WorldWideScience

Sample records for feedback loop motifs

  1. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    OpenAIRE

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and rec...

  2. Positive feedback promotes oscillations in negative feedback loops.

    Science.gov (United States)

    Ananthasubramaniam, Bharath; Herzel, Hanspeter

    2014-01-01

    A simple three-component negative feedback loop is a recurring motif in biochemical oscillators. This motif oscillates as it has the three necessary ingredients for oscillations: a three-step delay, negative feedback, and nonlinearity in the loop. However, to oscillate, this motif under the common Goodwin formulation requires a high degree of cooperativity (a measure of nonlinearity) in the feedback that is biologically "unlikely." Moreover, this recurring negative feedback motif is commonly observed augmented by positive feedback interactions. Here we show that these positive feedback interactions promote oscillation at lower degrees of cooperativity, and we can thus unify several common kinetic mechanisms that facilitate oscillations, such as self-activation and Michaelis-Menten degradation. The positive feedback loops are most beneficial when acting on the shortest lived component, where they function by balancing the lifetimes of the different components. The benefits of multiple positive feedback interactions are cumulative for a majority of situations considered, when benefits are measured by the reduction in the cooperativity required to oscillate. These positive feedback motifs also allow oscillations with longer periods than that determined by the lifetimes of the components alone. We can therefore conjecture that these positive feedback loops have evolved to facilitate oscillations at lower, kinetically achievable, degrees of cooperativity. Finally, we discuss the implications of our conclusions on the mammalian molecular clock, a system modeled extensively based on the three-component negative feedback loop.

  3. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    elasticities. For illustration, the method is applied to a well-known system: the simple long-wave model. Because this model exhibits highly nonlinear behavior, it sheds light on the usefulness of linear methods to nonlinear system. The analysis leads to a more thorough and deeper understanding of the system......Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...

  4. Feedback - closing the loop digitally

    International Nuclear Information System (INIS)

    Zagel, J.; Chase, B.

    1992-01-01

    Many feedback and feedforward systems are now using microprocessors within the loop. We describe the wide range of possibilities and problems that arise. We also propose some ideas for analysis and testing, including examples of motion control in the Flying Wire systems in Main Ring and Tevatron and Low Level RF control now being built for the Fermilab Linac upgrade. (author)

  5. Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions

    OpenAIRE

    Brandman, Onn; Ferrell, James E.; Li, Rong; Meyer, Tobias

    2005-01-01

    Positive feedback is a ubiquitous signal transduction motif that allows systems to convert graded inputs into decisive, all-or-none outputs. Here we investigate why the positive feedback switches that regulate polarization of budding yeast, calcium signaling, Xenopus oocyte maturation, and various other processes use multiple interlinked loops rather than single positive feedback loops. Mathematical simulations revealed that linking fast and slow positive feedback loops creates a “dual-time” ...

  6. Dynamics of Fibril Growth and Feedback Motifs

    DEFF Research Database (Denmark)

    Cordsen, Pia

    lumped and long, straight fibrils. Previous results on real time observation of fibrils were successfully reproduced using mixed conditions of both sodium dodecyl sulfate and seeds but not when using only one of the two. The dynamics of a three-species network motif, consisting of a predator and two...... which of the two competitors is better and if one of them will become extinct. Further it is found that in the range of coexistence between the two preys, the better one peaks first....

  7. Designing Self-Organized Contextualized Feedback Loops

    NARCIS (Netherlands)

    Kalz, Marco

    2013-01-01

    Kalz, M. (2013). Designing Self-Organized Contextualized Feedback Loops. In D. Whitelock, W. Warburton, G. Wills, & L. Gilbert (Eds.), International Conference on Computer Assisted Assessment (CAA 2013). July, 9-10, 2013, University of Southampton, Southampton, UK. http://caaconference.com.

  8. Noise propagation in gene regulation networks involving interlinked positive and negative feedback loops.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information. Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to suppress noise effects. Here, by using the signal sensitivity (susceptibility and noise amplification to quantify noise propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this suppression ability (or improves the noise propagation and enhances signal sensitivity. In the case of excitability, bistability, or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only suppressing or amplifying the noise.

  9. Monitoring Digital Closed-Loop Feedback Systems

    Science.gov (United States)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal

  10. Thermohaline feedback loops and Natural Capital

    Directory of Open Access Journals (Sweden)

    Tom Sawyer Hopkins

    2001-12-01

    Full Text Available Human interference now represents an inextricable component of all major ecosystems. Whether this is through top-down overharvesting of ecosystem production or bottom-up alteration (deliberate or inadvertent of the abiotic conditions, the planet´s ecosphere is in a vicious degradation cycle. For our economy to shift from exploiting to sustaining the natural systems, the solution, if there is to be one, will involve incorporation of the value of natural capital into the economic and political feedback loop. For the science sector, this will involve developing methodologies to evaluate the nonlinear and behavioral dynamics of entire systems in ways that can be coupled with economic models. One essential characteristic of systems science involves the interactions between internal components and external systems. Thermohaline circulations and their feedback loops illustrate a class of such interactive pathways. Examples from the Arctic, Mediterranean, and the US East Coast along with some of their associated ecological impacts are reviewed. Understanding how thermohaline interactions provide stability to the marine biotic environment and under what conditions this stability could be destabilized is a fundamental step toward evaluating the non-linear response of marine systems to anthropogenic stress.

  11. Finding the positive feedback loops underlying multi-stationarity.

    Science.gov (United States)

    Feliu, Elisenda; Wiuf, Carsten

    2015-05-28

    Bistability is ubiquitous in biological systems. For example, bistability is found in many reaction networks that involve the control and execution of important biological functions, such as signaling processes. Positive feedback loops, composed of species and reactions, are necessary for bistability, and generally for multi-stationarity, to occur. These loops are therefore often used to illustrate and pinpoint the parts of a multi-stationary network that are relevant ('responsible') for the observed multi-stationarity. However positive feedback loops are generally abundant in reaction networks but not all of them are important for understanding the network's dynamics. We present an automated procedure to determine the relevant positive feedback loops of a multi-stationary reaction network. The procedure only reports the loops that are relevant for multi-stationarity (that is, when broken multi-stationarity disappears) and not all positive feedback loops of the network. We show that the relevant positive feedback loops must be understood in the context of the network (one loop might be relevant for one network, but cannot create multi-stationarity in another). Finally, we demonstrate the procedure by applying it to several examples of signaling processes, including a ubiquitination and an apoptosis network, and to models extracted from the Biomodels database. The procedure is implemented in Maple. We have developed and implemented an automated procedure to find relevant positive feedback loops in reaction networks. The results of the procedure are useful for interpretation and summary of the network's dynamics.

  12. Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs

    Directory of Open Access Journals (Sweden)

    Daniel P. Aalberts

    2011-11-01

    Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.

  13. Finding the positive feedback loops underlying multi-stationarity

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2015-01-01

    BACKGROUND: Bistability is ubiquitous in biological systems. For example, bistability is found in many reaction networks that involve the control and execution of important biological functions, such as signaling processes. Positive feedback loops, composed of species and reactions, are necessary...... for bistability, and generally for multi-stationarity, to occur. These loops are therefore often used to illustrate and pinpoint the parts of a multi-stationary network that are relevant ('responsible') for the observed multi-stationarity. However positive feedback loops are generally abundant in reaction...

  14. Parallel arrangements of positive feedback loops limit cell-to-cell variability in differentiation.

    Directory of Open Access Journals (Sweden)

    Anupam Dey

    Full Text Available Cellular differentiations are often regulated by bistable switches resulting from specific arrangements of multiple positive feedback loops (PFL fused to one another. Although bistability generates digital responses at the cellular level, stochasticity in chemical reactions causes population heterogeneity in terms of its differentiated states. We hypothesized that the specific arrangements of PFLs may have evolved to minimize the cellular heterogeneity in differentiation. In order to test this we investigated variability in cellular differentiation controlled either by parallel or serial arrangements of multiple PFLs having similar average properties under extrinsic and intrinsic noises. We find that motifs with PFLs fused in parallel to one another around a central regulator are less susceptible to noise as compared to the motifs with PFLs arranged serially. Our calculations suggest that the increased resistance to noise in parallel motifs originate from the less sensitivity of bifurcation points to the extrinsic noise. Whereas estimation of mean residence times indicate that stable branches of bifurcations are robust to intrinsic noise in parallel motifs as compared to serial motifs. Model conclusions are consistent both in AND- and OR-gate input signal configurations and also with two different modeling strategies. Our investigations provide some insight into recent findings that differentiation of preadipocyte to mature adipocyte is controlled by network of parallel PFLs.

  15. Closing the open public data feedback loop: the ENGAGE platform

    NARCIS (Netherlands)

    Alexopoulos, C; Zuiderwijk-van Eijk, AMG; Charalabidis, Y; Loukis, E

    2014-01-01

    One essential element of open data ecosystems concerns their development through feedback loops, discussions and dynamic supplier and user interactions. However, these elements appear barely to be part of existing open data practices. We conducted a survey which showed that most professional open

  16. The double-loop feedback for active learning with understanding

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2004-01-01

    Learning is an active process, and in engineering education authentic projects is often used to activate the students and promote learning. However, it is not all activity that leads to deep learning; and in a rapid changing society deep understanding is necessary for life-long learning. Empirical...... findings at DTU question the direct link between high activity and a deep approach to learning. Active learning is important to obtain engineering competencies, but active learning requires more than activity. Feedback and reflection is crucial to the learning process, since new knowledge is built...... on the student’s existing understanding. A model for an active learning process with a double-loop feedback is suggested - the first loop gives the student experience through experimentation, the second conceptual understanding through reflection. Students often miss the second loop, so it is important...

  17. Functional characteristics of a double positive feedback loop coupled with autorepression

    International Nuclear Information System (INIS)

    Banerjee, Subhasis; Bose, Indrani

    2008-01-01

    We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic β-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the β-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the β-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON → OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out

  18. The first intracellular loop of GLUT4 contains a retention motif.

    Science.gov (United States)

    Talantikite, Maya; Berenguer, Marion; Gonzalez, Teresa; Alessi, Marie Christine; Poggi, Marjorie; Peiretti, Franck; Govers, Roland

    2016-06-01

    Glucose transporter GLUT4 (also known as SLC2A4) plays a major role in glucose homeostasis and is efficiently retained intracellularly in adipocytes and myocytes. To simplify the analysis of its retention, here, various intracellular GLUT4 domains were fused individually to reporter molecules. Of the four short cytoplasmic loops of GLUT4, only the first nine-residue-long loop conferred intracellular retention of truncated forms of the transferrin receptor and CD4 in adipocytes. In contrast, the same loop of GLUT1 was without effect. The reporter molecules to which the first loop of GLUT4 was fused localized, unlike GLUT4, to the trans-Golgi network (TGN), possibly explaining why these molecules did not respond to insulin. The retention induced by the GLUT4 loop was specific to adipocytes as it did not induce retention in preadipocytes. Of the SQWLGRKRA sequence that constitutes this loop, mutation of either the tryptophan or lysine residue abrogated reporter retention. Mutation of these residues individually into alanine residues in the full-length GLUT4 molecule resulted in a decreased retention for GLUT4-W105A. We conclude that the first intracellular loop of GLUT4 contains the retention motif WLGRK, in which W105 plays a prominent role. © 2016. Published by The Company of Biologists Ltd.

  19. No evidence for an elephant-termite feedback loop in Sand Forest, South Africa

    NARCIS (Netherlands)

    Lagendijk, D. D G; Davies, A. B.; Eggleton, P.; Slotow, R.

    2016-01-01

    Termites and mammalian herbivores might derive mutual benefit from each other through positive feedback loops, but empirical evidence is lacking. One suggested positive feedback loop is between termites and elephant, both ecosystem engineers. Termites, as decomposer organisms, contribute to nutrient

  20. Finding Positive Feedback Loops in Environmental Models: A Mathematical Investigation

    Science.gov (United States)

    Sheikholeslami, R.; Razavi, S.

    2016-12-01

    Dynamics of most earth and environmental systems are generally governed by interactions between several hydrological (e.g., soil moisture and precipitation), geological (e.g., and erosion), geochemical (e.g., nutrient loading), and atmospheric (e.g., temperature) processes which operate on a range of spatio-temporal scales. These interactions create numerous feedback mechanisms with complex behaviours, and their understanding and representation can vary depending on the scale in space and/or time at which the system is analyzed. One of the most crucial characteristics of such complex systems is the existence of positive feedback loops. The presence of positive feedbacks may increase complexity, accelerate change, or trigger multiple stable states in the underlying dynamical system. Furthermore, because of the inherent non-linearity, it is often very difficult to obtain a general idea of their complex dynamics. Feedback loops in environmental systems have been well recognized and qualitatively discussed. With a quantitative/mathematical view, in this presentation, we address the question of how the positive feedback loops can be identified/implemented in environmental models. We investigate the nature of different feedback mechanisms and dynamics of simple example case studies that underlie fundamental processes such as vegetation, precipitation and soil moisture. To do this, we apply the concept of "interaction graph" from mathematics which is built from the Jacobian matrix of the dynamical system. The Jacobian matrix contains information on how variations of one state variable depends on variations of other variables, and thus can be used to understand the dynamical possibilities of feedback mechanisms in the underlying system. Moreover, this study highlights that there are some situations where the existence of positive feedback loops can cause multiple stable states, and thereby regime shifts in environmental systems. Systems with multiple stable states are

  1. Bridging of anions by hydrogen bonds in nest motifs and its significance for Schellman loops and other larger motifs within proteins.

    Science.gov (United States)

    Afzal, Avid M; Al-Shubailly, Fawzia; Leader, David P; Milner-White, E James

    2014-11-01

    The nest is a protein motif of three consecutive amino acid residues with dihedral angles 1,2-αR αL (RL nests) or 1,2-αL αR (LR nests). Many nests form a depression in which an anion or δ-negative acceptor atom is bound by hydrogen bonds from the main chain NH groups. We have determined the extent and nature of this bridging in a database of protein structures using a computer program written for the purpose. Acceptor anions are bound by a pair of bridging hydrogen bonds in 40% of RL nests and 20% of LR nests. Two thirds of the bridges are between the NH groups at Positions 1 and 3 of the motif (N1N3-bridging)-which confers a concavity to the nest; one third are of the N2N3 type-which does not. In bridged LR nests N2N3-bridging predominates (14% N1N3: 75% N2N3), whereas in bridged RL nests the reverse is true (69% N1N3: 25% N2N3). Most bridged nests occur within larger motifs: 45% in (hexapeptide) Schellman loops with an additional 4 → 0 hydrogen bond (N1N3), 11% in Schellman loops with an additional 5 → 1 hydrogen bond (N2N3), 12% in a composite structure including a type 1β-bulge loop and an asx- or ST- motif (N1N3)-remarkably homologous to the N1N3-bridged Schellman loop-and 3% in a composite structure including a type 2β-bulge loop and an asx-motif (N2N3). A third hydrogen bond is a previously unrecognized feature of Schellman loops as those lacking bridged nests have an additional 4 → 0 hydrogen bond. © 2014 Wiley Periodicals, Inc.

  2. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available University of Stellenbosch WWW.LASER-RESEARCH.CO.ZA University of Stellenbosch Pulse Energy Control Through Dual Loop Electronic Feedback Cobus Jacobs, Steven Kriel Christoph Bollig, Thomas Jones Cobus Jacobs et al. Overview head2righthead2right...What is Laser Pulse Energy Control? head2righthead2rightWhy do we need it? head2righthead2rightHow do we get it? head2righthead2rightSimulation head2righthead2rightExperimental Setup head2righthead2rightResults Cobus Jacobs et al. head2righthead2right...

  3. Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times

    International Nuclear Information System (INIS)

    Tiwari, Abhinav; Igoshin, Oleg A

    2012-01-01

    Biochemical regulatory networks governing diverse cellular processes such as stress-response, differentiation and cell cycle often contain coupled feedback loops. We aim at understanding how features of feedback architecture, such as the number of loops, the sign of the loops and the type of their coupling, affect network dynamical performance. Specifically, we investigate how bistability range, maximum open-loop gain and switching times of a network with transcriptional positive feedback are affected by additive or multiplicative coupling with another positive- or negative-feedback loop. We show that a network's bistability range is positively correlated with its maximum open-loop gain and that both quantities depend on the sign of the feedback loops and the type of feedback coupling. Moreover, we find that the addition of positive feedback could decrease the bistability range if we control the basal level in the signal-response curves of the two systems. Furthermore, the addition of negative feedback has the capacity to increase the bistability range if its dissociation constant is much lower than that of the positive feedback. We also find that the addition of a positive feedback to a bistable network increases the robustness of its bistability range, whereas the addition of a negative feedback decreases it. Finally, we show that the switching time for a transition from a high to a low steady state increases with the effective fold change in gene regulation. In summary, we show that the effect of coupled feedback loops on the bistability range and switching times depends on the underlying mechanistic details. (paper)

  4. Feedback loop process for controlling inertial cavitation: experimental evidence

    Science.gov (United States)

    Inserra, Claude; Sabraoui, Abbas; Reslan, Lina; Bera, Jean-Christophe; Gilles, Bruno; Mestas, Jean-Louis

    2011-09-01

    Applications involving cavitation mechanisms, such as sonoporation, are irreproducible in the case of a fixed-intensity sonication, due to the non-stationary behavior of cavitation. We then propose to work at a fixed-cavitation level instead of under fixed-intensity sonication conditions. For this purpose a regulated cavitation generator has been developed in a stationary wave field configuration, which allows regulation of the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop based on acoustic cavitation measurements. The cavitation level indicator was quantified by the broadband spectrum noise level relative to inertial cavitation events. This generated inertial cavitation was characterized by both acoustic and chemical measurements, quantifying hydroxyl radicals produced by water sonolysis. While the cavitation level is obtained with a 40% standard deviation for fixed applied acoustic intensities in the range [0.01 3.44] W/cm2, the regulated generator reproduces the cavitation level with a standard deviation of 3%. The results show that the hydroxyl radical production is better correlated with the cavitation level setting than with the applied acoustic intensity, highlighting the fact that broadband noise is a good indicator of inertial cavitation, with greatest interest for cavitation monitoring. In summary, the regulated device generates a cavitation level that is reproducible, repeatable and stable in time. This system produces reproducible effects that allow consideration of biological applications such as sonoporation to be independent of the experimental ultrasound device, as confirmed by transfection efficiency and cell cytotoxicity studies. Thus, this feedback loop process presents interesting perspectives for monitoring and controlling in-vivo cavitation.

  5. A Moral Experience Feedback Loop: Modeling a System of Moral Self-Cultivation in Everyday Life

    Science.gov (United States)

    Sherblom, Stephen A.

    2015-01-01

    This "systems thinking" model illustrates a common feedback loop by which people engage the moral world and continually reshape their moral sensibility. The model highlights seven processes that collectively form this feedback loop: beginning with (1) one's current moral sensibility which shapes processes of (2) perception, (3)…

  6. Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training

    Science.gov (United States)

    Zhang, Yili; Smolen, Paul; Alberini, Cristina M.; Baxter, Douglas A.; Byrne, John H.

    2016-01-01

    Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins…

  7. Design of PID controllers in double feedback loops for SISO systems with set-point filters.

    Science.gov (United States)

    Vijayan, V; Panda, Rames C

    2012-07-01

    A PID controller is widely used to control industrial processes that are mostly open loop stable or unstable. Selection of proper feedback structure and controller tuning helps to improve the performance of the loop. In this paper a double-feedback loop/method is used to achieve stability and better performance of the process. The internal feedback is used for stabilizing the process and the outer loop is used for good setpoint tracking. An internal model controller (IMC) based PID method is used for tuning the outer loop controller. Autotuning based on relay feedback or the Ziegler-Nichols method can be used for tuning an inner loop controller. A tuning parameter (λ) that is used to tune IMC-PID is used as a time constant of a setpoint filter that is used for reducing the peak overshoot. The method has been tested successfully on many low order processes. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Synergistic dual positive feedback loops established by molecular sequestration generate robust bimodal response.

    Science.gov (United States)

    Venturelli, Ophelia S; El-Samad, Hana; Murray, Richard M

    2012-11-27

    Feedback loops are ubiquitous features of biological networks and can produce significant phenotypic heterogeneity, including a bimodal distribution of gene expression across an isogenic cell population. In this work, a combination of experiments and computational modeling was used to explore the roles of multiple feedback loops in the bimodal, switch-like response of the Saccharomyces cerevisiae galactose regulatory network. Here, we show that bistability underlies the observed bimodality, as opposed to stochastic effects, and that two unique positive feedback loops established by Gal1p and Gal3p, which both regulate network activity by molecular sequestration of Gal80p, induce this bimodality. Indeed, systematically scanning through different single and multiple feedback loop knockouts, we demonstrate that there is always a concentration regime that preserves the system's bimodality, except for the double deletion of GAL1 and the GAL3 feedback loop, which exhibits a graded response for all conditions tested. The constitutive production rates of Gal1p and Gal3p operate as bifurcation parameters because variations in these rates can also abolish the system's bimodal response. Our model indicates that this second loss of bistability ensues from the inactivation of the remaining feedback loop by the overexpressed regulatory component. More broadly, we show that the sequestration binding affinity is a critical parameter that can tune the range of conditions for bistability in a circuit with positive feedback established by molecular sequestration. In this system, two positive feedback loops can significantly enhance the region of bistability and the dynamic response time.

  9. Folding topology of a bimolecular DNA quadruplex containing a stable mini-hairpin motif within the diagonal loop.

    Science.gov (United States)

    Balkwill, Graham D; Garner, Thomas P; Williams, Huw E L; Searle, Mark S

    2009-02-06

    We describe the NMR structural characterisation of a bimolecular anti-parallel DNA quadruplex d(G(3)ACGTAGTG(3))(2) containing an autonomously stable mini-hairpin motif inserted within the diagonal loop. A folding topology is identified that is different from that observed for the analogous d(G(3)T(4)G(3))(2) dimer with the two structures differing in the relative orientation of the diagonal loops. This appears to reflect specific base stacking interactions at the quadruplex-duplex interface that are not present in the structure with the T(4)-loop sequence. A truncated version of the bimolecular quadruplex d(G(2)ACGTAGTG(2))(2), with only two core G-tetrads, is less stable and forms a heterogeneous mixture of three 2-fold symmetric quadruplexes with different loop arrangements. We demonstrate that the nature of the loop sequence, its ability to form autonomously stable structure, the relative stabilities of the hairpin loop and core quadruplex, and the ability to form favourable stacking interactions between these two motifs are important factors in controlling DNA G-quadruplex topology.

  10. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Directory of Open Access Journals (Sweden)

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  11. Time Optimal Synchronization Procedure and Associated Feedback Loops

    CERN Document Server

    Angoletta, Maria Elena; CERN. Geneva. ATS Department

    2016-01-01

    A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.

  12. Oscillations in MAPK cascade triggered by two distinct designs of coupled positive and negative feedback loops

    Science.gov (United States)

    2012-01-01

    Background Feedback loops, both positive and negative are embedded in the Mitogen Activated Protein Kinase (MAPK) cascade. In the three layer MAPK cascade, both feedback loops originate from the terminal layer and their sites of action are either of the two upstream layers. Recent studies have shown that the cascade uses coupled positive and negative feedback loops in generating oscillations. Two plausible designs of coupled positive and negative feedback loops can be elucidated from the literature; in one design the positive feedback precedes the negative feedback in the direction of signal flow and vice-versa in another. But it remains unexplored how the two designs contribute towards triggering oscillations in MAPK cascade. Thus it is also not known how amplitude, frequency, robustness or nature (analogous/digital) of the oscillations would be shaped by these two designs. Results We built two models of MAPK cascade that exhibited oscillations as function of two underlying designs of coupled positive and negative feedback loops. Frequency, amplitude and nature (digital/analogous) of oscillations were found to be differentially determined by each design. It was observed that the positive feedback emerging from an oscillating MAPK cascade and functional in an external signal processing module can trigger oscillations in the target module, provided that the target module satisfy certain parametric requirements. The augmentation of the two models was done to incorporate the nuclear-cytoplasmic shuttling of cascade components followed by induction of a nuclear phosphatase. It revealed that the fate of oscillations in the MAPK cascade is governed by the feedback designs. Oscillations were unaffected due to nuclear compartmentalization owing to one design but were completely abolished in the other case. Conclusion The MAPK cascade can utilize two distinct designs of coupled positive and negative feedback loops to trigger oscillations. The amplitude, frequency and

  13. Deletion of the GPG motif in the HIV type 1 V3 loop does not abrogate infection in all cells.

    Science.gov (United States)

    Su, J; Palm, A; Wu, Y; Sandin, S; Höglund, S; Vahlne, A

    2000-01-01

    The three amino acids glycine, proline, and glycine (GPG) constitute a conserved motif at the center of the V3 loop of HIV-1 surface glycoprotein 120. It has been indicated that deletion of this GPG motif is lethal for viral infectivity and abrogates the ability of the virus to form syncytia. In the present work, we studied the effects of GPG deletion on viral infectivity, cell tropism, syncytium formation, and initiation of apoptosis by constructing a mutant provirus based on the infectious clone pBRu-2. Successful infection and replication of GPG-deleted virus were detected in MT-2 cells, although the mutant virus showed lower infectivity. Infection could also be observed in the C8166, C91-PL, Molt-3, and THP-1 cell lines, and in PBMC-derived dendritic cells (DCs), but not in CEM-SS, HUT78, H9, Jurkat, and U937 cell lines or in PBMCs. Mutant virus also induced syncytia and apoptosis in the MT-2 cells. An intact GPG motif is probably necessary for unimpaired induction of fusion in some HIV-1-permissive cells. However, once the virus enters the cells, the GPG sequence does not seem to be indispensable for syncytium formation or apoptosis induction in MT-2 cells. Our data also imply that cell surface molecules other than CD4 and CXCR4 may be involved in entry of the GPG-deleted virus.

  14. Genome-Wide Identification of Mitogen-Activated Protein Kinase Gene Family across Fungal Lineage Shows Presence of Novel and Diverse Activation Loop Motifs.

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Mohanta

    Full Text Available The mitogen-activated protein kinase (MAPK is characterized by the presence of the T-E-Y, T-D-Y, and T-G-Y motifs in its activation loop region and plays a significant role in regulating diverse cellular responses in eukaryotic organisms. Availability of large-scale genome data in the fungal kingdom encouraged us to identify and analyse the fungal MAPK gene family consisting of 173 fungal species. The analysis of the MAPK gene family resulted in the discovery of several novel activation loop motifs (T-T-Y, T-I-Y, T-N-Y, T-H-Y, T-S-Y, K-G-Y, T-Q-Y, S-E-Y and S-D-Y in fungal MAPKs. The phylogenetic analysis suggests that fungal MAPKs are non-polymorphic, had evolved from their common ancestors around 1500 million years ago, and are distantly related to plant MAPKs. We are the first to report the presence of nine novel activation loop motifs in fungal MAPKs. The specificity of the activation loop motif plays a significant role in controlling different growth and stress related pathways in fungi. Hence, the presences of these nine novel activation loop motifs in fungi are of special interest.

  15. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder.

    Science.gov (United States)

    Wittenborn, A K; Rahmandad, H; Rick, J; Hosseinichimeh, N

    2016-02-01

    Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention.

  16. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder

    Science.gov (United States)

    Wittenborn, A. K.; Rahmandad, H.; Rick, J.; Hosseinichimeh, N.

    2016-01-01

    Background Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. Method We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. Results The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Conclusions Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention. PMID:26621339

  17. The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches

    International Nuclear Information System (INIS)

    Pfeuty, Benjamin; Kaneko, Kunihiko

    2009-01-01

    A wide range of cellular processes require molecular regulatory pathways to convert a graded signal into a discrete response. One prevalent switching mechanism relies on the coexistence of two stable states (bistability) caused by positive feedback regulations. Intriguingly, positive feedback is often supplemented with negative feedback, raising the question of whether and how these two types of feedback can cooperate to control discrete cellular responses. To address this issue, we formulate a canonical model of a protein–protein interaction network and analyze the dynamics of a prototypical two-component circuit. The appropriate combination of negative and positive feedback loops can bring a bistable circuit close to the oscillatory regime. Notably, sharply activated negative feedback can give rise to a bistable regime wherein two stable fixed points coexist and may collide pairwise with two saddle points. This specific type of bistability is found to allow for separate and flexible control of switch-on and switch-off events, for example (i) to combine fast and reversible transitions, (ii) to enable transient switching responses and (iii) to display tunable noise-induced transition rates. Finally, we discuss the relevance of such bistable switching behavior, and the circuit topologies considered, to specific biological processes such as adaptive metabolic responses, stochastic fate decisions and cell-cycle transitions. Taken together, our results suggest an efficient mechanism by which positive and negative feedback loops cooperate to drive the flexible and multifaceted switching behaviors arising in biological systems

  18. The role of feed-forward and feedback processes for closed-loop prosthesis control

    Directory of Open Access Journals (Sweden)

    Saunders Ian

    2011-10-01

    Full Text Available Abstract Background It is widely believed that both feed-forward and feed-back mechanisms are required for successful object manipulation. Open-loop upper-limb prosthesis wearers receive no tactile feedback, which may be the cause of their limited dexterity and compromised grip force control. In this paper we ask whether observed prosthesis control impairments are due to lack of feedback or due to inadequate feed-forward control. Methods Healthy subjects were fitted with a closed-loop robotic hand and instructed to grasp and lift objects of different weights as we recorded trajectories and force profiles. We conducted three experiments under different feed-forward and feed-back configurations to elucidate the role of tactile feedback (i in ideal conditions, (ii under sensory deprivation, and (iii under feed-forward uncertainty. Results (i We found that subjects formed economical grasps in ideal conditions. (ii To our surprise, this ability was preserved even when visual and tactile feedback were removed. (iii When we introduced uncertainty into the hand controller performance degraded significantly in the absence of either visual or tactile feedback. Greatest performance was achieved when both sources of feedback were present. Conclusions We have introduced a novel method to understand the cognitive processes underlying grasping and lifting. We have shown quantitatively that tactile feedback can significantly improve performance in the presence of feed-forward uncertainty. However, our results indicate that feed-forward and feed-back mechanisms serve complementary roles, suggesting that to improve on the state-of-the-art in prosthetic hands we must develop prostheses that empower users to correct for the inevitable uncertainty in their feed-forward control.

  19. A Catalytic DNA Probe with Stem-loop Motif for Human T47D Breast Cancer Cells.

    Science.gov (United States)

    Gao, Fei; Liu, Feng; Zheng, Jing; Zeng, MeiYun; Jiang, Yuyang

    2015-01-01

    In vitro selection methods allow for isolation of DNAzymes (catalytic DNAs) from random DNA pools. Here we describe a fluorogenic DNAzyme, LYF5, isolated using a double-random selection approach: a random DNA pool was selected against a complex molecular mixture derived from a breast cancer cell line, T47D. LYF5 specifically indicates the T47D breast cancer cell line with high sensitivity. After sequence optimization, the second-generation DNAzyme, 2G-LYF5, exhibited an approximately 2-fold higher cleavage percentage. Finally, we have determined that the intramolecular stem-loop motif plays a crucial role in 2G-LYF5 activity. Our findings underscore the capability of single-stranded DNA molecules to perform highly sophisticated functions that are amenable to the development of diagnostic tests for early identification of breast cancer.

  20. Uncovering the spatially distant feedback loops of global trade: A network and input-output approach.

    Science.gov (United States)

    Prell, Christina; Sun, Laixiang; Feng, Kuishuang; He, Jiaying; Hubacek, Klaus

    2017-05-15

    Land-use change is increasingly driven by global trade. The term "telecoupling" has been gaining ground as a means to describe how human actions in one part of the world can have spatially distant impacts on land and land-use in another. These interactions can, over time, create both direct and spatially distant feedback loops, in which human activity and land use mutually impact one another over great expanses. In this paper, we develop an analytical framework to clarify spatially distant feedbacks in the case of land use and global trade. We use an innovative mix of multi-regional input-output (MRIO) analysis and stochastic actor-oriented models (SAOMs) for analyzing the co-evolution of changes in trade network patterns with those of land use, as embodied in trade. Our results indicate that the formation of trade ties and changes in embodied land use mutually impact one another, and further, that these changes are linked to disparities in countries' wealth. Through identifying this feedback loop, our results support ongoing discussions about the unequal trade patterns between rich and poor countries that result in uneven distributions of negative environmental impacts. Finally, evidence for this feedback loop is present even when controlling for a number of underlying mechanisms, such as countries' land endowments, their geographical distance from one another, and a number of endogenous network tendencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Oleksandr V Popovych

    Full Text Available High-frequency (HF deep brain stimulation (DBS is the gold standard for the treatment of medically refractory movement disorders like Parkinson's disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS.

  2. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation.

    Science.gov (United States)

    Popovych, Oleksandr V; Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson's disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS.

  3. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    Science.gov (United States)

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  4. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.

    Science.gov (United States)

    Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

    2015-03-01

    Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.

  5. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin.

    Directory of Open Access Journals (Sweden)

    Hirohito Abo

    Full Text Available We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA, revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG, heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units.

  6. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin.

    Science.gov (United States)

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units.

  7. The kissing-loop motif is a preferred site of 5' leader recombination during replication of SL3-3 murine leukemia viruses in mice

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Mikkelsen, J G; Schmidt, J

    1999-01-01

    , and the upstream part of the 5' untranslated region, enabled us to map recombination sites, guided by distinct scattered nucleotide differences. In 30 of 44 analyzed sequences, recombination was mapped to a 33-nucleotide similarity window coinciding with the kissing-loop stem-loop motif implicated in dimerization...... of the diploid genome. Interestingly, the recombination pattern preference found in replication-competent viruses from T-cell tumors is very similar to the pattern previously reported for retroviral vectors in cell culture experiments. The data therefore sustain the hypothesis that the kissing loop, presumably...

  8. Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders

    Science.gov (United States)

    Zhong, Li-Xin; Xu, Wen-Juan; Chen, Rong-Da; Zhong, Chen-Yang; Qiu, Tian; Ren, Fei; He, Yun-Xing

    2018-03-01

    By incorporating market impact and momentum traders into an agent-based model, we investigate the conditions for the occurrence of self-reinforcing feedback loops and the coevolutionary mechanism of prices and strategies. For low market impact, the price fluctuations are originally large. The existence of momentum traders has little impact on the change of price fluctuations but destroys the equilibrium between the trend-following and trend-rejecting strategies. The trend-following herd behaviors become dominant. A self-reinforcing feedback loop exists. For high market impact, the existence of momentum traders leads to an increase in price fluctuations. The trend-following strategies of rational individuals are suppressed while the trend-following strategies of momentum traders are promoted. The crowd-anticrowd behaviors become dominant. A negative feedback loop exists. A theoretical analysis indicates that, for low market impact, the majority effect is beneficial for the trend-followers to earn more, which in turn promotes the trend-following strategies. For high market impact, the minority effect causes the trend-followers to suffer great losses, which in turn suppresses the trend-following strategies.

  9. An evaluation of the feedback loops in the poverty focus of world bank operations.

    Science.gov (United States)

    Fardoust, Shahrokh; Kanbur, Ravi; Luo, Xubei; Sundberg, Mark

    2018-04-01

    The World Bank Group in 2013 made the elimination of extreme poverty by 2030 a central institutional focus and purpose. This paper, based on an evaluation conducted by the Independent Evaluation Group of the World Bank Group, examines how, and how well, the Bank uses feedback loops to enhance the poverty focus of its operations. Feedback loops are important for every element of the results chain running from data, to diagnostics, to strategy formulation and finally to strategy implementation. The evaluation uses a range of instruments, including surveys of stakeholders and World Bank staff, focus group meetings, country case studies and systematic reviews of Bank lending and non-lending operations. We find that while the Bank generates useful information on poverty reduction from its projects and programs, the feedback loops - from outcomes to data analysis to diagnostics to strategy formulation and implementation - have generally been weak, with sizable variation across countries. Copyright © 2017 The World Bank. Published by Elsevier Ltd.. All rights reserved.

  10. Delay-induced oscillations in a thermal convection loop under negative feedback control with noise

    Science.gov (United States)

    Bratsun, Dmitri; Krasnyakov, Ivan; Zyuzgin, Alexey

    2017-06-01

    We study both experimentally and theoretically the problem of active control of the mechanical equilibrium of a fluid in a convection loop heated from below and cooled from above. In order to easily obtain and maintain the mechanical equilibrium of fluid we have designed a rectangular-shaped loop with long vertical channels and short crosspieces between them. The control is performed by using a negative feedback subsystem which inhibits the convection by introducing small discrete changes in the spatial orientation of the loop with respect to gravity. In this paper, we focus on effects that arise when the feedback controller operates with time delays and/or is subjected to random fluctuations. Both these intrinsic features of the controller could be tuned in experiments to explore their effects together and separately. When the noise is absent, the excess feedback was found to lead to the excitation of delay-related oscillations. In addition, we show that time delay coupled with noise can cause a system to be oscillatory even when its deterministic counterpart exhibits no oscillations. So, we give an example of a hydrodynamic system having, generally, a large number degrees of freedom, which behaves like a small-sized stochastic system heavily dependent on fluctuations, even far from the point of bifurcation. The experimental data and theory is shown to be in good agreement.

  11. Negative Regulators of an RNAi-Heterochromatin Positive Feedback Loop Safeguard Somatic Genome Integrity in Tetrahymena.

    Science.gov (United States)

    Suhren, Jan H; Noto, Tomoko; Kataoka, Kensuke; Gao, Shan; Liu, Yifan; Mochizuki, Kazufumi

    2017-03-07

    RNAi-mediated positive feedback loops are pivotal for the maintenance of heterochromatin, but how they are downregulated at heterochromatin-euchromatin borders is not well understood. In the ciliated protozoan Tetrahymena, heterochromatin is formed exclusively on the sequences that are removed from the somatic genome by programmed DNA elimination, and an RNAi-mediated feedback loop is important for assembling heterochromatin on the eliminated sequences. In this study, we show that the heterochromatin protein 1 (HP1)-like protein Coi6p, its interaction partners Coi7p and Lia5p, and the histone demethylase Jmj1p are crucial for confining the production of small RNAs and the formation of heterochromatin to the eliminated sequences. The loss of Coi6p, Coi7p, or Jmj1p causes ectopic DNA elimination. The results provide direct evidence for the existence of a dedicated mechanism that counteracts a positive feedback loop between RNAi and heterochromatin at heterochromatin-euchromatin borders to maintain the integrity of the somatic genome. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Obg-like ATPase 1 regulates global protein serine/threonine phosphorylation in cancer cells by suppressing the GSK3β-inhibitor 2-PP1 positive feedback loop.

    Science.gov (United States)

    Xu, Dong; Song, Renduo; Wang, Guohui; Jeyabal, Prince V S; Weiskoff, Amanda M; Ding, Kefeng; Shi, Zheng-Zheng

    2016-01-19

    OLA1 is an Obg family P-loop NTPase that possesses both GTP- and ATP-hydrolyzing activities. Here we report that OLA1 is a GSK3β interacting protein, and through its ATPase activity, inhibits the GSK3β-mediated activation of protein serine/threonine phosphatase 1 (PP1). It is hypothesized that GSK3β phosphorylates inhibitor 2 (I-2) of PP1 at Thr-72 and activates the PP1 · I-2 complex, which in turn dephosphorylates and stimulates GSK3β, thus forming a positive feedback loop. We revealed that the positive feedback loop is normally suppressed by OLA1, and becomes over-activated under OLA1 deficiency, resulting in increased cellular PP1 activity and dephosphorylation of multiple Ser/Thr phosphoproteins, and more strikingly, decreased global protein threonine phosphorylation. Furthermore, using xenograft models of colon cancer (H116) and ovarian cancer (SKOV3), we established a correlation among downregulation of OLA1, over-activation of the positive feedback loop as indicated by under-phosphorylation of I-2, and more aggressive tumor growth. This study provides the first evidence for the existence of a GSK3β-I-2-PP1 positive feedback loop in human cancer cells, and identifies OLA1 as an endogenous suppressor of this signaling motif.

  13. A Platform for Closing the Open Data Feedback Loop Based on Web2.0 Functionality

    Directory of Open Access Journals (Sweden)

    Charalampos Alexopoulos

    2014-11-01

    Full Text Available One essential element of open data ecosystems concerns their development through feedback loops, discussions and dynamic supplier and user interactions. These user-centric features communicate the users’ needs to the open data community as well to the public sector bodies responsible for data publication. Addressing these needs by the corresponding public sector bodies or even by utilising the power of the community as ENGAGE supports will actually accelerate innovation. However, these elements appear barely to be part of existing open data practices. We conducted a survey which showed that most professional open data users did not know at least one open data infrastructure that enabled five specific types of discussion and feedback mechanisms. The survey showed that much can still be done to improve feedback and discussion on open data infrastructures. In this paper we discuss an open data platform which has started to contribute to filling this gap and present a usage scenario explaining the sequence of the underlined functionality. The discussed ENGAGE open data infrastructure combines functionalities to close the feedback loop and to return information to public authorities for better open data use and publication as well as establishing communication channels between stakeholders. This may effectively lead to the stimulation and facilitation of value generation from open data, as such functionality position the user at the centre of the open data publication process.

  14. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  15. Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback.

    Science.gov (United States)

    Dosen, Strahinja; Schaeffer, Marie-Caroline; Farina, Dario

    2014-09-15

    Restoring sensory feedback in myoelectric prostheses is still an open challenge. Closing the loop might lead to a more effective utilization and better integration of these systems into the body scheme of the user. Electrotactile stimulation can be employed to transmit the feedback information to the user, but it represents a strong interference to the recording of the myoelectric signals that are used for control. Time-division multiplexing (TDM) can be applied to avoid this interference by performing the stimulation and recording in dedicated, non-overlapping time windows. A closed-loop compensatory tracking task with myocontrol and electrotactile stimulation was used to investigate how the duration of the feedback window (FW) influences the ability to perceive the feedback information and react with an appropriate control action. Nine subjects performed eight trials with continuous recording and contralateral feedback (CONT-CLT) and TDM with ispilateral stimulation and recording using the FW of 40 ms (TDM40), 100 ms (TDM100) and 300 ms (TDM300). The tracking quality was evaluated by comparing the reference and generated trajectories using cross-correlation coefficient (CCCOEF), time delay, root mean square tracking error, and the amount of overshoot. The control performance in CONT-CLT was the best in all the outcome measures. The overall worst performance was obtained using TDM with the shortest FW (TDM40). There was no significant difference between TDM100 and TDM300, and the quality of tracking in these two conditions was high (CCCOEF ~ 0.95). The results demonstrated that FW duration is indeed an important parameter in TDM, which appears to have an optimal value. Among the tested cases, the FW duration of 100 ms seems to be the best trade-off between the quality of perception and a limited command update rate. This study represents the first systematic evaluation of a TDM-based approach for closing the loop using electrotactile feedback in myoelectric

  16. Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2018-04-01

    The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.

  17. An Integrated Loop Model of Corrective Feedback and Oral English Learning: A Case of International Students in the United States

    Science.gov (United States)

    Lee, Eun Jeong

    2017-01-01

    The author in this study introduces an integrated corrective feedback (CF) loop to schematize the interplay between CF and independent practice in L2 oral English learning among advanced-level adult ESL students. The CF loop integrates insights from the Interaction, Output, and Noticing Hypotheses to show how CF can help or harm L2 learners'…

  18. Closed-Loop Restoration Approach to Blurry Images Based on Machine Learning and Feedback Optimization.

    Science.gov (United States)

    Yousaf, Saqib; Qin, Shiyin

    2015-12-01

    Blind image deconvolution (BID) aims to remove or reduce the degradations that have occurred during the acquisition or processing. It is a challenging ill-posed problem due to a lack of enough information in degraded image for unambiguous recovery of both point spread function (PSF) and clear image. Although recently many powerful algorithms appeared; however, it is still an active research area due to the diversity of degraded images as well as degradations. Closed-loop control systems are characterized with their powerful ability to stabilize the behavior response and overcome external disturbances by designing an effective feedback optimization. In this paper, we employed feedback control to enhance the stability of BID by driving the current estimation quality of PSF to the desired level without manually selecting restoration parameters and using an effective combination of machine learning with feedback optimization. The foremost challenge when designing a feedback structure is to construct or choose a suitable performance metric as a controlled index and a feedback information. Our proposed quality metric is based on the blur assessment of deconvolved patches to identify the best PSF and computing its relative quality. The Kalman filter-based extremum seeking approach is employed to find the optimum value of controlled variable. To find better restoration parameters, learning algorithms, such as multilayer perceptron and bagged decision trees, are used to estimate the generic PSF support size instead of trial and error methods. The problem is modeled as a combination of pattern classification and regression using multiple training features, including noise metrics, blur metrics, and low-level statistics. Multi-objective genetic algorithm is used to find key patches from multiple saliency maps which enhance performance and save extra computation by avoiding ineffectual regions of the image. The proposed scheme is shown to outperform corresponding open-loop

  19. An Effective Feedback Loop between Cell-Cell Contact Duration and Morphogen Signaling Determines Cell Fate.

    Science.gov (United States)

    Barone, Vanessa; Lang, Moritz; Krens, S F Gabriel; Pradhan, Saurabh J; Shamipour, Shayan; Sako, Keisuke; Sikora, Mateusz; Guet, Călin C; Heisenberg, Carl-Philipp

    2017-10-23

    Cell-cell contact formation constitutes an essential step in evolution, leading to the differentiation of specialized cell types. However, remarkably little is known about whether and how the interplay between contact formation and fate specification affects development. Here, we identify a positive feedback loop between cell-cell contact duration, morphogen signaling, and mesendoderm cell-fate specification during zebrafish gastrulation. We show that long-lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for ppl cell-fate specification. We further show that Nodal signaling promotes ppl cell-cell contact duration, generating a positive feedback loop between ppl cell-cell contact duration and cell-fate specification. Finally, by combining mathematical modeling and experimentation, we show that this feedback determines whether anterior axial mesendoderm cells become ppl or, instead, turn into endoderm. Thus, the interdependent activities of cell-cell signaling and contact formation control fate diversification within the developing embryo. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Immune signal transduction in leishmaniasis from natural to artificial systems: role of feedback loop insertion.

    Science.gov (United States)

    Mol, Milsee; Patole, Milind S; Singh, Shailza

    2014-01-01

    Modulated immune signal (CD14-TLR and TNF) in leishmaniasis can be linked to EGFR pathway involved in wound healing, through crosstalk points. This signaling network can be further linked to a synthetic gene circuit acting as a positive feedback loop to elicit a synchronized intercellular communication among the immune cells which may contribute to a better understanding of signaling dynamics in leishmaniasis. Network reconstruction with positive feedback loop, simulation (ODE 15s solver) and sensitivity analysis of CD14-TLR, TNF and EGFR was done in SimBiology (MATLAB 7.11.1). Cytoscape and adjacency matrix were used to calculate network topology. PCA was extracted by using sensitivity coefficient in MATLAB. Model reduction was done using time, flux and sensitivity score. Network has five crosstalk points: NIK, IκB-NFκB and MKK (4/7, 3/6, 1/2) which show high flux and sensitivity. PI3K in EGFR pathway shows high flux and sensitivity. PCA score was high for cytoplasmic ERK1/2, PI3K, Atk, STAT1/3 and nuclear JNK. Of the 125 parameters, 20% are crucial as deduced by model reduction. EGFR can be linked to CD14-TLR and TNF through the MAPK crosstalk points. These pathways may be controlled through Ras and Raf that lie upstream of signaling components ERK ½ (c) and JNK (n) that have a high PCA score via a synthetic gene circuit for activating cell-cell communication to elicit an inflammatory response. Also a disease resolving effect may be achieved through PI3K in the EGFR pathway. The reconstructed signaling network can be linked to a gene circuit with a positive feedback loop, for cell-cell communication resulting in synchronized response in the immune cell population, for disease resolving effect in leishmaniasis. © 2013 Elsevier B.V. All rights reserved.

  1. Pulse oximeter improvement with an ADC-DAC feedback loop and a radial reflectance sensor.

    Science.gov (United States)

    Thompson, David; Wareing, Austin; Day, Dwight; Warren, Steve

    2006-01-01

    Pulse oximeter circuitry must meet several design constraints, including the ability to separate a small pulsatile signal component from a large signal baseline. This paper describes pulse oximeter design changes that produced order-of-magnitude improvements in signal quality. The primary changes were (a) the replacement of an analog sample-and-hold-based differentiator circuit with an ADC-DAC feedback loop and (b) the replacement of a side-by-side reflectance sensor design with a radial sensor arrangement that maximizes the pulsatile-to-baseline signal ratio.

  2. A Self-regulatory System of Interlinked Signaling Feedback Loops Controls Mouse Limb Patterning

    Science.gov (United States)

    Benazet, Jean-Denis; Bischofberger, Mirko; Tiecke, Eva; Gonalves, Alexandre; Martin, James F.; Zuniga, Aime; Naef, Felix; Zeller, Rolf

    Developmental pathways need to be robust against environmental and genetic variation to enable reliable morphogenesis. Here, we take a systems biology approach to explain how robustness is achieved in the developing mouse limb, a classical model of organogenesis. By combining quantitative genetics with computational modeling we established a computational model of multiple interlocked feedback modules, involving sonic hedgehog (SHH) morphogen, fibroblast growth factor (FGFs) signaling, bone morphogenetic protein (BMP) and its antagonist GREM1. Earlier modeling work had emphasized the versatile kinetic characteristics of interlocked feedback loops operating at different time scales. Here we develop and then validate a similar computational model to show how BMP4 first initiates and SHH then propagates feedback in the network through differential transcriptional regulation of Grem1 to control digit specification. This switch occurs by linking a fast BMP4/GREM1 module to a slower SHH/GREM1/FGF feedback loop. Simulated gene expression profiles modeled normal limb development as well those of single-gene knockouts. Sensitivity analysis showed how the model was robust and insensitive to variability in parameters. A surprising prediction of the model was that an early Bmp4 signal is essential to kick-start Grem1 expression and the digit specification system. We experimentally validated the prediction using inducible alleles and showed that early, but not late, removal of Bmp4 dramatically disrupted limb development. Sensitivity analysis showed how robustness emerges from this circuitry. This study shows how modeling and computation can help us understand how self-regulatory signaling networks achieve robust regulation of limb development, by exploiting interconnectivity among the three signaling pathways. We expect that similar computational analyses will shed light on the origins of robustness in other developmental systems, and I will discuss some recent examples from

  3. Stress-specific response of the p53-Mdm2 feedback loop

    Directory of Open Access Journals (Sweden)

    Jensen Mogens H

    2010-07-01

    Full Text Available Abstract Background The p53 signalling pathway has hundreds of inputs and outputs. It can trigger cellular senescence, cell-cycle arrest and apoptosis in response to diverse stress conditions, including DNA damage, hypoxia and nutrient deprivation. Signals from all these inputs are channeled through a single node, the transcription factor p53. Yet, the pathway is flexible enough to produce different downstream gene expression patterns in response to different stresses. Results We construct a mathematical model of the negative feedback loop involving p53 and its inhibitor, Mdm2, at the core of this pathway, and use it to examine the effect of different stresses that trigger p53. In response to DNA damage, hypoxia, etc., the model exhibits a wide variety of specific output behaviour - steady states with low or high levels of p53 and Mdm2, as well as spiky oscillations with low or high average p53 levels. Conclusions We show that even a simple negative feedback loop is capable of exhibiting the kind of flexible stress-specific response observed in the p53 system. Further, our model provides a framework for predicting the differences in p53 response to different stresses and single nucleotide polymorphisms.

  4. An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers.

    Science.gov (United States)

    Mahe, Mélanie; Dufour, Florent; Neyret-Kahn, Hélène; Moreno-Vega, Aura; Beraud, Claire; Shi, Mingjun; Hamaidi, Imene; Sanchez-Quiles, Virginia; Krucker, Clementine; Dorland-Galliot, Marion; Chapeaublanc, Elodie; Nicolle, Remy; Lang, Hervé; Pouponnot, Celio; Massfelder, Thierry; Radvanyi, François; Bernard-Pierrot, Isabelle

    2018-04-01

    FGFR3 alterations (mutations or translocation) are among the most frequent genetic events in bladder carcinoma. They lead to an aberrant activation of FGFR3 signaling, conferring an oncogenic dependence, which we studied here. We discovered a positive feedback loop, in which the activation of p38 and AKT downstream from the altered FGFR3 upregulates MYC mRNA levels and stabilizes MYC protein, respectively, leading to the accumulation of MYC, which directly upregulates FGFR3 expression by binding to active enhancers upstream from FGFR3 Disruption of this FGFR3/MYC loop in bladder cancer cell lines by treatment with FGFR3, p38, AKT, or BET bromodomain inhibitors (JQ1) preventing MYC transcription decreased cell viability in vitro and tumor growth in vivo A relevance of this loop to human bladder tumors was supported by the positive correlation between FGFR3 and MYC levels in tumors bearing FGFR3 mutations, and the decrease in FGFR3 and MYC levels following anti-FGFR treatment in a PDX model bearing an FGFR3 mutation. These findings open up new possibilities for the treatment of bladder tumors displaying aberrant FGFR3 activation. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Study of an accelerating superconducting module and its feedback loop systems for the MYRRHA project

    International Nuclear Information System (INIS)

    Bouly, F.

    2011-11-01

    The MYRRHA ( Multi-purpose hybrid Research Reactor for High-tech Applications ) project aims at constructing an accelerator driven system (ADS) demonstrator (50 a 100 MWth) to explore the feasibility of nuclear waste transmutation. Such a subcritical reactor requires an extremely reliable accelerator which delivers a CW high power protons beam (600 MeV, 4 mA). The reference solution for this machine is a superconducting linear accelerator. This thesis presents the work - undertaken at IPN Orsay in October 2008 - on the study of a prototypical superconducting module and the feedback control systems of its cavity for the high energy part of the MYRRHA linac. First, the optimization and the design of 5-cell elliptical cavities (β=0,65), operating at 704.4 MHz, are presented. Then, the experimental work focuses on a reliability oriented study of the 'cryo-module' which hold a prototypical 5-cell cavity (β=0,47). In this study, the dynamic behavior of the fast tuning system of the cavity was measured and qualified. The 'field flatness' issue in 'low beta' multi-cell cavity was also brought to light. Finally, a fault-tolerance analysis of the linac was carried out. Toward this goal, a model of the cavity, its RF feedback loop system and its tuning system feedback loop was developed. This study enabled to determine the RF power needs, the tuning system requirements and as well as to demonstrate the feasibility of fast fault-recovery scenarios to minimize the number of beam interruptions in the MYRRHA linac. (author)

  6. Positive feedback loop of autocrine BDNF from microglia causes prolonged microglia activation.

    Science.gov (United States)

    Zhang, Xin; Zeng, Lulu; Yu, Tingting; Xu, Yongming; Pu, Shaofeng; Du, Dongping; Jiang, Wei

    2014-01-01

    Microglia, which represent the immune cells of the central nervous system (CNS), have long been a subject of study in CNS disease research. Substantial evidence indicates that microglial activation functions as a strong neuro-inflammatory response in neuropathic pain, promoting the release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α. In addition, activated microglia release brain-derived neurotrophic factor (BDNF), which acts as a powerful cytokine. In this study, we performed a series of in vitro experiments to examine whether a positive autocrine feedback loop existed between microglia-derived BDNF and subsequent microglial activation as well as the mechanisms underlying this positive feedback loop. Because ATP is a classic inducer of microglial activation, firstly, we examined ATP-activated microglia in the present study. Secondly, we used TrkB/Fc, the BDNF sequester, to eliminate the effects of endogenous BDNF. ATP-stimulated microglia without BDNF was examined. Finally, we used exogenous BDNF to further determine whether BDNF could directly activate BV2 microglia. In all experiments, to quantify BV2 microglia activation, the protein levels of CD11b, a microglial activation marker, were measured by western blot. A Transwell migration assay was used to examine microglial migration. To assess the synthesis and release of proinflammatory cytokines, western blot was used to measure BDNF synthesis, and ELISA was used to quantify TNF-α release. In our present research, we have observed that ATP dramatically activates microglia, enhancing microglial migration, increasing the synthesis of BDNF and up-regulating the release of TNF-α. Microglial activation is inhibited following the sequestration of endogenous BDNF, resulting in impaired microglial migration and decreased TNF-α release. Furthermore, exogenous BDNF can also activate microglia to subsequently enhance migration and increase TNF-α release. Therefore, we suggest that microglial

  7. The Double Feedback Loop and the Parameter Theory of Text Genres

    DEFF Research Database (Denmark)

    Bundgaard, Peer; Østergaard, Svend

    2014-01-01

    parameter theory of genres which is presented in Section 3. Here we consider genres as governed by parameters external to them and intrinsic to the situations they are dynamically related to. Genres should thus be understood not simply in terms of inherent textual or formal traits, but also relative......[This article has a double scope. First, we consider the dynamics inherent in the emergence of genres. Our view is that genres emerge relative to two sets of constraints, which we aim to capture in our double feedback loop model for the dynamics of genres. On the one hand, (text) genres, or text...... to a certain set of situational parameters and relative to the degree to which they are governed by them.]...

  8. Changes in adolescents' risk factors following peer sexual coercion: evidence for a feedback loop.

    Science.gov (United States)

    Young, Brennan J; Furman, Wyndol; Jones, Meredith C

    2012-05-01

    Investigators have identified a number of factors that increase the risk for experiencing sexual coercion, but as yet little is known about how sexual coercion in turn affects these risk factors. Using a sample of 110 adolescents, the current study examined the hypothesis that, after an incident of sexual coercion, adolescents would exhibit increases in several behaviors known to increase risk for victimization. As predicted, after experiencing sexual coercion, adolescents reported increased externalizing symptoms, more frequent sexual intercourse and a greater total number of intercourse partners. Finally, alcohol use, drug use, and problems related to substance use increased. These findings suggest the presence of a feedback loop, in which the experience of sexual coercion leads to an intensification of the factors that initially contributed risk for coercion.

  9. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    Science.gov (United States)

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  10. Feedback loops and temporal misalignment in component-based hydrologic modeling

    Science.gov (United States)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  11. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    Science.gov (United States)

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  12. Genome-wide identification of basic helix-loop-helix and NF-1 motifs underlying GR binding sites in male rat hippocampus

    DEFF Research Database (Denmark)

    Pooley, John R.; Flynn, Ben P.; Grøntved, Lars

    2017-01-01

    in hippocampal GR function. Our findings imply a dosedependent and context-independent action of GRs in the hippocampus. Alterations in the expression or activity of NF-1/basic helix-loop-helix factors may play an as yet undetermined role in glucocorticoid-related disease susceptibility and outcome by altering......Glucocorticoids regulate hippocampal function in part by modulating gene expression through the glucocorticoid receptor (GR). GR binding is highly cell type specific, directed to accessible chromatin regions established during tissue differentiation. Distinct classes of GR binding sites...... linked to structural and organizational roles, an absence of major tethering partners for GRs, and little or no evidence for binding at negative glucocorticoid response elements. A basic helix-loop-helix motif closely resembling a NeuroD1 or Olig2 binding site was found underlying a subset of GR binding...

  13. Dynamics and feedback loops in the transforming growth factor β signaling pathway.

    Science.gov (United States)

    Wegner, Katja; Bachmann, Anastasia; Schad, Jan-Ulrich; Lucarelli, Philippe; Sahle, Sven; Nickel, Peter; Meyer, Christoph; Klingmüller, Ursula; Dooley, Steven; Kummer, Ursula

    2012-03-01

    Transforming growth factor β (TGF-β) ligands activate a signaling cascade with multiple cell context dependent outcomes. Disruption or disturbance leads to variant clinical disorders. To develop strategies for disease intervention, delineation of the pathway in further detail is required. Current theoretical models of this pathway describe production and degradation of signal mediating proteins and signal transduction from the cell surface into the nucleus, whereas feedback loops have not exhaustively been included. In this study we present a mathematical model to determine the relevance of feedback regulators (Arkadia, Smad7, Smurf1, Smurf2, SnoN and Ski) on TGF-β target gene expression and the potential to initiate stable oscillations within a realistic parameter space. We employed massive sampling of the parameters space to pinpoint crucial players for potential oscillations as well as transcriptional product levels. We identified Smad7 and Smurf2 with the highest impact on the dynamics. Based on these findings, we conducted preliminary time course experiments. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Closed Loop Optimal Control of a Stewart Platform Using an Optimal Feedback Linearization Method

    Directory of Open Access Journals (Sweden)

    Hami Tourajizadeh

    2016-06-01

    Full Text Available Optimal control of a Stewart robot is performed in this paper using a sequential optimal feedback linearization method considering the jack dynamics. One of the most important applications of a Stewart platform is tracking a machine along a specific path or from a defined point to another point. However, the control procedure of these robots is more challenging than that of serial robots since their dynamics are extremely complicated and non-linear. In addition, saving energy, together with achieving the desired accuracy, is one of the most desirable objectives. In this paper, a proper non-linear optimal control is employed to gain the maximum accuracy by applying the minimum force distribution to the jacks. Dynamics of the jacks are included in this paper to achieve more accurate results. Optimal control is performed for a six-DOF hexapod robot and its accuracy is increased using a sequential feedback linearization method, while its energy optimization is realized using the LQR method for the linearized system. The efficiency of the proposed optimal control is verified by simulating a six-DOF hexapod robot in MATLAB, and its related results are gained and analysed. The actual position of the end-effector, its velocity, the initial and final forces of the jacks and the length and velocity of the jacks are obtained and then compared with open loop and non-optimized systems; analytical comparisons show the efficiency of the proposed methods.

  15. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Directory of Open Access Journals (Sweden)

    Réka Albert

    2017-09-01

    several predictions of the model with regard to reactive oxygen species, cytosolic Ca2+ (Ca2+c, and heterotrimeric G-protein signaling. We analyzed dynamics-determining positive and negative feedback loops, thereby elucidating the attractor (dynamic behavior repertoire of the system and the groups of nodes that determine each attractor. Based on this analysis, we predict the likely presence of a previously unrecognized feedback mechanism dependent on Ca2+c. This mechanism would provide model agreement with 10 additional experimental observations, for a validation rate of 85%. Our research underscores the importance of feedback regulation in generating robust and adaptable biological responses. The high validation rate of our model illustrates the advantages of discrete dynamic modeling for complex, nonlinear systems common in biology.

  16. AP-1 Transcription Factors Mediate BDNF-Positive Feedback Loop in Cortical Neurons.

    Science.gov (United States)

    Tuvikene, Jürgen; Pruunsild, Priit; Orav, Ester; Esvald, Eli-Eelika; Timmusk, Tõnis

    2016-01-27

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF. Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis-elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression. Here, we show for the first time that in rat primary cortical neurons the expression of all major BDNF transcripts (exon I, II, III, IV, VI, and IXa transcripts) is upregulated in response to TrkB signaling, and that AP-1 transcription factors participate in the induction of exon I, III, and VI transcripts. Moreover, we have described two novel functional AP-1 cis-elements in BDNF promoter I, responsible for the activation of the promoter in response to TrkB signaling. Our results indicate the existence of a positive feedback loop for

  17. Supporting graduate nurse transition to practice through a quality assurance feedback loop.

    Science.gov (United States)

    Phillips, Craig; Kenny, Amanda; Esterman, Adrian

    2017-11-01

    This mixed-method study focused on new graduate nurses and their transition to practice. Transition to practice can be a time of heightened stress and anxiety, leaving many new graduates disillusioned and dissatisfied with their work. The study explored how satisfaction levels with transition may improve during their first year, using a unique approach of a continuous quality assurance feedback loop. This assurance framework is utilised in hospitality, automotive and supply chain logistics and in health, primarily to monitor patient outcomes. However, an association with graduate nurse satisfaction has not been previously reported. Graduate nurses from two health services completed a short survey questionnaire every four weeks for 12 months. De-identified aggregated data was sent to health service management, giving them an opportunity to integrate the findings with the objective of potentially increasing graduate satisfaction ratings. Quantitative findings showed no statistical significance of graduate nurse satisfaction scores between health services, however, one health service consistently outperformed the other. Qualitative findings drawn from a seminar and interviews confirmed that one health service took a more proactive stance with the monthly reports, communicating the results to ward managers. Outcomes reflected a greater commitment of support and an overall increase of satisfaction scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Micro-RNA Feedback Loops Modulating the Calcineurin/NFAT Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shichina Kannambath

    2016-05-01

    Full Text Available Nuclear factor of activated T cells (NFAT is a family of transcription factors important for innate and adaptive immune responses. NFAT activation is tightly regulated through the calcineurin/NFAT signaling pathway. There is increasing evidence on non-coding RNAs such as miRNAs playing a crucial role in regulating transcription factors and signaling pathways. However, not much is known about microRNAs (miRNAs targeting the calcineurin/NFAT signaling pathway involved in immune response in human. In this study, a comprehensive pathway level analysis has been carried out to identify miRNAs regulating the calcineurin/NFAT signaling pathway. Firstly, by incorporating experimental data and computational predictions, 191 unique miRNAs were identified to be targeting the calcineurin/NFAT signaling pathway in humans. Secondly, combining miRNA expression data from activated T cells and computational predictions, 32 miRNAs were observed to be induced by NFAT transcription factors. Finally, 11 miRNAs were identified to be involved in a feedback loop to modulate the calcineurin/NFAT signaling pathway activity. This data demonstrate the potential role of miRNAs as regulators of the calcineurin/NFAT signaling pathway. The present study thus emphasizes the importance of pathway level analysis to identify miRNAs and understands their role in modulating signaling pathways and transcription factor activity.

  19. PPARγ ligands suppress the feedback loop between E2F2 and cyclin-E1

    International Nuclear Information System (INIS)

    Komatsu, Yoko; Ito, Ichiaki; Wayama, Mitsutoshi; Fujimura, Akiko; Akaogi, Kensuke; Machida, Hikaru; Nakajima, Yuka; Kuroda, Takao; Ohmori, Kazuji; Murayama, Akiko; Kimura, Keiji; Yanagisawa, Junn

    2008-01-01

    PPARγ is a nuclear hormone receptor that plays a key role in the induction of peroxisome proliferation. A number of studies showed that PPARγ ligands suppress cell cycle progression; however, the mechanism remains to be determined. Here, we showed that PPARγ ligand troglitazone inhibited G1/S transition in colon cancer cells, LS174T. Troglitazone did not affect on either expression of CDK inhibitor (p18) or Wnt signaling pathway, indicating that these pathways were not involved in the troglitazone-dependent cell cycle arrest. GeneChip and RT-PCR analyses revealed that troglitazone decreased mRNA levels of cell cycle regulatory factors E2F2 and cyclin-E1 whose expression is activated by E2F2. Down-regulation of E2F2 by troglitazone results in decrease of cyclin-E1 transcription, which could inhibit phosphorylation of Rb protein, and consequently evoke the suppression of E2F2 transcriptional activity. Thus, we propose that troglitazone suppresses the feedback loop containing E2F2, cyclin-E1, and Rb protein

  20. Online Reconstruction and Calibration with Feedback Loop in the ALICE High Level Trigger

    Directory of Open Access Journals (Sweden)

    Rohr David

    2016-01-01

    at the Large Hadron Collider (LHC at CERN. The High Level Trigger (HLT is an online computing farm, which reconstructs events recorded by the ALICE detector in real-time. The most computing-intensive task is the reconstruction of the particle trajectories. The main tracking devices in ALICE are the Time Projection Chamber (TPC and the Inner Tracking System (ITS. The HLT uses a fast GPU-accelerated algorithm for the TPC tracking based on the Cellular Automaton principle and the Kalman filter. ALICE employs gaseous subdetectors which are sensitive to environmental conditions such as ambient pressure and temperature and the TPC is one of these. A precise reconstruction of particle trajectories requires the calibration of these detectors. As our first topic, we present some recent optimizations to our GPU-based TPC tracking using the new GPU models we employ for the ongoing and upcoming data taking period at LHC. We also show our new approach to fast ITS standalone tracking. As our second topic, we present improvements to the HLT for facilitating online reconstruction including a new flat data model and a new data flow chain. The calibration output is fed back to the reconstruction components of the HLT via a feedback loop. We conclude with an analysis of a first online calibration test under real conditions during the Pb-Pb run in November 2015, which was based on these new features.

  1. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback

    Science.gov (United States)

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence

  2. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Science.gov (United States)

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence

  3. Towards Understanding the Star Formation-Feedback Loop in Galaxy Formation and Evolution

    Science.gov (United States)

    Kravtsov, Andrey

    We propose to carry out a comprehensive study of how star formation and feedback loop influences evolution of galaxies using a suite of ultra-high resolution cosmological simulations of galaxy formation using the Adaptive Mesh Refinement (AMR) approach implemented in the Adaptive Refinement Tree (ART) code. The simulations will result in the numerical models of galaxy evolution of unprecedented resolution and sophistication of the processes included. Our code includes treatment of a wide spectrum of processes critical for realistic modeling of galaxy formation from the primordial chemistry of hydrogen and helium species, radiative transfer of ionizing radiation, to the metallicity- dependent cooling, chemistry of molecular hydrogen on dust and treatment of radiative transfer of dissociating far ultraviolet radiation. The latter allows us to tie star formation with dense, molecular regions capable of self-shielding from heating radiation and avoid adopting arbitrary density and temperature thresholds for star formation. Simulations will also employ a new model for momentum injection due to radiation pressure exerted by young massive stars onto surrounding dust and gas. This early, pre-supernova feedback is critical to prompt dispersal of natal molecular clouds and regulating star formation efficiency and increasing efficiency of energy release by supernovae. The simulations proposed in this project will therefore treat the most important process to understanding the efficiency of baryon conversion to stars - the star formation - in the way most closely resembling the actual star formation observed in galaxies and stellar feedback model that is firmly rooted in observational evidence on how feedback operates in real molecular clouds. The simulations we propose will provide models of galaxy evolution during three important epochs in the history of the universe: (1) early evolution prior to and during the reionization of the universe (the first billion years of

  4. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Directory of Open Access Journals (Sweden)

    Hong Zeng

    2017-10-01

    Full Text Available Brain-machine interface (BMI can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback over the open-loop system (with visual inspection only have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes.

  5. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback.

    Science.gov (United States)

    Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng

    2017-01-01

    Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes.

  6. p21(WAF1) is component of a positive feedback loop that maintains the p53 transcriptional program.

    Science.gov (United States)

    Pang, Lisa Y; Scott, Mary; Hayward, Richard L; Mohammed, Hisham; Whitelaw, C Bruce A; Smith, Graeme C M; Hupp, Ted R

    2011-03-15

    The regulation of p53 activity through the MDM2 negative feedback loop is driven in part by an extrinsic ATM-pulse that maintains p53 oscillations in response to DNA damage. We report here that the p53 pathway has evolved an intrinsic positive feedback loop that is maintained by the p53-inducible gene product p21(WAF1). p21-null cancer cells have defects in p53 protein turnover, reductions in MDM2-mediated degradation of p53, and reduced DNA damage-induced ubiquitination of p53. TLR3-IRF1 or ATM-dependent signaling to p53 is defective in p21-null cells and complementation of the p21 gene in p21-null cancer cells restores the p53 transcriptional response. The mechanism of p53 inactivity in p21-null cells is linked to a p53 protein equilibrium shift from chromatin into cytosolic fractions and complementation of the p21 gene into p21-null cells restores the nuclear localization of p53. A loss of p53 transcriptional function in murine B-cells heterozygous or homozygous null for p21 highlights a p21-gene dosage effect that maintains the full p53 transcriptional response. ATM inhibition results in nuclear exclusion of p53 highlighting a positive genetic interaction between ATM and p21. P21 protein oscillates in undamaged proliferating cells, and reductions of p21 protein using siRNA eliminate the DNA damage-induced p53 pulse. The p53 transcription program has evolved a negative feedback loop maintained by MDM2 that is counteracted by a positive feedback loop maintained by ATM-p21 the balance of which controls the specific activity of p53 as a transcription factor.

  7. A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Michèle Moes

    Full Text Available BACKGROUND: The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT, cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic process resides in unraveling regulatory networks involving master transcription factors (e.g. SNAI1/2, ZEB1/2 and TWIST1 and microRNAs. Here we investigated microRNAs regulated by SNAI1 and their potential role in the regulatory networks underlying epithelial plasticity. RESULTS: By a large-scale analysis on epithelial plasticity, we highlighted miR-203 and its molecular link with SNAI1 and the miR-200 family, key regulators of epithelial homeostasis. During SNAI1-induced EMT in MCF7 breast cancer cells, miR-203 and miR-200 family members were repressed in a timely correlated manner. Importantly, miR-203 repressed endogenous SNAI1, forming a double negative miR203/SNAI1 feedback loop. We integrated this novel miR203/SNAI1 with the known miR200/ZEB feedback loops to construct an a priori EMT core network. Dynamic simulations revealed stable epithelial and mesenchymal states, and underscored the crucial role of the miR203/SNAI1 feedback loop in state transitions underlying epithelial plasticity. CONCLUSION: By combining computational biology and experimental approaches, we propose a novel EMT core network integrating two fundamental negative feedback loops, miR203/SNAI1 and miR200/ZEB. Altogether our analysis implies that this novel EMT core network could function as a switch controlling epithelial cell plasticity during differentiation and cancer progression.

  8. Dynamical behaviors of Rb-E2F pathway including negative feedback loops involving miR449.

    Science.gov (United States)

    Yan, Fang; Liu, Haihong; Hao, Junjun; Liu, Zengrong

    2012-01-01

    MiRNAs, which are a family of small non-coding RNAs, regulate a broad array of physiological and developmental processes. However, their regulatory roles have remained largely mysterious. E2F is a positive regulator of cell cycle progression and also a potent inducer of apoptosis. Positive feedback loops in the regulation of Rb-E2F pathway are predicted and shown experimentally. Recently, it has been discovered that E2F induce a cluster of miRNAs called miR449. In turn, E2F is inhibited by miR449 through regulating different transcripts, thus forming negative feedback loops in the interaction network. Here, based on the integration of experimental evidence and quantitative data, we studied Rb-E2F pathway coupling the positive feedback loops and negative feedback loops mediated by miR449. Therefore, a mathematical model is constructed based in part on the model proposed in Yao-Lee et al. (2008) and nonlinear dynamical behaviors including the stability and bifurcations of the model are discussed. A comparison is given to reveal the implication of the fundamental differences of Rb-E2F pathway between regulation and deregulation of miR449. Coherent with the experiments it predicts that miR449 plays a critical role in regulating the cell cycle progression and provides a twofold safety mechanism to avoid excessive E2F-induced proliferation by cell cycle arrest and apoptosis. Moreover, numerical simulation and bifurcation analysis shows that the mechanisms of the negative regulation of miR449 to three different transcripts are quite distinctive which needs to be verified experimentally. This study may help us to analyze the whole cell cycle process mediated by other miRNAs more easily. A better knowledge of the dynamical behaviors of miRNAs mediated networks is also of interest for bio-engineering and artificial control.

  9. Dynamical behaviors of Rb-E2F pathway including negative feedback loops involving miR449.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available MiRNAs, which are a family of small non-coding RNAs, regulate a broad array of physiological and developmental processes. However, their regulatory roles have remained largely mysterious. E2F is a positive regulator of cell cycle progression and also a potent inducer of apoptosis. Positive feedback loops in the regulation of Rb-E2F pathway are predicted and shown experimentally. Recently, it has been discovered that E2F induce a cluster of miRNAs called miR449. In turn, E2F is inhibited by miR449 through regulating different transcripts, thus forming negative feedback loops in the interaction network. Here, based on the integration of experimental evidence and quantitative data, we studied Rb-E2F pathway coupling the positive feedback loops and negative feedback loops mediated by miR449. Therefore, a mathematical model is constructed based in part on the model proposed in Yao-Lee et al. (2008 and nonlinear dynamical behaviors including the stability and bifurcations of the model are discussed. A comparison is given to reveal the implication of the fundamental differences of Rb-E2F pathway between regulation and deregulation of miR449. Coherent with the experiments it predicts that miR449 plays a critical role in regulating the cell cycle progression and provides a twofold safety mechanism to avoid excessive E2F-induced proliferation by cell cycle arrest and apoptosis. Moreover, numerical simulation and bifurcation analysis shows that the mechanisms of the negative regulation of miR449 to three different transcripts are quite distinctive which needs to be verified experimentally. This study may help us to analyze the whole cell cycle process mediated by other miRNAs more easily. A better knowledge of the dynamical behaviors of miRNAs mediated networks is also of interest for bio-engineering and artificial control.

  10. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Science.gov (United States)

    Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng

    2017-01-01

    Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123

  11. A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?

    Science.gov (United States)

    Huebert, B. J.

    2004-12-01

    It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated

  12. The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern.

    Science.gov (United States)

    Ausborn, Jessica; Wolf, Harald; Stein, Wolfgang

    2009-10-01

    In many rhythmic behaviors, phasic sensory feedback modifies the motor pattern. This modification is assumed to depend on feedback sign (positive vs. negative). While on a phenomenological level feedback sign is well defined, many sensory pathways also process antagonistic, and possibly contradictory, sensory information. We here model the locust flight pattern generator and proprioceptive feedback provided by the tegula wing receptor to test the functional significance of sensory pathways processing antagonistic information. We demonstrate that the tegula provides delayed positive feedback via interneuron 301, while all other pathways provide negative feedback. Contradictory to previous assumptions, the increase of wing beat frequency when the tegula is activated during flight is due to the positive feedback. By use of an abstract model we reveal that the regulation of motor pattern frequency by sensory feedback critically depends on the interaction of positive and negative feedback, and thus on the weighting of antagonistic pathways.

  13. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E

    Czech Academy of Sciences Publication Activity Database

    Réblová, K.; Špačková, Naďa; Štefl, R.; Csaszar, K.; Koča, J.; Leontis, N. B.; Šponer, Jiří

    2003-01-01

    Roč. 84, č. 6 (2003), s. 3564-3582 ISSN 0006-3495 R&D Projects: GA MŠk LN00A016 Grant - others:National Institutes of Health(US) 2R15 GM55898; National Science Foundation(US) CHE-9732563 Institutional research plan: CEZ:AV0Z5004920 Keywords : non- Watson -Crick base pairs * ribosomal RNA * Loop E Subject RIV: BO - Biophysics Impact factor: 4.463, year: 2003

  14. A negative-feedback loop regulating ERK1/2 activation and mediated by RasGPR2 phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jinqi [Departments of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 (United States); Cook, Aaron A.; Bergmeier, Wolfgang [Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599 (United States); Sondek, John, E-mail: sondek@med.unc.edu [Departments of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 (United States); Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599 (United States); Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599 (United States)

    2016-05-20

    The dynamic regulation of ERK1 and -2 (ERK1/2) is required for precise signal transduction controlling cell proliferation, differentiation, and survival. However, the underlying mechanisms regulating the activation of ERK1/2 are not completely understood. In this study, we show that phosphorylation of RasGRP2, a guanine nucleotide exchange factor (GEF), inhibits its ability to activate the small GTPase Rap1 that ultimately leads to decreased activation of ERK1/2 in cells. ERK2 phosphorylates RasGRP2 at Ser394 located in the linker region implicated in its autoinhibition. These studies identify RasGRP2 as a novel substrate of ERK1/2 and define a negative-feedback loop that regulates the BRaf–MEK–ERK signaling cascade. This negative-feedback loop determines the amplitude and duration of active ERK1/2. -- Highlights: •ERK2 phosphorylates the guanine nucleotide exchange factor RasGRP2 at Ser394. •Phosphorylated RasGRP2 has decreased capacity to active Rap1b in vitro and in cells. •Phosphorylation of RasGRP2 by ERK1/2 introduces a negative-feedback loop into the BRaf-MEK-ERK pathway.

  15. Modification of CusSR bacterial two-component systems by the introduction of an inducible positive feedback loop.

    Science.gov (United States)

    Ravikumar, Sambandam; Pham, Van Dung; Lee, Seung Hwan; Yoo, Ik-Keun; Hong, Soon Ho

    2012-06-01

    The CusSR two-component system (TCS) is a copper-sensing apparatus of E. coli that is responsible for regulating the copper-related homeostatic system. The dynamic characteristics of the CusSR network were modified by the introduction of a positive feedback loop. To construct the feedback loop, the CusR, which is activated by the cusC promoter, was cloned downstream of the cusC promoter and reporter protein. The feedback loop system, once activated by environmental copper, triggers the activation of the cusC promoter, which results in the amplification of a reporter protein and CusR expression. The threshold copper concentration for the activation of the modified CusSR TCS network was lowered from 2,476.5 μg/l to 247.7 μg/l, which indicates a tenfold increase in sensitivity. The intensity of the output signal was increased twofold, and was maintained for 16 h. The strategy proposed in this study can also be applied to modify the dynamic characteristics of other TCSs.

  16. A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis.

    Directory of Open Access Journals (Sweden)

    Marcus J Taylor

    Full Text Available Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ∼20-30 s preceding scission. Nevertheless, the regulatory mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B led to a ∼50% decrease in the incidence of scission, an ∼50% decrease in the amplitude of dynamin recruitment, and abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic scaffold that concentrates dynamin and N-BAR proteins at sites of scission.

  17. Positive feedback-loop of telomerase reverse transcriptase and 15-lipoxygenase-2 promotes pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Tingting Shen

    Full Text Available Pulmonary hypertension (PH is characterized with pulmonary vasoconstriction and vascular remodeling mediated by 15-lipoxygenase (15-LO/15-hydroxyeicosatetraenoic acid (15-HETE according to our previous studies. Meanwhile, telomerase reverse transcriptase (TERT activity is highly correlated with vascular injury and remodeling, suggesting that TERT may be an essential determinant in the development of PH. The aim of this study was to determine the contribution and molecular mechanisms of TERT in the pathogenesis of PH.We measured the right ventricular systolic pressure (RVSP and ventricular weight, analyzed morphometric change of the pulmonary vessels in the hypoxia or monocrotaline treated rats. Bromodeoxyuridine incorporation, transwell assay and flow cytometry in pulmonary smooth muscle cells were performed to investigate the roles and relationship of TERT and 15-LO/15-HETE in PH. We revealed that the expression of TERT was increased in pulmonary vasculature of patients with PH and in the monocrotaline or hypoxia rat model of PH. The up-regulation of TERT was associated with experimental elevated RVSP and pulmonary vascular remodeling. Coimmunoprecipitation experiments identified TERT as a novel interacting partner of 15-LO-2. TERT and 15-LO-2 augmented protein expression of each other. In addition, the proliferation, migration and cell-cycle transition from G0/G1 phase to S phase induced by hypoxia were inhibited by TERT knockdown, which were rescued by 15-HETE addition.These results demonstrate that TERT regulates pulmonary vascular remodeling. TERT and 15-LO-2 form a positive feedback loop and together promote proliferation and migration of pulmonary artery smooth muscle cells, creating a self-amplifying circuit which propels pulmonary hypertension.

  18. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun [Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai (China); Gu, Wei, E-mail: krisgu70@163.com [Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai (China); Wan, Xiao-Ping, E-mail: wanxp@sjtu.edu.cn [Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to Tong Ji University, Shanghai (China)

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  19. Origins of biological function in DNA and RNA hairpin loop motifs from replica exchange molecular dynamics simulation.

    Science.gov (United States)

    Swadling, Jacob B; Ishii, Kunihiko; Tahara, Tahei; Kitao, Akio

    2018-01-31

    Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) have remarkably similar chemical structures, but despite this, they play significantly different roles in modern biology. In this article, we explore the possible conformations of DNA and RNA hairpins to better understand the fundamental differences in structure formation and stability. We use large parallel temperature replica exchange molecular dynamics ensembles to sample the full conformational landscape of these hairpin molecules so that we can identify the stable structures formed by the hairpin sequence. Our simulations show RNA adopts a narrower distribution of folded structures compared to DNA at room temperature, which forms both hairpins and many unfolded conformations. RNA is capable of forming twice as many hydrogen bonds than DNA which results in a higher melting temperature. We see that local chemical differences lead to emergent molecular properties such as increased persistence length in RNA that is weakly temperature dependant. These discoveries provide fundamental insight into how RNA forms complex folded tertiary structures which confer enzymatic-like function in ribozymes, whereas DNA retains structural motifs in order to facilitate function such as translation of sequence.

  20. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis.

    Science.gov (United States)

    Luo, Qing-Jun; Mittal, Amandeep; Jia, Fan; Rock, Christopher D

    2012-09-01

    miR828 in Arabidopsis triggers the cleavage of Trans-Acting SiRNA Gene 4 (TAS4) transcripts and production of small interfering RNAs (ta-siRNAs). One siRNA, TAS4-siRNA81(-), targets a set of MYB transcription factors including PAP1, PAP2, and MYB113 which regulate the anthocyanin biosynthesis pathway. Interestingly, miR828 also targets MYB113, suggesting a close relationship between these MYBs, miR828, and TAS4, but their evolutionary origins are unknown. We found that PAP1, PAP2, and TAS4 expression is induced specifically by exogenous treatment with sucrose and glucose in seedlings. The induction is attenuated in abscisic acid (ABA) pathway mutants, especially in abi3-1 and abi5-1 for PAP1 or PAP2, while no such effect is observed for TAS4. PAP1 is under regulation by TAS4, demonstrated by the accumulation of PAP1 transcripts and anthocyanin in ta-siRNA biogenesis pathway mutants. TAS4-siR81(-) expression is induced by physiological concentrations of Suc and Glc and in pap1-D, an activation-tagged line, indicating a feedback regulatory loop exists between PAP1 and TAS4. Bioinformatic analysis revealed MIR828 homologues in dicots and gymnosperms, but only in one basal monocot, whereas TAS4 is only found in dicots. Consistent with this observation, PAP1, PAP2, and MYB113 dicot paralogs show peptide and nucleotide footprints for the TAS4-siR81(-) binding site, providing evidence for purifying selection in contrast to monocots. Extended sequence similarities between MIR828, MYBs, and TAS4 support an inverted duplication model for the evolution of MIR828 from an ancestral gymnosperm MYB gene and subsequent formation of TAS4 by duplication of the miR828* arm. We obtained evidence by modified 5'-RACE for a MYB mRNA cleavage product guided by miR828 in Pinus resinosa. Taken together, our results suggest that regulation of anthocyanin biosynthesis by TAS4 and miR828 in higher plants is evolutionarily significant and consistent with the evolution of TAS4 since the dicot

  1. Osteoclasts and CD8 T cells form a negative feedback loop that contributes to homeostasis of both the skeletal and immune systems.

    Science.gov (United States)

    Buchwald, Zachary S; Aurora, Rajeev

    2013-01-01

    There are a number of dynamic regulatory loops that maintain homeostasis of the immune and skeletal systems. In this review, we highlight a number of these regulatory interactions that contribute to maintaining homeostasis. In addition, we review data on a negative regulatory feedback loop between osteoclasts and CD8 T cells that contributes to homeostasis of both the skeletal and immune systems.

  2. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Kang, Yeon Hee; Kirik, Victor; Hulskamp, Martin; Nam, Kyoung Hee; Hagely, Katherine; Lee, Myeong Min; Schiefelbein, John

    2009-04-01

    The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis.

  3. Efficient phase locking of two dual-wavelength fiber amplifiers by an all-optical self-feedback loop

    Science.gov (United States)

    Lei, Bing; Chen, Keshan; Yao, Tianfu; Shi, Jianhua; Hu, Haojun

    2017-10-01

    Efficient phase locking of two dual-wavelength fiber amplifiers has been demonstrated by using a self-feedback coupling and intracavity filtering configuration, and the effect of bandwidth and wavelength spacing on their phase locking performances have been investigated in experiment. Two independent fiber lasers with different operating wavelength were combined incoherently by a 3 dB fiber coupler to form a dual-wavelength seed source laser, which was injected into the fiber amplifiers' coupling array through the self-feedback loop. The effect of bandwidth and wavelength spacing was researched by altering the seed laser's pump power and operating wavelengths respectively. As long as the feedback loop and the single-mode fiber filtering configuration were well constructed in the unidirectional ring laser cavity, stable phase locking states and high fringe visibility interference patterns could always be obtained in our experiment. When the spacing of two operating wavelength was varied from 1.6 nm to 19.6 nm, the fringe visibility decreased slightly with the increase of wavelength spacing, and the corresponding fringe visibility was always larger than 0.6. In conclusion, we believe that efficient phase locking of several multi-wavelength laser sources is also feasible by passive self-adjusting methods, and keeping the component laser beams' phase relationship stable and fixed is more important than controlling their operating wavelengths.

  4. REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock.

    Directory of Open Access Journals (Sweden)

    Reetika Rawat

    2011-03-01

    Full Text Available Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1 and LHY directly repress expression of the pseudoresponse regulator TOC1 by binding to an evening element (EE in the TOC1 promoter. Another key regulatory circuit involves CCA1 and LHY and the TOC1 homologs PRR5, PRR7, and PRR9. Purification of EE-binding proteins from plant extracts followed by mass spectrometry led to the identification of RVE8, a homolog of CCA1 and LHY. Similar to these well-known clock genes, expression of RVE8 is circadian-regulated with a dawn phase of expression, and RVE8 binds specifically to the EE. However, whereas cca1 and lhy mutants have short period phenotypes and overexpression of either gene causes arrhythmia, rve8 mutants have long-period and RVE8-OX plants have short-period phenotypes. Light input to the clock is normal in rve8, but temperature compensation (a hallmark of circadian rhythms is perturbed. RVE8 binds to the promoters of both TOC1 and PRR5 in the subjective afternoon, but surprisingly only PRR5 expression is perturbed by overexpression of RVE8. Together, our data indicate that RVE8 promotes expression of a subset of EE-containing clock genes towards the end of the subjective day and forms a negative feedback loop with PRR5. Thus RVE8 and its homologs CCA1 and LHY function close to the circadian oscillator but act via distinct molecular mechanisms.

  5. A Proportional Integral Derivative (PID Feedback Control without a Subsidiary Speed Loop

    Directory of Open Access Journals (Sweden)

    M. Aboelhassan

    2008-01-01

    Full Text Available The aim of this investigation is to design and describe the essential features of a brushless direct-current (BLDC motor. The static and dynamical state of the BLDC-Motor is designed and calculated.Within this frame-work, it has been shown that while working with the P-controller in conjunction with the subsidiary speed loop and PD-controller (with non-zero error in a steady state without a subsidiary speed loop, there is PID-controller without a subsidiary speed loop which has zero error in a steady state. The last part of this paper is dedicated to a simulation of the circle rounds of P and PID controllers with and without a subsidiary speed loop in MATLAB–SIMULINK to decide which of these controllers is suitable, available and reliable with a BLDC-Motor and their application in cutting tool machines in general. 

  6. Trade typhoon over Japan: Turbulence metaphor and spatial production cycles feedback loops of the Japanese economy, 1980–85–90

    Directory of Open Access Journals (Sweden)

    M. Sonis

    2002-01-01

    Full Text Available This paper deals with the turbulence similitude between whirlpool structure of atmosphere disturbances and the spatial production cycles. Such an analogy leads to the production cycles feedback loops superposition analysis of trade feedbacks reflecting the economic phenomena of horizontal and vertical trade specifications. Moreover, the visualization of this process is achieved with the help of coloring the different permutation matrices presenting the hierarchy of production cycles feedback loops. In this manner the qualitative presentation of Japan inter-regional and inter-industry trade, 1980–85–90, is visualized and interpreted.

  7. Closed-loop, non-linear feedback control simulations of beam-driven field-reversed configurations (FRCs)

    Science.gov (United States)

    Rath, N.; Onofri, M.; Barnes, D.; Romero, J.; the TAE Team

    2015-11-01

    The C-2U device has recently demonstrated sustainment of an advanced, beam-driven FRC over time scales longer than the characteristic times for confinement, fast ion slow-down, and wall current decay. In anticipation of further advances in plasma lifetime, we are developing feedback control techniques for major FRC parameters and resistive instabilities. The LamyRidge code solves the time-dependent extended MHD equations in axisymmetric geometry. In the Q2D code, LamyRidge is combined with a 3-D kinetic code that tracks fast ions and runs in parallel with LamyRidge. Periodically, the background fields in the kinetic code are updated from the MHD simulation and the averaged fast particle distribution is integrated into the fluid equations. Recently, we have added the capability to run Q2D simulations as subordinate processes in Simulink, giving us the ability to run non-linear, closed-loop simulations using control algorithms developed in Simulink. The same Simulink models can be exported to real-time targets (CPU or FPGA) to perform feedback control in experiments. We present closed-loop simulations of beam-driven FRCs under magnetically-actuated feedback control. Results for positionally unstable FRCs are compared with the predictions of a linearized rigid-plasma model. Plasmas predicted to be passively stabilized by the linear model are found to exhibit Alfvenic growth in several cases. Feedback gains predicted to be stabilizing in the linear model are generally found to be insufficient in non-linear simulations, and vice versa. Control of separatrix geometry is demonstrated.

  8. Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics

    Directory of Open Access Journals (Sweden)

    Dubljević Stevan

    2003-01-01

    Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.

  9. Hyperglycemia and hyperlipidemia blunts the Insulin-Inpp5f negative feedback loop in the diabetic heart.

    Science.gov (United States)

    Bai, Danna; Zhang, Yajun; Shen, Mingzhi; Sun, Yongfeng; Xia, Qing; Zhang, Yingmei; Liu, Xuedong; Wang, Haichang; Yuan, Lijun

    2016-02-24

    The leading cause of death in diabetic patients is diabetic cardiomyopathy, in which alteration of Akt signal plays an important role. Inpp5f is recently found to be a negative regulator of Akt signaling, while its expression and function in diabetic heart is largely unknown. In this study, we found that in both the streptozotocin (STZ) and high fat diet (HFD) induced diabetic mouse models, Inpp5f expression was coordinately regulated by insulin, blood glucose and lipid levels. Increased Inpp5f was inversely correlated with the cardiac function. Further studies revealed that Insulin transcriptionally activated Inpp5f in an Sp1 dependent manner, and increased Inpp5f in turn reduced the phosphorylation of Akt, forming a negative feedback loop. The negative feedback plays a protective role under diabetic condition. However, high blood glucose and lipid, which are characteristics of uncontrolled diabetes and type 2 diabetes, increased Inpp5f expression through activation of NF-κB, blunts the protective feedback. Thus, our study has revealed that Inpp5f provides as a negative feedback regulator of insulin signaling and downregulation of Inpp5f in diabetes is cardioprotective. Increased Inpp5f by hyperglycemia and hyperlipidemia is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease.

  10. Professional Feedback Loop: How Can Practising Teachers’ Reflection Inform English Language Teacher Education?

    Directory of Open Access Journals (Sweden)

    Mona Evelyn Flognfeldt

    2016-04-01

    . The teacher reports were in connection with a year’s further-education course in English, which included a pedagogical development project at their own school. This study provides insights into what aspects of the subject the practising teachers defined as their main instructional challenges in the classroom and what their main learning outcomes were. The data for this article are critical reflections articulated by the teachers at the end of their projects. Based on qualitative content analysis, I identified salient language-pedagogical features and commonalities in the teachers’ conceptualisations of their role and priorities with respect to student learning. This kind of language teacher research can have important implications for the way English is taught in initial teacher education. Relevant teacher cognitions can be channelled back to student teachers to mediate their professional preparation in the teacher education programme and their future work as English teachers. The central language-pedagogical issues identified in their research can be used as analytical and reflective tools for student teachers in their preparation for the complex practicalities of the classroom. Exploring the research that practising teachers have conducted into challenges they identified can help students connect theory with practice as well as contribute to lowering the affective filter of novice teachers. This article ends with a discussion of possible forms that this professional feedback loop can take.Keywords: english language teacher education, professional development, teacher research and development, teacher learning, language pedagogy

  11. Discrete and ultradiscrete models for biological rhythms comprising a simple negative feedback loop.

    Science.gov (United States)

    Gibo, Shingo; Ito, Hiroshi

    2015-08-07

    Many biological rhythms are generated by negative feedback regulation. Griffith (1968) proved that a negative feedback model with two variables expressed by ordinary differential equations do not generate self-sustained oscillations. Kurosawa et al. (2002) expanded Griffith׳s result to the general type of negative feedback model with two variables. In this paper, we propose discrete and ultradiscrete feedback models with two variables that exhibit self-sustained oscillations. To obtain the model, we applied tropical discretization and ultradiscretization to a continuous model with two variables and then investigated its bifurcation structures and the conditions of parameters for oscillations. We found that when the degradation rate of the variables is lower than their synthesis rate, the proposed models generate oscillations by Neimark-Sacker bifurcation. We further demonstrate that the ultradiscrete model can be reduced to a Boolean system under some conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The Y-located gonadoblastoma gene TSPY amplifies its own expression through a positive feedback loop in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kido, Tatsuo; Lau, Yun-Fai Chris, E-mail: Chris.Lau@UCSF.edu

    2014-03-28

    Highlights: • Y-encoded proto-oncoprotein TSPY amplifies its expression level via a positive feedback loop. • TSPY binds to the chromatin/DNA at exon 1 of TSPY gene. • TSPY enhances the gene expression in a TSPY exon 1 sequence dependent manner. • The conserved SET/NAP-domain is essential for TSPY transactivation. • Insights on probable mechanisms on TSPY exacerbation on cancer development in men. - Abstract: The testis-specific protein Y-encoded (TSPY) is a repetitive gene located on the gonadoblastoma region of the Y chromosome, and has been considered to be the putative gene for this oncogenic locus on the male-only chromosome. It is expressed in spermatogonial cells and spermatocytes in normal human testis, but abundantly in gonadoblastoma, testicular germ cell tumors and a variety of somatic cancers, including melanoma, hepatocellular carcinoma and prostate cancer. Various studies suggest that TSPY accelerates cell proliferation and growth, and promotes tumorigenesis. In this report, we show that TSPY could bind directly to the chromatin/DNA at exon 1 of its own gene, and greatly enhance the transcriptional activities of the endogenous gene in the LNCaP prostate cancer cells. Domain mapping analyses of TSPY have localized the critical and sufficient domain to the SET/NAP-domain. These results suggest that TSPY could efficiently amplify its expression and oncogenic functions through a positive feedback loop, and contribute to the overall tumorigenic processes when it is expressed in various human cancers.

  13. Pdlim7 is required for maintenance of the mesenchymal/epidermal Fgf signaling feedback loop during zebrafish pectoral fin development

    Directory of Open Access Journals (Sweden)

    Klosowiak Julian

    2010-10-01

    Full Text Available Abstract Background Vertebrate limb development involves a reciprocal feedback loop between limb mesenchyme and the overlying apical ectodermal ridge (AER. Several gene pathways participate in this feedback loop, including Fgf signaling. In the forelimb lateral plate mesenchyme, Tbx5 activates Fgf10 expression, which in turn initiates and maintains the mesenchyme/AER Fgf signaling loop. Recent findings have revealed that Tbx5 transcriptional activity is regulated by dynamic nucleocytoplasmic shuttling and interaction with Pdlim7, a PDZ-LIM protein family member, along actin filaments. This Tbx5 regulation is critical in heart formation, but the coexpression of both proteins in other developing tissues suggests a broader functional role. Results Knock-down of Pdlim7 function leads to decreased pectoral fin cell proliferation resulting in a severely stunted fin phenotype. While early gene induction and patterning in the presumptive fin field appear normal, the pectoral fin precursor cells display compaction and migration defects between 18 and 24 hours post-fertilization (hpf. During fin growth fgf24 is sequentially expressed in the mesenchyme and then in the apical ectodermal ridge (AER. However, in pdlim7 antisense morpholino-treated embryos this switch of expression is prevented and fgf24 remains ectopically active in the mesenchymal cells. Along with the lack of fgf24 in the AER, other critical factors including fgf8 are reduced, suggesting signaling problems to the underlying mesenchyme. As a consequence of perturbed AER function in the absence of Pdlim7, pathway components in the fin mesenchyme are misregulated or absent, indicating a breakdown of the Fgf signaling feedback loop, which is ultimately responsible for the loss of fin outgrowth. Conclusion This work provides the first evidence for the involvement of Pdlim7 in pectoral fin development. Proper fin outgrowth requires fgf24 downregulation in the fin mesenchyme with subsequent

  14. The inflammatory/cancer-related IL-6/STAT3/NF-κB positive feedback loop includes AUF1 and maintains the active state of breast myofibroblasts.

    Science.gov (United States)

    Hendrayani, Siti-Fauziah; Al-Harbi, Bothaina; Al-Ansari, Mysoon M; Silva, Gabriela; Aboussekhra, Abdelilah

    2016-07-05

    The IL-6/STAT3/NF-κB positive feedback loop links inflammation to cancer and maintains cells at a transformed state. Similarly, cancer-associated myofibroblats remains active even in absence of cancer cells. However, the molecular basis of this sustained active state remains elusive. We have shown here that breast cancer cells and IL-6 persistently activate breast stromal fibroblasts through the stimulation of the positive IL-6/STAT3/NF-κB feedback loop. Transient neutralization of IL-6 in culture inhibited this signaling circuit and reverted myofibrobalsts to a normalized state, suggesting the implication of the IL-6 autocrine feedback loop as well. Importantly, the IL-6/STAT3/NF-κB pro-inflammatory circuit was also active in cancer-associated fibroblasts isolated from breast cancer patients. Transient inhibition of STAT3 by specific siRNA in active fibroblasts persistently reduced the level of the RNA binding protein AUF1, blocked the loop and normalized these cells. Moreover, we present clear evidence that AUF1 is also part of this positive feedback loop. Interestingly, treatment of breast myofibroblasts with caffeine, which has been previously shown to persistently inhibit active breast stromal fibroblasts, blocked the positive feedback loop through potent and sustained inhibition of STAT3, AKT, lin28B and AUF1. These results indicate that the IL-6/STAT3/NF-κB positive feedback loop includes AUF1 and is responsible for the sustained active status of cancer-associated fibroblasts. We have also shown that normalizing myofibroblasts, which could be of great therapeutic value, is possible through the inhibition of this procarcinogenic circuit.

  15. Numerical static state feedback laws for closed-loop singular optimal control

    NARCIS (Netherlands)

    Graaf, de S.C.; Stigter, J.D.; Straten, van G.

    2005-01-01

    Singular and non-singular control trajectories of agricultural and (bio) chemical processes may need to be recalculated from time to time for use in closed-loop optimal control, because of unforeseen changes in state values and noise. This is time consuming. As an alternative, in this paper,

  16. Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab

    International Nuclear Information System (INIS)

    Crisp, J.

    1990-01-01

    The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs

  17. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  18. The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop.

    Science.gov (United States)

    Bacqué-Cazenave, Julien; Chung, Bryce; Cofer, David W; Cattaert, Daniel; Edwards, Donald H

    2015-03-15

    Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. The hybrid neuromechanical preparation consisted of a computational model of the fifth crayfish leg driven in real time by the experimentally recorded activity of the levator and depressor (Lev/Dep) nerves of an in vitro preparation of the crayfish thoracic nerve cord. Up and down movements of the model leg evoked by motor nerve activity released and stretched the model coxobasal chordotonal organ (CBCO); variations in the CBCO length were used to drive identical variations in the length of the live CBCO in the in vitro preparation. CBCO afferent responses provided proprioceptive feedback to affect the thoracic motor output. Experiments performed with this hybrid neuromechanical preparation were simulated with a neuromechanical model in which a computational circuit model represented the relevant thoracic circuitry. Model simulations were able to reproduce the hybrid neuromechanical experimental results to show that proposed circuit mechanisms with sensory feedback could account for resistance reflexes displayed in the quiescent state and for reflex reversal and spontaneous Lev/Dep bursting seen in the active state. Copyright © 2015 the American Physiological Society.

  19. A mini-RNA containing the tetraloop, wobble-pair and loop E motifs of the central conserved region of potato spindle tuber viroid is processed into a minicircle.

    Science.gov (United States)

    Schrader, O; Baumstark, T; Riesner, D

    2003-02-01

    A Mini-RNA from potato spindle tuber viroid (PSTVd) was constructed specifically for cleavage and ligation to circles in vitro. It contains the C-domain with the so-called central conserved region (CCR) of PSTVd with a 17 nt duplication in the upper strand and hairpin structures at the left and rights ends of the secondary structure. The CCR was previously shown to be essential for processing of in vitro transcripts. When folded under conditions which favor formation of a kinetically controlled conformation and incubated in a potato nuclear extract, the Mini-RNA is cleaved correctly at the 5'- and the 3'-end and ligated to a circle. Thus, the CCR obviously contains all structural and functional requirements for correct processing and therefore may be regarded as 'processing domain' of PSTVd. Using the Mini-RNA as a model substrate, the structural and functional relevance of its conserved non-canonical motifs GAAA tetraloop, loop E and G:U wobble base pair were studied by mutational analysis. It was found that (i) the conserved GAAA tetraloop is essential for processing by favoring the kinetically controlled conformation, (ii) a G:U wobble base pair at the 5'-cleavage site contributes to its correct recognition and (iii) an unpaired nucleotide in loop E, which is different from the corresponding nucleotide in the conserved loop E motif, is essential for ligation of the 5'- with the 3'-end. Hence all three structural motifs are functional elements for processing in a potato nuclear extract.

  20. Closed-loop torque feedback for a universal field-oriented controller

    Science.gov (United States)

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

    1992-11-24

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  1. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  2. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing

    OpenAIRE

    Trumper, David; Kassis, Timothy; Griffith, Linda; Noh, Minkyun; Soenksen, Luis

    2018-01-01

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to ...

  3. Voltage regulator for on-board CMS ECAL powering : dynamic stability of the feedback loop

    CERN Document Server

    Wertelaers, P

    2010-01-01

    Traditionally, a capacitor is parallelled to the load of the regulator. Its main function is to steer (limit) the loop bandwidth. An ideal capacitor would provoke near-to-no dynamic stability. A typical remedy, not always elegant, is to select a device with appreciable parasitic series resistance. In this Note, and alternative method is proposed. The CMS ECAL regulator is of adjustable type, and adding a small capacitor at the divider there, brings about a "lead" type control action.

  4. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease

    Science.gov (United States)

    Gorzelic, P.; Schiff, S. J.; Sinha, A.

    2013-04-01

    Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  5. Passive mode locking and formation of dissipative solitons in electron oscillators with a bleaching absorber in the feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Kocharovskaya, E. R.; Vilkov, M. N.; Sergeev, A. S. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2017-01-15

    The mechanisms of passive mode locking and formation of ultrashort pulses in microwave electron oscillators with a bleaching absorber in the feedback loop have been analyzed. It is shown that in the group synchronism regime in which the translational velocity of particles coincides with the group velocity of the electromagnetic wave, the pulse formation can be described by the equations known in the theory of dissipative solitons. At the same time, the regimes in which the translational velocity of electrons differs from the group velocity and the soliton being formed and moving along the electron beam consecutively (cumulatively) receives energy from various electron fractions are optimal for generating pulses with the maximal peak amplitudes.

  6. Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George

    2010-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

  7. MicroRNA miR-308 regulates dMyc through a negative feedback loop in Drosophila

    Directory of Open Access Journals (Sweden)

    Kaveh Daneshvar

    2012-10-01

    The abundance of Myc protein must be exquisitely controlled to avoid growth abnormalities caused by too much or too little Myc. An intriguing mode of regulation exists in which Myc protein itself leads to reduction in its abundance. We show here that dMyc binds to the miR-308 locus and increases its expression. Using our gain-of-function approach, we show that an increase in miR-308 causes a destabilization of dMyc mRNA and reduced dMyc protein levels. In vivo knockdown of miR-308 confirmed the regulation of dMyc levels in embryos. This regulatory loop is crucial for maintaining appropriate dMyc levels and normal development. Perturbation of the loop, either by elevated miR-308 or elevated dMyc, caused lethality. Combining elevated levels of both, therefore restoring balance between miR-308 and dMyc levels, resulted in lower apoptotic activity and suppression of lethality. These results reveal a sensitive feedback mechanism that is crucial to prevent the pathologies caused by abnormal levels of dMyc.

  8. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    Science.gov (United States)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development

  9. Nonlinear Power-Level Control of the MHTGR Only with the Feedback Loop of Helium Temperature

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-02-01

    Full Text Available Power-level control is a crucial technique for the safe, stable and efficient operation of modular high temperature gas-cooled nuclear reactors (MHTGRs, which have strong inherent safety features and high outlet temperatures. The current power-level controllers of the MHTGRs need measurements of both the nuclear power and the helium temperature, which cannot provide satisfactory control performance and can even induce large oscillations when the neutron sensors are in error. In order to improve the fault tolerance of the control system, it is important to develop a power-level control strategy that only requires the helium temperature. The basis for developing this kind of control law is to give a state-observer of the MHTGR a relationship that only needs the measurement of helium temperature. With this in mind, a novel nonlinear state observer which only needs the measurement of helium temperature is proposed. This observer is globally convergent if there is no disturbance, and has the L2 disturbance attenuation performance if the disturbance is nonzero. The separation principle of this observer is also proven, which denotes that this observer can recover the performance of both globally asymptotic stabilizers and L2 disturbance attenuators. Then, a new dynamic output feedback power-level control strategy is established, which is composed of this observer and the well-built static state-feedback power-level control based upon iterative dissipation assignment (IDA-PLC. Finally, numerical simulation results show the high performance and feasibility of this newly-built dynamic output feedback power-level controller.

  10. Effects of open-loop feedback on physical activity and television viewing in overweight and obese children: a randomized, controlled trial.

    Science.gov (United States)

    Goldfield, Gary S; Mallory, Risa; Parker, Torrey; Cunningham, Terrell; Legg, Christine; Lumb, Andrew; Parker, Kasey; Prud'homme, Denis; Gaboury, Isabelle; Adamo, Kristi B

    2006-07-01

    Television viewing and physical inactivity increase the risk of obesity in youth. Thus, identifying new interventions that increase physical activity and reduce television viewing would be helpful in the prevention and treatment of pediatric obesity. This study evaluated the effects of open-loop feedback plus reinforcement versus open-loop feedback alone on physical activity, targeted sedentary behavior, body composition, and energy intake in youth. Thirty overweight or obese 8- to 12-year-old children were randomly assigned to an intervention (n = 14) or control group (n = 16). Participants wore accelerometers every day for 8 weeks and attended biweekly meetings to download the activity monitors. For children in the open-loop feedback plus reinforcement (intervention) group, accumulating 400 counts of physical activity on pedometers earned 1 hour of television/VCR/DVD time, which was controlled by a Token TV electronic device. Open-loop feedback control subjects wore activity monitors but had free access to targeted sedentary behavior. Compared with controls, the open-loop feedback plus reinforcement group demonstrated significantly greater increases in daily physical activity counts (+65% vs +16%) and minutes per day of moderate-to-vigorous physical activity (+9.4 vs +0.3) and greater reductions in minutes per day spent in television viewing (-116.1 vs +14.3). The intervention group also showed more favorable changes in body composition, dietary fat intake, and energy intake from snacks compared with controls. Reductions in sedentary behavior were directly related to reductions in BMI, fat intake, snack intake, and snack intake while watching television. Providing feedback of physical activity in combination with reinforcing physical activity with sedentary behavior is a simple method of modifying the home environment that may play an important role in treating and preventing child obesity.

  11. Computational investigation of feedback loop as a potential source of neuromechanical wave speed discrepancy in swimming animals

    Science.gov (United States)

    Patel, Namu; Patankar, Neelesh A.

    2017-11-01

    Aquatic locomotion relies on feedback loops to generate the flexural muscle moment needed to attain the reference shape. Experimentalists have consistently reported a difference between the electromyogram (EMG) and curvature wave speeds. The EMG wave speed has been found to correlate with the cross-sectional moment wave. The correlation, however, remains unexplained. Using feedback dependent controller models, we demonstrate two scenarios - one at higher passive elastic stiffness and another at lower passive elastic stiffness of the body. The former case becomes equivalent to the penalty type mathematical model for swimming used in prior literature and it does not reproduce neuromechanical wave speed discrepancy. The latter case at lower elastic stiffness does reproduce the wave speed discrepancy and appears to be biologically most relevant. These findings are applied to develop testable hypotheses about control mechanisms that animals might be using at during low and high Reynolds number swimming. This work is supported by NSF Grants DMS-1547394, CBET-1066575, ACI-1460334, and IOS-1456830. Travel for NP is supported by Institute for Defense Analyses.

  12. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling.

    Science.gov (United States)

    Khan, Sumbul Jawed; Abidi, Syeda Nayab Fatima; Skinner, Andrea; Tian, Yuan; Smith-Bolton, Rachel K

    2017-07-01

    Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth.

  13. A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach

    Science.gov (United States)

    Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.

    2014-06-01

    It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for models of socio-hydrology applicable to agricultural catchments, made up of six key components that combine to form the coupled system dynamics: namely, catchment hydrology, population, economics, environment, socioeconomic sensitivity and collective response. The conceptual framework posits two novel constructs: (i) a composite socioeconomic driving variable, termed the Community Sensitivity state variable, which seeks to capture the perceived level of threat to a community's quality of life, and acts as a key link tying together one of the fundamental feedback loops of the coupled system, and (ii) a Behavioural Response variable as the observable feedback mechanism, which reflects land and water management decisions relevant to the hydrological context. The framework makes a further contribution through the introduction of three macro-scale parameters that enable it to normalise for differences in climate, socioeconomic and political gradients across study sites. In this way, the framework provides for both macro-scale contextual parameters, which allow for comparative studies to be undertaken, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two socio-hydrological case studies, taken from the Australian experience, are presented

  14. The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene.

    Science.gov (United States)

    Rai, Muneeza Iqbal; Wang, Xiaomin; Thibault, Derek M; Kim, Hyo Jung; Bombyk, Matthew M; Binder, Brad M; Shakeel, Samina N; Schaller, G Eric

    2015-06-24

    Ethylene plays critical roles in plant growth and development, including the regulation of cell expansion, senescence, and the response to biotic and abiotic stresses. Elements of the initial signal transduction pathway have been determined, but we are still defining regulatory mechanisms by which the sensitivity of plants to ethylene is modulated. We report here that members of the ARGOS gene family of Arabidopsis, previously implicated in the regulation of plant growth and biomass, function as negative feedback regulators of ethylene signaling. Expression of all four members of the ARGOS family is induced by ethylene, but this induction is blocked in ethylene-insensitive mutants. The dose dependence for ethylene induction varies among the ARGOS family members, suggesting that they could modulate responses across a range of ethylene concentrations. GFP-fusions of ARGOS and ARL localize to the endoplasmic reticulum, the same subcellular location as the ethylene receptors and other initial components of the ethylene signaling pathway. Seedlings with increased expression of ARGOS family members exhibit reduced ethylene sensitivity based on physiological and molecular responses. These results support a model in which the ARGOS gene family functions as part of a negative feedback circuit to desensitize the plant to ethylene, thereby expanding the range of ethylene concentrations to which the plant can respond. These results also indicate that the effects of the ARGOS gene family on plant growth and biomass are mediated through effects on ethylene signal transduction.

  15. Tunable stochastic pulsing in the Escherichia coli multiple antibiotic resistance network from interlinked positive and negative feedback loops.

    Science.gov (United States)

    Garcia-Bernardo, Javier; Dunlop, Mary J

    2013-01-01

    Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we show that a combination of interlinked positive and negative feedback loops plays an important role in setting the dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low cost to the cell (taxing resistance mechanisms are expressed infrequently) and also elevated noise strength (phenotypic variability is high). The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a stressor.

  16. Tunable stochastic pulsing in the Escherichia coli multiple antibiotic resistance network from interlinked positive and negative feedback loops.

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Bernardo

    Full Text Available Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we show that a combination of interlinked positive and negative feedback loops plays an important role in setting the dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low cost to the cell (taxing resistance mechanisms are expressed infrequently and also elevated noise strength (phenotypic variability is high. The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a stressor.

  17. Short loop feedback control of the estrogen-induced luteinizing hormone surge in pigs.

    Science.gov (United States)

    Ziecik, A J; Britt, J H; Esbenshade, K L

    1988-04-01

    This study examines whether hCG will block the estradiol-induced LH surge in ovariectomized gilts. Twenty post-puberal cross-bred gilts were ovariectomized at 6-7 months of age. Approximately 2 months later, the experiment was conducted, and all gilts were given estradiol benzoate (EB; 10 micrograms/kg, im) at 0 h. Controls (n = 6) received im saline 24 and 48 h after EB. Two groups of gilts received 2000 IU hCG im, at 24 h (hCG24; n = 5) or 48 h (hCG48; n = 5) after EB. The fourth group (n = 4) received hCG at 48 h and was then given iv a LHRH agonist (des-Gly10, [D-Ala6]LHRH ethylamide) in 100-ng boluses hourly from 54-96 h after EB. Blood samples for determination of LH and FSH were collected every 6 h from 0-96 h. In controls, EB alone suppressed LH from 3.9 +/- 1.9 ng/ml at 0 h to 1.0 +/- 0.2 during 6-48 h (negative feedback), but LH then increased to 4.5 +/- 0.5 between 54 and 96 h (positive feedback), with the peak of the surge (6.7 +/- 1.6) occurring at 72 h. Treatment with hCG did not alter LH during the negative feedback phase (1.1 +/- 0.1 and 1.0 +/- 0.1 for hCG24 and hCG48, respectively). However, there was no LH surge in gilts given hCG at 24 or 48 h (2.4 +/- 0.2 and 2.2 +/- 0.1 form 54-96 h; P less than 0.05). Hourly injections of the LHRH agonist evoked a surge in LH (8.3 +/- 1.3) and maintained elevated LH (4.5 +/- 0.6) between 54 and 96 h, similar (P greater than 0.05) to values for controls. Generally, FSH in gilts given hCG followed the same pattern as LH secretion during the negative feedback stage; however, due to randomization, means for the period from 0-48 h for gilts treated with hCG 24 or 48 h after EB were lower (P less than 0.05) than for controls or gilts given LHRH agonist (62.2 +/- 2.8 and 63.0 +/- 2.7 vs. 79.3 +/- 3.2 and 93.3 +/- 4.2 ng/ml, respectively). During the positive feedback phase (54-96 h), FSH was lower in gilts given hCG (hCG24, 63.4 +/- 2.3; hCG48, 67.3 +/- 2.0) than in controls (86.0 +/- 4.0), but in gilts given LHRH

  18. Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning.

    Science.gov (United States)

    Cervantes-Sandoval, Isaac; Phan, Anna; Chakraborty, Molee; Davis, Ronald L

    2017-05-10

    Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse. Blocking the synaptic output of Kenyon cells during olfactory conditioning reduces presynaptic calcium transients in dopamine neurons, a finding consistent with reciprocal communication. Moreover, silencing Kenyon cells decreases the normal chronic activity of the dopamine neurons. Our results reveal a new and critical role for positive feedback onto dopamine neurons through reciprocal connections with Kenyon cells for normal olfactory learning.

  19. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Richard Moore

    2015-12-01

    Full Text Available The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53.

  20. A mechanical-biochemical feedback loop regulates remodeling in the actin cytoskeleton.

    Science.gov (United States)

    Stachowiak, Matthew R; Smith, Mark A; Blankman, Elizabeth; Chapin, Laura M; Balcioglu, Hayri E; Wang, Shuyuan; Beckerle, Mary C; O'Shaughnessy, Ben

    2014-12-09

    Cytoskeletal actin assemblies transmit mechanical stresses that molecular sensors transduce into biochemical signals to trigger cytoskeletal remodeling and other downstream events. How mechanical and biochemical signaling cooperate to orchestrate complex remodeling tasks has not been elucidated. Here, we studied remodeling of contractile actomyosin stress fibers. When fibers spontaneously fractured, they recoiled and disassembled actin synchronously. The disassembly rate was accelerated more than twofold above the resting value, but only when contraction increased the actin density to a threshold value following a time delay. A mathematical model explained this as originating in the increased overlap of actin filaments produced by myosin II-driven contraction. Above a threshold overlap, this mechanical signal is transduced into accelerated disassembly by a mechanism that may sense overlap directly or through associated elastic stresses. This biochemical response lowers the actin density, overlap, and stresses. The model showed that this feedback mechanism, together with rapid stress transmission along the actin bundle, spatiotemporally synchronizes actin disassembly and fiber contraction. Similar actin remodeling kinetics occurred in expanding or contracting intact stress fibers but over much longer timescales. The model accurately described these kinetics, with an almost identical value of the threshold overlap that accelerates disassembly. Finally, we measured resting stress fibers, for which the model predicts constant actin overlap that balances disassembly and assembly. The overlap was indeed regulated, with a value close to that predicted. Our results suggest that coordinated mechanical and biochemical signaling enables extended actomyosin assemblies to adapt dynamically to the mechanical stresses they convey and direct their own remodeling.

  1. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  2. Role of the ERC motif in the proximal part of the second intracellular loop and the C-terminal domain of the human prostaglandin F2alpha receptor (hFP-R) in G-protein coupling control.

    Science.gov (United States)

    Pathe-Neuschäfer-Rube, Andrea; Neuschäfer-Rube, Frank; Püschel, Gerhard P

    2005-05-15

    The human FP-R (F2alpha prostaglandin receptor) is a Gq-coupled heptahelical ectoreceptor, which is of significant medical interest, since it is a potential target for the treatment of glaucoma and preterm labour. On agonist exposure, it mediates an increase in intracellular inositol phosphate formation. Little is known about the structures that govern the agonist-dependent receptor activation. In other prostanoid receptors, the C-terminal domain has been inferred in the control of agonist-dependent receptor activation. A DRY motif at the beginning of the second intracellular loop is highly conserved throughout the G-protein-coupled receptor family and appears to be crucial for controlling agonist-dependent receptor activation. It is replaced by an ERC motif in the FP-R and no evidence for the relevance of this motif in ligand-dependent activation of prostanoid receptors has been provided so far. The aim of the present study was to elucidate the potential role of the C-terminal domain and the ERC motif in agonist-controlled intracellular signalling in FP-R mutants generated by site-directed mutagenesis. It was found that substitution of the acidic Glu(132) in the ERC motif by a threonine residue led to full constitutive activation, whereas truncation of the receptor's C-terminal domain led to partial constitutive activation of all three intracellular signal pathways that had previously been shown to be activated by the FP-R, i.e. inositol trisphosphate formation, focal adhesion kinase activation and T-cell factor signalling. Inositol trisphosphate formation and focal adhesion kinase phosphorylation were further enhanced by ligand binding in cells expressing the truncation mutant but not the E132T (Glu132-->Thr) mutant. Thus C-terminal truncation appeared to result in a receptor with partial constitutive activation, whereas substitution of Glu132 by threonine apparently resulted in a receptor with full constitutive activity.

  3. Leukemia Mediated Endothelial Cell Activation Modulates Leukemia Cell Susceptibility to Chemotherapy through a Positive Feedback Loop Mechanism.

    Directory of Open Access Journals (Sweden)

    Bahareh Pezeshkian

    Full Text Available In acute myeloid leukemia (AML, the chances of achieving disease-free survival are low. Studies have demonstrated a supportive role of endothelial cells (ECs in normal hematopoiesis. Here we show that similar intercellular relationships exist in leukemia. We demonstrate that leukemia cells themselves initiate these interactions by directly modulating the behavior of resting ECs through the induction of EC activation. In this inflammatory state, activated ECs induce the adhesion of a sub-set of leukemia cells through the cell adhesion molecule E-selectin. These adherent leukemia cells are sequestered in a quiescent state and are unaffected by chemotherapy. The ability of adherent cells to later detach and again become proliferative following exposure to chemotherapy suggests a role of this process in relapse. Interestingly, differing leukemia subtypes modulate this process to varying degrees, which may explain the varied response of AML patients to chemotherapy and relapse rates. Finally, because leukemia cells themselves induce EC activation, we postulate a positive-feedback loop in leukemia that exists to support the growth and relapse of the disease. Together, the data defines a new mechanism describing how ECs and leukemia cells interact during leukemogenesis, which could be used to develop novel treatments for those with AML.

  4. AMPK-Akt Double-Negative Feedback Loop in Breast Cancer Cells Regulates Their Adaptation to Matrix Deprivation.

    Science.gov (United States)

    Saha, Manipa; Kumar, Saurav; Bukhari, Shoiab; Balaji, Sai A; Kumar, Prashant; Hindupur, Sravanth K; Rangarajan, Annapoorni

    2018-03-15

    Cell detachment from the extracellular matrix triggers anoikis. Disseminated tumor cells must adapt to survive matrix deprivation, while still retaining the ability to attach at secondary sites and reinitiate cell division. In this study, we elucidate mechanisms that enable reversible matrix attachment by breast cancer cells. Matrix deprival triggered AMPK activity and concomitantly inhibited AKT activity by upregulating the Akt phosphatase PHLPP2. The resultant pAMPK high /pAkt low state was critical for cell survival in suspension, as PHLPP2 silencing also increased anoikis while impairing autophagy and metastasis. In contrast, matrix reattachment led to Akt-mediated AMPK inactivation via PP2C-α-mediated restoration of the pAkt high /pAMPK low state. Clinical specimens of primary and metastatic breast cancer displayed an Akt-associated gene expression signature, whereas circulating breast tumor cells displayed an elevated AMPK-dependent gene expression signature. Our work establishes a double-negative feedback loop between Akt and AMPK to control the switch between matrix-attached and matrix-detached states needed to coordinate cell growth and survival during metastasis. Significance: These findings reveal a molecular switch that regulates cancer cell survival during metastatic dissemination, with the potential to identify targets to prevent metastasis in breast cancer. Cancer Res; 78(6); 1497-510. ©2018 AACR . ©2018 American Association for Cancer Research.

  5. Positive feedback loop between introductions of non-native marine species and cultivation of oysters in Europe.

    Science.gov (United States)

    Mineur, Frederic; Le Roux, Auguste; Maggs, Christine A; Verlaque, Marc

    2014-12-01

    With globalization, agriculture and aquaculture activities are increasingly affected by diseases that are spread through movement of crops and stock. Such movements are also associated with the introduction of non-native species via hitchhiking individual organisms. The oyster industry, one of the most important forms of marine aquaculture, embodies these issues. In Europe disease outbreaks affecting cultivated populations of the naturalized oyster Crassostrea gigas caused a major disruption of production in the late 1960s and early 1970s. Mitigation procedures involved massive imports of stock from the species' native range in the northwestern Pacific from 1971 to 1977. We assessed the role stock imports played in the introduction of non-native marine species (including pathogens) from the northwestern Pacific to Europe through a methodological and critical appraisal of record data. The discovery rate of non-native species (a proxy for the introduction rate) from 1966 to 2012 suggests a continuous vector activity over the entire period. Disease outbreaks that have been affecting oyster production since 2008 may be a result of imports from the northwestern Pacific, and such imports are again being considered as an answer to the crisis. Although successful as a remedy in the short and medium terms, such translocations may bring new diseases that may trigger yet more imports (self-reinforcing or positive feedback loop) and lead to the introduction of more hitchhikers. Although there is a legal framework to prevent or reduce these introductions, existing procedures should be improved. © 2014 Society for Conservation Biology.

  6. Mathematical Modeling of the Pituitary-Thyroid Feedback Loop: Role of a TSH-T3-Shunt and Sensitivity Analysis.

    Science.gov (United States)

    Berberich, Julian; Dietrich, Johannes W; Hoermann, Rudolf; Müller, Matthias A

    2018-01-01

    Despite significant progress in assay technology, diagnosis of functional thyroid disorders may still be a challenge, as illustrated by the vague upper limit of the reference range for serum thyrotropin ( TSH ). Diagnostical problems also apply to subjects affected by syndrome T, i.e., those 10% of hypothyroid patients who continue to suffer from poor quality of life despite normal TSH concentrations under substitution therapy with levothyroxine ( L - T 4 ). In this paper, we extend a mathematical model of the pituitary-thyroid feedback loop in order to improve the understanding of thyroid hormone homeostasis. In particular, we incorporate a TSH - T 3 -shunt inside the thyroid, whose existence has recently been demonstrated in several clinical studies. The resulting extended model shows good accordance with various clinical observations, such as a circadian rhythm in free peripheral triiodothyronine ( FT 3 ). Furthermore, we perform a sensitivity analysis of the derived model, revealing the dependence of TSH and hormone concentrations on different system parameters. The results have implications for clinical interpretation of thyroid tests, e.g., in the differential diagnosis of subclinical hypothyroidism.

  7. Individualising Media Practice Education Using a Feedback Loop and Instructional Videos Within an eLearning Environment.

    Directory of Open Access Journals (Sweden)

    Trevor Harris

    2012-06-01

    Full Text Available This paper explores the development and impact of the author’s TELE (Technology Enhanced Learning Environment action research project for individualising media practice education. The latest iteration of different classroom methodologies being employed to develop high-level skills in media production, the author has combined an interactive eLearning approach with instructional videos and, crucially, an individual feedback loop in order to widen access to the curriculum and create a more efficient teaching and learning environment. The focus therefore is on student engagement and organisational efficiencies as a result of the research. It should be noted that there has been no funding attached to this work, nor are there any institutional imperatives or other stakeholder involvement in this research. This project has been undertaken by the author as an evolutionary development of the various methodologies developed, cognisant of the increased technology literacy of the student cohort. The educational benefit of bringing video instruction into the curriculum as part of the project is examined as a creative pedagogy of direct benefit to students rather than as a subliminal marketing tool that other systems are often used for. Over 16K words of written data was collected during the project, and this is analysed both quantitatively and qualitatively with reference to the initial objectives of the research

  8. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation.

    LENUS (Irish Health Repository)

    Rishi, Loveena

    2014-04-10

    The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein α (C\\/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop for E2F1, C\\/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C\\/EBPα-p42, and in normal granulocyte\\/macrophage progenitor cells, we detect C\\/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle or Trib2 knockdown resulted in a block in AML cell proliferation. Our work proposes a novel paradigm whereby E2F1 plays a key role in the regulation of Trib2 expression important for AML cell proliferation control. Importantly, we identify the contribution of dysregulated C\\/EBPα and E2F1 to elevated Trib2 expression and leukemic cell survival, which likely contributes to the initiation and maintenance of AML and may have significant implications for normal and malignant hematopoiesis.

  9. Healthy Change Processes-A Diary Study of Five Organizational Units. Establishing a Healthy Change Feedback Loop.

    Science.gov (United States)

    Lien, Mathilde; Saksvik, Per Øystein

    2016-10-01

    This paper explores a change process in the Central Norway Regional Health Authority that was brought about by the implementation of a new economics and logistics system. The purpose of this paper is to contribute to understanding of how employees' attitudes towards change develop over time and how attitudes differ between the five health trusts under this authority. In this paper, we argue that a process-oriented focus through a longitudinal diary method, in addition to action research and feedback loops, will provide greater understanding of the evaluation of organizational change and interventions. This is explored through the assumption that different units will have different perspectives and attitudes towards the same intervention over time because of different contextual and time-related factors. The diary method aims to capture the context, events, reflections and interactions when they occur and allows for a nuanced frame of reference for the different phases of the implementation process and how these phases are perceived by employees. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Feedback Loop Regulation of SCAP/SREBP-1 by miR-29 Modulates EGFR Signaling-Driven Glioblastoma Growth

    Directory of Open Access Journals (Sweden)

    Peng Ru

    2016-08-01

    Full Text Available Dysregulated lipid metabolism is a characteristic of malignancies. Sterol regulatory element binding protein 1 (SREBP-1, a transcription factor playing a central role in lipid metabolism, is highly activated in malignancies. Here, we unraveled a link between miR-29 and the SCAP (SREBP cleavage-activating protein/SREBP-1 pathway in glioblastoma (GBM growth. Epidermal growth factor receptor (EGFR signaling enhances miR-29 expression in GBM cells via upregulation of SCAP/SREBP-1, and SREBP-1 activates miR-29 expression via binding to specific sites in its promoter. In turn, miR-29 inhibits SCAP and SREBP-1 expression by interacting with their 3′ UTRs. miR-29 transfection suppressed lipid synthesis and GBM cell growth, which were rescued by the addition of fatty acids or N-terminal SREBP-1 expression. Xenograft studies showed that miR-29 mimics significantly inhibit GBM growth and prolong the survival of GBM-bearing mice. Our study reveals a previously unrecognized negative feedback loop in SCAP/SREBP-1 signaling mediated by miR-29 and suggests that miR-29 treatment may represent an effective means to target GBM.

  11. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation

    DEFF Research Database (Denmark)

    Rishi, Loveena; Hannon, Maura; Salomè, Mara

    2014-01-01

    α (C/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop......The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein...... for E2F1, C/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C/EBPα-p42, and in normal granulocyte/macrophage progenitor cells, we detect C/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle...

  12. Local feedback loop of ghrelin-GH in the pig ovary: action on estradiol secretion, aromatase activity and cell apoptosis.

    Science.gov (United States)

    Rak, Agnieszka; Gregoraszczuk, Ewa Łucja

    2008-06-01

    Ghrelin is recognized as an important regulator of growth hormone (GH) secretion, food intake and a factor which controls reproduction. In the present studies, the effect of GH and insulin-like growth factor (IGF-I) on ghrelin synthesis and secretion and the effects of ghrelin on GH synthesis and secretion in cultured whole porcine follicles were studied. Ghrelin and GH levels were measured in the follicular wall and in the culture medium. Moreover, the action of combined treatment with ghrelin and GH on estradiol secretion, aromatase activity and cell apoptosis were examined. We demonstrated that ghrelin increased GH secretion but not GH synthesis by ovarian follicles. GH stimulated both ghrelin synthesis and secretion in the ovarian follicles. The increase in estradiol secretion, aromatase activity and the decrease in caspase-3 activity were noted in ghrelin alone- and ghrelin in combination with GH-treated cells. In culture treated with combination of both these hormones, all investigated parameters were similar to those noted in ghrelin alone-treated cells. In conclusion, our study provides novel evidence for the gonadal feedback loop between GH and ghrelin secretion in the ovary. However, results of the presented research suggest independent action of GH and ghrelin in the ovary.

  13. Development of Estimation Force Feedback Torque Control Algorithm for Driver Steering Feel in Vehicle Steer by Wire System: Hardware in the Loop

    Directory of Open Access Journals (Sweden)

    Sheikh Muhammad Hafiz Fahami

    2015-01-01

    Full Text Available In conventional steering system, a feedback torque is produced from the contact between tire and road surface and its flows through mechanical column shaft directly to driver. This allows the driver to sense the steering feel during driving. However, in steer by wire (SBW system, the elimination of the mechanical column shaft requires the system to generate the feedback torque which should produce similar performance with conventional steering system. Therefore, this paper proposes a control algorithm to create the force feedback torque for SBW system. The direct current measurement approach is used to estimate torque at the steering wheel and front axle motor as elements to the feedback torque, while, adding the compensation torque for a realistic feedback torque. The gain scheduling with a linear quadratic regulator controller is used to control the feedback torque and to vary a steering feel gain. To investigate the effectiveness of the proposed algorithm, a real-time hardware in the loop (HIL methodology is developed using Matlab XPC target toolbox. The results show that the proposed algorithm is able to generate the feedback torque similar to EPS steering system. Furthermore, the compensation torque is able to improve the steering feel and stabilize the system.

  14. MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92

    Science.gov (United States)

    Li, Yichen; Li, Yumin; Zhang, Hui; Chen, Yong

    2011-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in many key biological processes, including development, cell differentiation, the cell cycle and apoptosis, as central post-transcriptional regulators of gene expression. Recent studies have shown that miRNAs can act as oncogenes and tumor suppressors depending on the context. The present work focuses on the physiological significance of miRNAs and their role in regulating the switching behavior. We illustrate an abstract model of the Myc/E2F/miR-17-92 network presented by Aguda et al. (2008), which is composed of coupling between the E2F/Myc positive feedback loops and the E2F/Myc/miR-17-92 negative feedback loop. By systematically analyzing the network in close association with plausible experimental parameters, we show that, in the presence of miRNAs, the system bistability emerges from the system, with a bistable switch and a one-way switch presented by Aguda et al. instead of a single one-way switch. Moreover, the miRNAs can optimize the switching process. The model produces a diverse array of response-signal behaviors in response to various potential regulating scenarios. The model predicts that this transition exists, one from cell death or the cancerous phenotype directly to cell quiescence, due to the existence of miRNAs. It was also found that the network involving miR-17-92 exhibits high noise sensitivity due to a positive feedback loop and also maintains resistance to noise from a negative feedback loop. PMID:22022595

  15. Positive and negative feedback loops in nutrient phytoplankton interactions related to climate dynamics factors in a shallow temperate estuary (Vistula Lagoon, southern Baltic)

    Science.gov (United States)

    Kruk, Marek; Kobos, Justyna; Nawrocka, Lidia; Parszuto, Katarzyna

    2018-04-01

    This study aims to demonstrate that factors associated with climate dynamics, such as temperature and wind, affect the ecosystem of the shallow Vistula Lagoon in the southern Baltic and cause nutrient forms phytoplankton interactions: the growth of biomass and constraints of it. This occurs through a network of direct and indirect relationships between environmental and phytoplankton factors, including interactions of positive and negative feedback loops. Path analysis supported by structural equation modeling (SEM) was used to test hypotheses regarding the impact of climate factors on algal assemblages. Increased phytoplankton biomass was affected directly by water temperature and salinity, while the wind speed effect was indirect as it resulted in increased concentrations of suspended solids (SS) in the water column. Simultaneously, the concentration of SS in the water was positively correlated with particulate organic carbon (POC), particulate nitrogen (PN), and particulate phosphorus (PP), and was negatively correlated with the total nitrogen to phosphorus (N:P) ratio. Particulate forms of C, N, and phosphorus (P), concentrations of soluble reactive phosphorus (SRP) and nitrate and nitrite nitrogen (NO3-N + NO2-N), and ratios of the total N:P and DIN:SRP, all indirectly effected Cyanobacteria C concentrations. These processes influence other phytoplankton groups (Chlorophyta, Bacillariophyceae and the picophytoplankton fraction). Increased levels of SRP associated with organic matter (POC), which stemmed from reduced DIN:SRP ratios, contributed to increased Cyanoprokaryota and picophytoplankton C concentrations, which created a positive feedback loop. However, a simultaneous reduction in the total N:P ratio could have inhibited increases in the biomass of these assemblages by limiting N, which likely formed a negative feedback loop. The study indicates that the nutrients-phytoplankton feedback loop phenomenon can intensify eutrophication in a temperate lagoon

  16. A Wnt/β-catenin negative feedback loop inhibits interleukin-1-induced matrix metalloproteinase expression in human articular chondrocytes.

    Science.gov (United States)

    Ma, Bin; van Blitterswijk, Clemens A; Karperien, Marcel

    2012-08-01

    The results of recent animal studies suggest that activation of Wnt/β-catenin signaling in articular chondrocytes might be a driving factor in the pathogenesis of osteoarthritis (OA) by stimulating, for instance, the expression of matrix metalloproteinases (MMPs). The aim of this study was to investigate the role of Wnt/β-catenin signaling in interleukin-1β (IL-1β)-induced MMP expression in human chondrocytes. Primary cultures of human, murine, and bovine articular chondrocytes as well as human mesenchymal stem cells and mouse embryonic fibroblasts were used in the experiments. Multiple strategies for the activation and inhibition of signaling pathways were utilized. Reporter assays and coimmunoprecipitation were performed to study the interaction between β-catenin and NF-κB. In contrast to the role of Wnt/β-catenin in animal chondrocytes, in human chondrocytes it was a potent inhibitor of MMP-1, MMP-3, and MMP-13 expression and generic MMP activity both in basal conditions and after IL-1β stimulation. This effect was independent of the T cell factor/lymphoid enhancer factor family of transcription factors but rather was attributable to an inhibitory protein-protein interaction between β-catenin and NF-κB. IL-1β indirectly activated β-catenin signaling by inducing canonical Wnt-7B expression and by inhibiting the expression of canonical Wnt antagonists. Wnt/β-catenin signaling in human chondrocytes had an unexpected anticatabolic role by counteracting NF-κB-mediated MMP expression induced by IL-1β in a negative feedback loop. Copyright © 2012 by the American College of Rheumatology.

  17. Combined prokaryotic-eukaryotic delivery and expression of therapeutic factors through a primed autocatalytic positive-feedback loop.

    Science.gov (United States)

    Shi, Lei; Yu, Bin; Cai, Chun-Hui; Huang, Wei; Zheng, Bo-Jian; Smith, David Keith; Huang, Jian-Dong

    2016-01-28

    Progress in bacterial therapy for cancer and infectious diseases is hampered by the absence of safe and efficient vectors. Sustained delivery and high gene expression levels are critical for the therapeutic efficacy. Here we developed a Salmonella typhimrium strain to maintain and safely deliver a plasmid vector to target tissues. This vector is designed to allow dual transcription of therapeutic factors, such as cytotoxic proteins, short hairpin RNAs or combinations, in the nucleus or cytoplasm of eukaryotic cells, with this expression sustained by an autocatalytic positive-feedback loop. Mechanisms to prime the system and maintain the plasmid in the bacterium are also provided. Synergistic effects of attenuated Salmonella and our inter-kingdom system allow the precise expression of Diphtheria toxin A chain (DTA) gene in tumor microenvironment and eradicate large established tumors in immunocompetent animals. In the experiments reported here, 26% of mice (n=5/19) with aggressive tumors were cured and the others all survived until the end of the experiment. We also demonstrated that ST4 packaged with shRNA-encoding plasmids has sustained knockdown effects in nude mice bearing human MDA-MB-231 xenografts. Three weeks after injection of 5×10(6) ST4/pIKT-shPlk, PLK1 transcript levels in tumors were 62.5±18.6% lower than the vector control group (P=0.015). The presence of PLK1 5' RACE-PCR cleavage products confirmed a sustained RNAi-mediated mechanism of action. This innovative technology provides an effective and versatile vehicle for efficient inter-kingdom gene delivery that can be applied to cancer therapy and other purposes. Copyright © 2015. Published by Elsevier B.V.

  18. A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Joseph H R Hetmanski

    2016-05-01

    Full Text Available Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN containing extracellular matrix (ECM, by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3 pathway and generate filopodial actin-spike protrusions which drive invasion. To further understand the signalling network that drives RCP-driven invasive migration, we generated a Boolean logical model based on existing network pathways/models, where each node can be interrogated by computational simulation. The model predicted an unanticipated feedback loop, whereby Raf/MEK/ERK signalling maintains suppression of Rac1 by inhibiting the Rac-activating Sos1-Eps8-Abi1 complex, allowing RhoA activity to predominate in invasive protrusions. MEK inhibition was sufficient to promote lamellipodia formation and oppose filopodial actin-spike formation, and led to activation of Rac and inactivation of RhoA at the leading edge of cells moving in 3D matrix. Furthermore, MEK inhibition abrogated RCP/α5β1/EGFR1-driven invasive migration. However, upon knockdown of Eps8 (to suppress the Sos1-Abi1-Eps8 complex, MEK inhibition had no effect on RhoGTPase activity and did not oppose invasive migration, suggesting that MEK-ERK signalling suppresses the Rac-activating Sos1-Abi1-Eps8 complex to maintain RhoA activity and promote filopodial actin-spike formation and invasive migration. Our study highlights the predictive potential of mathematical modelling approaches, and demonstrates that a simple intervention (MEK-inhibition could be of therapeutic benefit in preventing invasive migration and metastasis.

  19. Self-splicing of a group IIC intron: 5? exon recognition and alternative 5? splicing events implicate the stem?loop motif of a transcriptional terminator

    OpenAIRE

    Toor, Navtej; Robart, Aaron R.; Christianson, Joshua; Zimmerly, Steven

    2006-01-01

    Bacterial IIC introns are a newly recognized subclass of group II introns whose ribozyme properties have not been characterized in detail. IIC introns are typically located downstream of transcriptional terminator motifs (inverted repeat followed by T's) or other inverted repeats in bacterial genomes. Here we have characterized the self-splicing activity of a IIC intron, B.h.I1, from Bacillus halodurans. B.h.I1 self-splices in vitro through hydrolysis to produce linear intron, but interesting...

  20. Non-Watson-Crick base pairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E

    Czech Academy of Sciences Publication Activity Database

    Réblová, K.; Špačková, Naďa; Koča, J.; Leontis, N. B.; Šponer, Jiří

    2003-01-01

    Roč. 20, č. 6 (2003), s. 986 ISSN 0739-1102. [Albany 2003: Conversation 13. 17.06.2003-21.06.2003, Albany] Institutional research plan: CEZ:AV0Z5004920 Keywords : non- Watson -Crick base pairs * Loop E * RNA Subject RIV: BO - Biophysics

  1. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    Science.gov (United States)

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2017-06-26

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  2. The MYB23 Gene Provides a Positive Feedback Loop for Cell Fate Specification in the Arabidopsis Root Epidermis[C][W

    Science.gov (United States)

    Kang, Yeon Hee; Kirik, Victor; Hulskamp, Martin; Nam, Kyoung Hee; Hagely, Katherine; Lee, Myeong Min; Schiefelbein, John

    2009-01-01

    The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis. PMID:19395683

  3. Towards the role of metal ions in the structural variability of proteins: CdII speciation of a metal ion binding loop motif

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szunyogh, Dániel; Gyurcsik, Béla

    2011-01-01

    A de novo designed dodecapeptide (HS), inspired by the metal binding loops of metal-responsive transcriptional activators, was synthesized. The aim was to create a model system for structurally promiscuous and intrinsically unstructured proteins, and explore the effect of metal ions on their stru...... the peptide is exchanging between a number of structures also in its metal ion bound state(s), as indicated by NMR and PAC data. © 2011 The Royal Society of Chemistry....

  4. PANET: a GPU-based tool for fast parallel analysis of robustness dynamics and feed-forward/feedback loop structures in large-scale biological networks.

    Directory of Open Access Journals (Sweden)

    Hung-Cuong Trinh

    Full Text Available It has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the network size that can be analyzed exist due to high computational costs. In addition, the plugin cannot verify an intrinsic property which can be induced by an observed result because it has no function to simulate the observation on a large number of random networks. To overcome these limitations, we have developed a novel software tool, PANET. First, the time-consuming parts of NetDS were redesigned to be processed in parallel using the OpenCL library. This approach utilizes the full computing power of multi-core central processing units and graphics processing units. Eventually, this made it possible to investigate a large-scale network such as a human signaling network with 1,609 nodes and 5,063 links. We also developed a new function to perform a batch-mode simulation where it generates a lot of random networks and conducts robustness calculations and feed-forward/feedback loop examinations of them. This helps us to determine if the findings in real biological networks are valid in arbitrary random networks or not. We tested our plugin in two case studies based on two large-scale signaling networks and found interesting results regarding relationships between coherently coupled feed-forward/feedback loops and robustness. In addition, we verified whether or not those findings are consistently conserved in random networks through batch-mode simulations. Taken together, our plugin is expected to effectively investigate various relationships between dynamics and structural properties in large-scale networks. Our software tool, user manual and example datasets are freely available at http://panet-csc.sourceforge.net/.

  5. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer.

    Directory of Open Access Journals (Sweden)

    Merel Gijsen

    2010-12-01

    Full Text Available Herceptin (trastuzumab is used in patients with breast cancer who have HER2 (ErbB2-positive tumours. However, its mechanisms of action and how acquired resistance to Herceptin occurs are still poorly understood. It was previously thought that the anti-HER2 monoclonal antibody Herceptin inhibits HER2 signalling, but recent studies have shown that Herceptin does not decrease HER2 phosphorylation. Its failure to abolish HER2 phosphorylation may be a key to why acquired resistance inevitably occurs for all responders if Herceptin is given as monotherapy. To date, no studies have explained why Herceptin does not abolish HER2 phosphorylation. The objective of this study was to investigate why Herceptin did not decrease HER2 phosphorylation despite being an anti-HER2 monoclonal antibody. We also investigated the effects of acute and chronic Herceptin treatment on HER3 and PKB phosphorylation in HER2-positive breast cancer cells. Using both Förster resonance energy transfer (FRET methodology and conventional Western blot, we have found the molecular mechanisms whereby Herceptin fails to abolish HER2 phosphorylation. HER2 phosphorylation is maintained by ligand-mediated activation of EGFR, HER3, and HER4 receptors, resulting in their dimerisation with HER2. The release of HER ligands was mediated by ADAM17 through a PKB negative feedback loop. The feedback loop was activated because of the inhibition of PKB by Herceptin treatment since up-regulation of HER ligands and ADAM17 also occurred when PKB phosphorylation was inhibited by a PKB inhibitor (Akt inhibitor VIII, Akti-1/2. The combination of Herceptin with ADAM17 inhibitors or the panHER inhibitor JNJ-26483327 was able to abrogate the feedback loop and decrease HER2 phosphorylation. Furthermore, the combination of Herceptin with JNJ-26483327 was synergistic in tumour inhibition in a BT474 xenograft model. We have determined that a PKB negative feedback loop links ADAM17 and HER ligands in maintaining

  6. Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton.

    Science.gov (United States)

    Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza

    2016-01-01

    Assistive technology allows for intensive practice and kinematic measurements during rehabilitation exercises. More recent approaches attach a gravity-compensating multi-joint exoskeleton to the upper extremity to facilitate task-oriented training in three-dimensional space with virtual reality feedback. The movement quality, however, is mostly captured through end-point measures that lack information on proximal inter-joint coordination. This limits the differentiation between compensation strategies and genuine restoration both during the exercise and in the course of rehabilitation. We extended in this proof-of-concept study a commercially available seven degree-of-freedom arm exoskeleton by using the real-time sensor data to display a three-dimensional multi-joint visualization of the user's arm. Ten healthy subjects and three severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living assisted by the attached exoskeleton and received closed-loop online feedback of the three-dimensional movement in virtual reality. Patients in this pilot study differed significantly with regard to motor performance (accuracy, temporal efficiency, range of motion) and movement quality (proximal inter-joint coordination) from the healthy control group. In the course of 20 training and feedback sessions over 4 weeks, these pathological measures improved significantly toward the reference parameters of healthy participants. It was moreover feasible to capture the evolution of movement pattern kinematics of the shoulder and elbow and to quantify the individual degree of natural movement restoration for each patient. The virtual reality visualization and closed-loop feedback of joint-specific movement kinematics makes it possible to detect compensation strategies and may provide a tool to achieve the rehabilitation goals in accordance with the individual capacity for genuine functional restoration; a proposal that warrants

  7. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Forsbacka, Matthew

    2004-01-01

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the NASA Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. "virtual" reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of van'ous core deformations. The power delivered to the SAFE-100 prototype was then dusted accordingly via kinetics calculations, The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kilowatt(sub t), to 10 kilowatts(sub t), held approximately constant at 10 kilowatts (sub t), and then allowed to decrease based on the negative thermal reactivity coefficient.

  8. Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury.

    Science.gov (United States)

    Moraud, Eduardo Martin; von Zitzewitz, Joachim; Miehlbradt, Jenifer; Wurth, Sophie; Formento, Emanuele; DiGiovanna, Jack; Capogrosso, Marco; Courtine, Grégoire; Micera, Silvestro

    2018-01-08

    After spinal cord injury (SCI), sensory feedback circuits critically contribute to leg motor execution. Compelled by the importance to engage these circuits during gait rehabilitation, assistive robotics and training protocols have primarily focused on guiding leg movements to reinforce sensory feedback. Despite the importance of trunk postural dynamics on gait and balance, trunk assistance has comparatively received little attention. Typically, trunk movements are either constrained within bodyweight support systems, or manually adjusted by therapists. Here, we show that real-time control of trunk posture re-established dynamic balance amongst bilateral proprioceptive feedback circuits, and thereby restored left-right symmetry, loading and stepping consistency in rats with severe SCI. We developed a robotic system that adjusts mediolateral trunk posture during locomotion. This system uncovered robust relationships between trunk orientation and the modulation of bilateral leg kinematics and muscle activity. Computer simulations suggested that these modulations emerged from corrections in the balance between flexor- and extensor-related proprioceptive feedback. We leveraged this knowledge to engineer control policies that regulate trunk orientation and postural sway in real-time. This dynamical postural interface immediately improved stepping quality in all rats regardless of broad differences in deficits. These results emphasize the importance of trunk regulation to optimize performance during rehabilitation.

  9. Closing the feedback loop: engaging students in large first-year mathematics test revision sessions using pen-enabled screens

    Science.gov (United States)

    Donovan, Diane; Loch, Birgit

    2013-01-01

    How can active learning, peer learning and prompt feedback be achieved in large first-year mathematics classes? Further, what technologies may support these aims? In this article, we assert that test revision sessions in first-year mathematics held in a technology-enhanced lecture theatre can be highly interactive with students solving problems, learning from each other and receiving immediate feedback. This is facilitated by pen-enabled screens and synchronization software. We argue that the educational benefits achievable through the technology do outweigh the technological distractions, and that these benefits can be achieved by focused, targeted one-off sessions and not only by a semester-long, regular approach. Repeat mid-semester test revision sessions were offered on a non-compulsory basis using pen-enabled screens for all students. Students worked practice test questions and marked solutions to mathematical problems on the screens. Students' work was then displayed anonymously for their peers to see. Answers were discussed with the whole class. We discuss outcomes from two offerings of these sessions using student feedback and lecturer reflections and show the impact of participation on self-reported student confidence. Pedagogical approaches that the technology allowed for the first time in a large class are highlighted. Students responded uniformly positively.

  10. MiR-22 suppresses epithelial-mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop.

    Science.gov (United States)

    Xu, Mingjie; Li, Jiangfeng; Wang, Xiao; Meng, Shuai; Shen, Jiaying; Wang, Song; Xu, Xin; Xie, Bo; Liu, Ben; Xie, Liping

    2018-02-12

    MicroRNAs (miRNAs) have been validated to play prominent roles in the occurrence and development of bladder cancer (BCa). MiR-22 was previously reported to act as a tumor suppressor or oncomiRNA in various types of cancer. However, its accurate expression, function, and mechanism in BCa remain unclear. Here, we find that miR-22 is frequently downregulated in BCa tissues compared with adjacent non-cancerous tissues. Overexpression of miR-22 significantly inhibits proliferation, migration, and invasion of BCa cells both in vitro and in vivo. Importantly, miR-22 is found to suppress cell proliferation/apoptosis by directly targeting MAPK1 (mitogen-activated protein kinase 1, ERK2) and inhibit cell motility by targeting both MAPK1 and Snail. Further statistical analysis shows that low-expression of MAPK1 or Snail is an independent prognostic factor for a better overall survival in patients with BCa (n = 401). Importantly, we describe an important regenerative feedback loop among vimentin, Slug and MAPK1 in BCa cells. MAPK1-induced Slug expression upregulates vimentin. Vimentin in turn activates MAPK1. By inhibiting Snail and MAPK1/Slug/vimentin feedback loop, miR-22 suppresses epithelial-mesenchymal transition (EMT) of BCa cells in vitro as well as in vivo. Taken together, this study reveals that miR-22 is critical to the proliferation, apoptosis and EMT progression in BCa cells. Targeting the pathway described here may be a novel approach for inhibiting proliferation and metastasis of BCa.

  11. PI Closed-Loop Feedback Terminal Voltage Control Scheme based on Static VAR Compensator for Three-Phase Self-Excited Induction Generator

    Science.gov (United States)

    Ahmed, Tarek; Noro, Osamu; Nakaoka, Mutsuo

    In this paper, the practical impedance approach steady-state analysis in the frequency domain of the three-phase self-excited induction generator (SEIG) with a squirrel cage rotor is presented, along with its operating performance evaluations. The three-phase SEIG is driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) such as a wind turbine and a micro gas turbine for the clean alternative renewable energy in rural areas. The basic steady-state characteristics of the VSPM are considered in the three-phase SEIG approximate electro-mechanical equivalent circuit and the operating performances of the three-phase SEIG coupled by a VSPM and/or a CSPM in the steady-state analysis are evaluated and discussed on line under the conditions related to the speed changes of the prime mover and the electrical inductive load power variations with simple computation processing procedures. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental performance results give good agreements with those ones obtained from the simulation results. Furthermore, a PI controlled feedback closed-loop voltage regulation of the three-phase SEIG driven by the VSPM on the basis of the static VAR compensator (SVC) composed of the thyristor phase controlled reactor (TCR) in parallel with the thyristor switched capacitor (TSC) and the fixed excitation capacitor bank (FC) is designed and considered for the wind generation as a renewable power conditioner. The simulation analysis and experimental results obtained from the three-phase SEIG with the SVC for its voltage regulation prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in the steady-state operations in terms of the fast response and the high performances.

  12. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.

  13. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993

  14. Regulation of NOX-1 expression in beta cells: a positive feedback loop involving the Src-kinase signaling pathway.

    Science.gov (United States)

    Weaver, J R; Taylor-Fishwick, D A

    2013-04-30

    NADPH oxidase-1 (NOX-1) is upregulated in beta cells in response to pro-inflammatory cytokines. Inhibition of NADPH oxidase activity blocked stimulated NOX-1 expression (pNOX-1 expression in beta cells followed modulation of cellular reactive oxygen species (ROS); pro-oxidants increased NOX-1 (pNOX-1 (pNOX-1 expression (pNOX-1 preserved beta cell function and survival. Collectively, these data indicate that expression of NOX-1 in beta cells is regulated in a feed-forward loop mediated by ROS and Src-kinase. Uncoupling of this feed-forward activation could provide new approaches to preserve and protect beta cells in diabetes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Harvesting entropy and quantifying the transition from noise to chaos in a photon-counting feedback loop.

    Science.gov (United States)

    Hagerstrom, Aaron Morgan; Murphy, Thomas Edward; Roy, Rajarshi

    2015-07-28

    Many physical processes, including the intensity fluctuations of a chaotic laser, the detection of single photons, and the Brownian motion of a microscopic particle in a fluid are unpredictable, at least on long timescales. This unpredictability can be due to a variety of physical mechanisms, but it is quantified by an entropy rate. This rate, which describes how quickly a system produces new and random information, is fundamentally important in statistical mechanics and practically important for random number generation. We experimentally study entropy generation and the emergence of deterministic chaotic dynamics from discrete noise in a system that applies feedback to a weak optical signal at the single-photon level. We show that the dynamics transition from shot noise to chaos as the photon rate increases and that the entropy rate can reflect either the deterministic or noisy aspects of the system depending on the sampling rate and resolution.

  16. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1.

    Science.gov (United States)

    Chang, Woochul; Lee, Chang Youn; Park, Jun-Hee; Park, Moon-Seo; Maeng, Lee-So; Yoon, Chee Soon; Lee, Min Young; Hwang, Ki-Chul; Chung, Yong-An

    2013-01-01

    The use of mesenchymal stem cells (MSCs) has emerged as a potential new treatment for myocardial infarction. However, the poor viability of MSCs after transplantation critically limits the efficacy of this new strategy. The expression of microRNA-210 (miR-210) is induced by hypoxia and is important for cell survival under hypoxic conditions. Hypoxia increases the levels of hypoxia inducible factor-1 (HIF-1) protein and miR-210 in human MSCs (hMSCs). miR-210 positively regulates HIF-1α activity. Furthermore, miR-210 expression is also induced by hypoxia through the regulation of HIF-1α. To investigate the effect of miR-210 on hMSC survival under hypoxic conditions, survival rates along with signaling related to cell survival were evaluated in hMSCs over-expressing miR-210 or ones that lacked HIF-1α expression. Elevated miR-210 expression increased survival rates along with Akt and ERK activity in hMSCs with hypoxia. These data demonstrated that a positive feedback loop involving miR-210 and HIF-1α was important for MSC survival under hypoxic conditions.

  17. Biochanin A Promotes Proliferation that Involves a Feedback Loop of MicroRNA-375 and Estrogen Receptor Alpha in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2015-01-01

    Full Text Available Background: Biochanin A and formononetin are O-methylated isoflavones that are isolated from the root of Astragalus membranaceus, and have antitumorigenic effects. Our previous studies found that formononetin triggered growth-inhibitory and apoptotic activities in MCF-7 breast cancer cells. We performed in vivo and in vitro studies to further investigate the potential effect of biochanin A in promoting cell proliferation in estrogen receptor (ER-positive cells, and to elucidate underlying mechanisms. Methods: ERα-positive breast cancer cells (T47D, MCF-7 were treated with biochanin A. The MTT assay and flow cytometry were used to assess cell proliferation and apoptosis. mRNA levels of ERα, Bcl-2, and miR-375 were quantified using real-time polymerase chain reaction. Compared with the control, low biochanin A concentrations (2-6 μM stimulated ERα-positive cell proliferation (T47D, MCF-7. The more sensitive T47D cells were used to study the relevant signaling pathway. Results: After treatment with biochanin A, ERα, miR-375, and Bcl-2 expression was significantly upregulated. Additionally, in the in vivo studies, uterine weight in ovariectomized mice treated with biochanin A increased significantly. Conclusion: This study demonstrated that biochanin A promoted ERα-positive cell proliferation through miR-375 activation and this mechanism is possibly involving in a miR-375 and ERα feedback loop.

  18. Ontogeny of specific prolactin binding sites in the rat choroid plexus and their temporal relation to the prolactin short-loop feedback system

    International Nuclear Information System (INIS)

    Silverman, F.

    1985-01-01

    The development of prolactin receptors in the choroid plexus of the rat was examined using the in vivo autoradiographic approach employing the principle of competitive binding. Animals aged 0, 10, 14, and 18 days postnatal were perfusion fixed following hormone injection and prepared for light microscopic autoradiography. The choroid plexus first demonstrated specific binding of prolactin at 14 days postnatal. The lactogen specificity of these binding sites was further defined by the ability of I 125 -prolactin to be displaced by unlabelled human growth hormone, which is lactogenic in rats, and not by unlabelled insulin, which is structurally dissimilar to prolactin. Morphometric analysis was performed on electron micrographs of choroid plexus from 10 and 14 day postnatal rats. The volume densities of constituents known to be involved in the synthesis and/or function of polypeptide hormone receptors were measured and differences tested for statistical significance. A semi-quantitative histo-fluorescence technique was used to evaluate the ability of prolactin to stimulate secretion of its inhibiting factor, dopamine, in 10 day postnatal rats. The present findings indicate that the ontogenesis of specific prolactin binding sites is not temporally connected with the establishment of the prolactin short-loop feedback system since activation of the system occurs prior to the establishment of specific prolactin binding at choroid plexus

  19. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability.

    Directory of Open Access Journals (Sweden)

    Glenn M Marshall

    2011-06-01

    Full Text Available The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3, leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.

  20. The inhibitory effects of AR/miR-190a/YB-1 negative feedback loop on prostate cancer and underlying mechanism.

    Science.gov (United States)

    Xu, Shaohua; Wang, Tao; Song, Wen; Jiang, Tao; Zhang, Feng; Yin, Yu; Jiang, Shi-Wen; Wu, Kongming; Yu, Zuoren; Wang, Chenguang; Chen, Ke

    2015-08-28

    Prostate cancer at advanced stages including metastatic and castration-resistant cancer remains incurable due to the lack of effective therapies. MiR-190a belongs to the small noncoding RNA family and has an important role in breast cancer metastasis. However, it is still unknown whether miR-190a plays a role in prostate cancer development. Herein, we first observed AR/miR-190a/YB-1 forms an auto-regulatory negative feedback loop in prostate cancer: miR-190a expression was down-regulated by AR activation; YB-1 functions are as an AR activator; miR-190a inhibited AR expression and transactivation through direct binding to 3'UTR of YB-1 gene. MiR-190a contributes the human prostate cancer cell growth through AR-dependent signaling. Moreover, we examined the expression of miR-190a and observed a significant decrease in human prostate cancers. Reduced expression of miR-190a was inversely correlated to AR levels of prostate cancer patients, and patients with higher miR-190a expression in their tumor have improved tumor-free survival. Taken together, our findings identified a biochemical and functional link between miR-190a with reduced expression in advanced prostate cancer, YB-1 and AR signaling in prostate cancer.

  1. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity.

    Science.gov (United States)

    Yu, Keshun; Soares, Juliana Moreira; Mandal, Mihir Kumar; Wang, Caixia; Chanda, Bidisha; Gifford, Andrew N; Fowler, Joanna S; Navarre, Duroy; Kachroo, Aardra; Kachroo, Pradeep

    2013-04-25

    Systemic acquired resistance (SAR), a highly desirable form of plant defense, provides broad-spectrum immunity against diverse pathogens. The recent identification of seemingly unrelated chemical inducers of SAR warrants an investigation of their mutual interrelationships. We show that SAR induced by the dicarboxylic acid azelaic acid (AA) requires the phosphorylated sugar derivative glycerol-3-phosphate (G3P). Pathogen inoculation induced the release of free unsaturated fatty acids (FAs) and thereby triggered AA accumulation, because these FAs serve as precursors for AA. AA accumulation in turn increased the levels of G3P, which is required for AA-conferred SAR. The lipid transfer proteins DIR1 and AZI1, both of which are required for G3P- and AA-induced SAR, were essential for G3P accumulation. Conversely, reduced G3P resulted in decreased AZI1 and DIR1 transcription. Our results demonstrate that an intricate feedback regulatory loop among G3P, DIR1, and AZI1 regulates SAR and that AA functions upstream of G3P in this pathway. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. A Feedback Regulatory Loop between G3P and Lipid Transfer Proteins DIR1 and AZI1 Mediates Azelaic-Acid-Induced Systemic Immunity

    Directory of Open Access Journals (Sweden)

    Keshun Yu

    2013-04-01

    Full Text Available Systemic acquired resistance (SAR, a highly desirable form of plant defense, provides broad-spectrum immunity against diverse pathogens. The recent identification of seemingly unrelated chemical inducers of SAR warrants an investigation of their mutual interrelationships. We show that SAR induced by the dicarboxylic acid azelaic acid (AA requires the phosphorylated sugar derivative glycerol-3-phosphate (G3P. Pathogen inoculation induced the release of free unsaturated fatty acids (FAs and thereby triggered AA accumulation, because these FAs serve as precursors for AA. AA accumulation in turn increased the levels of G3P, which is required for AA-conferred SAR. The lipid transfer proteins DIR1 and AZI1, both of which are required for G3P- and AA-induced SAR, were essential for G3P accumulation. Conversely, reduced G3P resulted in decreased AZI1 and DIR1 transcription. Our results demonstrate that an intricate feedback regulatory loop among G3P, DIR1, and AZI1 regulates SAR and that AA functions upstream of G3P in this pathway.

  3. STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters

    Science.gov (United States)

    Jo, Dong Hyun; Kim, Jin Hyoung; Cho, Chang Sik; Cho, Young-Lai; Jun, Hyoung Oh; Yu, Young Suk; Min, Jeong-Ki; Kim, Jeong Hun

    2014-01-01

    Retinoblastoma, the most common intraocular malignant tumor in children, is characterized by the loss of both functional alleles of RB1 gene, which however alone cannot maintain malignant characteristics of retinoblastoma cells. Nevertheless, the investigation of other molecular aberrations such as matrix metalloproteinases (MMPs) and miRNAs is still lacking. In this study, we demonstrate that STAT3 is activated in retinoblastoma cells, Ki67-positive areas of in vivo orthotopic tumors in BALB/c nude mice, and human retinoblastoma tissues of the advanced stage. Furthermore, target genes of STAT3 including BCL2, BCL2L1, BIRC5, and MMP9 are up-regulated in retinoblastoma cells compared to other retinal constituent cells. Interestingly, STAT3 inhibition by targeted siRNA suppresses the proliferation of retinoblastoma cells and the formation of in vivo orthotopic tumors. In line with these results, STAT3 siRNA effectively induces down-regulation of target genes of STAT3. In addition, miRNA microarray analysis and further real-time PCR experiments with STAT3 siRNA treatment show that STAT3 activation is related to the up-regulation of miR-17-92 clusters in retinoblastoma cells via positive feedback loop between them. In conclusion, we suggest that STAT3 inhibition could be a potential therapeutic approach in retinoblastoma through the suppression of tumor proliferation. PMID:25359779

  4. Closed-Loop Feedback Computation Model of Dynamical Reputation Based on the Local Trust Evaluation in Business-to-Consumer E-Commerce

    Directory of Open Access Journals (Sweden)

    Bo Tian

    2016-02-01

    Full Text Available Trust and reputation are important factors that influence the success of both traditional transactions in physical social networks and modern e-commerce in virtual Internet environments. It is difficult to define the concept of trust and quantify it because trust has both subjective and objective characteristics at the same time. A well-reported issue with reputation management system in business-to-consumer (BtoC e-commerce is the “all good reputation” problem. In order to deal with the confusion, a new computational model of reputation is proposed in this paper. The ratings of each customer are set as basic trust score events. In addition, the time series of massive ratings are aggregated to formulate the sellers’ local temporal trust scores by Beta distribution. A logical model of trust and reputation is established based on the analysis of the dynamical relationship between trust and reputation. As for single goods with repeat transactions, an iterative mathematical model of trust and reputation is established with a closed-loop feedback mechanism. Numerical experiments on repeated transactions recorded over a period of 24 months are performed. The experimental results show that the proposed method plays guiding roles for both theoretical research into trust and reputation and the practical design of reputation systems in BtoC e-commerce.

  5. TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion

    Science.gov (United States)

    Kandhaya-Pillai, Renuka; Miro-Mur, Francesc; Alijotas-Reig, Jaume; Tchkonia, Tamara; Kirkland, James L.; Schwartz, Simo

    2017-01-01

    Cellular senescence is a cell fate program that entails essentially irreversible proliferative arrest in response to damage signals. Tumor necrosis factor-alpha (TNFα), an important pro-inflammatory cytokine secreted by some types of senescent cells, can induce senescence in mouse and human cells. However, downstream signaling pathways linking TNFα-related inflammation to senescence are not fully characterized. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that TNFα induces permanent growth arrest and increases p21CIP1, p16INK4A, and SA-β-gal, accompanied by persistent DNA damage and ROS production. By gene expression profiling, we identified the crucial involvement of inflammatory and JAK/STAT pathways in TNFα-mediated senescence. We found that TNFα activates a STAT-dependent autocrine loop that sustains cytokine secretion and an interferon signature to lock cells into senescence. Furthermore, we show STAT1/3 activation is necessary for cytokine and ROS production during TNFα-induced senescence. However, inhibition of STAT1/3 did not rescue cells from proliferative arrest, but rather suppressed cell cycle regulatory genes and altered TNFα-induced senescence. Our findings suggest a positive feedback mechanism via the STAT pathway that sustains cytokine production and reveal a reciprocal regulatory role of JAK/STAT in TNFα-mediated senescence. PMID:29176033

  6. Pengembangan Motif Batik Khas Bali

    Directory of Open Access Journals (Sweden)

    Irfa'ina Rohana Salma

    2016-04-01

    Full Text Available ABSTRAKIndustri batik berkembang pesat di Bali, namun motif-motif batiknya tidak mencerminkan identitas khas daerah. Oleh karena itu perlu diciptakan desain motif batik khas Bali yang sumber inspirasinya digali budaya dan alam Bali. Tujuan penelitian dan penciptaan seni ini adalah untuk menghasilkan motif batik yang mempunyai bentuk  unik dan karakteristik sehingga dapat mencerminkan budaya dan alam Bali. Metode yang digunakan yaitu pengumpulan data, perancangan motif, perwujudan menjadi batik, serta uji estetikanya. Dari penciptaan seni ini berhasil diciptakan 5 motif batik yaitu: (1 Motif Jepun Alit; (2 Motif Jepun Ageng; (3 Motif Sekar Jagad Bali; (4 Motif Teratai Banji; dan (5 Motif Poleng Biru. Berdasarkan hasil penilaian “Selera Estetika” diketahui bahwa motif yang paling banyak disukai adalah Motif Jepun Alit, Motif Sekar Jagad Bali,  dan Motif Teratai Banji. Kata kunci: Motif Jepun Alit, Motif Jepun Ageng, Motif Sekar Jagad Bali, Motif Teratai Banji, Motif Poleng Biru ABSTRACT Batik industry is growing rapidly in Bali, but its batik motifs do not reflect the typical regional identities. Therefore, it is necessary to create a distinctive design motif source of Bali excavated  from the repertoire of traditional Balinese arts and culture. The purpose of this research and its art creation is to produce batik motifs that have a unique shape and characteristics  to reflect the Balinese culture and natural surroundings. The method used by gathering and collecting data, designing motifs to  become the embodiment of batik. From the creation of this art had been created 5 motifs, namely: (1 Motif Jepun Alit; (2 Motif Jepun Ageng; (3 Motif Sekar Jagad Bali; (4 Motif Teratai Banji; and (5 Motif Poleng Biru. Based on the results of aesthetical assessment known that the most preferred motif are  Motif Jepun Alit, Motif Sekar Jagad Bali, and Motif Teratai Banji. Key words: Motif Jepun Alit, Motif Jepun Ageng, Motif Sekar Jagad Bali, Motif

  7. Motif Participation by Genes in E. coli Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Michael eMayo

    2012-09-01

    Full Text Available Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium Escherichia coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

  8. Dynamics of Fibril Growth and Feedback Motifs

    DEFF Research Database (Denmark)

    Cordsen, Pia

    in the literature were found, such as length distribution and apparant persistence lengths. It is found that at all concentrations, fibril growth is characterized by Poissonian stop-go dynamics where the fibril either grows (``go'') or does not grow (``stop''). A monomer-trimer model is proposed in which monomers...... chemical reaction rates of the model, and the theoretical and experimental growth probabilities are found to be in good agreement. Speed distributions of fibrils are also analysed and found to be in good agreement with the predictions of the model. Fibrils of the protein alpha-synuclein which are involved...

  9. Dissociation of Akt1 from its negative regulator JIP1 is mediated through the ASK1-MEK-JNK signal transduction pathway during metabolic oxidative stress: a negative feedback loop.

    Science.gov (United States)

    Song, Jae J; Lee, Yong J

    2005-07-04

    We have previously observed that metabolic oxidative stress-induced death domain-associated protein (Daxx) trafficking is mediated by the ASK1-SEK1-JNK1-HIPK1 signal transduction pathway. The relocalized Daxx from the nucleus to the cytoplasm during glucose deprivation participates in a positive regulatory feedback loop by binding to apoptosis signal-regulating kinase (ASK) 1. In this study, we report that Akt1 is involved in a negative regulatory feedback loop during glucose deprivation. Akt1 interacts with c-Jun NH(2)-terminal kinase (JNK)-interacting protein (JIP) 1, and Akt1 catalytic activity is inhibited. The JNK2-mediated phosphorylation of JIP1 results in the dissociation of Akt1 from JIP1 and subsequently restores Akt1 enzyme activity. Concomitantly, Akt1 interacts with stress-activated protein kinase/extracellular signal-regulated kinase (SEK) 1 (also known as MKK4) and inhibits SEK1 activity. Knockdown of SEK1 leads to the inhibition of JNK activation, JIP1-JNK2 binding, and the dissociation of Akt1 from JIP1 during glucose deprivation. Knockdown of JIP1 also leads to the inhibition of JNK activation, whereas the knockdown of Akt1 promotes JNK activation during glucose deprivation. Altogether, our data demonstrate that Akt1 participates in a negative regulatory feedback loop by interacting with the JIP1 scaffold protein.

  10. Identification of a negative feedback loop between cyclic di-GMP-induced levels of IFI16 and p202 cytosolic DNA sensors and STING.

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Xin, Duan; Choubey, Divaker

    2014-10-01

    A host type I IFN response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP (c-di-GMP) by STING (stimulator of IFN genes). Because the STING, an adaptor protein, links the cytosolic detection of DNA by the cytosolic DNA sensors such as the IFN-inducible human IFI16 and murine p202 proteins to the TBK1/IRF3 axis, we investigated whether c-di-GMP-induced signaling could regulate expression of IFI16 and p202 proteins. Here, we report that activation of c-di-GMP-induced signaling in human and murine cells increased steady-state levels of IFI16 and p202 proteins. The increase was c-di-GMP concentration- and time-dependent. Unexpectedly, treatment of cells with type I IFN decreased levels of the adaptor protein STING. Therefore, we investigated whether the IFI16 or p202 protein could regulate the expression of STING and activation of the TBK1/IRF3 axis. We found that constitutive knockdown of IFI16 or p202 expression in cells increased steady-state levels of STING. Additionally, the knockdown of IFI16 resulted in activation of the TBK1/IRF3 axis. Accordingly, increased levels of the IFI16 or p202 protein in cells decreased STING levels. Together, our observations identify a novel negative feedback loop between c-di-GMP-induced levels of IFI16 and p202 cytosolic DNA sensors and the adaptor protein STING. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGβ Expression and Cell Differentiation

    Science.gov (United States)

    Cheong, Mei-Leng; Wang, Liang-Jie; Chuang, Pei-Yun; Chang, Ching-Wen; Lee, Yun-Shien; Lo, Hsiao-Fan; Tsai, Ming-Song

    2015-01-01

    Human chorionic gonadotropin (hCG) is composed of a common α subunit and a placenta-specific β subunit. Importantly, hCG is highly expressed in the differentiated and multinucleated syncytiotrophoblast, which is formed via trophoblast cell fusion and stimulated by cyclic AMP (cAMP). Although the ubiquitous activating protein 2 (AP2) transcription factors TFAP2A and TFAP2C may regulate hCGβ expression, it remains unclear how cAMP stimulates placenta-specific hCGβ gene expression and trophoblastic differentiation. Here we demonstrated that the placental transcription factor glial cells missing 1 (GCM1) binds to a highly conserved promoter region in all six hCGβ paralogues by chromatin immunoprecipitation-on-chip (ChIP-chip) analyses. We further showed that cAMP stimulates GCM1 and the CBP coactivator to activate the hCGβ promoter through a GCM1-binding site (GBS1), which also constitutes a previously identified AP2 site. Given that TFAP2C may compete with GCM1 for GBS1, cAMP enhances the association between the hCGβ promoter and GCM1 but not TFAP2C. Indeed, the hCG-cAMP-protein kinase A (PKA) signaling pathway also stimulates Ser269 and Ser275 phosphorylation of GCM1, which recruits CBP to mediate GCM1 acetylation and stabilization. Consequently, hCG stimulates the expression of GCM1 target genes, including the fusogenic protein syncytin-1, to promote placental cell fusion. Our study reveals a positive feedback loop between GCM1 and hCG regulating placental hCGβ expression and cell differentiation. PMID:26503785

  12. A detection of Milankovitch frequencies in tephra records of arc volcanism: Shedding light on a feedback loop between climate and volcanism. (Invited)

    Science.gov (United States)

    Kutterolf, S.; Jegen, M.; Schindlbeck, J. C.; Mitrovica, J. X.; Kwasnitschka, T.; Freundt, A.; Huybers, P. J.

    2013-12-01

    Although it is well understood that volcanism can impact global climate or tectonics can influence volcanism, it is less well appreciated that climate can influence volcanism. In this regard, both regional and global studies have provided compelling evidence that ice age loading processes modulate the frequency of volcanic eruption. However, a rigorous detection of Milankovitch periodicities in global volcanic output across the Pleistocene-Holocene ice age, which would firmly establish a connection between ice age climate and eruption frequency, has remained elusive. To this end, we report on a spectral analysis of a large number of well-preserved ash plume deposits recorded in marine sediments along the Pacific Ring of Fire, which accounts for about half of the global length of 44,000 km of active subduction. Eruptions at arc volcanoes tend to be highly explosive. We analyze the Pleistocene-to-Recent marine records of widespread tephras of sub-Plinian to Plinian, and occasionally co-ignimbrite, origin since they provide a well-preserved record of how eruption frequencies varied with depth (and, hence time). Our analysis yields a statistically significant detection of spectral peaks at the obliquity period. We propose that the variability in volcanic activity results from crustal stress changes associated with ice age mass redistribution. In particular, increased volcanism lags behind the highest rate of increasing eustatic sea level (decreasing global ice volume) by 4.0 × 3.6 kyr and correlates well with numerical predictions of stress changes at volcanically active sites. Our results strongly support the presence of a coupling between ice age climate, volcanism and the continental stress field. In future work we will incorporate longer tephra time series and more accurate age controls in order to improve - and widen - our detection of Milankovitch periodicities thus further elucidating the feedback loop between climate and volcanism as well as tectonics.

  13. A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGβ Expression and Cell Differentiation.

    Science.gov (United States)

    Cheong, Mei-Leng; Wang, Liang-Jie; Chuang, Pei-Yun; Chang, Ching-Wen; Lee, Yun-Shien; Lo, Hsiao-Fan; Tsai, Ming-Song; Chen, Hungwen

    2016-01-01

    Human chorionic gonadotropin (hCG) is composed of a common α subunit and a placenta-specific β subunit. Importantly, hCG is highly expressed in the differentiated and multinucleated syncytiotrophoblast, which is formed via trophoblast cell fusion and stimulated by cyclic AMP (cAMP). Although the ubiquitous activating protein 2 (AP2) transcription factors TFAP2A and TFAP2C may regulate hCGβ expression, it remains unclear how cAMP stimulates placenta-specific hCGβ gene expression and trophoblastic differentiation. Here we demonstrated that the placental transcription factor glial cells missing 1 (GCM1) binds to a highly conserved promoter region in all six hCGβ paralogues by chromatin immunoprecipitation-on-chip (ChIP-chip) analyses. We further showed that cAMP stimulates GCM1 and the CBP coactivator to activate the hCGβ promoter through a GCM1-binding site (GBS1), which also constitutes a previously identified AP2 site. Given that TFAP2C may compete with GCM1 for GBS1, cAMP enhances the association between the hCGβ promoter and GCM1 but not TFAP2C. Indeed, the hCG-cAMP-protein kinase A (PKA) signaling pathway also stimulates Ser269 and Ser275 phosphorylation of GCM1, which recruits CBP to mediate GCM1 acetylation and stabilization. Consequently, hCG stimulates the expression of GCM1 target genes, including the fusogenic protein syncytin-1, to promote placental cell fusion. Our study reveals a positive feedback loop between GCM1 and hCG regulating placental hCGβ expression and cell differentiation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling

    Science.gov (United States)

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  15. A positive feedback loop between IL-1β, LPS and NEU1 may promote atherosclerosis by enhancing a pro-inflammatory state in monocytes and macrophages.

    Science.gov (United States)

    Sieve, Irina; Ricke-Hoch, Melanie; Kasten, Martina; Battmer, Karin; Stapel, Britta; Falk, Christine S; Leisegang, Matthias S; Haverich, Axel; Scherr, Michaela; Hilfiker-Kleiner, Denise

    2018-01-31

    Inflammation plays an important role in atherosclerosis, a notion supported by the beneficial effects of the IL-1β inhibitor canakinumab in the CANTOS trial. Sialic acids (Sias), components of the surface glycocalyx, regulate intercellular and intermolecular interactions. We investigated the expression of the Sia cleaving enzyme neuraminidase-1 (NEU1) in atherosclerotic plaques and its potential role in inflammatory processes. In isolated mononuclear blood cells from patients with myocardial infarction, NEU1 expression was increased compared to healthy controls. High expression of NEU1 in macrophages located on the intima layer, in calcified regions and the adventitia of the plaque was observed in human carotid arteries' atherectomies. IL-1β and LPS induced NEU1 expression in THP-1 monocytic cells. Lentiviral NEU1-overexpression in THP-1-cells enhanced expression of CD80, TNF-α, IL-1β, number of multinuclear cells, phagocytosis and chemotaxis indicative for M1 monocyte/macrophage polarization. CRISPR/Cas9-mediated knock-out of NEU1 in THP-1-cells did not affect differentiation of monocytes to macrophages but attenuated LPS- and IL-1β -induced TNF-α and IL-1β expression. SiRNA-mediated knock-down of NEU1 in M1-macrophages differentiated from primary human CD14 + monocytes reduced the expression of TNF-α and IL-1β. Thus, in monocytes/macrophages, LPS, NEU1 and IL-1β act in a positive feedback loop as enhancers of inflammation and may therefore promote atherosclerosis and plaque instability. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Downregulation of IL6 Targeted MiR-376b May Contribute to a Positive IL6 Feedback Loop During Early Liver Regeneration in Mice

    Directory of Open Access Journals (Sweden)

    Shan Lu

    2015-08-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs are a group of endogenous, small, noncoding RNAs implicated in a variety of biological processes, including cell proliferation, apoptosis, differentiation and metabolism. The present study aims to explore the potential role and molecular mechanism of miR-376b during the early phase of liver regeneration. Methods: MiRNA profiling microarrays were used to assess the changes in miRNA expression. For functional analysis, cell proliferation, apoptosis assays, real time quantitative PCR and westernblot analysis were performed. Results: The comprehensive miRNA expression profiling assays on regenerating liver tissues 4 h after partial hepatectomy (PH showed that three miRNAs (miR-127, miR-376b and miR-494 located in the Dlk1-Gtl2 miRNA cluster were significantly downregulated. In vitro functional studies demonstrated that high-level interleukin 6 (IL6 inhibited the expression of miR-376b, and miR-376b mimics treatment decreased cell proliferation and increased apoptosis. Further target analysis showed that miR-376b reduced the mRNA and protein expression levels of NF-kappa-B inhibitor zeta (NFKBIZ and signal transducers and transcription activators 3 (STAT3. Additionally, IL6-induced miR-376b downregulation would, in turn, increase the expression of IL-6 possibly via a feedback loop involving NFKBIZ or/and STAT3. Conclusion: During the early phase of liver regeneration, miR-376b expression was significantly decreased. Our findings reveal that a regulatory circuitry between miR-376b and IL-6 may exist, which trigger the initiation of liver regeneration.

  17. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop.

    Science.gov (United States)

    Carroll, Molly J; Kapur, Arvinder; Felder, Mildred; Patankar, Manish S; Kreeger, Pamela K

    2016-12-27

    In ovarian cancer, a high ratio of anti-inflammatory M2 to pro-inflammatory M1 macrophages correlates with poor patient prognosis. The mechanisms driving poor tumor outcome as a result of the presence of M2 macrophages in the tumor microenvironment remain unclear and are challenging to study with current techniques. Therefore, in this study we utilized a micro-culture device previously developed by our lab to model concentrated paracrine signaling in order to address our hypothesis that interactions between M2 macrophages and ovarian cancer cells induce tumor cell proliferation. Using the micro-culture device, we determined that co-culture with M2-differentiated primary macrophages or THP-1 increased OVCA433 proliferation by 10-12%. This effect was eliminated with epidermal growth factor receptor (EGFR) or heparin-bound epidermal growth factor (HB-EGF) neutralizing antibodies and HBEGF expression in peripheral blood mononuclear cells from ovarian cancer patients was 9-fold higher than healthy individuals, suggesting a role for HB-EGF in tumor progression. However, addition of HB-EGF at levels secreted by macrophages or macrophage-conditioned media did not induce proliferation to the same extent, indicating a role for other factors in this process. Matrix metalloproteinase-9, MMP-9, which cleaves membrane-bound HB-EGF, was elevated in co-culture and its inhibition decreased proliferation. Utilizing inhibitors and siRNA against MMP9 in each population, we determined that macrophage-secreted MMP-9 released HB-EGF from macrophages, which increased MMP9 in OVCA433, resulting in a positive feedback loop to drive HB-EGF release and increase proliferation in co-culture. Identification of multi-cellular interactions such as this may provide insight into how to most effectively control ovarian cancer progression.

  18. Automated Overnight Closed-Loop Control Using a Proportional-Integral-Derivative Algorithm with Insulin Feedback in Children and Adolescents with Type 1 Diabetes at Diabetes Camp.

    Science.gov (United States)

    Ly, Trang T; Keenan, D Barry; Roy, Anirban; Han, Jino; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; von Eyben, Rie; Clinton, Paula; Wilson, Darrell M; Buckingham, Bruce A

    2016-06-01

    This study determined the feasibility and efficacy of an automated proportional-integral-derivative with insulin feedback (PID-IFB) controller in overnight closed-loop (OCL) control of children and adolescents with type 1 diabetes over multiple days in a diabetes camp setting. The Medtronic (Northridge, CA) Android™ (Google, Mountain View, CA)-based PID-IFB system consists of the Medtronic Minimed Revel™ 2.0 pump and Enlite™ sensor, a control algorithm residing on an Android phone, a translator, and remote monitoring capabilities. An inpatient study was completed for 16 participants to determine feasibility. For the camp study, subjects with type 1 diabetes were randomized to either OCL or sensor-augmented pump therapy (control conditions) per night for up to 6 nights at diabetes camp. During the camp study, 21 subjects completed 50 OCL nights and 52 control nights. Based on intention to treat, the median time spent in range, from 70 to 150 mg/dL, was greater during OCL at 66.4% (n = 55) versus 50.6% (n = 52) during the control period (P = 0.004). A per-protocol analysis allowed for assessment of algorithm performance with the median percentage time in range, 70-150 mg/dL, being 75.5% (n = 37) for OCL versus 47.6% (n = 32) for the control period (P < 0.001). There was less time spent in the hypoglycemic ranges <60 mg/dL and <70 mg/dL during OCL compared with the control period (P = 0.003 and P < 0.001, respectively). The PID-IFB controller is effective in improving time spent in range as well as reducing nocturnal hypoglycemia during the overnight period in children and adolescents with type 1 diabetes in a diabetes camp setting.

  19. Modeling Small Noncanonical RNA Motifs with the Rosetta FARFAR Server.

    Science.gov (United States)

    Yesselman, Joseph D; Das, Rhiju

    2016-01-01

    Noncanonical RNA motifs help define the vast complexity of RNA structure and function, and in many cases, these loops and junctions are on the order of only ten nucleotides in size. Unfortunately, despite their small size, there is no reliable method to determine the ensemble of lowest energy structures of junctions and loops at atomic accuracy. This chapter outlines straightforward protocols using a webserver for Rosetta Fragment Assembly of RNA with Full Atom Refinement (FARFAR) ( http://rosie.rosettacommons.org/rna_denovo/submit ) to model the 3D structure of small noncanonical RNA motifs for use in visualizing motifs and for further refinement or filtering with experimental data such as NMR chemical shifts.

  20. FastMotif: spectral sequence motif discovery.

    Science.gov (United States)

    Colombo, Nicoló; Vlassis, Nikos

    2015-08-15

    Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, most of the existing motif finding algorithms are computationally demanding, and they may not be able to support the increasingly large datasets produced by modern high-throughput sequencing technologies. We present FastMotif, a new motif discovery algorithm that is built on a recent machine learning technique referred to as Method of Moments. Based on spectral decompositions, our method is robust to model misspecifications and is not prone to locally optimal solutions. We obtain an algorithm that is extremely fast and designed for the analysis of big sequencing data. On HT-Selex data, FastMotif extracts motif profiles that match those computed by various state-of-the-art algorithms, but one order of magnitude faster. We provide a theoretical and numerical analysis of the algorithm's robustness and discuss its sensitivity with respect to the free parameters. The Matlab code of FastMotif is available from http://lcsb-portal.uni.lu/bioinformatics. vlassis@adobe.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Estradiol-17β, prostaglandin E2 (PGE2) and the prostaglandin E2 receptor are involved in PGE2 positive feedback loop in the porcine endometrium

    Science.gov (United States)

    Waclawik, Agnieszka; Jabbour, Henry N.; Blitek, Agnieszka; Ziecik, Adam J.

    2009-01-01

    Before implantation, the porcine endometrium and trophoblast synthesize elevated amounts of luteoprotective prostaglandin E2 (PGE2). We hypothesized that embryo signal, estradiol-17β (E2) and PGE2 modulate expression of key enzymes in PG synthesis: prostaglandin-endoperoxide synthase-2 (PTGS2), PGE synthase (mPGES-1), PGF synthase (PGFS), and prostaglandin 9-ketoreductase (CBR1); as well as PGE2 receptor (PTGER2 and 4) expression and signaling within the endometrium. We determinated the site of action of PGE2 in endometrium during the estrous cycle and pregnancy. Endometrial tissue explants obtained from gilts (n=6) on days 11-12 of the estrous cycle were treated with vehicle (control), PGE2 (100 nM), E2 (1-100 nM) or phorbol 12-myristate 13-acetate (100 nM, positive control). E2 increased PGE2 secretion through elevating expression of mPGES-1 mRNA and PTGS2 and mPGES-1 protein in endometrial explants. By contrast, E2 decreased PGFS and CBR1 protein expression. E2 also stimulated PTGER2 but not PTGER4 protein content. PGE2 enhanced mPGES-1 and PTGER2 mRNA as well as PTGS2, mPGES-1 and PTGER2 protein expression. PGE2 had no effect on PGFS, CBR1 and PTGER4 expression and PGF2α release. Treatment of endometrial tissue with PGE2 increased cAMP production. Co-treatment with PTGER2 antagonist (AH6809) but not PTGER4 antagonist (GW 627368X) inhibited significantly PGE2-mediated cAMP production. PTGER2 protein was localized in luminal and glandular epithelium and blood vessels of endometrium, and was significantly up-regulated on days 11-12 of pregnancy. Our results suggest that E2, prevents luteolysis through enzymatic modification of PG synthesis and that E2, PGE2 and endometrial PTGER2 are involved in PGE2 positive feedback loop in porcine endometrium. PMID:19359378

  2. Estradiol-17beta, prostaglandin E2 (PGE2), and the PGE2 receptor are involved in PGE2 positive feedback loop in the porcine endometrium.

    Science.gov (United States)

    Waclawik, Agnieszka; Jabbour, Henry N; Blitek, Agnieszka; Ziecik, Adam J

    2009-08-01

    Before implantation, the porcine endometrium and trophoblast synthesize elevated amounts of luteoprotective prostaglandin estradiol-17beta (E(2)) (PGE(2)). We hypothesized that embryo signal, E(2), and PGE(2) modulate expression of key enzymes in PG synthesis: PG-endoperoxide synthase-2 (PTGS2), microsomal PGE synthase (mPGES-1), PGF synthase (PGFS), and PG 9-ketoreductase (CBR1) as well as PGE(2) receptor (PTGER2 and -4) expression and signaling within the endometrium. We determined the site of action of PGE(2) in endometrium during the estrous cycle and pregnancy. Endometrial tissue explants obtained from gilts (n = 6) on d 11-12 of the estrous cycle were treated with vehicle (control), PGE(2) (100 nM), E(2) (1-100 nm), or phorbol 12-myristate 13-acetate (100 nm, positive control). E(2) increased PGE(2) secretion through elevating expression of mPGES-1 mRNA and PTGS2 and mPGES-1 protein in endometrial explants. By contrast, E(2) decreased PGFS and CBR1 protein expression. E(2) also stimulated PTGER2 but not PTGER4 protein content. PGE(2) enhanced mPGES-1 and PTGER2 mRNA as well as PTGS2, mPGES-1, and PTGER2 protein expression. PGE(2) had no effect on PGFS, CBR1, and PTGER4 expression and PGF(2alpha) release. Treatment of endometrial tissue with PGE(2) increased cAMP production. Cotreatment with PTGER2 antagonist (AH6809) but not PTGER4 antagonist (GW 627368X) inhibited significantly PGE(2)-mediated cAMP production. PTGER2 protein was localized in luminal and glandular epithelium and blood vessels of endometrium and was significantly up-regulated on d 11-12 of pregnancy. Our results suggest that E(2) prevents luteolysis through enzymatic modification of PG synthesis and that E(2), PGE(2), and endometrial PTGER2 are involved in a PGE(2) positive feedback loop in porcine endometrium.

  3. Transverse feedback

    CERN Document Server

    Cornelis, K; Sladen, Jonathan P H; CERN. Geneva. SPS and LEP Division

    1997-01-01

    The aim of these MD's was to set up the transverse feedback for damping in both planes, and to test the charge normalization and gain compensation. The latter is intended to reduce the gain of the feedback for small oscillations in order to improve compatibility with the Q loop. All work was done with 2 x 4 bunches, family A. In the first two MD's the feedback was set up for damping in both planes with charge normalization. In the third, gain compensation was commissioned in the vertical plane with Qv' set to -2. It was found either to increase the level of the m = 0 mode or to leave it unchanged. Under these conditions 6mA total current was accumulated.

  4. Motivated Proteins: A web application for studying small three-dimensional protein motifs

    Directory of Open Access Journals (Sweden)

    Milner-White E James

    2009-02-01

    Full Text Available Abstract Background Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. Description The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (XHTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Conclusion Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema.

  5. Motivated proteins: a web application for studying small three-dimensional protein motifs.

    Science.gov (United States)

    Leader, David P; Milner-White, E James

    2009-02-11

    Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are alphabeta-motifs, asx-motifs, asx-turns, beta-bulges, beta-bulge loops, beta-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema.

  6. Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit.

    Directory of Open Access Journals (Sweden)

    Tiffany Kee

    2015-10-01

    Full Text Available Inhibitory interneurons play critical roles in shaping the firing patterns of principal neurons in many brain systems. Despite difference in the anatomy or functions of neuronal circuits containing inhibition, two basic motifs repeatedly emerge: feed-forward and feedback. In the locust, it was proposed that a subset of lateral horn interneurons (LHNs, provide feed-forward inhibition onto Kenyon cells (KCs to maintain their sparse firing--a property critical for olfactory learning and memory. But recently it was established that a single inhibitory cell, the giant GABAergic neuron (GGN, is the main and perhaps sole source of inhibition in the mushroom body, and that inhibition from this cell is mediated by a feedback (FB loop including KCs and the GGN. To clarify basic differences in the effects of feedback vs. feed-forward inhibition in circuit dynamics we here use a model of the locust olfactory system. We found both inhibitory motifs were able to maintain sparse KCs responses and provide optimal odor discrimination. However, we further found that only FB inhibition could create a phase response consistent with data recorded in vivo. These findings describe general rules for feed-forward versus feedback inhibition and suggest GGN is potentially capable of providing the primary source of inhibition to the KCs. A better understanding of how inhibitory motifs impact post-synaptic neuronal activity could be used to reveal unknown inhibitory structures within biological networks.

  7. p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer.

    Science.gov (United States)

    Shi, Lei; Jackstadt, Rene; Siemens, Helge; Li, Huihui; Kirchner, Thomas; Hermeking, Heiko

    2014-01-15

    The transcription factor AP4 mediates epithelial-mesenchymal transition (EMT) in colorectal cancer but its control in this setting is not fully understood. Here, we report the definition of a double-negative feedback loop involving AP4 and miR-15a/16-1 that regulates EMT and metastatic progression. In colorectal cancer cells, AP4 was downregulated by DNA damage in a p53-dependent manner. AP4 downregulation by p53 was mediated indirectly by the tumor-suppressive microRNAs miR-15a and miR-16-1, which targeted the 3' untranslated region (3'-UTR) of AP4 mRNA, induced mesenchymal-epithelial transition (MET), and inhibited colorectal cancer cell migration and invasion. The downregulation of AP4 was necessary for induction of MET and cell cycle arrest by miR-15a/16-1. In tumor xenoplants, ectopic miR-15a/16-1 suppressed formation of lung metastases. Furthermore, AP4 directly suppressed expression of miR-15a/16-1. In clinical specimens of colorectal cancer, miR-15a levels inversely correlated with AP4 protein levels shown previously to correlate with distant metastasis and poor survival. In summary, our results define a double-negative feedback loop involving miR-15a/16-1 and AP4 that stabilizes epithelial and mesenchymal states, respectively, which may determine metastatic prowess.

  8. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...

  9. Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1.

    Science.gov (United States)

    Cai, Xiaoli; Cao, Can; Li, Jiong; Chen, Fuquan; Zhang, Shuqin; Liu, Bowen; Zhang, Weiying; Zhang, Xiaodong; Ye, Lihong

    2017-08-29

    In the connection between inflammation and cancer development, tumor necrosis factor-alpha (TNF-α) contributes to the tumorigenesis. However, the underlying mechanism remains poorly understood. In this study, we report that TNF-α enhances the growth of breast cancer through up-regulation of oncoprotein hepatitis B X-interacting protein (HBXIP). Our data showed that the levels of TNF-α were positively related to those of HBXIP in clinical breast cancer tissues. Moreover, TNF-α could up-regulate HBXIP in breast cancer cells. Interestingly, silencing of TNF-α receptor 1 (TNFR1) blocked the effect of TNF-α on HBXIP. Mechanistically, we revealed that TNF-α could increase the activities of HBXIP promoter through activating transcriptional factor signal transducer and activator of transcription 3 (STAT3). In addition, nuclear factor kappa B (NF-κB) and/or p38 signaling increased the levels of p-STAT3 in the cells. Strikingly, HBXIP could also up-regulate TNFR1, forming a positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Notably, TNF-α was able to up-regulate TNFR1 through driving the loop. In function, we demonstrated that the knockdown of HBXIP remarkably abolished the growth of breast cancer mediated by TNF-α in vitro and in vivo . Thus, we conclude that TNF-α promotes the growth of breast cancer through the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1.Our finding provides new insights into the mechanism by which TNF-α drives oncoprotein HBXIP in the development of breast cancer.

  10. Feedback control for clinicians.

    Science.gov (United States)

    Dumont, Guy A

    2014-02-01

    Although feedback control and automation has revolutionized many fields of human activity, it has yet to have a significant impact on healthcare, particularly when a patient is in the loop. Although there have been a number of studies concerned with closed-loop control of anesthesia, they have yet to have an impact on clinical practice. For such systems to be successful, engineers and clinicians have to work hand in hand, for this they have to have a basic understanding of each other's fields. The goal of this paper is to introduce clinicians to basic concepts in control engineering, with an emphasis on the properties of feedback control. Concepts such as modelling for control, feedback and uncertainty, robustness, feedback controller such as proportional-integral-derivative control, predictive control and adaptive control are briefly reviewed. Finally we discuss the safety issues around closed-loop control and discuss ways by which safe control can be guaranteed.

  11. CONTROL OF LASER RADIATION PARAMETERS: Influence of feedback loop characteristics on the field structure in a phase-conjugating ring mirror

    Science.gov (United States)

    Esayan, A. A.; Zozulya, A. A.; Tikhonchuk, Vladimir T.

    1991-10-01

    An analysis is made of stimulated scattering in a ring resonator formed by a self-intersecting beam with simultaneous rotation and contraction of the beam due to feedback. Conditions for the excitation of lasing are obtained and the phase conjugation quality is determined near the lasing threshold.

  12. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto

    2012-01-01

    , and influencing the ultimate fate of the substrates. Several E2s are characterized by an extended acidic insertion in loop 7 (L7), which if mutated is known to impair the proper E2-related functions. In the present contribution, we show that acidic loop is a conserved ancestral motif in E2s, relying...

  13. Acetylcholine promotes Ca2+ and NO-oscillations in adipocytes implicating Ca2+→NO→cGMP→cADP-ribose→Ca2+ positive feedback loop--modulatory effects of norepinephrine and atrial natriuretic peptide.

    Directory of Open Access Journals (Sweden)

    Egor A Turovsky

    Full Text Available This study investigated possible mechanisms of autoregulation of Ca(2+ signalling pathways in adipocytes responsible for Ca(2+ and NO oscillations and switching phenomena promoted by acetylcholine (ACh, norepinephrine (NE and atrial natriuretic peptide (ANP.Fluorescent microscopy was used to detect changes in Ca(2+ and NO in cultures of rodent white adipocytes. Agonists and inhibitors were applied to characterize the involvement of various enzymes and Ca(2+-channels in Ca(2+ signalling pathways.ACh activating M3-muscarinic receptors and Gβγ protein dependent phosphatidylinositol 3 kinase induces Ca(2+ and NO oscillations in adipocytes. At low concentrations of ACh which are insufficient to induce oscillations, NE or α1, α2-adrenergic agonists act by amplifying the effect of ACh to promote Ca(2+ oscillations or switching phenomena. SNAP, 8-Br-cAMP, NAD and ANP may also produce similar set of dynamic regimes. These regimes arise from activation of the ryanodine receptor (RyR with the implication of a long positive feedback loop (PFL: Ca(2+→NO→cGMP→cADPR→Ca(2+, which determines periodic or steady operation of a short PFL based on Ca(2+-induced Ca(2+ release via RyR by generating cADPR, a coagonist of Ca(2+ at the RyR. Interplay between these two loops may be responsible for the observed effects. Several other PFLs, based on activation of endothelial nitric oxide synthase or of protein kinase B by Ca(2+-dependent kinases, may reinforce functioning of main PFL and enhance reliability. All observed regimes are independent of operation of the phospholipase C/Ca(2+-signalling axis, which may be switched off due to negative feedback arising from phosphorylation of the inositol-3-phosphate receptor by protein kinase G.This study presents a kinetic model of Ca(2+-signalling system operating in adipocytes and integrating signals from various agonists, which describes it as multivariable multi feedback network with a family of nested positive

  14. A micRNA-200c/cathepsin L feedback loop determines paclitaxel resistance in human lung cancer A549 cells in vitro through regulating epithelial-mesenchymal transition.

    Science.gov (United States)

    Zhao, Yi-Fan; Han, Mei-Ling; Xiong, Ya-Jie; Wang, Long; Fei, Yao; Shen, Xiao; Zhu, Ying; Liang, Zhong-Qin

    2017-12-07

    Cathepsin L (CTSL), a cysteine protease, is closely related to tumor occurrence, development, and metastasis, and possibly regulates cancer cell resistance to chemotherapy. miRNAs, especially the miR-200 family, have been implicated in drug-resistant tumors. In this study we explored the relationship of CTSL, micRNA-200c and drug resistance, and the potential regulatory mechanisms in human lung cancer A549 cells and A549/TAX cells in vitro. A549/TAX cells were paclitaxel-resistant A549 cells overexpressing CTSL and characterized by epithelial-mesenchymal transition (EMT). We showed that micRNA-200c and CTSL were reciprocally linked in a feedback loop in these cancer cells. Overexpression of micRNA-200c in A549/TAX cells decreased the expression of CTSL, and enhanced their sensitivity to paclitaxel and suppressed EMT, whereas knockdown of micRNA-200c in A549 cells significantly increased the expression of CTSL, and decreased their sensitivity to paclitaxel and induced EMT. Overexpression of CTSL in A549 cells significantly decreased the expression of micRNA-200c, and reduced their sensitivity to paclitaxel and induced EMT, but these effects were reversed by micRNA-200c, whereas knockdown of CTSL in A549/TAX cells attenuated paclitaxel resistance and remarkably inhibited EMT, but the inhibition of micRNA-200c could reverse these effects. Therefore, micRNA-200c may be involved in regulating paclitaxel resistance through CTSL-mediated EMT in A549 cells, and CTSL and micRNA-200c are reciprocally linked in a feedback loop.

  15. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  16. Artin t-Motifs

    OpenAIRE

    Taelman, Lenny

    2008-01-01

    We show that analytically trivial t-motifs satisfy a Tannakian duality, without restrictions on the base field, save for that it be of generic characteristic. We show that the group of components of the t-motivic Galois group coincides with the absolute Galois group of the base field.

  17. A prototype framework for models of socio-hydrology: identification of key feedback loops with application to two Australian case-studies

    Science.gov (United States)

    Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.

    2014-01-01

    It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system-scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for a model of socio-hydrology that posits a novel construct, a composite Community Sensitivity state variable, as a key link to elucidate the drivers of behavioural response in a hydrological context. The framework provides for both macro-scale contextual parameters, which allow it to be applied across climate, socioeconomic and political gradients, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two different socio-hydrological case studies, taken from the Australian experience, are presented and discussed. It is envisioned that the application of this framework across study sites and gradients will aid in developing our understanding of the fundamental interactions and feedbacks in such complex human-hydrology systems, and allow hydrologists to participate in the growing field of social-ecological systems modelling.

  18. Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface.

    Science.gov (United States)

    Putrino, David; Wong, Yan T; Vigeral, Mariana; Pesaran, Bijan

    2012-01-01

    As the field of neural prosthetics advances, Brain Machine Interface (BMI) design requires the development of virtual prostheses that allow decoding algorithms to be tested for efficacy in a time- and cost-efficient manner. Using an x-ray and MRI-guided skeletal reconstruction, and a graphic artist's rendering of an anatomically correct macaque upper limb, we created a virtual avatar capable of independent movement across 27 degrees-of-freedom (DOF). Using a custom software interface, we animated the avatar's movements in real-time using kinematic data acquired from awake, behaving macaque subjects using a 16 camera motion capture system. Using this system, we demonstrate real-time, closed-loop control of up to 27 DOFs in a virtual prosthetic device. Thus, we describe a practical method of testing the efficacy of high-complexity BMI decoding algorithms without the expense of fabricating a physical prosthetic.

  19. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  20. Insulin Activates RSK (p90 Ribosomal S6 Kinase) to Trigger a New Negative Feedback Loop That Regulates Insulin Signaling for Glucose Metabolism*

    Science.gov (United States)

    Smadja-Lamère, Nicolas; Shum, Michael; Déléris, Paul; Roux, Philippe P.; Abe, Jun-Ichi; Marette, André

    2013-01-01

    We previously demonstrated that the mTORC1/S6K1 pathway is activated by insulin and nutrient overload (e.g. amino acids (AA)), which leads to the inhibition of the PI3K/Akt pathway via the inhibitory serine phosphorylation of IRS-1, notably on serine 1101 (Ser-1101). However, even in the absence of AA, insulin can still promote IRS-1 Ser-1101 phosphorylation by other kinases that remain to be fully characterized. Here, we describe a new negative regulator of IRS-1, the p90 ribosomal S6 kinase (RSK). Computational analyses revealed that Ser-1101 within IRS-1 falls into the consensus motif of RSK. Moreover, recombinant RSK phosphorylated IRS-1 C-terminal fragment on Ser-1101, which was prevented by mutations of this site or when a kinase-inactive mutant of RSK was used. Using antibodies directed toward the phosphorylation sites located in the activation segment of RSK (Ser-221 or Ser-380), we found that insulin activates RSK in L6 myocytes in the absence of AA overload. Inhibition of RSK using either the pharmacological inhibitor BI-D1870 or after adenoviral expression of a dominant negative RSK1 mutant (RSK1-DN) showed that RSK selectively phosphorylates IRS-1 on Ser-1101. Accordingly, expression of the RSK1-DN mutant in L6 myocytes and FAO hepatic cells improved insulin action on glucose uptake and glucose production, respectively. Furthermore, RSK1 inhibition prevented insulin resistance in L6 myocytes chronically exposed to high glucose and high insulin. These results show that RSK is a novel regulator of insulin signaling and glucose metabolism and a potential mediator of insulin resistance, notably through the negative phosphorylation of IRS-1 on Ser-1101. PMID:24036112

  1. Polarization chaos and random bit generation in nonlinear fiber optics induced by a time-delayed counter-propagating feedback loop.

    Science.gov (United States)

    Morosi, J; Berti, N; Akrout, A; Picozzi, A; Guasoni, M; Fatome, J

    2018-01-22

    In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.

  2. The MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...... of peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  3. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    In vertebrates, the major histocompatibility complex (MHC) presents peptides to the immune system. In humans, MHCs are called human leukocyte antigens (HLAs), and some of the loci encoding them are the most polymorphic in the human genome. Different MHC molecules present different subsets...... of peptides, and knowledge of their binding specificities is important for understanding the differences in the immune response between individuals. Knowledge of motifs may be used to identify epitopes, to understand the MHC restriction of epitopes, and to compare the specificities of different MHC molecules....... Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif...

  4. Closed Loop Subspace Identification

    Directory of Open Access Journals (Sweden)

    Geir W. Nilsen

    2005-07-01

    Full Text Available A new three step closed loop subspace identifications algorithm based on an already existing algorithm and the Kalman filter properties is presented. The Kalman filter contains noise free states which implies that the states and innovation are uneorre lated. The idea is that a Kalman filter found by a good subspace identification algorithm will give an output which is sufficiently uncorrelated with the noise on the output of the actual process. Using feedback from the output of the estimated Kalman filter in the closed loop system a subspace identification algorithm can be used to estimate an unbiased model.

  5. X-37 separation from a B-52H: application of multi-body dynamics and closed-loop feedback using overset CFD

    International Nuclear Information System (INIS)

    Jolly, B.; Rizk, M.; Moran, R.

    2005-01-01

    The Air Force SEEK EAGLE Office (AFSEO) provided independent aerodynamic data, which was key in the separation analysis for the X-37 Approach and Landing Test Vehicle (ALTV). To ensure the best aerodynamic B-52H interference database would be generated for the analysis, NASA contracted both NASA Johnson Space Center (JSC) and the AFSEO via the 412th Flight Test Squadron (Edwards AFB CA) to run independent Computational Fluid Dynamics (CFD) studies. These data were then compared to the existing database from Boeing to establish confidence and determine areas of uncertainty. NASA requested CFD data from the AFSEO primarily for static and carriage solutions of the X-37 at various positions under the B-52H. In addition, several dynamic simulations of X-37 trajectories used rate feedback control to deflect the control surfaces to stabilize the X-37. The AFSEO CFD team calculated 140 static, unsteady solutions and 9 dynamic time-accurate trajectory simulations between April 2003 and June 2004 to support the NASA X-37 ALTV program. The computational models used structured adjacent and overlapping grids with the total computational domain consisting of 25 million points in 315 grids. The rate-control autopilot commanded both yaw and roll in four control surfaces; pitch commands were preset. The results show significant increase in stability of the X-37 trajectory from the B-52H. (author)

  6. Brain-midgut cross-talk and autocrine metabolastat via the sNPF/CCAP negative feed-back loop in the American cockroach, Periplaneta americana.

    Science.gov (United States)

    Mikani, Azam; Watari, Yasuhiko; Takeda, Makio

    2015-12-01

    Immunohistochemical reactivities against short neuropeptide F (sNPF-ir) and crustacean cardioactive peptide (CCAP-ir) were detected in both the brain-subesophageal ganglion (Br-SOG) and midgut epithelial cells of the male American cockroach, Periplaneta americana. Four weeks of starvation increased the number of sNPF-ir cells and decreased the CCAP-ir cells in the Br-SOG, whereas refeeding reversed these effects. The contents of sNPF in the Br-SOG, midgut and hemolymph titer decreased in response to an injection of CCAP into the hemocoel of normally fed male cockroaches, while CCAP titers/contents decreased in response to an injection of sNPF. The results of a double-labeling experiment demonstrated that sNPF-ir co-existed in CCAP-ir cells in the pars intercerebralis (PI), dorsolateral region of protocerebrum (DL), deutocerebrum (De) and SOG. sNPF-ir and CCAP-ir were also colocalized in the midgut. sNPF and CCAP are neuropeptides and midgut factors that interact with each other. Since the two peptides are known to be secreted by identical cells that affect each other, this constitutes autocrine negative feedback regulation for a quick response to food accessibility/inaccessibility. These peptides not only constitute the switch in the digestive mechanism but also couple digestive adaptation with behavior. A CCAP injection suppressed locomotor activity when cockroaches were starved, whereas sNPF activated it when they were fed.

  7. X-37 separation from a B-52H: application of multi-body dynamics and closed-loop feedback using overset CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, B.; Rizk, M. [Jacobs Sverdrup Tech., TEAS Group, Elgin AFB, Florida (United States)]. Email: jollyb@eglin.af.mil; Moran, R. [United States Air Force, Elgin AFB, Florida (United States)

    2005-07-01

    The Air Force SEEK EAGLE Office (AFSEO) provided independent aerodynamic data, which was key in the separation analysis for the X-37 Approach and Landing Test Vehicle (ALTV). To ensure the best aerodynamic B-52H interference database would be generated for the analysis, NASA contracted both NASA Johnson Space Center (JSC) and the AFSEO via the 412th Flight Test Squadron (Edwards AFB CA) to run independent Computational Fluid Dynamics (CFD) studies. These data were then compared to the existing database from Boeing to establish confidence and determine areas of uncertainty. NASA requested CFD data from the AFSEO primarily for static and carriage solutions of the X-37 at various positions under the B-52H. In addition, several dynamic simulations of X-37 trajectories used rate feedback control to deflect the control surfaces to stabilize the X-37. The AFSEO CFD team calculated 140 static, unsteady solutions and 9 dynamic time-accurate trajectory simulations between April 2003 and June 2004 to support the NASA X-37 ALTV program. The computational models used structured adjacent and overlapping grids with the total computational domain consisting of 25 million points in 315 grids. The rate-control autopilot commanded both yaw and roll in four control surfaces; pitch commands were preset. The results show significant increase in stability of the X-37 trajectory from the B-52H. (author)

  8. Conditional constitutive expression system of a drug protein in vivo by positive feedback loop using an inducer-independent artificial transcription factor.

    Science.gov (United States)

    Lee, Eun-Bin; Lim, Ho-Dong; You, Sung-Hwan; Cheong, Dae-Eun; Kim, Geun-Joong

    2018-01-22

    Bacterial-mediated drug delivery is a potential and promising strategy for the specific treatment of cancer with therapeutic molecules, especially with genetically encoded proteins. These proteins must be tightly regulated due to cytotoxicity and thus are usually expressed under the control of the P BAD and TetA/TetR promoters in vivo. Since protein expression from these systems is triggered by exogenous inducer, periodic intravenous injection of inducer is necessary. However, these treatments can result in non-homogenous and/or inefficient expression of therapeutic proteins in vivo due to impeded diffusion and dilution of the inducer further from the injection site. To overcome these hurdles, we designed a conditional constitutive expression system equipped with the artificial transcription factor, AraC C , which has two operator-binding domains and simultaneously binds to the I 1 and I 2 operators of the P BAD promoter for gene expression in an arabinose-independent manner. Using this construct and the wild type protein AraC under the control of the P BAD promoter, we constructed a self-positive feedback system to constitutively express the therapeutic protein when the induction of AraC was triggered once using arabinose. This expression system could be useful in various cancer treatment strategies using bacteria to deliver genetically encoded drugs in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  10. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miriam Sansó

    Full Text Available Transcript elongation by RNA polymerase II (RNAPII is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1 plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb, in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell

  11. Finite Feedback Cycling in Structural Equation Models

    Science.gov (United States)

    Hayduk, Leslie A.

    2009-01-01

    In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…

  12. Transcriptional Network growing Models using Motif-based Preferential Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Farouk Abdelzaher

    2015-10-01

    Full Text Available Understanding relationships between architectural properties of gene-regulatory networks (GRNs has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs--i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent ``building blocks'' of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops, its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  13. BRD7 expression and c-Myc activation forms a double-negative feedback loop that controls the cell proliferation and tumor growth of nasopharyngeal carcinoma by targeting oncogenic miR-141.

    Science.gov (United States)

    Liu, Yukun; Zhao, Ran; Wei, Yanmei; Li, Mengna; Wang, Heran; Niu, Weihong; Zhou, Yao; Qiu, Yuanzheng; Fan, Songqing; Zhan, Yihao; Xiong, Wei; Zhou, Yanhong; Li, Xiaoling; Li, Zheng; Li, Guiyuan; Zhou, Ming

    2018-03-20

    miR-141 is up-regulated and plays crucial roles in nasopharyngeal carcinoma (NPC). However, the molecular mechanism underlying the dysregulation of miR-141 is still obscure. Thus, the ChIP-PCR was performed to identify the c-Myc-binding sites in miR-141 and BRD7. qRT-PCR, western blot and immunohistochemistry assays were used to detect the expression of miR-141 and its up/down stream molecules. The rescue experiments on the c-Myc/miR-141 axis were performed in vitro and in vivo. Our results showed that the levels of mature miR-141, pre-miR-141 and pri-miR-141 were downregulated in c-Myc knockdown NPC cells. Meanwhile, c-Myc transactivates the expression of miR-141 by binding its promoter region. Moreover, BRD7 was identified as a co-factor of c-Myc to negatively regulate the activation of c-Myc/miR-141 axis, as well as a direct target of c-Myc. Moreover, restoration of miR-141 in c-Myc knockdown NPC cells notably rescued the effect of c-Myc on cell proliferation and tumor growth, as well as the blocking of PTEN/AKT pathway. Additionally, the expression of c-Myc was positively correlated with that of miR-141 and the clinical stages of NPC patients and negatively associated with the expression of BRD7. Our findings demonstrated that BRD7 expression and c-Myc activation forms a negative feedback loop to control the cell proliferation and tumor growth by targeting miR-141. These observations provide new mechanistic insights into the dysregulation of miR-141 expression and a promising therapeutic option for NPC.

  14. Evaluation of FPGA to PC feedback loop

    Science.gov (United States)

    Linczuk, Pawel; Zabolotny, Wojciech M.; Wojenski, Andrzej; Krawczyk, Rafal D.; Pozniak, Krzysztof T.; Chernyshova, Maryna; Czarski, Tomasz; Gaska, Michal; Kasprowicz, Grzegorz; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol

    2017-08-01

    The paper presents the evaluation study of the performance of the data transmission subsystem which can be used in High Energy Physics (HEP) and other High-Performance Computing (HPC) systems. The test environment consisted of Xilinx Artix-7 FPGA and server-grade PC connected via the PCIe 4xGen2 bus. The DMA engine was based on the Xilinx DMA for PCI Express Subsystem1 controlled by the modified Xilinx XDMA kernel driver.2 The research is focused on the influence of the system configuration on achievable throughput and latency of data transfer.

  15. Feedback Loops in Communication and Human Computing

    NARCIS (Netherlands)

    op den Akker, Hendrikus J.A.; Heylen, Dirk K.J.; Pantic, Maja; Pentland, Alex; Nijholt, Antinus; Huang, Thomas S.

    Building systems that are able to analyse communicative behaviours or take part in conversations requires a sound methodology in which the complex organisation of conversations is understood and tested on real-life samples. The data-driven approaches to human computing not only have a value for the

  16. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  17. [Leptin and the feedback regulation of body weight].

    Science.gov (United States)

    Wang, X; Ye, G; Sun, J

    1999-09-30

    Body weight may be controlled by a negative feedback loop. Recent studies have identified that the ob gene product, leptin, apparently and exclusively expressed in adipose tissue, is a part of the negative feedback loop. Leptin is proposed to act as an afferent signal in the negative feedback loop to hypothalamus that limiting food-intake, controlling energy homeostasis and regulating the mass of adipose tissue. The dificiency of or resistance to leptin causes severe obesity.

  18. Generalized fast feedback system in the SLC

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Himel, T.; Krauter, K.; Rouse, F.; Sass, R.; Shoaee, H.

    1991-11-01

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine

  19. Generalized fast feedback system in the SLC

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Himel, T.; Krauter, K.; Rouse, F.; Sass, R.; Shoaee, H.

    1992-01-01

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine. (author)

  20. MotifMark: Finding regulatory motifs in DNA sequences.

    Science.gov (United States)

    Hassanzadeh, Hamid Reza; Kolhe, Pushkar; Isbell, Charles L; Wang, May D

    2017-07-01

    The interaction between proteins and DNA is a key driving force in a significant number of biological processes such as transcriptional regulation, repair, recombination, splicing, and DNA modification. The identification of DNA-binding sites and the specificity of target proteins in binding to these regions are two important steps in understanding the mechanisms of these biological activities. A number of high-throughput technologies have recently emerged that try to quantify the affinity between proteins and DNA motifs. Despite their success, these technologies have their own limitations and fall short in precise characterization of motifs, and as a result, require further downstream analysis to extract useful and interpretable information from a haystack of noisy and inaccurate data. Here we propose MotifMark, a new algorithm based on graph theory and machine learning, that can find binding sites on candidate probes and rank their specificity in regard to the underlying transcription factor. We developed a pipeline to analyze experimental data derived from compact universal protein binding microarrays and benchmarked it against two of the most accurate motif search methods. Our results indicate that MotifMark can be a viable alternative technique for prediction of motif from protein binding microarrays and possibly other related high-throughput techniques.

  1. Giving feedback.

    Science.gov (United States)

    Thomas, Jane DeLima; Arnold, Robert M

    2011-02-01

    Giving feedback is a core element of medical education, one that is gaining attention but with a thin evidence base to guide medical educators. This review provides a definition of feedback and its purpose, selectively reviews the literature regarding educators' and learners' attitudes toward feedback, and provides an algorithm for giving feedback. The authors discuss the parallels between giving feedback and breaking bad news, emphasizing the importance of titrating the amount of information given, attending to affect, and making a plan for next steps. Special considerations for giving feedback in palliative care are highlighted, including the effect of heightened emotion in the clinical encounter and the difficulties of giving feedback about communication skills.

  2. Specific-detection of clinical samples, systematic functional investigations, and transcriptome analysis reveals that splice variant MUC4/Y contributes to the malignant progression of pancreatic cancer by triggering malignancy-related positive feedback loops signaling.

    Science.gov (United States)

    Zhu, Yi; Zhang, Jing-Jing; Xie, Kun-Ling; Tang, Jie; Liang, Wen-Biao; Zhu, Rong; Zhu, Yan; Wang, Bin; Tao, Jin-Qiu; Zhi, Xiao-Fei; Li, Zheng; Gao, Wen-Tao; Jiang, Kui-Rong; Miao, Yi; Xu, Ze-Kuan

    2014-11-04

    MUC4 plays important roles in the malignant progression of human pancreatic cancer. But the huge length of MUC4 gene fragment restricts its functional and mechanism research. As one of its splice variants, MUC4/Y with coding sequence is most similar to that of the full-length MUC4 (FL-MUC4), together with alternative splicing of the MUC4 transcript has been observed in pancreatic carcinomas but not in normal pancreas. So we speculated that MUC4/Y might be involved in malignant progression similarly to FL-MUC4, and as a research model of MUC4 in pancreatic cancer. The conjecture was confirmed in the present study. MUC4/Y expression was detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) using gene-specific probe in the clinic samples. The effects of MUC4/Y were observed by serial in vitro and in vivo experiments based on stable over-expressed cell model. The underlying mechanisms were investigated by sequence-based transcriptome analysis and verified by qRT-PCR, Western blot and enzyme-linked immunosorbent assays. The detection of clinical samples indicates that MUC4/Y is significantly positive-correlated with tumor invasion and distant metastases. Based on stable forced-expressed pancreatic cancer PANC-1 cell model, functional studies show that MUC4/Y enhances malignant activity in vitro and in vivo, including proliferation under low-nutritional-pressure, resistance to apoptosis, motility, invasiveness, angiogenesis, and distant metastasis. Mechanism studies indicate the novel finding that MUC4/Y triggers malignancy-related positive feedback loops for concomitantly up-regulating the expression of survival factors to resist adverse microenvironment and increasing the expression of an array of cytokines and adhesion molecules to affect the tumor milieu. In light of the enormity of the potential regulatory circuitry in cancer afforded by MUC4 and/or MUC4/Y, repressing MUC4 transcription, inhibiting post

  3. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature–high humidity challenge in a positive feedback loop with CaWRKY40

    Science.gov (United States)

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature–high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63 (pCabZIP63) and CaWRKY40 (pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper’s response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper’s response to RSI and HTHH. PMID:26936828

  4. Stochastic Resonance in Neuronal Network Motifs with Ornstein-Uhlenbeck Colored Noise

    Directory of Open Access Journals (Sweden)

    Xuyang Lou

    2014-01-01

    Full Text Available We consider here the effect of the Ornstein-Uhlenbeck colored noise on the stochastic resonance of the feed-forward-loop (FFL network motif. The FFL motif is modeled through the FitzHugh-Nagumo neuron model as well as the chemical coupling. Our results show that the noise intensity and the correlation time of the noise process serve as the control parameters, which have great impacts on the stochastic dynamics of the FFL motif. We find that, with a proper choice of noise intensities and the correlation time of the noise process, the signal-to-noise ratio (SNR can display more than one peak.

  5. [Prediction of Promoter Motifs in Virophages].

    Science.gov (United States)

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses.

  6. Motif discovery in ranked lists of sequences

    DEFF Research Database (Denmark)

    Nielsen, Morten Muhlig; Tataru, Paula; Madsen, Tobias

    2016-01-01

    a growing need for motif analysis methods that can exploit this coupled data structure and be tailored for specific biological questions. Here, we present an exploratory motif analysis tool, Regmex (REGular expression Motif EXplorer), which offers several methods to evaluate the correlation of motifs....... These features make Regmex well suited for a range of biological sequence analysis problems related to motif discovery, exemplified by microRNA seed enrichment, but also including enrichment problems involving complex motifs and combinations of motifs. We demonstrate a number of usage scenarios that take...

  7. Loop-to-loop coupling.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  8. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    Science.gov (United States)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  9. Unravelling daily human mobility motifs.

    Science.gov (United States)

    Schneider, Christian M; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C

    2013-07-06

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These networks, called here motifs, are sufficient to capture up to 90 per cent of the population in surveys and mobile phone datasets for different countries. Each individual exhibits a characteristic motif, which seems to be stable over several months. Consequently, daily human mobility can be reproduced by an analytically tractable framework for Markov chains by modelling periods of high-frequency trips followed by periods of lower activity as the key ingredient.

  10. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Barabási Albert-László

    2004-01-01

    Full Text Available Abstract Background Transcriptional regulation of cellular functions is carried out through a complex network of interactions among transcription factors and the promoter regions of genes and operons regulated by them.To better understand the system-level function of such networks simplification of their architecture was previously achieved by identifying the motifs present in the network, which are small, overrepresented, topologically distinct regulatory interaction patterns (subgraphs. However, the interaction of such motifs with each other, and their form of integration into the full network has not been previously examined. Results By studying the transcriptional regulatory network of the bacterium, Escherichia coli, we demonstrate that the two previously identified motif types in the network (i.e., feed-forward loops and bi-fan motifs do not exist in isolation, but rather aggregate into homologous motif clusters that largely overlap with known biological functions. Moreover, these clusters further coalesce into a supercluster, thus establishing distinct topological hierarchies that show global statistical properties similar to the whole network. Targeted removal of motif links disintegrates the network into small, isolated clusters, while random disruptions of equal number of links do not cause such an effect. Conclusion Individual motifs aggregate into homologous motif clusters and a supercluster forming the backbone of the E. coli transcriptional regulatory network and play a central role in defining its global topological organization.

  11. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  12. Closed-loop fiber optic gyroscope with homodyne detection

    Science.gov (United States)

    Zhu, Yong; Qin, BingKun; Chen, Shufen

    1996-09-01

    Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.

  13. Closed-Loop Control of Vortex Formation in Separated Flows

    Science.gov (United States)

    Colonius, Tim; Joe, Won Tae; MacMynowski, Doug; Rowley, Clancy; Taira, Sam; Ahuja, Sunil

    2010-01-01

    In order to phase lock the flow at the desired shedding cycle, particularly at Phi,best, We designed a feedback compensator. (Even though the open-loop forcing at Wf below Wn can lead to phase-locked limit cycles with a high average lift,) This feedback controller resulted in the phase-locked limit cycles that the open-loop control could not achieve for alpha=30 and 40 Particularly for alpha=40, the feedback was able to stabilize the limit cycle that was not stable with any of the open-loop periodic forcing. This results in stable phase-locked limit cycles for a larger range of forcing frequencies than the open-loop control. Also, it was shown that the feedback achieved the high-lift unsteady flow states that open-loop control could not sustain even after the states have been achieved for a long period of time.

  14. Feedback Synthesizes Neural Codes for Motion.

    Science.gov (United States)

    Clarke, Stephen E; Maler, Leonard

    2017-05-08

    In senses as diverse as vision, hearing, touch, and the electrosense, sensory neurons receive bottom-up input from the environment, as well as top-down input from feedback loops involving higher brain regions [1-4]. Through connectivity with local inhibitory interneurons, these feedback loops can exert both positive and negative control over fundamental aspects of neural coding, including bursting [5, 6] and synchronous population activity [7, 8]. Here we show that a prominent midbrain feedback loop synthesizes a neural code for motion reversal in the hindbrain electrosensory ON- and OFF-type pyramidal cells. This top-down mechanism generates an accurate bidirectional encoding of object position, despite the inability of the electrosensory afferents to generate a consistent bottom-up representation [9, 10]. The net positive activity of this midbrain feedback is additionally regulated through a hindbrain feedback loop, which reduces stimulus-induced bursting and also dampens the ON and OFF cell responses to interfering sensory input [11]. We demonstrate that synthesis of motion representations and cancellation of distracting signals are mediated simultaneously by feedback, satisfying an accepted definition of spatial attention [12]. The balance of excitatory and inhibitory feedback establishes a "focal" distance for optimized neural coding, whose connection to a classic motion-tracking behavior provides new insight into the computational roles of feedback and active dendrites in spatial localization [13, 14]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Multi-bunch Feedback Systems

    CERN Document Server

    Lonza, M.

    2014-12-19

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main co...

  16. Multi-bunch feedback systems

    CERN Document Server

    Lonza, M

    2008-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. The advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. The lecture will first introduce coupled-bunch instabilities analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedbacks systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback sy...

  17. A True Open-Loop Synchronization Technique

    DEFF Research Database (Denmark)

    Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.

    2016-01-01

    in a parallel manner. In the presence of the frequency feedback loop, nevertheless, the OLS technique may not be truly open-loop, which makes a deep study of stability necessary. Using the secondary frequency detector, on the other hand, increases the computational effort and implementation complexity. Another......Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... to worsen in the presence of frequency drifts. To deal with this problem, two approaches are often recommended in the literature: Adapting OLS techniques to grid frequency variations by feeding back the frequency estimated by them or using the frequency estimated by a secondary frequency detector...

  18. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  19. Improved i-motif thermal stability by insertion of anthraquinone monomers

    DEFF Research Database (Denmark)

    Gouda, Alaa S; Amine, Mahasen S.; Pedersen, Erik Bjerregaard

    2017-01-01

    In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA...... loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends...... on the substitution pattern of the anthraquinone. The insertion of anthraquinone was found to stabilize the i-motif structure when replacing any one of the positions of the central TAA loop and the thermal stabilities were typically higher than those previously found for i-motifs containing pyrene-modified uracilyl...

  20. Beam based feedback for the Linac coherent light source

    International Nuclear Information System (INIS)

    Fairley, D.; Kim, K.; Luchini, K; Natampalli, P.; Piccoli, L.; Rogind, D.; Straumann, T.

    2012-01-01

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6*6 longitudinal feedback loop, and a loop to maintain the electron bunch charge have been commissioned on the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 120 Hz. This paper will discuss the design, configuration and commissioning of the beam-based Fast Feedback System for LCLS. Topics include algorithms for 120 Hz feedback, multi-cast network performance, actuator and sensor performance for single-pulse control and sensor read back, and feedback configuration and run-time control. (authors)

  1. Approximate Models for Closed-Loop Trajectory Tracking in Underactuated Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Control of robotic systems, as a field, spans both traditional closed-loop feedback techniques and modern machine learning strategies, which are primarily open-loop....

  2. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output...... voltage of the piezoelectric transformer and the input driver to provide a self-oscillation loop around a primary section of the piezoelectric transformer oscillating at an excitation frequency. Electrical characteristics of the feedback loop are configured to set the excitation frequency of the self......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  3. Feedback control of atomic motion in an optical lattice

    International Nuclear Information System (INIS)

    Morrow, N.V.; Dutta, S.K.; Raithel, G.

    2002-01-01

    We demonstrate a real-time feedback scheme to manipulate wave-packet oscillations of atoms in an optical lattice. The average position of the atoms in the lattice wells is measured continuously and nondestructively. A feedback loop processes the position signal and translates the lattice potential. Depending on the feedback loop characteristics, we find amplification, damping, or an entire alteration of the wave-packet oscillations. Our results are well supported by simulations

  4. Single promoters as regulatory network motifs

    Science.gov (United States)

    Zopf, Christopher; Maheshri, Narendra

    2012-02-01

    At eukaryotic promoters, chromatin can influence the relationship between a gene's expression and transcription factor (TF) activity. This additional complexity might allow single promoters to exhibit dynamical behavior commonly attributed to regulatory motifs involving multiple genes. We investigate the role of promoter chromatin architecture in the kinetics of gene activation using a previously described set of promoter variants based on the phosphate-regulated PHO5 promoter in S. cerevisiae. Accurate quantitative measurement of transcription activation kinetics is facilitated by a controllable and observable TF input to a promoter of interest leading to an observable expression output in single cells. We find the particular architecture of these promoters can result in a significant delay in activation, filtering of noisy TF signals, and a memory of previous activation -- dynamical behaviors reminiscent of a feed-forward loop but only requiring a single promoter. We suggest this is a consequence of chromatin transactions at the promoter, likely passing through a long-lived ``primed'' state between its inactive and competent states. Finally, we show our experimental setup can be generalized as a ``gene oscilloscope'' to probe the kinetics of heterologous promoter architectures.

  5. Beam-based Feedback for the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

    2010-02-11

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

  6. Formativ Feedback

    DEFF Research Database (Denmark)

    Hyldahl, Kirsten Kofod

    Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...

  7. Unravelling daily human mobility motifs

    OpenAIRE

    Schneider, Christian M.; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C.

    2013-01-01

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These net...

  8. Recent results in convolution feedback systems.

    Science.gov (United States)

    Desoer, C. A.; Callier, F. M.

    1972-01-01

    Survey of recent results obtained by the authors concerning certain types of multiinput, multioutput feedback systems. The discrete-time case as well as the continuous-time case are considered. In each case three theorems are shown. These give insight into the nature of the relationship between the open-loop operator and the closed-loop operator of the system, as well as necessary and sufficient conditions for stability of the closed-loop system when 'unstable' poles are present in their open-loop transfer function.

  9. Multi-bunch Feedback Systems

    International Nuclear Information System (INIS)

    Lonza, M; Schmickler, H

    2014-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main components of a feedback system and the related issues will also be analysed. Finally, we shall focus on digital feedback systems, their characteristics, and features, as well as on how they can be concretely exploited for both the optimization of feedback performance and for beam dynamics studies

  10. Mining protein loops using a structural alphabet and statistical exceptionality

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2010-02-01

    Full Text Available Abstract Background Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied. Results We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times. Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words. These structural words have low structural variability (mean RMSd of 0.85 Å. As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues and long loops. Moreover, half of

  11. Kopi dan Kakao dalam Kreasi Motif Batik Khas Jember

    Directory of Open Access Journals (Sweden)

    Irfa'ina Rohana Salma

    2015-06-01

    Full Text Available ABSTRAK Batik Jember selama ini identik dengan motif daun tembakau. Visualisasi daun tembakau dalam motif Batik Jember cukup lemah, yaitu kurang berkarakter karena motif yang muncul adalah seperti gambar daun pada umumnya. Oleh karena itu perlu diciptakan desain motif batik khas Jember yang sumber inspirasinya digali dari kekayaan alam lainnya dari Jember yang mempunyai bentuk spesifik dan karakteristik sehingga identitas motif bisa didapatkan dengan lebih kuat. Hasil alam khas Jember tersebut adalah kopi dan kakao. Tujuan penciptaan seni ini adalah untuk menghasilkan motif batik  baru yang mempunyai ciri khas Jember. Metode yang digunakan yaitu pengumpulan data, pengamatan mendalam terhadap objek penciptaan, pengkajian sumber inspirasi, pembuatan desain motif, dan perwujudan menjadi batik. Dari penciptaan seni ini berhasil dikreasikan 6 (enam motif batik yaitu: (1 Motif Uwoh Kopi; (2 Motif Godong Kopi;  (3 Motif Ceplok Kakao; (4 Motif Kakao Raja; (5 Motif Kakao Biru; dan (6 Motif Wiji Mukti. Berdasarkan hasil penilaian “Selera Estetika” diketahui bahwa motif yang paling banyak disukai adalah Motif Uwoh Kopi dan Motif Kakao Raja. Kata kunci: Motif Woh Kopi, Motif Godong Kopi, Motif Ceplok Kakao, Motif Kakao Raja, Motif Kakao Biru, Motif Wiji Mukti ABSTRACTBatik Jember is synonymous with tobacco leaf motif. Tobacco leaf shape is quite weak in the visual appearance characterized as that motif emerges like a picture of leaves in general. Therefore, it is necessary to create a distinctive design motif extracted from other natural resources of Jember that have specific shapes and characteristics that can be obtained as the stronger motif identity. The typical natural resources from Jember are coffee and cocoa. The purpose of the creation of this art is to produce the unique, creative and innovative batik and have specific characteristics of Jember. The method used are data collection, observation of the object, reviewing inspiration sources

  12. Computational study of stability of an H-H-type pseudoknot motif

    Science.gov (United States)

    Wang, Jun; Zhao, Yunjie; Wang, Jian; Xiao, Yi

    2015-12-01

    Motifs in RNA tertiary structures are important to their structural organizations and biological functions. Here we consider an H-H-type pseudoknot (HHpk) motif that consists of two hairpins connected by a junction loop and with kissing interactions between the two hairpin loops. Such a tertiary structural motif is recurrently found in RNA tertiary structures, but is difficult to predict computationally. So it is important to understand the mechanism of its formation and stability. Here we investigate the stability of the HHpk tertiary structure by using an all-atom molecular dynamics simulation. The results indicate that the HHpk tertiary structure is stable. However, it is found that this stability is not due to the helix-helix packing, as is usually expected, but is maintained by the combined action of the kissing hairpin loops and junctions, although the former plays the main role. Stable HHpk motifs may form structural platforms for the molecules to realize their biological functions. These results are useful for understanding the construction principle of RNA tertiary structures and structure prediction.

  13. rMotifGen: random motif generator for DNA and protein sequences

    Directory of Open Access Journals (Sweden)

    Hardin C Timothy

    2007-08-01

    Full Text Available Abstract Background Detection of short, subtle conserved motif regions within a set of related DNA or amino acid sequences can lead to discoveries about important regulatory domains such as transcription factor and DNA binding sites as well as conserved protein domains. In order to help assess motif detection algorithms on motifs with varying properties and levels of conservation, we have developed a computational tool, rMotifGen, with the sole purpose of generating a number of random DNA or protein sequences containing short sequence motifs. Each motif consensus can be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM. Insertions and mutations within these motifs are created according to user-defined parameters and substitution matrices. The resulting sequences can be helpful in mutational simulations and in testing the limits of motif detection algorithms. Results Two implementations of rMotifGen have been created, one providing a graphical user interface (GUI for random motif construction, and the other serving as a command line interface. The second implementation has the added advantages of platform independence and being able to be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME packages. Conclusion rMotifGen provides an efficient and convenient method for creating random DNA or amino acid sequences with a variable number of motifs, where the instance of each motif can be incorporated using a position-specific scoring matrix (PSSM or by creating an instance mutated from its corresponding consensus using an evolutionary model based on substitution matrices. rMotifGen is freely available at: http://bioinformatics.louisville.edu/brg/rMotifGen/.

  14. Pierced Lasso Bundles are a new class of knot-like motifs.

    Directory of Open Access Journals (Sweden)

    Ellinor Haglund

    2014-06-01

    Full Text Available A four-helix bundle is a well-characterized motif often used as a target for designed pharmaceutical therapeutics and nutritional supplements. Recently, we discovered a new structural complexity within this motif created by a disulphide bridge in the long-chain helical bundle cytokine leptin. When oxidized, leptin contains a disulphide bridge creating a covalent-loop through which part of the polypeptide chain is threaded (as seen in knotted proteins. We explored whether other proteins contain a similar intriguing knot-like structure as in leptin and discovered 11 structurally homologous proteins in the PDB. We call this new helical family class the Pierced Lasso Bundle (PLB and the knot-like threaded structural motif a Pierced Lasso (PL. In the current study, we use structure-based simulation to investigate the threading/folding mechanisms for all the PLBs along with three unthreaded homologs as the covalent loop (or lasso in leptin is important in folding dynamics and activity. We find that the presence of a small covalent loop leads to a mechanism where structural elements slipknot to thread through the covalent loop. Larger loops use a piercing mechanism where the free terminal plugs through the covalent loop. Remarkably, the position of the loop as well as its size influences the native state dynamics, which can impact receptor binding and biological activity. This previously unrecognized complexity of knot-like proteins within the helical bundle family comprises a completely new class within the knot family, and the hidden complexity we unraveled in the PLBs is expected to be found in other protein structures outside the four-helix bundles. The insights gained here provide critical new elements for future investigation of this emerging class of proteins, where function and the energetic landscape can be controlled by hidden topology, and should be take into account in ab initio predictions of newly identified protein targets.

  15. Parallelizing More Loops with Compiler Guided Refactoring

    DEFF Research Database (Denmark)

    Larsen, Per; Ladelsky, Razya; Lidman, Jacob

    2012-01-01

    an interactive compilation feedback system that guides programmers in iteratively modifying their application source code. This helps leverage the compiler’s ability to generate loop-parallel code. We employ our system to modify two sequential benchmarks dealing with image processing and edge detection...

  16. Automatic Loop Parallelization via Compiler Guided Refactoring

    DEFF Research Database (Denmark)

    Larsen, Per; Ladelsky, Razya; Lidman, Jacob

    for these codes in a static, off-line compiler, we developed an interactive compilation feedback system that guides the programmer in iteratively modifying application source, thereby improving the compiler’s ability to generate loop-parallel code. We use this compilation system to modify two sequential...

  17. Virtual potentials for feedback traps.

    Science.gov (United States)

    Jun, Yonggun; Bechhoefer, John

    2012-12-01

    The recently developed feedback trap can be used to create arbitrary virtual potentials, to explore the dynamics of small particles or large molecules in complex situations. Experimentally, feedback traps introduce several finite time scales: There is a delay between the measurement of a particle's position and the feedback response, the feedback response is applied for a finite update time, and a finite camera exposure integrates motion. We show how to incorporate such timing effects into the description of particle motion. For the test case of a virtual quadratic potential, we give the first accurate description of particle dynamics, calculating the power spectrum and variance of fluctuations as a function of feedback gain, testing against simulations. We show that for small feedback gains, the motion approximates that of a particle in an ordinary harmonic potential. Moreover, if the potential is varied in time, for example by varying its stiffness, the work that is calculated approximates that done in an ordinary changing potential. The quality of the approximation is set by the ratio of the update time of the feedback loop to the relaxation time of motion in the virtual potential.

  18. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  19. A recurring two-hydrogen-bond motif incorporating a serine or threonine residue is found both at alpha-helical N termini and in other situations.

    Science.gov (United States)

    Wan, W Y; Milner-White, E J

    1999-03-12

    Side-chain hydroxyl residues in protein crystal structures often form hydrogen bonds with main-chain atoms. The most common bond arrangement is a four to five residue motif in which a serine or threonine is the first residue forming two characteristic hydrogen bonds to residues ahead of it in sequence. We call them ST-motifs, by analogy with the term Asx-motif we suggested for the related motifs with aspartate and asparagine residues. ST-motifs are common, there being just under one and a half in a typical protein subunit. Asx-motifs are even more common, such that 9 % of the residues of an average protein consist of Asx or ST-motifs. Of the ST-motifs, three-quarters are at helical N termini, and the rest occur by themselves or in conjunction with beta-bulge loops. A third of all alpha-helices have either ST-motifs or Asx-motifs at their N termini. Previous work has emphasised the occurrence of the capping box at alpha-helical N termini, but the capping box occurs in only 5 % of alpha-helical N termini; also, we point out that it can be regarded as a subset of the ST-motif (or, occasionally, of the Asx-motif). By comparing related sequences, the rates which amino acid residues at the first position of ST or Asx-motifs interchange during evolution are examined. Serine threonine, and aspartate asparagine, interchange is rapid; inter-pair exchange is slower, but much faster than exchange with other amino acid residues. This is consistent with the general similarity of ST-motifs and Asx-motifs combined with some subtle structural differences between them that are described. Copyright 1999 Academic Press.

  20. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  1. Current control loop design and analysis based on resonant regulators for microgrid applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michelle; de Sousa Ribeiro, Luiz Antonio

    2015-01-01

    Voltage and current control loops play an important role in the performance of microgrids employing power electronics voltage source inverters. Correct design of feedback loops is essential for the proper operation of these systems. This paper analyzes the influence of state feedback cross......-coupling in the design of resonant regulators for inner current loops in power converters operating in standalone microgrids. It is also demonstrated that the effect of state feedback cross-coupling degrades the performance of the control loops by increasing the steady-state error. Different resonant regulators...

  2. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    Science.gov (United States)

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-02-20

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

  3. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation

    DEFF Research Database (Denmark)

    Frödin, Morten; Antal, Torben L; Dümmler, Bettina A

    2002-01-01

    docking site that recruits and activates PDK1, which then phosphorylates the activation loop. Here, we discover a pocket in the kinase domain of PDK1 that recognizes the phosphoserine/phosphothreonine in the hydrophobic motif by identifying two oppositely positioned arginine and lysine residues that bind...

  4. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  5. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    The growth factor/insulin-stimulated AGC kinases share an activation mechanism based on three phosphorylation sites. Of these, only the role of the activation loop phosphate in the kinase domain and the hydrophobic motif (HM) phosphate in a C-terminal tail region are well characterized. We...... investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...... the kinase domain, promoting zipper-like association of the tail with the kinase domain, serving to stabilize the HM in its kinase-activating binding site. We present a molecular model for allosteric activation of AGC kinases by the turn motif phosphate via HM-mediated stabilization of the alphaC helix. In S...

  6. MotifNet: a web-server for network motif analysis.

    Science.gov (United States)

    Smoly, Ilan Y; Lerman, Eugene; Ziv-Ukelson, Michal; Yeger-Lotem, Esti

    2017-06-15

    Network motifs are small topological patterns that recur in a network significantly more often than expected by chance. Their identification emerged as a powerful approach for uncovering the design principles underlying complex networks. However, available tools for network motif analysis typically require download and execution of computationally intensive software on a local computer. We present MotifNet, the first open-access web-server for network motif analysis. MotifNet allows researchers to analyze integrated networks, where nodes and edges may be labeled, and to search for motifs of up to eight nodes. The output motifs are presented graphically and the user can interactively filter them by their significance, number of instances, node and edge labels, and node identities, and view their instances. MotifNet also allows the user to distinguish between motifs that are centered on specific nodes and motifs that recur in distinct parts of the network. MotifNet is freely available at http://netbio.bgu.ac.il/motifnet . The website was implemented using ReactJs and supports all major browsers. The server interface was implemented in Python with data stored on a MySQL database. estiyl@bgu.ac.il or michaluz@cs.bgu.ac.il. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. MotifLab: a tools and data integration workbench for motif discovery and regulatory sequence analysis.

    Science.gov (United States)

    Klepper, Kjetil; Drabløs, Finn

    2013-01-16

    Traditional methods for computational motif discovery often suffer from poor performance. In particular, methods that search for sequence matches to known binding motifs tend to predict many non-functional binding sites because they fail to take into consideration the biological state of the cell. In recent years, genome-wide studies have generated a lot of data that has the potential to improve our ability to identify functional motifs and binding sites, such as information about chromatin accessibility and epigenetic states in different cell types. However, it is not always trivial to make use of this data in combination with existing motif discovery tools, especially for researchers who are not skilled in bioinformatics programming. Here we present MotifLab, a general workbench for analysing regulatory sequence regions and discovering transcription factor binding sites and cis-regulatory modules. MotifLab supports comprehensive motif discovery and analysis by allowing users to integrate several popular motif discovery tools as well as different kinds of additional information, including phylogenetic conservation, epigenetic marks, DNase hypersensitive sites, ChIP-Seq data, positional binding preferences of transcription factors, transcription factor interactions and gene expression. MotifLab offers several data-processing operations that can be used to create, manipulate and analyse data objects, and complete analysis workflows can be constructed and automatically executed within MotifLab, including graphical presentation of the results. We have developed MotifLab as a flexible workbench for motif analysis in a genomic context. The flexibility and effectiveness of this workbench has been demonstrated on selected test cases, in particular two previously published benchmark data sets for single motifs and modules, and a realistic example of genes responding to treatment with forskolin. MotifLab is freely available at http://www.motiflab.org.

  8. Proline Rich Motifs as Drug Targets in Immune Mediated Disorders

    Directory of Open Access Journals (Sweden)

    Mythily Srinivasan

    2012-01-01

    Full Text Available The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies.

  9. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Directory of Open Access Journals (Sweden)

    Ramón José Pérez

    2016-04-01

    Full Text Available This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h. This design presents two important properties: (1 an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2 a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM, so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type realized by quadrupolar winding. The working

  10. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  11. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.

    2014-01-01

    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback

  12. Hunting Motifs in Situla Art

    Directory of Open Access Journals (Sweden)

    Andrej Preložnik

    2013-07-01

    Full Text Available Situla art developed as an echo of the toreutic style which had spread from the Near East through the Phoenicians, Greeks and Etruscans as far as the Veneti, Raeti, Histri, and their eastern neighbours in the region of Dolenjska (Lower Carniola. An Early Iron Age phenomenon (c. 600—300 BC, it rep- resents the major and most arresting form of the contemporary visual arts in an area stretching from the foot of the Apennines in the south to the Drava and Sava rivers in the east. Indeed, individual pieces have found their way across the Alpine passes and all the way north to the Danube. In the world and art of the situlae, a prominent role is accorded to ani- mals. They are displayed in numerous representations of human activities on artefacts crafted in the classic situla style – that is, between the late 6th  and early 5th centuries BC – as passive participants (e.g. in pageants or in harness or as an active element of the situla narrative. The most typical example of the latter is the hunting scene. Today we know at least four objects decorat- ed exclusively with hunting themes, and a number of situlae and other larger vessels where hunting scenes are embedded in composite narratives. All this suggests a popularity unparallelled by any other genre. Clearly recognisable are various hunting techniques and weapons, each associated with a particu- lar type of game (Fig. 1. The chase of a stag with javelin, horse and hound is depicted on the long- familiar and repeatedly published fibula of Zagorje (Fig. 2. It displays a hound mauling the stag’s back and a hunter on horseback pursuing a hind, her neck already pierced by the javelin. To judge by the (so far unnoticed shaft end un- der the stag’s muzzle, the hunter would have been brandishing a second jave- lin as well, like the warrior of the Vače fibula or the rider of the Nesactium situla, presumably himself a hunter. Many parallels to his motif are known from Greece, Etruria, and

  13. N-n-Butyl Haloperidol Iodide, a Derivative of the Anti-psychotic Haloperidol, Antagonizes Hypoxia/Reoxygenation Injury by Inhibiting an Egr-1/ROS Positive Feedback Loop in H9c2 Cells.

    Science.gov (United States)

    Sun, Ting; Zhang, Yanmei; Zhong, Shuping; Gao, Fenfei; Chen, Yicun; Wang, Bin; Cai, Wenfeng; Zhang, Zhaojing; Li, Weiqiu; Lu, Shishi; Zheng, Fuchun; Shi, Ganggang

    2018-01-01

    Early growth response-1 (Egr-1), a transcription factor which often underlies the molecular basis of myocardial ischemia/reperfusion (I/R) injury, and oxidative stress, is key to myocardial I/R injury. Silent information regulator of transcription 1(SIRT1) not only interacts with and is inhibited by Egr-1, but also downregulates reactive oxygen species (ROS) via the Forkhead box O1(FOXO1)/manganese superoxide dismutase (Mn-SOD) signaling pathway. N -n-butyl haloperidol iodide (F 2 ), a new patented compound, protects the myocardium against myocardial I/R injury in various animal I/R models in vivo and various heart-derived cell hypoxia/reoxygenation (H/R) models in vitro . In addition, F 2 can regulate the abnormal ROS/Egr-1 signaling pathway in cardiac microvascular endothelial cells (CMECs) and H9c2 cells after H/R. We studied whether there is an inverse Egr-1/ROS signaling pathway in H9c2 cells and whether the SIRT1/FOXO1/Mn-SOD signaling pathway mediates this. We verified a ROS/Egr-1 signaling loop in H9c2 cells during H/R and that F 2 protects against myocardial H/R injury by affecting SIRT1-related signaling pathways. Knockdown of Egr-1, by siRNA interference, reduced ROS generation, and alleviated oxidative stress injury induced by H/R, as shown by upregulated mitochondrial membrane potential, increased glutathione peroxidase (GSH-px) and total SOD anti-oxidative enzyme activity, and downregulated MDA. Decreases in FOXO1 protein expression and Mn-SOD activity occurred after H/R, but could be blocked by Egr-1 siRNA. F 2 treatment attenuated H/R-induced Egr-1 expression, ROS generation and other forms of oxidative stress injury such as MDA, and prevented H/R-induced decreases in FOXO1 and Mn-SOD activity . Nuclear co-localization between Egr-1 and SIRT1 was increased by H/R and decreased by either Egr-1 siRNA or F 2 . Therefore, our results suggest that Egr-1 inhibits the SIRT1/FOXO1/Mn-SOD antioxidant signaling pathway to increase ROS and perpetuate I

  14. Augmenting Environmental Interaction in Audio Feedback Systems

    Directory of Open Access Journals (Sweden)

    Seunghun Kim

    2016-04-01

    Full Text Available Audio feedback is defined as a positive feedback of acoustic signals where an audio input and output form a loop, and may be utilized artistically. This article presents new context-based controls over audio feedback, leading to the generation of desired sonic behaviors by enriching the influence of existing acoustic information such as room response and ambient noise. This ecological approach to audio feedback emphasizes mutual sonic interaction between signal processing and the acoustic environment. Mappings from analyses of the received signal to signal-processing parameters are designed to emphasize this specificity as an aesthetic goal. Our feedback system presents four types of mappings: approximate analyses of room reverberation to tempo-scale characteristics, ambient noise to amplitude and two different approximations of resonances to timbre. These mappings are validated computationally and evaluated experimentally in different acoustic conditions.

  15. Noise transmission and delay-induced stochastic oscillations in biochemical network motifs

    International Nuclear Information System (INIS)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Sakata Fumihiko

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations, we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation. We systematically analyse the effects of time delays, the feedback mechanism, and biological stochasticity on the power spectra. It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator. Delay-induced stochastic resonance can be expected, which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations. Through the analysis of the power spectrum, a new approach is proposed to estimate the oscillation period. (interdisciplinary physics and related areas of science and technology)

  16. Bayesian centroid estimation for motif discovery.

    Science.gov (United States)

    Carvalho, Luis

    2013-01-01

    Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  17. Bayesian centroid estimation for motif discovery.

    Directory of Open Access Journals (Sweden)

    Luis Carvalho

    Full Text Available Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  18. Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization

    Science.gov (United States)

    Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua

    2014-03-01

    Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuator’s step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical.

  19. Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization

    International Nuclear Information System (INIS)

    Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua

    2014-01-01

    Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuator’s step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical. (paper)

  20. Identification of the sorting signal motif within pro-opiomelanocortin for the regulated secretory pathway

    DEFF Research Database (Denmark)

    Cool, D R; Fenger, M; Snell, C R

    1995-01-01

    amino acid residues (Asp10-Leu11-Glu14-Leu1). Thus the sorting signal for POMC to the regulated secretory pathway appears to be encoded by a specific conformational motif comprised of a 13-amino acid amphipathic loop structure stabilized by a disulfide bridge, located at the NH2 terminus of the molecule.......The NH2-terminal region of pro-opiomelanocortin (POMC) is highly conserved across species, having two disulfide bridges that cause the formation of an amphipathic hairpin loop structure between the 2nd and 3rd cysteine residues (Cys8 to Cys20). The role that the NH2-terminal region of pro......-opiomelanocortin plays in acting as a molecular sorting signal for the regulated secretory pathway was investigated by using site-directed mutagenesis either to disrupt one or more of the disulfide bridges or to delete the amphipathic loop entirely. When POMC was expressed in Neuro-2a cells, ACTH immunoreactive material...

  1. Renormalization of loop functions for all loops

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-01-01

    It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j

  2. A natural grouping of motifs with an aspartate or asparagine residue forming two hydrogen bonds to residues ahead in sequence: their occurrence at alpha-helical N termini and in other situations.

    Science.gov (United States)

    Wan, W Y; Milner-White, E J

    1999-03-12

    Examination of the ways side-chain carboxylate and amide groups in high-resolution protein crystal structures form hydrogen bonds with main-chain atoms reveals that the most common category is a two-hydrogen-bond four to five residue motif with an aspartate or asparagine (Asx) at the first residue, for which we propose the name Asx-motif. Similar motifs with glutamate or glutamine residues at that position are rare. Asx-motifs occur typically as (1) a common feature of the N termini of alpha-helices called the Asx N-cap motif; (2) an independent motif, usually a beta-turn with an appropriately hydrogen-bonded Asx as the first residue; and (3) a motif incorporated in a beta-bulge loop. Asx-motifs are common, there being just under two-and-a-half in an average-sized protein subunit; of these, about 55 % are Asx N-cap motifs. Because they occur often in many situations, it seems that these motifs have an inherent propensity to form on their own rather than just being a feature stabilised at the end of a helix. Asx-motifs also occur in functionally interesting situations in aspartyl proteases, citrate synthase, EF hands, haemoglobins, lipocalins, glutathione reductase and the alpha/beta hydrolases. Copyright 1999 Academic Press.

  3. Analisis Unsur Matematika pada Motif Sulam Usus

    Directory of Open Access Journals (Sweden)

    Fredi Ganda Putra

    2017-12-01

    Full Text Available Based on interviews with researchers sources said that the beginning of the intestine embroidery is an art of genuine crafts. Called the intestine embroidery because this technique is a technique of combining a strand of cloth resembling the intestine formed according to the pattern by means of embroidered using a thread. Intestinal embroidery techniques were originally used to create a cover of the women's customary wardrobe of Lampung or often referred to as bebe. But not many people in Lampung, especially people who live in Lampung are still many who do not know and recognize the intestine embroidery because most only know tapis only characteristic of Lampung, besides that there are other cultural results that is embroidered intestine. There are still many who do not know that the intestine motif there is a knowledge of mathematics. The researcher's problem formulation is whether there are mathematical elements contained in the intestine embroidery motif based on the concept of geometry. The purpose of this study is to determine whether there are elements of mathematics contained in the intestine motif based on the concept of geometry. Subjects in this study consisted of 4 people obtained by purposive sampling technique. From the results of data analysis conducted by using descriptive analysis and discussion as follows: (1 Intestinal embroidery motif contains the meaning of mathematics and culture or often called Etnomatematika. On the meaning of culture there is a link between the embroidery intestine with a culture that has been there before as the existence of cultural linkage between Hindu belief Buddhism and there are similarities of motifs and decorative patterns contained in the motif embroidery intestine with ornamental variety in Indonesia. (2 The relationship between the intestine with mathematical motifs there are elements of mathematics such as geometry elements in the form of geometry of dimension one and dimension two, and the

  4. Combining experimental observation and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using

  5. Functional characterization of variations on regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Michal Lapidot

    2008-03-01

    Full Text Available Transcription factors (TFs regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.

  6. Negative Feedback in Genetic Circuits Confers Evolutionary Resilience and Capacitance

    Directory of Open Access Journals (Sweden)

    David C. Marciano

    2014-06-01

    Full Text Available Natural selection for specific functions places limits upon the amino acid substitutions a protein can accept. Mechanisms that expand the range of tolerable amino acid substitutions include chaperones that can rescue destabilized proteins and additional stability-enhancing substitutions. Here, we present an alternative mechanism that is simple and uses a frequently encountered network motif. Computational and experimental evidence shows that the self-correcting, negative-feedback gene regulation motif increases repressor expression in response to deleterious mutations and thereby precisely restores repression of a target gene. Furthermore, this ability to rescue repressor function is observable across the Eubacteria kingdom through the greater accumulation of amino acid substitutions in negative-feedback transcription factors compared to genes they control. We propose that negative feedback represents a self-contained genetic canalization mechanism that preserves phenotype while permitting access to a wider range of functional genotypes.

  7. In-Silico Identification Of Micro-Loops In Myelodysplastic Syndromes

    Science.gov (United States)

    Beck, Dominik; Brandl, Miriam; Pham, Tuan D.; Chang, Chung-Che; Zhou, Xiaobo

    2011-06-01

    Micro-loops are regulatory network motifs that leverage transcriptional and posttranscriptional control to effectively regulate the transcriptome. In this paper a regulatory network for Myelodysplastic Syndromes (MDSs) was constructed from the literature and publicly available data sources. The network was filtered using data from deep-sequencing of small RNAs, exon and microarrays. Motif discovery showed that micro-loops might exist in MDS. We further used the identified micro-loops and performed basic network analysis to identify the known disease gene RUNX1/AML, as well as miRNA family hsa-mir-181. This suggested that the concept of micro-loops can be applied to enhance disease gene identification and biomarker discovery.

  8. The Effect of C-X-C Motif Chemokine 13 on Hepatocellular Carcinoma Associates with Wnt Signaling

    Directory of Open Access Journals (Sweden)

    Chunyan Li

    2015-01-01

    Full Text Available Objects. To investigate the effect of CXCL13 (C-X-C motif chemokine 13 on hepatocellular carcinoma and clarify the potential mechanisms. Methods. 32 patients with hepatocellular carcinoma and 12 healthy controls were recruited for analyzing the expression of CXCL13 by RT-PCR (reverse transcription-polymerase chain reaction. ELISA (enzyme-linked immune-sorbent assay was used to test the concentration of serum CXCL13. The interaction between CXCL13 and Wnt signaling was analyzed by western blot. In vitro PBMCs cultured with HepG2 supernatant, the levels of IL-12, IL4, IL-6, and IL-17, and four IgG subclasses were detected by ELISA. Results. The rate of high expression CXCL13 was 63.4% in advanced HCC patients, and the serum CXCL13 was also at a high level in stage IV HCC patients. Meanwhile CXCL13 level was positively correlated with serum ALT (Alanine Transaminase and AST (Aspartate Aminotransferase. CXCL13 and Wnt/β-catenin signaling shared a positive feedback loop. Furthermore, CXCL13 could obviously promote the expressions of IL-12 and IL-17, and induce IgG4 secreted by B cells. Conclusions. The effect of CXCL13 on promoting liver cancer is related to the activation of Wnt/β-catenin pathway and the facilitation of IL-12, IL-17 and IgG4. CXCL13 plays an important role in the progression of HCC, and it may act as a potential target for the diagnosis and treatment of HCC.

  9. Direct AUC optimization of regulatory motifs.

    Science.gov (United States)

    Zhu, Lin; Zhang, Hong-Bo; Huang, De-Shuang

    2017-07-15

    The discovery of transcription factor binding site (TFBS) motifs is essential for untangling the complex mechanism of genetic variation under different developmental and environmental conditions. Among the huge amount of computational approaches for de novo identification of TFBS motifs, discriminative motif learning (DML) methods have been proven to be promising for harnessing the discovery power of accumulated huge amount of high-throughput binding data. However, they have to sacrifice accuracy for speed and could fail to fully utilize the information of the input sequences. We propose a novel algorithm called CDAUC for optimizing DML-learned motifs based on the area under the receiver-operating characteristic curve (AUC) criterion, which has been widely used in the literature to evaluate the significance of extracted motifs. We show that when the considered AUC loss function is optimized in a coordinate-wise manner, the cost function of each resultant sub-problem is a piece-wise constant function, whose optimal value can be found exactly and efficiently. Further, a key step of each iteration of CDAUC can be efficiently solved as a computational geometry problem. Experimental results on real world high-throughput datasets illustrate that CDAUC outperforms competing methods for refining DML motifs, while being one order of magnitude faster. Meanwhile, preliminary results also show that CDAUC may also be useful for improving the interpretability of convolutional kernels generated by the emerging deep learning approaches for predicting TF sequences specificities. CDAUC is available at: https://drive.google.com/drive/folders/0BxOW5MtIZbJjNFpCeHlBVWJHeW8 . dshuang@tongji.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Chromatin states modify network motifs contributing to cell-specific functions

    Science.gov (United States)

    Zhao, Hongying; Liu, Tingting; Liu, Ling; Zhang, Guanxiong; Pang, Lin; Yu, Fulong; Fan, Huihui; Ping, Yanyan; Wang, Li; Xu, Chaohan; Xiao, Yun; Li, Xia

    2015-01-01

    Epigenetic modification can affect many important biological processes, such as cell proliferation and apoptosis. It can alter chromatin conformation and contribute to gene regulation. To investigate how chromatin states associated with network motifs, we assembled chromatin state-modified regulatory networks by combining 269 ChIP-seq data and chromatin states in four cell types. We found that many chromatin states were significantly associated with network motifs, especially for feedforward loops (FFLs). These distinct chromatin state compositions contribute to different expression levels and translational control of targets in FFLs. Strikingly, the chromatin state-modified FFLs were highly cell-specific and, to a large extent, determined cell-selective functions, such as the embryonic stem cell-specific bivalent modification-related FFL with an important role in poising developmentally important genes for expression. Besides, comparisons of chromatin state-modified FFLs between cancerous/stem and primary cell lines revealed specific type of chromatin state alterations that may act together with motif structural changes cooperatively contribute to cell-to-cell functional differences. Combination of these alterations could be helpful in prioritizing candidate genes. Together, this work highlights that a dynamic epigenetic dimension can help network motifs to control cell-specific functions. PMID:26169043

  11. On loop extensions and cohomology of loops

    OpenAIRE

    Benítez, Rolando Jiménez; Meléndez, Quitzeh Morales

    2015-01-01

    In this paper are defined cohomology-like groups that classify loop extensions satisfying a given identity in three variables for association identities, and in two variables for the case of commutativity. It is considered a large amount of identities. This groups generalize those defined in works of Nishigori [2] and of Jhonson and Leedham-Green [4]. It is computed the number of metacyclic extensions for trivial action of the quotient on the kernel in one particular case for left Bol loops a...

  12. Neutron transport in irradiation loops (IRENE loop)

    International Nuclear Information System (INIS)

    Sarsam, Maher.

    1980-09-01

    This thesis is composed of two parts with different aspects. Part one is a technical description of the loop and its main ancillary facilities as well as of the safety and operational regulations. The measurement methods on the model of the ISIS reactor and on the loop in the OSIRIS reactor are described. Part two deals with the possibility of calculating the powers dissipated by each rod of the fuel cluster, using appropriate computer codes, not only in the reflector but also in the core and to suggest a method of calculation [fr

  13. MATLAB: For While Loops

    OpenAIRE

    2005-01-01

    sim tut Simulation Tutorial Interactive Media Element This interactive tutorial on MATLAB covers the For Loop and the While Loop functions. Examples are provided with step-by-step animated explanations. The interactions involve entering MATLAB instructions and observing the outcomes. Self-check questions are provided to help learners determine their level of understanding of the content presented. EC1010 Introduction to MATLAB

  14. Water loop for training

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1983-02-01

    The procedures used to operate the water loop of the Institute of Nuclear Enginering (IEN) in Brazil are presented. The aim is to help future operators of the training water loop in the operation technique and in a better comprehension of the phenomena occured during the execution of an experience. (E.G.) [pt

  15. Mutations of the kissing-loop dimerization sequence influence the site specificity of murine leukemia virus recombination in vivo

    DEFF Research Database (Denmark)

    Mikkelsen, J G; Lund, Anders Henrik; Duch, M

    2000-01-01

    synthesis in newly infected cells. We have previously shown that template shifts within the 5' leader of murine leukemia viruses occur preferentially within the kissing stem-loop motif, a cis element crucial for in vitro RNA dimer formation. By use of a forced recombination approach based on single......-cycle transfer of Akv murine leukemia virus-based vectors harboring defective primer binding site sequences, we now report that modifications of the kissing-loop structure, ranging from a deletion of the entire sequence to introduction of a single point mutation in the loop motif, significantly disturb site...... specificity of recombination within the highly structured 5' leader region. In addition, we find that an intact kissing-loop sequence favors optimal RNA encapsidation and vector transduction. Our data are consistent with the kissing-loop dimerization model and suggest that a direct intermolecular RNA...

  16. Identifying motifs in folktales using topic models

    NARCIS (Netherlands)

    Karsdorp, F.; Bosch, A.P.J. van den

    2013-01-01

    With the undertake of various folktale digitalization initiatives, the need for computational aids to explore these collections is increasing. In this paper we compare Labeled LDA (L-LDA) to a simple retrieval model on the task of identifying motifs in folktales. We show that both methods are well

  17. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  18. Extracellular matrix proteins: A positive feedback loop in lung fibrosis?

    NARCIS (Netherlands)

    Blaauboer, M.E.; Boeijen, F.R.; Emson, C.L.; Turner, S.M.; Zandieh Doulabi, B.; Hanemaaijer, R.; Smit, T.H.; Stoop, R.; Everts, V.

    2014-01-01

    Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the

  19. Extracellular matrix proteins: a positive feedback loop in lung fibrosis?

    Science.gov (United States)

    Blaauboer, Marjolein E; Boeijen, Fee R; Emson, Claire L; Turner, Scott M; Zandieh-Doulabi, Behrouz; Hanemaaijer, Roeland; Smit, Theo H; Stoop, Reinout; Everts, Vincent

    2014-02-01

    Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis. We further report in vitro experiments clarifying both the effect of myofibroblast differentiation on this expression and the effect of extracellular elastin on myofibroblast differentiation. Lung fibrosis was induced in female C57Bl/6 mice by bleomycin instillation. Animals were sacrificed at zero to five weeks after fibrosis induction. Collagen synthesized during the week prior to sacrifice was labeled with deuterium. After sacrifice, lung tissue was collected for determination of new collagen formation, microarray analysis, and histology. Human lung fibroblasts were grown on tissue culture plastic or BioFlex culture plates coated with type I collagen or elastin, and stimulated to undergo myofibroblast differentiation by 0-10 ng/ml transforming growth factor (TGF)β1. mRNA expression was analyzed by quantitative real-time PCR. New collagen formation during bleomycin-induced fibrosis was highly correlated to gene expression of elastin, type V collagen and tenascin C. At the protein level, elastin, type V collagen and tenascin C were highly expressed in fibrotic areas as seen in histological sections of the lung. Type V collagen and tenascin C were transiently increased. Human lung fibroblasts stimulated with TGFβ1 strongly increased gene expression of elastin, type V collagen and tenascin C. The extracellular presence of elastin increased gene expression of the myofibroblastic markers α smooth muscle actin and type I collagen. The extracellular matrix composition changes dramatically during the development of lung fibrosis. The increased levels of elastin, type V collagen and tenascin C are probably the result of increased expression by fibroblastic cells; reversely, elastin influences myofibroblast differentiation. This suggests a reciprocal interaction between fibroblasts and the extracellular matrix composition that could enhance the development of lung fibrosis. Copyright © 2013 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  20. Feedback amplification loop drives malignant growth in epithelial tissues.

    Science.gov (United States)

    Muzzopappa, Mariana; Murcia, Lada; Milán, Marco

    2017-08-29

    Interactions between cells bearing oncogenic mutations and the surrounding microenvironment, and cooperation between clonally distinct cell populations, can contribute to the growth and malignancy of epithelial tumors. The genetic techniques available in Drosophila have contributed to identify important roles of the TNF-α ligand Eiger and mitogenic molecules in mediating these interactions during the early steps of tumor formation. Here we unravel the existence of a tumor-intrinsic-and microenvironment-independent-self-reinforcement mechanism that drives tumor initiation and growth in an Eiger-independent manner. This mechanism relies on cell interactions between two functionally distinct cell populations, and we present evidence that these cell populations are not necessarily genetically different. Tumor-specific and cell-autonomous activation of the tumorigenic JNK stress-activated pathway drives the expression of secreted signaling molecules and growth factors to delaminating cells, which nonautonomously promote proliferative growth of the partially transformed epithelial tissue. We present evidence that cross-feeding interactions between delaminating and nondelaminating cells increase each other's sizes and that these interactions can explain the unlimited growth potential of these tumors. Our results will open avenues toward our molecular understanding of those social cell interactions with a relevant function in tumor initiation in humans.

  1. Toponym Extraction and Disambiguation Enhancement Using Loops of Feedback

    NARCIS (Netherlands)

    Habib, Mena Badieh; van Keulen, Maurice; Fred, A.; Dietz, J.L.G.; Liu, K.; Filipe, J.

    2013-01-01

    Toponym extraction and disambiguation have received much attention in recent years. Typical fields addressing these topics are information retrieval, natural language processing, and semantic web. This paper addresses two problems with toponym extraction and disambiguation. First, almost no existing

  2. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern applications require mining of motifs in one very long sequence (i.e., in the order of several gigabytes). For this case, there exist statistical approaches that are fast but inaccurate; or combinatorial methods that are sound and complete. Unfortunately, existing combinatorial methods are serial and very slow. Consequently, they are limited to very short sequences (i.e., a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and restricted types of motifs. This paper presents ACME, a combinatorial method for extracting motifs from a single very long sequence. ACME arranges the search space in contiguous blocks that take advantage of the cache hierarchy in modern architectures, and achieves almost an order of magnitude performance gain in serial execution. It also decomposes the search space in a smart way that allows scalability to thousands of processors with more than 90% speedup. ACME is the only method that: (i) scales to gigabyte-long sequences; (ii) handles large alphabets; (iii) supports interesting types of motifs with minimal additional cost; and (iv) is optimized for a variety of architectures such as multi-core systems, clusters in the cloud, and supercomputers. ACME reduces the extraction time for an exact-length query from 4 hours to 7 minutes on a typical workstation; handles 3 orders of magnitude longer sequences; and scales up to 16, 384 cores on a supercomputer. Copyright is held by the owner/author(s).

  3. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  4. Design and Implementation of Output Feedback Control for Piezo Actuated Structure Using Embedded System

    Directory of Open Access Journals (Sweden)

    R.Maheswari

    2008-06-01

    Full Text Available This paper presents the design of periodic output feedback control using state feedback gain to control the vibration of piezo actuated cantilever beam. The effectiveness of the controller is evaluated through simulation and experimentally by exciting the structure at resonance. Real time implementation of the controller is done using microcontroller. The closed loop eigen values of the system with periodic output feedback and state feedback are identical.

  5. Skriftlig feedback i engelskundervisningen

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher

    2017-01-01

    The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools.......The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools....

  6. Student Engagement with Feedback

    Science.gov (United States)

    Scott, Jon; Shields, Cathy; Gardner, James; Hancock, Alysoun; Nutt, Alex

    2011-01-01

    This report considers Biological Sciences students' perceptions of feedback, compared with those of the University as a whole, this includes what forms of feedback were considered most useful and how feedback used. Compared with data from previous studies, Biological Sciences students gave much greater recognition to oral feedback, placing it on a…

  7. Virtual sensory feedback for gait improvement in neurological patients.

    Science.gov (United States)

    Baram, Yoram

    2013-10-14

    We review a treatment modality for movement disorders by sensory feedback. The natural closed-loop sensory-motor feedback system is imitated by a wearable virtual reality apparatus, employing body-mounted inertial sensors and responding dynamically to the patient's own motion. Clinical trials have shown a significant gait improvement in patients with Parkinson's disease using the apparatus. In contrast to open-loop devices, which impose constant-velocity visual cues in a "treadmill" fashion, or rhythmic auditory cues in a "metronome" fashion, requiring constant vigilance and attention strategies, and, in some cases, instigating freezing in Parkinson's patients, the closed-loop device improved gait parameters and eliminated freezing in most patients, without side effects. Patients with multiple sclerosis, previous stroke, senile gait, and cerebral palsy using the device also improved their balance and gait substantially. Training with the device has produced a residual improvement, suggesting virtual sensory feedback for the treatment of neurological movement disorders.

  8. Probabilistic models for feedback systems.

    Energy Technology Data Exchange (ETDEWEB)

    Grace, Matthew D.; Boggs, Paul T.

    2011-02-01

    In previous work, we developed a Bayesian-based methodology to analyze the reliability of hierarchical systems. The output of the procedure is a statistical distribution of the reliability, thus allowing many questions to be answered. The principal advantage of the approach is that along with an estimate of the reliability, we also can provide statements of confidence in the results. The model is quite general in that it allows general representations of all of the distributions involved, it incorporates prior knowledge into the models, it allows errors in the 'engineered' nodes of a system to be determined by the data, and leads to the ability to determine optimal testing strategies. In this report, we provide the preliminary steps necessary to extend this approach to systems with feedback. Feedback is an essential component of 'complexity' and provides interesting challenges in modeling the time-dependent action of a feedback loop. We provide a mechanism for doing this and analyze a simple case. We then consider some extensions to more interesting examples with local control affecting the entire system. Finally, a discussion of the status of the research is also included.

  9. Coriolis mass flow and density sensor actuation using a phase-locked loop

    NARCIS (Netherlands)

    Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Lötters, Joost Conrad

    2017-01-01

    This paper reports on novel feedback based actua-tion electronics that use the voltage from the induction track of a Coriolis mass flow sensor as input signal for a phase-locked loop. The phase-locked loop consists of a phase detector that measures the difference between the actuation voltage and

  10. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    Science.gov (United States)

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  11. Error analysis of acceleration control loops of a synchrotron

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Weng, W.T.

    1991-01-01

    For beam control during acceleration, it is conventional to derive the frequency from an external reference, be it a field marker or an external oscillator, to provide phase and radius feedback loops to ensure the phase stability, radial position and emittance integrity of the beam. The open and closed loop behaviors of both feedback control and their response under the possible frequency, phase and radius errors are derived from fundamental principles and equations. The stability of the loops is investigated under a wide range of variations of the gain and time delays. Actual system performance of the AGS Booster is analyzed and compared to commissioning experiences. Such analysis is useful for setting design criteria and tolerances for new proton synchrotrons. 4 refs., 13 figs

  12. Blind Loop Syndrome

    Science.gov (United States)

    ... of tissue that protrude through the intestinal wall (diverticulosis) Certain medical conditions, including Crohn's disease, radiation enteritis, ... History of radiation therapy to the abdomen Diabetes Diverticulosis of the small intestine Complications A blind loop ...

  13. Diffusion of Wilson loops

    International Nuclear Information System (INIS)

    Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.

    2005-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory

  14. Mashup the OODA Loop

    National Research Council Canada - National Science Library

    Heier, Jeffrey E

    2008-01-01

    ...) processes via the Observe, Orient, Decide, and Act (OODA) Loop concept. As defined by Wikipedia, a mashup is a Website or application that combines the content from more than one source into an integrated presentation...

  15. A Basic Set of Homeostatic Controller Motifs

    Science.gov (United States)

    Drengstig, T.; Jolma, I.W.; Ni, X.Y.; Thorsen, K.; Xu, X.M.; Ruoff, P.

    2012-01-01

    Adaptation and homeostasis are essential properties of all living systems. However, our knowledge about the reaction kinetic mechanisms leading to robust homeostatic behavior in the presence of environmental perturbations is still poor. Here, we describe, and provide physiological examples of, a set of two-component controller motifs that show robust homeostasis. This basic set of controller motifs, which can be considered as complete, divides into two operational work modes, termed as inflow and outflow control. We show how controller combinations within a cell can integrate uptake and metabolization of a homeostatic controlled species and how pathways can be activated and lead to the formation of alternative products, as observed, for example, in the change of fermentation products by microorganisms when the supply of the carbon source is altered. The antagonistic character of hormonal control systems can be understood by a combination of inflow and outflow controllers. PMID:23199928

  16. Dechanneling by dislocation loops

    International Nuclear Information System (INIS)

    Chalant, Gerard.

    1976-09-01

    Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr

  17. Processing Oscillatory Signals by Incoherent Feedforward Loops.

    Science.gov (United States)

    Zhang, Carolyn; Tsoi, Ryan; Wu, Feilun; You, Lingchong

    2016-09-01

    From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs-the ability to process oscillatory signals. Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal "counting". We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose.

  18. Modeling and simulation of Indus-2 RF feedback control system

    International Nuclear Information System (INIS)

    Sharma, D.; Bagduwal, P.S.; Tiwari, N.; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Indus-2 synchrotron radiation source has four RF stations along with their feedback control systems. For higher beam energy and current operation amplitude and phase feedback control systems of Indus-2 are being upgraded. To understand the behaviour of amplitude and phase control loop under different operating conditions, modelling and simulation of RF feedback control system is done. RF cavity baseband I/Q model has been created due to its close correspondence with actual implementation and better computational efficiency which makes the simulation faster. Correspondence between cavity baseband and RF model is confirmed by comparing their simulation results. Low Level RF (LLRF) feedback control system simulation is done using the same cavity baseband I/Q model. Error signals are intentionally generated and response of the closed loop system is observed. Simulation will help us in optimizing parameters of upgraded LLRF system for higher beam energy and current operation. (author)

  19. GNG Motifs Can Replace a GGG Stretch during G-Quadruplex Formation in a Context Dependent Manner.

    Science.gov (United States)

    Das, Kohal; Srivastava, Mrinal; Raghavan, Sathees C

    2016-01-01

    G-quadruplexes are one of the most commonly studied non-B DNA structures. Generally, these structures are formed using a minimum of 4, three guanine tracts, with connecting loops ranging from one to seven. Recent studies have reported deviation from this general convention. One such deviation is the involvement of bulges in the guanine tracts. In this study, guanines along with bulges, also referred to as GNG motifs have been extensively studied using recently reported HOX11 breakpoint fragile region I as a model template. By strategic mutagenesis approach we show that the contribution from continuous G-tracts may be dispensible during G-quadruplex formation when such motifs are flanked by GNGs. Importantly, the positioning and number of GNG/GNGNG can also influence the formation of G-quadruplexes. Further, we assessed three genomic regions from HIF1 alpha, VEGF and SHOX gene for G-quadruplex formation using GNG motifs. We show that HIF1 alpha sequence harbouring GNG motifs can fold into intramolecular G-quadruplex. In contrast, GNG motifs in mutant VEGF sequence could not participate in structure formation, suggesting that the usage of GNG is context dependent. Importantly, we show that when two continuous stretches of guanines are flanked by two independent GNG motifs in a naturally occurring sequence (SHOX), it can fold into an intramolecular G-quadruplex. Finally, we show the specific binding of G-quadruplex binding protein, Nucleolin and G-quadruplex antibody, BG4 to SHOX G-quadruplex. Overall, our study provides novel insights into the role of GNG motifs in G-quadruplex structure formation which may have both physiological and pathological implications.

  20. GNG Motifs Can Replace a GGG Stretch during G-Quadruplex Formation in a Context Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Kohal Das

    Full Text Available G-quadruplexes are one of the most commonly studied non-B DNA structures. Generally, these structures are formed using a minimum of 4, three guanine tracts, with connecting loops ranging from one to seven. Recent studies have reported deviation from this general convention. One such deviation is the involvement of bulges in the guanine tracts. In this study, guanines along with bulges, also referred to as GNG motifs have been extensively studied using recently reported HOX11 breakpoint fragile region I as a model template. By strategic mutagenesis approach we show that the contribution from continuous G-tracts may be dispensible during G-quadruplex formation when such motifs are flanked by GNGs. Importantly, the positioning and number of GNG/GNGNG can also influence the formation of G-quadruplexes. Further, we assessed three genomic regions from HIF1 alpha, VEGF and SHOX gene for G-quadruplex formation using GNG motifs. We show that HIF1 alpha sequence harbouring GNG motifs can fold into intramolecular G-quadruplex. In contrast, GNG motifs in mutant VEGF sequence could not participate in structure formation, suggesting that the usage of GNG is context dependent. Importantly, we show that when two continuous stretches of guanines are flanked by two independent GNG motifs in a naturally occurring sequence (SHOX, it can fold into an intramolecular G-quadruplex. Finally, we show the specific binding of G-quadruplex binding protein, Nucleolin and G-quadruplex antibody, BG4 to SHOX G-quadruplex. Overall, our study provides novel insights into the role of GNG motifs in G-quadruplex structure formation which may have both physiological and pathological implications.

  1. Dynamic motifs in socio-economic networks

    Science.gov (United States)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  2. Annotating RNA motifs in sequences and alignments.

    Science.gov (United States)

    Gardner, Paul P; Eldai, Hisham

    2015-01-01

    RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterize RNA motifs, which are critical components of many RNA structure-function relationships. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterized RNAs. Moreover, we introduce a new profile-based database of RNA motifs--RMfam--and illustrate some applications for investigating the evolution and functional characterization of RNA. All the data and scripts associated with this work are available from: https://github.com/ppgardne/RMfam. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. New interferometric fiber-optic gyroscope with amplified optical feedback.

    Science.gov (United States)

    Shi, C X; Yuhara, T; Iizuka, H; Kajioka, H

    1996-01-20

    A novel interferometric fiber-optic gyroscope with amplified optical feedback by an Er-doped fiber amplifier (EDFA) is proposed and theoretically investigated (the proposed gyroscope is named the feedback EDFA-FOG, FE-FOG in what follows). The FE-FOG functions like a resonant fiber-optic gyro (R-FOG) because of its multiple utilization of the Sagnac loop; however, it is completely different because a low-coherence light source is used. In addition, the gyro output signal is pulsed because the modulation frequency of the phase modulator placed in the Sagnac loop is selected to match the total round-trip time delay of the light, which includes the Sagnac-loop delay plus that of the feedback loop of the fiber amplifier. The sharpness of the output pulse can be adjusted by both the gain of an EDFA and the modulation depth of the phase modulator. When rotation occurs the peak position of the output pulse is shifted as a result of the Sagnac effect. The resolution of the rotation measurement depends on the sharpness of the output pulse. The techniques of both the open-loop and closed-loop methods are described in detail, which shows the great advantage of the proposed gyroscope over the to the conventional interferometric fiber-optical gyroscope (I-FOG).

  4. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down

    2007-01-01

    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  5. Particle tracking code of simulating global RF feedback

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1991-09-01

    It is well known in the ''control community'' that a good feedback controller design is deeply rooted in the physics of the system. For example, when accelerating the beam we must keep several parameters under control so that the beam travels within the confined space. Important parameters include the frequency and phase of the rf signal, the dipole field, and the cavity voltage. Because errors in these parameters will progressively mislead the beam from its projected path in the tube, feedback loops are used to correct the behavior. Since the feedback loop feeds energy to the system, it changes the overall behavior of the system and may drive it to instability. Various types of controllers are used to stabilize the feedback loop. Integrating the beam physics with the feedback controllers allows us to carefully analyze the beam behavior. This will not only guarantee optimal performance but will also significantly enhance the ability of the beam control engineer to deal effectively with the interaction of various feedback loops. Motivated by this theme, we developed a simple one-particle tracking code to simulate particle behavior with feedback controllers. In order to achieve our fundamental objective, we can ask some key questions: What are the input and output parameters? How can they be applied to the practical machine? How can one interface the rf system dynamics such as the transfer characteristics of the rf cavities and phasing between the cavities? Answers to these questions can be found by considering a simple case of a single cavity with one particle, tracking it turn-by-turn with appropriate initial conditions, then introducing constraints on crucial parameters. Critical parameters are rf frequency, phase, and amplitude once the dipole field has been given. These are arranged in the tracking code so that we can interface the feedback system controlling them

  6. RF feedback simulation for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Tighe, R.

    1994-06-01

    A model, of the beam and RF system for PEP-11 has been developed to allow both time-domain simulation and frequency-domain analysis of the complete system. The model includes the full set of feedback loops and nonlinear elements such as the beam and klystron. The model may be used to predict beam and feedback stability in the presence of nonlinearities through time-domain simulation as well as system frequency response about a given operating point

  7. Feedback on Feedback--Does It Work?

    Science.gov (United States)

    Speicher, Oranna; Stollhans, Sascha

    2015-01-01

    It is well documented that providing assessment feedback through the medium of screencasts is favourably received by students and encourages deeper engagement with the feedback given by the language teacher (inter alia Abdous & Yoshimura, 2010; Brick & Holmes, 2008; Cann, 2007; Stannard, 2007). In this short paper we will report the…

  8. Operation of the PEP transverse beam feedback

    International Nuclear Information System (INIS)

    Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.

    1981-02-01

    The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results

  9. Looping in OLSRv2 in Mobile Ad-Hoc Networks, Loop Suppression and Loop Correction

    Science.gov (United States)

    Speakman, Lee; Owada, Yasunori; Mase, Kenichi

    Transient routing loops have been observed to form in Mobile Ad-hoc Networks running the OLSRv2 proactive link-state routing protocol. The packets falling into loops impact the surrounding network thus degrading throughput even though only a small proportion of the traffic may enter these loops and only for a short time. This becomes significantly more evident when Link Layer Notification is used to catch broken links, inadvertently leading to an increase in the number of loops. Two methods of Loop Detection are introduced and are used to trigger either Loop Suppression by selectively and preemptively discarding the looping packets that are unlikely to reach their destination, or Loop Correction by the notification of the routing protocol to cut the link over which the packet is looping. The newly introduced Loop Suppression and Loop Correction techniques used with Link Layer Notification are shown to significantly increase network performance over plain OLSRv2 and OLSRv2 with Link Layer Notification.

  10. Feedback Augmented Sub-Ranging (FASR) Quantizer

    Science.gov (United States)

    Guilligan, Gerard

    2012-01-01

    This innovation is intended to reduce the size, power, and complexity of pipeline analog-to-digital converters (ADCs) that require high resolution and speed along with low power. Digitizers are important components in any application where analog signals (such as light, sound, temperature, etc.) need to be digitally processed. The innovation implements amplification of a sampled residual voltage in a switched capacitor amplifier stage that does not depend on charge redistribution. The result is less sensitive to capacitor mismatches that cause gain errors, which are the main limitation of such amplifiers in pipeline ADCs. The residual errors due to mismatch are reduced by at least a factor of 16, which is equivalent to at least 4 bits of improvement. The settling time is also faster because of a higher feedback factor. In traditional switched capacitor residue amplifiers, closed-loop amplification of a sampled and held residue signal is achieved by redistributing sampled charge onto a feedback capacitor around a high-gain transconductance amplifier. The residual charge that was sampled during the acquisition or sampling phase is stored on two or more capacitors, often equal in value or integral multiples of each other. During the hold or amplification phase, all of the charge is redistributed onto one capacitor in the feedback loop of the amplifier to produce an amplified voltage. The key error source is the non-ideal ratios of feedback and input capacitors caused by manufacturing tolerances, called mismatches. The mismatches cause non-ideal closed-loop gain, leading to higher differential non-linearity. Traditional solutions to the mismatch errors are to use larger capacitor values (than dictated by thermal noise requirements) and/or complex calibration schemes, both of which increase the die size and power dissipation. The key features of this innovation are (1) the elimination of the need for charge redistribution to achieve an accurate closed-loop gain of two

  11. rRNA C-Loops: Mechanical Properties of a Recurrent Structural Motif

    Czech Academy of Sciences Publication Activity Database

    Dršata, Tomáš; Réblová, K.; Beššeová, Ivana; Šponer, Jiří; Lankaš, Filip

    2017-01-01

    Roč. 13, č. 7 (2017), s. 3359-3371 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GA14-21893S Institutional support: RVO:61388963 ; RVO:68081707 Keywords : molecular dynamics simulations * residual dipolar couplings * A-site finger Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 5.245, year: 2016

  12. The EH1 motif in metazoan transcription factors

    Directory of Open Access Journals (Sweden)

    Copley Richard R

    2005-11-01

    Full Text Available Abstract Background The Engrailed Homology 1 (EH1 motif is a small region, believed to have evolved convergently in homeobox and forkhead containing proteins, that interacts with the Drosophila protein groucho (C. elegans unc-37, Human Transducin-like Enhancers of Split. The small size of the motif makes its reliable identification by computational means difficult. I have systematically searched the predicted proteomes of Drosophila, C. elegans and human for further instances of the motif. Results Using motif identification methods and database searching techniques, I delimit which homeobox and forkhead domain containing proteins also have likely EH1 motifs. I show that despite low database search scores, there is a significant association of the motif with transcription factor function. I further show that likely EH1 motifs are found in combination with T-Box, Zinc Finger and Doublesex domains as well as discussing other plausible candidate associations. I identify strong candidate EH1 motifs in basal metazoan phyla. Conclusion Candidate EH1 motifs exist in combination with a variety of transcription factor domains, suggesting that these proteins have repressor functions. The distribution of the EH1 motif is suggestive of convergent evolution, although in many cases, the motif has been conserved throughout bilaterian orthologs. Groucho mediated repression was established prior to the evolution of bilateria.

  13. RNA structural motif recognition based on least-squares distance.

    Science.gov (United States)

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.

  14. CONTEMPORARY USAGE OF TRADITIONAL TURKISH MOTIFS IN PRODUCT DESIGNS

    Directory of Open Access Journals (Sweden)

    Tulay Gumuser

    2012-12-01

    Full Text Available The aim of this study is to identify the traditional Turkish motifs and its relations among present industrial designs. Traditional Turkish motifs played a very important role in 16th century onwards. The arts of the Ottoman Empire were used because of their symbolic meanings and unique styles. When we examine these motifs we encounter; Tiger Stripe, Three Spot (Çintemani, Rumi, Hatayi, Penç, Cloud, Crescent, Star, Crown, Hyacinth, Tulip and Carnation motifs. Nowadays, Turkish designers have begun to use these traditional Turkish motifs in their designs so as to create differences and awareness in the world design. The examples of these industrial designs, using the Turkish motifs, have survived and have Ottoman heritage and historical value. In this study, the Turkish motifs will be examined along with their focus on contemporary Turkish industrial designs used today.

  15. Tubuloglomerular feedback in Dahl rats

    DEFF Research Database (Denmark)

    Karlsen, F M; Leyssac, P P; Holstein-Rathlou, N H

    1998-01-01

    We have previously demonstrated a loss of autoregulation in Dahl salt-sensitive (Dahl-S) rats rendered hypertensive on a high-salt diet. To determine whether this was due to a decreased activity of either the myogenic or the tubuloglomerular feedback (TGF) response, we tested the TGF response...... in both Dahl-S and salt-resistant Dahl rats on high- and low-salt diets. TGF was investigated in the closed-loop mode with a videometric technique, in which the response in late proximal flow rate to perturbations in Henle flow rate was measured. All Dahl rats showed a similar compensatory response...... to perturbations around the natural operating point, with a TGF response that was more efficient than in normotensive Sprague-Dawley rats. No evidence of decreased TGF responsiveness in hypertensive Dahl-S rats was found. The results suggest that the loss of autoregulation in hypertensive Dahl-S rats is due...

  16. Assessing the Exceptionality of Coloured Motifs in Networks

    Directory of Open Access Journals (Sweden)

    Lacroix Vincent

    2009-01-01

    Full Text Available Various methods have been recently employed to characterise the structure of biological networks. In particular, the concept of network motif and the related one of coloured motif have proven useful to model the notion of a functional/evolutionary building block. However, algorithms that enumerate all the motifs of a network may produce a very large output, and methods to decide which motifs should be selected for downstream analysis are needed. A widely used method is to assess if the motif is exceptional, that is, over- or under-represented with respect to a null hypothesis. Much effort has been put in the last thirty years to derive -values for the frequencies of topological motifs, that is, fixed subgraphs. They rely either on (compound Poisson and Gaussian approximations for the motif count distribution in Erdös-Rényi random graphs or on simulations in other models. We focus on a different definition of graph motifs that corresponds to coloured motifs. A coloured motif is a connected subgraph with fixed vertex colours but unspecified topology. Our work is the first analytical attempt to assess the exceptionality of coloured motifs in networks without any simulation. We first establish analytical formulae for the mean and the variance of the count of a coloured motif in an Erdös-Rényi random graph model. Using simulations under this model, we further show that a Pólya-Aeppli distribution better approximates the distribution of the motif count compared to Gaussian or Poisson distributions. The Pólya-Aeppli distribution, and more generally the compound Poisson distributions, are indeed well designed to model counts of clumping events. Altogether, these results enable to derive a -value for a coloured motif, without spending time on simulations.

  17. SNARE motif: A common motif used by pathogens to manipulate membrane fusion

    Science.gov (United States)

    Wesolowski, Jordan

    2010-01-01

    To penetrate host cells through their membranes, pathogens use a variety of molecular components in which the presence of heptad repeat motifs seems to be a prevailing element. Heptad repeats are characterized by a pattern of seven, generally hydrophobic, residues. In order to initiate membrane fusion, viruses use glycoproteins-containing heptad repeats. These proteins are structurally and functionally similar to the SNARE proteins known to be involved in eukaryotic membrane fusion. SNAREs also display a heptad repeat motif called the “SNARE motif”. As bacterial genomes are being sequenced, microorganisms also appear to be carrying membrane proteins resembling eukaryotic SNAREs. This category of SNARE-like proteins might share similar functions and could be used by microorganisms to either promote or block membrane fusion. Such a recurrence across pathogenic organisms suggests that this architectural motif was evolutionarily selected because it most effectively ensures the survival of pathogens within the eukaryotic environment. PMID:21178463

  18. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  19. The Mythology of Feedback

    Science.gov (United States)

    Adcroft, Andy

    2011-01-01

    Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues…

  20. A review of control strategies in closed-loop neuroprosthetic systems

    Directory of Open Access Journals (Sweden)

    James Wright

    2016-07-01

    Full Text Available It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability and greater embodiment have all been reported in systems utilizing some form of feedback. However the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems.

  1. Grid-Current-Feedback Control for LCL-Filtered Grid Converters With Enhanced Stability

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2017-01-01

    This paper proposes a Second-Order-Generalized- Integrator (SOGI)-based time delay compensation method for extending the stable region of dual-loop Grid-Current-Feedback (GCF) control system. According to the analysis, stable region of the dual-loop system should be designed below a certain...... critical frequency, before time delay compensation method can be applied. To always meet the requirement, relationship between single-loop converter-current-feedback and dual-loop GCF control is clarified, before a robust inner-loop gain for the dualloop GCF scheme is determined. Enforcing this gain allows...... the converter to remain in its stable region, regardless of how its LCL-filter parameters and grid impedance vary. The SOGIbased delay compensation method can then be applied for widening the stable region of the dual-loop GCF scheme, as proven through s-domain Bode diagrams and z-domain root loci...

  2. Multilayer motif analysis of brain networks

    Science.gov (United States)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  3. Closing global material loops

    DEFF Research Database (Denmark)

    Prosman, Ernst-Jan; Wæhrens, Brian Vejrum; Liotta, Giacomo

    2017-01-01

    Replacing virgin materials with waste materials, a practice known as Industrial Symbiosis (IS), has been identified as a key strategy for closing material loops. This article adopts a critical view on geographic proximity and external coordinators – two key enablers of IS. By ‘uncovering’ a case ...... for geographic proximity and external coordinators. In doing so, our insights into firm-level challenges of long-distance IS exchanges contribute to closing global material loops by increasing the number of potential circular pathways....

  4. UKIRAN KERAWANG ACEH GAYO SEBAGAI INSPIRASI PENCIPTAAN MOTIF BATIK KHAS GAYO

    Directory of Open Access Journals (Sweden)

    Irfa ina Rohana Salma

    2016-12-01

    Full Text Available ABSTRAK Industri batik mulai berkembang di Gayo, tetapi belum memiliki motif batik khas daerah. Oleh karena itu perlu diciptakan motif batik khas Gayo, dengan mengambil inspirasi dari ukiran yang terdapat pada rumah tradisional yang biasa disebut ukiran kerawang Gayo. Tujuan penciptaan seni ini adalah untuk menciptakan motif batik yang memiliki ciri khas Gayo. Metode yang digunakan yaitu eksplorasi ide, perancangan, dan perwujudan menjadi motif batik. Dalam kegiatan ini telah diciptakan enam motif batik khas Gayo yaitu: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif Gayo Lurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. Hasil uji kesukaan terhadap motif kepada lima puluh responden menunjukkan bahwa Motif Ceplok Gayo paling banyak dipilih oleh responden yaitu sebesar 19%, sedangkan Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo Lurus 15% dan Motif Gayo Tegak 14%. Rata-rata motif yang dihasilkan mendapatkan apresiasi yang baik dari responden, sehingga semua motif layak diproduksi sebagai batik khas Gayo.Kata kunci: batik Gayo, Motif Ceplok Gayo, Motif Parang Gayo.ABSTRACTBatik industry began to develop in Gayo, but have not had a typical batik motif itself. Therefore, it is necessary to create batik motifs of Gayo, by taking inspiration from the carvings found in traditional houses commonly called kerawang Gayo. The purpose of this art is to create motifs those have a Gayo characteristic. The method used are the idea exploration, design, and motifs embodiment. In this activity has created six Gayo batik motifs, namely: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif GayoLurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. The test results fondness of the motives to fifty respondents indicated that the Motif Ceplok Gayo most preferred by respondents ie 19%, while Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo

  5. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  6. Laser cooling in a feedback-controlled optical shaker

    International Nuclear Information System (INIS)

    Vilensky, Mark Y.; Averbukh, Ilya Sh.; Prior, Yehiam

    2006-01-01

    We explore the prospects of optical shaking, a recently suggested generic approach to laser cooling of neutral atoms and molecules. Optical shaking combines elements of Sisyphus cooling and of stochastic cooling techniques and is based on feedback-controlled interaction of particles with strong nonresonant laser fields. The feedback loop guarantees a monotonous energy decrease without a loss of particles. We discuss two types of feedback algorithms and provide an analytical estimation of their cooling rate. We study the robustness of optical shaking against noise and establish minimal stability requirements for the lasers. The analytical predictions are in a good agreement with the results of detailed numerical simulations

  7. Formulation and Simulations of the Conserving Algorithm for Feedback Stabilization on Rigid Body Rotations

    OpenAIRE

    Yong-Ren Pu; Thomas A. Posbergh

    2014-01-01

    The problem of stabilization of rigid bodies has received a great deal of attention for many years. People have developed a variety of feedback control laws to meet their design requirements and have formulated various but mostly open loop numerical algorithms for the dynamics of the corresponding closed loop systems. Since the conserved quantities such as energy, momentum, and symmetry play an important role in the dynamics, we investigate the conserved quantities for the closed loop control...

  8. Feedback and Incentives

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    2009-01-01

    This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. We...... use two pay schemes, a piece rate and a tournament. We find that overall feedback does not improve performance. In contrast to the piece-rate pay scheme there is some evidence of positive peer effects in tournaments since the underdogs almost never quit the competition even when lagging significantly...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....

  9. Digital limiter for a self-excited loop

    International Nuclear Information System (INIS)

    Joshi, G.; Singh, P.; Agarwal, V.; Kumar, G.

    2015-01-01

    Limiter is one of the main signal processing modules of a self-excited loop (SEL). It plays a crucial role in initiating and stabilizing the amplitude of the RF field in a free running SEL. In a recently reported implementation of a self excited loop in digital domain, the limiter has been realized at based band in the form of a feedback loop. This feedback loop stabilizes the amplitude of the RF phasor present at its input without affecting its phase. In the present work we study the suitability of this implementation of limiter through analysis and simulations. An approximate equivalent model of an SEL, incorporating the digital limiter, is created in analog domain. It is demonstrated that even in the presence for large transients, such as, at the start up of oscillations, SEL continues to exhibit smooth and predictable response. In free running mode of operation the coupling from loop oscillation frequency change to resonator field amplitude change is absent, thus avoiding instability due to electro-mechanical coupling. In the locked mode, the transmission of amplitude jitter through the limiter is far exceeded by that through the controller gain thereby keeping the behavior of the digital SEL close to its analog counterpart. (author)

  10. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  11. Justification by Infinite Loops

    NARCIS (Netherlands)

    Peijnenburg, A.J.M.; Atkinson, David

    2010-01-01

    In an earlier paper we have shown that a proposition can have a well-defined probability value, even if its justification consists of an infinite linear chain. In the present paper we demonstrate that the same holds if the justification takes the form of a closed loop. Moreover, in the limit that

  12. Improving Loop Dependence Analysis

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo; Karlsson, Sven

    2017-01-01

    Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve th...

  13. Quantifying the ice-albedo feedback through decoupling

    Science.gov (United States)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  14. Using deflation in the pole assignment problem with output feedback

    Science.gov (United States)

    Miminis, George

    1989-01-01

    A direct algorithm is suggested for the computation of a linear output feedback for a multi input, multi output system such that the resultant closed-loop matrix has eigenvalues that include a specified set of eigenvalues. The algorithm uses deflation based on unitary similarity transformations. Thus researchers hope the algorithm is numerically stable; however, this has not been proven as yet.

  15. An Affinity Propagation-Based DNA Motif Discovery Algorithm

    Directory of Open Access Journals (Sweden)

    Chunxiao Sun

    2015-01-01

    Full Text Available The planted (l,d motif search (PMS is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  16. Multi-model MPC with output feedback

    Directory of Open Access Journals (Sweden)

    J. M. Perez

    2014-03-01

    Full Text Available In this work, a new formulation is presented for the model predictive control (MPC of a process system that is represented by a finite set of models, each one corresponding to a different operating point. The general case is considered of systems with stable and integrating outputs in closed-loop with output feedback. For this purpose, the controller is based on a non-minimal order model where the state is built with the measured outputs and the manipulated inputs of the control system. Therefore, the state can be considered as perfectly known and, consequently, there is no need to include a state observer in the control loop. This property of the proposed modeling approach is convenient to extend previous stability results of the closed loop system with robust MPC controllers based on state feedback. The controller proposed here is based on the solution of two optimization problems that are solved sequentially at the same time step. The method is illustrated with a simulated example of the process industry. The rigorous simulation of the control of an adiabatic flash of a multi-component hydrocarbon mixture illustrates the application of the robust controller. The dynamic simulation of this process is performed using EMSO - Environment Model Simulation and Optimization. Finally, a comparison with a linear MPC using a single model is presented.

  17. Rail-to-rail low-power fully differential OTA utilizing adaptive biasing and partial feedback

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    consumption. The DC-gain of the proposed OTA is improved by adding a partial feedback loop. A Common-Mode Feedback (CMFB) circuit is required for fully differential rail-to-rail operation. Simulations show that the OTA topology has a low stand-by power consumption of 96μW and a high FoM of 3.84 [(V...

  18. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA.

    Science.gov (United States)

    Gamache, Eric R; Doh, Jung H; Ritz, Justin; Laederach, Alain; Bellaousov, Stanislav; Mathews, David H; Curcio, M Joan

    2017-04-26

    The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5' terminus of Ty1 RNA harbors cis -acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT). To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1), a 1-nucleotide interhelical loop and an 8-bp stem (S2) that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.

  19. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA

    Directory of Open Access Journals (Sweden)

    Eric R. Gamache

    2017-04-01

    Full Text Available The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5′ terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT. To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1, a 1-nucleotide interhelical loop and an 8-bp stem (S2 that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.

  20. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    Energy Technology Data Exchange (ETDEWEB)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  1. STEME: a robust, accurate motif finder for large data sets.

    Directory of Open Access Journals (Sweden)

    John E Reid

    Full Text Available Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient approximation (STEME to the EM algorithm that is at the core of many motif finders such as MEME. This approximation allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders. We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13 sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to Nagarajan et al. for the efficient calculation of motif E-values. STEME's source code is available under an open source license and STEME is available via a web interface.

  2. Discovery of stress responsive DNA regulatory motifs in Arabidopsis.

    Science.gov (United States)

    Ma, Shisong; Bachan, Shawn; Porto, Matthew; Bohnert, Hans J; Snyder, Michael; Dinesh-Kumar, Savithramma P

    2012-01-01

    The discovery of DNA regulatory motifs in the sequenced genomes using computational methods remains challenging. Here, we present MotifIndexer--a comprehensive strategy for de novo identification of DNA regulatory motifs at a genome level. Using word-counting methods, we indexed the existence of every 8-mer oligo composed of bases A, C, G, T, r, y, s, w, m, k, n or 12-mer oligo composed of A, C, G, T, n, in the promoters of all predicted genes of Arabidopsis thaliana genome and of selected stress-induced co-expressed genes. From this analysis, we identified number of over-represented motifs. Among these, major critical motifs were identified using a position filter. We used a model based on uniform distribution and the z-scores derived from this model to describe position bias. Interestingly, many motifs showed position bias towards the transcription start site. We extended this model to show biased distribution of motifs in the genomes of both A. thaliana and rice. We also used MotifIndexer to identify conserved motifs in co-expressed gene groups from two Arabidopsis species, A. thaliana and A. lyrata. This new comparative genomics method does not depend on alignments of homologous gene promoter sequences.

  3. Motif content comparison between monocot and dicot species

    Directory of Open Access Journals (Sweden)

    Matyas Cserhati

    2015-03-01

    Full Text Available While a number of DNA sequence motifs have been functionally characterized, the full repertoire of motifs in an organism (the motifome is yet to be characterized. The present study wishes to widen the scope of motif content analysis in different monocot and dicot species that include both rice species, Brachypodium, corn, wheat as monocots and Arabidopsis, Lotus japonica, Medicago truncatula, and Populus tremula as dicots. All possible existing motifs were analyzed in different regions of genomes such as were found in different sets of sequences in these species: the whole genome, core proximal and distal promoters, 5′ and 3′ UTRs, and the 1st introns. Due to the increased number of species involved in this study compared to previous works, species relationships were analyzed based on the similarity of common motif content. Certain secondary structure elements were inferred in the genomes of these species as well as new unknown motifs. The distribution of 20 motifs common to the studied species were found to have a significantly larger occurrence within the promoters and 3′ UTRs of genes, both being regulatory regions. Motifs common to the promoter regions of japonica rice, Brachypodium, and corn were also found in a number of orthologous and paralogous genes. Some of our motifs were found to be complementary to miRNA elements in Brachypodium distachyon and japonica rice.

  4. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  5. General, database-driven fast-feedback system for the Stanford Linear Collider

    International Nuclear Information System (INIS)

    Rouse, F.; Allison, S.; Castillo, S.; Gromme, T.; Hall, B.; Hendrickson, L.; Himel, T.; Krauter, K.; Sass, B.; Shoaee, H.

    1991-05-01

    A new feedback system has been developed for stabilizing the SLC beams at many locations. The feedback loops are designed to sample and correct at the 60 Hz repetition rate of the accelerator. Each loop can be distributed across several of the standard 80386 microprocessors which control the SLC hardware. A new communications system, KISNet, has been implemented to pass signals between the microprocessors at this rate. The software is written in a general fashion using the state space formalism of digital control theory. This allows a new loop to be implemented by just setting up the online database and perhaps installing a communications link. 3 refs., 4 figs

  6. Estimation of Model Uncertainties in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    This paper describe a method for estimation of parameters or uncertainties in closed-loop systems. The method is based on an application of the dual YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all systems stabilized by a given controller. The dual YJBK transfer function...... is a measure for the variation in the system seen through the feedback controller. It is shown that it is possible to isolate a certain number of parameters or uncertain blocks in the system exactly. This is obtained by modifying the feedback controller through the YJBK transfer function together with pre...

  7. Feedback control of torsion balance in measurement of gravitational constant G with angular acceleration method.

    Science.gov (United States)

    Quan, Li-Di; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Wang, Yong-Ji; Luo, Jun

    2014-01-01

    The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to [Formula: see text] at the signal frequency of 2 mHz, which contributes a [Formula: see text] uncertainty to the G value.

  8. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Science.gov (United States)

    McDonnell, Mark D; Yaveroğlu, Ömer Nebil; Schmerl, Brett A; Iannella, Nicolangelo; Ward, Lawrence M

    2014-01-01

    Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs) and 'functional' (partial subgraphs). Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  9. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs and 'functional' (partial subgraphs. Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  10. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    Science.gov (United States)

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  11. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  12. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  13. Transnationalism as a motif in family stories.

    Science.gov (United States)

    Stone, Elizabeth; Gomez, Erica; Hotzoglou, Despina; Lipnitsky, Jane Y

    2005-12-01

    Family stories have long been recognized as a vehicle for assessing components of a family's emotional and social life, including the degree to which an immigrant family has been willing to assimilate. Transnationalism, defined as living in one or more cultures and maintaining connections to both, is now increasingly common. A qualitative study of family stories in the family of those who appear completely "American" suggests that an affiliation with one's home country is nevertheless detectable in the stories via motifs such as (1) positively connotated home remedies, (2) continuing denigration of home country "enemies," (3) extensive knowledge of the home country history and politics, (4) praise of endogamy and negative assessment of exogamy, (5) superiority of home country to America, and (6) beauty of home country. Furthermore, an awareness of which model--assimilationist or transnational--governs a family's experience may help clarify a clinician's understanding of a family's strengths, vulnerabilities, and mode of framing their cultural experiences.

  14. Rekayasa Pengembangan Desain Motif Batik Khas Melayu

    Directory of Open Access Journals (Sweden)

    Eustasia Sri Murwati

    2016-04-01

    Full Text Available ABSTRAKPengembangan desain batik melalui rancang bangun perekayasaan desain menurut ragam hias Melayu meliputi pengembangan motif dan proses, termasuk pemilihan komposisi warna. Proses yang sering dilakukan yaitu proses celup, penghilangan lilin dan celup warna tumpangan atau proses colet, celup, penghilangan lilin atau celup kemudian penghilangan lilin yang disebut Batik Kelengan. Setiap pulau di Indonesia mempunyai ciri khas budaya dan kesenian yang dikenal dengan corak/ragam hias khas daerah, juga ornamen yang diminati oleh masyarakat dari daerah tersebut atau dari daerah lain. Kondisi demikian mendorong pertumbuhan industri kerajinan yang memanfaatkan unsur–unsur seni. Adapun motif yang diperoleh adalah: Ayam Berlaga, Bungo Matahari, Kuntum Bersanding, Lancang Kuning, Encong Kerinci, Durian Pecah, Bungo Bintang, Bungo Pauh Kecil, Riang-riang, Bungo Nagaro. Pengembangan desain tersebut dipilih 3 produk terbaik yang dinilai oleh 5 penilai yang ahli di bidang desain batik, yaitu motif Durian Pecah, Ayam Berlaga, dan Bungo Matahari. Rancang bangun diversifikasi desain dengan memanfaatkan unsur–unsur seni dan ketrampilan etnis Melayu yaitu pemilihan ragam hias dan motif batik Melayu untuk diterapkan ke bahan sandang dengan komposisi warna yang menarik, sehingga produk memenuhi selera konsumen. Memperbaiki keberagaman batik dengan meningkatkan desain produk antara lain menuangkan ragam hias Melayu ke dalam proses batik yang menggunakan berbagai macam warna sehingga komposisi warna memadai. Diperoleh hasil produk batik dengan ragam hias Melayu yang berkualitas dan komposisi warna yang sesuai dengan karakter ragam hias Melayu. Rancang bangun desain produk untuk mendapatkan formulasi desain serta kelayakan prosesnya dengan penekanan pada teknologi akrab lingkungan dilaksanakan dengan alternatif pendekatan yaitu penciptaan desain bentuk baru.Kata kunci: desain, batik, rancang bangun, ragam hias, MelayuABSTRACTDevelopment of batik design through

  15. Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System

    Science.gov (United States)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2004-01-01

    The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

  16. Ototoxicity of loop diuretics.

    Science.gov (United States)

    Rybak, L P

    1993-10-01

    The loop diuretics are drugs that increase the excretion of water and electrolytes in the urine by their action on the cells in the loop of Henle. Clinical reports of ototoxicity of these agents are reviewed, and the results of a number of studies in experimental animals are discussed. These drugs can cause either a temporary, or in some cases, a permanent loss of hearing in patients. Animal experiments show that these drugs act on the stria vascularis, producing edema of these tissues and a temporary loss of function, resulting in a decrease of the endocochlear potential. This can result in secondary effects on sound-evoked measures of hearing. As new information unfolds about protective agents, it may be possible to preserve hearing and maintain the desired therapeutic effect.

  17. Situated Formative Feedback

    DEFF Research Database (Denmark)

    Lukassen, Niels Bech; Wahl, Christian; Sorensen, Elsebeth Korsgaard

    This study addresses the conceptual challenge of providing students with good quality feedback to enhance student learning in an online community of practice (COP). The aim of the study is to identify feedback mechanisms in a virtual learning environment (VLE) and to create a full formative...... refer to this type of feedback as, Situated Formative Feedback (SFF). As a basis for exploring, identifying and discussing relevant aspects of SFF the paper analyses qualitative data from a Moodle dialogue. Data are embedded in the qualitative analytic program Nvivo and are analysed with a system...

  18. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  19. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  20. Policy Feedback System (PFS)

    Data.gov (United States)

    Social Security Administration — The Policy Feedback System (PFS) is a web application developed by the Office of Disability Policy Management Information (ODPMI) team that gathers empirical data...

  1. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  2. Loop Quantum Cosmology.

    Science.gov (United States)

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  3. Closing the loop.

    Science.gov (United States)

    Dassau, E; Atlas, E; Phillip, M

    2010-02-01

    The dream of closing the loop is actually the dream of creating an artificial pancreas and freeing the patients from being involved with the care of their own diabetes. Insulin-dependent diabetes (type 1) is a chronic incurable disease which requires constant therapy without the possibility of any 'holidays' or insulin-free days. It means that patients have to inject insulin every day of their life, several times per day, and in order to do it safely they also have to measure their blood glucose levels several times per day. Patients need to plan their meals, their physical activities and their insulin regime - there is only very small room for spontaneous activities. This is why the desire for an artificial pancreas is so strong despite the fact that it will not cure the diabetic patients. Attempts to develop a closed-loop system started in the 1960s but never got to a clinical practical stage of development. In recent years the availability of continuous glucose sensors revived those efforts and stimulated the clinician and researchers to believe that closing the loop might be possible nowadays. Many papers have been published over the years describing several different ideas on how to close the loop. Most of the suggested systems have a sensing arm that measures the blood glucose repeatedly or continuously, an insulin delivery arm that injects insulin upon command and a computer that makes the decisions of when and how much insulin to deliver. The differences between the various published systems in the literature are mainly in their control algorithms. However, there are also differences related to the method and site of glucose measurement and insulin delivery. SC glucose measurements and insulin delivery are the most studied option but other combinations of insulin measurements and glucose delivery including intravascular and intraperitoneal (IP) are explored. We tried to select recent publications that we believe had influenced and inspired people interested

  4. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  5. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer.

    Science.gov (United States)

    Weinberger, Leor S; Shenk, Thomas

    2007-01-01

    Animal viruses (e.g., lentiviruses and herpesviruses) use transcriptional positive feedback (i.e., transactivation) to regulate their gene expression. But positive-feedback circuits are inherently unstable when turned off, which presents a particular dilemma for latent viruses that lack transcriptional repressor motifs. Here we show that a dissipative feedback resistor, composed of enzymatic interconversion of the transactivator, converts transactivation circuits into excitable systems that generate transient pulses of expression, which decay to zero. We use HIV-1 as a model system and analyze single-cell expression kinetics to explore whether the HIV-1 transactivator of transcription (Tat) uses a resistor to shut off transactivation. The Tat feedback circuit was found to lack bi-stability and Tat self-cooperativity but exhibited a pulse of activity upon transactivation, all in agreement with the feedback resistor model. Guided by a mathematical model, biochemical and genetic perturbation of the suspected Tat feedback resistor altered the circuit's stability and reduced susceptibility to molecular noise, in agreement with model predictions. We propose that the feedback resistor is a necessary, but possibly not sufficient, condition for turning off noisy transactivation circuits lacking a repressor motif (e.g., HIV-1 Tat). Feedback resistors may be a paradigm for examining other auto-regulatory circuits and may inform upon how viral latency is established, maintained, and broken.

  6. Encoded expansion: an efficient algorithm to discover identical string motifs.

    Science.gov (United States)

    Azmi, Aqil M; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952-7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes [Formula: see text] in theoretical time complexity of [Formula: see text] and a space complexity of [Formula: see text] where [Formula: see text] is the length of the input sequence and [Formula: see text] is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes [Formula: see text] that occur at least [Formula: see text] times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than [Formula: see text] times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of [Formula: see text] and a space complexity of [Formula: see text] Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms.

  7. The limits of de novo DNA motif discovery.

    Directory of Open Access Journals (Sweden)

    David Simcha

    Full Text Available A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of

  8. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs

    Directory of Open Access Journals (Sweden)

    Ricardo eFlores

    2012-06-01

    Full Text Available As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson-Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunvioidae adopt multibranched conformations occasionally stabilized by kissing loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunvioidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures ⎯either global or local ⎯ determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.

  9. URS DataBase: universe of RNA structures and their motifs.

    Science.gov (United States)

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA-protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification.Database URL: http://server3.lpm.org.ru/urs/. © The Author(s) 2016. Published by Oxford University Press.

  10. Numerical study on identification of transfer functions in a feedback system and model reduction

    International Nuclear Information System (INIS)

    Kishida, Kuniharu

    1997-01-01

    Identification of transfer function matrices in a feedback system is discussed by using the singular value decomposition of Hankel matrix from the viewpoint of inverse problems. A method of model reduction is considered, and selection criteria are proposed for identification of them. Transformation formula between open loop and closed loop transfer function matrices are determined from the feedback loop structure, and they are needed for identification of open loop transfer function matrices under such a condition where the feedback system is in a minimum phase. Though the identifiability of open loop transfer function matrices can be examined in the framework of innovation model equivalent to the feedback system, there are pole-zero cancellations in the identification of them. The method to reduce a model order of an open loop transfer function is discussed by using the singular value decomposition of a gramian given by the open loop transfer function with higher degree. To check reliability of the present algorithm, a simulation study is performed for an example. (author)

  11. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...... of peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  12. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    Directory of Open Access Journals (Sweden)

    Nils E. R. Zimmermann

    2017-11-01

    Full Text Available Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP database (61,422 compounds for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  13. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  14. Fingerprint motifs of phytases | Fan | African Journal of Biotechnology

    African Journals Online (AJOL)

    Among the total of potential 173 phytases gained in 11 plant genomes through MAST, PAPhys are the major phytases, and HAPhys are the minor, and other phytase groups are not found in planta. Keywords: Phytase, fingerprint motif, multiple EM for motif elicitation (MEME), MAST African Journal of Biotechnology Vol.

  15. Functional diversity of CTCFs is encoded in their binding motifs.

    Science.gov (United States)

    Fang, Rongxin; Wang, Chengqi; Skogerbo, Geir; Zhang, Zhihua

    2015-08-28

    The CCCTC-binding factor (CTCF) has diverse regulatory functions. However, the definitive characteristics of the CTCF binding motif required for its functional diversity still remains elusive. Here, we describe a new motif discovery workflow by which we have identified three CTCF binding motif variations with highly divergent functionalities. Supported by transcriptomic, epigenomic and chromatin-interactomic data, we show that the functional diversity of the CTCF binding motifs is strongly associated with their GC content, CpG dinucleotide coverage and relative DNA methylation level at the 12th position of the motifs. Further analysis suggested that the co-localization of cohesin, the key factor in cohesion of sister chromatids, is negatively correlated with the CpG coverage and the relative DNA methylation level at the 12th position. Finally, we present evidences for a hypothetical model in which chromatin interactions between promoters and distal regulatory regions are likely mediated by CTCFs binding to sequences with high CpG. These results demonstrate the existence of definitive CTCF binding motifs corresponding to CTCF's diverse functions, and that the functional diversity of the motifs is strongly associated with genetic and epigenetic features at the 12th position of the motifs.

  16. An Examination of the Festival Motif in Femi Osofisan's Morountodun ...

    African Journals Online (AJOL)

    It is in this context that we closely look at how Femi Osofisan assertively leans on the aesthetic apparatus of the African traditional theatre to create Morountodun. In Morountodun, the rich elements of the traditional theatre are used as motif(s) to create a vintage and delightful play, which is very aesthetic and scintillating, yet ...

  17. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  18. Perceptions of Seshoeshoe fabric, naming and meanings of motifs ...

    African Journals Online (AJOL)

    It was further found that the choice of the fabric has increased in the market due to the wide variety of motifs and colours although the quality of fabric has not improved. There are still problems encountered by dressmakers when handling the fabric. Most participants in the study had a good knowledge of the names of motifs.

  19. Detecting Statistically Significant Communities of Triangle Motifs in Undirected Networks

    Science.gov (United States)

    2016-04-26

    extend the work of Perry et al. [6] by developing a statistical framework that supports the detection of triangle motif- based clusters in complex...priori, the need for triangle motif- based clustering. 2. Developed an algorithm for clustering undirected networks, where the triangle con guration was...13 5 Application to Real Networks 18 5.1 2012 FBS Football Schedule Network

  20. Ancient Writers’ Motifs in Spanish Golden Age Drama

    Directory of Open Access Journals (Sweden)

    Bojana Tomc

    2016-12-01

    Full Text Available In Spanish Golden Age drama we come across all forms of the reception of ancient writers’ motifs: explicit (direct quotation of an ancient author, where the quotation may be more or less complete, or a clear allusion to it, implicit (where there is no explicit mentioning of the ancient source, however certain ancient elements are mentioned such as persons, places, historical circumstances, hidden (where there is no clear hint about a literary intervention in Antiquity or an imitation of the literary excerpt or motif, as well as direct imitation (aemulatio or adaptation (variatio. In the Renaissance and Baroque there are almost no motifs, which could not be taken over from Antiquity without a transformation or innovation. If there is a close correspondence to the ancient motif, it is generally sufficient simply to mention it or employ a side motif as an illustration of a similar situation without elaborating the motif further or weaving it more deeply into the supporting fabric of the dramatic work. The ancient authors who contribute the motifs are numerous and diverse: Vergil, the Roman elegists Propertius in Tibullus, the lyric poet Horace, the comedian Plautus, the stoic philosopher Seneca, the historian Tacitus, the novelist Apuleius, as well as Greek dramatist Aeschylus and stoic philosopher Epictetus. The genres, which are a source for the surviving ancient motifs in the Golden Age in the selected authors, include literary as well as not-literary forms: epic poetry, lyric, dramatics, philosophy and historiography.

  1. Folding of single-stranded DNA quadruplexes containing an autonomously stable mini-hairpin loop.

    Science.gov (United States)

    Balkwill, Graham D; Garner, Thomas P; Searle, Mark S

    2009-05-01

    The single-stranded DNA quadruplex motif TG(3)-L(1)-G(3)-L(2)-G(3)-L(3)-G(3)T (where L(1), L(2) and L(3) are the three loop sequences) was used as a template for probing the effects of the loop sequences on stability and folding topology. An autonomously stable mini-hairpin sequence (ACGTAGT) was inserted into the central loop (L(2)) of different sequences with intrinsic propensities to form either parallel or anti-parallel structures. Single nucleotides (T) at positions L(1) and L(3) strongly favour the formation of a parallel structure with the L(2) hairpin insert affecting stability in the same way as a T(7) loop. However, in the context of an anti-parallel quadruplex with T(3) loops in positions L(1) and L(3), the mini-hairpin in the central loop forms a stable structure which enhances the T(m) of the quadruplex by approximately 10 degrees C when compared with the T(7) insert. The CD and UV melting data show that base pairing interactions within the ACGTAGT hairpin loop sequence, when accommodated as a diagonal loop in an anti-parallel structure, can enhance stability and lead to novel quadruplex structures, adding complexity to the folding landscape and expanding the potential repertoire of sequences that are able to regulate gene expression in vivo.

  2. A loop-based neural architecture for structured behavior encoding and decoding.

    Science.gov (United States)

    Gisiger, Thomas; Boukadoum, Mounir

    2018-02-01

    We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects of the mammal brain. Its main novelty lies in its topological structure which is built as an array of interacting elementary motifs shaped like loops. These loops come in various types and can implement functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each loop features two sets of neurons and a control region, linked together by non-recurrent projections. The two neural sets do the bulk of the loop's computations while the control unit specifies the timing and the conditions under which the computations implemented by the loop are to be performed. By functionally linking many such loops together, a neural network is obtained that may perform complex cognitive computations. To demonstrate the potential offered by such a system, we present two neural network simulations. The first illustrates the structure and dynamics of a single loop implementing a simple gating mechanism. The second simulation shows how connecting four loops in series can produce neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that this network reproduces electrophysiological measurements gathered in various regions of the brain of monkeys performing similar tasks. We also demonstrate connections between this type of neural network and recurrent or long short-term memory network models, and suggest ways to generalize them for future artificial intelligence research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tissue modification with feedback: the smart scalpel

    Science.gov (United States)

    Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.

    1998-10-01

    While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.

  4. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  5. Feedback For Helpers

    Science.gov (United States)

    Stromer, Walter F.

    1975-01-01

    The author offers some feedback to those in the helping professions in three areas: (1) forms and letters; (2) jumping to conclusions; and (3) blaming and belittling, in hopes of stimulating more feedback as well as more positive ways of performing their services. (HMV)

  6. Feedback og interpersonel kommunikation

    DEFF Research Database (Denmark)

    Dindler, Camilla

    2016-01-01

    Som interpersonel kommunikationsform handler feedback om at observere, mærke og italesætte det, som handler om relationen mellem samtaleparterne mere end om samtaleemnet. Her er fokus på, hvad der siges og hvordan der kommunikeres sammen. Feedback er her ikke en korrigerende tilbagemelding til...

  7. Closed-Loop and Robust Control of Quantum Systems

    Directory of Open Access Journals (Sweden)

    Chunlin Chen

    2013-01-01

    Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  8. Feedback i matematik

    DEFF Research Database (Denmark)

    Sortkær, Bent

    2017-01-01

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hartberg, Dobson, & Gran, 2012; Hattie & Timperley, 2007; Wiliam, 2015). Dette på trods af, at flere forskere påpeger, at feedback ikke altid er læringsfremmende...... (Hattie & Gan, 2011), og nogle endda viser, at feedback kan have en negativ virkning i forhold til præstationer (Kluger & DeNisi, 1996). Artiklen vil undersøge disse tilsyneladende modstridende resultater ved at stille spørgsmålet: Under hvilke forudsætninger virker feedback i matematik læringsfremmende......? Dette gøres ved at dykke ned i forskningslitteraturen omhandlende feedback ud fra en række temaer for på den måde at besvare ovenstående spørgsmål....

  9. Feedback and Incentives:

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie-Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedback....... The pay schemes are a piece rate payment scheme and a winner-takes-all tournament. We find that, regardless of the pay scheme used, feedback does not improve performance. There are no significant peer effects in the piece-rate pay scheme. In contrast, in the tournament scheme we find some evidence...... of positive peer effects since the underdogs almost never quit the competition even when lagging significantly behind, and frontrunners do not slack off. Moreover, in both pay schemes information feedback reduces the quality of the low performers' work....

  10. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  11. On some properties of conjugacy closed loops

    International Nuclear Information System (INIS)

    Adeniran, John Olusola

    2002-07-01

    It is shown that central loops are not conjugacy closed loops but instead are loops of units in their loop algebras that are conjugacy closed. It is also shown that certain inner mappings of a conjugacy closed loop are nuclear. Some invariants of left conjugacy closed loops are obtained. (author)

  12. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    OpenAIRE

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they wer...

  13. Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding.

    Science.gov (United States)

    Poznanović, Svetlana; Heitsch, Christine E

    2014-12-01

    We analyze the distribution of RNA secondary structures given by the Knudsen-Hein stochastic context-free grammar used in the prediction program Pfold. Our main theorem gives relations between the expected number of these motifs--independent of the grammar probabilities. These relations are a consequence of proving that the distribution of base pairs, of helices, and of different types of loops is asymptotically Gaussian in this model of RNA folding. Proof techniques use singularity analysis of probability generating functions. We also demonstrate that these asymptotic results capture well the expected number of RNA base pairs in native ribosomal structures, and certain other aspects of their predicted secondary structures. In particular, we find that the predicted structures largely satisfy the expected relations, although the native structures do not.

  14. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system

    Science.gov (United States)

    Ren, Wei; Deng, Chao; Mao, Yao; Ren, Ge

    2017-08-01

    In the optical stabilization control system (OSCS) control system based on a charge-coupled device (CCD), stabilization performance of the line-of-sight is severely limited by the mechanical resonance and the low sampling rate of the CCD. An approach to improve the stabilization performance of the OSCS control system with load restriction based on three loops, including an acceleration loop, a virtual velocity loop, and a position loop, by using MEMS accelerometers and a CCD is proposed. The velocity signal is obtained by accelerators instead of gyro sensors. Its advantages are low power, low cost, small size, and wide measuring range. A detailed analysis is provided to show how to design the virtual velocity loop and correct virtual velocity loop drift. Experimental results show that the proposed multiloop feedback control method with virtual velocity loop in which the disturbance suppression performance is better than that of the dual loop control with only an acceleration loop and a position loop at low frequency.

  15. Feedback - fra et elevperspektiv

    DEFF Research Database (Denmark)

    Petersen, Benedikte Vilslev; Pedersen, Bent Sortkær

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hattie og Timperley, 2007). Andre studier er dog inde på at feedback ikke altid er læringsfremmende og nogle viser endda at feedback kan have en negativ virkning i...... forhold til præstationer (Kluger & DeNisi, 1996). I forsøget på at forklare hvordan og hvorfor feedback virker (forskelligt), er der undersøgt flere dimensioner og forhold omkring feedback (se bl.a. Black og Wiliam, 1998; Hattie og Timperley, 2007; Shute, 2008). Dog er der få studier der undersøger...... hvordan feedback opleves fra et elevperspektiv (Ruiz-Primo og Li, 2013). Samtidig er der i feedbacklitteraturen en mangel på kvalitative studier, der kommer tæt på fænomenet feedback, som det viser sig i klasserummet (Ruiz-Primo og Li, 2013) i naturlige omgivelser (Black og Wiliam, 1998), og hvordan...

  16. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    David ePerruchoud; Micah M Murray; Micah M Murray; Jeremie eLefebvre; Silvio eIonta

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characteriz...

  17. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    Perruchoud David; Murray Micah; Lefebvre Jeremie; Ionta Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized b...

  18. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  19. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage

    DEFF Research Database (Denmark)

    Stella, Stefano; Alcón, Pablo; Montoya, Guillermo

    2017-01-01

    involved in DNA unwinding to form a CRISPR RNA (crRNA)-DNA hybrid and a displaced DNA strand. The protospacer adjacent motif (PAM) is recognized by the PAM-interacting domain. The loop-lysine helix-loop motif in this domain contains three conserved lysine residues that are inserted in a dentate manner...... into the double-stranded DNA. Unzipping of the double-stranded DNA occurs in a cleft arranged by acidic and hydrophobic residues facilitating the crRNA-DNA hybrid formation. The PAM single-stranded DNA is funnelled towards the nuclease site through a mixed hydrophobic and basic cavity. In this catalytic...... conformation, the PAM-interacting domain and the helix-loop-helix motif in the REC1 domain adopt a 'rail' shape and 'flap-on' conformations, respectively, channelling the PAM strand into the cavity. A steric barrier between the RuvC-II and REC1 domains forms the 'septum', separating the displaced PAM strand...

  20. Electronic implementation of a repressilator with quorum sensing feedback.

    Directory of Open Access Journals (Sweden)

    Edward H Hellen

    Full Text Available We investigate the dynamics of a synthetic genetic repressilator with quorum sensing feedback. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, an additional quorum sensing feedback loop stimulates the activity of a chosen gene providing competition between inhibitory and stimulatory activities localized in that gene. Numerical simulations show several interesting dynamics, multi-stability of limit cycle with stable steady-state, multi-stability of different stable steady-states, limit cycle with period-doubling and reverse period-doubling, and infinite period bifurcation transitions for both increasing and decreasing strength of quorum sensing feedback. We design an electronic analog of the repressilator with quorum sensing feedback and reproduce, in experiment, the numerically predicted dynamical features of the system. Noise amplification near infinite period bifurcation is also observed. An important feature of the electronic design is the accessibility and control of the important system parameters.

  1. Performance Measure as Feedback Variable in Image Processing

    Directory of Open Access Journals (Sweden)

    Ristić Danijela

    2006-01-01

    Full Text Available This paper extends the view of image processing performance measure presenting the use of this measure as an actual value in a feedback structure. The idea behind is that the control loop, which is built in that way, drives the actual feedback value to a given set point. Since the performance measure depends explicitly on the application, the inclusion of feedback structures and choice of appropriate feedback variables are presented on example of optical character recognition in industrial application. Metrics for quantification of performance at different image processing levels are discussed. The issues that those metrics should address from both image processing and control point of view are considered. The performance measures of individual processing algorithms that form a character recognition system are determined with respect to the overall system performance.

  2. Impact of biogenic emissions on feedbacks in the climate system

    Science.gov (United States)

    Krüger, Olaf

    2017-04-01

    Impact of biogenic emissions on feedbacks in the climate system Bio-geophysical feedback between marine or continental ecosystems and the atmosphere potentially can alter climate change. A prominent feedback loop which is under discussion since 1983 bases on the emission of biologically produced gases - molecular oxygen, sulphur containing compounds and possibly isoprene, supersaturated in oceanic waters - into the marine troposphere. These by-products of phytoplankton metabolism lead to aerosol production and procure sustained influence on climate via modulation of cloud optical properties. In this contribution some findings related to the above mentioned climate processes are presented with special emphasis on marine ecosystems. A comparison of marine and continental ecosystems is made and different processes with major impact on feedbacks in the climate system are discussed.

  3. Profile-based short linear protein motif discovery

    Directory of Open Access Journals (Sweden)

    Haslam Niall J

    2012-05-01

    Full Text Available Abstract Background Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation. Results The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset. Conclusions Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods.

  4. Recurrent Structural Motifs in Non-Homologous Protein Structures

    Directory of Open Access Journals (Sweden)

    Nicolas Guex

    2013-04-01

    Full Text Available We have extracted an extensive collection of recurrent structural motifs (RSMs, which consist of sequentially non-contiguous structural motifs (4–6 residues, each of which appears with very similar conformation in three or more mutually unrelated protein structures. We find that the proteins in our set are covered to a substantial extent by the recurrent non-contiguous structural motifs, especially the helix and strand regions. Computational alanine scanning calculations indicate that the average folding free energy changes upon alanine mutation for most types of non-alanine residues are higher for amino acids that are present in recurrent structural motifs than for amino acids that are not. The non-alanine amino acids that are most common in the recurrent structural motifs, i.e., phenylalanine, isoleucine, leucine, valine and tyrosine and the less abundant methionine and tryptophan, have the largest folding free energy changes. This indicates that the recurrent structural motifs, as we define them, describe recurrent structural patterns that are important for protein stability. In view of their properties, such structural motifs are potentially useful for inter-residue contact prediction and protein structure refinement.

  5. Parameterized algorithmics for finding connected motifs in biological networks.

    Science.gov (United States)

    Betzler, Nadja; van Bevern, René; Fellows, Michael R; Komusiewicz, Christian; Niedermeier, Rolf

    2011-01-01

    We study the NP-hard LIST-COLORED GRAPH MOTIF problem which, given an undirected list-colored graph G = (V, E) and a multiset M of colors, asks for maximum-cardinality sets S ⊆ V and M' ⊆ M such that G[S] is connected and contains exactly (with respect to multiplicity) the colors in M'. LIST-COLORED GRAPH MOTIF has applications in the analysis of biological networks. We study LIST-COLORED GRAPH MOTIF with respect to three different parameterizations. For the parameters motif size |M| and solution size |S|, we present fixed-parameter algorithms, whereas for the parameter |V| - |M|, we show W[1]-hardness for general instances and achieve fixed-parameter tractability for a special case of LIST-COLORED GRAPH MOTIF. We implemented the fixed-parameter algorithms for parameters |M| and |S|, developed further speed-up heuristics for these algorithms, and applied them in the context of querying protein-interaction networks, demonstrating their usefulness for realistic instances. Furthermore, we show that extending the request for motif connectedness to stronger demands, such as biconnectedness or bridge-connectedness leads to W[1]-hard problems when the parameter is the motif size |M|.

  6. Training effectiveness feedback

    International Nuclear Information System (INIS)

    Wiggin, N.A.

    1987-01-01

    A formal method of getting feedback about the job performance of employees is a necessary part of all the authors training programs. The formal process may prove to be inadequate if it is the only process in use. There are many ways and many opportunities to get good feedback about employee performance. It is important to document these methods and specific instances to supplement the more formalized process. The key is to identify them, encourage them, use them, and document the training actions that result from them. This paper describes one plant's method of getting feedback about performance of technicians in the field

  7. Brugbar peer feedback

    DEFF Research Database (Denmark)

    Hvass, Helle; Heger, Stine

    Studerende kan være medskabere af undervisning i akademisk skrivning, når de modtager og giver feedback til hinandens ufærdige akademiske tekster. Det ser vi i et udviklingsprojekt, hvor vi afprøver kollektive vejledningsformater. Vi har dog erfaret: 1. at studerende mangler træning i at give og ...... modtage feedback 2. at den manglende træning kan stå i vejen for realiseringen af læringspotentialet ved peer feedback....

  8. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  9. A putative three-dimensional targeting motif of polygalacturonase (PehA), a protein secreted through the type II (GSP) pathway in Erwinia carotovora.

    Science.gov (United States)

    Palomäki, Tiina; Pickersgill, Richard; Riekki, Ruusu; Romantschuk, Martin; Saarilahti, Hannu T

    2002-02-01

    Intramolecular information specifying protein secretion through the type II (GSP) pathway of Gram-negative bacteria was investigated. Two regions of the polygalacturonase (PehA) of Erwinia carotovora containing residues proposed to be included in a targeting motif were located, one close to the C-terminus between residues 342 and 369 and another between residues 84 and 135 in the large central loops. The regions were required together to promote secretion. Further residues in the middle of the protein were required for proper positioning of the regions, suggesting that they were both involved in interaction with the GSP. To our knowledge, this is the first time that a possible three-dimensional targeting motif has been defined. At least one of the motifs comprises a cluster on the surface of the protein. The two motifs are structurally dissimilar, suggesting that there are two distinct recognition regions in the GSP apparatus. Finally, we propose that the targeting motifs are of a complex conformational nature with some variability accommodated, as illustrated by the observation that many mutations exhibited no clear phenotype individually but, in combination, severely compromised secretion.

  10. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  11. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  12. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  13. NAIP 2015 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...

  14. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  15. Structure-Based Analysis of Toxoplasma gondii Profilin: A Parasite-Specific Motif Is Required for Recognition by Toll-Like Receptor 11

    Energy Technology Data Exchange (ETDEWEB)

    K Kucera; A Koblansky; L Saunders; K Frederick; E De La Cruz; S Ghosh; Y Modis

    2011-12-31

    Profilins promote actin polymerization by exchanging ADP for ATP on monomeric actin and delivering ATP-actin to growing filament barbed ends. Apicomplexan protozoa such as Toxoplasma gondii invade host cells using an actin-dependent gliding motility. Toll-like receptor (TLR) 11 generates an innate immune response upon sensing T. gondii profilin (TgPRF). The crystal structure of TgPRF reveals a parasite-specific surface motif consisting of an acidic loop, followed by a long {beta}-hairpin. A series of structure-based profilin mutants show that TLR11 recognition of the acidic loop is responsible for most of the interleukin (IL)-12 secretion response to TgPRF in peritoneal macrophages. Deletion of both the acidic loop and the {beta}-hairpin completely abrogates IL-12 secretion. Insertion of the T. gondii acidic loop and {beta}-hairpin into yeast profilin is sufficient to generate TLR11-dependent signaling. Substitution of the acidic loop in TgPRF with the homologous loop from the apicomplexan parasite Cryptosporidium parvum does not affect TLR11-dependent IL-12 secretion, while substitution with the acidic loop from Plasmodium falciparum results in reduced but significant IL-12 secretion. We conclude that the parasite-specific motif in TgPRF is the key molecular pattern recognized by TLR11. Unlike other profilins, TgPRF slows nucleotide exchange on monomeric rabbit actin and binds rabbit actin weakly. The putative TgPRF actin-binding surface includes the {beta}-hairpin and diverges widely from the actin-binding surfaces of vertebrate profilins.

  16. Closing the Loop: Integrating Body, Muscle and Environment with Locomotion Central Pattern Generators

    Science.gov (United States)

    2013-06-30

    between the neural circuitry, body, and fluid environment for swimming locomotion , where the lamprey serves as a model system1,2,3,4,5,6,7,8. Our...REPORT Final Report: Closing the Loop: Integrating Body, Muscle and Environment with Locomotion Central Pattern Generators 14. ABSTRACT 16. SECURITY...CLASSIFICATION OF: The role of sensory feedback is a central question in understanding vertebrate locomotion . Sensory feedback related to movement of

  17. Targeting functional motifs of a protein family

    Science.gov (United States)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  18. ROMANIAN FOLKLORE MOTIFS IN FASHION DESIGN

    Directory of Open Access Journals (Sweden)

    MOCENCO Alexandra

    2014-05-01

    Full Text Available The traditional Romanian costume such as the entire popular art (architecture, woodcarvins, pottery etc. was born and lasted in our country since ancient times. Closely related to human existence, the traditional costume reflected over the years as reflected nowadays, the mentality and artistic conception of the people. Today the traditional Romanian costume became an inspiration source to the wholesale fashion production industry designers, both Romanian and international. Although the contemporary designers are working in accordance with a vision, using a wide area of styles, methods and current technology, they usually return to traditional techniques and ethnic folklore motifs, which converts and resize them, integrating them in their contemporary space. Adrian Oianu is a very appreciated Romanian designer who launched two collections inspired by his native’s country traditional costumes: “Suflecata pan’ la brau” (“Turned up ‘til the belt” and “Bucurie” (“Joy”. Dorin Negrau had as inspiration for his “Lost” collection the traditional costume from the Bihor region. Yves Saint Laurent had a collection inspired by the Romanian traditional flax blouses called “La blouse roumaine”. The paper presents the traditional Romanian values throw fashion collections. The research activity will create innovative concepts to support the garment industry in order to develop their own brand and to bring the design activities in Romania at an international level. The research was conducted during the initial stage of a project, financed through national founds, consisting in a documentary study on ethnographic characteristics of the popular costume from different regions of the country.

  19. Semi-global output feedback stabilization for a class of nonlinear systems using homogeneous domination approach.

    Science.gov (United States)

    Zhai, Junyong; Du, Haibo

    2013-03-01

    This paper investigates the problem of semi-global stabilization by output feedback for a class of nonlinear systems using homogeneous domination approach. For each subsystem, we first design an output feedback stabilizer for the nominal system without the perturbing nonlinearities. Then, based on the ideas of the homogeneous systems theory and the adding a power integrator technique, a series of homogeneous output feedback stabilizers are constructed recursively for each subsystem and the closed-loop system is rendered semi-globally asymptotically stable. The efficiency of the output feedback stabilizers is demonstrated by a simulation example. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Vortex loops and Majoranas

    International Nuclear Information System (INIS)

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-01-01

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry

  1. Dynamic PID loop control

    International Nuclear Information System (INIS)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.

    2011-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  2. Closed loop reflux system

    International Nuclear Information System (INIS)

    De Witt, R.; Jepson, B.E.; Schwind, R.A.

    1975-01-01

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO 2 ) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO 3 ). Heavier sulfur isotopes are preferentially attracted to the NaHSO 3 , and subsequently reacted with sulfuric acid (H 2 SO 4 ) forming sodium hydrogen sulfate (NaHSO 4 ) and SO 2 gas, which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO 2 gas is subsequently separated and the NaHSO 4 is reacted with NaOH to form sodium sulfate (Na 2 SO 4 ), which is subsequently decomposed in an electrodialysis unit to form the NaOH and H 2 SO 4 components, which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials. (U.S.)

  3. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  4. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  5. Uranyl Nitrate Flow Loop

    International Nuclear Information System (INIS)

    Ladd-Lively, Jennifer L

    2008-01-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO 2 ), uranium tetrafluoride (UF 4 ), and uranium hexafluoride (UF 6 )] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF 6 product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by

  6. Stem loop sequences specific to transposable element IS605 are found linked to lipoprotein genes in Borrelia plasmids.

    Directory of Open Access Journals (Sweden)

    Nicholas Delihas

    Full Text Available BACKGROUND: Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level. METHODOLOGY/PRINCIPAL FINDINGS: In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found "free-standing" and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3' ends of lipoprotein genes (PFam12 and PFam60, however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place. CONCLUSIONS/SIGNIFICANCE: Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in

  7. Permanent magnet flux-biased magnetic actuator with flux feedback

    Science.gov (United States)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  8. Review article: The mountain motif in the plot of Matthew

    Directory of Open Access Journals (Sweden)

    Gert J. Volschenk

    2010-09-01

    Full Text Available This article reviewed T.L. Donaldson’s book, Jesus on the mountain: A study in Matthean theology, published in 1985 by JSOT Press, Sheffield, and focused on the mountain motif in the structure and plot of the Gospel of Matthew, in addition to the work of Donaldson on the mountain motif as a literary motif and as theological symbol. The mountain is a primary theological setting for Jesus’ ministry and thus is an important setting, serving as one of the literary devices by which Matthew structured and progressed his narrative. The Zion theological and eschatological significance and Second Temple Judaism serve as the historical and theological background for the mountain motif. The last mountain setting (Mt 28:16–20 is the culmination of the three theological themes in the plot of Matthew, namely Christology, ecclesiology and salvation history.

  9. Formulation and Simulations of the Conserving Algorithm for Feedback Stabilization on Rigid Body Rotations

    Directory of Open Access Journals (Sweden)

    Yong-Ren Pu

    2014-01-01

    Full Text Available The problem of stabilization of rigid bodies has received a great deal of attention for many years. People have developed a variety of feedback control laws to meet their design requirements and have formulated various but mostly open loop numerical algorithms for the dynamics of the corresponding closed loop systems. Since the conserved quantities such as energy, momentum, and symmetry play an important role in the dynamics, we investigate the conserved quantities for the closed loop control systems which formally or asymptotically stabilize rigid body rotation and modify the open loop numerical algorithms so that they preserve these important properties. Using several examples, the authors first use the open loop algorithm to simulate the tumbling rigid body actions and then use the resulting closed loop one to stabilize them.

  10. Mathematical model of the Drosophila circadian clock: loop regulation and transcriptional integration.

    Science.gov (United States)

    Fathallah-Shaykh, Hassan M; Bona, Jerry L; Kadener, Sebastian

    2009-11-04

    Eukaryotic circadian clocks include interconnected positive and negative feedback loops. The clock-cycle dimer (CLK-CYC) and its homolog, CLK-BMAL1, are key transcriptional activators of central components of the Drosophila and mammalian circadian networks, respectively. In Drosophila, negative loops include period-timeless and vrille; positive loops include par domain protein 1. Clockwork orange (CWO) is a recently discovered negative transcription factor with unusual effects on period, timeless, vrille, and par domain protein 1. To understand the actions of this protein, we introduced a new system of ordinary differential equations to model regulatory networks. The model is faithful in the sense that it replicates biological observations. CWO loop actions elevate CLK-CYC; the transcription of direct targets responds by integrating opposing signals from CWO and CLK-CYC. Loop regulation and integration of opposite transcriptional signals appear to be central mechanisms as they also explain paradoxical effects of period gain-of-function and null mutations.

  11. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    Aspects of the full theory of loop quantum gravity can be studied in a simpler context by reducing to symmetric models like cosmological ones. This leads to several applications where loop effects play a significant role when one is sensitive to the quantum regime. As a consequence, the structure of and the approach to ...

  12. RCD+: Fast loop modeling server.

    Science.gov (United States)

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-08

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Discovering Multidimensional Motifs in Physiological Signals for Personalized Healthcare

    Science.gov (United States)

    Balasubramanian, Arvind; Wang, Jun; Prabhakaran, Balakrishnan

    2016-01-01

    Personalized diagnosis and therapy requires monitoring patient activity using various body sensors. Sensor data generated during personalized exercises or tasks may be too specific or inadequate to be evaluated using supervised methods such as classification. We propose multidimensional motif (MDM) discovery as a means for patient activity monitoring, since such motifs can capture repeating patterns across multiple dimensions of the data, and can serve as conformance indicators. Previous studies pertaining to mining MDMs have proposed approaches that lack the capability of concurrently processing multiple dimensions, thus limiting their utility in online scenarios. In this paper, we propose an efficient real-time approach to MDM discovery in body sensor generated time series data for monitoring performance of patients during therapy. We present two alternative models for MDMs based on motif co-occurrences and temporal ordering among motifs across multiple dimensions, with detailed formulation of the concepts proposed. The proposed method uses an efficient hashing based record to enable speedy update and retrieval of motif sets, and identification of MDMs. Performance evaluation using synthetic and real body sensor data in unsupervised motif discovery tasks shows that the approach is effective for (a) concurrent processing of multidimensional time series information suitable for real-time applications, (b) finding unknown naturally occurring patterns with minimal delay, and (c) tracking similarities among repetitions, possibly during therapy sessions. PMID:28191269

  14. Efficient motif finding algorithms for large-alphabet inputs

    Directory of Open Access Journals (Sweden)

    Pavlovic Vladimir

    2010-10-01

    Full Text Available Abstract Background We consider the problem of identifying motifs, recurring or conserved patterns, in the biological sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are embedded as exact or inexact instances in all or most of the input strings. Results The proposed algorithm (1 improves search efficiency compared to existing algorithms, and (2 scales well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA we observed reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin and Immunoglobin families. Conclusions Our algorithm reduces computational complexity of the current motif finding algorithms and demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult cases of large-alphabet sequences.

  15. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    Science.gov (United States)

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  16. PISMA: A Visual Representation of Motif Distribution in DNA Sequences

    Directory of Open Access Journals (Sweden)

    Rogelio Alcántara-Silva

    2017-03-01

    Full Text Available Background: Because the graphical presentation and analysis of motif distribution can provide insights for experimental hypothesis, PISMA aims at identifying motifs on DNA sequences, counting and showing them graphically. The motif length ranges from 2 to 10 bases, and the DNA sequences range up to 10 kb. The motif distribution is shown as a bar-code–like, as a gene-map–like, and as a transcript scheme. Results: We obtained graphical schemes of the CpG site distribution from 91 human papillomavirus genomes. Also, we present 2 analyses: one of DNA motifs associated with either methylation-resistant or methylation-sensitive CpG islands and another analysis of motifs associated with exosome RNA secretion. Availability and Implementation: PISMA is developed in Java; it is executable in any type of hardware and in diverse operating systems. PISMA is freely available to noncommercial users. The English version and the User Manual are provided in Supplementary Files 1 and 2, and a Spanish version is available at www.biomedicas.unam.mx/wp-content/software/pisma.zip and www.biomedicas.unam.mx/wp-content/pdf/manual/pisma.pdf .

  17. BEAM web server: a tool for structural RNA motif discovery.

    Science.gov (United States)

    Pietrosanto, Marco; Adinolfi, Marta; Casula, Riccardo; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2018-03-15

    RNA structural motif finding is a relevant problem that becomes computationally hard when working on high-throughput data (e.g. eCLIP, PAR-CLIP), often represented by thousands of RNA molecules. Currently, the BEAM server is the only web tool capable to handle tens of thousands of RNA in input with a motif discovery procedure that is only limited by the current secondary structure prediction accuracies. The recently developed method BEAM (BEAr Motifs finder) can analyze tens of thousands of RNA molecules and identify RNA secondary structure motifs associated to a measure of their statistical significance. BEAM is extremely fast thanks to the BEAR encoding that transforms each RNA secondary structure in a string of characters. BEAM also exploits the evolutionary knowledge contained in a substitution matrix of secondary structure elements, extracted from the RFAM database of families of homologous RNAs. The BEAM web server has been designed to streamline data pre-processing by automatically handling folding and encoding of RNA sequences, giving users a choice for the preferred folding program. The server provides an intuitive and informative results page with the list of secondary structure motifs identified, the logo of each motif, its significance, graphic representation and information about its position in the RNA molecules sharing it. The web server is freely available at http://beam.uniroma2.it/ and it is implemented in NodeJS and Python with all major browsers supported. marco.pietrosanto@uniroma2.it. Supplementary data are available at Bioinformatics online.

  18. Characterizing Motif Dynamics of Electric Brain Activity Using Symbolic Analysis

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2014-10-01

    Full Text Available Motifs are small recurring circuits of interactions which constitute the backbone of networked systems. Characterizing motif dynamics is therefore key to understanding the functioning of such systems. Here we propose a method to define and quantify the temporal variability and time scales of electroencephalogram (EEG motifs of resting brain activity. Given a triplet of EEG sensors, links between them are calculated by means of linear correlation; each pattern of links (i.e., each motif is then associated to a symbol, and its appearance frequency is analyzed by means of Shannon entropy. Our results show that each motif becomes observable with different coupling thresholds and evolves at its own time scale, with fronto-temporal sensors emerging at high thresholds and changing at fast time scales, and parietal ones at low thresholds and changing at slower rates. Finally, while motif dynamics differed across individuals, for each subject, it showed robustness across experimental conditions, indicating that it could represent an individual dynamical signature.

  19. Two Important Stamp Motifs in Roman Britain and Thereafter

    Directory of Open Access Journals (Sweden)

    Diana C. Briscoe

    2016-03-01

    Full Text Available Stamped pottery has had a long and varied history in Britain. There have been periods when it flourished and periods when it almost totally disappeared. This article considers two variations of the rosette motif (A 5 and their fortunes from the late Iron Age to the Early Saxon period. Having been of little importance in the Iron Age and early Roman periods, they became some of the most widely used and distributed motifs in the fourth century. By the fifth century, they were still important, but formed a much smaller proportion of the total motifs than in the fourth century. In the vast majority of cases, there is no correlation between the find spots of fourth and fifth century examples. However, I have identified nine locations where one or other of the two motifs have been found on a late Roman site, which lies within a mile of another site with the same motif, but from the post-Roman period. In these rare conjunctions, I believe that ongoing usage of the motif can be demonstrated from Roman to post-Roman times. It is also clear that pot stamp evidence can be vital in identifying these highly unusual locations and pointing other researchers to sites worthy of special attention.

  20. An experimental test of a fundamental food web motif.

    Science.gov (United States)

    Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia

    2010-06-07

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities.

  1. Higher dimensional loop quantum cosmology

    International Nuclear Information System (INIS)

    Zhang, Xiangdong

    2016-01-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)

  2. Tracking control of a flexible beam by nonlinear boundary feedback

    Directory of Open Access Journals (Sweden)

    Bao-Zhu Guo

    1995-01-01

    Full Text Available This paper is concerned with tracking control of a dynamic model consisting of a flexible beam rotated by a motor in a horizontal plane at the one end and a tip body rigidly attached at the free end. The well-posedness of the closed loop systems considering the dissipative nonlinear boundary feedback is discussed and the asymptotic stability about difference energy of the hybrid system is also investigated.

  3. Real-time calibration of a feedback trap

    OpenAIRE

    Gavrilov, Momčilo; Jun, Yonggun; Bechhoefer, John

    2014-01-01

    Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time sca...

  4. Feedback Conversations: Creating Feedback Dialogues with a New Textual Tool for Industrial Design Student Feedback

    Science.gov (United States)

    Funk, Mathias; van Diggelen, Migchiel

    2017-01-01

    In this paper, the authors describe how a study of a large database of written university teacher feedback in the department of Industrial Design led to the development of a new conceptual framework for feedback and the design of a new feedback tool. This paper focuses on the translation of related work in the area of feedback mechanisms for…

  5. Climate forcings and feedbacks

    Science.gov (United States)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption

  6. Virtual sensory feedback for gait improvement in neurological patients

    Directory of Open Access Journals (Sweden)

    Yoram eBaram

    2013-10-01

    Full Text Available We review a treatment modality for movement disorders by sensory feedback. The natural closed-loop sensory-motor feedback system is imitated by a wearable virtual reality apparatus, employing body-mounted inertial sensors and responding dynamically to the patient’s own motion. Clinical trials have shown a significant gait improvement in patients with Parkinson's disease using the apparatus. In contrast to open-loop devices, which impose constant-velocity visual cues in a treadmill fashion, or rhythmic auditory cues in a metronome fashion, requiring constant vigilance and attention strategies, and in some cases, instigating freezing in Parkinson’s patients, the closed-loop device improved gait parameters and eliminated freezing in most patients, without side effects. Patients with multiple sclerosis, previous stroke, senile gait and cerebral palsy using the device also improved their balance and gait substantially. Training with the device has produced a residual improvement, suggesting virtual sensory feedback for the treatment of neurological movement disorders.

  7. Phyloproteomic Analysis of 11780 Six-Residue-Long Motifs Occurrences

    Directory of Open Access Journals (Sweden)

    O. V. Galzitskaya

    2015-01-01

    Full Text Available How is it possible to find good traits for phylogenetic reconstructions? Here, we present a new phyloproteomic criterion that is an occurrence of simple motifs which can be imprints of evolution history. We studied the occurrences of 11780 six-residue-long motifs consisting of two randomly located amino acids in 97 eukaryotic and 25 bacterial proteomes. For all eukaryotic proteomes, with the exception of the Amoebozoa, Stramenopiles, and Diplomonadida kingdoms, the number of proteins containing the motifs from the first group (one of the two amino acids occurs once at the terminal position made about 20%; in the case of motifs from the second (one of two amino acids occurs one time within the pattern and third (the two amino acids occur randomly groups, 30% and 50%, respectively. For bacterial proteomes, this relationship was 10%, 27%, and 63%, respectively. The matrices of correlation coefficients between numbers of proteins where a motif from the set of 11780 motifs appears at least once in 9 kingdoms and 5 phyla of bacteria were calculated. Among the correlation coefficients for eukaryotic proteomes, the correlation between the animal and fungi kingdoms (0.62 is higher than between fungi and plants (0.54. Our study provides support that animals and fungi are sibling kingdoms. Comparison of the frequencies of six-residue-long motifs in different proteomes allows obtaining phylogenetic relationships based on similarities between these frequencies: the Diplomonadida kingdoms are more close to Bacteria than to Eukaryota; Stramenopiles and Amoebozoa are more close to each other than to other kingdoms of Eukaryota.

  8. Extending the permissible control loop latency for the controlled inverted pendulum

    NARCIS (Netherlands)

    Sieber, J.; Krauskopf, B.

    2005-01-01

    A pendulum can be stabilized in its upright position by proportional-plus-derivative (PD) feedback control only if the latency in the control loop is smaller than a certain critical delay. This critical delay is determined by the presence of a fully symmetric triple-zero eigenvalue singularity, a

  9. BMN correlators by loop equations

    International Nuclear Information System (INIS)

    Eynard, Bertrand; Kristjansen, Charlotte

    2002-01-01

    In the BMN approach to N=4 SYM a large class of correlators of interest are expressible in terms of expectation values of traces of words in a zero-dimensional gaussian complex matrix model. We develop a loop-equation based, analytic strategy for evaluating such expectation values to any order in the genus expansion. We reproduce the expectation values which were needed for the calculation of the one-loop, genus one correction to the anomalous dimension of BMN-operators and which were earlier obtained by combinatorial means. Furthermore, we present the expectation values needed for the calculation of the one-loop, genus two correction. (author)

  10. Accountability and feedback, part IV: destructive feedback.

    Science.gov (United States)

    Harolds, Jay A

    2013-04-01

    There are times that feedback is destructive rather than helpful to the employee and the organization. Occasionally, this is deliberate, such as when a boss does not like someone for reasons that have nothing to do with his/her performance as an employee, or his/her character. More often, it is inadvertent. This could be due to erroneous information from others or the leader's failure to take the time to adequately observe or supervise others. It could also be due to a lack of understanding of the individual's communication style, or failure to take into account age, cultural, religious, or sex differences. This article addresses some of these issues and what to do about it.

  11. Enhanced Stability of Capacitor-Current Feedback Active Damping for LCL-Filtered Grid Converters

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    the robustness of damping, this paper proposes an improved damping controller with the capacitor current feedback loop, which is based on the second-order generalized integrator, instead of a proportional gain, which can effectively mitigate the detrimental effect of the time delay. Robustness of the proposed......The proportional capacitor-current feedback active damping method has been widely used to suppress the LCL-filter resonance. However, the time delay in the damping control loop may lead to non-minimum phase or even unstable responses when the resonance frequency varies in a wide range. To improve...

  12. Conformational Changes in Two Inter-Helical Loops of Mhp1 Membrane Transporter.

    Directory of Open Access Journals (Sweden)

    Hyun Deok Song

    Full Text Available Mhp1 is a bacterial secondary transporter with high-resolution crystal structures available for both the outward- and inward-facing conformations. Through molecular dynamics simulations of the ligand-free Mhp1 as well as analysis of its crystal structures, here we show that two inter-helical loops, respectively located at the extra- and intracellular ends of the "hash motif" in the protein, play important roles in the conformational transition. In the outward- and inward-facing states of the protein, the loops adopt different secondary structures, either wrapped to the end of an alpha-helix, or unwrapped to extended conformations. In equilibrium simulations of 100 ns with Mhp1 in explicit lipids and water, the loop conformations remain largely stable. In targeted molecular dynamics simulations with the protein structure driven from one state to the other, the loops exhibit resistance and only undergo abrupt changes when other parts of the protein already approach the target conformation. Free energy calculations on the isolated loops further confirm that the wrapping/unwrapping transitions are associated with substantial energetic barriers, and consist of multiple sequential steps involving the rotation of certain backbone torsion angles. Furthermore, in simulations with the loops driven from one state to the other, a large part of the protein follows the loops to the target conformation. Taken together, our simulations suggest that changes of the loop secondary structures would be among the slow degrees of freedom in the conformational transition of the entire protein. Incorporation of detailed loop structures into the reaction coordinate, therefore, should improve the convergence and relevance of the resulting conformational free energy.

  13. Modeling feedback control of unstable separatrix location in beam-driven field-reversed configurations

    Science.gov (United States)

    Rath, N.; Onofri, M.; Dettrick, S. A.; Barnes, D. C.; Romero, J.

    2017-04-01

    We present a linear, one-parameter model for rigid displacement of a toroidally symmetric plasma. When the feedback control is feasible, plasma inertia can be neglected, and the instability growth rate is proportional to wall resistivity. We benchmark the linear model against non-linear, hybrid simulations of an axially unstable, beam-driven field-reversed configuration to fix the free parameter of the model. The resulting parameter-free model is validated using linear and non-linear closed-loop simulations with active feedback control by voltage-controlled coils. In closed loop simulations, the predictions of the parameter-free linear model agree satisfactory with the non-linear results. Implications for the feedback control of the positional instability in experiments are discussed. The presented model has been used to guide the design of the feedback control hardware in the C-2W experiment.

  14. Optical loop framing

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system

  15. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage.

    Science.gov (United States)

    Stella, Stefano; Alcón, Pablo; Montoya, Guillermo

    2017-06-22

    Cpf1 is an RNA-guided endonuclease that is emerging as a powerful genome-editing tool. Here we provide insight into its DNA-targeting mechanism by determining the structure of Francisella novicida Cpf1 with the triple-stranded R-loop generated after DNA cleavage. The structure reveals the machinery involved in DNA unwinding to form a CRISPR RNA (crRNA)-DNA hybrid and a displaced DNA strand. The protospacer adjacent motif (PAM) is recognized by the PAM-interacting domain. The loop-lysine helix-loop motif in this domain contains three conserved lysine residues that are inserted in a dentate manner into the double-stranded DNA. Unzipping of the double-stranded DNA occurs in a cleft arranged by acidic and hydrophobic residues facilitating the crRNA-DNA hybrid formation. The PAM single-stranded DNA is funnelled towards the nuclease site through a mixed hydrophobic and basic cavity. In this catalytic conformation, the PAM-interacting domain and the helix-loop-helix motif in the REC1 domain adopt a 'rail' shape and 'flap-on' conformations, respectively, channelling the PAM strand into the cavity. A steric barrier between the RuvC-II and REC1 domains forms the 'septum', separating the displaced PAM strand and the crRNA-DNA hybrid, avoiding DNA re-annealing. Mutations in key residues reveal a mechanism linking the PAM and DNA nuclease sites. Analysis of the Cpf1 structures proposes a singular working model of RNA-guided DNA cleavage, suggesting new avenues for redesign of Cpf1.

  16. Study of CMOS micromachined self-oscillating loop utilizing a phase-locked loop-driving circuit

    International Nuclear Information System (INIS)

    Li, Hsin-Chih; Tseng, Sheng-Hsiang; Lu, Michael S.-C.; Huang, Po-Chiun

    2012-01-01

    This work describes the design and characterization of integrated CMOS (complementary metal oxide semiconductor) oscillators comprising a capacitively transduced micromechanical resonator and a phase-locked loop (PLL) driving circuit. Three oscillator schemes are studied and compared, including direct feedback, direct feedback containing a PLL and hybrid direct feedback plus a PLL. PLL is known for its capability in automatic tuning and tracking of a reference signal. Inclusion of a PLL is beneficial for sustaining oscillations at resonant frequencies within its capture range. The micromechanical resonator has a measured resonant frequency of 117.3 kHz. The CMOS PLL circuit has a closed-loop bandwidth of 1.8 kHz with a capture range between 111 kHz and 118.4 kHz. The start-up times for oscillation are shortened in the two schemes utilizing a PLL, since it provides an initial driving signal at its free-running frequency. The lock-in time is also reduced by increasing the proportion of PLL drive in the hybrid scheme. The measured noises for the three oscillator schemes are similar with a value of −75 dB below the resonant peak at a 10 Hz offset. (paper)

  17. IQ-motif peptides as novel anti-microbial agents.

    Science.gov (United States)

    McLean, Denise T F; Lundy, Fionnuala T; Timson, David J

    2013-04-01

    The IQ-motif is an amphipathic, often positively charged, α-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic α-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Portfolio, refleksion og feedback

    DEFF Research Database (Denmark)

    Hansen, Jens Jørgen; Qvortrup, Ane; Christensen, Inger-Marie F.

    2017-01-01

    Denne leder definerer indledningsvist begrebet portfolio og gør rede for anvendelsesmuligheder i en uddannelseskontekst. Dernæst behandles portfoliometodens kvalitet og effekt for læring og undervisning og de centrale begreber refleksion, progression og feedback præsenteres og diskuteres. Herefter...

  19. Feedback i undervisningen

    DEFF Research Database (Denmark)

    Kirkegaard, Preben Olund

    2015-01-01

    undervisningsdifferentiering, feedback på læreprocesser, formativ og summativ evaluering, observationer og analyse af undervisning samt lærernes teamsamarbejde herom. Praktikken udgør et særligt læringsrum i læreruddannelsen. Samspillet mellem studerende, praktiklærere og undervisere giver den studerende en unik mulighed...

  20. The Endogenous Feedback Network

    DEFF Research Database (Denmark)

    Augustenborg, Claudia Carrara

    2010-01-01

    proposals, it will first be considered the extents of their reciprocal compatibility, tentatively shaping an integrated, theoretical profile of consciousness. A new theory, the Endogenous Feedback Network (EFN) will consequently be introduced which, beside being able to accommodate the main tenets...