should be noted that there has been no funding attached to this work, nor are there any institutional imperatives or other stakeholder involvement in this research. This project has been undertaken by the author as an evolutionary development of the various methodologies developed, cognisant of the increased technology literacy of the student cohort. The educational benefit of bringing video instruction into the curriculum as part of the project is examined as a creative pedagogy of direct benefit to students rather than as a subliminal marketing tool that other systems are often used for. Over 16K words of written data was collected during the project, and this is analysed both quantitatively and qualitatively with reference to the initial objectives of the research

  16. Motif discovery in ranked lists of sequences

    DEFF Research Database (Denmark)

    Nielsen, Morten Muhlig; Tataru, Paula; Madsen, Tobias

    2016-01-01

    Motif analysis has long been an important method to characterize biological functionality and the current growth of sequencing-based genomics experiments further extends its potential. These diverse experiments often generate sequence lists ranked by some functional property. There is therefore...... advantage of the regular expression feature, including enrichments for combinations of different microRNA seed sites. The method is implemented and made publicly available as an R package and supports high parallelization on multi-core machinery....... a growing need for motif analysis methods that can exploit this coupled data structure and be tailored for specific biological questions. Here, we present an exploratory motif analysis tool, Regmex (REGular expression Motif EXplorer), which offers several methods to evaluate the correlation of motifs...

  17. Fuzzy combination of fuzzy and switching state-feedback controllers for nonlinear systems subject to parameter uncertainties.

    Science.gov (United States)

    Lam, H K; Leung, Frank H F

    2005-04-01

    This paper presents a fuzzy controller, which involves a fuzzy combination of local fuzzy and global switching state-feedback controllers, for nonlinear systems subject to parameter uncertainties with known bounds. The nonlinear system is represented by a fuzzy combined Takagi-Sugeno-Kang model, which is a fuzzy combination of the global and local fuzzy plant models. By combining the local fuzzy and global switching state-feedback controllers using fuzzy logic techniques, the advantages of both controllers can be retained and the undesirable chattering effect introduced by the global switching state-feedback controller can be eliminated. The steady-state error introduced by the global switching state-feedback controller when a saturation function is used can also be removed. Stability conditions, which are related to the system matrices of the local and global closed-loop systems, are derived to guarantee the closed-loop system stability. An application example will be given to demonstrate the merits of the proposed approach.

  18. Rail-to-rail low-power fully differential OTA utilizing adaptive biasing and partial feedback

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    consumption. The DC-gain of the proposed OTA is improved by adding a partial feedback loop. A Common-Mode Feedback (CMFB) circuit is required for fully differential rail-to-rail operation. Simulations show that the OTA topology has a low stand-by power consumption of 96μW and a high FoM of 3.84 [(V...

  19. Leukemia Mediated Endothelial Cell Activation Modulates Leukemia Cell Susceptibility to Chemotherapy through a Positive Feedback Loop Mechanism.

    Directory of Open Access Journals (Sweden)

    Bahareh Pezeshkian

    Full Text Available In acute myeloid leukemia (AML, the chances of achieving disease-free survival are low. Studies have demonstrated a supportive role of endothelial cells (ECs in normal hematopoiesis. Here we show that similar intercellular relationships exist in leukemia. We demonstrate that leukemia cells themselves initiate these interactions by directly modulating the behavior of resting ECs through the induction of EC activation. In this inflammatory state, activated ECs induce the adhesion of a sub-set of leukemia cells through the cell adhesion molecule E-selectin. These adherent leukemia cells are sequestered in a quiescent state and are unaffected by chemotherapy. The ability of adherent cells to later detach and again become proliferative following exposure to chemotherapy suggests a role of this process in relapse. Interestingly, differing leukemia subtypes modulate this process to varying degrees, which may explain the varied response of AML patients to chemotherapy and relapse rates. Finally, because leukemia cells themselves induce EC activation, we postulate a positive-feedback loop in leukemia that exists to support the growth and relapse of the disease. Together, the data defines a new mechanism describing how ECs and leukemia cells interact during leukemogenesis, which could be used to develop novel treatments for those with AML.

  20. Deciphering functional glycosaminoglycan motifs in development.

    Science.gov (United States)

    Townley, Robert A; Bülow, Hannes E

    2018-03-23

    Glycosaminoglycans (GAGs) such as heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate are linear glycans, which when attached to protein backbones form proteoglycans. GAGs are essential components of the extracellular space in metazoans. Extensive modifications of the glycans such as sulfation, deacetylation and epimerization create structural GAG motifs. These motifs regulate protein-protein interactions and are thereby repsonsible for many of the essential functions of GAGs. This review focusses on recent genetic approaches to characterize GAG motifs and their function in defined signaling pathways during development. We discuss a coding approach for GAGs that would enable computational analyses of GAG sequences such as alignments and the computation of position weight matrices to describe GAG motifs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  2. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes

    Science.gov (United States)

    Sanborn, Adrian; Rao, Suhas; Huang, Su-Chen; Durand, Neva; Huntley, Miriam; Jewett, Andrew; Bochkov, Ivan; Chinnappan, Dharmaraj; Cutkosky, Ashok; Li, Jian; Geeting, Kristopher; McKenna, Doug; Stamenova, Elena; Gnirke, Andreas; Melnikov, Alexandre; Lander, Eric; Aiden, Erez

    Our recent kilobase-resolution genome-wide maps of DNA self-contacts demonstrated that mammalian genomes are organized into domains and loops demarcated by the DNA-binding protein CTCF. Here, we combine these maps with new Hi-C, microscopy, and genome-editing experiments to study the physical structure of chromatin fibers, domains, and loops. We find that domains are inconsistent with equilibrium and fractal models. Instead, we use physical simulations to study two models of genome folding. In one, intermonomer attraction during condensation leads to formation of an anisotropic ``tension globule.'' In the other, CTCF and cohesin act together to extrude unknotted loops. Both models are consistent with the observed domains and loops. However, the extrusion model explains a far wider array of observations, such as why the CTCF-binding motifs at pairs of loop anchors lie in the convergent orientation. Finally, we perform 13 genome-editing experiments examining the effect of altering CTCF-binding sites on chromatin folding. The extrusion model predicts in silico the experimental maps using only CTCF-binding sites. Thus, we show that it is possible to disrupt, restore, and move loops and domains using targeted mutations as small as a single base pair.

  3. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs

    Directory of Open Access Journals (Sweden)

    Ricardo eFlores

    2012-06-01

    Full Text Available As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson-Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunvioidae adopt multibranched conformations occasionally stabilized by kissing loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunvioidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures ⎯either global or local ⎯ determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.

  4. A Design Algorithm using External Perturbation to Improve Iterative Feedback Tuning Convergence

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Hjalmarsson, Håkan; Poulsen, Niels Kjølstad

    2011-01-01

    Iterative Feedback Tuning constitutes an attractive control loop tuning method for processes in the absence of process insight. It is a purely data driven approach for optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost function...... gradient, which is used in a search algorithm for minimizing the performance cost. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the data...

  5. Stability of longitudinal bunch length feedback for heavy-ion synchrotrons

    Directory of Open Access Journals (Sweden)

    D. Lens

    2013-03-01

    Full Text Available In heavy-ion synchrotrons such as the SIS18 at Helmholtzzentrum für Schwerionenforschung, Helmholtz Centre for Heavy Ion Research (GSI, coherent oscillations of the particle bunches are damped by rf feedback systems to increase the stability and to improve the beam quality. In the longitudinal direction, important modes are the coherent longitudinal dipole and quadrupole oscillation. In this paper we present a new and rigorous approach to analyze the longitudinal feedback to damp these modes. The results are applied to the rf feedback loop at GSI that damps the quadrupole mode. The stability analysis is compared with simulations and is in good agreement with results of a beam experiment. Finally, we summarize practical implications for the operation of the feedback system regarding performance and stability.

  6. Aplikasi Ornamen Khas Maluku untuk Pengembangan Desain Motif Batik

    Directory of Open Access Journals (Sweden)

    Masiswo Masiswo

    2016-04-01

    Full Text Available ABSTRAKMaluku memiliki banyak ragam hias budaya warisan nilai leluhur berupa ornamen etnis yang merupakan kesenian dan keterampilan kerajinan. Hasil warisan tersebut sampai saat ini masih lestari hidup serta dapat dinikmati sebagai konsumsi rohani yang memuaskan manusia. Berkaitan dengan keberlangsungan nilai-nilai tradisi etnis yang berwujud pada ornamen-ornamen daerah Maluku, maka dikembangkan untuk kebutuhan manusia berupa motif batik pada kain. Pengembangan ornamen ini lebih menekankan pada representasi akan bentuk-bentuk ornamen yang diterapkan pada kerajinan batik berupa motif khas Maluku. Pengembangan alternatif desain motif batik dibuat tiga variasi yang bersumber dari ornamen khas Maluku dibuat prototipe produknya dan diuji ketahanan luntur warnanya. Hasil uji ketahanan luntur warna terhadap gosokan basah dari tiga prototipe produk berpredikat baik sekali terdapat pada “Motif Siwa” dan predikat baik pada motif “Siwa Talang” dan motif “Matahari Siwa Talang”.Kata kunci: desain, Maluku, motif batik, ornamenABSTRACTMaluku has much decorative ancestral cultural heritage value in the form of ornament ethnic arts and crafts skills. The result of the legacy is still sustainable living can be enjoyed as well as satisfying spiritual human consumption.Related to the sustainability of traditional values in the form of ethnic ornaments Maluku, it was developed for human needs in the form of batik cloth . The development of these ornaments will be more emphasis on the representation forms of ornamentation that is applied to a batik motif Maluku. Development of alternative design motif made three variations. The development of three alternative design motifs derived from the Maluku ornaments made and tested a prototype product color fastness. The test results of color fastness to wet rubbing of the three prototypes are excellent products predicated on the "Motif Siwa" and a good rating on the motif "Siwa Talang" and motif "Matahari Siwa

  7. The limits of de novo DNA motif discovery.

    Directory of Open Access Journals (Sweden)

    David Simcha

    Full Text Available A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of

  8. Exploring the correlation between the sequence composition of the nucleotide binding G5 loop of the FeoB GTPase domain (NFeoB) and intrinsic rate of GDP release.

    Science.gov (United States)

    Guilfoyle, Amy P; Deshpande, Chandrika N; Schenk, Gerhard; Maher, Megan J; Jormakka, Mika

    2014-12-12

    GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop. Our study confirms that several of the residues in the G5 motif have an important role in the intrinsic affinity and release of GDP. In particular, a T151A mutant (third residue of the G5 loop) leads to a reduced nucleotide affinity and provokes a drastically accelerated dissociation of GDP.

  9. Parole, Sintagmatik, dan Paradigmatik Motif Batik Mega Mendung

    Directory of Open Access Journals (Sweden)

    Rudi - Nababan

    2012-04-01

    Full Text Available ABSTRACT   Discussing traditional batik is related a lot to the organization system of fine arts element ac- companying it, either the pattern of the motif or the technique of the making. In this case, the motif of Mega Mendung Cirebon certainly has patterns and rules which are traditionally different from the other motifs in other areas. Through  semiotics analysis especially with Saussure and Pierce concept, it can be traced that batik with Cirebon motif, in this case Mega Mendung motif, has parole and langue system, as unique fine arts language in batik, and structure of visual syntagmatic and paradigmatic. In the context of batik motif as fine arts language, it is surely related to sign system as symbol and icon.       Keywords: visual semiotic, Cirebon’s batik.

  10. Optimizing the feedback control of Galvo scanners for laser manufacturing systems

    Science.gov (United States)

    Mirtchev, Theodore; Weeks, Robert; Minko, Sergey

    2010-06-01

    This paper summarizes the factors that limit the performance of moving-magnet galvo scanners driven by closed-loop digital servo amplifiers: torsional resonances, drifts, nonlinearities, feedback noise and friction. Then it describes a detailed Simulink® simulator that takes into account these factors and can be used to automatically tune the controller for best results with given galvo type and trajectory patterns. It allows for rapid testing of different control schemes, for instance combined position/velocity PID loops and displays the corresponding output in terms of torque, angular position and feedback sensor signal. The tool is configurable and can either use a dynamical state-space model of galvo's open-loop response, or can import the experimentally measured frequency domain transfer function. Next a drive signal digital pre-filtering technique is discussed. By performing a real-time Fourier analysis of the raw command signal it can be pre-warped to minimize all harmonics around the torsional resonances while boosting other non-resonant high frequencies. The optimized waveform results in much smaller overshoot and better settling time. Similar performance gain cannot be extracted from the servo controller alone.

  11. Studies of feedback stabilization of axisymmetric modes in deformable tokamak plasmas

    International Nuclear Information System (INIS)

    Ward, D.J.

    1991-01-01

    A new linear MHD stability code, NOVA-W, is described and applied to the study of the feedback stabilization of the axisymmetric mode in deformable tokamak plasma. The NOVA-W code is a modification of the non-variational MHD stability code NOVA that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The code has been tested for the case of passive stabilization against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. The NOVA-W code is used to examine the effects of plasma deformability on feedback stabilization. It is seen that plasmas with shaped cross sections have unstable motion different from a rigid shift. Plasma equilibria with large triangularity show particularly significant deviations from a uniform rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the motion in a way that reduces the stabilizing effects of these conductors. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the position of the flux loops. These non-rigid components of the eigenfunction always serve to reduce the stabilizing effect of the active feedback system by reducing the measurable poloidal flux at the flux-loop locations

  12. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model

    Directory of Open Access Journals (Sweden)

    Wasserman Wyeth W

    2011-03-01

    Full Text Available Abstract Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs, microRNAs (miRNAs and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs. Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL. In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT, an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http

  13. Operation of the PEP transverse beam feedback

    International Nuclear Information System (INIS)

    Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.

    1981-02-01

    The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results

  14. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding.

    Science.gov (United States)

    Sarek, Grzegorz; Vannier, Jean-Baptiste; Panier, Stephanie; Petrini, John H J; Boulton, Simon J

    2015-02-19

    The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain.

    Science.gov (United States)

    Law, S F; Zhang, Y Z; Fashena, S J; Toby, G; Estojak, J; Golemis, E A

    1999-10-10

    HEF1, p130(Cas), and Efs define a family of multidomain docking proteins which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 function has been specifically implicated in signaling pathways important for cell adhesion and differentiation in lymphoid and epithelial cells. While the SH3 domains and SH2-binding site domains (substrate domains) of HEF1 family proteins are well characterized and binding partners known, to date the highly conserved carboxy-terminal domains of the three proteins have lacked functional definition. In this study, we have determined that the carboxy-terminal domain of HEF1 contains a divergent helix-loop-helix (HLH) motif. This motif mediates HEF1 homodimerization and HEF1 heterodimerization with a recognition specificity similar to that of the transcriptional regulatory HLH proteins Id2, E12, and E47. We had previously demonstrated that the HEF1 carboxy-terminus expressed as a separate domain in yeast reprograms cell division patterns, inducing constitutive pseudohyphal growth. Here we show that pseudohyphal induction by HEF1 requires an intact HLH, further supporting the idea that this motif has an effector activity for HEF1, and implying that HEF1 pseudohyphal activity derives in part from interactions with yeast helix-loop-helix proteins. These combined results provide initial insight into the mode of function of the HEF1 carboxy-terminal domain and suggest that the HEF1 protein may interact with cellular proteins which control differentiation. Copyright 1999 Academic Press.

  16. MHD computation of feedback of resistive-shell instabilities in the reversed field pinch

    International Nuclear Information System (INIS)

    Zita, E.J.; Prager, S.C.

    1992-05-01

    MHD computation demonstrates that feedback can sustain reversal and reduce loop voltage in resistive-shell reversed field pinch (RFP) plasmas. Edge feedback on ∼2R/a tearing modes resonant near axis is found to restore plasma parameters to nearly their levels with a close-fitting conducting shell. When original dynamo modes are stabilized, neighboring tearing modes grow to maintain the RFP dynamo more efficiently. This suggests that experimentally observed limits on RFP pulselengths to the order of the shell time can be overcome by applying feedback to a few helical modes

  17. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  18. Motif statistics and spike correlations in neuronal networks

    International Nuclear Information System (INIS)

    Hu, Yu; Shea-Brown, Eric; Trousdale, James; Josić, Krešimir

    2013-01-01

    Motifs are patterns of subgraphs of complex networks. We studied the impact of such patterns of connectivity on the level of correlated, or synchronized, spiking activity among pairs of cells in a recurrent network of integrate and fire neurons. For a range of network architectures, we find that the pairwise correlation coefficients, averaged across the network, can be closely approximated using only three statistics of network connectivity. These are the overall network connection probability and the frequencies of two second order motifs: diverging motifs, in which one cell provides input to two others, and chain motifs, in which two cells are connected via a third intermediary cell. Specifically, the prevalence of diverging and chain motifs tends to increase correlation. Our method is based on linear response theory, which enables us to express spiking statistics using linear algebra, and a resumming technique, which extrapolates from second order motifs to predict the overall effect of coupling on network correlation. Our motif-based results seek to isolate the effect of network architecture perturbatively from a known network state. (paper)

  19. Bayesian centroid estimation for motif discovery.

    Science.gov (United States)

    Carvalho, Luis

    2013-01-01

    Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  20. Bayesian centroid estimation for motif discovery.

    Directory of Open Access Journals (Sweden)

    Luis Carvalho

    Full Text Available Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  1. Operation and performance of a longitudinal feedback system using digital signal processing

    International Nuclear Information System (INIS)

    Teytelman, D.; Fox, J.; Hindi, H.

    1994-01-01

    A programmable longitudinal feedback system using a parallel array of AT ampersand T 1610 digital signal processors has been developed as a component of the PEP-II R ampersand D program. This system has been installed at the Advanced Light Source (LBL) and implements full speed bunch by bunch signal processing for storage rings with bunch spacing of 4ns. Open and closed loop results showing the action of the feedback system are presented, and the system is shown to damp coupled-bunch instabilities in the ALS. A unified PC-based software environment for the feedback system operation is also described

  2. A switched state feedback law for the stabilization of LTI systems.

    Energy Technology Data Exchange (ETDEWEB)

    Santarelli, Keith R.

    2009-09-01

    Inspired by prior work in the design of switched feedback controllers for second order systems, we develop a switched state feedback control law for the stabilization of LTI systems of arbitrary dimension. The control law operates by switching between two static gain vectors in such a way that the state trajectory is driven onto a stable n - 1 dimensional hyperplane (where n represents the system dimension). We begin by briefly examining relevant geometric properties of the phase portraits in the case of two-dimensional systems to develop intuition, and we then show how these geometric properties can be expressed as algebraic constraints on the switched vector fields that are applicable to LTI systems of arbitrary dimension. We then derive necessary and sufficient conditions to ensure stabilizability of the resulting switched system (characterized primarily by simple conditions on eigenvalues), and describe an explicit procedure for designing stabilizing controllers. We then show how the newly developed control law can be applied to the problem of minimizing the maximal Lyapunov exponent of the corresponding closed-loop state trajectories, and we illustrate the closed-loop transient performance of these switched state feedback controllers via multiple examples.

  3. Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.

    Science.gov (United States)

    Lion, Sébastien

    2018-01-01

    Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.

  4. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    International Nuclear Information System (INIS)

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-01-01

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured

  5. Processing oscillatory signals by incoherent feedforward loops

    Science.gov (United States)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  6. The Effect of C-X-C Motif Chemokine 13 on Hepatocellular Carcinoma Associates with Wnt Signaling

    Directory of Open Access Journals (Sweden)

    Chunyan Li

    2015-01-01

    Full Text Available Objects. To investigate the effect of CXCL13 (C-X-C motif chemokine 13 on hepatocellular carcinoma and clarify the potential mechanisms. Methods. 32 patients with hepatocellular carcinoma and 12 healthy controls were recruited for analyzing the expression of CXCL13 by RT-PCR (reverse transcription-polymerase chain reaction. ELISA (enzyme-linked immune-sorbent assay was used to test the concentration of serum CXCL13. The interaction between CXCL13 and Wnt signaling was analyzed by western blot. In vitro PBMCs cultured with HepG2 supernatant, the levels of IL-12, IL4, IL-6, and IL-17, and four IgG subclasses were detected by ELISA. Results. The rate of high expression CXCL13 was 63.4% in advanced HCC patients, and the serum CXCL13 was also at a high level in stage IV HCC patients. Meanwhile CXCL13 level was positively correlated with serum ALT (Alanine Transaminase and AST (Aspartate Aminotransferase. CXCL13 and Wnt/β-catenin signaling shared a positive feedback loop. Furthermore, CXCL13 could obviously promote the expressions of IL-12 and IL-17, and induce IgG4 secreted by B cells. Conclusions. The effect of CXCL13 on promoting liver cancer is related to the activation of Wnt/β-catenin pathway and the facilitation of IL-12, IL-17 and IgG4. CXCL13 plays an important role in the progression of HCC, and it may act as a potential target for the diagnosis and treatment of HCC.

  7. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  8. CONTEMPORARY USAGE OF TRADITIONAL TURKISH MOTIFS IN PRODUCT DESIGNS

    Directory of Open Access Journals (Sweden)

    Tulay Gumuser

    2012-12-01

    Full Text Available The aim of this study is to identify the traditional Turkish motifs and its relations among present industrial designs. Traditional Turkish motifs played a very important role in 16th century onwards. The arts of the Ottoman Empire were used because of their symbolic meanings and unique styles. When we examine these motifs we encounter; Tiger Stripe, Three Spot (Çintemani, Rumi, Hatayi, Penç, Cloud, Crescent, Star, Crown, Hyacinth, Tulip and Carnation motifs. Nowadays, Turkish designers have begun to use these traditional Turkish motifs in their designs so as to create differences and awareness in the world design. The examples of these industrial designs, using the Turkish motifs, have survived and have Ottoman heritage and historical value. In this study, the Turkish motifs will be examined along with their focus on contemporary Turkish industrial designs used today.

  9. RNA motif search with data-driven element ordering.

    Science.gov (United States)

    Rampášek, Ladislav; Jimenez, Randi M; Lupták, Andrej; Vinař, Tomáš; Brejová, Broňa

    2016-05-18

    In this paper, we study the problem of RNA motif search in long genomic sequences. This approach uses a combination of sequence and structure constraints to uncover new distant homologs of known functional RNAs. The problem is NP-hard and is traditionally solved by backtracking algorithms. We have designed a new algorithm for RNA motif search and implemented a new motif search tool RNArobo. The tool enhances the RNAbob descriptor language, allowing insertions in helices, which enables better characterization of ribozymes and aptamers. A typical RNA motif consists of multiple elements and the running time of the algorithm is highly dependent on their ordering. By approaching the element ordering problem in a principled way, we demonstrate more than 100-fold speedup of the search for complex motifs compared to previously published tools. We have developed a new method for RNA motif search that allows for a significant speedup of the search of complex motifs that include pseudoknots. Such speed improvements are crucial at a time when the rate of DNA sequencing outpaces growth in computing. RNArobo is available at http://compbio.fmph.uniba.sk/rnarobo .

  10. Why do quality and reliability feedback loops not always work in practice: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, P.A.; Huijben, A.J.M.; Bouwhuis, D.; Brombacher, A.C

    2002-03-01

    The increasing competition in the market of consumer electronics forces industry to simultaneously improve the functionability, reliability and costs of their products. Due to the strong dynamics of this field an important measure in improving product quality is the feedback of information on actual field behaviour of a product which is extremely relevant for product development. This information, usually gathered by the service department, can help development to learn from the failures of earlier products and to improve the next product generations. This feedback process, however, does not always bring the expected benefits. This paper presents a model, based on an actual case study, of the structure of the feedback process in terms of information flows. The information flow model describes the chain or network of activities in the feedback process as a function of (different) drivers such as cost, time or quality. Using this information flow model it is possible to explain how quality and reliability related information propagates through a business process and where and why communication problems lead to disruptions in the feedback of this information. With this model, it is easier to understand the function of different parties in the service or after sales process, so that management of the information in this process becomes more transparent and can be improved.

  11. Why do quality and reliability feedback loops not always work in practice: a case study

    International Nuclear Information System (INIS)

    Molenaar, P.A.; Huijben, A.J.M.; Bouwhuis, D.; Brombacher, A.C.

    2002-01-01

    The increasing competition in the market of consumer electronics forces industry to simultaneously improve the functionability, reliability and costs of their products. Due to the strong dynamics of this field an important measure in improving product quality is the feedback of information on actual field behaviour of a product which is extremely relevant for product development. This information, usually gathered by the service department, can help development to learn from the failures of earlier products and to improve the next product generations. This feedback process, however, does not always bring the expected benefits. This paper presents a model, based on an actual case study, of the structure of the feedback process in terms of information flows. The information flow model describes the chain or network of activities in the feedback process as a function of (different) drivers such as cost, time or quality. Using this information flow model it is possible to explain how quality and reliability related information propagates through a business process and where and why communication problems lead to disruptions in the feedback of this information. With this model, it is easier to understand the function of different parties in the service or after sales process, so that management of the information in this process becomes more transparent and can be improved

  12. Control characteristics of cryogenic distillation column with a feedback stream for fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1997-01-01

    The control characteristics of the cryogenic distillation column with a feedback stream have been discussed based on computer simulation results. This column plays an important role in fusion reactor. A new control system was proposed from the simulation results. The flow rate of top product is determined from the composition and flow rate of a main feed stream by a feedforward control loop. The flow rates of the feedback stream and vapor stream within the column are proportionally changed with a corresponding change of feed flow rate. The flow rate of vapor stream within the column is further adjusted to maintain product purity by a feedback control loop. The proposed system can control the product purity for a large fluctuation of feed composition, a change of feed flow rate, and an increase or decrease of the number of total theoretical stages of the column. The control system should be designed for each column by considering its operating conditions and function. The present study gives us a basic procedure for the design method of the control system of the cryogenic distillation column. (author)

  13. Ombud’s Corner: the gift of feedback (part 2)

    CERN Multimedia

    Sudeshna Datta-Cockerill

    2016-01-01

    “When feedback is specific and timely, and also accompanied by a genuinely positive intention, it may be considered to be a gift”. This was the concluding message of the article in the last Bulletin. But how can negative feedback be perceived as an appreciated and useful gift?   As discussed in the previous article, delivering meaningful and effective feedback is an art, and as such, it may also be considered a duty for supervisors, in particular, to invest in honing their skills in order to achieve this aim without triggering demotivation or frustration in their supervisees. But the feedback loop is a two-way process, and requires an open mind on the receiving end in order to be truly useful. If delivered in a constructive and respectful way, feedback can provide us with important clues as to our own possible weaknesses and point us towards ways in which to develop and grow professionally. However, for it to be truly effective, it is up to each of us to hold back our initial ...

  14. General Output Feedback Stabilization for Fractional Order Systems: An LMI Approach

    Directory of Open Access Journals (Sweden)

    Yiheng Wei

    2014-01-01

    Full Text Available This paper is concerned with the problem of general output feedback stabilization for fractional order linear time-invariant (FO-LTI systems with the fractional commensurate order 0<α<2. The objective is to design suitable output feedback controllers that guarantee the stability of the resulting closed-loop systems. Based on the slack variable method and our previous stability criteria, some new results in the form of linear matrix inequality (LMI are developed to the static and dynamic output feedback controllers synthesis for the FO-LTI system with 0<α<1. Furthermore, the results are extended to stabilize the FO-LTI systems with 1≤α<2. Finally, robust output feedback control is discussed. Numerical examples are given to illustrate the effectiveness of the proposed design methods.

  15. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    Science.gov (United States)

    Giladi, Nis David; Ziv-Av, Amotz; Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Ben-Asher, Hiba Waldman; deCarvalho, Ana; Mikkelsen, Tom; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM. PMID:26267319

  16. Identification of sequence motifs significantly associated with antisense activity

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. Results We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. Conclusion The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic

  17. A novel charge sensitive preamplifier without the feedback resistor

    International Nuclear Information System (INIS)

    Bertuccio, G.

    1992-01-01

    A novel charge sensitive preamplifier which has no resistor in parallel with the feedback capacitor is presented. No external device or circuit is required to discharge the feedback capacitor. The detector leakage and signal current flows away through the gate of the first JFET which works with its gate to source junction slightly forward biased. The DC stabilization of the preamplifier is accomplished by an additional feedback loop, which permits to equalize the current flowing through the forward baised gate to source junction and the current coming from the detector. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using an input JFET with a transconductance to gate capacitance ratio of 4 mS/5.4 pF

  18. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    Science.gov (United States)

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  19. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  20. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.

    Science.gov (United States)

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2015-05-01

    Goal-directed movements, such as reaching out to grasp an object, are necessarily constrained by the spatial properties of the target such as its size, shape, and position. For example, during a reach-to-grasp movement, the peak width of the aperture formed by the thumb and fingers in flight (peak grip aperture, PGA) is linearly related to the target's size. Suppressing vision throughout the movement (visual open loop) has a small though significant effect on this relationship. Visual open loop conditions also produce a large increase in the PGA compared to when vision is available throughout the movement (visual closed loop). Curiously, this differential effect of the availability of visual feedback is influenced by the presentation order: the difference in PGA between closed- and open-loop trials is smaller when these trials are intermixed (an effect we have called 'homogenization'). Thus, grasping movements are affected not only by the availability of visual feedback (closed loop or open loop) but also by what happened on the previous trial. It is not clear, however, whether this carry-over effect is mediated through motor (or sensorimotor) memory or through the interference of different task sets for closed-loop and open-loop feedback that determine when the movements are fully specified. We reasoned that sensorimotor memory, but not a task set for closed and open loop feedback, would be specific to the type of response. We tested this prediction in a condition in which pointing to targets was alternated with grasping those same targets. Critically, in this condition, when pointing was performed in open loop, grasping was always performed in closed loop (and vice versa). Despite the fact that closed- and open-loop trials were alternating in this condition, we found no evidence for homogenization of the PGA. Homogenization did occur, however, in a follow-up experiment in which grasping movements and visual feedback were alternated between the left and the right

  1. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    International Nuclear Information System (INIS)

    López de Victoria, Aliana; Kieslich, Chris A; Rizos, Apostolos K; Krambovitis, Elias; Morikis, Dimitrios

    2012-01-01

    The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N 6 X 7 T 8 |S 8 X 9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3 loop with coreceptors CCR5/CXCR4, whereas the charge

  2. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    Directory of Open Access Journals (Sweden)

    López de Victoria Aliana

    2012-02-01

    Full Text Available Abstract Background The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Results Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N6X7T8|S8X9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. Conclusions We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3

  3. A double-gate double-feedback JFET charge-sensitive preamplifier

    International Nuclear Information System (INIS)

    Fazzi, A.

    1996-01-01

    A new charge-sensitive preamplifier (CSP) without a physical resistance in the feedback is presented. The input device has to be a double-gate JFET. In this new preamplifier configuration the feedback capacitor is continuously discharged by means of a second DC current feedback loop closed through the bottom gate of the input JFET. The top gate-channel junction works as usual in reverse bias, the bottom gate-channel is forward biased. A fraction of the current injected by the bottom gate reaches the top gate discharging the feedback capacitor. The n-channel double-gate JFET is considered from the viewpoint of the restoring action as a parasitic p-n-p ''transversal'' bipolar junction transistor. The new preamplifier is also suited for detectors operating at room temperature with leakage current which may vary with time. The DC behaviour and the dynamic behaviour of the circuit is analyzed and new measurements presented. (orig.)

  4. Regionally strong feedbacks between the atmosphere and terrestrial biosphere

    Science.gov (United States)

    Green, Julia K.; Konings, Alexandra G.; Alemohammad, Seyed Hamed; Berry, Joseph; Entekhabi, Dara; Kolassa, Jana; Lee, Jung-Eun; Gentine, Pierre

    2017-06-01

    The terrestrial biosphere and atmosphere interact through a series of feedback loops. Variability in terrestrial vegetation growth and phenology can modulate fluxes of water and energy to the atmosphere, and thus affect the climatic conditions that in turn regulate vegetation dynamics. Here we analyse satellite observations of solar-induced fluorescence, precipitation, and radiation using a multivariate statistical technique. We find that biosphere-atmosphere feedbacks are globally widespread and regionally strong: they explain up to 30% of precipitation and surface radiation variance in regions where feedbacks occur. Substantial biosphere-precipitation feedbacks are often found in regions that are transitional between energy and water limitation, such as semi-arid or monsoonal regions. Substantial biosphere-radiation feedbacks are often present in several moderately wet regions and in the Mediterranean, where precipitation and radiation increase vegetation growth. Enhancement of latent and sensible heat transfer from vegetation accompanies this growth, which increases boundary layer height and convection, affecting cloudiness, and consequently incident surface radiation. Enhanced evapotranspiration can increase moist convection, leading to increased precipitation. Earth system models underestimate these precipitation and radiation feedbacks mainly because they underestimate the biosphere response to radiation and water availability. We conclude that biosphere-atmosphere feedbacks cluster in specific climatic regions that help determine the net CO2 balance of the biosphere.

  5. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.

    Science.gov (United States)

    Ho, Hung-Jung; Chen, Tien-Chi

    2009-11-01

    Continuous passive motion (CPM) and controllable active motion (CAM) physiotherapy devices promote rehabilitation of damaged joints. This paper presents a computerized CPM/CAM system that obviates the need for mechanical resistance devices such as springs. The system is controlled by a computer which performs sliding-mode Fuzzy Neural Network (FNN) calculations online. CAM-type resistance force is generated by the active performance of an electric motor which is controlled so as to oppose the motion of the patient's leg. A force sensor under the patient's foot on the device pedal provides data for feedback in a sliding-mode FNN control loop built around the motor. Via an active impedance control feedback system, the controller drives the motor to behave similarly to a damped spring by generating and controlling the amplitude and direction of the pedal force in relation to the patient's leg. Experiments demonstrate the high sensitivity and speed of the device. The PC-based feedback nature of the control loop means that sophisticated auto-adaptable CPM/CAM custom-designed physiotherapy becomes possible. The computer base also allows extensive data recording, data analysis and network-connected remote patient monitoring.

  6. Persistent disturbance rejection via state feedback for networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Yue Dong [Institute of Information and Control Engineering Technology, Nanjing Normal University, 78 Bancang Street, Nanjing, Jiangsu 210042 (China)], E-mail: medongy@njnu.edu.cn; Lam, James [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Wang Zidong [Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)], E-mail: Zidong.Wang@brunel.ac.uk

    2009-04-15

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  7. Persistent disturbance rejection via state feedback for networked control systems

    International Nuclear Information System (INIS)

    Yue Dong; Lam, James; Wang Zidong

    2009-01-01

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  8. Software feedback for monochromator tuning at UNICAT (abstract)

    Science.gov (United States)

    Jemian, Pete R.

    2002-03-01

    Automatic tuning of double-crystal monochromators presents an interesting challenge in software. The goal is to either maximize, or hold constant, the throughput of the monochromator. An additional goal of the software feedback is to disable itself when there is no beam and then, at the user's discretion, re-enable itself when the beam returns. These and other routine goals, such as adherence to limits of travel for positioners, are maintained by software controls. Many solutions exist to lock in and maintain a fixed throughput. Among these include a hardware solution involving a wave form generator, and a lock-in amplifier to autocorrelate the movement of a piezoelectric transducer (PZT) providing fine adjustment of the second crystal Bragg angle. This solution does not work when the positioner is a slow acting device such as a stepping motor. Proportional integral differential (PID) loops have been used to provide feedback through software but additional controls must be provided to maximize the monochromator throughput. Presented here is a software variation of the PID loop which meets the above goals. By using two floating point variables as inputs, representing the intensity of x rays measured before and after the monochromator, it attempts to maximize (or hold constant) the ratio of these two inputs by adjusting an output floating point variable. These floating point variables are connected to hardware channels corresponding to detectors and positioners. When the inputs go out of range, the software will stop making adjustments to the control output. Not limited to monochromator feedback, the software could be used, with beam steering positioners, to maintain a measure of beam position. Advantages of this software feedback are the flexibility of its various components. It has been used with stepping motors and PZTs as positioners. Various devices such as ion chambers, scintillation counters, photodiodes, and photoelectron collectors have been used as

  9. Structural Characterization of the Loop at the Alpha-Subunit C-Terminus of the Mixed Lineage Leukemia Protein Activating Protease Taspase1.

    Directory of Open Access Journals (Sweden)

    Johannes van den Boom

    Full Text Available Type 2 asparaginases, a subfamily of N-terminal nucleophile (Ntn hydrolases, are activated by limited proteolysis. This activation yields a heterodimer and a loop region at the C-terminus of the α-subunit is released. Since this region is unresolved in all type 2 asparaginase crystal structures but is close to the active site residues, we explored this loop region in six members of the type 2 asparaginase family using homology modeling. As the loop model for the childhood cancer-relevant protease Taspase1 differed from the other members, Taspase1 activation as well as the conformation and dynamics of the 56 amino acids loop were investigated by CD and NMR spectroscopy. We propose a helix-turn-helix motif, which can be exploited as novel anticancer target to inhibit Taspase1 proteolytic activity.

  10. Analisis Unsur Matematika pada Motif Sulam Usus

    Directory of Open Access Journals (Sweden)

    Fredi Ganda Putra

    2017-12-01

    Full Text Available Based on interviews with researchers sources said that the beginning of the intestine embroidery is an art of genuine crafts. Called the intestine embroidery because this technique is a technique of combining a strand of cloth resembling the intestine formed according to the pattern by means of embroidered using a thread. Intestinal embroidery techniques were originally used to create a cover of the women's customary wardrobe of Lampung or often referred to as bebe. But not many people in Lampung, especially people who live in Lampung are still many who do not know and recognize the intestine embroidery because most only know tapis only characteristic of Lampung, besides that there are other cultural results that is embroidered intestine. There are still many who do not know that the intestine motif there is a knowledge of mathematics. The researcher's problem formulation is whether there are mathematical elements contained in the intestine embroidery motif based on the concept of geometry. The purpose of this study is to determine whether there are elements of mathematics contained in the intestine motif based on the concept of geometry. Subjects in this study consisted of 4 people obtained by purposive sampling technique. From the results of data analysis conducted by using descriptive analysis and discussion as follows: (1 Intestinal embroidery motif contains the meaning of mathematics and culture or often called Etnomatematika. On the meaning of culture there is a link between the embroidery intestine with a culture that has been there before as the existence of cultural linkage between Hindu belief Buddhism and there are similarities of motifs and decorative patterns contained in the motif embroidery intestine with ornamental variety in Indonesia. (2 The relationship between the intestine with mathematical motifs there are elements of mathematics such as geometry elements in the form of geometry of dimension one and dimension two, and the

  11. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  12. A small stem-loop structure of the Ebola virus trailer is essential for replication and interacts with heat-shock protein A8.

    Science.gov (United States)

    Sztuba-Solinska, Joanna; Diaz, Larissa; Kumar, Mia R; Kolb, Gaëlle; Wiley, Michael R; Jozwick, Lucas; Kuhn, Jens H; Palacios, Gustavo; Radoshitzky, Sheli R; J Le Grice, Stuart F; Johnson, Reed F

    2016-11-16

    Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA-RNA and RNA-protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2'-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3' stem-loop (nucleotides 1868-1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. SQUID multiplexing using baseband feedback for space application of transition-edge sensor microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Y; Yamasaki, N Y; Hirakoso, W; Kimura, S; Mitsuda, K, E-mail: takei@astro.isas.jaxa.j [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, 229-8510 (Japan)

    2009-11-15

    A microcalorimeter array based on a transition-edge sensor (TES) thermometer is a promising imaging spectrometer for use in future x-ray astronomy missions. A TES microcalorimeter achieves {approx}<5 eV energy resolution and an array of >100 pixels also provides a moderate imaging capability. For a large format array, signal multiplexing at the low temperature stage is mandatory in order to reduce heat loads from cold stage preamplifiers and through wirings. We are developing frequency division multiplexing (FDM). In FDM, each TES is ac-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one dc SQUID (superconducting quantum interference device). The maximum number of multiplexed pixels is limited by the bandwidth of a SQUID in a flux-locked loop. Assuming 1 m cable length between the room temperature and the cold stage, the bandwidth is only <1 MHz with a standard flux-locked loop, due to the delay and phase shift of wirings. We report our development of baseband feedback, a new feedback scheme that overcomes the bandwidth limitation. In baseband feedback, the signal ({approx}<10 kHz) from the TES is sent back to the SQUID after the phase of carrier frequency ({approx}1 MHz) has been adjusted. We demonstrated open-loop gain of 8 for 10 kHz signal at 5 MHz carrier frequency, which indicates the possibility of {approx}40-pixel multiplexing of the TES signal.

  14. Feedback stabilization of the axisymmetric instability of a deformable tokamak plasma

    International Nuclear Information System (INIS)

    Pomphrey, N.; Jardin, S.C.

    1987-09-01

    We analyze the magnetohydrodynamic (MHD) stability of the axisymmetric system consisting of a free boundary, non-circular cross-section tokamak plasma, finite resistivity passive conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with gain G, and current carrying poloidal field coils. Numerical simulation of a system that is unstable with G = 0 shows that for some placements of the pickup loops, the system will remain unstable for all values of G, while for other placements of the loops, the system will be stable for G > G/sub crit/. This behavior is explained by analysis using an extended energy principle, and it is shown to result from the deformability of the plasma cross section. 9 refs., 5 figs

  15. Finite-time output feedback stabilization of high-order uncertain nonlinear systems

    Science.gov (United States)

    Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei

    2018-06-01

    This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.

  16. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element.

    Science.gov (United States)

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-07-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.

  17. Closed-loop, open-source electrophysiology

    Directory of Open Access Journals (Sweden)

    John D Rolston

    2010-09-01

    Full Text Available Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents to the neuronal network. Multi-unit or local field potential recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation triggered by recordings with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents.

  18. Direct AUC optimization of regulatory motifs.

    Science.gov (United States)

    Zhu, Lin; Zhang, Hong-Bo; Huang, De-Shuang

    2017-07-15

    The discovery of transcription factor binding site (TFBS) motifs is essential for untangling the complex mechanism of genetic variation under different developmental and environmental conditions. Among the huge amount of computational approaches for de novo identification of TFBS motifs, discriminative motif learning (DML) methods have been proven to be promising for harnessing the discovery power of accumulated huge amount of high-throughput binding data. However, they have to sacrifice accuracy for speed and could fail to fully utilize the information of the input sequences. We propose a novel algorithm called CDAUC for optimizing DML-learned motifs based on the area under the receiver-operating characteristic curve (AUC) criterion, which has been widely used in the literature to evaluate the significance of extracted motifs. We show that when the considered AUC loss function is optimized in a coordinate-wise manner, the cost function of each resultant sub-problem is a piece-wise constant function, whose optimal value can be found exactly and efficiently. Further, a key step of each iteration of CDAUC can be efficiently solved as a computational geometry problem. Experimental results on real world high-throughput datasets illustrate that CDAUC outperforms competing methods for refining DML motifs, while being one order of magnitude faster. Meanwhile, preliminary results also show that CDAUC may also be useful for improving the interpretability of convolutional kernels generated by the emerging deep learning approaches for predicting TF sequences specificities. CDAUC is available at: https://drive.google.com/drive/folders/0BxOW5MtIZbJjNFpCeHlBVWJHeW8 . dshuang@tongji.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems

    Science.gov (United States)

    Chou, Hwei-Lan; Biezad, Daniel J.

    1996-01-01

    Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.

  20. Dynamic Mesoscale Land-Atmosphere Feedbacks in Fragmented Forests in Amazonia

    Science.gov (United States)

    Rastogi, D.; Baidya Roy, S.

    2011-12-01

    This paper investigates land-atmosphere feedbacks in disturbed rainforests of Amazonia. Deforestation along the rapidly expanding highways and road network has created the unique fishbone land cover pattern in Rondonia, a state in southwestern Amazonia. Numerical experiments and observations show that sharp gradients in land cover due to the fishbone heterogeneity triggers mesoscale circulations. These circulations significantly change the spatial pattern of local hydrometeorology, especially convection, clouds and precipitation. The primary research question now is can these changes in local hydrometeorology affect vegetation growth in the clearings. If so, that would be a clear indication that land-atmosphere feedbacks can affect vegetation recovery in fragmented forests. A computationally-efficient modeling tool consisting of a mesoscale atmospheric model dynamically coupled with a plant growth model has been specifically developed to identify the atmospheric feedback pathways. Preliminary experiments focus on the seasonal-scale feedbacks during the dry season. Results show that temperature, incoming shortwave and precipitation are the three primary drivers through which the feedbacks operate. Increasing temperature increases respiratory losses generating a positive feedback. Increased cloud cover reduces incoming PAR and photosynthesis, resulting in a positive feedback. Increased precipitation reduces water stress and promotes growth resulting in a negative feedback. The net effect is a combination of these 3 feedback loops. These findings can significantly improve our understanding of ecosystem resiliency in disturbed tropical forests.

  1. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles

    Science.gov (United States)

    Laine, Christopher M.; Valero-Cuevas, Francisco J.

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405

  2. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    Science.gov (United States)

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  3. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.

    Science.gov (United States)

    Han, S; Arvai, A S; Clancy, S B; Tainer, J A

    2001-01-05

    Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors

  4. Positive feedback loop between introductions of non-native marine species and cultivation of oysters in Europe.

    Science.gov (United States)

    Mineur, Frederic; Le Roux, Auguste; Maggs, Christine A; Verlaque, Marc

    2014-12-01

    With globalization, agriculture and aquaculture activities are increasingly affected by diseases that are spread through movement of crops and stock. Such movements are also associated with the introduction of non-native species via hitchhiking individual organisms. The oyster industry, one of the most important forms of marine aquaculture, embodies these issues. In Europe disease outbreaks affecting cultivated populations of the naturalized oyster Crassostrea gigas caused a major disruption of production in the late 1960s and early 1970s. Mitigation procedures involved massive imports of stock from the species' native range in the northwestern Pacific from 1971 to 1977. We assessed the role stock imports played in the introduction of non-native marine species (including pathogens) from the northwestern Pacific to Europe through a methodological and critical appraisal of record data. The discovery rate of non-native species (a proxy for the introduction rate) from 1966 to 2012 suggests a continuous vector activity over the entire period. Disease outbreaks that have been affecting oyster production since 2008 may be a result of imports from the northwestern Pacific, and such imports are again being considered as an answer to the crisis. Although successful as a remedy in the short and medium terms, such translocations may bring new diseases that may trigger yet more imports (self-reinforcing or positive feedback loop) and lead to the introduction of more hitchhikers. Although there is a legal framework to prevent or reduce these introductions, existing procedures should be improved. © 2014 Society for Conservation Biology.

  5. DMINDA: an integrated web server for DNA motif identification and analyses.

    Science.gov (United States)

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-07-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  7. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.

    Science.gov (United States)

    Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie

    2015-01-01

    Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.

  8. Efficient motif finding algorithms for large-alphabet inputs

    Directory of Open Access Journals (Sweden)

    Pavlovic Vladimir

    2010-10-01

    Full Text Available Abstract Background We consider the problem of identifying motifs, recurring or conserved patterns, in the biological sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are embedded as exact or inexact instances in all or most of the input strings. Results The proposed algorithm (1 improves search efficiency compared to existing algorithms, and (2 scales well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA we observed reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin and Immunoglobin families. Conclusions Our algorithm reduces computational complexity of the current motif finding algorithms and demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult cases of large-alphabet sequences.

  9. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  10. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    Science.gov (United States)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development

  11. Information transfer through a signaling module with feedback: A perturbative approach

    Czech Academy of Sciences Publication Activity Database

    Aquino, G.; Zápotocký, Martin

    2015-01-01

    Roč. 136, Oct (2015), s. 66-72 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : signal transduction * communication channel * poisson process * information theory * feedback loop * Non-Markovian process Subject RIV: ED - Physiology Impact factor: 1.495, year: 2015

  12. Design and Validation of Optimized Feedforward with Robust Feedback Control of a Nuclear Reactor

    International Nuclear Information System (INIS)

    Shaffer, Roman; He Weidong; Edwards, Robert M.

    2004-01-01

    Design applications for robust feedback and optimized feedforward control, with confirming results from experiments conducted on the Pennsylvania State University TRIGA reactor, are presented. The combination of feedforward and feedback control techniques complement each other in that robust control offers guaranteed closed-loop stability in the presence of uncertainties, and optimized feedforward offers an approach to achieving performance that is sometimes limited by overly conservative robust feedback control. The design approach taken in this work combines these techniques by first designing robust feedback control. Alternative methods for specifying a low-order linear model and uncertainty specifications, while seeking as much performance as possible, are discussed and evaluated. To achieve desired performance characteristics, the optimized feedforward control is then computed by using the nominal nonlinear plant model that incorporates the robust feedback control

  13. Aeroassisted orbital maneuvering using Lyapunov optimal feedback control

    Science.gov (United States)

    Grantham, Walter J.; Lee, Byoung-Soo

    1987-01-01

    A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.

  14. Modeling the interaction of a heavily beam loaded SRF cavity with its low-level RF feedback loops

    Science.gov (United States)

    Liu, Zong-Kai; Wang, Chaoen; Chang, Lung-Hai; Yeh, Meng-Shu; Chang, Fu-Yu; Chang, Mei-Hsia; Chang, Shian-Wen; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Lo, Chih-Hung; Yu, Tsung-Chi

    2018-06-01

    A superconducting radio frequency (SRF) cavity provides superior stability to power high intensity light sources and can suppress coupled-bunch instabilities due to its smaller impedance for higher order modes. Because of these features, SRF cavities are commonly used for modern light sources, such as the TLS, CLS, DLS, SSRF, PLS-II, TPS, and NSLS-II, with an aggressive approach to operate the light sources at high beam currents. However, operating a SRF cavity at high beam currents may result with unacceptable stability problems of the low level RF (LLRF) system, due to drifts of the cavity resonant frequency caused by unexpected perturbations from the environment. As the feedback loop gets out of control, the cavity voltage may start to oscillate with a current-dependent characteristic frequency. Such situations can cause beam abort due to the activation of the interlock protection system, i.e. false alarm of quench detection. This malfunction of the light source reduces the reliability of SRF operation. Understanding this unstable mechanism to prevent its appearance becomes a primary task in the pursuit of highly reliable SRF operation. In this paper, a Pedersen model, including the response of the LLRF system, was used to simulate the beam-cavity interaction of a SRF cavity under heavy beam loading. Causes for the onset of instability at high beam current will be discussed as well as remedies to assure the design of a stable LLRF system.

  15. Fundamentals of force feedback and application to a surgery simulator.

    Science.gov (United States)

    Maass, Heiko; Chantier, Benjamin B A; Cakmak, Hueseyin K; Trantakis, Christos; Kuehnapfel, Uwe G

    2003-01-01

    Force feedback increases the effectiveness of virtual-reality surgery training systems. An overview of the fundamentals of applying force feedback is presented. An impedance control technique and data processing methods for stability preservation are illustrated. A flexible interface for general force-feedback applications has been developed. This interface is capable of controlling several different force-feedback hardware systems, including the SensAble PHANTOM, the Laparoscopic Impulse Engines from Immersion, and the VS-One virtual endoscopic surgery trainer. The findings are evaluated using the main simulation system, KISMET, and the modeling tools KISMO and VESUV. Within the scope of a cooperative project called HapticIO (funded by the German Ministry of Education and Research [BMBF]), new haptic devices have been designed for virtual neuroendoscopy and laparoscopy. The concept and implementations presented in this paper have been found to be flexible, stable and suitable for universal use. The impedance method, combined with the open-loop feed-forward control technique, is well suited and appropriate for the task.

  16. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA.

    Science.gov (United States)

    Saraiya, Ashesh A; Lamichhane, Tek N; Chow, Christine S; SantaLucia, John; Cunningham, Philip R

    2008-02-22

    The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m(2)G966 and m(5)C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m(2)G966 or m(5)C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.

  17. Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation.

    Science.gov (United States)

    Michael, Sushama; Travé, Gilles; Ramu, Chenna; Chica, Claudia; Gibson, Toby J

    2008-02-15

    KEN-box-mediated target selection is one of the mechanisms used in the proteasomal destruction of mitotic cell cycle proteins via the APC/C complex. While annotating the Eukaryotic Linear Motif resource (ELM, http://elm.eu.org/), we found that KEN motifs were significantly enriched in human protein entries with cell cycle keywords in the UniProt/Swiss-Prot database-implying that KEN-boxes might be more common than reported. Matches to short linear motifs in protein database searches are not, per se, significant. KEN-box enrichment with cell cycle Gene Ontology terms suggests that collectively these motifs are functional but does not prove that any given instance is so. Candidates were surveyed for native disorder prediction using GlobPlot and IUPred and for motif conservation in homologues. Among >25 strong new candidates, the most notable are human HIPK2, CHFR, CDC27, Dab2, Upf2, kinesin Eg5, DNA Topoisomerase 1 and yeast Cdc5 and Swi5. A similar number of weaker candidates were present. These proteins have yet to be tested for APC/C targeted destruction, providing potential new avenues of research.

  18. Real-time calibration of a feedback trap

    OpenAIRE

    Gavrilov, Momčilo; Jun, Yonggun; Bechhoefer, John

    2014-01-01

    Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time sca...

  19. Robust Admissibilization of Descriptor Systems by Static Output-Feedback: An LMI Approach

    Directory of Open Access Journals (Sweden)

    M. Chaabane

    2011-01-01

    static output-feedback is studied in this paper and an approach to solve it is proposed. For this, sufficient conditions are derived for the closed-loop system to be admissible (i.e., stable, regular, and impulse-free. These conditions are expressed in terms of a strict Linear Matrix Inequality (LMI; so they are tractable using numerical computations. The proposed controller design methodology is based on two steps: the first is dedicated to synthesizing a classical state-feedback controller, which is used as the initial value for the second step, which uses an LMI problem to obtain static output-feedback controllers that give admissibility. Finally, a numerical example is given to illustrate the results.

  20. Closed-loop waveform control of boost inverter

    DEFF Research Database (Denmark)

    Zhu, Guo Rong; Xiao, Cheng Yuan; Wang, Haoran

    2016-01-01

    The input current of single-phase inverter typically has an AC ripple component at twice the output frequency, which causes a reduction in both the operating lifetime of its DC source and the efficiency of the system. In this paper, the closed-loop performance of a proposed waveform control method...... to eliminate such a ripple current in boost inverter is investigated. The small-signal stability and the dynamic characteristic of the inverter system for input voltage or wide range load variations under the closed-loop waveform control method are studied. It is validated that with the closedloop waveform...... control, not only was stability achieved, the reference voltage of the boost inverter capacitors can be instantaneously adjusted to match the new load, thereby achieving improved ripple mitigation for a wide load range. Furthermore, with the control and feedback mechanism, there is minimal level of ripple...

  1. Feedback Linearization approach for Standard and Fault Tolerant control: Application to a Quadrotor UAV Testbed

    International Nuclear Information System (INIS)

    Ghandour, J; Aberkane, S; Ponsart, J-C

    2014-01-01

    In this paper the control problem of a quadrotor vehicle experiencing a rotor failure is investigated. We develop a Feedback linearization approach to design a controller whose task is to make the vehicle performs trajectory following. Then we use the same approach to design a controller whose task is to make the vehicle enter a stable spin around its vertical axis, while retaining zero angular velocities around the other axis when a rotor failure is present. These conditions can be exploited to design a second control loop, which is used to perform trajectory following. The proposed double control loop architecture allows the vehicle to perform both trajectory and roll/pitch control. At last, to test the robustness of the feedback linearization technique, we applied wind to the quadrotor in mid flight

  2. DNA motif alignment by evolving a population of Markov chains.

    Science.gov (United States)

    Bi, Chengpeng

    2009-01-30

    Deciphering cis-regulatory elements or de novo motif-finding in genomes still remains elusive although much algorithmic effort has been expended. The Markov chain Monte Carlo (MCMC) method such as Gibbs motif samplers has been widely employed to solve the de novo motif-finding problem through sequence local alignment. Nonetheless, the MCMC-based motif samplers still suffer from local maxima like EM. Therefore, as a prerequisite for finding good local alignments, these motif algorithms are often independently run a multitude of times, but without information exchange between different chains. Hence it would be worth a new algorithm design enabling such information exchange. This paper presents a novel motif-finding algorithm by evolving a population of Markov chains with information exchange (PMC), each of which is initialized as a random alignment and run by the Metropolis-Hastings sampler (MHS). It is progressively updated through a series of local alignments stochastically sampled. Explicitly, the PMC motif algorithm performs stochastic sampling as specified by a population-based proposal distribution rather than individual ones, and adaptively evolves the population as a whole towards a global maximum. The alignment information exchange is accomplished by taking advantage of the pooled motif site distributions. A distinct method for running multiple independent Markov chains (IMC) without information exchange, or dubbed as the IMC motif algorithm, is also devised to compare with its PMC counterpart. Experimental studies demonstrate that the performance could be improved if pooled information were used to run a population of motif samplers. The new PMC algorithm was able to improve the convergence and outperformed other popular algorithms tested using simulated and biological motif sequences.

  3. A high precision dual feedback discrete control system designed for satellite trajectory simulator

    Science.gov (United States)

    Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan

    2005-08-01

    Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.

  4. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach

    Directory of Open Access Journals (Sweden)

    Buer Jan

    2004-12-01

    Full Text Available Abstract Background Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. Results In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. Conclusion The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E

  5. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis.

    Science.gov (United States)

    Markovic, Marko; Schweisfurth, Meike A; Engels, Leonard F; Bentz, Tashina; Wüstefeld, Daniela; Farina, Dario; Dosen, Strahinja

    2018-03-27

    To effectively replace the human hand, a prosthesis should seamlessly respond to user intentions but also convey sensory information back to the user. Restoration of sensory feedback is rated highly by the prosthesis users, and feedback is critical for grasping in able-bodied subjects. Nonetheless, the benefits of feedback in prosthetics are still debated. The lack of consensus is likely due to the complex nature of sensory feedback during prosthesis control, so that its effectiveness depends on multiple factors (e.g., task complexity, user learning). We evaluated the impact of these factors with a longitudinal assessment in six amputee subjects, using a clinical setup (socket, embedded control) and a range of tasks (box and blocks, block turn, clothespin and cups relocation). To provide feedback, we have proposed a novel vibrotactile stimulation scheme capable of transmitting multiple variables from a multifunction prosthesis. The subjects wore a bracelet with four by two uniformly placed vibro-tactors providing information on contact, prosthesis state (active function), and grasping force. The subjects also completed a questionnaire for the subjective evaluation of the feedback. The tests demonstrated that feedback was beneficial only in the complex tasks (block turn, clothespin and cups relocation), and that the training had an important, task-dependent impact. In the clothespin relocation and block turn tasks, training allowed the subjects to establish successful feedforward control, and therefore, the feedback became redundant. In the cups relocation task, however, the subjects needed some training to learn how to properly exploit the feedback. The subjective evaluation of the feedback was consistently positive, regardless of the objective benefits. These results underline the multifaceted nature of closed-loop prosthesis control as, depending on the context, the same feedback interface can have different impact on performance. Finally, even if the closed-loop

  6. Closed-loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform

    Directory of Open Access Journals (Sweden)

    Jonathan Paul Newman

    2013-01-01

    Full Text Available Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand alone application, its plugin API, and an extensive set of case studies that highlight the system's abilities for conducting closed-loop, multichannel interfacing experiments.

  7. Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif.

    Science.gov (United States)

    Maira, S M; Wurtz, J M; Wasylyk, B

    1996-11-01

    The three ternary complex factors (TCFs), Net (ERP/ SAP-2), ELK-1 and SAP-1, are highly related ets oncogene family members that participate in the response of the cell to Ras and growth signals. Understanding the different roles of these factors will provide insights into how the signals result in coordinate regulation of the cell. We show that Net inhibits transcription under basal conditions, in which SAP-1a is inactive and ELK-1 stimulates. Repression is mediated by the NID, the Net Inhibitory Domain of about 50 amino acids, which autoregulates the Net protein and also inhibits when it is isolated in a heterologous fusion protein. Net is particularly sensitive to Ras activation. Ras activates Net through the C-domain, which is conserved between the three TCFs, and the NID is an efficient inhibitor of Ras activation. The NID, as well as more C-terminal sequences, inhibit DNA binding. Net is more refractory to DNA binding than the other TCFs, possibly due to the presence of multiple inhibitory elements. The NID may adopt a helix-loop-helix (HLH) structure, as evidenced by homology to other HLH motifs, structure predictions, model building and mutagenesis of critical residues. The sequence resemblance with myogenic factors suggested that Net may form complexes with the same partners. Indeed, we found that Net can interact in vivo with the basic HLH factor, E47. We propose that Net is regulated at the level of its latent DNA-binding activity by protein interactions and/or phosphorylation. Net may form complexes with HLH proteins as well as SRF on specific promotor sequences. The identification of the novel inhibitory domain provides a new inroad into exploring the different roles of the ternary complex factors in growth control and transformation.

  8. A fast intracortical brain-machine interface with patterned optogenetic feedback.

    Science.gov (United States)

    Abbasi, Aamir; Goueytes, Dorian; Shulz, Daniel E; Ego-Stengel, Valerie; Estebanez, Luc

    2018-04-04

    The development of brain-machine interfaces (BMIs) brings a new perspective to patients with a loss of autonomy. By combining online recordings of brain activity with a decoding algorithm, patients can learn to control a robotic arm in order to perform simple actions. However, in contrast to the vast amounts of somatosensory information channeled by limbs to the brain, current BMIs are devoid of touch and force sensors. Patients must therefore rely solely on vision and audition, which are maladapted to the control of a prosthesis. In contrast, in a healthy limb, somatosensory inputs alone can efficiently guide the handling of a fragile object, or ensure a smooth trajectory. We have developed a BMI in the mouse that includes a rich artificial somatosensory-like cortical feedback. Our setup includes online recordings of the activity of multiple neurons in the whisker primary motor cortex (vM1), and delivers feedback simultaneously via a low-latency, high-refresh rate and spatially structured photo-stimulation of the whisker primary somatosensory cortex (vS1), based on a mapping obtained by intrinsic imaging. We demonstrate the operation of the loop and show that mice can detect the neuronal spiking in vS1 triggered by the photo-stimulations. Finally, we show that the mice can learn a behavioral task relying only on the artificial inputs and outputs of the closed-loop BMI. This is the first motor BMI that includes a short-latency, intracortical, somatosensory-like feedback. It will be a useful platform to discover efficient cortical feedback schemes towards future human BMI applications. Creative Commons Attribution license.

  9. DNA motif elucidation using belief propagation.

    Science.gov (United States)

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  10. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-01-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  11. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  12. Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic.

    Science.gov (United States)

    Khan, Faiz M; Schmitz, Ulf; Nikolov, Svetoslav; Engelmann, David; Pützer, Brigitte M; Wolkenhauer, Olaf; Vera, Julio

    2014-01-01

    A decade of successful results indicates that systems biology is the appropriate approach to investigate the regulation of complex biochemical networks involving transcriptional and post-transcriptional regulations. It becomes mandatory when dealing with highly interconnected biochemical networks, composed of hundreds of compounds, or when networks are enriched in non-linear motifs like feedback and feedforward loops. An emerging dilemma is to conciliate models of massive networks and the adequate description of non-linear dynamics in a suitable modeling framework. Boolean networks are an ideal representation of massive networks that are humble in terms of computational complexity and data demand. However, they are inappropriate when dealing with nested feedback/feedforward loops, structural motifs common in biochemical networks. On the other hand, models of ordinary differential equations (ODEs) cope well with these loops, but they require enormous amounts of quantitative data for a full characterization of the model. Here we propose hybrid models, composed of ODE and logical sub-modules, as a strategy to handle large scale, non-linear biochemical networks that include transcriptional and post-transcriptional regulations. We illustrate the construction of this kind of models using as example a regulatory network centered on E2F1, a transcription factor involved in cancer. The hybrid modeling approach proposed is a good compromise between quantitative/qualitative accuracy and scalability when considering large biochemical networks with a small highly interconnected core, and module of transcriptionally regulated genes that are not part of critical regulatory loops. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  14. Static inverter with synchronous output waveform synthesized by time-optimal-response feedback

    Science.gov (United States)

    Kernick, A.; Stechschulte, D. L.; Shireman, D. W.

    1976-01-01

    Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.

  15. The identification of functional motifs in temporal gene expression analysis

    Directory of Open Access Journals (Sweden)

    Michael G. Surette

    2005-01-01

    Full Text Available The identification of transcription factor binding sites is essential to the understanding of the regulation of gene expression and the reconstruction of genetic regulatory networks. The in silico identification of cis-regulatory motifs is challenging due to sequence variability and lack of sufficient data to generate consensus motifs that are of quantitative or even qualitative predictive value. To determine functional motifs in gene expression, we propose a strategy to adopt false discovery rate (FDR and estimate motif effects to evaluate combinatorial analysis of motif candidates and temporal gene expression data. The method decreases the number of predicted motifs, which can then be confirmed by genetic analysis. To assess the method we used simulated motif/expression data to evaluate parameters. We applied this approach to experimental data for a group of iron responsive genes in Salmonella typhimurium 14028S. The method identified known and potentially new ferric-uptake regulator (Fur binding sites. In addition, we identified uncharacterized functional motif candidates that correlated with specific patterns of expression. A SAS code for the simulation and analysis gene expression data is available from the first author upon request.

  16. Autoinhibition and signaling by the switch II motif in the G-protein chaperone of a radical B12 enzyme.

    Science.gov (United States)

    Lofgren, Michael; Koutmos, Markos; Banerjee, Ruma

    2013-10-25

    MeaB is an accessory GTPase protein involved in the assembly, protection, and reactivation of 5'-deoxyadenosyl cobalamin-dependent methylmalonyl-CoA mutase (MCM). Mutations in the human ortholog of MeaB result in methylmalonic aciduria, an inborn error of metabolism. G-proteins typically utilize conserved switch I and II motifs for signaling to effector proteins via conformational changes elicited by nucleotide binding and hydrolysis. Our recent discovery that MeaB utilizes an unusual switch III region for bidirectional signaling with MCM raised questions about the roles of the switch I and II motifs in MeaB. In this study, we addressed the functions of conserved switch II residues by performing alanine-scanning mutagenesis. Our results demonstrate that the GTPase activity of MeaB is autoinhibited by switch II and that this loop is important for coupling nucleotide-sensitive conformational changes in switch III to elicit the multiple chaperone functions of MeaB. Furthermore, we report the structure of MeaB·GDP crystallized in the presence of AlFx(-) to form the putative transition state analog, GDP·AlF4(-). The resulting crystal structure and its comparison with related G-proteins support the conclusion that the catalytic site of MeaB is incomplete in the absence of the GTPase-activating protein MCM and therefore unable to stabilize the transition state analog. Favoring an inactive conformation in the absence of the client MCM protein might represent a strategy for suppressing the intrinsic GTPase activity of MeaB in which the switch II loop plays an important role.

  17. Quantized Passive Dynamic Output Feedback Control with Actuator Failure

    Directory of Open Access Journals (Sweden)

    Zu-Xin Li

    2016-01-01

    Full Text Available This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with quantization and actuator failures, where the measurement output of the system is quantized by a logarithmic quantizer before being transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.

  18. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  19. Diabetes-Induced Oxidative Stress in Endothelial Progenitor Cells May Be Sustained by a Positive Feedback Loop Involving High Mobility Group Box-1

    Directory of Open Access Journals (Sweden)

    Han Wu

    2016-01-01

    Full Text Available Oxidative stress is considered to be a critical factor in diabetes-induced endothelial progenitor cell (EPC dysfunction, although the underlying mechanisms are not fully understood. In this study, we investigated the role of high mobility group box-1 (HMGB-1 in diabetes-induced oxidative stress. HMGB-1 was upregulated in both serum and bone marrow-derived monocytes from diabetic mice compared with control mice. In vitro, advanced glycation end productions (AGEs induced, expression of HMGB-1 in EPCs and in cell culture supernatants in a dose-dependent manner. However, inhibition of oxidative stress with N-acetylcysteine (NAC partially inhibited the induction of HMGB-1 induced by AGEs. Furthermore, p66shc expression in EPCs induced by AGEs was abrogated by incubation with glycyrrhizin (Gly, while increased superoxide dismutase (SOD activity in cell culture supernatants was observed in the Gly treated group. Thus, HMGB-1 may play an important role in diabetes-induced oxidative stress in EPCs via a positive feedback loop involving the AGE/reactive oxygen species/HMGB-1 pathway.

  20. A time-dependent stop operator for modeling a class of singular hysteresis loops in a piezoceramic actuator

    International Nuclear Information System (INIS)

    Al Janaideh, Mohammad

    2013-01-01

    We present a time-dependent stop operator-based Prandtl–Ishlinskii model to characterize singular hysteresis loops in a piezoceramic actuator. The model is constructed based on the time-dependent threshold. The inverse time-dependent stop operator-based Prandtl–Ishlinskii model is obtained analytically and it can be applied as a feedforward compensator to compensate for singular hysteresis loops in a class of smart-material-based actuators. The objective of this study is to present an invertible Prandtl–Ishlinskii model that can be applied as a feedforward compensator to compensate for singular hysteresis loops without inserting a feedback control system

  1. A time-dependent stop operator for modeling a class of singular hysteresis loops in a piezoceramic actuator

    Energy Technology Data Exchange (ETDEWEB)

    Al Janaideh, Mohammad, E-mail: aljanaideh@gmail.com [Department of Mechatronics Engineering, The University of Jordan, 11942 Amman (Jordan)

    2013-03-15

    We present a time-dependent stop operator-based Prandtl–Ishlinskii model to characterize singular hysteresis loops in a piezoceramic actuator. The model is constructed based on the time-dependent threshold. The inverse time-dependent stop operator-based Prandtl–Ishlinskii model is obtained analytically and it can be applied as a feedforward compensator to compensate for singular hysteresis loops in a class of smart-material-based actuators. The objective of this study is to present an invertible Prandtl–Ishlinskii model that can be applied as a feedforward compensator to compensate for singular hysteresis loops without inserting a feedback control system.

  2. An Augmented Lecture Feedback System to Support Learner and Teacher Communication

    Science.gov (United States)

    Zarraonandia, Telmo; Aedo, Ignacio; Diaz, Paloma; Montero, Alvaro

    2013-01-01

    In this paper, it is advocated that the feedback loop between learners and teachers could be improved by making use of augmented reality (AR) techniques. The bidirectional communication between teacher and learners is sometimes hampered by students' fear of showing themselves up in front of their classmates. In order to overcome this problem, a…

  3. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Forsbacka, Matthew

    2004-01-01

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the Nasa Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. 'Virtual' reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of various core deformations. The power delivered to the SAFE-100 prototype was then adjusted accordingly via kinetics calculations. The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kWt to 10 kWt, held approximately constant at 10 kWt, and then allowed to decrease based on the negative thermal reactivity coefficient. (authors)

  4. CD-loop Extension in Zika Virus Envelope Protein Key for Stability and Pathogenesis.

    Science.gov (United States)

    Gallichotte, Emily N; Dinnon, Kenneth H; Lim, Xin-Ni; Ng, Thiam-Seng; Lim, Elisa X Y; Menachery, Vineet D; Lok, Shee-Mei; Baric, Ralph S

    2017-12-05

    With severe disease manifestations including microcephaly, congenital malformation, and Guillain-Barré syndrome, Zika virus (ZIKV) remains a persistent global public health threat. Despite antigenic similarities with dengue viruses, structural studies have suggested the extended CD-loop and hydrogen-bonding interaction network within the ZIKV envelope protein contribute to stability differences between the viral families. This enhanced stability may lead to the augmented infection, disease manifestation, and persistence in body fluids seen following ZIKV infection. To examine the role of these motifs in infection, we generated a series of ZIKV recombinant viruses that disrupted the hydrogen-bonding network (350A, 351A, and 350A/351A) or the CD-loop extension (Δ346). Our results demonstrate a key role for the ZIKV extended CD-loop in cell-type-dependent replication, virion stability, and in vivo pathogenesis. Importantly, the Δ346 mutant maintains similar antigenicity to wild-type virus, opening the possibility for its use as a live-attenuated vaccine platform for ZIKV and other clinically relevant flaviviruses. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. An active feedback system to control synchrotron oscillations in the SLC Damping Rings

    International Nuclear Information System (INIS)

    Corredoura, P.L.; Pellegrin, J.L.; Schwarz, H.D.; Sheppard, J.C.

    1989-03-01

    Initially the SLC Damping Rings accomplished Robinson instability damping by operating the RF accelerating cavities slightly detuned. In order to be able to run the cavities tuned and achieve damping for Robinson instability and synchrotron oscillations at injection an active feedback system has been developed. This paper describes the theoretical basis for the feedback system and the development of the hardware. Extensive measurements of the loop response including stored beam were performed. Overall performance of the system is also reported. 3 refs., 6 figs

  6. Using deflation in the pole assignment problem with output feedback

    Science.gov (United States)

    Miminis, George

    1989-01-01

    A direct algorithm is suggested for the computation of a linear output feedback for a multi input, multi output system such that the resultant closed-loop matrix has eigenvalues that include a specified set of eigenvalues. The algorithm uses deflation based on unitary similarity transformations. Thus researchers hope the algorithm is numerically stable; however, this has not been proven as yet.

  7. Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif

    Science.gov (United States)

    Shchedrina, Valentina A.; Novoselov, Sergey V.; Malinouski, Mikalai Yu.; Gladyshev, Vadim N.

    2007-01-01

    Selenocysteine (Sec, U) insertion into proteins is directed by translational recoding of specific UGA codons located upstream of a stem-loop structure known as Sec insertion sequence (SECIS) element. Selenoproteins with known functions are oxidoreductases containing a single redox-active Sec in their active sites. In this work, we identified a family of selenoproteins, designated SelL, containing two Sec separated by two other residues to form a UxxU motif. SelL proteins show an unusual occurrence, being present in diverse aquatic organisms, including fish, invertebrates, and marine bacteria. Both eukaryotic and bacterial SelL genes use single SECIS elements for insertion of two Sec. In eukaryotes, the SECIS is located in the 3′ UTR, whereas the bacterial SelL SECIS is within a coding region and positioned at a distance that supports the insertion of either of the two Sec or both of these residues. SelL proteins possess a thioredoxin-like fold wherein the UxxU motif corresponds to the catalytic CxxC motif in thioredoxins, suggesting a redox function of SelL proteins. Distantly related SelL-like proteins were also identified in a variety of organisms that had either one or both Sec replaced with Cys. Danio rerio SelL, transiently expressed in mammalian cells, incorporated two Sec and localized to the cytosol. In these cells, it occurred in an oxidized form and was not reducible by DTT. In a bacterial expression system, we directly demonstrated the formation of a diselenide bond between the two Sec, establishing it as the first diselenide bond found in a natural protein. PMID:17715293

  8. Differential contributions of the superior and inferior parietal cortex to feedback versus feedforward control of tools.

    Science.gov (United States)

    Macuga, Kristen L; Frey, Scott H

    2014-05-15

    Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Using fMRI and a Fitts' reciprocal aiming task with tools directed at targets in far space, we found that the SPL and cerebellum exhibited greater activity during closed-loop control. Conversely, open-loop and imagery conditions were associated with increased activity within the IPL and prefrontal areas. These results are consistent with a superior-to-inferior gradient in the representation of feedback-to-feedforward control within the posterior parietal cortex. Additionally, the anterior SPL displayed greater activity when aiming movements were performed with a stick vs. laser pointer. This may suggest that it is involved in the remapping of far into near (reachable) space (Maravita and Iriki, 2004), or in distalization of the end-effector from hand to stick (Arbib et al., 2009). Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Hybrid DNA i-motif: Aminoethylprolyl-PNA (pC5) enhance the stability of DNA (dC5) i-motif structure.

    Science.gov (United States)

    Gade, Chandrasekhar Reddy; Sharma, Nagendra K

    2017-12-15

    This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC 5 ) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Diagnosis of Fault Modes Masked by Control Loops with an Application to Autonomous Hovercraft Systems

    Directory of Open Access Journals (Sweden)

    Ioannis A. Raptis

    2013-01-01

    Full Text Available This paper introduces a methodology for the design, testing and assessment of incipient failure detection techniques for failing components/systems of an autonomous vehicle masked or hidden by feedback control loops. It is recognized that the optimum operation of critical assets (aircraft, autonomous systems, etc. may be compromised by feedback control loops by masking severe fault modes while compensating for typical disturbances. Detrimental consequences of such occurrences include the inability to detect expeditiously and accurately incipient failures, loss of control and inefficient operation of assets in the form of fuel overconsumption and adverse environmental impact. We pursue a systems engineering process to design, construct and test an autonomous hovercraft instrumented appropriately for improved autonomy. Hidden fault modes are detected with performance guarantees by invoking a Bayesian estimation approach called particle filtering. Simulation and experimental studies are employed to demonstrate the efficacy of the proposed methods.

  11. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  12. Verification of the MOTIF code version 3.0

    International Nuclear Information System (INIS)

    Chan, T.; Guvanasen, V.; Nakka, B.W.; Reid, J.A.K.; Scheier, N.W.; Stanchell, F.W.

    1996-12-01

    As part of the Canadian Nuclear Fuel Waste Management Program (CNFWMP), AECL has developed a three-dimensional finite-element code, MOTIF (Model Of Transport In Fractured/ porous media), for detailed modelling of groundwater flow, heat transport and solute transport in a fractured rock mass. The code solves the transient and steady-state equations of groundwater flow, solute (including one-species radionuclide) transport, and heat transport in variably saturated fractured/porous media. The initial development was completed in 1985 (Guvanasen 1985) and version 3.0 was completed in 1986. This version is documented in detail in Guvanasen and Chan (in preparation). This report describes a series of fourteen verification cases which has been used to test the numerical solution techniques and coding of MOTIF, as well as demonstrate some of the MOTIF analysis capabilities. For each case the MOTIF solution has been compared with a corresponding analytical or independently developed alternate numerical solution. Several of the verification cases were included in Level 1 of the International Hydrologic Code Intercomparison Project (HYDROCOIN). The MOTIF results for these cases were also described in the HYDROCOIN Secretariat's compilation and comparison of results submitted by the various project teams (Swedish Nuclear Power Inspectorate 1988). It is evident from the graphical comparisons presented that the MOTIF solutions for the fourteen verification cases are generally in excellent agreement with known analytical or numerical solutions obtained from independent sources. This series of verification studies has established the ability of the MOTIF finite-element code to accurately model the groundwater flow and solute and heat transport phenomena for which it is intended. (author). 20 refs., 14 tabs., 32 figs

  13. Purification and functional motifs of the recombinant ATPase of orf virus.

    Science.gov (United States)

    Lin, Fong-Yuan; Chan, Kun-Wei; Wang, Chi-Young; Wong, Min-Liang; Hsu, Wei-Li

    2011-10-01

    Our previous study showed that the recombinant ATPase encoded by the A32L gene of orf virus displayed ATP hydrolysis activity as predicted from its amino acids sequence. This viral ATPase contains four known functional motifs (motifs I-IV) and a novel AYDG motif; they are essential for ATP hydrolysis reaction by binding ATP and magnesium ions. The motifs I and II correspond with the Walker A and B motifs of the typical ATPase, respectively. To examine the biochemical roles of these five conserved motifs, recombinant ATPases of five deletion mutants derived from the Taiping strain were expressed and purified. Their ATPase functions were assayed and compared with those of two wild type strains, Taiping and Nantou isolated in Taiwan. Our results showed that deletions at motifs I-III or IV exhibited lower activity than that of the wild type. Interestingly, deletion of AYDG motif decreased the ATPase activity more significantly than those of motifs I-IV deletions. Divalent ions such as magnesium and calcium were essential for ATPase activity. Moreover, our recombinant proteins of orf virus also demonstrated GTPase activity, though weaker than the original ATPase activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Edge turbulence control on the KT-5C tokamak by feedback using electrostatic probes

    International Nuclear Information System (INIS)

    Zhai Kan; Wang Cheng; Wen Yizi; Yu Changxuan; Wan Shude; Liu Wandong; Xu Zhizhan

    1998-01-01

    Experiments on edge turbulence control have been performed on the KT-5C tokamak by feedback using two sets of electrostatic probes as the driving probe and detective probe. The results indicate that the feedback can enhance or reduce the turbulence amplitude depending upon the phase shift and gain of the feedback network. When the feedback with 90 degree phase shift and with certain loop gain is applied, the spectrum component of turbulence is reduced obviously and the fluctuation amplitude of the electron density and electron temperature become lower by about 25%. consistently the particle flux across the magnetic field induced by the electrostatic fluctuation also decreases by about 25%. On the other hand, the feedback with 0 degree or 180 degree or -90 degree phase shift can enhance the amplitude of the edge turbulence. These results indicate a nonlinear mechanism of the influence of feedback on the edge turbulence, which to some extent also reflect a specific nonlinear characteristic of the edge turbulence

  15. Investigations of the influence of feedback and coupling effects on neutron noise in a nuclear reactor

    International Nuclear Information System (INIS)

    Vath, W.

    1975-01-01

    Investigations are described of the influence of a known feedback, i.e., a control loop with known transfer function, on the spectra of neutron chamber signals. Theoretical formulas for the spectra are derived using the point reactor model. These formulas were verified by noise measurements in a zero power reactor. Special attention is given to the noise generated by the control loop, the influence of this feedback noise on the spectra being verified experimentally. In large reactors space dependent transfer functions must be taken into account. As a first approximation to handle the spatial dependence, the afore-mentioned investigations were extended to the two-point reactor model. Corresponding experimental work was done for the Argonaut Reactor Karlsruhe (ARK) with a symmetrical two-slab core loading. Coolant boiling in a BWR was investigated. The boiling must be considered as a feedback mechanism as well as an extrnal reactivity perturbation. In order to simulate the steam bubble content, nitrogen gas was injected into the water moderator of the ARK. By modulating the total gas flow according to the instantaneous reactor power the feedback effect was simulated. The gas flow produced a band-limited, white reactivity noise. The upper break frequency could be used to determine the travelling time of the bubbles through the core. (author)

  16. An experimental test of a fundamental food web motif.

    Science.gov (United States)

    Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia

    2010-06-07

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities.

  17. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  18. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    Science.gov (United States)

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  19. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit; Bajic, Vladimir B.; Kaushik, Dinesh

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  20. Mechanisms of zero-lag synchronization in cortical motifs.

    Directory of Open Access Journals (Sweden)

    Leonardo L Gollo

    2014-04-01

    Full Text Available Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying"--a mechanism that relies on a specific network motif--has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair--a "resonance pair"--plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying from those that do not (such as the common driving triad. Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.

  1. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation.

    LENUS (Irish Health Repository)

    Rishi, Loveena

    2014-04-10

    The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein α (C\\/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop for E2F1, C\\/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C\\/EBPα-p42, and in normal granulocyte\\/macrophage progenitor cells, we detect C\\/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle or Trib2 knockdown resulted in a block in AML cell proliferation. Our work proposes a novel paradigm whereby E2F1 plays a key role in the regulation of Trib2 expression important for AML cell proliferation control. Importantly, we identify the contribution of dysregulated C\\/EBPα and E2F1 to elevated Trib2 expression and leukemic cell survival, which likely contributes to the initiation and maintenance of AML and may have significant implications for normal and malignant hematopoiesis.

  2. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  3. Enhanced Stability of Capacitor-Current Feedback Active Damping for LCL-Filtered Grid Converters

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    The proportional capacitor-current feedback active damping method has been widely used to suppress the LCL-filter resonance. However, the time delay in the damping control loop may lead to non-minimum phase or even unstable responses when the resonance frequency varies in a wide range. To improve...

  4. Technology transfer of operator-in-the-loop simulation

    Science.gov (United States)

    Yae, K. H.; Lin, H. C.; Lin, T. C.; Frisch, H. P.

    1994-01-01

    The technology developed for operator-in-the-loop simulation in space teleoperation has been applied to Caterpillar's backhoe, wheel loader, and off-highway truck. On an SGI workstation, the simulation integrates computer modeling of kinematics and dynamics, real-time computational and visualization, and an interface with the operator through the operator's console. The console is interfaced with the workstation through an IBM-PC in which the operator's commands were digitized and sent through an RS-232 serial port. The simulation gave visual feedback adequate for the operator in the loop, with the camera's field of vision projected on a large screen in multiple view windows. The view control can emulate either stationary or moving cameras. This simulator created an innovative engineering design environment by integrating computer software and hardware with the human operator's interactions. The backhoe simulation has been adopted by Caterpillar in building a virtual reality tool for backhoe design.

  5. Armadillo motifs involved in vesicular transport.

    Directory of Open Access Journals (Sweden)

    Harald Striegl

    Full Text Available Armadillo (ARM repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family.

  6. Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display

    Science.gov (United States)

    Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.

    1999-07-01

    In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.

  7. Characterizing Motif Dynamics of Electric Brain Activity Using Symbolic Analysis

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2014-10-01

    Full Text Available Motifs are small recurring circuits of interactions which constitute the backbone of networked systems. Characterizing motif dynamics is therefore key to understanding the functioning of such systems. Here we propose a method to define and quantify the temporal variability and time scales of electroencephalogram (EEG motifs of resting brain activity. Given a triplet of EEG sensors, links between them are calculated by means of linear correlation; each pattern of links (i.e., each motif is then associated to a symbol, and its appearance frequency is analyzed by means of Shannon entropy. Our results show that each motif becomes observable with different coupling thresholds and evolves at its own time scale, with fronto-temporal sensors emerging at high thresholds and changing at fast time scales, and parietal ones at low thresholds and changing at slower rates. Finally, while motif dynamics differed across individuals, for each subject, it showed robustness across experimental conditions, indicating that it could represent an individual dynamical signature.

  8. Discriminative motif discovery via simulated evolution and random under-sampling.

    Directory of Open Access Journals (Sweden)

    Tao Song

    Full Text Available Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.

  9. Discriminative motif discovery via simulated evolution and random under-sampling.

    Science.gov (United States)

    Song, Tao; Gu, Hong

    2014-01-01

    Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs) training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.

  10. Light storage in a doped solid enhanced by feedback-controlled pulse shaping

    International Nuclear Information System (INIS)

    Beil, F.; Buschbeck, M.; Heinze, G.; Halfmann, T.

    2010-01-01

    We report on experiments dealing with feedback-controlled pulse shaping to optimize the efficiency of light storage by electromagnetically induced transparency (EIT) in a Pr 3+ :Y 2 SiO 5 crystal. A learning loop in combination with an evolutionary algorithm permits the automatic determination of optimal temporal profiles of intensities and frequencies in the driving laser pulses (i.e., the probe and coupling pulses). As a main advantage, the technique finds optimal solutions even in the complicated multilevel excitation scheme of a doped solid, involving large inhomogeneous broadening. The learning loop experimentally determines optimal temporal intensity profiles of the coupling pulses for a given probe pulse. The optimized intensity pulse shapes enhance the light-storage efficiency in the doped solid by a factor of 2. The learning loop also determines a fast and efficient preparation pulse sequence, which serves to optically prepare the crystal prior to light-storage experiments. The optimized preparation sequence is 5 times faster than standard preparation sequences. Moreover, the optimized preparation sequence enhances the optical depth in the medium by a factor of 5. As a consequence, the efficiency of light storage also increases by another factor of 3. Our experimental data clearly demonstrate the considerable potential of feedback-controlled pulse shaping, applied to EIT-driven light storage in solid media.

  11. Dynamic behaviors of a broad-area diode laser with lateral-mode-selected external feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    In this paper, we investigate the dynamics of a BAL with lateral-mode selected external feedback experimentally by measuring the far-field profile, intensity noise spectrum and time series of the output beam. The mode-selection is achieved by adjusting a stripe mirror at the pseudo far-field plan...... with a frequency of the single roundtrip external-cavity loop modulated by periodic low-frequency fluctuation. This is the first observation of pulse-package oscillation in a diode laser with long-cavity feedback, to our knowledge....

  12. High-speed clock recovery and demodulation using short pulse sources and phase-locked loop techniques

    DEFF Research Database (Denmark)

    Zibar, Darko

    2007-01-01

    clocktiming jitter, i.e. 3.5 ps at 40 Gb/s and 0.5 ps at 160 Gb/s. In the last part of the thesis, a novel phase-locked coherent optical phase demodulator with feedback and sampling, to be used in phase-modulated radio-over-fibre optical links, is also presented, theoretically investigated and experimentally...... demonstrated. It is experimentally shown that the proposed approach results in 18 dB of spur-free-dynamic range improve- ment compared to a traditional demodulator without feedback. A new time-domain, large signal, numerical model of the phase locked coherent demodulator is developed and shown...... loop with noise at a bit-rate of 160 Gb/s. It has been shown that it is important to reduce the time delay in the loop since it results in the increased timing jitter of the recovered clock signal. We also investigate the requirement for the free-running timing jitter of the local electrical...

  13. A Feedback Passivation Design for DC Microgrid and Its DC/DC Converters

    Directory of Open Access Journals (Sweden)

    Feifan Ji

    2016-12-01

    Full Text Available There are difficulties in analyzing the stability of microgrids since they are located on various network structures. However, considering that the network often consists of passive elements, the passivity theory is applied in this paper to solve the above-mentioned problem. It has been formerly shown that when the network is weakly strictly positive real (WSPR, the DC microgrid is stable if all interfaces between the microgrid and converters are made to be passive, which is called interface passivity. Then, the feedback passivation method is proposed for the controller design of various DC–DC converters to achieve the interface passivity. The interface passivity is different from the passivity of closed-loop systems on which the passivity based control (PBC concentrates. The feedback passivation design is detailed for typical buck converters and boost converters in terms of conditions that the controller parameters should satisfy. The theoretical results are verified by a hardware-in-loop real-time labotray (RTLab simulation of a DC microgrid with four generators.

  14. Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs.

    Science.gov (United States)

    Andrews, Steven S; Peria, William J; Yu, Richard C; Colman-Lerner, Alejandro; Brent, Roger

    2016-11-23

    Many cell signaling systems, including the yeast pheromone response system, exhibit "dose-response alignment" (DoRA), in which output of one or more downstream steps closely matches the fraction of occupied receptors. DoRA can improve the fidelity of transmitted dose information. Here, we searched systematically for biochemical network topologies that produced DoRA. Most networks, including many containing feedback and feedforward loops, could not produce DoRA. However, networks including "push-pull" mechanisms, in which the active form of a signaling species stimulates downstream activity and the nominally inactive form reduces downstream activity, enabled perfect DoRA. Networks containing feedbacks enabled DoRA, but only if they also compared feedback to input and adjusted output to match. Our results establish push-pull as a non-feedback mechanism to align output with variable input and maximize information transfer in signaling systems. They also suggest genetic approaches to determine whether particular signaling systems use feedback or push-pull control. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Finite-time stabilization of uncertain nonholonomic systems in feedforward-like form by output feedback.

    Science.gov (United States)

    Gao, Fangzheng; Wu, Yuqiang; Zhang, Zhongcai

    2015-11-01

    This paper investigates the problem of finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. Comparing with the existing relevant literature, a distinguishing feature of the systems under investigation is that the x-subsystem is a feedforward-like rather than feedback-like system. This renders the existing control methods inapplicable to the control problems of the systems. A constructive design procedure for output feedback control is given. The designed controller renders that the states of closed-loop system are regulated to zero in a finite time. Two simulation examples are provided to illustrate the effectiveness of the proposed approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  17. Phyloproteomic Analysis of 11780 Six-Residue-Long Motifs Occurrences

    Directory of Open Access Journals (Sweden)

    O. V. Galzitskaya

    2015-01-01

    Full Text Available How is it possible to find good traits for phylogenetic reconstructions? Here, we present a new phyloproteomic criterion that is an occurrence of simple motifs which can be imprints of evolution history. We studied the occurrences of 11780 six-residue-long motifs consisting of two randomly located amino acids in 97 eukaryotic and 25 bacterial proteomes. For all eukaryotic proteomes, with the exception of the Amoebozoa, Stramenopiles, and Diplomonadida kingdoms, the number of proteins containing the motifs from the first group (one of the two amino acids occurs once at the terminal position made about 20%; in the case of motifs from the second (one of two amino acids occurs one time within the pattern and third (the two amino acids occur randomly groups, 30% and 50%, respectively. For bacterial proteomes, this relationship was 10%, 27%, and 63%, respectively. The matrices of correlation coefficients between numbers of proteins where a motif from the set of 11780 motifs appears at least once in 9 kingdoms and 5 phyla of bacteria were calculated. Among the correlation coefficients for eukaryotic proteomes, the correlation between the animal and fungi kingdoms (0.62 is higher than between fungi and plants (0.54. Our study provides support that animals and fungi are sibling kingdoms. Comparison of the frequencies of six-residue-long motifs in different proteomes allows obtaining phylogenetic relationships based on similarities between these frequencies: the Diplomonadida kingdoms are more close to Bacteria than to Eukaryota; Stramenopiles and Amoebozoa are more close to each other than to other kingdoms of Eukaryota.

  18. Modeling and Analysis of a Closed-Loop System for High-Q MEMS Accelerometer Sensor

    Directory of Open Access Journals (Sweden)

    Wang Yalin

    2018-01-01

    Full Text Available High-Q sensing element is desirable for high performance while makes the loop control a great challenge. This paper presents a closed-loop system for high-Q capacitive MEMS accelerometer which has achieved loop control effectively. The proportional-derivative(PDcontrol is developed in the system to improve the system stability. In addition, pulse width modulation (PWM electrostatic force feedback is designed in the loop to overcome the nonlinearity. Furthermore, a sigma-delta (ΣΔ modulator with noise shaping is built to realize digital output. System model is built in Matlab/Simulink. The simulation results indicate that equivalent Q value is reduced to 1.5 to ensure stability and responsiveness of the system. The effective number of bits of system output is 14.7 bits. The system nonlinearity is less than 5‰. The equivalent linear model including main noise factors is built, and then a complete theory of noise and linearity analysis is established to contribute to common MEMS accelerometer research.

  19. Status of Digital Orbit Feedback for SPEAR

    International Nuclear Information System (INIS)

    Hettel, Robert

    2003-01-01

    The present global orbit feedback system for SPEAR can adjust the electron beam position with a cycle time of 5 s. In addition, 50 Hz analog local servos stabilize the vertical photon beam position at monitors situated in the ten SSRL beamlines. The global and local systems will soon be merged into a single unified system operating from a dedicated DSP board. The goal is to acquire orbits, process the data, and correct beam position in a 1-2 ms interval to achieve a 30-50 Hz closed-loop bandwidth

  20. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    Science.gov (United States)

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. Copyright © 2015 Elsevier Ltd. All rights reserved.