WorldWideScience

Sample records for feed-forward circuit linking

  1. A feed-forward circuit linking wingless, fat-dachsous signaling, and the warts-hippo pathway to Drosophila wing growth.

    Directory of Open Access Journals (Sweden)

    Myriam Zecca

    Full Text Available During development, the Drosophila wing primordium undergoes a dramatic increase in cell number and mass under the control of the long-range morphogens Wingless (Wg, a Wnt and Decapentaplegic (Dpp, a BMP. This process depends in part on the capacity of wing cells to recruit neighboring, non-wing cells into the wing primordium. Wing cells are defined by activity of the selector gene vestigial (vg and recruitment entails the production of a vg-dependent "feed-forward signal" that acts together with morphogen to induce vg expression in neighboring non-wing cells. Here, we identify the protocadherins Fat (Ft and Dachsous (Ds, the Warts-Hippo tumor suppressor pathway, and the transcriptional co-activator Yorkie (Yki, a YES associated protein, or YAP as components of the feed-forward signaling mechanism, and we show how this mechanism promotes wing growth in response to Wg. We find that vg generates the feed-forward signal by creating a steep differential in Ft-Ds signaling between wing and non-wing cells. This differential down-regulates Warts-Hippo pathway activity in non-wing cells, leading to a burst of Yki activity and the induction of vg in response to Wg. We posit that Wg propels wing growth at least in part by fueling a wave front of Ft-Ds signaling that propagates vg expression from one cell to the next.

  2. Simple Digital Feed-Forward Circuit to Compensate for AOM Thermal Lensing

    Science.gov (United States)

    Hill, Joshua; Aman, James; Killian, Thomas; Neutral Experiment Team

    2016-05-01

    I demonstrate a simple digital feed-forward circuit which, when combined with two-frequency radio frequency (RF) electronics, maintains constant total RF power driving an acousto-optic modulator (AOM). Consistency in total power is desirable to mitigate thermal lensing effects that otherwise displace and misshape the laser beam when the primary frequency drive RF power is changed to, for example, alter the laser power in a diffracted beam. The Arduino-based feed-forward circuit is cost-effective, quick to implement, and easily modified.

  3. Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit.

    Directory of Open Access Journals (Sweden)

    Tiffany Kee

    2015-10-01

    Full Text Available Inhibitory interneurons play critical roles in shaping the firing patterns of principal neurons in many brain systems. Despite difference in the anatomy or functions of neuronal circuits containing inhibition, two basic motifs repeatedly emerge: feed-forward and feedback. In the locust, it was proposed that a subset of lateral horn interneurons (LHNs, provide feed-forward inhibition onto Kenyon cells (KCs to maintain their sparse firing--a property critical for olfactory learning and memory. But recently it was established that a single inhibitory cell, the giant GABAergic neuron (GGN, is the main and perhaps sole source of inhibition in the mushroom body, and that inhibition from this cell is mediated by a feedback (FB loop including KCs and the GGN. To clarify basic differences in the effects of feedback vs. feed-forward inhibition in circuit dynamics we here use a model of the locust olfactory system. We found both inhibitory motifs were able to maintain sparse KCs responses and provide optimal odor discrimination. However, we further found that only FB inhibition could create a phase response consistent with data recorded in vivo. These findings describe general rules for feed-forward versus feedback inhibition and suggest GGN is potentially capable of providing the primary source of inhibition to the KCs. A better understanding of how inhibitory motifs impact post-synaptic neuronal activity could be used to reveal unknown inhibitory structures within biological networks.

  4. Noise processing by microRNA-mediated circuits: The Incoherent Feed-Forward Loop, revisited

    Directory of Open Access Journals (Sweden)

    Silvia Grigolon

    2016-04-01

    Full Text Available The intrinsic stochasticity of gene expression is usually mitigated in higher eukaryotes by post-transcriptional regulation channels that stabilise the output layer, most notably protein levels. The discovery of small non-coding RNAs (miRNAs in specific motifs of the genetic regulatory network has led to identifying noise buffering as the possible key function they exert in regulation. Recent in vitro and in silico studies have corroborated this hypothesis. It is however also known that miRNA-mediated noise reduction is hampered by transcriptional bursting in simple topologies. Here, using stochastic simulations validated by analytical calculations based on van Kampen's expansion, we revisit the noise-buffering capacity of the miRNA-mediated Incoherent Feed Forward Loop (IFFL, a small module that is widespread in the gene regulatory networks of higher eukaryotes, in order to account for the effects of intermittency in the transcriptional activity of the modulator gene. We show that bursting considerably alters the circuit's ability to control static protein noise. By comparing with other regulatory architectures, we find that direct transcriptional regulation significantly outperforms the IFFL in a broad range of kinetic parameters. This suggests that, under pulsatile inputs, static noise reduction may be less important than dynamical aspects of noise and information processing in characterising the performance of regulatory elements.

  5. A Positive Buck Boost Converter with Mode Select Circuit and Feed Forward Techniques Using Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Latha. S. C

    2014-11-01

    Full Text Available The portable devices development of semiconductor manufacturing technology, conversion efficiency, power consumption, and the size of devices have become the most important design criteria of switching power converters. For portable applications better conveniences extension of battery life and improves the conversion efficiency of power converters .It is essential to develop accurate switching power converters, which can reduce more wasted power energy. The proposed topology can achieve faster transient responses when the supply voltages are changed for the converter by making use of the feed forward network .With mode select circuit the conduction & switching losses are reduced the positive buck–boost converter operate in buck, buck–boost, or boost converter. By adding feed-forward techniques, the proposed converter can improve transient response when the supply voltages are changed. The designing, modeling & experimental results were verified in MATLAB/ Simulink. The fuzzy logic controller is used as controller.

  6. CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse

    Directory of Open Access Journals (Sweden)

    Friard Olivier

    2010-08-01

    Full Text Available Abstract Background Transcription Factors (TFs and microRNAs (miRNAs are key players for gene expression regulation in higher eukaryotes. In the last years, a large amount of bioinformatic studies were devoted to the elucidation of transcriptional and post-transcriptional (mostly miRNA-mediated regulatory interactions, but little is known about the interplay between them. Description Here we describe a dynamic web-accessible database, CircuitsDB, supporting a genome-wide transcriptional and post-transcriptional regulatory network integration, for the human and mouse genomes, based on a bioinformatic sequence-analysis approach. In particular, CircuitsDB is currently focused on the study of mixed miRNA/TF Feed-Forward regulatory Loops (FFLs, i.e. elementary circuits in which a master TF regulates an miRNA and together with it a set of Joint Target protein-coding genes. The database was constructed using an ab-initio oligo analysis procedure for the identification of the transcriptional and post-transcriptional interactions. Several external sources of information were then pooled together to obtain the functional annotation of the proposed interactions. Results for human and mouse genomes are presented in an integrated web tool, that allows users to explore the circuits, investigate their sequence and functional properties and thus suggest possible biological experiments. Conclusions We present CircuitsDB, a web-server devoted to the study of human and mouse mixed miRNA/TF Feed-Forward regulatory circuits, freely available at: http://biocluster.di.unito.it/circuits/

  7. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.

    Science.gov (United States)

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-22

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  8. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link

    Science.gov (United States)

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-01

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10-19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10-20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  9. Implementation of an Electronic Circuit for SSSA Control Approach of a Plate Type Element and Experimental Match with a Feed-Forward Approach

    Directory of Open Access Journals (Sweden)

    Viscardi Massimo

    2016-12-01

    Full Text Available Successful implementation of an active vibration control system is strictly correlated to the exact knowledge of the dynamic behavior of the system, of the excitation level and spectra and of the sensor and actuator’s specification. Only the correct management of these aspects may guarantee the correct choice of the control strategy and the relative performance. Within this paper, some preliminary activities aimed at the creation of a structurally simple, cheap and easily replaceable active control systems for metal panels are discussed. The final future aim is to control and to reduce noise, produced by vibrations of metal panels of the body of a car. The paper is focused on two points. The first one is the realization of an electronic circuit for Synchronized Shunted Switch Architecture (SSSA with the right dimensioning of the components to control the proposed test article, represented by a rectangular aluminum plate. The second one is a preliminary experimental study on the test article, in controlled laboratory conditions, to compare performances of two possible control approach: SSSA and a feed-forward control approach. This comparison would contribute to the future choice of the most suitable control architecture for the specific attenuation of structure-born noise related to an automotive floor structure under deterministic (engine and road-tyre interaction and stochastic (road-tyre interaction and aerodynamic forcing actions.

  10. Neuronal networks: enhanced feedback feeds forward.

    Science.gov (United States)

    Calabrese, Ronald L

    2012-09-25

    Modulatory projection neurons gate neuronal networks, such as those comprising motor central pattern generators; in turn, they receive feedback from the networks they gate. A recent study has shown that, in the crab stomatogastric ganglion, this feedback is also subject to modulation: the enhanced feedback feeds forward through the projection neurons to modify circuit output.

  11. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition.

    Science.gov (United States)

    Gabernet, Laetitia; Jadhav, Shantanu P; Feldman, Daniel E; Carandini, Matteo; Scanziani, Massimo

    2005-10-20

    The temporal features of tactile stimuli are faithfully represented by the activity of neurons in the somatosensory cortex. However, the cellular mechanisms that enable cortical neurons to report accurate temporal information are not known. Here, we show that in the rodent barrel cortex, the temporal window for integration of thalamic inputs is under the control of thalamocortical feed-forward inhibition and can vary from 1 to 10 ms. A single thalamic fiber can trigger feed-forward inhibition and contacts both excitatory and inhibitory cortical neurons. The dynamics of feed-forward inhibition exceed those of each individual synapse in the circuit and are captured by a simple disynaptic model of the thalamocortical projection. The variations in the integration window produce changes in the temporal precision of cortical responses to whisker stimulation. Hence, feed-forward inhibitory circuits, classically known to sharpen spatial contrast of tactile inputs, also increase the temporal resolution in the somatosensory cortex.

  12. Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks.

    Science.gov (United States)

    Aguiar, Manuela A D; Dias, Ana Paula S; Ferreira, Flora

    2017-01-01

    We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell network is a feed-forward neural network where additionally some cells of the first layer have auto-regulation, that is, they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the network. In this paper, we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize. On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward neural networks.

  13. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  14. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  15. Feed-forward transcriptional programming by nuclear receptors: regulatory principles and therapeutic implications.

    Science.gov (United States)

    Sasse, Sarah K; Gerber, Anthony N

    2015-01-01

    Nuclear receptors (NRs) are widely targeted to treat a range of human diseases. Feed-forward loops are an ancient mechanism through which single cell organisms organize transcriptional programming and modulate gene expression dynamics, but they have not been systematically studied as a regulatory paradigm for NR-mediated transcriptional responses. Here, we provide an overview of the basic properties of feed-forward loops as predicted by mathematical models and validated experimentally in single cell organisms. We review existing evidence implicating feed-forward loops as important in controlling clinically relevant transcriptional responses to estrogens, progestins, and glucocorticoids, among other NR ligands. We propose that feed-forward transcriptional circuits are a major mechanism through which NRs integrate signals, exert temporal control over gene regulation, and compartmentalize client transcriptomes into discrete subunits. Implications for the design and function of novel selective NR ligands are discussed.

  16. Feed forward control of estimated wind speed

    Energy Technology Data Exchange (ETDEWEB)

    Van Engelen, T.G.; Van der Hooft, E.L. [ECN Wind Energy, Petten (Netherlands)

    2003-12-01

    A control structure 'feed forward of estimated wind speed' is described, as it were: 'the wind turbine rotor will be used as a wind meter'. The control structure is based on 'estimation' of wind speed as well as a non-linear compensation of a wind speed dependent pitch speed setpoint, which is optimised to maintain (stationary) rated electric power. It is required to know the rotor properties with moderate accuracy. In time domain simulations, inclusion of a feed forward of estimated wind speed control action has shown to be a powerful extension to current ECN wind turbine control structures: reduction of rotor speed variations: 0.2 rpm decreased standard deviation; improved turbine behaviour to large wind gusts; increase of energy yield of 0.9%; For reasons of simplicity and robustness, a tabular implementation approach is preferred above polynomial implementation. The resulting brief algorithm uses small sized tables, requires low hardware requirements and needs a minimum of easy interpretable parameters for design and tuning. Both stability, robustness and parametric uncertainties were observed. The addition control loop has a slightly positive effect on overall stability and robustness. Appeared offsets in the estimated wind speed value due to parameter uncertainties do not have impact on the effectuation of the wind speed feed forward loop.

  17. Quantum teleportation over 143 kilometres using active feed-forward.

    Science.gov (United States)

    Ma, Xiao-Song; Herbst, Thomas; Scheidl, Thomas; Wang, Daqing; Kropatschek, Sebastian; Naylor, William; Wittmann, Bernhard; Mech, Alexandra; Kofler, Johannes; Anisimova, Elena; Makarov, Vadim; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton

    2012-09-13

    The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.

  18. Feed forward control: An implementation at CIRFEL

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, J.; Lehrman, I.S.; Hartley, R. [Northrop Grumman Advanced Technology and Development Center, Princeton, NJ (United States)] [and others

    1995-12-31

    An integral part of the Compact InfraRed Free Electron LASER (CIRFEL) is control of the phase and amplitude stability in the RF power system. We have implemented such a Feed Forward system using the LabView software package, by National Instruments. We will discuss implementation and performance data of the Feed Forward control of the RF power system at CIRFEL. We will also briefly discuss some conditions under which the problem is ill-conditioned, and what idealizations can be made to remedy these ill-conditioned systems. Using an arbitrary function generator, we generate a driving signal for a voltage-controlled attenuator at the input side of the RF system, and we monitor the RF voltage in cell I of the photocathode gun using a digital storage oscilliscope in averaging mode. The system is stable enough to use data from one shot to modify the inputs for future shots. After downloading the averaged data to a personal computer via a GPIB (IEEE 488) bus, we use a simple linear transformation on the difference waveform between the current shot and the target to produce a correction signal. This signal is added to the driving signal in the arbitrary function generator, and the process is repeated until we get the flatness we need in the output signals from cell 1. The system for phase control is similar, with a voltage-controlled phase shifter replacing the attenuator, and monitoring of the RF phase in cell I replacing the monitoring of RF voltage. By repeatedly alternating between correcting the RF voltage (equivalent to correcting the RF power) and RF phase in cell 1, we are able to achieve simultaneous phase variations of <{+-}1{degrees} and amplitude variations of <{+-}0.1% over a 3{mu}sec pulse.

  19. P controller with partial feed forward compensation and decoupling control for the steam generator water level

    Energy Technology Data Exchange (ETDEWEB)

    Liu Cheng, E-mail: liuch_2004@stu.xjtu.edu.c [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhao Fuyu; Hu Ping; Hou Suxia; Li Chong [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2010-01-15

    In this paper, a P controller with partial feed forward compensation and decoupling control for the steam generator water level is presented. While taking the steam flowrate as a disturbance to water level, the controller design can be completed in three stages. (1) Main circuit controller is designed without regard to disturbance. Since the transfer function of the steam generator model contains integrate element and differential element, the proportional (P) controller can selected as main circuit controller instead of PID controller for steam generator water level. (2) Partial feed forward compensation is introduced to remove the disturbance from the steam flowrate. If disregarding the differential element, the partial feed forward compensation's designing turns to be very simple. Partial feed forward compensation coefficient is set as reciprocal of P controller gain. (3) The coupling effects between the water level regulating and steam flowrate disturbance can be decreased by model reference decoupling control. The proposed methodology shows satisfactory transient responses, disturbance rejection and robustness.

  20. Feed-Forward Corrections for Tune and Chromaticity Injection Decay During 2015 LHC Operation

    CERN Document Server

    Solfaroli Camillocci, Matteo; Lamont, Mike; Schaumann, Michaela; Todesco, Ezio; Wenninger, Jorg

    2016-01-01

    After two years of shutdown, the Large Hadron Collider (LHC) has been operated in 2015 at 6.5 TeV, close to its designed energy. When the current is stable at low field, the harmonic components of the main circuits are subject to a dynamic variation induced by current redistribution on the superconducting cables. The Field Description of the LHC (FiDel) foresaw an increase of the decay at injection of tune (quadrupolar components) and chromaticity (sextupolar components) of about 50% with respect to LHC Run1 due to the higher operational current. This paper discusses the beam-based measurements of the decay during the injection plateau and the implementation and accuracy of the feed-forward corrections as present in 2015. Moreover, the observed tune shift proportional to the circulating beam intensity and it's foreseen feed-forward correction are covered.

  1. A new C++ implemented feed forward neural network simulator

    Directory of Open Access Journals (Sweden)

    J. Sütő

    2013-12-01

    Full Text Available This paper presents the implementation of a simulator application for feed forward neural networks which was made in Qt application framework. The paper demonstrates the object oriented design and the performance of the software. The main topics cover the class organization and some test results where the Matlab neural network toolbox was used as reference.

  2. Deterministic quantum teleportation with feed-forward in a solid state system.

    Science.gov (United States)

    Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A

    2013-08-15

    Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.

  3. Topological reversibility and causality in feed-forward networks

    Energy Technology Data Exchange (ETDEWEB)

    Corominas-Murtra, Bernat; RodrIguez-Caso, Carlos; Sole, Ricard [ICREA-Complex Systems Lab, Universitat Pompeu Fabra (Parc de Recerca Biomedica de Barcelona), Dr Aiguader 88, 08003 Barcelona (Spain); Goni, JoaquIn, E-mail: bernat.corominas@upf.ed [Functional Neuroimaging Laboratory, Department of Neurosciences, Center for Applied Medical Research, University of Navarra, Pamplona (Spain)

    2010-11-15

    Systems whose organization displays causal asymmetry constraints, from evolutionary trees to river basins or transport networks, can often be described in terms of directed paths on a discrete set of arbitrary units including states in state spaces, feed-forward neural nets, the evolutionary history of a given collection of events or the chart of computational states visited along a complex computation. Such a set of paths defines a feed-forward, acyclic network. A key problem associated with these systems involves characterizing their intrinsic degree of path reversibility: given an end node in the graph, what is the uncertainty of recovering the process backwards until the origin? Here, we propose a novel concept, topological reversibility, which is a measure of the complexity of the net that rigorously weights such uncertainty in path dependency, quantifying the minimum amount of information required to successfully reverse a causal path. Within the proposed framework, we also analytically characterize limit cases for both topologically reversible and maximally entropic structures. The relevance of these measures within the context of evolutionary dynamics is highlighted.

  4. Optimizing information flow in small genetic networks. II. Feed-forward interactions.

    Science.gov (United States)

    Walczak, Aleksandra M; Tkacik, Gasper; Bialek, William

    2010-04-01

    Central to the functioning of a living cell is its ability to control the readout or expression of information encoded in the genome. In many cases, a single transcription factor protein activates or represses the expression of many genes. As the concentration of the transcription factor varies, the target genes thus undergo correlated changes, and this redundancy limits the ability of the cell to transmit information about input signals. We explore how interactions among the target genes can reduce this redundancy and optimize information transmission. Our discussion builds on recent work [Tkacik, Phys. Rev. E 80, 031920 (2009)], and there are connections to much earlier work on the role of lateral inhibition in enhancing the efficiency of information transmission in neural circuits; for simplicity we consider here the case where the interactions have a feed forward structure, with no loops. Even with this limitation, the networks that optimize information transmission have a structure reminiscent of the networks found in real biological systems.

  5. PSO optimized Feed Forward Neural Network for offline Signature Classification

    Directory of Open Access Journals (Sweden)

    Pratik R. Hajare

    2015-07-01

    Full Text Available The paper is based on feed forward neural network (FFNN optimization by particle swarm intelligence (PSI used to provide initial weights and biases to train neural network. Once the weights and biases are found using Particle swarm optimization (PSO with neural network used as training algorithm for specified epoch, the same are used to train the neural network for training and classification of benchmark problems. Further the approach is tested for offline signature classifications. A comparison is made between normal FFNN with random weights and biases and FFNN with particle swarm optimized weights and biases. Firstly, the performance is tested on two benchmark databases for neural network, The Breast Cancer Database and the Diabetic Database. Result shows that neural network performs better with initial weights and biases obtained by Particle Swarm optimization. The network converges faster with PSO obtained initial weights and biases for FFNN and classification accuracy is increased.

  6. The mechanism of synchronization in feed-forward neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Goedeke, S; Diesmann, M [Bernstein Center for Computational Neuroscience, Albert-Ludwigs-University, Freiburg (Germany)], E-mail: diesmann@brain.riken.jp

    2008-01-15

    Synchronization in feed-forward subnetworks of the brain has been proposed to explain the precisely timed spike patterns observed in experiments. While the attractor dynamics of these networks is now well understood, the underlying single neuron mechanisms remain unexplained. Previous attempts have captured the effects of the highly fluctuating membrane potential by relating spike intensity f(U) to the instantaneous voltage U generated by the input. This article shows that f is high during the rise and low during the decay of U(t), demonstrating that the U-dot-dependence of f, not refractoriness, is essential for synchronization. Moreover, the bifurcation scenario is quantitatively described by a simple f(U,U-dot) relationship. These findings suggest f(U,U-dot) as the relevant model class for the investigation of neural synchronization phenomena in a noisy environment.

  7. Feed-forward regulation of phagocytosis by Entamoeba histolytica.

    Science.gov (United States)

    Sateriale, Adam; Vaithilingam, Archana; Donnelly, Liam; Miller, Peter; Huston, Christopher D

    2012-12-01

    The parasitic protozoan Entamoeba histolytica is aptly named for its capacity to destroy host tissue. When E. histolytica trophozoites invade the lamina propria of a host colon, extracellular matrices are degraded while host cells are killed and phagocytosed. The ability of E. histolytica to phagocytose host cells correlates with virulence in vivo. In order to better understand the mechanism of phagocytosis, we used an E. histolytica Affymetrix microarray chip to measure the total gene expression of phagocytic and nonphagocytic subpopulations. Using paramagnetic beads coated with a known host ligand that stimulates phagocytosis, phagocytic and nonphagocytic amoebae from a single culture were purified. Microarray analysis of the subpopulations identified 121 genes with >2-fold higher expression in phagocytic than in nonphagocytic amoebae. Functional annotation identified genes encoding proteins involved in actin binding and cytoskeletal organization as highly enriched gene clusters. Post hoc analyses of selected genes showed that the gene expression profile identified in the microarray experiment did not exist prior to cell sorting but rather was stimulated through phagocytosis. Further, these expression profiles correlated with an increase in phagocytic ability, as E. histolytica cultures exposed to an initial stimulus of phagocytosis showed increased phagocytic ability upon a second stimulus. To our knowledge, this is the first description of such feed-forward regulation of gene expression and phagocytic ability in a phagocyte.

  8. Review of feed forward neural network classification preprocessing techniques

    Science.gov (United States)

    Asadi, Roya; Kareem, Sameem Abdul

    2014-06-01

    The best feature of artificial intelligent Feed Forward Neural Network (FFNN) classification models is learning of input data through their weights. Data preprocessing and pre-training are the contributing factors in developing efficient techniques for low training time and high accuracy of classification. In this study, we investigate and review the powerful preprocessing functions of the FFNN models. Currently initialization of the weights is at random which is the main source of problems. Multilayer auto-encoder networks as the latest technique like other related techniques is unable to solve the problems. Weight Linear Analysis (WLA) is a combination of data pre-processing and pre-training to generate real weights through the use of normalized input values. The FFNN model by using the WLA increases classification accuracy and improve training time in a single epoch without any training cycle, the gradient of the mean square error function, updating the weights. The results of comparison and evaluation show that the WLA is a powerful technique in the FFNN classification area yet.

  9. Optimize Short Term load Forcasting Anomalous Based Feed Forward Backpropagation

    Science.gov (United States)

    Mulyadi, Y.; Abdullah, A. G.; Rohmah, K. A.

    2017-03-01

    This paper contains the Short-Term Load Forecasting (STLF) using artificial neural network especially feed forward back propagation algorithm which is particularly optimized in order to getting a reduced error value result. Electrical load forecasting target is a holiday that hasn’t identical pattern and different from weekday’s pattern, in other words the pattern of holiday load is an anomalous. Under these conditions, the level of forecasting accuracy will be decrease. Hence we need a method that capable to reducing error value in anomalous load forecasting. Learning process of algorithm is supervised or controlled, then some parameters are arranged before performing computation process. Momentum constant a value is set at 0.8 which serve as a reference because it has the greatest converge tendency. Learning rate selection is made up to 2 decimal digits. In addition, hidden layer and input component are tested in several variation of number also. The test result leads to the conclusion that the number of hidden layer impact on the forecasting accuracy and test duration determined by the number of iterations when performing input data until it reaches the maximum of a parameter value.

  10. Adaptive Feed-Forward Control of Low Frequency Interior Noise

    CERN Document Server

    Kletschkowski, Thomas

    2012-01-01

    This book presents a mechatronic approach to Active Noise Control (ANC). It describes the required elements of system theory, engineering acoustics, electroacoustics and adaptive signal processing in a comprehensive, consistent and systematic manner using a unified notation. Furthermore, it includes a design methodology for ANC-systems, explains its application and describes tools to be used for ANC-system design. From the research point of view, the book presents new approaches to sound source localization in weakly damped interiors. One is based on the inverse finite element method, the other is based on a sound intensity probe with an active free field. Furthermore, a prototype of an ANC-system able to reach the physical limits of local (feed-forward) ANC is described. This is one example for applied research in ANC-system design. Other examples are given for (i) local ANC in a semi-enclosed subspace of an aircraft cargo hold and (ii) for the combination of audio entertainment with ANC.

  11. On Using a Support Vector Machine in Learning Feed-Forward Control

    NARCIS (Netherlands)

    de Kruif, B.J.; de Vries, Theodorus J.A.

    2001-01-01

    For mechatronic motion systems, the performance increases significantly if, besides feedback control, also feed-forward control is used. This feed-forward part should contain the (stable part of the) inverse of the plant. This inverse is difficult to obtain if non-linear dynamics are present. To

  12. On Using a Support Vector Machine in Learning Feed-Forward Control

    NARCIS (Netherlands)

    Kruif, de Bas J.; Vries, de Theo J.A.

    2001-01-01

    For mechatronic motion systems, the performance increases significantly if, besides feedback control, also feed-forward control is used. This feed-forward part should contain the (stable part of the) inverse of the plant. This inverse is difficult to obtain if non-linear dynamics are present. To ove

  13. A Feed-forward Geometrical Compensation and Adaptive Feedback Control Algorithm for Hydraulic Robot Manipulators

    DEFF Research Database (Denmark)

    Conrad, Finn; Zhou, Jianjun; Gabacik, Andrzej;

    1998-01-01

    Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control.......Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control....

  14. Feed-Forward: Students Gaining More from Assessment via Deeper Engagement in Video-Recorded Presentations

    Science.gov (United States)

    Murphy, Karen; Barry, Shane

    2016-01-01

    Presentation feedback can be limited in its feed-forward value, as students do not have their actual presentation available for review whilst reflecting upon the feedback. This study reports on students' perceptions of the learning and feed-forward value of an oral presentation assessment. Students self-marked their performance immediately after…

  15. Feed-forward motor control of ultrafast, ballistic movements.

    Science.gov (United States)

    Kagaya, K; Patek, S N

    2016-02-01

    To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals. © 2016. Published by The Company of Biologists Ltd.

  16. Microwaves photonic links components and circuits

    CERN Document Server

    Rumelhard, Christian; Billabert, Anne-Laure

    2013-01-01

    This book presents the electrical models for the different elements of a photonic microwave link like lasers, external modulators, optical fibers, photodiodes and phototransistors. The future trends of these components are also introduced: lasers to VCSEL, external modulators to electro-absorption modulators, glass optical fibers to plastic optical fibers, photodiodes to UTC photodiodes or phototransistors. It also describes an original methodology to evaluate the performance of a microwave photonic link, based on the developed elcetrical models, that can be easily incorporated in

  17. A feed-forward controlled AC-DC boost converter for biomedical implants.

    Science.gov (United States)

    Jiang, Hao; Lan, Di; Lin, Dahsien; Zhang, Junmin; Liou, Shyshenq; Shahnasser, Hamid; Shen, Ming; Harrison, Michael; Roy, Shuvo

    2012-01-01

    Miniaturization is important to make implants clinic friendly. Wireless power transfer is an essential technology to miniaturize implants by reducing their battery size or completely eliminating their batteries. Traditionally, a pair of inductively-coupled coils operating at radio-frequency (RF) is employed to deliver electrical power wirelessly. In this approach, a rectifier is needed to convert the received RF power to a stable DC one. To achieve high efficiency, the induced voltage of the receiving coil must be much higher than the turn-on voltage of the rectifying diode (which could be an active circuit for low turn-on voltage) [1]. In order to have a high induced voltage, the size of the receiving coil often is significantly larger than rest of the implant. A rotating magnets based wireless power transfer has been demonstrated to deliver the same amount of power at much lower frequency (around 100 Hz) because of the superior magnetic strength produced by rare-earth magnets [2]. Taking the advantage of the low operating frequency, an innovative feed-forward controlled AC to DC boost converter has been demonstrated for the first time to accomplish the following two tasks simultaneously: (1) rectifying the AC power whose amplitude (500 mV) is less than the rectifier's turn-on voltage (1.44 V) and (2) boosting the DC output voltage to a much higher level (5 V). Within a range, the output DC voltage can be selected by the control circuit. The standard deviation of the output DC voltage is less than 2.1% of its mean. The measured load regulation is 0.4 V/kΩ. The estimated conversion efficiency excluding the power consumption of the control circuits reaches 75%. The converter in this paper has the potential to reduce the size of the receiving coil and yet achieve desirable DC output voltage for powering biomedical implants.

  18. The role of feed-forward and feedback processes for closed-loop prosthesis control

    Directory of Open Access Journals (Sweden)

    Saunders Ian

    2011-10-01

    Full Text Available Abstract Background It is widely believed that both feed-forward and feed-back mechanisms are required for successful object manipulation. Open-loop upper-limb prosthesis wearers receive no tactile feedback, which may be the cause of their limited dexterity and compromised grip force control. In this paper we ask whether observed prosthesis control impairments are due to lack of feedback or due to inadequate feed-forward control. Methods Healthy subjects were fitted with a closed-loop robotic hand and instructed to grasp and lift objects of different weights as we recorded trajectories and force profiles. We conducted three experiments under different feed-forward and feed-back configurations to elucidate the role of tactile feedback (i in ideal conditions, (ii under sensory deprivation, and (iii under feed-forward uncertainty. Results (i We found that subjects formed economical grasps in ideal conditions. (ii To our surprise, this ability was preserved even when visual and tactile feedback were removed. (iii When we introduced uncertainty into the hand controller performance degraded significantly in the absence of either visual or tactile feedback. Greatest performance was achieved when both sources of feedback were present. Conclusions We have introduced a novel method to understand the cognitive processes underlying grasping and lifting. We have shown quantitatively that tactile feedback can significantly improve performance in the presence of feed-forward uncertainty. However, our results indicate that feed-forward and feed-back mechanisms serve complementary roles, suggesting that to improve on the state-of-the-art in prosthetic hands we must develop prostheses that empower users to correct for the inevitable uncertainty in their feed-forward control.

  19. Alternative Design Concepts for Multi-Circuit HTS Link Systems

    CERN Document Server

    Ballarino, A

    2011-01-01

    Superconducting cables for power transmission usually contain two conductors for DC application, or three conductors for AC, with high voltage insulation. In contrast, for some applications related to accelerators it is convenient to transfer high currents via superconducting links feeding a number of circuits at relatively low voltage, of the order of a kilovolt, over distances of up to a few hundred meters. For power transmission applications based on cooling via sub-cooled liquid nitrogen, suitable HTS conductors are only available in the form of tape, and a multi-layer variant can be envisaged for the multi-circuit links. However, where cooling to temperatures of the order of 20 K is feasible, MgB2 conductor, available in the form of both tape and wire, can also be envisaged and in the latter case used to assemble round cables. There are, therefore, two distinct topologies - based on the use of wires or tapes - that can be envisaged for use in applications to multi-circuit link systems. In this paper the ...

  20. Second-Order Feed-Forward Renderingfor Specular and Glossy Reflections.

    Science.gov (United States)

    Wang, Lili; Xie, Naiwen; Ke, Wei; Popescu, Voicu

    2014-09-01

    The feed-forward pipeline based on projection followed by rasterization handles the rays that leave the eye efficiently: these first-order rays are modeled with a simple camera that projects geometry to screen. Second-order rays however, as, for example, those resulting from specular reflections, are challenging for the feed-forward approach. We propose an extension of the feed-forward pipeline to handle second-order rays resulting from specular and glossy reflections. The coherence of second-order rays is leveraged through clustering, the geometry reflected by a cluster is approximated with a depth image, and the color samples captured by the second-order rays of a cluster are computed by intersection with the depth image. We achieve quality specular and glossy reflections at interactive rates in fully dynamic scenes.

  1. Concatenated beam splitters, optical feed-forward and the nonlinear sign gate

    CERN Document Server

    Jacobs, K; Jacobs, Kurt; Dowling, Jonathan P.

    2006-01-01

    We consider a nonlinear sign gate implemented using a sequence of two beam splitters, and consider the use of further sequences of beam splitters to implement feed-forward so as to correct an error resulting from the first beam splitter. We obtain similar results to Scheel et al. [Scheel et al., Phys. Rev. A 73, 034301 (2006)], in that we also find that our feed-forward procedure is only able to produce a very minor improvement in the success probability of the original gate.

  2. Efficient Importance Sampling Heuristics for the Simulation of Population Overflow in Feed-Forward Queueing Networks

    NARCIS (Netherlands)

    Nicola, Victor F.; Zaburnenko, Tatiana S.

    2006-01-01

    In this paper we propose a state-dependent importance sampling heuristic to estimate the probability of population overflow in feed-forward networks. This heuristic attempts to approximate the “optimal” state-dependent change of measure without the need for difficult analysis or costly optimization i

  3. High-speed linear optics quantum computing using active feed-forward.

    Science.gov (United States)

    Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton

    2007-01-04

    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

  4. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    Science.gov (United States)

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  5. Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    2012-01-01

    Full Text Available It has been suggested that excitatory and inhibitory inputs to cortical cells are balanced, and that this balance is important for the highly irregular firing observed in the cortex. There are two hypotheses as to the origin of this balance. One assumes that it results from a stable solution of the recurrent neuronal dynamics. This model can account for a balance of steady state excitation and inhibition without fine tuning of parameters, but not for transient inputs. The second hypothesis suggests that the feed forward excitatory and inhibitory inputs to a postsynaptic cell are already balanced. This latter hypothesis thus does account for the balance of transient inputs. However, it remains unclear what mechanism underlies the fine tuning required for balancing feed forward excitatory and inhibitory inputs. Here we investigated whether inhibitory synaptic plasticity is responsible for the balance of transient feed forward excitation and inhibition. We address this issue in the framework of a model characterizing the stochastic dynamics of temporally anti-symmetric Hebbian spike timing dependent plasticity of feed forward excitatory and inhibitory synaptic inputs to a single post-synaptic cell. Our analysis shows that inhibitory Hebbian plasticity generates 'negative feedback' that balances excitation and inhibition, which contrasts with the 'positive feedback' of excitatory Hebbian synaptic plasticity. As a result, this balance may increase the sensitivity of the learning dynamics to the correlation structure of the excitatory inputs.

  6. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    Science.gov (United States)

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  7. Feed-forward neural network model for hunger and satiety related VAS score prediction

    NARCIS (Netherlands)

    Krishnan, S.; Hendriks, H.F.J.; Hartvigsen, M.L.; Graaf, A.A. de

    2016-01-01

    Background: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. Methods: A multilayer feed-forward neural network was

  8. Feed-forward neural network model for hunger and satiety related VAS score prediction

    NARCIS (Netherlands)

    Krishnan, S.; Hendriks, H.F.J.; Hartvigsen, M.L.; Graaf, A.A. de

    2016-01-01

    Background: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. Methods: A multilayer feed-forward neural network was

  9. Weak signal detection and propagation in diluted feed-forward neural network with recurrent excitation and inhibition

    Science.gov (United States)

    Wang, Jiang; Han, Ruixue; Wei, Xilei; Qin, Yingmei; Yu, Haitao; Deng, Bin

    2016-12-01

    Reliable signal propagation across distributed brain areas provides the basis for neural circuit function. Modeling studies on cortical circuits have shown that multilayered feed-forward networks (FFNs), if strongly and/or densely connected, can enable robust signal propagation. However, cortical networks are typically neither densely connected nor have strong synapses. This paper investigates under which conditions spiking activity can be propagated reliably across diluted FFNs. Extending previous works, we model each layer as a recurrent sub-network constituting both excitatory (E) and inhibitory (I) neurons and consider the effect of interactions between local excitation and inhibition on signal propagation. It is shown that elevation of cellular excitation-inhibition (EI) balance in the local sub-networks (layers) softens the requirement for dense/strong anatomical connections and thereby promotes weak signal propagation in weakly connected networks. By means of iterated maps, we show how elevated local excitability state compensates for the decreased gain of synchrony transfer function that is due to sparse long-range connectivity. Finally, we report that modulations of EI balance and background activity provide a mechanism for selectively gating and routing neural signal. Our results highlight the essential role of intrinsic network states in neural computation.

  10. Development of a combined feed forward-feedback system for an electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E. [School of Physics, Monash University, Wellington Rd, Clayton VIC 3800 (Australia) and Australian Synchrotron, 800 Blackburn Rd, Clayton VIC 3168 (Australia); FERMI-Elettra, Sincrotrone Trieste, S.S. 14km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: evelyne.meier@synchrotron.org.au; Biedron, S.G. [Department of Defense Project Office, Argonne National Laboratory, IL 60439 (United States); FERMI-Elettra, Sincrotrone Trieste, S.S. 14km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: biedron@anl.gov; LeBlanc, G. [Australian Synchrotron, 800 Blackburn Rd, Clayton VIC 3168 (Australia)], E-mail: Greg.LeBlanc@synchrotron.org.au; Morgan, M.J. [School of Physics, Monash University, Wellington Rd, Clayton VIC 3800 (Australia)], E-mail: Michael.Morgan@sci.monash.edu.au; Wu, J. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States)], E-mail: jhwu@slac.stanford.edu

    2009-10-11

    This paper describes the results of an advanced control algorithm for the stabilization of electron beam energy in a Linac. The approach combines a conventional Proportional-Integral (PI) controller with a neural network (NNET) feed forward algorithm; it utilizes the robustness of PI control and the ability of a feed forward system in order to exert control over a wider range of frequencies. The NNET is trained to recognize jitter occurring in the phase and voltage of one of the klystrons, based on a record of these parameters, and predicts future energy deviations. A systematic approach is developed to determine the optimal NNET parameters that are then applied to the Australian Synchrotron Linac. The system's capability to fully cancel multi-frequency jitter is demonstrated. The NNET system is then augmented with the PI algorithm, and further jitter attenuation is achieved when the NNET is not operating optimally.

  11. Proposed Feed Forward Correction for the CLIC Ring-To-Main-Linac Transfer Lines

    CERN Document Server

    Apsimon, Robert; Uythoven, Jan

    2014-01-01

    To achieve the design luminosity for the CLIC main beam an unprecedented degree of machine stability is required. Extremely stringent tolerances are placed on the damping ring extraction system in order to limit emittance growth along the ring-to-main-linac transfer line; particularly through the pre-linac betatron collimation system. In this paper we propose feed forward systems situated across the central arcs and turnaround loops of the transfer lines as an elegant solution to relax the damping ring extraction requirements as well as to significantly reduce emittance growth through the betatron collimation system. The optics for the beam position monitor and kicker regions are presented and the results of tracking simulations shown to verify the performance of the feed forward systems.

  12. Instantaneous Gradient Based Dual Mode Feed-Forward Neural Network Blind Equalization Algorithm

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2013-01-01

    Full Text Available To further improve the performance of feed-forward neural network blind equalization based on Constant Modulus Algorithm (CMA cost function, an instantaneous gradient based dual mode between Modified Constant Modulus Algorithm (MCMA and Decision Directed (DD algorithm was proposed. The neural network weights change quantity of the adjacent iterative process is defined as instantaneous gradient. After the network converges, the weights of neural network to achieve a stable energy state and the instantaneous gradient would be zero. Therefore dual mode algorithm can be realized by criterion which set according to the instantaneous gradient. Computer simulation results show that the dual mode feed-forward neural network blind equalization algorithm proposed in this study improves the convergence rate and convergence precision effectively, at the same time, has good restart and tracking ability under channel burst interference condition.

  13. Feed-forward inhibition: a novel cellular mechanism for the analgesic effect of substance P

    Directory of Open Access Journals (Sweden)

    Yoshimura Megumu

    2005-11-01

    Full Text Available Abstract Substance P (SP is a neuropeptide well known for its contribution to pain transmission in the spinal cord, however, less is known about the possible modulatory effects of SP. A new study by Gu and colleagues, published in Molecular Pain (2005, 1:20, describes its potential role in feed-forward inhibition in lamina V of the dorsal horn of the spinal cord. This inhibition seems to function through a direct excitation of GABAergic interneurons by substance P released from primary afferent fibers and has a distinct temporal phase of action from the well-described glutamate-dependent feed-forward inhibition. It is believed that through this inhibition, substance P can balance nociceptive output from the spinal cord.

  14. Feed-forward neural network model for hunger and satiety related VAS score prediction

    OpenAIRE

    Krishnan, S.; Hendriks, H. F. J.; Hartvigsen, M.L.; Graaf, A.A. de

    2016-01-01

    Background: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. Methods: A multilayer feed-forward neural network was trained with sets of experimental data relating concentration-time courses of plasma satiety hormones to Visual Analog Scales (VAS) scores. The network successfully predicted VAS responses from set...

  15. Automatic Identification of Tomato Maturation Using Multilayer Feed Forward Neural Network with Genetic Algorithms (GA)

    Institute of Scientific and Technical Information of China (English)

    FANG Jun-long; ZHANG Chang-li; WANG Shu-wen

    2004-01-01

    We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was upto 94%.

  16. Evidence Feed Forward Hidden Markov Model: A New Type Of Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Michael Del Rose

    2011-01-01

    Full Text Available The ability to predict the intentions of people based solely on their visual actions is a skill only performed by humans and animals. The intelligence of current computer algorithms has not reached this level of complexity, but there are several research efforts that are working towards it. With the number of classification algorithms available, it is hard to determine which algorithm works best for a particular situation. In classification of visual human intent data, Hidden Markov Models (HMM, and their variants, are leading candidates. The inability of HMMs to provide a probability in the observation to observation linkages is a big downfall in this classification technique. If a person is visually identifying an action of another person, they monitor patterns in the observations. By estimating the next observation, people have the ability to summarize the actions, and thus determine, with pretty good accuracy, the intention of the person performing the action. These visual cues and linkages are important in creating intelligent algorithms for determining human actions based on visual observations. The Evidence Feed Forward Hidden Markov Model is a newly developed algorithm which provides observation to observation linkages. The following research addresses the theory behind Evidence Feed Forward HMMs, provides mathematical proofs of their learning of these parameters to optimize the likelihood of observations with a Evidence Feed Forwards HMM, which is important in all computational intelligence algorithm, and gives comparative examples with standard HMMs in classification of both visual action data and measurement data; thus providing a strong base for Evidence Feed Forward HMMs in classification of many types of problems.

  17. Automatic identification of terpenoid skeletons by feed-forward neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Emerenciano, Vicente P. [Instituto de Quimica, Universidade de Sao Paulo, Caixa Postal 26077, 05513-970 Sao Paulo, SP (Brazil)]. E-mail: vdpemere@iq.usp.br; Alvarenga, Sandra A.V. [Faculdade de Engenharia de Guaratingueta, UNESP, CEP 12516-410, Guaratingueta, Sao Paulo (Brazil); Scotti, Marcus Tullius [Instituto de Quimica, Universidade de Sao Paulo, Caixa Postal 26077, 05513-970 Sao Paulo, SP (Brazil); Ferreira, Marcelo J.P. [Instituto de Quimica, Universidade de Sao Paulo, Caixa Postal 26077, 05513-970 Sao Paulo, SP (Brazil); Stefani, Ricardo [Departamento de Quimica, FFCLRP, USP, Av. Bandeirantes 3900, CEP 14040-905, Ribeirao Preto, Sao Paulo (Brazil); Nuzillard, Jean-Marc [FRE 2715, University of Reims, Moulin de la Housse, BP 1039, 51687 REIMS Cedex 2 (France)

    2006-10-10

    Feed-forward neural networks (FFNNs) were used to predict the skeletal type of molecules belonging to six classes of terpenoids. A database that contains the {sup 13}C NMR spectra of about 5000 compounds was used to train the FFNNs. An efficient representation of the spectra was designed and the constitution of the best FFNN input vector format resorted from an heuristic approach. The latter was derived from general considerations on terpenoid structures.

  18. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning.

  19. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat

    Directory of Open Access Journals (Sweden)

    Eddie ePerkins

    2014-01-01

    Full Text Available Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC, paramedian pontine reticular formation (PPRF, and medullary reticular formation (MdRF. The mesencephalic reticular formation (MRF also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure.

  20. Compressor performance prediction using a novel feed-forward neural network based on Gaussian kernel function

    Directory of Open Access Journals (Sweden)

    Jingzhou Fei

    2016-01-01

    Full Text Available In this article, a novel artificial neural network integrating feed-forward back-propagation neural network with Gaussian kernel function is proposed for the prediction of compressor performance map. To demonstrate the potential capability of the proposed approach for the typical interpolated and extrapolated predictions, other two classical data-driven modeling methods including feed-forward back-propagation neural network and support vector machine are compared. An assessment is performed and discussed on the sensitivity of different models to the number of training samples (48 training samples, 32 training samples, and 18 training samples. All the results indicate that the proposed neural network in this article has superior prediction performance to the existing feed-forward back-propagation neural network and support vector machine, especially for the extrapolation with small samples. Furthermore, this study can be utilized in refining the existing performance-based modeling for improved simulation analysis, condition monitoring, and fault diagnosis of gas turbine compressor.

  1. Feed-forward Control Nursing Model in Expectant Treatment of Placenta Previa.

    Science.gov (United States)

    Zhu, Yanfei; Zhang, Shuxuan; Shan, Wenxian; Hu, Ming

    2017-02-01

    We studied the possible advantages of feed-forward control nursing model in the treatment of placenta previa. We enrolled 60 pregnant women who were receiving treatment for expectant placenta previa between January 2010 and January 2016 and randomly divided them into the control group and the observation group with 30 cases in each group. In the control group, we offered specialist nursing which included examination, body positioning, vaginal bleeding record, psychological consultation and medication observation. Feed-forward control nursing was applied in the observation group which included establishing feed-forward control nursing improvement team, conducting quality control of nursing defects and putting forward ideas for improvements and verifying improvement outcomes. The observation group got significantly higher success rate and lower complication rate compared with control group. Gestational age and fetal weights improved apparently in the observation group. When we compared the amount of postpartum bleeding and pregnancy bleeding in two groups we did not find any statistically significant difference (P>0.05). Patients' satisfaction rate toward our nursing services was much higher in the observation group and the rate of nursing errors was significantly lower in this group. All differences were statistically significant (Pplacenta previa can improve treatment success rate, decrease complications and upgrade nursing quality.

  2. Feed-forward control of the flow over a backward-facing step

    Science.gov (United States)

    Juillet, Fabien; Schmid, Peter; McKeon, Beverley

    2012-11-01

    In this study, the control of incoming perturbations in convection-dominated flows is analyzed numerically and experimentally. For this purpose, multiple sensors and actuators are used. First, a model is built from input and output data sequences using a least-squares system identification. Then, a feed-forward Model Predicitive Controller (MPC) is designed. It appears that feed-forward control is particularly relevant when applied to convection-dominated flows. A very general and flexible formulation of the technique is introduced and validated on the flow over a backward-facing step. Although the objective sensors are localized on the walls, the impact of the control is more global and perturbations are also reduced in the middle of the channel. The coupling of system identification together with feed-forward control was found to be a flexible, efficient and experimentally feasible strategy. In particular, the successful numerical control is further supported by experimental results. Support from Ecole Polytechnique and the Partner University Fund (PUF) is gratefully acknowledged.

  3. Gain control of gamma frequency activation by a novel feed forward disinhibitory loop: implications for normal and epileptic neural activity

    Directory of Open Access Journals (Sweden)

    Zeinab eBirjandian

    2013-11-01

    Full Text Available The inhibition of excitatory (pyramidal neurons directly dampens their activity resulting in a suppression of neural network output. The inhibition of inhibitory cells is more complex. Inhibitory drive is known to gate neural network synchrony, but there is also a widely held view that it may augment excitability by reducing inhibitory cell activity, a process termed disinhibition. Surprisingly, however, disinhibition has never been demonstrated to be an important mechanism that augments or drives the activity of excitatory neurons in a functioning neural circuit. Using voltage sensitive dye imaging (VSDI we show that 20-80 Hz stimulus trains, (beta-gamma activation, of the olfactory cortex pyramidal cells in layer II leads to a subsequent reduction in inhibitory interneuron activity that augments the efficacy of the initial stimulus. This disinhibition occurs with a lag of about 150-250 ms after the initial excitation of the layer 2 pyramidal cell layer. In addition activation of the endopiriform nucleus also arises just before the disinhibitory phase with a lag of about 40-80 ms. Preventing the spread of action potentials from layer II stopped the excitation of the endopiriform nucleus, abolished the disinhibitory activity and reduced the excitation of layer II cells. After the induction of experimental epilepsy the disinhibition was more intense with a concomitant increase in excitatory cell activity. Our observations provide the first evidence of feed forward disinhibition loop that augments excitatory neurotransmission, a mechanism that could play an important role in the development of epileptic seizures.

  4. Near-infrared Spectral Detection of the Content of Soybean Fat Acids Based on Genetic Multilayer Feed forward Neural Network

    Institute of Scientific and Technical Information of China (English)

    CHAI Yu-hua; PAN Wei; NING Hai-long

    2005-01-01

    In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output,weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.

  5. Global Feed-Forward Vibration Isolation in a km scale Interferometer

    CERN Document Server

    DeRosa, Ryan; Atkinson, Dani; Miao, Haixing; Frolov, Valery; Landry, Michael; Giaime, Joseph; Adhikari, Rana

    2012-01-01

    Using a network of seismometers and sets of optimal filters, we implemented a feed-forward control technique to minimize the seismic contribution to multiple interferometric degrees of freedom of the LIGO interferometers. The filters are constructed by using the Levinson-Durbin recursion relation to approximate the optimal Wiener filter. By reducing the RMS of the interferometer feedback signals below \\sim10 Hz, we have improved the stability and duty cycle of the joint network of gravitational wave detectors. By suppressing the large control forces and mirror motions, we have dramatically reduced the rate of non-Gaussian transients in the gravitational wave signal stream.

  6. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    Science.gov (United States)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  7. Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks

    Science.gov (United States)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2016-06-01

    Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.

  8. Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks.

    Science.gov (United States)

    Barranca, Victor J; Zhou, Douglas; Cai, David

    2016-06-01

    Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.

  9. Voice Coil Motor Position Control Based on Feed-forward Fuzzy PID

    Institute of Scientific and Technical Information of China (English)

    尹峰松

    2016-01-01

    Conventional PID algorithm is unable to track the response with high frequency,and has obvious overshoot in some voice coil motor practical applications.So,combined with the fuzzy PID control theory,we can obtain the precise control by the method.Meanwhile,through the feed-forward control,the performance of quick response and dynamic tracking can be improved.Thus,this control method not only maintains the excellent performance of the controller,but also improves the stability of the system.

  10. Selection of hadronic W-decays in DELPHI with feed forward neural networks - An update

    CERN Document Server

    Becks, K H; Müller, U; Wahlen, H

    2003-01-01

    Since 1998 feed forward neural networks have been successfully applied to select candidates of hadronic W-decays measured at different center of mass-energies by the DELPHI collaboration at the Large Electron Positron collider at CERN. To prepare the final publication, the neural network was adapted to all center of mass- energies. Detailed studies were performed concerning the level of preselection, the choice of network parameters and especially of the network architecture. The number of hidden nodes was optimized by testing different pruning methods. All studies and results will be discussed.

  11. DESIGNING PHYSICAL EDUCATION LESSONS IN PRIMARY SCHOOL BY CONTENT TYPE FEED-FORWARD

    Directory of Open Access Journals (Sweden)

    Cojanu Florin

    2010-06-01

    Full Text Available In actual didactic design is need to anticipate problems that may arise during implementation of proposed interdisciplinary content in the physical education lesson in class, by projecting sequential forward type of content, there by ensuring quality and efficiency. Its necessary to include in the design content of physical education lessons in primary sequence type of feed-forward, to increase the quality and effectiveness of physical education lessons at the operational objectives achieved. To development modern didactics of physical education we can keep some purchases of traditionalteaching, but still with emphasis currently reconsidering its entire system on the content, forms, methods of education.

  12. PANET: a GPU-based tool for fast parallel analysis of robustness dynamics and feed-forward/feedback loop structures in large-scale biological networks.

    Science.gov (United States)

    Trinh, Hung-Cuong; Le, Duc-Hau; Kwon, Yung-Keun

    2014-01-01

    It has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the network size that can be analyzed exist due to high computational costs. In addition, the plugin cannot verify an intrinsic property which can be induced by an observed result because it has no function to simulate the observation on a large number of random networks. To overcome these limitations, we have developed a novel software tool, PANET. First, the time-consuming parts of NetDS were redesigned to be processed in parallel using the OpenCL library. This approach utilizes the full computing power of multi-core central processing units and graphics processing units. Eventually, this made it possible to investigate a large-scale network such as a human signaling network with 1,609 nodes and 5,063 links. We also developed a new function to perform a batch-mode simulation where it generates a lot of random networks and conducts robustness calculations and feed-forward/feedback loop examinations of them. This helps us to determine if the findings in real biological networks are valid in arbitrary random networks or not. We tested our plugin in two case studies based on two large-scale signaling networks and found interesting results regarding relationships between coherently coupled feed-forward/feedback loops and robustness. In addition, we verified whether or not those findings are consistently conserved in random networks through batch-mode simulations. Taken together, our plugin is expected to effectively investigate various relationships between dynamics and structural properties in large-scale networks. Our software tool, user manual and example datasets are freely available at http://panet-csc.sourceforge.net/.

  13. PANET: a GPU-based tool for fast parallel analysis of robustness dynamics and feed-forward/feedback loop structures in large-scale biological networks.

    Directory of Open Access Journals (Sweden)

    Hung-Cuong Trinh

    Full Text Available It has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the network size that can be analyzed exist due to high computational costs. In addition, the plugin cannot verify an intrinsic property which can be induced by an observed result because it has no function to simulate the observation on a large number of random networks. To overcome these limitations, we have developed a novel software tool, PANET. First, the time-consuming parts of NetDS were redesigned to be processed in parallel using the OpenCL library. This approach utilizes the full computing power of multi-core central processing units and graphics processing units. Eventually, this made it possible to investigate a large-scale network such as a human signaling network with 1,609 nodes and 5,063 links. We also developed a new function to perform a batch-mode simulation where it generates a lot of random networks and conducts robustness calculations and feed-forward/feedback loop examinations of them. This helps us to determine if the findings in real biological networks are valid in arbitrary random networks or not. We tested our plugin in two case studies based on two large-scale signaling networks and found interesting results regarding relationships between coherently coupled feed-forward/feedback loops and robustness. In addition, we verified whether or not those findings are consistently conserved in random networks through batch-mode simulations. Taken together, our plugin is expected to effectively investigate various relationships between dynamics and structural properties in large-scale networks. Our software tool, user manual and example datasets are freely available at http://panet-csc.sourceforge.net/.

  14. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Directory of Open Access Journals (Sweden)

    René Felix Reinhart

    2017-02-01

    Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  15. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †.

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  16. Top-level dynamics and the regulated gene response of feed-forward loop transcriptional motifs

    Science.gov (United States)

    Mayo, Michael; Abdelzaher, Ahmed; Perkins, Edward J.; Ghosh, Preetam

    2014-09-01

    Feed-forward loops are hierarchical three-node transcriptional subnetworks, wherein a top-level protein regulates the activity of a target gene via two paths: a direct-regulatory path, and an indirect route, whereby the top-level proteins act implicitly through an intermediate transcription factor. Using a transcriptional network of the model bacterium Escherichia coli, we confirmed that nearly all types of feed-forward loop were significantly overrepresented in the bacterial network. We then used mathematical modeling to study their dynamics by manipulating the rise times of the top-level protein concentration, termed the induction time, through alteration of the protein destruction rates. Rise times of the regulated proteins exhibited two qualitatively different regimes, depending on whether top-level inductions were "fast" or "slow." In the fast regime, rise times were nearly independent of rapid top-level inductions, indicative of biological robustness, and occurred when RNA production rate-limits the protein yield. Alternatively, the protein rise times were dependent upon slower top-level inductions, greater than approximately one bacterial cell cycle. An equation is given for this crossover, which depends upon three parameters of the direct-regulatory path: transcriptional cooperation at the DNA-binding site, a protein-DNA dissociation constant, and the relative magnitude of the top-level protien concentration.

  17. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-01-01

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697

  18. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    Science.gov (United States)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  19. Thalamic circuit mechanisms link sensory processing in sleep and attention

    Directory of Open Access Journals (Sweden)

    Zhe eChen

    2016-01-01

    Full Text Available The correlation between sleep integrity and attentional performance is normally interpreted as poor sleep causing impaired attention. Here, we provide an alternative explanation for this correlation: common thalamic circuits regulate sensory processing across sleep and attention, and their disruption may lead to correlated dysfunction. Using multi-electrode recordings in mice, we find that rate and rhythmicity of thalamic reticular nucleus (TRN neurons are predictive of their functional organization in sleep and suggestive of their participation in sensory processing across states. Surprisingly, TRN neurons associated with spindles in sleep are also associated with alpha oscillations during attention. As such, we propose that common thalamic circuit principles regulate sensory processing in a state-invariant manner and that in certain disorders, targeting these circuits may be a more viable therapeutic strategy than considering individual states in isolation.

  20. Feed-forward segmentation of figure-ground and assignment of border-ownership.

    Directory of Open Access Journals (Sweden)

    Hans Supèr

    Full Text Available Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main processes herein are boundary assignment and surface segregation, which rely on the integration of global scene information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by feedback projections from higher visual areas provide such information, and are considered to be the neural substrate for figure-ground segmentation. On the contrary, a role of feedforward projections in figure-ground segmentation is unknown. To have a better understanding of a role of feedforward connections in figure-ground organization, we constructed a feedforward spiking model using a biologically plausible neuron model. By means of surround inhibition our simple 3-layered model performs figure-ground segmentation and one-sided border-ownership coding. We propose that the visual system uses feed forward suppression for figure-ground segmentation and border-ownership assignment.

  1. Feed-forward mechanisms: addiction-like behavioral and molecular adaptations in overeating.

    Science.gov (United States)

    Alsiö, Johan; Olszewski, Pawel K; Levine, Allen S; Schiöth, Helgi B

    2012-04-01

    Food reward, not hunger, is the main driving force behind eating in the modern obesogenic environment. Palatable foods, generally calorie-dense and rich in sugar/fat, are thus readily overconsumed despite the resulting health consequences. Important advances have been made to explain mechanisms underlying excessive consumption as an immediate response to presentation of rewarding tastants. However, our understanding of long-term neural adaptations to food reward that oftentimes persist during even a prolonged absence of palatable food and contribute to the reinstatement of compulsive overeating of high-fat high-sugar diets, is much more limited. Here we discuss the evidence from animal and human studies for neural and molecular adaptations in both homeostatic and non-homeostatic appetite regulation that may underlie the formation of a "feed-forward" system, sensitive to palatable food and propelling the individual from a basic preference for palatable diets to food craving and compulsive, addiction-like eating behavior.

  2. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  3. Entry, Descent and Landing Systems Analysis: Exploration Feed Forward Internal Peer Review Slide Package

    Science.gov (United States)

    Dwyer Cianciolo, Alicia M. (Editor)

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  4. Improving the character recognition efficiency of feed forward BP neural network

    CERN Document Server

    Choudhary, Amit

    2011-01-01

    This work is focused on improving the character recognition capability of feed-forward back-propagation neural network by using one, two and three hidden layers and the modified additional momentum term. 182 English letters were collected for this work and the equivalent binary matrix form of these characters was applied to the neural network as training patterns. While the network was getting trained, the connection weights were modified at each epoch of learning. For each training sample, the error surface was examined for minima by computing the gradient descent. We started the experiment by using one hidden layer and the number of hidden layers was increased up to three and it has been observed that accuracy of the network was increased with low mean square error but at the cost of training time. The recognition accuracy was improved further when modified additional momentum term was used.

  5. Sub-Shot-Noise Transmission Measurement Enabled by Active Feed-Forward of Heralded Single Photons

    Science.gov (United States)

    Sabines-Chesterking, J.; Whittaker, R.; Joshi, S. K.; Birchall, P. M.; Moreau, P. A.; McMillan, A.; Cable, H. V.; O'Brien, J. L.; Rarity, J. G.; Matthews, J. C. F.

    2017-07-01

    Harnessing the unique properties of quantum mechanics offers the possibility of delivering alternative technologies that can fundamentally outperform their classical counterparts. These technologies deliver advantages only when components operate with performance beyond specific thresholds. For optical quantum metrology, the biggest challenge that impacts on performance thresholds is optical loss. Here, we demonstrate how including an optical delay and an optical switch in a feed-forward configuration with a stable and efficient correlated photon-pair source reduces the detector efficiency required to enable quantum-enhanced sensing down to the detection level of single photons and without postselection. When the switch is active, we observe a factor of improvement in precision of 1.27 for transmission measurement on a per-input-photon basis compared to the performance of a laser emitting an ideal coherent state and measured with the same detection efficiency as our setup. When the switch is inoperative, we observe no quantum advantage.

  6. Single-Iteration Learning Algorithm for Feed-Forward Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Cogswell, R.; Protopopescu, V.

    1999-07-31

    A new methodology for neural learning is presented, whereby only a single iteration is required to train a feed-forward network with near-optimal results. To this aim, a virtual input layer is added to the multi-layer architecture. The virtual input layer is connected to the nominal input layer by a specird nonlinear transfer function, and to the fwst hidden layer by regular (linear) synapses. A sequence of alternating direction singular vrdue decompositions is then used to determine precisely the inter-layer synaptic weights. This algorithm exploits the known separability of the linear (inter-layer propagation) and nonlinear (neuron activation) aspects of information &ansfer within a neural network.

  7. Novel synchronous DPSK optical regenerator based on a feed-forward based carrier extraction scheme.

    Science.gov (United States)

    Ibrahim, Selwan K; Sygletos, Stylianos; Rafique, Danish; O'Dowd, John A; Weerasuriya, Ruwan; Ellis, Andrew D

    2011-05-09

    We experimentally demonstrate a novel synchronous 10.66 Gbit/s DPSK OEO regenerator which uses a feed-forward carrier extraction scheme with an injection-locked laser to synchronize the regenerated signal wavelength to the incoming signal wavelength. After injection-locking, a low-cost DFB laser used at the regenerator exhibited the same linewidth characteristics as the narrow line-width transmitter laser. The phase regeneration properties of the regenerator were evaluated by emulating random Gaussian phase noise applied to the DPSK signal before the regenerator using a phase modulator driven by an arbitrary waveform generator. The overall performance was evaluated in terms of electrical eye-diagrams, BER measurements, and constellation diagrams.

  8. Overview of the NASA Entry, Descent and Landing Systems Analysis Exploration Feed-Forward Study

    Science.gov (United States)

    DwyerCianciolo, Alicia M.; Zang, Thomas A.; Sostaric, Ronald R.; McGuire, M. Kathy

    2011-01-01

    Technology required to land large payloads (20 to 50 mt) on Mars remains elusive. In an effort to identify the most viable investment path, NASA and others have been studying various concepts. One such study, the Entry, Descent and Landing Systems Analysis (EDLSA) Study [1] identified three potential options: the rigid aeroshell, the inflatable aeroshell and supersonic retropropulsion (SRP). In an effort to drive out additional levels of design detail, a smaller demonstrator, or exploration feed-forward (EFF), robotic mission was devised that utilized two of the three (inflatable aeroshell and SRP) high potential technologies in a configuration to demonstrate landing a two to four metric ton payload on Mars. This paper presents and overview of the maximum landed mass, inflatable aeroshell controllability and sensor suite capability assessments of the selected technologies and recommends specific technology areas for additional work.

  9. An Adaptive Recursive Least Square Algorithm for Feed Forward Neural Network and Its Application

    Science.gov (United States)

    Qing, Xi-Hong; Xu, Jun-Yi; Guo, Fen-Hong; Feng, Ai-Mu; Nin, Wei; Tao, Hua-Xue

    In high dimension data fitting, it is difficult task to insert new training samples and remove old-fashioned samples for feed forward neural network (FFNN). This paper, therefore, studies dynamical learning algorithms with adaptive recursive regression (AR) and presents an advanced adaptive recursive (AAR) least square algorithm. This algorithm can efficiently handle new samples inserting and old samples removing. This AAR algorithm is applied to train FFNN and makes FFNN be capable of simultaneously implementing three processes of new samples dynamical learning, old-fashioned samples removing and neural network (NN) synchronization computing. It efficiently solves the problem of dynamically training of FFNN. This FFNN algorithm is carried out to compute residual oil distribution.

  10. Entry, Descent and Landing Systems Analysis Study: Phase 2 Report on Exploration Feed-Forward Systems

    Science.gov (United States)

    Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.; Olds, Aaron D.; Powell, Richard W.; Shidner, Jeremy D.; Kinney, Daivd J.; McGuire, M. Kathleen; Arnold, James O.; Covington, M. Alan; Sostaric, Ronald R.; Zumwalt, Carlie H.; Llama, Eduardo G.

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  11. Design of Phase Feed Forward System in CTF3 and Performance of Fast Beam Phase Monitors

    CERN Document Server

    Skowronski, P K; Ghigo, A; Marcellini, F; Burrows, PN; Christian, GB; Perry, C; Gerbershagen, A; Roberts, J; Ikarios, E

    2013-01-01

    The CLIC two beam acceleration technology requires a drive beam phase stability better than 0.3 deg rms at 12 GHz, corresponding to a timing stability below 50 fs rms. For this reason the CLIC design includes a phase stabilization feed-forward system. It relies on precise beam phase measurements and their subsequent correction in a chicane with the help of fast kickers. A prototype of such a system is being installed in the CLIC Test Facility CTF3. In this paper its design and implementation is described in detail. Additionally, the performance of the precision phase monitor prototypes installed at the end of the CTF3 linac, as measured with the drive beam, is presented.

  12. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Yan, Wenli

    2016-01-01

    It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC) is proposed for stor......It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC) is proposed...... for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load...

  13. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    Directory of Open Access Journals (Sweden)

    Haojie Wang

    2016-07-01

    Full Text Available It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC is proposed for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control.

  14. Optimal feed-forward compensation for PWM dc/dc converters with 'linear' and 'quadratic' conversion ratio

    Science.gov (United States)

    Calderone, Luigi; Pinola, Licia; Varoli, Vincenzo

    1992-04-01

    The paper describes an analytical procedure to optimize the feed-forward compensation for any PWM dc/dc converters. The aims of achieving zero dc audiosusceptibility was found to be possible for the buck, buck-boost, Cuk, and SEPIC cells; for the boost converter, however, only nonoptimal compensation is feasible. Rules for the design of PWM controllers and procedures for the evaluation of the hardware-introduced errors are discussed. A PWM controller implementing the optimal feed-forward compensation for buck-boost, Cuk, and SEPIC cells is described and fully experimentally characterized.

  15. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC

  16. Spiraling dopaminergic circuitry from the ventral striatum to dorsal striatum is an effective feed-forward loop

    NARCIS (Netherlands)

    Ikeda, H.; Saigusa, T.; Kamei, J.; Koshikawa, N.; Cools, A.R.

    2013-01-01

    Central dopamine systems are key players in the cerebral organization of behavior and in various neurological and psychiatric diseases. We demonstrate the presence of a neurochemical feed-forward loop characterized by region-specific changes in dopamine efflux in serially connected striatal regions,

  17. Comparisons of Feed-Forward and Multiple-Feedback Sigma-Delta Modulators for MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    Meimei Zhang

    2016-01-01

    Full Text Available This paper investigates two different architectures of a 5th order electro-mechanical sigma-delta modulator: a feed-forward (FF architecture and a multiple-feedback (MF architecture. And a comparison was performed in terms of stability and noise shaping ability, sensitivities to parameter variances due to fabrication tolerances and loop gain, and nonlinearity in feedback force. Both architectures were modeled in Simulink and investigated at system level. The results show that: a both architectures are stable and achieve the similar noise floor level of -170dB within 250Hz in the ideal condition; b both architectures have good ability in fabrication tolerance; c the performance of the MF architecture will degrade heavily with the loop gain decreasing and become unstable if the loop gain beyond one optimal value, while the FF architecture is insensitive; d the FF architecture controls the proof mass well and achieves better SNDR, whereas the MF has a 56dB degradation in consideration of nonlinearity in feedback force.

  18. Forecasting Performance of Random Walk with Drift and Feed Forward Neural Network Models

    Directory of Open Access Journals (Sweden)

    Augustine D. Pwasong

    2015-08-01

    Full Text Available In this study, linear and nonlinear methods were used to model forecasting performances on the daily crude oil production data of the Nigerian National Petroleum Corporation (NNPC. The linear model considered here is the random walk with drift, while the nonlinear model is the feed forward neural network model. The results indicate that nonlinear methods have better forecasting performance greater than linear methods based on the mean error square sense. The root mean square error (RMSE and the mean absolute error (MAE were applied to ascertain the assertion that nonlinear methods have better forecasting performance greater than linear methods. Autocorrelation functions emerging from the increment series, that is, log difference series and difference series of the daily crude oil production data of the NNPC indicates significant autocorrelations. As a result of the foregoing assertion we deduced that the daily crude oil production series of the NNPC is not firmly a random walk process. However, the original daily crude oil production series of the NNPC was considered to be a random walk with drift when we are not trying to forecast immediate values. The analysis for this study was simulated using MATLAB software, version 8.03

  19. Content Based Image Retrieval using Novel Gaussian Fuzzy Feed Forward-Neural Network

    Directory of Open Access Journals (Sweden)

    C. R.B. Durai

    2011-01-01

    Full Text Available Problem statement: With extensive digitization of images, diagrams and paintings, traditional keyword based search has been found to be inefficient for retrieval of the required data. Content-Based Image Retrieval (CBIR system responds to image queries as input and relies on image content, using techniques from computer vision and image processing to interpret and understand it, while using techniques from information retrieval and databases to rapidly locate and retrieve images suiting an input query. CBIR finds extensive applications in the field of medicine as it assists a doctor to make better decisions by referring the CBIR system and gain confidence. Approach: Various methods have been proposed for CBIR using image low level image features like histogram, color layout, texture and analysis of the image in the frequency domain. Similarly various classification algorithms like Naïve Bayes classifier, Support Vector Machine, Decision tree induction algorithms and Neural Network based classifiers have been studied extensively. We proposed to extract features from an image using Discrete Cosine Transform, extract relevant features using information gain and Gaussian Fuzzy Feed Forward Neural Network algorithm for classification. Results and Conclusion: We apply our proposed procedure to 180 brain MRI images of which 72 images were used for testing and the remaining for training. The classification accuracy obtained was 95.83% for a three class problem. This research focused on a narrow search, where further investigation is needed to evaluate larger classes.

  20. Estimated wind speed feed forward control for wind turbine operation optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hooft, E.L.; Van Engelen, T.G. [ECN Wind Energy, Petten (Netherlands)

    2004-11-01

    For a pitch controlled variable speed wind turbine, a feed forward control structure based on the estimation of rotor averaged wind speed has been developed and analyzed. The additional control action will accelerate ordinary rotor speed feedback control to resist disturbances of wind speed turbulence and wind gusts. Wind speed estimation is based on reconstruction of aerodynamic torque from measurements and a priori knowledge of rotor behaviour. The theoretical base arises from the energy balance between captured aerodynamic energy from wind on the one hand and extracted electric energy (generator), stored kinetic energy (rotor inertia) and losses on the other hand. A tabular implementation for use in real-time control has been derived and evaluated by time domain simulations, stability analysis and parametric uncertainty studies. Without stability drawbacks, the proposed method has shown to be a powerful for reduction of rotor speed variations (30-40%) and wind gust suppression. Energy yield increase is feasible (0.9%) if temporarily torque excesses are not allowed.

  1. 3D Polygon Mesh Compression with Multi Layer Feed Forward Neural Networks

    Directory of Open Access Journals (Sweden)

    Emmanouil Piperakis

    2003-06-01

    Full Text Available In this paper, an experiment is conducted which proves that multi layer feed forward neural networks are capable of compressing 3D polygon meshes. Our compression method not only preserves the initial accuracy of the represented object but also enhances it. The neural network employed includes the vertex coordinates, the connectivity and normal information in one compact form, converting the discrete and surface polygon representation into an analytic, solid colloquial. Furthermore, the 3D object in its compressed neural form can be directly - without decompression - used for rendering. The neural compression - representation is viable to 3D transformations without the need of any anti-aliasing techniques - transformations do not disrupt the accuracy of the geometry. Our method does not su.er any scaling problem and was tested with objects of 300 to 107 polygons - such as the David of Michelangelo - achieving in all cases an order of O(b3 less bits for the representation than any other commonly known compression method. The simplicity of our algorithm and the established mathematical background of neural networks combined with their aptness for hardware implementation can establish this method as a good solution for polygon compression and if further investigated, a novel approach for 3D collision, animation and morphing.

  2. A feed-forward loop coupling extracellular BMP transport and morphogenesis in Drosophila wing.

    Directory of Open Access Journals (Sweden)

    Shinya Matsuda

    2013-03-01

    Full Text Available A variety of extracellular factors regulate morphogenesis during development. However, coordination between extracellular signaling and dynamic morphogenesis is largely unexplored. We address the fundamental question by studying posterior crossvein (PCV development in Drosophila as a model, in which long-range BMP transport from the longitudinal veins plays a critical role during the pupal stages. Here, we show that RhoGAP Crossveinless-C (Cv-C is induced at the PCV primordial cells by BMP signaling and mediates PCV morphogenesis cell-autonomously by inactivating members of the Rho-type small GTPases. Intriguingly, we find that Cv-C is also required non-cell-autonomously for BMP transport into the PCV region, while a long-range BMP transport is guided toward ectopic wing vein regions by loss of the Rho-type small GTPases. We present evidence that low level of ß-integrin accumulation at the basal side of PCV epithelial cells regulated by Cv-C provides an optimal extracellular environment for guiding BMP transport. These data suggest that BMP transport and PCV morphogenesis are tightly coupled. Our study reveals a feed-forward mechanism that coordinates the spatial distribution of extracellular instructive cues and morphogenesis. The coupling mechanism may be widely utilized to achieve precise morphogenesis during development and homeostasis.

  3. Feed-forward carrier phase recovery for offset-QAM Nyquist WDM transmission.

    Science.gov (United States)

    Tang, Haoyuan; Xiang, Meng; Fu, Songnian; Tang, Ming; Shum, Perry; Liu, Deming

    2015-03-09

    Due to the half symbol delay between in-phase and quadrature components for offset quadrature amplitude modulation (OQAM) signal, phase noise cannot only lead to constellation rotation but also introduce additional crosstalk. Therefore, OQAM signal has very poor tolerance to the laser linewidth. Here, we carry out a semi-analytical investigation of phase noise induced crosstalk during OQAM Nyquist WDM transmission, and find that the carrier phase recovery (CPR) has to be implemented prior to the inter-symbol-interference (ISI) equalization. Then, after a function separation of polarization de-multiplexing and ISI equalization, we propose a new DSP flow with a linewidth-tolerant blind feed-forward CPR scheme for OQAM signal. Its effectiveness is verified under the scenario of 5-channel 28-Gbaud polarization multiplexing (PM) OQAM Nyquist WDM systems. A tolerance of linewidth and symbol duration products of 6.5×10(-4) and 1.1×10(-4) is secured for 4-OQAM and 16-OQAM, respectively, given 1-dB required-OSNR penalty at BER = 10(-3).

  4. Optimal Feed Forward MLPArchitecture for Off-Line Cursive Numeral Recognition

    Directory of Open Access Journals (Sweden)

    Vijaypal Singh Dhaka

    2010-01-01

    Full Text Available The purpose of this work is to analyze the performance of back-propagation feed-forward algorithm using various different activation functions for the neurons of hidden and output layer and varying the number of neurons in the hidden layer. For sample creation, 250 numerals were gathered form 35 people of different ages including male and female. After binarization, these numerals were clubbed together to form training patterns for the neural network. Network was trained to learn its behavior by adjusting the connection strengths at every iteration. The conjugate gradient descent of each presented training pattern was calculated to identify the minima on the error surface for each training pattern. Experiments were performed by selecting different combinations of two activation functions out of the three activation functions logsig, tansig and purelin for the neurons of the hidden and output layers and the results revealed that as the number of neurons in the hidden layer is increased, the network gets trained in small number of epochs and the percentage recognition accuracy of the neural network was observed to increase up to certain level and then it starts decreasing when number of hidden neurons exceeds a certain level.

  5. Intrinsic excitability state of local neuronal population modulates signal propagation in feed-forward neural networks.

    Science.gov (United States)

    Han, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xilei; Qin, Yingmei; Wang, Haixu

    2015-04-01

    Reliable signal propagation across distributed brain areas is an essential requirement for cognitive function, and it has been investigated extensively in computational studies where feed-forward network (FFN) is taken as a generic model. But it is still unclear how distinct local network states, which are intrinsically generated by synaptic interactions within each layer, would affect the ability of FFN to transmit information. Here we investigate the impact of such network states on propagating transient synchrony (synfire) and firing rate by a combination of numerical simulations and analytical approach. Specifically, local network dynamics is attributed to the competition between excitatory and inhibitory neurons within each layer. Our results show that concomitant with different local network states, the performance of signal propagation differs dramatically. For both synfire propagation and firing rate propagation, there exists an optimal local excitability state, respectively, that optimizes the performance of signal propagation. Furthermore, we find that long-range connections strongly change the dependence of spiking activity propagation on local network state and propose that these two factors work jointly to determine information transmission across distributed networks. Finally, a simple mean field approach that bridges response properties of long-range connectivity and local subnetworks is utilized to reveal the underlying mechanism.

  6. Feed Forward Neural Network Based Eye Localization and Recognition Using Hough Transform

    Directory of Open Access Journals (Sweden)

    Shylaja S S, K N Balasubramanya Murthy, S Natarajan Nischith, Muthuraj R, Ajay S

    2011-03-01

    Full Text Available Eye detection is a pre-requisite stage for many applications such as face recognition, iris recognition, eye tracking, fatigue detection based on eye-blink count and eye-directed instruction control. As the location of the eyes is a dominant feature of the face it can be used as an input to the face recognition engine. In this direction, the paper proposed here localizes eye positions using Hough Transformed (HT coefficients, which are found to be good at extracting geometrical components from any given object. The method proposed here uses circular and elliptical features of eyes in localizing them from a given face. Such geometrical features can be very efficiently extracted using the HT technique. The HT is based on a evidence gathering approach where the evidence is the ones cast in an accumulator array. The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure. Feed forward neural network has been used for classification of eyes and non-eyes as the dimension of the data is large in nature. Experiments have been carried out on standard databases as well as on local DB consisting of gray scale images. The outcome of this technique has yielded very satisfactory results with an accuracy of 98.68%

  7. ADAPTIVE FEED-FORWARD COMPENSATOR FOR HARMONIC CANCELLATION IN ELECTRO- HYDRAULIC SERVO SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YAO Jianjun; WANG Liquan; JIANG Hongzhou; WU Zhenshun; HAN Junwei

    2008-01-01

    Since the dead zone phenomenon occurs in electro-hydraulic servo system, the output of the system corresponding to a sinusoidal input contains higher harmonic besides the fundamental input, which causes harmonic distortion of the output signal. The method for harmonic cancellation based on adaptive filter is proposed. The task is accomplished by generating reference signals with frequency that should be eliminated from the output. The reference inputs are weighted by the adaptive filter in such a way that it closely matches the harmonic. The output of the adaptive filter is a harmonic replica and is injected to the fundamental signal such that the output harmonic is cancelled leaving the desired signal alone, and the total harmonic distortion (THD) is greatly reduced. The weights of filter are adjusted on-line according to the control error by using least-mean-square (LMS) algorithm. Simulation results performed with a hydraulic system demonstrate the efficiency and validity of the proposed adaptive feed-forward compensator (AFC) control scheme.

  8. Realization of an analog predistortion circuit for RF optical fiber links

    Institute of Scientific and Technical Information of China (English)

    Tian Xuenong; Wang Zhigong; Li Wei

    2009-01-01

    This paper presents an analog predistortion circuit for RF optical fiber links. The circuit consists of two source-coupled differential transconductance amplifiers which could provide linear and nonlinear transfer charac-teristics by adjusting the bias voltage and the transistor sizes. The circuit was designed and realized in a standard 0.18-μm CMOS technology of SMIC. The chip occupies 0.48 × 0.24 mm~2. The DC supply is 3.3 V. Using this circuit, the third-order intermodulation distortion (IMD) suppression of a directly modulated RF optical fiber link can be improved by 9-16 dBc at relatively low cost.

  9. Short Circuit Ratio analysis of multi-infeed HVDC system with a VSC-HVDC link

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2011-01-01

    As an important indicator of system stability, Short Circuit Ratio (SCR) is commonly used in power system analysis. For systems include HVDC link connection, the Effective SCR (ESCR) is mostly applied to indicate the strength of HVDC infeed bus. The contribution of VSC-HVDC link to multi......-infeed HVDC system stability has been analyzed a lot but the study on ESCR of this kind of system is still insufficient. This paper presents a calculation method for ESCR of the hybrid multi infeed HVDC system based on a simple two-infeed HVDC system model. The equivalent circuit of this system under short...

  10. Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward γ-aminobutyric acidergic modulators of entorhinal-hippocampal interplay.

    Science.gov (United States)

    Armstrong, Caren; Szabadics, János; Tamás, Gábor; Soltesz, Ivan

    2011-06-01

    Feed-forward inhibition from molecular layer interneurons onto granule cells (GCs) in the dentate gyrus is thought to have major effects regulating entorhinal-hippocampal interactions, but the precise identity, properties, and functional connectivity of the GABAergic cells in the molecular layer are not well understood. We used single and paired intracellular patch clamp recordings from post-hoc-identified cells in acute rat hippocampal slices and identified a subpopulation of molecular layer interneurons that expressed immunocytochemical markers present in members of the neurogliaform cell (NGFC) class. Single NGFCs displayed small dendritic trees, and their characteristically dense axonal arborizations covered significant portions of the outer and middle one-thirds of the molecular layer, with frequent axonal projections across the fissure into the CA1 and subicular regions. Typical NGFCs exhibited a late firing pattern with a ramp in membrane potential prior to firing action potentials, and single spikes in NGFCs evoked biphasic, prolonged GABA(A) and GABA(B) postsynaptic responses in GCs. In addition to providing dendritic GABAergic inputs to GCs, NGFCs also formed chemical synapses and gap junctions with various molecular layer interneurons, including other NGFCs. NGFCs received low-frequency spontaneous synaptic events, and stimulation of perforant path fibers revealed direct, facilitating synaptic inputs from the entorhinal cortex. Taken together, these results indicate that NGFCs form an integral part of the local molecular layer microcircuitry generating feed-forward inhibition and provide a direct GABAergic pathway linking the dentate gyrus to the CA1 and subicular regions through the hippocampal fissure.

  11. Flatness-based model inverse for feed-forward braking control

    Science.gov (United States)

    de Vries, Edwin; Fehn, Achim; Rixen, Daniel

    2010-12-01

    For modern cars an increasing number of driver assistance systems have been developed. Some of these systems interfere/assist with the braking of a car. Here, a brake actuation algorithm for each individual wheel that can respond to both driver inputs and artificial vehicle deceleration set points is developed. The algorithm consists of a feed-forward control that ensures, within the modelled system plant, the optimal behaviour of the vehicle. For the quarter-car model with LuGre-tyre behavioural model, an inverse model can be derived using v x as the 'flat output', that is, the input for the inverse model. A number of time derivatives of the flat output are required to calculate the model input, brake torque. Polynomial trajectory planning provides the needed time derivatives of the deceleration request. The transition time of the planning can be adjusted to meet actuator constraints. It is shown that the output of the trajectory planning would ripple and introduce a time delay when a gradual continuous increase of deceleration is requested by the driver. Derivative filters are then considered: the Bessel filter provides the best symmetry in its step response. A filter of same order and with negative real-poles is also used, exhibiting no overshoot nor ringing. For these reasons, the 'real-poles' filter would be preferred over the Bessel filter. The half-car model can be used to predict the change in normal load on the front and rear axle due to the pitching of the vehicle. The anticipated dynamic variation of the wheel load can be included in the inverse model, even though it is based on a quarter-car. Brake force distribution proportional to normal load is established. It provides more natural and simpler equations than a fixed force ratio strategy.

  12. Spike-timing computation properties of a feed-forward neural network model

    Directory of Open Access Journals (Sweden)

    Drew Benjamin Sinha

    2014-01-01

    Full Text Available Brain function is characterized by dynamical interactions among networks of neurons. These interactions are mediated by network topology at many scales ranging from microcircuits to brain areas. Understanding how networks operate can be aided by understanding how the transformation of inputs depends upon network connectivity patterns, e.g. serial and parallel pathways. To tractably determine how single synapses or groups of synapses in such pathways shape transformations, we modeled feed-forward networks of 7-22 neurons in which synaptic strength changed according to a spike-timing dependent plasticity rule. We investigated how activity varied when dynamics were perturbed by an activity-dependent electrical stimulation protocol (spike-triggered stimulation; STS in networks of different topologies and background input correlations. STS can successfully reorganize functional brain networks in vivo, but with a variability in effectiveness that may derive partially from the underlying network topology. In a simulated network with a single disynaptic pathway driven by uncorrelated background activity, structured spike-timing relationships between polysynaptically connected neurons were not observed. When background activity was correlated or parallel disynaptic pathways were added, however, robust polysynaptic spike timing relationships were observed, and application of STS yielded predictable changes in synaptic strengths and spike-timing relationships. These observations suggest that precise input-related or topologically induced temporal relationships in network activity are necessary for polysynaptic signal propagation. Such constraints for polysynaptic computation suggest potential roles for higher-order topological structure in network organization, such as maintaining polysynaptic correlation in the face of relatively weak synapses.

  13. Feed Forward Artificial Neural Network Model to Estimate the TPH Removal Efficiency in Soil Washing Process

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2017-01-01

    Full Text Available Background & Aims of the Study: A feed forward artificial neural network (FFANN was developed to predict the efficiency of total petroleum hydrocarbon (TPH removal from a contaminated soil, using soil washing process with Tween 80. The main objective of this study was to assess the performance of developed FFANN model for the estimation of   TPH removal. Materials and Methods: Several independent repressors including pH, shaking speed, surfactant concentration and contact time were used to describe the removal of TPH as a dependent variable in a FFANN model. 85% of data set observations were used for training the model and remaining 15% were used for model testing, approximately. The performance of the model was compared with linear regression and assessed, using Root of Mean Square Error (RMSE as goodness-of-fit measure Results: For the prediction of TPH removal efficiency, a FANN model with a three-hidden-layer structure of 4-3-1 and a learning rate of 0.01 showed the best predictive results. The RMSE and R2 for the training and testing steps of the model were obtained to be 2.596, 0.966, 10.70 and 0.78, respectively. Conclusion: For about 80% of the TPH removal efficiency can be described by the assessed regressors the developed model. Thus, focusing on the optimization of soil washing process regarding to shaking speed, contact time, surfactant concentration and pH can improve the TPH removal performance from polluted soils. The results of this study could be the basis for the application of FANN for the assessment of soil washing process and the control of petroleum hydrocarbon emission into the environments.

  14. Oscillations via Spike-Timing Dependent Plasticity in a Feed-Forward Model.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    2016-04-01

    Full Text Available Neuronal oscillatory activity has been reported in relation to a wide range of cognitive processes including the encoding of external stimuli, attention, and learning. Although the specific role of these oscillations has yet to be determined, it is clear that neuronal oscillations are abundant in the central nervous system. This raises the question of the origin of these oscillations: are the mechanisms for generating these oscillations genetically hard-wired or can they be acquired via a learning process? Here, we study the conditions under which oscillatory activity emerges through a process of spike timing dependent plasticity (STDP in a feed-forward architecture. First, we analyze the effect of oscillations on STDP-driven synaptic dynamics of a single synapse, and study how the parameters that characterize the STDP rule and the oscillations affect the resultant synaptic weight. Next, we analyze STDP-driven synaptic dynamics of a pre-synaptic population of neurons onto a single post-synaptic cell. The pre-synaptic neural population is assumed to be oscillating at the same frequency, albeit with different phases, such that the net activity of the pre-synaptic population is constant in time. Thus, in the homogeneous case in which all synapses are equal, the post-synaptic neuron receives constant input and hence does not oscillate. To investigate the transition to oscillatory activity, we develop a mean-field Fokker-Planck approximation of the synaptic dynamics. We analyze the conditions causing the homogeneous solution to lose its stability. The findings show that oscillatory activity appears through a mechanism of spontaneous symmetry breaking. However, in the general case the homogeneous solution is unstable, and the synaptic dynamics does not converge to a different fixed point, but rather to a limit cycle. We show how the temporal structure of the STDP rule determines the stability of the homogeneous solution and the drift velocity of the

  15. Oscillations via Spike-Timing Dependent Plasticity in a Feed-Forward Model.

    Science.gov (United States)

    Luz, Yotam; Shamir, Maoz

    2016-04-01

    Neuronal oscillatory activity has been reported in relation to a wide range of cognitive processes including the encoding of external stimuli, attention, and learning. Although the specific role of these oscillations has yet to be determined, it is clear that neuronal oscillations are abundant in the central nervous system. This raises the question of the origin of these oscillations: are the mechanisms for generating these oscillations genetically hard-wired or can they be acquired via a learning process? Here, we study the conditions under which oscillatory activity emerges through a process of spike timing dependent plasticity (STDP) in a feed-forward architecture. First, we analyze the effect of oscillations on STDP-driven synaptic dynamics of a single synapse, and study how the parameters that characterize the STDP rule and the oscillations affect the resultant synaptic weight. Next, we analyze STDP-driven synaptic dynamics of a pre-synaptic population of neurons onto a single post-synaptic cell. The pre-synaptic neural population is assumed to be oscillating at the same frequency, albeit with different phases, such that the net activity of the pre-synaptic population is constant in time. Thus, in the homogeneous case in which all synapses are equal, the post-synaptic neuron receives constant input and hence does not oscillate. To investigate the transition to oscillatory activity, we develop a mean-field Fokker-Planck approximation of the synaptic dynamics. We analyze the conditions causing the homogeneous solution to lose its stability. The findings show that oscillatory activity appears through a mechanism of spontaneous symmetry breaking. However, in the general case the homogeneous solution is unstable, and the synaptic dynamics does not converge to a different fixed point, but rather to a limit cycle. We show how the temporal structure of the STDP rule determines the stability of the homogeneous solution and the drift velocity of the limit cycle.

  16. JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis.

    Science.gov (United States)

    Zhang, Yanyan; Pan, Guohui; Zou, Zhengzhong; Fan, Keqiang; Yang, Keqian; Tan, Huarong

    2013-11-01

    Jadomycin production is under complex regulation in Streptomyces venezuelae. Here, another cluster-situated regulator, JadR*, was shown to negatively regulate jadomycin biosynthesis by binding to four upstream regions of jadY, jadR1, jadI and jadE in jad gene cluster respectively. The transcriptional levels of four target genes of JadR* increased significantly in ΔjadR*, confirming that these genes were directly repressed by JadR*. Jadomycin B (JdB) and its biosynthetic intermediates 2,3-dehydro-UWM6 (DHU), dehydrorabelomycin (DHR) and jadomycin A (JdA) modulated the DNA-binding activities of JadR* on the jadY promoter, with DHR giving the strongest dissociation effects. Direct interactions between JadR* and these ligands were further demonstrated by surface plasmon resonance, which showed that DHR has the highest affinity for JadR*. However, only DHU and DHR could induce the expression of jadY and jadR* in vivo. JadY is the FMN/FAD reductase supplying cofactors FMNH₂/FADH₂ for JadG, an oxygenase, that catalyses the conversion of DHR to JdA. Therefore, our results revealed that JadR* and early pathway intermediates, particularly DHR, regulate cofactor supply by a convincing case of a feed-forward mechanism. Such delicate regulation of expression of jadY could ensure a timely supply of cofactors FMNH₂/FADH₂ for jadomycin biosynthesis, and avoid unnecessary consumption of NAD(P)H.

  17. Note: Efficient diode laser line narrowing using dual, feed-forward + feed-back laser frequency control

    Science.gov (United States)

    Lintz, M.; Phung, D. H.; Coulon, J.-P.; Faure, B.; Lévèque, T.

    2017-02-01

    We have achieved distributed feedback laser diode line narrowing by simultaneously acting on the diode current via a feed-back loop and on an external electrooptic phase modulator in feed-forward actuator. This configuration turns out to be very efficient in reaching large bandwidth in the phase correction: up to 15 MHz with commercial laser control units. About 98% of the laser power undergoes narrowing. The full width at half maximum of the narrowed optical spectrum is of less than 4 kHz. This configuration appears to be very convenient as the delay in the feed-forward control electronics is easily compensated for by a 20 m optical fiber roll.

  18. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    Science.gov (United States)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  19. Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Daniela Albanesi

    2013-01-01

    Full Text Available The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens. A key component of this network is FapR, a transcriptional regulator that binds malonyl-CoA, but whose mode of action remains enigmatic. We report here the crystal structures of FapR from Staphylococcus aureus (SaFapR in three relevant states of its regulation cycle. The repressor-DNA complex reveals that the operator binds two SaFapR homodimers with different affinities, involving sequence-specific contacts from the helix-turn-helix motifs to the major and minor grooves of DNA. In contrast with the elongated conformation observed for the DNA-bound FapR homodimer, binding of malonyl-CoA stabilizes a different, more compact, quaternary arrangement of the repressor, in which the two DNA-binding domains are attached to either side of the central thioesterase-like domain, resulting in a non-productive overall conformation that precludes DNA binding. The structural transition between the DNA-bound and malonyl-CoA-bound states of SaFapR involves substantial changes and large (>30 Å inter-domain movements; however, both conformational states can be populated by the ligand-free repressor species, as confirmed by the structure of SaFapR in two distinct crystal forms. Disruption of the ability of SaFapR to monitor malonyl-CoA compromises cell growth, revealing the essentiality of membrane lipid homeostasis for S. aureus survival and uncovering novel opportunities for the development of antibiotics

  20. Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus.

    Science.gov (United States)

    Albanesi, Daniela; Reh, Georgina; Guerin, Marcelo E; Schaeffer, Francis; Debarbouille, Michel; Buschiazzo, Alejandro; Schujman, Gustavo E; de Mendoza, Diego; Alzari, Pedro M

    2013-01-01

    The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens. A key component of this network is FapR, a transcriptional regulator that binds malonyl-CoA, but whose mode of action remains enigmatic. We report here the crystal structures of FapR from Staphylococcus aureus (SaFapR) in three relevant states of its regulation cycle. The repressor-DNA complex reveals that the operator binds two SaFapR homodimers with different affinities, involving sequence-specific contacts from the helix-turn-helix motifs to the major and minor grooves of DNA. In contrast with the elongated conformation observed for the DNA-bound FapR homodimer, binding of malonyl-CoA stabilizes a different, more compact, quaternary arrangement of the repressor, in which the two DNA-binding domains are attached to either side of the central thioesterase-like domain, resulting in a non-productive overall conformation that precludes DNA binding. The structural transition between the DNA-bound and malonyl-CoA-bound states of SaFapR involves substantial changes and large (>30 Å) inter-domain movements; however, both conformational states can be populated by the ligand-free repressor species, as confirmed by the structure of SaFapR in two distinct crystal forms. Disruption of the ability of SaFapR to monitor malonyl-CoA compromises cell growth, revealing the essentiality of membrane lipid homeostasis for S. aureus survival and uncovering novel opportunities for the development of antibiotics against this major human

  1. Feed-forward active contour analysis for improved brachial artery reactivity testing.

    Science.gov (United States)

    Pugliese, Daniel N; Sehgal, Chandra M; Sultan, Laith R; Reamer, Courtney B; Mohler, Emile R

    2016-08-01

    The object of this study was to utilize a novel feed-forward active contour (FFAC) algorithm to find a reproducible technique for analysis of brachial artery reactivity. Flow-mediated dilation (FMD) is an important marker of vascular endothelial function but has not been adopted for widespread clinical use given its technical limitations, including inter-observer variability and differences in technique across clinical sites. We developed a novel FFAC algorithm with the goal of validating a more reliable standard. Forty-six healthy volunteers underwent FMD measurement according to the standard technique. Ultrasound videos lasting 5-10 seconds each were obtained pre-cuff inflation and at minutes 1 through 5 post-cuff deflation in longitudinal and transverse views. Automated segmentation using the FFAC algorithm with initial boundary definition from three different observers was used to analyze the images to measure diameter/cross-sectional area over the cardiac cycle. The %FMD was calculated for average, minimum, and maximum diameters/areas. Using the FFAC algorithm, the population-specific coefficient of variation (CV) at end-diastole was 3.24% for transverse compared to 9.96% for longitudinal measurements; the subject-specific CV was 15.03% compared to 57.41%, respectively. For longitudinal measurements made via the conventional method, the population-specific CV was 4.77% and subject-specific CV was 117.79%. The intraclass correlation coefficient (ICC) for transverse measurements was 0.97 (95% CI: 0.95-0.98) compared to 0.90 (95% CI: 0.84-0.94) for longitudinal measurements with FFAC and 0.72 (95% CI: 0.51-0.84) for conventional measurements. In conclusion, transverse views using the novel FFAC method provide less inter-observer variability than traditional longitudinal views. Improved reproducibility may allow adoption of FMD testing in a clinical setting. The FFAC algorithm is a robust technique that should be evaluated further for its ability to replace the

  2. Design of Feed-forward Controller with Stick-slip Friction Modeling in Electro-mechanical Brake System

    Directory of Open Access Journals (Sweden)

    Park Giseo

    2016-01-01

    Full Text Available Electro-Mechanical Brake (EMB is expected to be one of the future brake system. Feedback controller with sensor measuring is commonly used for control of EMB. However, this controller has some issues like delayed response and extra cost about sensor installation. In this paper, Feed-forward controller in EMB is proposed for solving these problems of feedback control. Also, it is very necessary to describe dynamical phenomenon of friction in actual EMB system. The actual EMB system shows stick-slip friction of mechanical parts which is difficult to model and apply to design of controller. This research is focused on exquisitely describing this stick-slip friction. In order to do this, the experiment about EMB is proceeded in the open loop system with the motor current command and data from the experiment is used for identification of model parameters during stiction. Then, parameters during slip is estimated in the closed loop system. Finally, developed friction model of EMB is proposed and it is utilized for design of feed-forward controller. Matlab Simulink is used for design of EMB simulation model and EMB test bench is utilized for experiment. Performance of proposed control system is compared with that of feedback control system.

  3. Modeling of PEM Fuel Cell Stack System using Feed-forward and Recurrent Neural Networks for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Mr. M. Karthik

    2014-05-01

    Full Text Available Artificial Neural Network (ANN has become a significant modeling tool for predicting the performance of complex systems that provide appropriate mapping between input-output variables without acquiring any empirical relationship due to the intrinsic properties. This paper is focussed towards the modeling of Proton Exchange Membrane (PEM Fuel Cell system using Artificial Neural Networks especially for automotive applications. Three different neural networks such as Static Feed Forward Network (SFFN, Cascaded Feed Forward Network (CFFN & Fully Connected Dynamic Recurrent Network (FCRN are discussed in this paper for modeling the PEM Fuel Cell System. The numerical analysis is carried out between the three Neural Network architectures for predicting the output performance of the PEM Fuel Cell. The performance of the proposed Networks is evaluated using various error criteria such as Mean Square Error, Mean Absolute Percentage Error, Mean Absolute Error, Coefficient of correlation and Iteration Values. The optimum network with high performance indices (low prediction error values and iteration values can be used as an ancillary model in developing the PEM Fuel Cell powered vehicle system. The development of the fuel cell driven vehicle model also incorporates the modeling of DC-DC Power Converter and Vehicle Dynamics. Finally the Performance of the Electric vehicle model is analyzed for two different drive cycle such as M-NEDC & M-UDDS.

  4. A Feed-Forward Controlled AC-DC Boost Converter for Biomedical Implants

    DEFF Research Database (Denmark)

    Jiang, Hao; Lan, Di; Lin, Dahsien;

    2012-01-01

    Miniaturization is important to make implants clinic friendly. Wireless power transfer is an essential technology to miniaturize implants by reducing their battery size or completely eliminating their batteries. Traditionally, a pair of inductively-coupled coils operating at radio-frequency (RF...... circuit for low turn-on voltage) [1]. In order to have a high induced voltage, the size of the receiving coil often is significantly larger than rest of the implant. A rotating magnets based wireless power transfer has been demonstrated to deliver the same amount of power at much lower frequency (around...... for powering biomedical implants....

  5. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of

  6. Improvement of multi-parameter-based feed-forward coagulant dosing control systems with feed-back functionalities.

    Science.gov (United States)

    Liu, W; Ratnaweera, H

    2016-01-01

    Coagulant dosing control in drinking and wastewater treatment plants (WWTPs) is often limited to flow proportional concepts. The advanced multi-parameter-based dosing control systems have significantly reduced coagulant consumption and improved outlet qualities. Due to the long retention time in separation stages, these models are mostly based on feed-forward (FF) models. This paper demonstrates the improvement of such models with feed-back (FB) concepts with simplifications, making it possible to use even in systems with long separation stages. Full-scale case studies from a drinking water treatment plant and a WWTP are presented. The model qualities were improved by the dosage adjustment of the FB model, ranging from 66% to 197% of the FF model. Hence, the outlet qualities became more stable and coagulant consumption was further reduced in the range of 3.7%-15.5%.

  7. Performance evaluation of MLP and RBF feed forward neural network for the recognition of off-line handwritten characters

    Science.gov (United States)

    Rishi, Rahul; Choudhary, Amit; Singh, Ravinder; Dhaka, Vijaypal Singh; Ahlawat, Savita; Rao, Mukta

    2010-02-01

    In this paper we propose a system for classification problem of handwritten text. The system is composed of preprocessing module, supervised learning module and recognition module on a very broad level. The preprocessing module digitizes the documents and extracts features (tangent values) for each character. The radial basis function network is used in the learning and recognition modules. The objective is to analyze and improve the performance of Multi Layer Perceptron (MLP) using RBF transfer functions over Logarithmic Sigmoid Function. The results of 35 experiments indicate that the Feed Forward MLP performs accurately and exhaustively with RBF. With the change in weight update mechanism and feature-drawn preprocessing module, the proposed system is competent with good recognition show.

  8. AN INDOOR POSITIONING TECHNIQUE BASED ON A FEED-FORWARD ARTIFICIAL NEURAL NETWORK USING LEVENBERG-MARQUARDT LEARNING METHOD

    Directory of Open Access Journals (Sweden)

    P. Pahlavani

    2017-09-01

    Full Text Available This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF artificial neural networks (ANN. Most of the indoor received signal strength (RSS-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration phase and the online (estimation phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening. Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg–Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.

  9. A feed-forward Hopfield neural network algorithm (FHNNA) with a colour satellite image for water quality mapping

    Science.gov (United States)

    Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar

    2016-06-01

    There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.

  10. Feed-forward and visual feedback control of head roll orientation in wasps (Polistes humilis, Vespidae, Hymenoptera).

    Science.gov (United States)

    Viollet, Stéphane; Zeil, Jochen

    2013-04-01

    Flying insects keep their visual system horizontally aligned, suggesting that gaze stabilization is a crucial first step in flight control. Unlike flies, hymenopteran insects such as bees and wasps do not have halteres that provide fast, feed-forward angular rate information to stabilize head orientation in the presence of body rotations. We tested whether hymenopteran insects use inertial (mechanosensory) information to control head orientation from other sources, such as the wings, by applying periodic roll perturbations to male Polistes humilis wasps flying in tether under different visual conditions indoors and in natural outdoor conditions. We oscillated the thorax of the insects with frequency-modulated sinusoids (chirps) with frequencies increasing from 0.2 to 2 Hz at a maximal amplitude of 50 deg peak-to-peak and maximal angular velocity of ±245 deg s(-1). We found that head roll stabilization is best outdoors, but completely absent in uniform visual conditions and in darkness. Step responses confirm that compensatory head roll movements are purely visually driven. Modelling step responses indicates that head roll stabilization is achieved by merging information on head angular velocity, presumably provided by motion-sensitive neurons and information on head orientation, presumably provided by light level integration across the compound eyes and/or ocelli (dorsal light response). Body roll in free flight reaches amplitudes of ±40 deg and angular velocities greater than 1000 deg s(-1), while head orientation remains horizontal for most of the time to within ±10 deg. In free flight, we did not find a delay between spontaneous body roll and compensatory head movements, and suggest that this is evidence for the contribution of a feed-forward control to head stabilization.

  11. THE WHOLESALE COMPANIES AS A LINK BETWEEN THE TWO CIRCUITS OF URBAN ECONOMY IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Marcos Xavier

    2011-12-01

    Full Text Available The current space division of labour increases the importance of circulation in production process and imposes a rapid and more frequent replacement of supplies, according to shorter stated periods, both in industry and retail. In Brazil, the opening of the economy, imposing a bigger competitiveness to the companies, and the social and territorial expansion of consumption have affected the organization and the structure of the wholesale companies. In reply, the logistics, as the management of the flow of goods, information and other resources, has enhanced the activities of planning and control. As the logistics becomes more important, a new organization of territory arises, increasing the relationships among places. Thus, we conclude that the wholesale distributors continue exerting a significant role in the intermediation between the industry and small retail. The modernization of Brazilian wholesale companies confirms the link existing between the two circuits of urban economy in Brazil.

  12. Prediction of gas hydrate saturation throughout the seismic section in Krishna Godavari basin using multivariate linear regression and multi-layer feed forward neural network approach

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, Y.; Nair, R.R.; Singh, H.; Datta, P.; Jaiswal, P.; Dewangan, P.; Ramprasad, T.

    -Godavari basin. Log prediction process, with uncertainties based on root mean square error properties, was implemented by way of a multi-layer feed forward neural network. The log properties were merged with seismic data by applying a non-linear transform...

  13. Synchronic, optical transmission data link integrated with FPGA circuits (for TESLA LLRF control system)

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, J.S.

    2006-07-15

    The X-ray free-electron laser X-FEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new possibilities for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated to the LLRF1 system in VUV FEL experiment It is being developed by the ELHEP2 group in the Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller to stabilize the vector sum of fields in cavities of one cryo-module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. The synchronic, optical link project was made for the accelerator X-FEL laser TESLA, the LLRF control system experiment at DESY, Hamburg. The control and diagnostic data is transmitted up to 2.5Gbit/s through a plastic fiber in a distance up to a few hundred meters. The link is synchronized once after power up, and never resynchronized when data is transmitted with maximum speed. The one way link bit error rate is less then 10{sup -15}. The transceiver component written in VHDL that works in the dedicated Altera registered Stratix registered GX FPGA circuit. During the work in the PERG laboratory a 2,5Gbit/s serial link with the long vector parallel interface transceiver was created. Long-Data-Vector transceiver transmits 16bit vector each 8ns with 120ns latency. (orig.)

  14. Automatic Segmentation of Colon in 3D CT Images and Removal of Opacified Fluid Using Cascade Feed Forward Neural Network

    Directory of Open Access Journals (Sweden)

    K. Gayathri Devi

    2015-01-01

    Full Text Available Purpose. Colon segmentation is an essential step in the development of computer-aided diagnosis systems based on computed tomography (CT images. The requirement for the detection of the polyps which lie on the walls of the colon is much needed in the field of medical imaging for diagnosis of colorectal cancer. Methods. The proposed work is focused on designing an efficient automatic colon segmentation algorithm from abdominal slices consisting of colons, partial volume effect, bowels, and lungs. The challenge lies in determining the exact colon enhanced with partial volume effect of the slice. In this work, adaptive thresholding technique is proposed for the segmentation of air packets, machine learning based cascade feed forward neural network enhanced with boundary detection algorithms are used which differentiate the segments of the lung and the fluids which are sediment at the side wall of colon and by rejecting bowels based on the slice difference removal method. The proposed neural network method is trained with Bayesian regulation algorithm to determine the partial volume effect. Results. Experiment was conducted on CT database images which results in 98% accuracy and minimal error rate. Conclusions. The main contribution of this work is the exploitation of neural network algorithm for removal of opacified fluid to attain desired colon segmentation result.

  15. RA Acts in a Coherent Feed-Forward Mechanism with Tbx5 to Control Limb Bud Induction and Initiation

    Science.gov (United States)

    Nishimoto, Satoko; Wilde, Susan M.; Wood, Sophie; Logan, Malcolm P.O.

    2015-01-01

    Summary The retinoic acid (RA)- and β-catenin-signaling pathways regulate limb bud induction and initiation; however, their mechanisms of action are not understood and have been disputed. We demonstrate that both pathways are essential and that RA and β-catenin/TCF/LEF signaling act cooperatively with Hox gene inputs to directly regulate Tbx5 expression. Furthermore, in contrast to previous models, we show that Tbx5 and Tbx4 expression in forelimb and hindlimb, respectively, are not sufficient for limb outgrowth and that input from RA is required. Collectively, our data indicate that RA signaling and Tbx genes act in a coherent feed-forward loop to regulate Fgf10 expression and, as a result, establish a positive feedback loop of FGF signaling between the limb mesenchyme and ectoderm. Our results incorporate RA-, β-catenin/TCF/LEF-, and FGF-signaling pathways into a regulatory network acting to recruit cells of the embryo flank to become limb precursors. PMID:26212321

  16. RA Acts in a Coherent Feed-Forward Mechanism with Tbx5 to Control Limb Bud Induction and Initiation

    Directory of Open Access Journals (Sweden)

    Satoko Nishimoto

    2015-08-01

    Full Text Available The retinoic acid (RA- and β-catenin-signaling pathways regulate limb bud induction and initiation; however, their mechanisms of action are not understood and have been disputed. We demonstrate that both pathways are essential and that RA and β-catenin/TCF/LEF signaling act cooperatively with Hox gene inputs to directly regulate Tbx5 expression. Furthermore, in contrast to previous models, we show that Tbx5 and Tbx4 expression in forelimb and hindlimb, respectively, are not sufficient for limb outgrowth and that input from RA is required. Collectively, our data indicate that RA signaling and Tbx genes act in a coherent feed-forward loop to regulate Fgf10 expression and, as a result, establish a positive feedback loop of FGF signaling between the limb mesenchyme and ectoderm. Our results incorporate RA-, β-catenin/TCF/LEF-, and FGF-signaling pathways into a regulatory network acting to recruit cells of the embryo flank to become limb precursors.

  17. Using an Extended Kalman Filter Learning Algorithm for Feed-Forward Neural Networks to Describe Tracer Correlations

    Science.gov (United States)

    Lary, David J.; Mussa, Yussuf

    2004-01-01

    In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.

  18. Aircraft automatic digital flight control system with inversion of the model in the feed-forward path

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1984-01-01

    A full-flight-envelope automatic trajectory control system concept is being investigated at Ames Research Center. This concept was developed for advanced aircraft configurations with severe nonlinear characteristics. A feature of the system is an inverse of the complete nonlinear aircraft model as part of the feed-forward control path. Simulation and flight tests have been reported at previous Digital Avionics Systems conferences. A new method for the continuous real-time inversion of the aircraft model using a Newton-Raphson trim algorithm instead of the original inverse table look-up procedure has been developed. The results of a simulation study of a vertical attitude takeoff and landing aircraft using the new inversion technique are presented. Maneuvers were successfully carried out in all directions in the vertical-attitude hover mode. Transition runs from conventional flight through the region of lift-curve-slope reversal at an angle of attack of about 32 deg and to hover at zero speed in the vertical attitude showed satisfactory transient response. Simulations were also conducted in conventional flight at high subsonic speed in steep climb and with turns up to 4 g. Successful flight tests of the system with the new model-inversion technique in a UH-1H helicopter have recently been carried out.

  19. Using an extended Kalman filter learning algorithm for feed-forward neural networks to describe tracer correlations

    Directory of Open Access Journals (Sweden)

    D. J. Lary

    2004-06-01

    Full Text Available In this study a new extended Kalman filter (EKF learning algorithm for feed-forward neural networks (FFN is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.. The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.

  20. Estimation of infiltration rate and deep percolation water using feed-forward neural networks in Gorgan Province

    Directory of Open Access Journals (Sweden)

    Fereydoon Sarmadian

    2014-01-01

    Full Text Available The two common methods used to develop PTFs are multiple-linear regression method and Artificial Neural Network. One of the advantages of neural networks compared to traditional regression PTFs is that they do not require a priori regression model, which relates input and output data and in general is difficult because these models are not known. So at present research, we compare performance of feed-forward back-propagation network to predict soil properties. Soil samples were collected from different horizons profiles located in the Gorgan Province, North of Iran. Measured soil variables included texture, organic carbon, water saturation percentage Bulk density, Infiltration rate and deep percolation. Then, multiple linear regression and neural network model were employed to develop a pedotransfer function for predicting soil parameters using easily measurable characteristics of clay, silt, SP, Bd and organic carbon. The performance of the multiple linear regression and neural network model was evaluated using a test data set by R2, RMSE and RSE. Results showed that artificial neural network with two and five neurons in hidden layer had better performance in predicting soil hydraulic properties than multivariate regression. In conclusion, the result of this study showed that both ANN and regression predicted soil properties with relatively high accuracy that showed that strong relationship between input and output data and also high accuracy in determining of data.

  1. Hybrid evolutionary techniques in feed forward neural network with distributed error for classification of handwritten Hindi `SWARS'

    Science.gov (United States)

    Kumar, Somesh; Pratap Singh, Manu; Goel, Rajkumar; Lavania, Rajesh

    2013-12-01

    In this work, the performance of feedforward neural network with a descent gradient of distributed error and the genetic algorithm (GA) is evaluated for the recognition of handwritten 'SWARS' of Hindi curve script. The performance index for the feedforward multilayer neural networks is considered here with distributed instantaneous unknown error i.e. different error for different layers. The objective of the GA is to make the search process more efficient to determine the optimal weight vectors from the population. The GA is applied with the distributed error. The fitness function of the GA is considered as the mean of square distributed error that is different for each layer. Hence the convergence is obtained only when the minimum of different errors is determined. It has been analysed that the proposed method of a descent gradient of distributed error with the GA known as hybrid distributed evolutionary technique for the multilayer feed forward neural performs better in terms of accuracy, epochs and the number of optimal solutions for the given training and test pattern sets of the pattern recognition problem.

  2. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq

    NARCIS (Netherlands)

    Jaitin, Diego Adhemar; Weiner, Assaf; Yofe, Ido; Lara-Astiaso, David; Keren-Shaul, Hadas; David, Eyal; Salame, Tomer Meir; Tanay, Amos; van Oudenaarden, Alexander; Amit, Ido

    2016-01-01

    In multicellular organisms, dedicated regulatory circuits control cell type diversity and responses. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. Here, we present CRISP-seq, an integrated method for massively parallel

  3. Open-loop (feed-forward) and feedback control of coronary blood flow during exercise, cardiac pacing, and pressure changes.

    Science.gov (United States)

    Pradhan, Ranjan K; Feigl, Eric O; Gorman, Mark W; Brengelmann, George L; Beard, Daniel A

    2016-06-01

    A control system model was developed to analyze data on in vivo coronary blood flow regulation and to probe how different mechanisms work together to control coronary flow from rest to exercise, and under a variety of experimental conditions, including cardiac pacing and with changes in coronary arterial pressure (autoregulation). In the model coronary flow is determined by the combined action of a feedback pathway signal that is determined by the level of plasma ATP in coronary venous blood, an adrenergic open-loop (feed-forward) signal that increases with exercise, and a contribution of pressure-mediated myogenic control. The model was identified based on data from exercise experiments where myocardial oxygen extraction, coronary flow, cardiac interstitial norepinephrine concentration, and arterial and coronary venous plasma ATP concentrations were measured during control and during adrenergic and purinergic receptor blockade conditions. The identified model was used to quantify the relative contributions of open-loop and feedback pathways and to illustrate the degree of redundancy in the control of coronary flow. The results indicate that the adrenergic open-loop control component is responsible for most of the increase in coronary blood flow that occurs during high levels of exercise. However, the adenine nucleotide-mediated metabolic feedback control component is essential. The model was evaluated by predicting coronary flow in cardiac pacing and autoregulation experiments with reasonable fits to the data. The analysis shows that a model in which coronary venous plasma adenine nucleotides are a signal in local metabolic feedback control of coronary flow is consistent with the available data.

  4. Trade-offs and noise tolerance in signal detection by genetic circuits.

    Directory of Open Access Journals (Sweden)

    Raúl Guantes

    Full Text Available Genetic circuits can implement elaborated tasks of amplitude or frequency signal detection. What type of constraints could circuits experience in the performance of these tasks, and how are they affected by molecular noise? Here, we consider a simple detection process-a signal acting on a two-component module-to analyze these issues. We show that the presence of a feedback interaction in the detection module imposes a trade-off on amplitude and frequency detection, whose intensity depends on feedback strength. A direct interaction between the signal and the output species, in a type of feed-forward loop architecture, greatly modifies these trade-offs. Indeed, we observe that coherent feed-forward loops can act simultaneously as good frequency and amplitude noise-tolerant detectors. Alternatively, incoherent feed-forward loop structures can work as high-pass filters improving high frequency detection, and reaching noise tolerance by means of noise filtering. Analysis of experimental data from several specific coherent and incoherent feed-forward loops shows that these properties can be realized in a natural context. Overall, our results emphasize the limits imposed by circuit structure on its characteristic stimulus response, the functional plasticity of coherent feed-forward loops, and the seemingly paradoxical advantage of improving signal detection with noisy circuit components.

  5. Plasticity during Sleep Is Linked to Specific Regulation of Cortical Circuit Activity

    Directory of Open Access Journals (Sweden)

    Niels Niethard

    2017-09-01

    Full Text Available Sleep is thought to be involved in the regulation of synaptic plasticity in two ways: by enhancing local plastic processes underlying the consolidation of specific memories and by supporting global synaptic homeostasis. Here, we briefly summarize recent structural and functional studies examining sleep-associated changes in synaptic morphology and neural excitability. These studies point to a global down-scaling of synaptic strength across sleep while a subset of synapses increases in strength. Similarly, neuronal excitability on average decreases across sleep, whereas subsets of neurons increase firing rates across sleep. Whether synapse formation and excitability is down or upregulated across sleep appears to partly depend on the cell’s activity level during wakefulness. Processes of memory-specific upregulation of synapse formation and excitability are observed during slow wave sleep (SWS, whereas global downregulation resulting in elimination of synapses and decreased neural firing is linked to rapid eye movement sleep (REM sleep. Studies of the excitation/inhibition balance in cortical circuits suggest that both processes are connected to a specific inhibitory regulation of cortical principal neurons, characterized by an enhanced perisomatic inhibition via parvalbumin positive (PV+ cells, together with a release from dendritic inhibition by somatostatin positive (SOM+ cells. Such shift towards increased perisomatic inhibition of principal cells appears to be a general motif which underlies the plastic synaptic changes observed during sleep, regardless of whether towards up or downregulation.

  6. Imbalanced functional link between reward circuits and the cognitive control system in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Xie, Chunming; Ma, Lisha; Jiang, Nan; Huang, Ruyan; Li, Li; Gong, Liang; He, Cancan; Xiao, Chaoyong; Liu, Wen; Xu, Shu; Zhang, Zhijun

    2016-08-23

    Altered reward processing and cognitive deficits are often observed in patients with obsessive-compulsive disorder (OCD); however, whether the imbalance in activity between reward circuits and the cognitive control (CC) system is associated with compulsive behavior remains unknown. Sixty-eight OCD patients and 33 cognitively normal (CN) healthy subjects participated in this resting-state functional magnetic resonance imaging study. Alterations in the functional connectivity between reward circuits and the CC system were quantitatively assessed and compared between the groups. A Granger causality analysis was used to determine the causal informational influence between and within reward circuits and the CC system across all subjects. OCD patients showed a dichotomous pattern of enhanced functional coupling in their reward circuits and a weakened functional coupling in their CC system when compared to CN subjects. Neural correlates of compulsive behavior were primarily located in the reward circuits and CC system in OCD patients. Importantly, the CC system exerted a reduced interregional causal influence over the reward system in OCD patients relative to its effect in CN subjects. The limitations of this study are that it was a cross-sectional study and the potential effects of environmental and genetic factors were not explored. OCD patients showed an imbalance in the functional link between reward circuits and the CC system at rest. This bias toward a loss of control may define a pathological state in which subjects are more vulnerable to engaging in compulsive behaviors.

  7. Electron beam energy and bunch length feed forward control studies using an artificial neural network at the Linac coherent light source

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E., E-mail: evelyne.meier@synchrotron.org.a [School of Physics, Monash University, Wellington Rd, Clayton, VIC 3800 (Australia) and Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168 (Australia) and FERMI-Elettra, Sincrotrone Trieste, S.S. 14km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy); Biedron, S.G., E-mail: biedron@anl.go [Department of Defense Project Office, Argonne National Laboratory, IL 60439 (United States); FERMI-Elettra, Sincrotrone Trieste, S.S. 14km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy); LeBlanc, G., E-mail: Greg.LeBlanc@synchrotron.org.a [Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168 (Australia); Morgan, M.J., E-mail: Michael.Morgan@sci.monash.edu.a [School of Physics, Monash University, Wellington Rd, Clayton, VIC 3800 (Australia); Wu, J., E-mail: jhwu@slac.stanford.ed [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States)

    2009-11-11

    This paper describes the results of an advanced control algorithm for the stabilization of electron beam energy in a Linac. The approach combines a conventional Proportional-Integral (PI) controller with a neural network (NNET) feed forward algorithm; it utilizes the robustness of PI control and the ability of a feed forward system in order to exert control over a wider range of frequencies. The NNET is trained to recognize jitter occurring in the phase and voltage of one of the klystrons, based on a record of these parameters, and predicts future energy deviations. A systematic approach is developed to determine the optimal NNET parameters that are then applied to the Australian Synchrotron Linac. The system's capability to fully cancel multi-frequency jitter is demonstrated. The NNET system is then augmented with the PI algorithm, and further jitter attenuation is achieved when the NNET is not operating optimally.

  8. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq

    NARCIS (Netherlands)

    Jaitin, Diego Adhemar; Weiner, Assaf; Yofe, Ido; Lara-Astiaso, David; Keren-Shaul, Hadas; David, Eyal; Salame, Tomer Meir; Tanay, Amos; van Oudenaarden, Alexander; Amit, Ido

    2016-01-01

    In multicellular organisms, dedicated regulatory circuits control cell type diversity and responses. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. Here, we present CRISP-seq, an integrated method for massively parallel si

  9. Deep learning in the small sample size setting: cascaded feed forward neural networks for medical image segmentation

    Science.gov (United States)

    Gaonkar, Bilwaj; Hovda, David; Martin, Neil; Macyszyn, Luke

    2016-03-01

    Deep Learning, refers to large set of neural network based algorithms, have emerged as promising machine- learning tools in the general imaging and computer vision domains. Convolutional neural networks (CNNs), a specific class of deep learning algorithms, have been extremely effective in object recognition and localization in natural images. A characteristic feature of CNNs, is the use of a locally connected multi layer topology that is inspired by the animal visual cortex (the most powerful vision system in existence). While CNNs, perform admirably in object identification and localization tasks, typically require training on extremely large datasets. Unfortunately, in medical image analysis, large datasets are either unavailable or are extremely expensive to obtain. Further, the primary tasks in medical imaging are organ identification and segmentation from 3D scans, which are different from the standard computer vision tasks of object recognition. Thus, in order to translate the advantages of deep learning to medical image analysis, there is a need to develop deep network topologies and training methodologies, that are geared towards medical imaging related tasks and can work in a setting where dataset sizes are relatively small. In this paper, we present a technique for stacked supervised training of deep feed forward neural networks for segmenting organs from medical scans. Each `neural network layer' in the stack is trained to identify a sub region of the original image, that contains the organ of interest. By layering several such stacks together a very deep neural network is constructed. Such a network can be used to identify extremely small regions of interest in extremely large images, inspite of a lack of clear contrast in the signal or easily identifiable shape characteristics. What is even more intriguing is that the network stack achieves accurate segmentation even when it is trained on a single image with manually labelled ground truth. We validate

  10. Studies on the practical use of learning feed-forward control system to ship maneuvering motion. 2. Experimental verification of follow-up control system; Senpaku soju undo no gakushugata feed forward seigyo hoshiki no jitsuyoka ni kansuru kenkyu. 2. Jissen jikken ni yoru mokuhyochi tsuiju seigyokei no kensho

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, S.; Yamamoto, Y. [Kyushu University, Fukuoka (Japan); Ogawa, Y. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1998-06-01

    Development has been demanded on a maneuvering motion control system with fine and high accuracy as a navigation aiding system for ship operators. In order to use practically the learning feed-forward control system which has been proposed by the authors, a target value follow-up control system was experimented first by using an actual ship. The experiment revealed that the result of simulation derived at the control system design phase agreed well both qualitatively and quantitatively with the result of the actual ship experiment. Performance of the learning feed-forward control system in the actual ship can be estimated sufficiently from the simulation result. A learning feed-forward control system for follow-up control to desired value (LFFCD) as the base of the learning feed-forward control system can be practically used sufficiently because of the following reasons: high-accuracy control which cannot be obtained by feedback control is possible; the system can be adapted well to non-linearity such as large angle turning because of its learning function; and a case of estimation error in ship body characteristics can also be responded by the learning function. 6 refs., 14 figs., 1 tab.

  11. Optical imaging as a link between cellular neurophysiology and circuit modeling

    Directory of Open Access Journals (Sweden)

    Walther Akemann

    2009-07-01

    Full Text Available The relatively simple and highly modular circuitry of the cerebellum raised expectations decades ago that a realistic computational model of cerebellar circuit operations would be feasible, and prove insightful for unraveling cerebellar information processing. To this end, the biophysical properties of most cerebellar cell types and their synaptic connections have been well characterized and integrated into realistic single cell models. Furthermore, large scale models of cerebellar circuits that extrapolate from single cell properties to circuit dynamics have been constructed. While the development of single cell models have been constrained by microelectrode recordings, guidance and validation as these models are scaled up to study network interactions requires an experimental methodology capable of monitoring cerebellar dynamics at the population level. Here we review the potential of optical imaging techniques to serve this purpose.

  12. An implementation of the Levenberg-Marquardt algorithm for simultaneous-energy-gradient fitting using two-layer feed-forward neural networks

    Science.gov (United States)

    Nguyen-Truong, Hieu T.; Le, Hung M.

    2015-06-01

    We present in this study a new and robust algorithm for feed-forward neural network (NN) fitting. This method is developed for the application in potential energy surface (PES) construction, in which simultaneous energy-gradient fitting is implemented using the well-established Levenberg-Marquardt (LM) algorithm. Three fitting examples are demonstrated, which include the vibrational PES of H2O, reactive PESs of O3 and ClOOCl. In the three testing cases, our new LM implementation has been shown to work very efficiently. Not only increasing fitting accuracy, it also offers two other advantages: less training iterations are utilized and less data points are required for fitting.

  13. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq.

    Science.gov (United States)

    Jaitin, Diego Adhemar; Weiner, Assaf; Yofe, Ido; Lara-Astiaso, David; Keren-Shaul, Hadas; David, Eyal; Salame, Tomer Meir; Tanay, Amos; van Oudenaarden, Alexander; Amit, Ido

    2016-12-15

    In multicellular organisms, dedicated regulatory circuits control cell type diversity and responses. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. Here, we present CRISP-seq, an integrated method for massively parallel single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-pooled screens. We show that profiling the genomic perturbation and transcriptome in the same cell enables us to simultaneously elucidate the function of multiple factors and their interactions. We applied CRISP-seq to probe regulatory circuits of innate immunity. By sampling tens of thousands of perturbed cells in vitro and in mice, we identified interactions and redundancies between developmental and signaling-dependent factors. These include opposing effects of Cebpb and Irf8 in regulating the monocyte/macrophage versus dendritic cell lineages and differential functions for Rela and Stat1/2 in monocyte versus dendritic cell responses to pathogens. This study establishes CRISP-seq as a broadly applicable, comprehensive, and unbiased approach for elucidating mammalian regulatory circuits.

  14. Definition of a Novel Feed-Forward Mechanism for Glycolysis-HIF1α Signaling in Hypoxic Tumors Highlights Aldolase A as a Therapeutic Target.

    Science.gov (United States)

    Grandjean, Geoffrey; de Jong, Petrus R; James, Brian P; Koh, Mei Yee; Lemos, Robert; Kingston, John; Aleshin, Alexander; Bankston, Laurie A; Miller, Claudia P; Cho, Eun Jeong; Edupuganti, Ramakrishna; Devkota, Ashwini; Stancu, Gabriel; Liddington, Robert C; Dalby, Kevin N; Powis, Garth

    2016-07-15

    The hypoxia-inducible transcription factor HIF1α drives expression of many glycolytic enzymes. Here, we show that hypoxic glycolysis, in turn, increases HIF1α transcriptional activity and stimulates tumor growth, revealing a novel feed-forward mechanism of glycolysis-HIF1α signaling. Negative regulation of HIF1α by AMPK1 is bypassed in hypoxic cells, due to ATP elevation by increased glycolysis, thereby preventing phosphorylation and inactivation of the HIF1α transcriptional coactivator p300. Notably, of the HIF1α-activated glycolytic enzymes we evaluated by gene silencing, aldolase A (ALDOA) blockade produced the most robust decrease in glycolysis, HIF-1 activity, and cancer cell proliferation. Furthermore, either RNAi-mediated silencing of ALDOA or systemic treatment with a specific small-molecule inhibitor of aldolase A was sufficient to increase overall survival in a xenograft model of metastatic breast cancer. In establishing a novel glycolysis-HIF-1α feed-forward mechanism in hypoxic tumor cells, our results also provide a preclinical rationale to develop aldolase A inhibitors as a generalized strategy to treat intractable hypoxic cancer cells found widely in most solid tumors. Cancer Res; 76(14); 4259-69. ©2016 AACR.

  15. A Quantitative Model of Glucose Signaling in Yeast Reveals an Incoherent Feed Forward Loop Leading to a Specific, Transient Pulse of Transcription

    Science.gov (United States)

    Kuttykrishnan, Sooraj; Sabina, Jeffrey; Langton, Laura; Johnston, Mark; Brent, Michael R.

    The ability to design and engineer organisms demands the ability to predict kinetic responses of novel regulatory networks built from well-characterized biological components. Surprisingly, few validated kinetic models of complex regulatory networks have been derived by combining models of the network components. A major bottleneck in producing such models is the difficulty of measuring in vivo rate constants for components of complex networks. We demonstrate that a simple, genetic approach to measuring rate constants in vivo produces an accurate kinetic model of the complex network that Saccharomyces cerevisiae employs to regulate the expression of genes encoding glucose transporters. The model predicts a transient pulse of transcription of HXT4 (but not HXT2 or HXT3) in response to addition of a small amount of glucose to cells, an outcome we observed experimentally. Our model also provides a mechanistic explanation for this result: HXT24 are governed by a type 2, incoherent feed forward regulatory loop involving the Rgt1 and Mig2 transcriptional repressors. The efficiency with which Rgt1 and Mig2 repress expression of each HXT gene determines which of them have a pulse of transcription in response to glucose. Finally, the model correctly predicts how lesions in the feed forward loop change the kinetics of induction of HXT4 expression.

  16. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  17. Epithelial Cholesterol Deficiency Attenuates Human Antigen R-linked Pro-inflammatory Stimulation via an SREBP2-linked Circuit.

    Science.gov (United States)

    Park, Seong-Hwan; Kim, Juil; Yu, Mira; Park, Jae-Hong; Kim, Yong Sik; Moon, Yuseok

    2016-11-18

    Patients with chronic intestinal ulcerative diseases, such as inflammatory bowel disease, tend to exhibit abnormal lipid profiles, which may affect the gut epithelial integrity. We hypothesized that epithelial cholesterol depletion may trigger inflammation-checking machinery via cholesterol sentinel signaling molecules whose disruption in patients may aggravate inflammation and disease progression. In the present study, sterol regulatory element-binding protein 2 (SREBP2) as the cholesterol sentinel was assessed for its involvement in the epithelial inflammatory responses in cholesterol-depleted enterocytes. Patients and experimental animals with intestinal ulcerative injuries showed suppression in epithelial SREBP2. Moreover, SREBP2-deficient enterocytes showed enhanced pro-inflammatory signals in response to inflammatory insults, indicating regulatory roles of SREBP2 in gut epithelial inflammation. However, epithelial cholesterol depletion transiently induced pro-inflammatory chemokine expression regardless of the well known pro-inflammatory nuclear factor-κB signals. In contrast, cholesterol depletion also exerts regulatory actions to maintain epithelial homeostasis against excessive inflammation via SREBP2-associated signals in a negative feedback loop. Mechanistically, SREBP2 and its induced target EGR-1 were positively involved in induction of peroxisome proliferator-activated receptor γ (PPARγ), a representative anti-inflammatory transcription factor. As a crucial target of the SREBP2-EGR-1-PPARγ-associated signaling pathways, the mRNA stabilizer, human antigen R (HuR) was retained in nuclei, leading to reduced stability of pro-inflammatory chemokine transcripts. This mechanistic investigation provides clinical insights into protective roles of the epithelial cholesterol deficiency against excessive inflammatory responses via the SREBP2-HuR circuit, although the deficiency triggers transient pro-inflammatory signals. © 2016 by The American Society for

  18. Nonlinear Companding Circuits With Thermal Compensation to Enhance Input Dynamic Range in Analog Optical Fiber Links

    Directory of Open Access Journals (Sweden)

    J. Rodríguez-Rodriguez

    2011-04-01

    Full Text Available Measuring systems based on a pair of optical fiber transmitter-receivers are used in medium-voltage testinglaboratories wherein the environment of high electromagnetic interference (EMI is a limitation for using conventionalcabling. Nonlinear compensation techniques have been used to limit the voltage range at the input of optical fiberlinks. However, nonlinear compensation introduces gain and linearity errors caused by thermal drift. This paperpresents a method of thermal compensation for the nonlinear circuit used to improve transient signal handlingcapabilities in measuring system while maintaining low errors in gain and linearity caused by thermal drift.

  19. The intralaminar thalamus – an expressway linking visual stimuli to circuits determining agency and action selection

    Directory of Open Access Journals (Sweden)

    Simon eFisher

    2014-04-01

    Full Text Available Anatomical investigations have revealed connections between the intralaminar thalamic nuclei and areas such as the superior colliculus that receive short latency input from visual and auditory primary sensory areas. The intralaminar nuclei in turn project to the major input nucleus of the basal ganglia, the striatum, providing this nucleus with a source of subcortical excitatory input. Together with a converging input from the cerebral cortex, and a neuromodulatory dopaminergic input from the midbrain, the components previously found necessary for reinforcement learning in the basal ganglia are present. With this intralaminar sensory input, the basal ganglia are thought to play a primary role in determining what aspect of an organism’s own behavior has caused salient environmental changes. Additionally, subcortical loops through thalamic and basal ganglia nuclei are proposed to play a critical role in action selection. In this mini review we will consider the anatomical and physiological evidence underlying the existence of these circuits. We will propose how the circuits interact to modulate basal ganglia output and solve common behavioral learning problems of agency determination and action selection.

  20. Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor

    Energy Technology Data Exchange (ETDEWEB)

    Gentili, Pier Luigi, E-mail: pierluigi.gentili@unipg.it [Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia (Italy); Gotoda, Hiroshi [Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); Dolnik, Milos; Epstein, Irving R. [Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110 (United States)

    2015-01-15

    Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and a local nonlinear predictor. We compare the performances of these three methods.

  1. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-01-01

    Full Text Available For predicting the key technology indicators (concentrate grade and tailings recovery rate of flotation process, a feed-forward neural network (FNN based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO algorithm and gravitational search algorithm (GSA is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process.

  2. A Kind of Second-Order Learning Algorithm Based on Generalized Cost Criteria in Multi-Layer Feed-Forward Neural Networks

    Institute of Scientific and Technical Information of China (English)

    张长江; 付梦印; 金梅

    2003-01-01

    A kind of second-order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi-layer feed-forward neural networks, the second-order back-propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second-order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second-order learning algorithm that was given by Karayiannis.

  3. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification.

    Science.gov (United States)

    Yan, Ming; Li, Wenxue; Yang, Kangwen; Zhou, Hui; Shen, Xuling; Zhou, Qian; Ru, Qitian; Bai, Dongbi; Zeng, Heping

    2012-05-01

    We report on a simple scheme to precisely control carrier-envelope phase of a nonlinear-polarization-rotation mode-locked self-started Yb-fiber laser system with an average output power of ∼7  W and a pulse width of 130 fs. The offset frequency was locked to the repetition rate of ∼64.5  MHz with a relative linewidth of ∼1.4  MHz by using a self-referenced feed-forward scheme based on an acousto-optic frequency shifter. The phase noise and timing jitter were calculated to be 370 mrad and 120 as, respectively.

  4. Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones.

    Directory of Open Access Journals (Sweden)

    Christian Puller

    Full Text Available The functional roles and synaptic features of horizontal cells in the mammalian retina are still controversial. Evidence exists for feedback signaling from horizontal cells to cones and feed-forward signaling from horizontal cells to bipolar cells, but the details of the latter remain elusive. Here, immunohistochemistry and confocal microscopy were used to analyze the expression patterns of the SNARE protein syntaxin-4, the GABA receptor subunits α1 and ρ, and the cation-chloride cotransporters NKCC and KCC2 in the outer plexiform layer of primate retina. In macaque retina, as observed previously in other species, syntaxin-4 was expressed on dendrites and axon terminals of horizontal cells at cone pedicles and rod spherules. At cones, syntaxin-4 appeared densely clustered in two bands, at horizontal cell dendritic tips and at the level of desmosome-like junctions. Interestingly, in the lower band where horizontal cells may synapse directly onto bipolar cells, syntaxin-4 was highly enriched beneath short-wavelength sensitive (S cones and colocalized with calbindin, a marker for HII horizontal cells. The enrichment at S-cones was not observed in either mouse or ground squirrel. Furthermore, high amounts of both GABA receptor and cation-chloride cotransporter subunits were found beneath primate S-cones. Finally, while syntaxin-4 was expressed by both HI and HII horizontal cell types, the intense clustering and colocalization with calbindin at S-cones indicated an enhanced expression in HII cells. Taken together, GABA receptors beneath cone pedicles, chloride transporters, and syntaxin-4 are putative constituents of a synaptic set of proteins which would be required for a GABA-mediated feed-forward pathway via horizontal cells carrying signals directly from cones to bipolar cells.

  5. Modulation of epidermal transcription circuits in psoriasis: new links between inflammation and hyperproliferation.

    Directory of Open Access Journals (Sweden)

    William R Swindell

    Full Text Available BACKGROUND: Whole-genome expression profiling has been used to characterize molecular-level differences between psoriasis lesions and normal skin. Pathway analysis, however, is complicated by the fact that expression profiles have been derived from bulk skin biopsies with RNA derived from multiple cell types. RESULTS: We analyzed gene expression across a large sample of psoriatic (PP and uninvolved/normal (PN skin biopsies (n = 215 patients. We identified 1975 differentially expressed genes, including 8 associated with psoriasis susceptibility loci. To facilitate pathway analysis, PP versus PN differences in gene expression were analyzed with respect to 235 gene modules, each containing genes with a similar expression pattern in keratinocytes and epidermis. We identified 30 differentially expressed modules (DEMs biased towards PP-increased or PP-decreased expression. These DEMs were associated with regulatory axes involving cytokines (e.g., IFN-γ, IL-17A, TNF-α, transcription factors (e.g., STAT1, NF-κB, E2F, RUNX1 and chromatin modifiers (SETDB1. We identified an interferon-induced DEM with genes encoding anti-viral proteins (designated "STAT1-57", which was activated in psoriatic epidermis but repressed following biologic therapy. Genes within this DEM shared a motif near the transcription start site resembling the interferon-stimulated response element (ISRE. CONCLUSIONS: We analyzed a large patient cohort and developed a new approach for delineating epidermis-specific pathways and regulatory mechanisms that underlie altered gene expression in psoriasis. Our findings highlight previously unrecognized "transcription circuits" that can provide targets for development of non-systemic therapies.

  6. Analysis of speedup as function of block size and cluster size for parallel feed-forward neural networks on a Beowulf cluster.

    Science.gov (United States)

    Mörchen, Fabian

    2004-03-01

    The performance of feed-forward neural networks trained with the backpropagation algorithm on a dedicated Beowulf cluster is analyzed. The concept of training set parallelism is applied. A new model for run time and speedup prediction is developed. With the model the speedup and efficiency of one iteration of the neural networks can be estimated as a function of block size and cluster size. The model is applied to three example problems representing different applications and network architectures. The estimation of the model has a higher accuracy than traditional methods for run time estimation and can be efficiently calculated. Experiments show that speedup of one iteration does not necessarily translate to a shorter training time toward a given error level. To overcome this problem a heuristic extension to training set parallelism called weight averaging is developed. The results show that training in parallel should only be done on clusters with high performance network connections or a multiprocessor machine. A rule of thumb is given for how much network performance of the cluster is needed to achieve speedup of the training time for a neural network.

  7. Comparative determination of phosphate and silicate using molybdenum blue by radial basis function and feed-forward neural networks assisted by principal component analysis.

    Science.gov (United States)

    Afkhami, Abbas; Abbasi-Tarighat, Maryam

    2008-06-01

    In the present study, chemometric analysis of visible spectral data of phospho-and silico-molybdenum blue complexes was used to develop artificial neural networks (ANNs) for the simultaneous determination of the phosphate and silicate. Combinations of principal component analysis (PCA) with feed-forward neural networks (FFNNs) and radial basis function networks (RBFNs) were built and investigated. The structures of the models were simplified by using the corresponding important principal components as input instead of the original spectra. Number of inputs and hidden nodes, learning rate, transfer functions and number of epochs and SPREAD values were optimized. Performances of methods were tested with root mean square errors prediction (RMSEP, %), using synthetic solutions. The obtained satisfactory results indicate the applicability of this ANN approach based on PCA input selection for determination in highly spectral overlapping. The results obtained by FFNNs and by RBF networks were compared. The applicability of methods was investigated for synthetic samples, for detergent formulations, and for a river water sample.

  8. FoxM1 Drives a Feed-forward STAT3-activation Signaling Loop that Promotes the Self-renewal and Tumorigenicity of Glioblastoma Stem-like Cells

    Science.gov (United States)

    Gong, Ai-hua; Wei, Ping; Zhang, Sicong; Yao, Jun; Yuan, Ying; Zhou, Ai-dong; Lang, Frederick F.; Heimberger, Amy B.; Rao, Ganesh; Huang, Suyun

    2015-01-01

    The growth factor PDGF controls the development of glioblastoma (GBM) but its contribution to the function of GBM stem-like cells (GSC) has been little studied. Here we report that the transcription factor FoxM1 promotes PDGFA-STAT3 signaling to drive GSC self-renewal and tumorigenicity. In GBM we found a positive correlation between expression of FoxM1 and PDGF-A. In GSC and mouse neural stem cells, FoxM1 bound to the PDGF-A promoter to upregulate PDGF-A expression, acting to maintain the stem-like qualities of GSC in part through this mechanism. Analysis of the human cancer genomic database TCGA revealed that GBM express higher levels of STAT3, a PDGF-A effector signaling molecule, as compared with normal brain. FoxM1 regulated STAT3 transcription through interactions with the β-catenin/TCF4 complex. FoxM1 deficiency inhibited PDGF-A and STAT3 expression in neural stem cells and GSC, abolishing their stem-like and tumorigenic properties. Further mechanistic investigations defined a FoxM1-PDGFA-STAT3 feed-forward pathway that was sufficient to confer stem-like properties to glioma cells. Collectively, our findings showed how FoxM1 activates expression of PDGF-A and STAT3 in a pathway required to maintain the self-renewal and tumorigenicity of glioma stem-like cells. PMID:25832656

  9. The feed forward neural network model for liquid-liquid extraction and separation of cobalt (II) from sodium acetate media using cyanex 272

    Science.gov (United States)

    Sudibyo, Aji, B. B.; Priyanto, S.

    2017-03-01

    Cobalt is one of the precious ferromagnetic metals, which widely used in the preparation of magnetic, wear-resistant and high-strength alloys. This metal was not found naturally in single metal form but is found as impurities in nickel or copper ore. The extraction process is one of the methods to separate cobalt from its impurities. However, this process needs an expensive organic solution. In practice, changing the composition of chemicals composition in extraction process always affect at a high cost. Therefore, the development of the artificial neural network (ANN) model to model the cobalt extraction process can serve as an important tool for predicting and investigating the optimum production for the cobalt extraction without the need to run the actual experiment. Hence, the development of the ANN model of cobalt extraction model is essential to simulate the process, which can lead to high yields of cobalt production. In this work a selected optimum multiple-input-single-output (MISO) model of feed forward neural network (FFNN) was used to predict the percentage of cobalt extraction. MISO FFNN with 20, 30 and 50 hidden nodes were used to simulate cobalt extraction process. The simulation results achieved was compared with data available in the literature. The results show that MISO FFNN with 50 hidden nodes has the best performance. The optimum result of MISO FFNN then exported to Simulink model in Matlab environment, hence make it easy to use in predicting and investigating for the optimum production of the cobalt extraction.

  10. A robust behavior of Feed Forward Back propagation algorithm of Artificial Neural Networks in the application of vertical electrical sounding data inversion

    Directory of Open Access Journals (Sweden)

    Y. Srinivas

    2012-09-01

    Full Text Available The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non-linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single-layer feed-forward neural network with the back propagation algorithm is chosen as one of the well-suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken for training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7′30"E and 8°48′45"N, Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES data, and this trained network is demonstrated by the field data. Groundwater table depth also has been modeled.

  11. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Directory of Open Access Journals (Sweden)

    Cátia Vieira

    2014-01-01

    Full Text Available Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.

  12. Comprehensive Development and Comparison of two Feed Forward Back Propagation Neural Networks for Forward and Reverse Modeling of Aluminum Alloy AA5083; H111 TIG Welding Process

    Directory of Open Access Journals (Sweden)

    Dr.J.P.Ganjigatti

    2016-05-01

    Full Text Available The development of an intelligent system for the establishment of relationship between input parameters and the responses utilizing both reverse and forward modeling of artificial neural networks is the main objective of the present research work. Prediction of quality characteristics such as front width, back width, front height and back height of the weld bead geometry in Tungsten Inert Gas welding process of AA5083; H111 Aluminum alloy is the aim in forward modeling from known set of process parameters such as current, %balance, welding speed, arc gap, gas flow rate, and frequency. Reverse modeling meets the industrial requirements of automatic welding to predict the recommended weld bead geometry characteristics. Comprehensive approach for the development of two back propagation networks viz. feed forward back propagation (FFBP and Elman back propagation (EBP neural networks is adopted. 212 Face centered central composite design based experimental data is utilized for the development of both supervised learning networks with batch mode training approach. A comparison of performance of FFBPP and EBP neural networks are made with that of stepwise multiple regression statistical modeling. Analysis of results showed that both neural network modeling outperformed the statistical approach in making better predictions and the models are efficient in selection of parameters effectively for the desired responses. FFBP performance found to marginally better than that of EBP neural network. Also the forward modeling performance was better than that of reverse modeling in both neural networks

  13. A Flexible Power Control Method of VSC-HVDC Link for the Enhancement of Effective Short-Circuit Ratio in a Hybrid Multi-Infeed HVDC System

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2013-01-01

    With the emerging use of voltage source converter high voltage direct current (VSC-HVDC) links, the hybrid multi-infeed HVDC (HMIDC) system that includes the line commutated converter (LCC) HVDC and the VSC-HVDC links is becoming a promising power transmission structure in the modern power systems....... To evaluate the contribution of the VSC-HVDC link on the voltage stability of HMIDC system, this paper proposes an effective short circuit ratio (ESCR) calculation method. Through the calculation, the voltage support capability of the VSC-HVDC link can be quantitatively represented by the ESCR. Furthermore......, based on the calculation results, a flexible power control strategy for the VSC-HVDC link is developed to provide maximum reactive power support under grid faults. The theoretical analysis of the HMIDC system is based on the Danish transmission grid, evaluated through PSCAD simulations under different...

  14. Experimental workflow for developing a feed forward strategy to control biomass growth and exploit maximum specific methane productivity of Methanothermobacter marburgensis in a biological methane production process (BMPP

    Directory of Open Access Journals (Sweden)

    Alexander Krajete

    2016-08-01

    Full Text Available Recently, interests for new biofuel generations allowing conversion of gaseous substrate(s to gaseous product(s arose for power to gas and waste to value applications. An example is biological methane production process (BMPP with Methanothermobacter marburgensis. The latter, can convert carbon dioxide (CO2 and hydrogen (H2, having different origins and purities, to methane (CH4, water and biomass. However, these gas converting bioprocesses are tendentiously gas limited processes and the specific methane productivity per biomass amount (qCH4 tends to be low. Therefore, this contribution proposes a workflow for the development of a feed forward strategy to control biomass, growth (rx and qCH4 in a continuous gas limited BMPP. The proposed workflow starts with a design of experiment (DoE to optimize media composition and search for a liquid based limitation to control selectively growth. From the DoE it came out that controlling biomass growth was possible independently of the dilution and gassing rate applied while not affecting methane evolution rates (MERs. This was done by shifting the process from a natural gas limited state to a controlled liquid limited growth. The latter allowed exploiting the maximum biocatalytic activity for methane formation of Methanothermobacter marburgensis. An increase of qCH4 from 42 to 129 mmolCH4 g−1 h−1 was achieved by applying a liquid limitation compare with the reference state. Finally, a verification experiment was done to verify the feeding strategy transferability to a different process configuration. This evidenced the ratio of the fed KH2PO4 to rx (R(FKH2PO4/rx has an appropriate parameter for scaling feeds in a continuous gas limited BMPP. In the verification experiment CH4 was produced in a single bioreactor step at a methane evolution rate (MER of   132 mmolCH4*L−1*h−1 at a CH4 purity of 93 [Vol.%].

  15. Reconstruction and analysis of transcription factor-miRNA co-regulatory feed-forward loops in human cancers using filter-wrapper feature selection.

    Directory of Open Access Journals (Sweden)

    Chen Peng

    Full Text Available BACKGROUND: As one of the most common types of co-regulatory motifs, feed-forward loops (FFLs control many cell functions and play an important role in human cancers. Therefore, it is crucial to reconstruct and analyze cancer-related FFLs that are controlled by transcription factor (TF and microRNA (miRNA simultaneously, in order to find out how miRNAs and TFs cooperate with each other in cancer cells and how they contribute to carcinogenesis. Current FFL studies rely on predicted regulation information and therefore suffer the false positive issue in prediction results. More critically, FFLs generated by existing approaches cannot represent the dynamic and conditional regulation relationship under different experimental conditions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we proposed a novel filter-wrapper feature selection method to accurately identify co-regulatory mechanism by incorporating prior information from predicted regulatory interactions with parallel miRNA/mRNA expression datasets. By applying this method, we reconstructed 208 and 110 TF-miRNA co-regulatory FFLs from human pan-cancer and prostate datasets, respectively. Further analysis of these cancer-related FFLs showed that the top-ranking TF STAT3 and miRNA hsa-let-7e are key regulators implicated in human cancers, which have regulated targets significantly enriched in cellular process regulations and signaling pathways that are involved in carcinogenesis. CONCLUSIONS/SIGNIFICANCE: In this study, we introduced an efficient computational approach to reconstruct co-regulatory FFLs by accurately identifying gene co-regulatory interactions. The strength of the proposed feature selection method lies in the fact it can precisely filter out false positives in predicted regulatory interactions by quantitatively modeling the complex co-regulation of target genes mediated by TFs and miRNAs simultaneously. Moreover, the proposed feature selection method can be generally applied to

  16. Simulation study on control of spill structure of slow extracted beam from a medical synchrotron with feed-forward and feedback using a fast quadruple magnet and RF-knockout system

    Science.gov (United States)

    Muraoka, Ryo; Nakanishi, Tetsuya

    2017-02-01

    A feedback control of the spill structure for the slow beam extraction from the medical synchrotron using a fast quadruple and radio frequency (RF)-knockout (QAR method) is studied to obtain the designed spill structure. In addition the feed-forward control is used so that the feedback control is performed effectively. In this extraction method, the spill of several ms are extracted continuously with an interval time of less than 1 ms. Beam simulation showed that a flat spill structure was effectively obtained with feed-forward and feedback control system as well as a step-wise structure which is useful for the shortening of an irradiation time in a spot scanning operation. The effect of current ripples from main quadruple magnet's power supplies could be also reduced with the feedback control application.

  17. 自适应前馈神经网络结构优化设计%An adaptive algorithm for designing optimal feed-forward neural network architecture

    Institute of Scientific and Technical Information of China (English)

    张昭昭; 乔俊飞; 杨刚

    2011-01-01

    针对多数前馈神经网络结构设计算法采取贪婪搜索策略而易陷入局部最优结构的问题,提出一种自适应前馈神经网络结构设计算法.该算法在网络训练过程中采取自适应寻优策略合并和分裂隐节点,达到设计最优神经网络结构的目的.在合并操作中,以互信息为准则对输出线性相关的隐节点进行合并;在分裂操作中,引入变异系数,有助于跳出局部最优网络结构.算法将合并和分裂操作之后的权值调整与网络对样本的学习过程结合,减少了网络对样本的学习次数,提高了网络的学习速度,增强了网络的泛化性能.非线性函数逼近结果表明,所提算法能得到更小的检测误差,最终网络结构紧凑.%Due to the fact that most algorithms use a greedy strategy in designing artificial neural networks which are susceptible to becoming trapped at the architectural local optimal point, an adaptive algorithm for designing an optimal feed-forward neural network was proposed. During the training process of the neural network, the adaptive optimization strategy was adopted to merge and split the hidden unit to design optimal neural network architecture. In the merge operation, the hidden units were merged based on mutual information criterion. In the split operation, a mutation coefficient was introduced to help jump out of locally optimal network. The process of adjusting the connection weight after merge and split operations was combined with the process of training the neural network. Therefore, the number of training samples was reduced, the training speed was increased, and the generalization performance was improved. The results of approximating non-linear functions show that the proposed algorithm can limit testing errors and a compact neural network structure.

  18. Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity.

    Science.gov (United States)

    Hamada, Masashi; Galea, Joseph M; Di Lazzaro, Vincenzo; Mazzone, Paolo; Ziemann, Ulf; Rothwell, John C

    2014-09-17

    How does a single brain region participate in multiple behaviors? Here we argue that two separate interneuron circuits in the primary motor cortex (M1) contribute differently to two varieties of physiological and behavioral plasticity. To test this in human brain noninvasively, we used transcranial magnetic stimulation (TMS) of M1 hand area to activate two independent sets of synaptic inputs to corticospinal neurons by changing the direction of current induced in the brain: posterior-to-anterior current (PA inputs) and anterior-to-posterior current (AP inputs). We demonstrate that excitability changes produced by repetitive activation of AP inputs depend on cerebellar activity and selectively alter model-based motor learning. In contrast, the changes observed with repetitive stimulation of PA inputs are independent of cerebellar activity and specifically modulate model-free motor learning. The findings are highly suggestive that separate circuits in M1 subserve different forms of motor learning.

  19. Research on Improving Machining Precision of CNC Machine Based on Velocity Feed-forward of FANUC System%基于FANUC系统速度前馈提高CNC机床加工精度的研究

    Institute of Scientific and Technical Information of China (English)

    刘萍; 王民权; 王劲

    2013-01-01

    CNC servo system has time delay in machine process of high-speed and high-precision which would cause form error because of deviation between instruction and real trajectory. Feed-forward control was introduced into servo system of CNC machine. Through theoretical analysis, it is shown that the form error can be effectively reduced by adopting proper feed-forward controller. CNC machine test results show; by adjusting the speed feed-forward coefficient, the speed loop gain can be improved, the form error due to changing acceleration is reduced, so surface quality and form precision are increased. Further the precision of CNC machine tools is improved.%针对高速高精加工过程中,因数控伺服系统时滞而导致的指令轨迹与实际轨迹存在偏差、进而导致形状误差的问题,将前馈控制引入数控机床伺服系统.通过理论分析可知:选用适当的前馈控制器,可以有效减小形状误差.数控机床测试结果表明:通过调整速度前馈系数,可以提高速度环的增益,从而减小因加速度变化引起的形状误差,改善表面精度和加工形状精度,进而提高CNC机床的加工精度.

  20. Modelling and control of three-phase grid-connected power supply with small DC-link capacitor for electrolysers

    DEFF Research Database (Denmark)

    Török, Lajos; Máthé, Lászlo; Nielsen, Carsten Karup

    2016-01-01

    . By substituting the complex switching model of the power supply with a simplified one, the system dynamics can be better observed. The resonances caused by the small DC link capacitor and grid side inductance can be easier analyzed. A feed forward compensation method is proposed based on the simplified model......-forward compensation signal is created, canceling in such a way the resonance introduced by the grid inductance and the DC-link capacitor from the feed-forward loop. The theoretical work has been validated through experiments on a 5 kW DC power supply used for electrolyser application....

  1. Wind control of cigarette process based on T-S model combined with feed-forward%基于T-S模型模糊混合前馈的卷烟工艺风力控制

    Institute of Scientific and Technical Information of China (English)

    谢钟翔; 成佳庆; 张立勋; 张振峰

    2013-01-01

    为解决扁式布袋除尘器中脉冲喷吹对工艺风力除尘系统管道的负压造成的定时扰动问题,提出一种基于 T-S模糊模型的模糊控制结合脉冲喷吹和压力波动前馈的混合前馈控制方法。从山东和其他一些地方的集中工艺风力系统生产环境中的运行效果可以看出,它有效地减弱了脉冲喷吹对于管道负压造成的扰动,简化了控制,具有良好的稳定性和鲁棒性。%A mixed feed-forward control method based on T-S fuzzy model combined with pulse jet and pressure fluctuation feed-forward is proposed to decrease the timing disturbance on the negative pressure of wind dust removal pipeline caused by pulse jet in flat bag dedusting system. The proposed method is applied in the practical production environments with concentrated wind power processes in Shandong and other provinces. The operation results indicate that, it can effectively weaken the disturbance on pipeline negative pressure caused by pulse jet, and simplify the control with good stability and robustness.

  2. Artificial neural networks for determination of enantiomeric composition of alpha-phenylglycine using UV spectra of cyclodextrin host-guest complexes: comparison of feed-forward and radial basis function networks.

    Science.gov (United States)

    Afkhami, Abbas; Abbasi-Tarighat, Maryam; Bahram, Morteza

    2008-03-15

    In this work feed-forward neural networks and radial basis function networks were used for the determination of enantiomeric composition of alpha-phenylglycine using UV spectra of cyclodextrin host-guest complexes and the data provided by two techniques were compared. Wavelet transformation (WT) and principal component analysis (PCA) were used for data compression prior to neural network construction and their efficiencies were compared. The structures of the wavelet transformation-radial basis function networks (WT-RBFNs) and wavelet transformation-feed-forward neural networks (WT-FFNNs), were simplified by using the corresponding wavelet coefficients of three mother wavelets (Mexican hat, daubechies and symlets). Dilation parameters, number of inputs, hidden nodes, learning rate, transfer functions, number of epochs and SPREAD values were optimized. Performances of the proposed methods were tested with regard to root mean square errors of prediction (RMSE%), using synthetic solutions containing a fixed concentration of beta-cyclodextrin (beta-CD) and fixed concentration of alpha-phenylglycine (alpha-Gly) with different enantiomeric compositions. Although satisfactory results with regard to some statistical parameters were obtained for all the investigated methods but the best results were achieved by WT-RBFNs.

  3. The Persistence of Asthma requires Multiple Feedback Circuits Involving ILC2 and IL33

    Science.gov (United States)

    Christianson, Christina A.; Goplen, Nicholas P.; Zafar, Iram; Irvin, Chaoyu; Good, James T.; Rollins, Donald R.; Gorentla, Balachandra; Liu, Weimin; Gorska, Magdalena M.; Chu, HongWei; Martin, Richard J.; Alam, Rafeul

    2015-01-01

    Background Asthma in the mouse model spontaneously resolves after cessation of allergen exposure. We developed a mouse model where asthma features persisted for 6 months after cessation of allergen exposure. Objective To elucidate factors contributing to the persistence of asthma. Methods We utilized a combination of immunologic, genetic, microarray and pharmacologic approaches to dissect the mechanism of persistence of asthma. Results Elimination of T cells though antibody-mediated depletion or lethal irradiation and transplantation of Rag1−/− bone marrow in mice with chronic asthma resulted in resolution of airway inflammation but not airway hyperreactivity or remodeling. Elimination of T cells and ILC2 through lethal irradiation and transplantation of Rag2−/−γc−/− bone marrow or blockade of IL33 resulted in resolution of airway inflammation and hyperreactivity. Persistence of asthma required multiple interconnected feedback and feed forward circuits between ILC2 and epithelial cells. Epithelial IL33 induced ILC2, a rich source of IL13. The latter directly induced epithelial IL33 establishing a positive feedback circuit. IL33 auto-induced, generating another feedback circuit. IL13 upregulated IL33 receptors and facilitated IL33 auto-induction, thus establishing a feed forward circuit. Elimination of any component of these circuits resulted in resolution of chronic asthma. In agreement with the foregoing, IL33 and ILC2 were increased in the airways from asthmatic patients. IL33 correlated with disease severity. Conclusions We present a critical network of feedback and feed forward interactions between epithelial cells and ILC2 involved in maintaining chronic asthma. Although T cells contributed to the severity of chronic asthma they were redundant in maintaining airway hyperreactivity and remodeling. PMID:25617223

  4. Circuit Connectors

    Science.gov (United States)

    1979-01-01

    The U-shaped wire devices in the upper photo are Digi-Klipsm; aids to compact packaging of electrical and electronic devices. They serve as connectors linking the circuitry of one circuit board with another in multi-board systems. Digi-Klips were originally developed for Goddard Space Flight Center to meet a need for lightweight, reliable connectors to replace hand-wired connections formerly used in spacecraft. They are made of beryllium copper wire, noted for its excellent conductivity and its spring-like properties, which assure solid electrical contact over a long period of time.

  5. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells.

    Science.gov (United States)

    Sakakini, Nathalie; Turchi, Laurent; Bergon, Aurélie; Holota, Hélène; Rekima, Samah; Lopez, Fabrice; Paquis, Philipe; Almairac, Fabien; Fontaine, Denys; Baeza-Kallee, Nathalie; Van Obberghen-Schilling, Ellen; Junier, Marie-Pierre; Chneiweiss, Hervé; Figarella-Branger, Dominique; Burel-Vandenbos, Fanny; Imbert, Jean; Virolle, Thierry

    2016-05-13

    Glioblastomas are the most common primary brain tumors, highly vascularized, infiltrating, and resistant to current therapies. This cancer leads to a fatal outcome in less than 18 months. The aggressive behavior of glioblastomas, including resistance to current treatments and tumor recurrence, has been attributed to glioma stemlike/progenitor cells. The transcription factor EGR1 (early growth response 1), a member of a zinc finger transcription factor family, has been described as tumor suppressor in gliomas when ectopically overexpressed. Although EGR1 expression in human glioblastomas has been associated with patient survival, its precise location in tumor territories as well as its contribution to glioblastoma progression remain elusive. In the present study, we show that EGR1-expressing cells are more frequent in high grade gliomas where the nuclear expression of EGR1 is restricted to proliferating/progenitor cells. We show in primary cultures of glioma stemlike cells that EGR1 contributes to stemness marker expression and proliferation by orchestrating a PDGFA-dependent growth-stimulatory loop. In addition, we demonstrate that EGR1 acts as a positive regulator of several important genes, including SHH, GLI1, GLI2, and PDGFA, previously linked to the maintenance and proliferation of glioma stemlike cells.

  6. Algebraic circuits

    CERN Document Server

    Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio

    2014-01-01

    This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.

  7. Learning feed-forward multi-nets

    NARCIS (Netherlands)

    Venema, RS; Spaanenburg, L; Kurkova,; Steele, NC; Neruda, R; Karny, M

    2001-01-01

    Multi-nets promise an improved performance over monolithic neural networks by virtue of their distributed implementation. This potential lacks popularity as, without precautions, the learning rate has to drop considerably to eliminate the occurrence of unlearning. This paper introduces extensions of

  8. Triple Feed-forward APIOBPCS Based Resilience and Operational Costs Assessment of Supply Chain%基于三前馈APIOBPCS的供应链弹性与运作成本评估

    Institute of Scientific and Technical Information of China (English)

    许波桅; 杨勇生; 杨斌; 李军军

    2015-01-01

    为兼顾供应链系统的弹性和运作成本,提出三前馈自动渠道的、基于库存和定购的生产控制系统(Triple feed-forward automatic pipeline, inventory and order-based production control system, TFF-APIOBPCS)。在自动渠道的、基于库存和定购的生产控制系统模型中,增加一阶微分前馈环节,以部分抵消需求波动对库存的影响。在零稳态误差情况下针对生产控制系统的不同极点分布,分析一阶微分前馈环节的参数与供应链弹性的关系。综合考虑库存成本及生产调节成本,构造供应链系统的运作成本模型。通过阶跃需求、随机需求下的供应链系统仿真,评估一阶前馈环节参数对供应链弹性及运作成本的影响,验证三前馈自动渠道的、基于库存和定购的生产控制系统的有效性。结果表明,针对不同波动程度的需求,合理设置一阶微分前馈环节的参数,可以获得弹性与运作成本的良好均衡。%In order to trade off between supply chain resilience and operational cost, a sort of triple feed-forward automatic pipeline, inventory and order-based production control system(TFF-APIOBPCS) is presented. A first order differential feedforward unit, introduced to production control model APIOBPCS, enables the model to mitigate the impact of fluctuations in demand on actual inventory. Aiming at different pole distribution of the production control system, analysis of the relationship between the parameters of first order differential feedforward and resilience are conducted under zero steady-state error. Supply chain operational cost model is constructed by comprehensive consideration of inventory cost and production regulation cost. Supply chain system simulations with a unit step signal and a stochastic signal as the customer demand evaluate the effect of the first order differential feedforward parameters on supply chain resilience and operational cost, and reveal the

  9. A Feed-Forward Loop Consisting of the Response Regulator RpaB and the Small RNA PsrR1 Controls Light Acclimation of Photosystem I Gene Expression in the Cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Kadowaki, Taro; Nagayama, Ryuta; Georg, Jens; Nishiyama, Yoshitaka; Wilde, Annegret; Hess, Wolfgang R; Hihara, Yukako

    2016-04-01

    Since cyanobacteria need to decrease PSI content to avoid absorption of excess light energy, down-regulation of PSI gene expression is one of the key characteristics of the high-light (HL) acclimation response. The transcriptional regulator RpaB and the small RNA PsrR1 (photosynthesis regulatory RNA1) have been suggested to be the two most critical factors for this response in Synechocystis sp. PCC 6803. In this study, we found that the HLR1 DNA-binding motif, the recognition sequence for RpaB, is highly conserved in the core promoter region of the psrR1 gene among cyanobacterial species. Gel mobility shift assay revealed that RpaB binds to the HLR1 sequence of psrR1 in vitro. RNA gel blot analysis together with chromatin affinity purification (ChAP) analysis suggested that PSI genes are activated and the psrR1 gene is repressed by the binding of RpaB under low-light (LL) conditions. A decrease in DNA binding affinity of RpaB occurs within 5 min after the shift from LL to HL conditions, leading to the prompt decrease in PSI promoter activity together with derepression of psrR1 gene expression. Accumulating PsrR1 molecules then prevent translation from pre-existing PSI transcripts. By this dual repression at transcriptional and post-transcriptional levels, rapid and strict down-regulation of PSI expression under HL is secured. Our findings suggest that RpaB and PsrR1 constitute a feed-forward loop for the regulation of PSI gene expression to achieve a rapid acclimation response to the damaging HL conditions.

  10. Improved 60 GHz Millimeter-Wave Generator Based on Feed-Forward Modulation%一种改进的基于前向调制技术生成60 GHz毫米波方案

    Institute of Scientific and Technical Information of China (English)

    许丽丽; 宁提纲; 李晶; 裴丽; 油海东; 陈宏尧; 张婵

    2013-01-01

    光载无线通信(ROF)技术是通信业宽带化和无线化的产物,该技术将光纤通信技术与毫米波通信技术进行融合,具有广阔的应用前景.目前世界众多国家在60 GHz毫米波频段相继划出免许可连续频谱,这使得60 GHz毫米波无线通信成为近距离无线通信领域的研究热点之一.为了降低ROF系统的成本,提高系统的性能,提出了一种改进的基于前向调制(FFM)技术生成60 GHz毫米波方案,分析了系统各光电器件的工作原理,仿真了不同的参量设置对系统性能的影响曲线.该方案结合了前向调制技术和光波分复用技术的优点,简化了整个系统的复杂程度,降低了ROF系统的造价成本,同时减小了误码率,提高了系统的性能.%A radio over fiber (ROF) system is a product of the broad band and wireless in the communication industry. It combines the optical fiber communication technology and millimeter-wave communication technology, and has a broad application prospect. At present many countries mark off unlicensed continuous-frequency spectra in 60 GHz millimeter wave frequency band, which makes 60 GHz millimeter-wave wireless communication become one of the hot researches in the field of close wireless communication. In order to reduce the cost of a ROF system and improve its performance, an improved 60 GHz millimeter-wave generator based on feed-forward modulation (FFM) technique is proposed. The principle of the photoelectric device is analysed and the effect of different parameters setting in the performance of the system curve is simulated. The scheme combines with the advantages of forward modulation technology and light wavelength division multiplexing technology. It simplifies the complexity of the system, reduces the cost of the ROF system, reduces the error rate and improves the performance of the whole system.

  11. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  12. 一种自适应前向均衡与判决均衡组合结构及变步长改进算法∗%The novel feed forward and decision feedback equalizer structures and improved variable step algorithm

    Institute of Scientific and Technical Information of China (English)

    郝学元; 颜晓红; 钱丽霞

    2015-01-01

    Skin effect and dielectric loss in super-long cable will cause nonlinear attenuation at different signal frequency, and in addition, coupling noise and thermal noise also cause signal distortion at the receiver end. These factors seriously affect the signal transmission speed in the super-long cable. Especially, in the field of exploration of shale gas and bed methane, the transmission cable is also used to transport high-precision synchronization pulse signal, and the synchronization pulse must reach the microsecond accuracy, which is used for data phase calibration. A synchronization signal is a high frequency signal, which suffers more severe attenuation and noise interference. At the receiving end, the sync pulse signal will be drowned in the noise environment, and so it is difficult to restore the original signal. Although fiber can achieve a high transfer rate, but the fiber cable cannot transmit power energy;in addition, the tensile strength and heat resistance of the fiber are much worse than copper cable, these weaknesses limit its application in such industry. Therefore, an effective balancing algorithm is necessary to overcome the propagation effects and interference in a super-long copper cable. However, conventional equalization techniques have well-balanced effect for the short-range communications, but for the long-distance communication, they often have poorly balanced results. In order to solve the above problem and improve the long cable signal transmission speed, this paper presents a new balanced portfolio structure;the new structure uses feed-forward equalizer (FFE) as the pre-stage, and decision-feedback equalizer (DFE) as the post stage to form a new structure. The combination structures can effectively utilize the flexibility of FFE and overcome the problem of error diffusion in DFE. By mathematical modeling and simulation, this paper gives the best combination factors. Furthermore, based on the improved structure, a new convergence

  13. GATING CIRCUITS

    Science.gov (United States)

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  14. Linking neuroscientific research on decision making to the educational context of novice students assigned to a multiple-choice scientific task involving common misconceptions about electrical circuits

    Directory of Open Access Journals (Sweden)

    Patrice ePotvin

    2014-01-01

    Full Text Available Functional magnetic resonance imaging was used to identify the brain-based mechanisms of uncertainty and certainty associated with answers to multiple-choice questions involving common misconceptions about electric circuits. Twenty-two (22 scientifically novice participants (humanities and arts college students were asked, in an fMRI study, whether or not they thought the light bulbs in images presenting electric circuits were lighted up correctly, and if they were certain or uncertain of their answers. When participants reported that they were unsure of their responses, analyses revealed significant activations in brain areas typically involved in uncertainty (anterior cingulate cortex, anterior insula cortex, and superior/dorsomedial frontal cortex and in the left middle/superior temporal lobe. Certainty was associated with large bilateral activations in the occipital and parietal regions usually involved in visuospatial processing. Correct-and-certain answers were associated with activations that suggest a stronger mobilization of visual attention resources when compared to incorrect-and-certain answers. These findings provide insights into brain-based mechanisms of uncertainty that are activated when common misconceptions, identified as such by science education research literature, interfere in decision making in a school-like task. We also discuss the implications of these results from an educational perspective.

  15. Linking neuroscientific research on decision making to the educational context of novice students assigned to a multiple-choice scientific task involving common misconceptions about electrical circuits.

    Science.gov (United States)

    Potvin, Patrice; Turmel, Elaine; Masson, Steve

    2014-01-01

    Functional magnetic resonance imaging was used to identify the brain-based mechanisms of uncertainty and certainty associated with answers to multiple-choice questions involving common misconceptions about electric circuits. Twenty-two scientifically novice participants (humanities and arts college students) were asked, in an fMRI study, whether or not they thought the light bulbs in images presenting electric circuits were lighted up correctly, and if they were certain or uncertain of their answers. When participants reported that they were unsure of their responses, analyses revealed significant activations in brain areas typically involved in uncertainty (anterior cingulate cortex, anterior insula cortex, and superior/dorsomedial frontal cortex) and in the left middle/superior temporal lobe. Certainty was associated with large bilateral activations in the occipital and parietal regions usually involved in visuospatial processing. Correct-and-certain answers were associated with activations that suggest a stronger mobilization of visual attention resources when compared to incorrect-and-certain answers. These findings provide insights into brain-based mechanisms of uncertainty that are activated when common misconceptions, identified as such by science education research literature, interfere in decision making in a school-like task. We also discuss the implications of these results from an educational perspective.

  16. The method of comprehension teaching guided by cultural feed forward in movement skill learning--Taking shot put movement skill learning for example%文化前馈指导下动作技能学习的领会教学法--以投掷铅球动作技能学习为例

    Institute of Scientific and Technical Information of China (English)

    和立新; 朱立新

    2014-01-01

    Based on the three-layer cultural structure theory, the authors expatiated on the cultural attribute of movement skills, and analyzed the sign of missing of some cultural constituent elements in the process of teaching and learning, ex-plained the function of feed forward control according to the characteristics of movement skills showed at various stages, put forward the principles to be followed in using cultural form as feed forward information for movement skill learning:learning migration theory and knowledge structure integrity, analyzed the characteristics of implementation of the method of comprehension teaching, and explained it by taking shot put movement skill learning for example.%依文化三层次结构论,阐述了动作技能的文化属性,并解析了传习过程中部分文化构成要素的遗失现象;结合动作技能形成的特点,对前馈控制作用进行说明,提出以文化形态作为动作技能学习前馈信息遵循的原理:学习迁移理论、知识结构的完整性;分析领会教学法的实施特点,并以推铅球动作技能学习为例说明。

  17. Secure integrated circuits and systems

    CERN Document Server

    Verbauwhede, Ingrid MR

    2010-01-01

    On any advanced integrated circuit or 'system-on-chip' there is a need for security. In many applications the actual implementation has become the weakest link in security rather than the algorithms or protocols. The purpose of the book is to give the integrated circuits and systems designer an insight into the basics of security and cryptography from the implementation point of view. As a designer of integrated circuits and systems it is important to know both the state-of-the-art attacks as well as the countermeasures. Optimizing for security is different from optimizations for speed, area,

  18. Controllable circuit

    DEFF Research Database (Denmark)

    2010-01-01

    A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...

  19. Circuit modeling for electromagnetic compatibility

    CERN Document Server

    Darney, Ian B

    2013-01-01

    Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference

  20. Analog and VLSI circuits

    CERN Document Server

    Chen, Wai-Kai

    2009-01-01

    Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.

  1. Role of Prelimbic GABAergic Circuits in Sensory and Emotional Aspects of Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2015-08-01

    Full Text Available Noxious stimuli are detected by peripheral nociceptors and then transmitted to higher CNS centers, where they are perceived as an unpleasant sensation. The mechanisms that govern the emotional component associated with pain are still incompletely understood. Here, we used optogenetic approaches both in vitro and in vivo to address this issue. We found that peripheral nerve injury inhibits pyramidal cell firing in the prelimbic area of the prefrontal cortex as a result of feed-forward inhibition mediated by parvalbumin-expressing GABAergic interneurons. In addition, activation of inhibitory archaerhodopsin or excitatory channelrhodopsin-2 in these neurons decreased and increased pain responses, respectively, in freely moving mice and accordingly modulated conditioned place preference scores and place escape/avoidance behavior. Our findings thus demonstrate an important role of the prelimbic area in sensory and emotional aspects of pain and identify GABAergic circuits in this region as a potential target for pain therapeutics.

  2. Türkiye’de Enflasyonun İleri ve Geri Beslemeli Yapay Sinir Ağlarının Melez Yaklaşımı ile Öngörüsü = Forecasting of Turkey Inflation with Hybrid of Feed Forward and Recurrent Artifical Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Rezan USLU

    2010-01-01

    Full Text Available Obtaining the inflation prediction is an important problem. Having this prediction accurately will lead to more accurate decisions. Various time series techniques have been used in the literature for inflation prediction. Recently, Artificial Neural Network (ANN is being preferred in the time series prediction problem due to its flexible modeling capacity. Artificial neural network can be applied easily to any time series since it does not require prior conditions such as a linear or curved specific model pattern, stationary and normal distribution. In this study, the predictions have been obtained using the feed forward and recurrent artificial neural network for the Consumer Price Index (CPI. A new combined forecast has been proposed based on ANN in which the ANN model predictions employed in analysis were used as data.

  3. 基于输入电压前馈补偿的开关变换器恒定导通时间控制技术%Constant on-Time Control of Switching DC-DC Converters Based on Input Voltage Feed-Forward Compensation

    Institute of Scientific and Technical Information of China (English)

    王金平; 许建平; 兰燕妮; 徐杨军

    2012-01-01

    针对恒定导通时间(COT)控制开关变换器的开关频率随输入电压变动而变化的缺点,本文提出了一种基于输入电压前馈补偿的恒定导通时间(IVFC-COT)控制技术,通过引入输入电压前馈环路,使恒定导通时间与输入电压成反比,从而消除输入电压波动对开关频率的影响。IVFC-COT控制在继承COT控制环路设计简单,无需误差放大器及其相应的补偿网络,瞬态响应速度快等优点的基础上,使开关频率在输入电压或负载波动时保持恒定。仿真及实验结果验证了IVFC-COT控制技术的可行性。%In order to make the switching frequency of constant on-time(COT)control technique immunity to the variation of input voltage, input voltage feed-forward compensated COT (IVFC-COT) control technique is proposed in this paper. By introducing input voltage feed-forward compensation, the on time is inverse proportion to the input voltage, and the effect of input voltage variation on switching frequency is eliminated. Similar to COT control technique, IVFC-COT also has simple control loop and fast transient response, moreover, error amplifier and its corresponding compensation network are not needed. In addition, it can make the switching frequency independent of the variation of input voltage and load. Simulation and experimental results are verified the validity of the proposed IVFC-COT control technique.

  4. LOGIC CIRCUIT

    Science.gov (United States)

    Strong, G.H.; Faught, M.L.

    1963-12-24

    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  5. Collective of mechatronics circuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-15

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  6. Mapping network motif tunability and robustness in the design of synthetic signaling circuits.

    Directory of Open Access Journals (Sweden)

    Sergio Iadevaia

    Full Text Available Cellular networks are highly dynamic in their function, yet evolutionarily conserved in their core network motifs or topologies. Understanding functional tunability and robustness of network motifs to small perturbations in function and structure is vital to our ability to synthesize controllable circuits. In establishing core sets of network motifs, we selected topologies that are overrepresented in mammalian networks, including the linear, feedback, feed-forward, and bifan circuits. Static and dynamic tunability of network motifs were defined as the motif ability to respectively attain steady-state or transient outputs in response to pre-defined input stimuli. Detailed computational analysis suggested that static tunability is insensitive to the circuit topology, since all of the motifs displayed similar ability to attain predefined steady-state outputs in response to constant inputs. Dynamic tunability, in contrast, was tightly dependent on circuit topology, with some motifs performing superiorly in achieving observed time-course outputs. Finally, we mapped dynamic tunability onto motif topologies to determine robustness of motif structures to changes in topology and identify design principles for the rational assembly of robust synthetic networks.

  7. Logic circuits from zero forcing.

    Science.gov (United States)

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  8. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  9. Large-scale quantum photonic circuits in silicon

    Science.gov (United States)

    Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk

    2016-08-01

    large-scale source integration. Finally, we review monolithic integration strategies for single-photon detectors and their essential role in on-chip feed forward operations.

  10. Analog circuit design designing dynamic circuit response

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  11. Analog circuit design designing waveform processing circuits

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.

  12. 抑制直流母线电压波动的四象限级联型变频器前馈控制策略%A Feed-Forward Scheme for A Four-Quadrant Cascade Converter to Restrain DC Bus Voltage Ripple

    Institute of Scientific and Technical Information of China (English)

    邱长青; 黄声华

    2015-01-01

    四象限级联型变频器功率单元 H 桥的瞬时输出功率以2倍和4倍频率脉动,使得直流母线产生2次和4次纹波电压。单个功率单元输入端PWM整流器采用前馈控制策略能有效抑制母线电压波动,且总的并网电流无低次谐波。从功率单元的数学模型出发,推导出输入输出的瞬时有功功率,提出了基于瞬时 abc 理论的瞬时有功电流前馈控制来抑制直流母线电压波动,同时建立了基于Kalman滤波的负载电流估计模型。最后通过功率单元实验测试,验证了控制策略的可行性。%The instantaneous output power of the power cell H-bridge in four-quadrant cascade converter pulsates at twice and quadruple the output frequency, generating the second and fourth harmonic DC bus voltage. Using feed-forward control scheme in PWM rectifier of single power cell can effectively restrain DC bus voltage ripple and make the total grid-connected current without low-order harmonics. From the mathematical model of power cell, the instantaneous active power is derived. Based on instantaneous abc theory, instantaneous active current feed-forward control have been proposed to restrain the DC bus voltage ripple. Moreover, load current estimation model based on Kalman theory is established. Finally, the experimental results are given to prove the effectiveness of the proposed control scheme.

  13. A CONTROL METHOD FOR SPLIT RANGE INDIVIDUAL PITCH BASED ON FEED-FORWARD AZIMUTH ANGLE WEIGHT NUMBER ASSIGNMENT%基于前馈补偿方位角权系数的分程独立变桨距控制研究

    Institute of Scientific and Technical Information of China (English)

    姚兴佳; 刘玥; 郭庆鼎

    2012-01-01

    依据风速特性及桨叶的空气动力学分析得到独立变桨距控制的基本控制规律,提出基于前馈补偿的方位角权系数分程独立变桨距控制,此控制方法采用方位角权系数分配分别对3个桨叶的桨距角进行调整,实现独立变桨距控制,然后根据前馈补偿理论对变桨距过程进行分程独立变桨距控制.在Matlab中进行仿真.仿真结果表明,该控制方法不仅可实现风力机的独立变桨,在稳定输出功率的同时减小桨叶的拍打振动,且可避免由于全程独立变桨距桨叶调节频繁所引起的电动变桨执行电机因过热损坏的问题.控制方法简单,更适合用于独立动作的电动变桨距执行机构.%The individual control law was obtained by analyzing of wind characteristics and wind turbine aerodynamics.A control method for split range individual pitch was proposed based on feed-forward compensator azimuth angle weight number assignment.The separate distribution for pitch angle of blades using azimuth angle weight number assignment was adopted to achieve individual pitch control.Then,the split range individual pitch control with feed-forward compensator was used to control wind turbine.The simulation results show that this control strategy can make the output power keep stable and the flapwise fluctuation be reduced at the same time.Moreover,the method can prevent the blades from adjusting frequently and the actuator motor superheating damage.The method is easy to control and more suitable for electric pitch regulated mechanism.

  14. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  15. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  16. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  17. Simple Autonomous Chaotic Circuits

    Science.gov (United States)

    Piper, Jessica; Sprott, J.

    2010-03-01

    Over the last several decades, numerous electronic circuits exhibiting chaos have been proposed. Non-autonomous circuits with as few as two components have been developed. However, the operation of such circuits relies on the non-ideal behavior of the devices used, and therefore the circuit equations can be quite complex. In this paper, we present two simple autonomous chaotic circuits using only opamps and linear passive components. The circuits each use one opamp as a comparator, to provide a signum nonlinearity. The chaotic behavior is robust, and independent of nonlinearities in the passive components. Moreover, the circuit equations are among the algebraically simplest chaotic systems yet constructed.

  18. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  19. Current limiter circuit system

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  20. Solenoid-Simulation Circuit

    Science.gov (United States)

    Simon, R. A.

    1986-01-01

    Electrical properties of solenoids imitated for tests of control circuits. Simulation circuit imitates voltage and current responses of two engine-controlling solenoids. Used in tests of programs of digital engine-control circuits, also provides electronic interface with circuits imitating electrical properties of pressure sensors and linear variable-differential transformers. Produces voltages, currents, delays, and discrete turnon and turnoff signals representing operation of solenoid in engine-control relay. Many such circuits used simulating overall engine circuitry.

  1. Simulation of vibration control based on the multi-channel self-adaptive feed forward law for the floating raft system with AVAs%带主动动力吸振器的浮筏隔振系统自适应控制仿真分析

    Institute of Scientific and Technical Information of China (English)

    敬刘凯; 吴文伟; 翁震平

    2014-01-01

    文章针对浮筏隔振系统低频线谱噪声,设计了基于x-LMS算法的自适应前馈控制律的主动吸振控制方案,采用导纳综合方法仿真分析了浮筏隔振系统在多通道主动动力吸振装置作用下的振动控制效果。仿真结果表明,带主动动力吸振器的浮筏隔振系统对低频线谱振动有着较好的控制效果。%To improve the isolation performance of the conventional floating raft system, active dynamic vi-bration absorbers (AVAs) were applied, and an evaluation function about reducing the sum of mean square error of vibration response of four observation points which were located on the flexible foundation of float-ing raft system with AVAs was formatted. With this objective function and based on filtered x-LMS algo-rithm, the multi-channel self-adaptive feed forward law for the floating raft system with AVAs was designed and simulated. The simulation result shows that it is effective to use the floating raft system with AVAs for reducing the vibration of mechanical device at low frequency.

  2. Hidden circuits and argumentation

    Science.gov (United States)

    Leinonen, Risto; Kesonen, Mikko H. P.; Hirvonen, Pekka E.

    2016-11-01

    Despite the relevance of DC circuits in everyday life and schools, they have been shown to cause numerous learning difficulties at various school levels. In the course of this article, we present a flexible method for teaching DC circuits at lower secondary level. The method is labelled as hidden circuits, and the essential idea underlying hidden circuits is in hiding the actual wiring of DC circuits, but to make their behaviour evident for pupils. Pupils are expected to find out the wiring of the circuit which should enhance their learning of DC circuits. We present two possible ways to utilise hidden circuits in a classroom. First, they can be used to test and enhance pupils’ conceptual understanding when pupils are expected to find out which one of the offered circuit diagram options corresponds to the actual circuit shown. This method aims to get pupils to evaluate the circuits holistically rather than locally, and as a part of that aim this method highlights any learning difficulties of pupils. Second, hidden circuits can be used to enhance pupils’ argumentation skills with the aid of argumentation sheet that illustrates the main elements of an argument. Based on the findings from our co-operating teachers and our own experiences, hidden circuits offer a flexible and motivating way to supplement teaching of DC circuits.

  3. Generalized circuit model for coupled plasmonic systems

    CERN Document Server

    Benz, Felix; Tserkezis, Christos; Chikkaraddy, Rohit; Sigle, Daniel O; Pukenas, Laurynas; Evans, Stephen D; Aizpurua, Javier; Baumberg, Jeremy J

    2015-01-01

    We develop an analytic circuit model for coupled plasmonic dimers separated by small gaps that provides a complete account of the optical resonance wavelength. Using a suitable equivalent circuit, it shows how partially conducting links can be treated and provides quantitative agreement with both experiment and full electromagnetic simulations. The model highlights how in the conducting regime, the kinetic inductance of the linkers set the spectral blue-shifts of the coupled plasmon.

  4. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  5. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    2013-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  6. Power electronics handbook components, circuits and applications

    CERN Document Server

    Mazda, F F

    2013-01-01

    Power Electronics Handbook: Components, Circuits, and Applications is a collection of materials about power components, circuit design, and applications. Presented in a practical form, theoretical information is given as formulae. The book is divided into three parts. Part 1 deals with the usual components found in power electronics such as semiconductor devices and power semiconductor control components, their electronic compatibility, and protection. Part 2 tackles parts and principles related to circuits such as switches; link frequency chargers; converters; and AC line control, and Part 3

  7. Power electronics handbook components, circuits and applications

    CERN Document Server

    Mazda, F F

    1993-01-01

    Power Electronics Handbook: Components, Circuits, and Applications is a collection of materials about power components, circuit design, and applications. Presented in a practical form, theoretical information is given as formulae. The book is divided into three parts. Part 1 deals with the usual components found in power electronics such as semiconductor devices and power semiconductor control components, their electronic compatibility, and protection. Part 2 tackles parts and principles related to circuits such as switches; link frequency chargers; converters; and AC line control, and Part 3

  8. Orthogonal Bases used for Feed Forward Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2011-01-01

    In optimizing wind turbines it can be of a large help to use information of wind speeds at upwind turbine for the control of downwind turbines, it is, however, problematic to use these measurements directly since they are highly influenced by turbulence behind the wind turbine rotor plane. In this......In optimizing wind turbines it can be of a large help to use information of wind speeds at upwind turbine for the control of downwind turbines, it is, however, problematic to use these measurements directly since they are highly influenced by turbulence behind the wind turbine rotor plane...

  9. Unlearning in feed-forward multi-nets

    NARCIS (Netherlands)

    Spaanenburg, L; Kurkova,; Steele, NC; Neruda, R; Karny, M

    2001-01-01

    Multi-nets promise an improved performance over monolithic neural networks by virtue of their distributed implementation. Modular neural networks are multi-nets based on an judicious assembly of functionally different parts. This can be viewed as again a monolithic network, but with more complex neu

  10. Feed-Forward Control of Kite Power Systems

    NARCIS (Netherlands)

    Fechner, U.; Schmehl, R.

    2014-01-01

    Kite power technology is a novel solution to harvest wind energy from altitudes that can not be reached by conventional wind turbines. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor. This paper descr

  11. Improved Cuckoo Search Algorithm for Feed forward Neural Network Training

    OpenAIRE

    Ehsan Valian; Shahram Mohanna; Saeed Tavakoli

    2011-01-01

    The cuckoo search algorithm is a recently developed meta-heuristic optimization algorithm, which is suitable for solving optimization problems. To enhance the accuracy and convergence rate of this algorithm, an improved cuckoo search algorithm is proposed in this paper. Normally, the parameters of the cuckoo search are kept constant. This may lead to decreasing the efficiency of the algorithm. To cope with this issue, a proper strategy for tuning the cuckoo search parameters is pr...

  12. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  13. Circuits on Cylinders

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V

    2006-01-01

    We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching...... program (or cylindrical circuit) and that every function computed by a constant width polynomial size cylindrical circuit belongs to ACC0....

  14. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  15. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  16. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  17. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  18. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  19. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of p

  20. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  1. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  2. Reversible Logic Circuit Synthesis

    CERN Document Server

    Shende, V V; Markov, I L; Prasad, A K; Hayes, John P.; Markov, Igor L.; Prasad, Aditya K.; Shende, Vivek V.

    2002-01-01

    Reversible, or information-lossless, circuits have applications in digital signal processing, communication, computer graphics and cryptography. They are also a fundamental requirement for quantum computation. We investigate the synthesis of reversible circuits that employ a minimum number of gates and contain no redundant input-output line-pairs (temporary storage channels). We propose new constructions for reversible circuits composed of NOT, Controlled-NOT, and TOFFOLI gates (the CNT gate library) based on permutation theory. A new algorithm is given to synthesize optimal reversible circuits using an arbitrary gate library. We also describe much faster heuristic algorithms. We also pursue applications of the proposed techniques to the synthesis of quantum circuits.

  3. Exact Threshold Circuits

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.

    2010-01-01

    We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave with the ......We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave...... with the well-studied corresponding hierarchies defined using ordinary threshold gates. A major open problem in Boolean circuit complexity is to provide an explicit super-polynomial lower bound for depth two threshold circuits. We identify the class of depth two exact threshold circuits as a natural subclass...

  4. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  5. The global atmospheric electrical circuit and climate

    CERN Document Server

    Harrison, R G

    2004-01-01

    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultrafine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution ca...

  6. Nonlinear electronic circuit with neuron like bursting and spiking dynamics.

    Science.gov (United States)

    Savino, Guillermo V; Formigli, Carlos M

    2009-07-01

    It is difficult to design electronic nonlinear devices capable of reproducing complex oscillations because of the lack of general constructive rules, and because of stability problems related to the dynamical robustness of the circuits. This is particularly true for current analog electronic circuits that implement mathematical models of bursting and spiking neurons. Here we describe a novel, four-dimensional and dynamically robust nonlinear analog electronic circuit that is intrinsic excitable, and that displays frequency adaptation bursting and spiking oscillations. Despite differences from the classical Hodgkin-Huxley (HH) neuron model, its bifurcation sequences and dynamical properties are preserved, validating the circuit as a neuron model. The circuit's performance is based on a nonlinear interaction of fast-slow circuit blocks that can be clearly dissected, elucidating burst's starting, sustaining and stopping mechanisms, which may also operate in real neurons. Our analog circuit unit is easily linked and may be useful in building networks that perform in real-time.

  7. Circuit reactivation dynamically regulates synaptic plasticity in neocortex

    Science.gov (United States)

    Kruskal, Peter B.; Li, Lucy; Maclean, Jason N.

    2013-10-01

    Circuit reactivations involve a stereotyped sequence of neuronal firing and have been behaviourally linked to memory consolidation. Here we use multiphoton imaging and patch-clamp recording, and observe sparse and stereotyped circuit reactivations that correspond to UP states within active neurons. To evaluate the effect of the circuit on synaptic plasticity, we trigger a single spike-timing-dependent plasticity (STDP) pairing once per circuit reactivation. The pairings reliably fall within a particular epoch of the circuit sequence and result in long-term potentiation. During reactivation, the amplitude of plasticity significantly correlates with the preceding 20-25 ms of membrane depolarization rather than the depolarization at the time of pairing. This circuit-dependent plasticity provides a natural constraint on synaptic potentiation, regulating the inherent instability of STDP in an assembly phase-sequence model. Subthreshold voltage during endogenous circuit reactivations provides a critical informative context for plasticity and facilitates the stable consolidation of a spatiotemporal sequence.

  8. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  9. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  10. Parallelizing quantum circuit synthesis

    OpenAIRE

    Di Matteo, Olivia; Mosca, Michele

    2016-01-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools which can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in t...

  11. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  12. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  13. CMOS circuits manual

    CERN Document Server

    Marston, R M

    1995-01-01

    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  14. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  15. Timergenerator circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen

  16. Security electronics circuits manual

    CERN Document Server

    MARSTON, R M

    1998-01-01

    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  17. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  18. Printed circuit board industry.

    Science.gov (United States)

    LaDou, Joseph

    2006-05-01

    The printed circuit board is the platform upon which microelectronic components such as semiconductor chips and capacitors are mounted. It provides the electrical interconnections between components and is found in virtually all electronics products. Once considered low technology, the printed circuit board is evolving into a high-technology product. Printed circuit board manufacturing is highly complicated, requiring large equipment investments and over 50 process steps. Many of the high-speed, miniaturized printed circuit boards are now manufactured in cleanrooms with the same health and safety problems posed by other microelectronics manufacturing. Asia produces three-fourths of the world's printed circuit boards. In Asian countries, glycol ethers are the major solvents used in the printed circuit board industry. Large quantities of hazardous chemicals such as formaldehyde, dimethylformamide, and lead are used by the printed circuit board industry. For decades, chemically intensive and often sloppy manufacturing processes exposed tens of thousands of workers to a large number of chemicals that are now known to be reproductive toxicants and carcinogens. The printed circuit board industry has exposed workers to high doses of toxic metals, solvents, acids, and photolithographic chemicals. Only recently has there been any serious effort to diminish the quantity of lead distributed worldwide by the printed circuit board industry. Billions of electronics products have been discarded in every region of the world. This paper summarizes recent regulatory and enforcement efforts.

  19. Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex

    Directory of Open Access Journals (Sweden)

    Qian-Quan eSun

    2014-11-01

    Full Text Available Brain derived neurotrophic factor (BDNF plays key roles in several neurodevelopmental disorders and actions of pharmacological treatments. However it is uncealr how specific BDNF’s effects are on diffeerent circuit components. Current studies have largely focused on the role of BDNF in modification of synaptic development. The precise roles of BDNF in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of BDNF may be associated with increased risk for cognitive impairments and is mediated at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant mice that lacked activity-driven BDNF expression (bdnf-KIV, we previously reported that experience regulation of the cortical GABAergic network is mediated by activity-driven BDNF expression. Here, we demonstrate that activity-driven BDNF’s effects on circuits formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic but not axonal morphology was altered in the mutant. Physiologically, GABAergic but not glutamatergic synapses were severely affected. The effects on GABA transmission occurs via presynaptic alteration of calcium-dependent release probability. These results suggest that neuronal activity through activity-driven BDNF expression, can selectively regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-dependent BDNF is to modulate the computational ability of circuits that relate to the gain control (i.e. feed-forward inhibition; whereas the basic wiring of circuits relevant to the sensory pathway is spared. Gain control modulation within cortical circuits has broad impact on cognitive processing and brain state-transitions. Cognitive behavior and mode is determined by brain states, thus the studying of circuit alteration by endogenous BDNF provides insights into the cellular and molecular mechanisms of diseases mediated by BDNF.

  20. Synchronizing Hyperchaotic Circuits

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius

    1997-01-01

    Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...... characterized by multiple positive Lyapunov exponents are reviewd....

  1. Genetic circuit design automation.

    Science.gov (United States)

    Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A

    2016-04-01

    Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.

  2. A Virtual Circuits Lab

    Science.gov (United States)

    Vick, Matthew E.

    2010-01-01

    The University of Colorado's Physics Education Technology (PhET) website offers free, high-quality simulations of many physics experiments that can be used in the classroom. The Circuit Construction Kit, for example, allows students to safely and constructively play with circuit components while learning the mathematics behind many circuit…

  3. Hysteresis in a quantized superfluid 'atomtronic' circuit.

    Science.gov (United States)

    Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K

    2014-02-13

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  4. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  5. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  6. Plasmonic Nanoguides and Circuits

    CERN Document Server

    Bozhevolnyi, Sergey

    2008-01-01

    Modern communication systems dealing with huge amounts of data at ever increasing speed try to utilize the best aspects of electronic and optical circuits. Electronic circuits are tiny but their operation speed is limited, whereas optical circuits are extremely fast but their sizes are limited by diffraction. Waveguide components utilizing surface plasmon (SP) modes were found to combine the huge optical bandwidth and compactness of electronics, and plasmonics thereby began to be considered as the next chip-scale technology. In this book, the authors concentrate on the SP waveguide configurati

  7. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  8. Circuit analysis with Multisim

    CERN Document Server

    Baez-Lopez, David

    2011-01-01

    This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo

  9. Modern TTL circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Modern TTL Circuits Manual provides an introduction to the basic principles of Transistor-Transistor Logic (TTL). This book outlines the major features of the 74 series of integrated circuits (ICs) and introduces the various sub-groups of the TTL family.Organized into seven chapters, this book begins with an overview of the basics of digital ICs. This text then examines the symbology and mathematics of digital logic. Other chapters consider a variety of topics, including waveform generator circuitry, clocked flip-flop and counter circuits, special counter/dividers, registers, data latches, com

  10. Pragmatic circuits frequency domain

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Frequency Domain goes through the Laplace transform to get from the time domain to topics that include the s-plane, Bode diagrams, and the sinusoidal steady state. This second of three volumes ends with a-c power, which, although it is just a special case of the sinusoidal steady state, is an important topic with unique techniques and terminology. Pragmatic Circuits: Frequency Domain is focused on the frequency domain. In other words, time will no longer be the independent variable in our analysis. The two other volumes in the Pragmatic Circuits series include titles on DC

  11. Gallium Arsenide Domino Circuit

    Science.gov (United States)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  12. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  13. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  14. A Circuit Simulation Technique for Congested Network Traffic Assignment Problem

    Science.gov (United States)

    Cho, Hsun-Jung; Huang, Heng

    2007-12-01

    The relation between electrical circuit and traffic network has been proposed by Sasaki and Inouye, but they proposed link cost function is a linear function which cannot present the congestion situation. Cho and Huang extended the link cost function to a nonlinear function which can explain the congested network. In this paper, we proposed a foremost and novel approach to solve the traffic assignment problem (TAP) by simulating the electrical circuit network which consists of nonlinear link cost function models. Comparing with the solutions of Frank-Wolfe algorithm, the simulation results are nearly identical. Thus, the simulation of a network circuit model can be applied to solve network traffic assignment problems. Finally, two examples are proposed, and the results confirmed that electrical circuit simulation is workable in solving congested network traffic assignment problems.

  15. Application of feed-forward control in management of sudden outbreak of influenza A H1N1 virus infection%前馈控制应用于甲型H1N1流感突发疫情的护理管理

    Institute of Scientific and Technical Information of China (English)

    程红; 王霞

    2011-01-01

    目的 探讨综合医院突发疫情护理管理的方法和措施,避免工作的盲目性,提高防控医院感染的应急能力和安全性.方法 通过网络平台和本地疾控中心收集相关信息,制定甲型H1N1流感应急预案,组织护理人员培训,准备相关物资与技术;在应对疫情过程中,不断完善应急预案和工作流程,加强质量控制.结果 2009年5~12月,我院共救治确诊甲型H1N1流感病例21例,其中危重患者8例,全部治愈出院,无一例死亡,未发生医院感染.结论 建立和落实前馈控制管理,可以使护理人员在突发疫情到达之前掌握相关信息,进行相关知识的学习和操作演练;护理管理者提前对可能出现的问题进行预测,并采取预防措施,保证护理安全.%Objective To explore management of sudden outbreak of infectious diseases in general hospitals, to avoid blindness in work, to improve medical staff's response capability in handling emergency and to guarantee safety of medical care. Methods We collected relevant information through network platform and local disease control centers, formulated a contingency plan of managing influenza A H1N1 virus infection, applied the plan in training program for the staff, and prepared related materials and technologies. In handling the H1N1 epidemic, we continued to make better adjustment of the emergency plan and work processes, and reinforced quality control of nursing service. Results From May to December of 2009, we admitted 21 cases of confirmed influenza A H1N1 infections; among them, 8 cases were critically ill. All patients were cured and discharged without death cases. Nosocomial infection did not occur. Conclusion Establishment and implementation of feed-forward control helps nurses grasp a picture of related information before the arrival of an epidemic contingency, enable them to learn related knowledge and to start the drill of nursing skills. Nurse managers are able to predict potential

  16. Printed circuit for ATLAS

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  17. Latching overcurrent circuit breaker

    Science.gov (United States)

    Moore, M. L.

    1970-01-01

    Circuit breaker consists of a preset current amplitude sensor, and a lamp-photo-resistor combination in a feedback arrangement which energizes a power switching relay. The ac input power is removed from the load at predetermined current amplitudes.

  18. High temperature circuit breaker

    Science.gov (United States)

    Edwards, R. N.; Travis, E. F.

    1970-01-01

    Alternating current circuit breaker is suitable for reliable long-term service at 1000 deg F in the vacuum conditions of outer space. Construction materials are resistant to nuclear radiation and vacuum welding. Service test conditions and results are given.

  19. Overriding Faulty Circuit Breakers

    Science.gov (United States)

    Robbins, Richard L.; Pierson, Thomas E.

    1987-01-01

    Retainer keeps power on in emergency. Simple mechanical device attaches to failed aircraft-type push/pull circuit breaker to restore electrical power temporarily until breaker replaced. Device holds push/pull button in closed position; unnecessary for crewmember to hold button in position by continual finger pressure. Sleeve and plug hold button in, overriding mechanical failure in circuit breaker. Windows in sleeve show button position.

  20. Heterogeneous photonic integrated circuits

    Science.gov (United States)

    Fang, Alexander W.; Fish, Gregory; Hall, Eric

    2012-01-01

    Photonic Integrated Circuits (PICs) have been dichotomized into circuits with high passive content (silica and silicon PLCs) and high active content (InP tunable lasers and transceivers) due to the trade-off in material characteristics used within these two classes. This has led to restrictions in the adoption of PICs to systems in which only one of the two classes of circuits are required to be made on a singular chip. Much work has been done to create convergence in these two classes by either engineering the materials to achieve the functionality of both device types on a single platform, or in epitaxial growth techniques to transfer one material to the next, but have yet to demonstrate performance equal to that of components fabricated in their native substrates. Advances in waferbonding techniques have led to a new class of heterogeneously integrated photonic circuits that allow for the concurrent use of active and passive materials within a photonic circuit, realizing components on a transferred substrate that have equivalent performance as their native substrate. In this talk, we review and compare advances made in heterogeneous integration along with demonstrations of components and circuits enabled by this technology.

  1. Circuit simulation: some humbling thoughts

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; /Fermilab

    2006-01-01

    A short, very personal note on circuit simulation is presented. It does neither include theoretical background on circuit simulation, nor offers an overview of available software, but just gives some general remarks for a discussion on circuit simulator needs in context to the design and development of accelerator beam instrumentation circuits and systems.

  2. Low latency asynchronous interface circuits

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, Greg

    2017-06-20

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.

  3. A semiconductor laser excitation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Kaadzunari, O.; Masaty, K.

    1984-03-27

    A semiconductor laser excitation circuit is patented that is designed for operation in a pulsed mode with a high pulse repetition frequency. This circuit includes, in addition to a semiconductor laser, a high speed photodetector, a reference voltage source, a comparator, and a pulse oscillator and modulator. If the circuit is built using standard silicon integrated circuits, its speed amounts to several hundred megahertz, if it is constructed using gallium arsenide integrated circuits, its speed is several gigahertz.

  4. Scandinavian links

    DEFF Research Database (Denmark)

    Matthiessen, Christian Wichmann; Knowles, Richard D.

    2014-01-01

    centres, one joins more thinly populated regions, and the last one links peripheral areas. Two of them (The Great Belt Link and the Oresund Link) have been constructed and are in full operation. The third (the Fehmarnbelt Link) has been decided 2008 on bilateral government level. The three links...

  5. The Mind Grows Circuits

    CERN Document Server

    Panigrahy, Rina

    2012-01-01

    There is a vast supply of prior art that study models for mental processes. Some studies in psychology and philosophy approach it from an inner perspective in terms of experiences and percepts. Others such as neurobiology or connectionist-machines approach it externally by viewing the mind as complex circuit of neurons where each neuron is a primitive binary circuit. In this paper, we also model the mind as a place where a circuit grows, starting as a collection of primitive components at birth and then builds up incrementally in a bottom up fashion. A new node is formed by a simple composition of prior nodes when we undergo a repeated experience that can be described by that composition. Unlike neural networks, however, these circuits take "concepts" or "percepts" as inputs and outputs. Thus the growing circuits can be likened to a growing collection of lambda expressions that are built on top of one another in an attempt to compress the sensory input as a heuristic to bound its Kolmogorov Complexity.

  6. The link in Linking

    Science.gov (United States)

    Caldwell, Jane C; Chiale, Pablo A; Gonzalez, Mario D; Baranchuk, Adrian

    2013-01-01

    We present 2 cases of the slow-fast form of AVNRT with initially narrow QRS complexes followed by sudden unexpected transition to persistently wide QRS complexes due to aberrant intraventricular conduction. Introduction of a properly timed extrastimulus in one case and critical oscillations in cycle length due to short-long coupling in the second case set the stage for the initial bundle branch block. However, persistence of the aberrancy pattern once the initial event abated was maintained by the "linking" phenomenon. Delayed, retrograde concealed activation from the contralateral bundle branch perpetuated the initial bundle branch block. PMID:23840106

  7. Chaotic memristive circuit: equivalent circuit realization and dynamical analysis

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Xu Jian-Ping; Zhou Guo-Hua; Ma Zheng-Hua; Zou Ling

    2011-01-01

    In this paper,a practical equivalent circuit of an active flux-controlled memristor characterized by smooth piecewise-quadratic nonlinearity is designed and an experimental chaotic memristive circuit is implemented.The chaotic memristive circuit has an equilibrium set and its stability is dependent on the initial state of the memristor.The initial state-dependent and the circuit parameter-dependent dynamics of the chaotic memristive circuit are investigated via phase portraits,bifurcation diagrams and Lyapunov exponents.Both experimental and simulation results validate the proposed equivalent circuit realization of the active flux-controlled memristor.

  8. Primer printed circuit boards

    CERN Document Server

    Argyle, Andrew

    2009-01-01

    Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy

  9. Current Conveyor Equivalent Circuits

    Directory of Open Access Journals (Sweden)

    Tejmal S. Rathore

    2012-02-01

    Full Text Available An equivalence between a class of (current conveyor CC II+ and CC II- circuits is established. CC IIequivalent circuit uses one extra element. However, under certain condition, the extra element can be eliminated. As an illustration of the application of this equivalence, minimal first and second order all-pass filters are derived. Incertain cases, it is possible to compensate the effect of the input resistor of CC at port X. At the end, an open problem of realizing an Nth order (N > 2 minimal all-pass filter is stated.

  10. Circuit design for reliability

    CERN Document Server

    Cao, Yu; Wirth, Gilson

    2015-01-01

    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  11. Inrush Current Control Circuit

    Science.gov (United States)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  12. Electronic circuits fundamentals & applications

    CERN Document Server

    Tooley, Mike

    2015-01-01

    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  13. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  14. Bioluminescent bioreporter integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  15. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  16. Quantum secure circuit evaluation

    Institute of Scientific and Technical Information of China (English)

    CHEN Huanhuan; LI Bin; ZHUANG Zhenquan

    2004-01-01

    In order to solve the problem of classical secure circuit evaluation, this paper proposes a quantum approach. In this approach, the method of inserting redundant entangled particles and quantum signature has been employed to strengthen the security of the system. Theoretical analysis shows that our solution is secure against classical and quantum attacks.

  17. Resistor Combinations for Parallel Circuits.

    Science.gov (United States)

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  18. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  19. Equivalent realisation circuit for a class of non-ideal voltage-controlled memristors

    Directory of Open Access Journals (Sweden)

    Saihu Pan

    2015-12-01

    Full Text Available In this study, an equivalent realisation circuit with off-the-shelf components and devices is proposed, which can be used to equivalently implement a class of non-ideal voltage-controlled memristors. The mathematical models of the equivalent realisation circuit with three function arithmetic circuits are built and their fingerprints are analysed by the pinched hysteresis loops with bipolar periodic voltage stimuli. The numerical simulations are easily verified by experimental measurements, which indicate that when three function arithmetic circuits are linked, the equivalent realisation circuit can realise three non-ideal voltage-controlled memristors with different non-linearities.

  20. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    Science.gov (United States)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  1. The LMT circuit and SPICE

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamacevicius, Arunas

    2006-01-01

    The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented.......The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented....

  2. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    This thesis presents a method for behavioral synthesis of asynchronous circuits, which aims at providing a synthesis flow which uses and tranfers methods from synchronous circuits to asynchronous circuits. We move the synchronous behavioral synthesis abstraction into the asynchronous handshake...... is idle. This reduces unnecessary switching activity in the individual functional units and therefore the energy consumption of the entire circuit. A collection of behavioral synthesis algorithms have been developed allowing the designer to perform time and power constrained design space exploration...

  3. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  4. Statistical circuit design for yield improvement in CMOS circuits

    Science.gov (United States)

    Kamath, H. J.; Purviance, J. E.; Whitaker, S. R.

    1990-01-01

    This paper addresses the statistical design of CMOS integrated circuits for improved parametric yield. The work uses the Monte Carlo technique of circuit simulation to obtain an unbiased estimation of the yield. A simple graphical analysis tool, the yield factor histogram, is presented. The yield factor histograms are generated by a new computer program called SPICENTER. Using the yield factor histograms, the most sensitive circuit parameters are noted, and their nominal values are changed to improve the yield. Two basic CMOS example circuits, one analog and one digital, are chosen and their designs are 'centered' to illustrate the use of the yield factor histograms for statistical circuit design.

  5. Circuit Bodging: Atari Punk Console

    NARCIS (Netherlands)

    Allen, B.

    2009-01-01

    Circuit bodging is back! Maxwell is proud to present small, simple, but ultimately lovable little circuits to build for your own, personal pleasure. In this edition we are featuring: The Atari Punk Console. The Atari Punk Console (or APC) is a 555 timer IC based noise maker circuit. The original was

  6. Circuit Bodging: Atari Punk Console

    NARCIS (Netherlands)

    Allen, B.

    2009-01-01

    Circuit bodging is back! Maxwell is proud to present small, simple, but ultimately lovable little circuits to build for your own, personal pleasure. In this edition we are featuring: The Atari Punk Console. The Atari Punk Console (or APC) is a 555 timer IC based noise maker circuit. The original was

  7. Selective Manipulation of Neural Circuits.

    Science.gov (United States)

    Park, Hong Geun; Carmel, Jason B

    2016-04-01

    Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.

  8. LC-Circuit Calorimetry

    CERN Document Server

    Bossen, Olaf

    2011-01-01

    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical error that decreases as ~t^{-3/2} with measuring time t, as opposed to a corresponding error ~t^{-1/2} in the conventional alternating current (a.c.) method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.

  9. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  10. Cartography of serotonergic circuits.

    Science.gov (United States)

    Sparta, Dennis R; Stuber, Garret D

    2014-08-06

    Serotonin is an essential neuromodulator, but the precise circuit connectivity that regulates serotonergic neurons has not been well defined. Using rabies virus tracing strategies Weissbourd et al. (2014) and Pollak Dorocic et al. (2014) in this issue of Neuron and Ogawa et al. (2014) in Cell Reports provide a comprehensive map of the inputs to serotonergic neurons, highlighting the complexity and diversity of potential upstream cellular regulators. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Inkjet deposited circuit components

    Science.gov (United States)

    Bidoki, S. M.; Nouri, J.; Heidari, A. A.

    2010-05-01

    All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.

  12. Digital integrated circuits

    Science.gov (United States)

    Polasek, P.; Halamik, J.

    1984-05-01

    The term semicustom designed integrated circuits denotes integrated circuits of an all purpose character in which the production of chips is completed by using one to three custom design stencil type exposure masks. This involves in most cases interconnecting masks that are used to devise the circuit function desired by the customer. Silicon plates with an all purpose gate matrix are produced up to the interconnection level and can be kept at this phase in storage, after which a customer's specific demands can be met very expediently. All purpose logic fields containing 200 logic gates on a chip and an all purpose chip to be expanded to 1,000 logic gates are discussed. The technology facilitates the devising of fast gates with a delay of approximately 5 ns and power dissipation of 1 mW. In assembly it will be possible to make use of the entire assortment of the currently used casings with 16, 18, 20, 24, 28 and 40 outlets. In addition to the development of the mentioned technology, a general methodology for design of the mentioned gate fields is currently under way.

  13. Fine tuning of cascaded d-q axis controller for AC-DC-AC converter without DC link capacitor using artificial neural network

    Directory of Open Access Journals (Sweden)

    Padmanaban Sanjeevikumar

    2008-01-01

    Full Text Available This paper presents an artificial neural network (ANN based approach to tune the parameters of the cascaded d-q axis controller for an AC-DC-AC converter without dc link capacitor. The proposed converter uses the cascaded d-q axis controller on the rectifier side and space vector pulse width modulation on the inverter side. The feed-forward ANN with the error back-propagation training is employed to tune the parameters of the cascaded d-q axis controller. The converter topology provides simple commutation procedure with reduced number of switches and has additional advantages such as good voltage transfer ratio, four quadrant operation, unity power factor, no DC link capacitor and less THD in both the line and load sides. Simulation results closely match with theoretical analysis.

  14. Changes to the shuttle circuits

    CERN Multimedia

    GS Department

    2011-01-01

    To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on http://cern.ch/ShuttleService (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section

  15. Chaotic behavior learning of Chua's circuit

    Institute of Scientific and Technical Information of China (English)

    Sun Jian-Cheng

    2012-01-01

    Least-square support vector machines (LS-SVM) are applied for learning the chaotic behavior of Chua's circuit.The system is divided into three multiple-input single-output (MISO) structures and the LS-SVM are trained individually.Comparing with classical approaches,the proposed one reduces the structural complexity and the selection of parameters is avoided.Some parameters of the attractor are used to compare the chaotic behavior of the reconstructed and the original systems for model validation.Results show that the LS-SVM combined with the MISO can be trained to identify the underlying link among Chua's circuit state variables,and exhibit the chaotic attractors under the autonomous working mode.

  16. Rett syndrome: genes, synapses, circuits and therapeutics

    Directory of Open Access Journals (Sweden)

    Abhishek eBanerjee

    2012-05-01

    Full Text Available Development of the nervous system proceeds through a set of complex checkpoints which arise from a combination of sequential gene expression and early neural activity sculpted by the environment. Genetic and environmental insults lead to neurodevelopmental disorders which encompass a large group of diseases that result from anatomical and physiological abnormalities during maturation and development of brain circuits. Rett syndrome (RTT is a postnatal neurological disorder of genetic origin, caused by mutations in the X-linked gene MECP2. It features neuropsychiatric abnormalities like motor dysfunctions and mild to severe cognitive impairment. This review discusses several key questions and attempts to evaluate recently developed animal models, cell-type specific function of MeCP2, defects in neural circuit plasticity and possible therapeutic strategies. Finally, we also discuss how genes, proteins and overlapping signaling pathways affect the molecular etiology of apparently unrelated neuropsychiatric disorders, an understanding of which can offer novel therapeutic strategies.

  17. Power system with an integrated lubrication circuit

    Science.gov (United States)

    Hoff, Brian D.; Akasam, Sivaprasad; Algrain, Marcelo C.; Johnson, Kris W.; Lane, William H.

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  18. Memristor based startup circuit for self biased circuits

    Science.gov (United States)

    Das, Mangal; Singh, Amit Kumar; Rathi, Amit; Singhal, Sonal

    2016-04-01

    This paper presents the design of a Memristor based startup circuit for self biased circuits. Memristor has many advantages over conventional CMOS devices such as low leakage current at nanometer scale, easy to manufacture. In this work the switching characteristics of memristor is utilized. First the theoretical equations describing the switching behavior of memristor are investigated. To prove the switching capability of Memristor, a startup circuit based on memristor is proposed which uses series combination of Memristor and capacitor. Proposed circuit is compared with the previously reported MOSFET based startup circuits. Comparison of different circuits was done to validate the results. Simulation results show that memristor based circuit can attain on (I = 12.94 µA) to off state (I = 1 .2 µA) in 25 ns while the MOSFET based startup circuits take on (I = 14.19 µA) to off state (I = 1.4 µA) in more than 90 ns. The benefit comes in terms of area because the number of components used in the circuit are lesser than the conventional startup circuits.

  19. Probing forebrain to hindbrain circuit functions in Xenopus.

    Science.gov (United States)

    Kelley, Darcy B; Elliott, Taffeta M; Evans, Ben J; Hall, Ian C; Leininger, Elizabeth C; Rhodes, Heather J; Yamaguchi, Ayako; Zornik, Erik

    2017-01-01

    The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds-for example, a baby's cry-can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species (comparative neuromics) with distinctive vocal patterns can identify conserved features, and thereby reveal essential functional components.

  20. 双闭环控制的三电平逆变电路SimuIink仿真实验%Simulink simulation experiment of three-level inverter circuit with double closed-loop control

    Institute of Scientific and Technical Information of China (English)

    李文娟; 王超; 冯杰; 周美兰; 高晗璎

    2016-01-01

    Aiming at the problems of open-loop three-level inverter circuit poor stability,slow dynamic response,weak carrying capacity,the voltage-current double closed-loop control scheme is proposed.The diode-clamped three-level inverter circuit is regarded as the controlled object.The math model of inverter circuit on two-phase synchronous rotating coordinates is established.The designs of current loop and voltage loop are carried out respectively.The current loop includes the inductance current feed-forward decoupling based on dq axis and the design of corresponding PI parameters. Voltage loop includes the capacitance voltage feed-forward decoupling based on dq axis and the design of controller parameters.The simulation model of three-level inverter circuit with double closed-loop control is built in the Simulink simulation platform.The waveforms of the output voltage and current of the double closed-loop control under the condition mutation loads are analyzed.%针对开环的三电平逆变电路稳定性差、动态响应慢、带载能力弱等问题,提出了电压、电流双闭环的控制方案。选取二极管箝位式三电平逆变电路作为被控对象,建立其在同步旋转坐标系下的数学模型,分别对电流环和电压环进行设计。电流环包括基于 d 、q 轴的电感电流前馈解耦及 PI 参数的设计;电压环包括基于 d 、q 轴的电容电压前馈解耦及控制器参数的设计。在 Simulink 仿真实验平台上,建立了双闭环控制的三电平逆变电路的仿真模型,分析了突变负载情况下双闭环控制的逆变输出电压和电流的仿真波形。

  1. Electric circuits problem solver

    CERN Document Server

    REA, Editors of

    2012-01-01

    Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of electric circuits currently av

  2. Linear integrated circuits

    CERN Document Server

    Carr, Joseph

    1996-01-01

    The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa

  3. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    1999-01-01

    This manual is a useful single-volume guide specifically aimed at the practical design engineer, technician, and experimenter, as well as the electronics student and amateur. It deals with the subject in an easy to read, down to earth, and non-mathematical yet comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the ICs and other devices used are inexpensive and readily available types, with universally recognised type numbers.The second edition

  4. Nano integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yung Sup

    2004-02-15

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  5. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  6. Electronic logic circuits

    CERN Document Server

    Gibson, J

    2013-01-01

    Most branches of organizing utilize digital electronic systems. This book introduces the design of such systems using basic logic elements as the components. The material is presented in a straightforward manner suitable for students of electronic engineering and computer science. The book is also of use to engineers in related disciplines who require a clear introduction to logic circuits. This third edition has been revised to encompass the most recent advances in technology as well as the latest trends in components and notation. It includes a wide coverage of application specific integrate

  7. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2011-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea

  8. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2007-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set

  9. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  10. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J;

    2011-01-01

    The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography...

  11. Dopamine, fronto-striato-thalamic circuits and risk for psychosis.

    Science.gov (United States)

    Dandash, Orwa; Pantelis, Christos; Fornito, Alex

    2017-02-01

    A series of parallel, integrated circuits link distinct regions of prefrontal cortex with specific nuclei of the striatum and thalamus. Dysfunction of these fronto-striato-thalamic systems is thought to play a major role in the pathogenesis of psychosis. In this review, we examine evidence from human and animal investigations that dysfunction of a specific dorsal fronto-striato-thalamic circuit, linking the dorsolateral prefrontal cortex, dorsal (associative) striatum, and mediodorsal nucleus of the thalamus, is apparent across different stages of psychosis, including prior to the onset of a first episode, suggesting that it represents a candidate risk biomarker. We consider how abnormalities at distinct points in the circuit may give rise to the pattern of findings seen in patient populations, and how these changes relate to disruptions in dopamine, glutamate and GABA signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Science.gov (United States)

    2010-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  13. Quasi-Linear Circuit

    Science.gov (United States)

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth

    2013-01-01

    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  14. Automated Design of Quantum Circuits

    Science.gov (United States)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  15. Large-scale circuit simulation

    Science.gov (United States)

    Wei, Y. P.

    1982-12-01

    The simulation of VLSI (Very Large Scale Integration) circuits falls beyond the capabilities of conventional circuit simulators like SPICE. On the other hand, conventional logic simulators can only give the results of logic levels 1 and 0 with the attendent loss of detail in the waveforms. The aim of developing large-scale circuit simulation is to bridge the gap between conventional circuit simulation and logic simulation. This research is to investigate new approaches for fast and relatively accurate time-domain simulation of MOS (Metal Oxide Semiconductors), LSI (Large Scale Integration) and VLSI circuits. New techniques and new algorithms are studied in the following areas: (1) analysis sequencing (2) nonlinear iteration (3) modified Gauss-Seidel method (4) latency criteria and timestep control scheme. The developed methods have been implemented into a simulation program PREMOS which could be used as a design verification tool for MOS circuits.

  16. Integrated circuit cooled turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  17. Short-Circuit Degradation of 10 kV 10 A SiC MOSFET

    DEFF Research Database (Denmark)

    Eni, Emanuel-Petre; Beczkowski, Szymon; Munk-Nielsen, Stig

    2017-01-01

    The short-circuit behavior of power devices is highly relevant for converter design and fault protection. In this work, the degradation during short-circuit of a 10 kV 10 A 4H-SiC MOSFET is investigated at 6 kV DC-link voltage. The study aims to present the behavior of the device during short...

  18. CMOS Nonlinear Signal Processing Circuits

    OpenAIRE

    2010-01-01

    The chapter describes various nonlinear signal processing CMOS circuits, including a high reliable WTA/LTA, simple MED cell, and low-voltage arbitrary order extractor. We focus the discussion on CMOS analog circuit design with reliable, programmable capability, and low voltage operation. It is a practical problem when the multiple identical cells are required to match and realized within a single chip using a conventional process. Thus, the design of high-reliable circuit is indeed needed. Th...

  19. Analog electronic neural network circuits

    Energy Technology Data Exchange (ETDEWEB)

    Graf, H.P.; Jackel, L.D. (AT and T Bell Labs., Holmdel, NJ (USA))

    1989-07-01

    The large interconnectivity and moderate precision required in neural network models present new opportunities for analog computing. This paper discusses analog circuits for a variety of problems such as pattern matching, optimization, and learning. Most of the circuits build so far are relatively small, exploratory designs. The most mature circuits are those for template matching. Chips performing this function are now being applied to pattern recognition problems.

  20. Transistor switching and sequential circuits

    CERN Document Server

    Sparkes, John J

    1969-01-01

    Transistor Switching and Sequential Circuits presents the basic ideas involved in the construction of computers, instrumentation, pulse communication systems, and automation. This book discusses the design procedure for sequential circuits. Organized into two parts encompassing eight chapters, this book begins with an overview of the ways on how to generate the types of waveforms needed in digital circuits, principally ramps, square waves, and delays. This text then considers the behavior of some simple circuits, including the inverter, the emitter follower, and the long-tailed pair. Other cha

  1. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.;

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  2. A Circuit to Demonstrate Phase Relationships in "RLC" Circuits

    Science.gov (United States)

    Sokol, P. E.; Warren, G.; Zheng, B.; Smith, P.

    2013-01-01

    We have developed a circuit to demonstrate the phase relationships between resistive and reactive elements in series "RLC" circuits. We utilize a differential amplifier to allow the phases of the three elements and the current to be simultaneously displayed on an inexpensive four channel oscilloscope. We have included a novel circuit…

  3. Communication Links

    OpenAIRE

    2003-01-01

    This interactive tutorial helps learners to: Identify key upward, lateral, downward, and informal communication links in their organizations. , Reflect on the benefits, control, satisfaction, information filters, and feedback mechanism of various communication links in the organizations. OCL1000 Communicating Change in Complex Organizations

  4. Operative links

    DEFF Research Database (Denmark)

    Wistoft, Karen

    2010-01-01

    as networks: second, a semantic perspective on discourses and concepts of health, and, third, a health pedagogical perspective on participation, intervention, and roles. This paper argues for the importance of 'operative links' between different levels in health strategies. It is proposed that such links...

  5. VLSI circuits implementing computational models of neocortical circuits.

    Science.gov (United States)

    Wijekoon, Jayawan H B; Dudek, Piotr

    2012-09-15

    This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling.

  6. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  7. Memristor Circuits and Systems

    KAUST Repository

    Zidan, Mohammed A.

    2015-05-01

    Current CMOS-based technologies are facing design challenges related to the continuous scaling down of the minimum feature size, according to Moore’s law. Moreover, conventional computing architecture is no longer an effective way of fulfilling modern applications demands, such as big data analysis, pattern recognition, and vector processing. Therefore, there is an exigent need to shift to new technologies, at both the architecture and the device levels. Recently, memristor devices and structures attracted attention for being promising candidates for this job. Memristor device adds a new dimension for designing novel circuits and systems. In addition, high-density memristor-based crossbar is widely considered to be the essential element for future memory and bio-inspired computing systems. However, numerous challenges need to be addressed before the memristor genuinely replaces current memory and computing technologies, which is the motivation behind this research effort. In order to address the technology challenges, we begin by fabricating and modeling the memristor device. The devices fabricated at our local clean room enriched our understanding of the memristive phenomenon and enabled the experimental testing for our memristor-based circuits. Moreover, our proposed mathematical modeling for memristor behavior is an essential element for the theoretical circuit design stage. Designing and addressing the challenges of memristor systems with practical complexity, however, requires an extra step, which takes the form of a reliable and modular simulation platform. We, therefore, built a new simulation platform for the resistive crossbar, which can simulate realistic size arrays filled with real memory data. In addition, this simulation platform includes various crossbar nonidealities in order to obtain accurate simulation results. Consequently, we were able to address the significant challenges facing the high density memristor crossbar, as the building block for

  8. A dishwasher for circuits

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    You have always been told that electronic devices fear water. However, at the Surface Mount Devices (SMD) Workshop here at CERN all the electronic assemblies are cleaned with a machine that looks like a… dishwasher.   The circuit dishwasher. Credit: Clara Nellist.  If you think the image above shows a dishwasher, you wouldn’t be completely wrong. Apart from the fact that the whole pumping system and the case itself are made entirely from stainless steel and chemical resistant materials, and the fact that it washes electrical boards instead of dishes… it works exactly like a dishwasher. It’s a professional machine (mainly used in the pharmaceutical industry) designed to clean everything that can be washed with a water-based chemical soap. This type of treatment increases the lifetime of the electronic boards and therefore the LHC's reliability by preventing corrosion problems in the severe radiation and ozone environment of the LHC tunn...

  9. Basic electronic circuits

    CERN Document Server

    Buckley, P M

    1980-01-01

    In the past, the teaching of electricity and electronics has more often than not been carried out from a theoretical and often highly academic standpoint. Fundamentals and basic concepts have often been presented with no indication of their practical appli­ cations, and all too frequently they have been illustrated by artificially contrived laboratory experiments bearing little relationship to the outside world. The course comes in the form of fourteen fairly open-ended constructional experiments or projects. Each experiment has associated with it a construction exercise and an explanation. The basic idea behind this dual presentation is that the student can embark on each circuit following only the briefest possible instructions and that an open-ended approach is thereby not prejudiced by an initial lengthy encounter with the theory behind the project; this being a sure way to dampen enthusiasm at the outset. As the investigation progresses, questions inevitably arise. Descriptions of the phenomena encounte...

  10. Diamond Integrated Optomechanical Circuits

    CERN Document Server

    Rath, Patrik; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram H P

    2013-01-01

    Diamond offers unique material advantages for the realization of micro- and nanomechanical resonators due to its high Young's modulus, compatibility with harsh environments and superior thermal properties. At the same time, the wide electronic bandgap of 5.45eV makes diamond a suitable material for integrated optics because of broadband transparency and the absence of free-carrier absorption commonly encountered in silicon photonics. Here we take advantage of both to engineer full-scale optomechanical circuits in diamond thin films. We show that polycrystalline diamond films fabricated by chemical vapour deposition provide a convenient waferscale substrate for the realization of high quality nanophotonic devices. Using free-standing nanomechanical resonators embedded in on-chip Mach-Zehnder interferometers, we demonstrate efficient optomechanical transduction via gradient optical forces. Fabricated diamond resonators reproducibly show high mechanical quality factors up to 11,200. Our low cost, wideband, carri...

  11. Habenula circuit development: past, present and future

    Directory of Open Access Journals (Sweden)

    Carlo Antonio Beretta

    2012-04-01

    Full Text Available The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the Dorsal Diencephalic Conduction system (DDC with the habenulae in its center at the end of the 19th century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering of much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left-right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques and others that are needed to fully understand habenular circuit

  12. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  13. Sequential Polarity-Reversing Circuit

    Science.gov (United States)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  14. Logic Circuit Design Selected Methods

    CERN Document Server

    Vingron, Shimon P

    2012-01-01

        In three main divisions the  book covers combinational circuits, latches, and asynchronous sequential circuits. Combinational circuits have  no memorising ability, while sequential circuits have such an ability to various degrees. Latches are the simplest sequential circuits, ones with the shortest memory. The presentation is decidedly non-standard.         The design of combinational circuits is discussed in an orthodox manner using normal forms and in an unorthodox manner using set-theoretical evaluation formulas relying heavily on Karnaugh maps. The latter approach allows for a new design technique called composition.          Latches are covered very extensively. Their memory functions are expressed mathematically in a time-independent manner allowing the use of (normal, non-temporal) Boolean logic in their calculation. The theory of latches is then used as the basis for calculating asynchronous circuits.         Asynchronous circuits are specified in a tree-representation, eac...

  15. Enhancement of Linear Circuit Program

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian

    1996-01-01

    In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interface...

  16. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  17. Dive In to Aquatic Circuits.

    Science.gov (United States)

    Goldfarb, Joseph M.

    1995-01-01

    The article presents a method for swimming teachers and coaches to stave off workout boredom in their students by using a circuit in the pool. After explaining how to set up a training circuit, the article describes sample stations and notes important safety precautions. (SM)

  18. Enhancement of Linear Circuit Program

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian

    1996-01-01

    In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interfac...

  19. Accurate Switched-Voltage voltage averaging circuit

    OpenAIRE

    金光, 一幸; 松本, 寛樹

    2006-01-01

    Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.

  20. 46 CFR 169.670 - Circuit breakers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Circuit breakers. 169.670 Section 169.670 Shipping COAST... Gross Tons § 169.670 Circuit breakers. Each circuit breaker must be of the manually reset type designed... the circuit without damage to the circuit breaker....

  1. Nano-scale CMOS analog circuits models and CAD techniques for high-level design

    CERN Document Server

    Pandit, Soumya; Patra, Amit

    2014-01-01

    Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database.Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physic

  2. Photodiode circuits for retinal prostheses.

    Science.gov (United States)

    Loudin, J D; Cogan, S F; Mathieson, K; Sher, A; Palanker, D V

    2011-10-01

    Photodiode circuits show promise for the development of high-resolution retinal prostheses. While several of these systems have been constructed and some even implanted in humans, existing descriptions of the complex optoelectronic interaction between light, photodiode, and the electrode/electrolyte load are limited. This study examines this interaction in depth with theoretical calculations and experimental measurements. Actively biased photoconductive and passive photovoltaic circuits are investigated, with the photovoltaic circuits consisting of one or more diodes connected in series, and the photoconductive circuits consisting of a single diode in series with a pulsed bias voltage. Circuit behavior and charge injection levels were markedly different for platinum and sputtered iridium-oxide film (SIROF) electrodes. Photovoltaic circuits were able to deliver 0.038 mC/cm(2) (0.75 nC/phase) per photodiode with 50- μm platinum electrodes, and 0.54-mC/cm(2) (11 nC/phase) per photodiode with 50-μ m SIROF electrodes driven with 0.5-ms pulses of light at 25 Hz. The same pulses applied to photoconductive circuits with the same electrodes were able to deliver charge injections as high as 0.38 and 7.6 mC/cm(2) (7.5 and 150 nC/phase), respectively. We demonstrate photovoltaic stimulation of rabbit retina in-vitro, with 0.5-ms pulses of 905-nm light using peak irradiance of 1 mW/mm(2). Based on the experimental data, we derive electrochemical and optical safety limits for pixel density and charge injection in various circuits. While photoconductive circuits offer smaller pixels, photovoltaic systems do not require an external bias voltage. Both classes of circuits show promise for the development of high-resolution optoelectronic retinal prostheses.

  3. Using feed-forward strategies in higher education. The terrifying novel assignment: using feed-forward to improve students' ability and confidence on assignments that test new skills

    OpenAIRE

    Hine, Benjamin A.; Northeast, Tony

    2016-01-01

    Within higher education it is strongly agreed that feedback is the most important way of raising student achievement and encouraging student learning (Gibbs and Simpson, 2005). Feedback is regarded as inseparable from the learning process, and is integral to several theories of learning (e.g. Kolb, 1984). With regards to academic performance, feedback helps students understand their performance, as well as how to perform to a higher standard on future assignments. In addition, feedback provid...

  4. Link Analysis

    Science.gov (United States)

    Donoho, Steve

    Link analysis is a collection of techniques that operate on data that can be represented as nodes and links. This chapter surveys a variety of techniques including subgraph matching, finding cliques and K-plexes, maximizing spread of influence, visualization, finding hubs and authorities, and combining with traditional techniques (classification, clustering, etc). It also surveys applications including social network analysis, viral marketing, Internet search, fraud detection, and crime prevention.

  5. Circuit Design for Transmitter System of 10 Gb/s SerDes%10 Gb/s串行接口发送端电路的设计

    Institute of Scientific and Technical Information of China (English)

    马轩; 王自强

    2014-01-01

    In this paper ,a design for the transmitter system of muti-channel high speed SerDes is presented .It′s realized in 65 nm CMOS process and the data rate of a single lane is 10 Gb/s .The data lane circuit consints of a full-rate MUX and a CML driver ;The MUX is adopted the structure with TSPC latches and TSPC D-flip-flops (DFF) instead of CML circuits in the high speed stages to save power and area .The diver is made of CML structure ,and a 4 tap feed-forward equalization (FFE) is applied in the driver to reduce the influence of ISI ;Finally ,the impedance matching circuit is used to avoid signal reflection in the channel .%介绍了一个高速多通道SerDes发送端系统的设计。设计采用65 nm CMOS工艺,单通道数据率为10 Gb/s 。数据通道由一个全速率并串转换M ux电路和一个CM L驱动器组成:在并串转换电路的高速部分,为了节省功耗和面积,采用TSPC型的锁存器和触发器代替CML型结构;输出驱动器采用CML结构,并加入一个四抽头的前馈均衡电路以减小数据信号码间串扰的影响;最后为了使信号能够无反射地进行传输,设计了阻抗匹配电路。

  6. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  7. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  8. Performance analysis of electrical circuits /PANE/

    Science.gov (United States)

    Johnson, K. L.; Steinberg, L. L.

    1968-01-01

    Automated statistical and worst case computer program has been designed to perform dc and ac steady circuit analyses. The program determines the worst case circuit performance by solving circuit equations.

  9. Variational integrators for electric circuits

    Energy Technology Data Exchange (ETDEWEB)

    Ober-Blöbaum, Sina, E-mail: sinaob@math.upb.de [Computational Dynamics and Optimal Control, University of Paderborn (Germany); Tao, Molei [Courant Institute of Mathematical Sciences, New York University (United States); Cheng, Mulin [Applied and Computational Mathematics, California Institute of Technology (United States); Owhadi, Houman; Marsden, Jerrold E. [Control and Dynamical Systems, California Institute of Technology (United States); Applied and Computational Mathematics, California Institute of Technology (United States)

    2013-06-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator.

  10. Overpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  11. Counterpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  12. The Maplin electronic circuits handbook

    CERN Document Server

    Tooley, Michael

    2015-01-01

    The Maplin Electronic Circuits Handbook provides pertinent data, formula, explanation, practical guidance, theory and practical guidance in the design, testing, and construction of electronic circuits. This book discusses the developments in electronics technology techniques.Organized into 11 chapters, this book begins with an overview of the common types of passive component. This text then provides the reader with sufficient information to make a correct selection of passive components for use in the circuits. Other chapters consider the various types of the most commonly used semiconductor

  13. Determining Covers in Combinational Circuits

    Directory of Open Access Journals (Sweden)

    Ljubomir Cvetkovic

    2011-05-01

    Full Text Available In this paper we propose a procedure for determining 0- or 1-cover of an arbitrary line in a combinational circuit. When determining a cover we do not need Boolean expression for the line; only the circuit structure is used. Within the proposed procedure we use the tools of the cube theory, in particular, some operations defined on cubes. The procedure can be applied for determining 0- and 1- covers of output lines in programmable logic devices. Basically, this procedure is a method for the analysis of a combinational circuit.

  14. Novel Low Loss Active Voltage Clamp Circuit for Series Connection of RCGCT thyristors

    Science.gov (United States)

    Ito, Hiroshi; Suzuki, Akihiro; Iwata, Akihiko

    This paper describes novel low loss active voltage clamp circuits for the series connection of RCGCT thyristors. For high voltage converters the series connection of power semiconductor devices is an essential technique for direct switching of high voltages. Several protection circuits have been applied to the series connection of RCGCT thyristors such as CRD snubber circuits which suppress over-voltages across RCGCT thyristors, and voltage balancing resistors to equalize voltage sharing in steady states. However, significant losses in these protection circuits lower the converter’s efficiency. We propose novel low-loss protection circuits, which have active voltage clamp snubber circuits and static voltage balancing circuits. The clamp capacitor voltage of the active voltage clamp snubber circuits are designed to be higher than the equally divided DC-Link voltage. This method can reduce the loss of the clamp circuit to no more than 1/10 of that of the conventional CRD snubber. Also the static voltage balancing circuits compensate for the voltage imbalance generated by the difference in the leakage current between the series connection RCGCT thyristors.

  15. CADAT integrated circuit mask analysis

    Science.gov (United States)

    1981-01-01

    CADAT System Mask Analysis Program (MAPS2) is automated software tool for analyzing integrated-circuit mask design. Included in MAPS2 functions are artwork verification, device identification, nodal analysis, capacitance calculation, and logic equation generation.

  16. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  17. Chaos Control for Chua's Circuits

    Science.gov (United States)

    Tôrres, L. A. B.; Aguirre, L. A.; Palhares, R. M.; Mendes, E. M. A. M.

    The practical implementation of Chua's circuit control methods is discussed in this chapter. In order to better address this subject, an inductorless Chua's circuit realization is first presented, followed by practical issues related to data analysis, mathematical modelling, and dynamical characterization associated to this electronic chaotic oscillator. As a consequence of the investigation of different control strategies applied to Chua's circuit, a tradeoff among control objective, control energy, and model complexity is devised, which quite naturally leads to a principle that seems to be of general nature: the Information Transmission Via Control (ITVC) for nonlinear oscillators. The main purpose of the present chapter is to serve as an introductory guide to the universe of Chua's circuit control, synchronization, and mathematical modelling.

  18. Logic circuits from zero forcing

    CERN Document Server

    Burgarth, Daniel; Hogben, Leslie; Severini, Simone; Young, Michael

    2011-01-01

    We design logical circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity.

  19. Quantum interface between an electrical circuit and a single atom

    CERN Document Server

    Kielpinski, D; Woolley, M J; Milburn, G J; Taylor, J M

    2011-01-01

    We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards.

  20. Cable Hot Shorts and Circuit Analysis in Fire Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, Jeffrey; Nowlen, Steven P.; Wyant, Frank

    1999-05-19

    Under existing methods of probabilistic risk assessment (PRA), the analysis of fire-induced circuit faults has typically been conducted on a simplistic basis. In particular, those hot-short methodologies that have been applied remain controversial in regards to the scope of the assessments, the underlying methods, and the assumptions employed. To address weaknesses in fire PRA methodologies, the USNRC has initiated a fire risk analysis research program that includes a task for improving the tools for performing circuit analysis. The objective of this task is to obtain a better understanding of the mechanisms linking fire-induced cable damage to potentially risk-significant failure modes of power, control, and instrumentation cables. This paper discusses the current status of the circuit analysis task.

  1. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    Science.gov (United States)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  2. High-resolution mapping of bifurcations in nonlinear biochemical circuits.

    Science.gov (United States)

    Genot, A J; Baccouche, A; Sieskind, R; Aubert-Kato, N; Bredeche, N; Bartolo, J F; Taly, V; Fujii, T; Rondelez, Y

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  3. Spinal sensory circuits in motion

    OpenAIRE

    2016-01-01

    International audience; The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this ...

  4. Optimizing Transmission Line Matching Circuits

    OpenAIRE

    Novak, S.

    1996-01-01

    When designing transmission line matching circuits, there exist often overlooked, additional, not much used, degree of choice in the selection of the transmission line impedance. In this work are presented results of CAD analysis for the two element transmission line matching networks, demonstrating that selecting matching circuits transmission lines with higher impedance, than usually used 50 or 75 ohms, can in most cases substantially decrease the physical dimension of the final matching ci...

  5. Neural Circuits on a Chip

    Directory of Open Access Journals (Sweden)

    Md. Fayad Hasan

    2016-09-01

    Full Text Available Neural circuits are responsible for the brain’s ability to process and store information. Reductionist approaches to understanding the brain include isolation of individual neurons for detailed characterization. When maintained in vitro for several days or weeks, dissociated neurons self-assemble into randomly connected networks that produce synchronized activity and are capable of learning. This review focuses on efforts to control neuronal connectivity in vitro and construct living neural circuits of increasing complexity and precision. Microfabrication-based methods have been developed to guide network self-assembly, accomplishing control over in vitro circuit size and connectivity. The ability to control neural connectivity and synchronized activity led to the implementation of logic functions using living neurons. Techniques to construct and control three-dimensional circuits have also been established. Advances in multiple electrode arrays as well as genetically encoded, optical activity sensors and transducers enabled highly specific interfaces to circuits composed of thousands of neurons. Further advances in on-chip neural circuits may lead to better understanding of the brain.

  6. Adaptive Predistortions Based on Neural Networks Associated with Levenberg-Marquardt Algorithm for Satellite Down Links

    Directory of Open Access Journals (Sweden)

    Roviras Daniel

    2008-01-01

    Full Text Available Abstract This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.

  7. Difference-Equation/Flow-Graph Circuit Analysis

    Science.gov (United States)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  8. Multi-Layer E-Textile Circuits

    Science.gov (United States)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  9. 30 CFR 56.6403 - Branch circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403... Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate the circuits to be used....

  10. Equivalence Checking of Hierarchical Combinational Circuits

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Hulgaard, Henrik; Andersen, Henrik Reif

    1999-01-01

    This paper presents a method for verifying that two hierarchical combinational circuits implement the same Boolean functions. The key new feature of the method is its ability to exploit the modularity of circuits to reuse results obtained from one part of the circuits in other parts. We demonstrate...... our method on large adder and multiplier circuits....

  11. Programmable genetic circuits for pathway engineering.

    Science.gov (United States)

    Hoynes-O'Connor, Allison; Moon, Tae Seok

    2015-12-01

    Synthetic biology has the potential to provide decisive advances in genetic control of metabolic pathways. However, there are several challenges that synthetic biologists must overcome before this vision becomes a reality. First, a library of diverse and well-characterized sensors, such as metabolite-sensing or condition-sensing promoters, must be constructed. Second, robust programmable circuits that link input conditions with a specific gene regulation response must be developed. Finally, multi-gene targeting strategies must be integrated with metabolically relevant sensors and complex, robust logic. Achievements in each of these areas, which employ the CRISPR/Cas system, in silico modeling, and dynamic sensor-regulators, among other tools, provide a strong basis for future research. Overall, the future for synthetic biology approaches in metabolic engineering holds immense promise.

  12. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  13. Comparison between four piezoelectric energy harvesting circuits

    Institute of Scientific and Technical Information of China (English)

    Jinhao QIU; Hao JIANG; Hongli JI; Kongjun ZHU

    2009-01-01

    This paper investigates and compares the efficiencies of four different interfaces for vibration-based energy harvesting systems. Among those four circuits, two circuits adopt the synchronous switching technique, in which the circuit is switched synchronously with the vibration. In this study, a simple source-less trigger circuit used to control the synchronized switch is proposed and two interface circuits of energy harvesting systems are designed based on the trigger circuit. To validate the effectiveness of the proposed circuits, an experimental system was established and the power harvested by those circuits from a vibration beam was measured. Experimental results show that the two new circuits can increase the harvested power by factors 2.6 and 7, respectively, without consuming extra power in the circuits.

  14. Using Combinational Circuits for Control Purposes

    Directory of Open Access Journals (Sweden)

    Maher A. Nabulsi

    2009-01-01

    Full Text Available Problem statement: Combinational circuits are used in computers for generating binary control decisions and for providing digital components for data processing. Approach: The use of combinational circuits and logic gates to control other circuits was discussed. Different systems that use logic gates, multiplexers, decoders and encoders to control different circuits were presented. This study presented a design and implementation of some combinational circuits such as a decoder, an encoder, a multiplexer, a bus system and read/write memory operations. Results: When we connected some types of combinational circuits to the inputs/outputs of digital circuit, these combinational circuits can help us to manage and flow a different types of control signals through a large digital circuit. Conclusion: Many combinational circuits had a good function which can be used for controlling different parts of any digital system and they produce a suitable way to transfer a control signals between different digital components of any large digital system.

  15. Instrumentation and test gear circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p

  16. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... of circuit breakers. 75.601-1 Section 75.601-1 Mineral Resources MINE SAFETY AND HEALTH... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed...

  17. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  18. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the...

  19. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  20. Introduction to lethal circuit transformations

    Science.gov (United States)

    Fišer, Petr; Schmidt, Jan

    2015-12-01

    Logic optimization is a process that takes a logic circuit description (Boolean network) as an input and tries to refine it, to reduce its size and/or depth. An ideal optimization process should be able to devise an optimum implementation of a network in a reasonable time, given any circuit structure at the input. However, there are cases where it completely fails to produce even near-optimum solutions. Such cases are typically induced by non-standard circuit structure modifications. Surprisingly enough, such deviated structures are frequently present in standard benchmark sets too. We may only wonder whether it is an intention of the benchmarks creators, or just an unlucky coincidence. Even though synthesis tools should be primarily well suited for practical circuits, there is no guarantee that, e.g., a higher-level synthesis process will not generate such unlucky structures. Here we present examples of circuit transformations that lead to failure of most of state-of-the-art logic synthesis and optimization processes, both academic and commercial, and suggest actions to mitigate the disturbing effects.

  1. Dynamical compensation in physiological circuits.

    Science.gov (United States)

    Karin, Omer; Swisa, Avital; Glaser, Benjamin; Dor, Yuval; Alon, Uri

    2016-11-08

    Biological systems can maintain constant steady-state output despite variation in biochemical parameters, a property known as exact adaptation. Exact adaptation is achieved using integral feedback, an engineering strategy that ensures that the output of a system robustly tracks its desired value. However, it is unclear how physiological circuits also keep their output dynamics precise-including the amplitude and response time to a changing input. Such robustness is crucial for endocrine and neuronal homeostatic circuits because they need to provide a precise dynamic response in the face of wide variation in the physiological parameters of their target tissues; how such circuits compensate their dynamics for unavoidable natural fluctuations in parameters is unknown. Here, we present a design principle that provides the desired robustness, which we call dynamical compensation (DC). We present a class of circuits that show DC by means of a nonlinear feedback loop in which the regulated variable controls the functional mass of the controlling endocrine or neuronal tissue. This mechanism applies to the control of blood glucose by insulin and explains several experimental observations on insulin resistance. We provide evidence that this mechanism may also explain compensation and organ size control in other physiological circuits.

  2. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    Science.gov (United States)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  3. Electronically Tunable Sinusoidal Oscillator Circuit

    Directory of Open Access Journals (Sweden)

    Sudhanshu Maheshwari

    2012-01-01

    Full Text Available This paper presents a novel electronically tunable third-order sinusoidal oscillator synthesized from a simple topology, employing current-mode blocks. The circuit is realized using the active element: Current Controlled Conveyors (CCCIIs and grounded passive components. The new circuit enjoys the advantages of noninteractive electronically tunable frequency of oscillation, use of grounded passive components, and the simultaneous availability of three sinusoidal voltage outputs. Bias current generation scheme is given for the active elements used. The circuit exhibits good high frequency performance. Nonideal and parasitic study has also been carried out. Wide range frequency tuning is shown with the bias current. The proposed theory is verified through extensive PSPICE simulations using 0.25 μm CMOS process parameters.

  4. Optimization of reversible sequential circuits

    CERN Document Server

    Sayem, Abu Sadat Md

    2010-01-01

    In recent years reversible logic has been considered as an important issue for designing low power digital circuits. It has voluminous applications in the present rising nanotechnology such as DNA computing, Quantum Computing, low power VLSI and quantum dot automata. In this paper we have proposed optimized design of reversible sequential circuits in terms of number of gates, delay and hardware complexity. We have designed the latches with a new reversible gate and reduced the required number of gates, garbage outputs, and delay and hardware complexity. As the number of gates and garbage outputs increase the complexity of reversible circuits, this design will significantly enhance the performance. We have proposed reversible D-latch and JK latch which are better than the existing designs available in literature.

  5. Chua's Circuit: Control and Synchronization

    Science.gov (United States)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  6. Additive Manufacturing of Hybrid Circuits

    Science.gov (United States)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  7. Vertically Integrated Circuits at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  8. Nuclear sensor signal processing circuit

    Science.gov (United States)

    Kallenbach, Gene A.; Noda, Frank T.; Mitchell, Dean J.; Etzkin, Joshua L.

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  9. Endogenous money, circuits and financialization

    OpenAIRE

    Malcolm Sawyer

    2013-01-01

    This paper locates the endogenous money approach in a circuitist framework. It argues for the significance of the credit creation process for the evolution of the economy and the absence of any notion of ‘neutrality of money’. Clearing banks are distinguished from other financial institutions as the providers of initial finance in a circuit whereas other financial institutions operate in a final finance circuit. Financialization is here viewed in terms of the growth of financial assets an...

  10. Simplified design of filter circuits

    CERN Document Server

    Lenk, John

    1999-01-01

    Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets

  11. Embedded systems circuits and programming

    CERN Document Server

    Sanchez, Julio

    2012-01-01

    During the development of an engineered product, developers often need to create an embedded system--a prototype--that demonstrates the operation/function of the device and proves its viability. Offering practical tools for the development and prototyping phases, Embedded Systems Circuits and Programming provides a tutorial on microcontroller programming and the basics of embedded design. The book focuses on several development tools and resources: Standard and off-the-shelf components, such as input/output devices, integrated circuits, motors, and programmable microcontrollers The implementat

  12. Integrated circuits for multimedia applications

    DEFF Research Database (Denmark)

    Vandi, Luca

    2007-01-01

    This work presents several key aspects in the design of RF integrated circuits for portable multimedia devices. One chapter is dedicated to the application of negative-feedback topologies to receiver frontends. A novel feedback technique suitable for common multiplier-based mixers is described......, and it is applied to a broad-band dual-loop receiver architecture in order to boost the linearity performances of the stage. A simplified noise- and linearity analysis of the circuit is derived, and a comparison is provided with a more traditional dual-loop topology (a broad-band stage based on shunt...

  13. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  14. Circuit, Thermal and Cost Characteristics of Impulse Magnetizing Circuits

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes the development of circuit, thermal and cost model for a capacitor discharge impulse megnetizer and compares simulations to measurements from an actual system. We used a cost structure consisting of five major subsystems for cost modeling. Especially, we estimated the potential for cost reductions impulse magnetizer as a function of time using the learning curve.

  15. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine.

    Science.gov (United States)

    Kim, Il Hwan; Rossi, Mark A; Aryal, Dipendra K; Racz, Bence; Kim, Namsoo; Uezu, Akiyoshi; Wang, Fan; Wetsel, William C; Weinberg, Richard J; Yin, Henry; Soderling, Scott H

    2015-06-01

    Psychiatric and neurodevelopmental disorders may arise from anomalies in long-range neuronal connectivity downstream of pathologies in dendritic spines. However, the mechanisms that may link spine pathology to circuit abnormalities relevant to atypical behavior remain unknown. Using a mouse model to conditionally disrupt a critical regulator of the dendritic spine cytoskeleton, the actin-related protein 2/3 complex (Arp2/3), we report here a molecular mechanism that unexpectedly reveals the inter-relationship of progressive spine pruning, elevated frontal cortical excitation of pyramidal neurons and striatal hyperdopaminergia in a cortical-to-midbrain circuit abnormality. The main symptomatic manifestations of this circuit abnormality are psychomotor agitation and stereotypical behaviors, which are relieved by antipsychotics. Moreover, this antipsychotic-responsive locomotion can be mimicked in wild-type mice by optogenetic activation of this circuit. Collectively these results reveal molecular and neural-circuit mechanisms, illustrating how diverse pathologies may converge to drive behaviors relevant to psychiatric disorders.

  16. Relaxation Based Electrical Simulation for VLSI Circuits

    Directory of Open Access Journals (Sweden)

    S. Rajkumar

    2012-06-01

    Full Text Available Electrical circuit simulation was one of the first CAD tools developed for IC design. The conventional circuit simulators like SPICE and ASTAP were designed initially for the cost effective analysis of circuits containing a few hundred transistors or less. A number of approaches have been used to improve the performances of congenital circuit simulators for the analysis of large circuits. Thereafter relaxation methods was proposed to provide more accurate waveforms than standard circuit simulators with up to two orders of magnitude speed improvement for large circuits. In this paper we have tried to highlights recently used waveform and point relaxation techniques for simulation of VLSI circuits. We also propose a simple parallelization technique and experimentally demonstrate that we can solve digital circuits with tens of million transistors in a few hours.

  17. An Approach to Simplify Reversible Logic Circuits

    Directory of Open Access Journals (Sweden)

    Pabitra Roy

    2012-09-01

    Full Text Available Energy loss is one of the major problems in traditional irreversible circuits. For every bit of information loss kTln2 joules of heat is lost. In order to reduce the energy loss the concept of reversible logic circuits are introduced. Here we have described an algorithm for simplifying the reversible logic circuit and hence reduction of circuit cost and energy. The algorithm considers sub_circuit with respect to their number of lines and contiguous gates. The resulting sub_circuits are re-synthesized with smaller equivalent implementation. The process continues until circuit cost reaches good enough for Application or until a given computation budget has been exhausted. The circuit is constructed by NOT, CNOT and Toffoli gates only. By applying the algorithm and using the equivalent implementation we will get significant reduction of circuit cost and hence energy.

  18. Retropath: automated pipeline for embedded metabolic circuits.

    Science.gov (United States)

    Carbonell, Pablo; Parutto, Pierre; Baudier, Claire; Junot, Christophe; Faulon, Jean-Loup

    2014-08-15

    Metabolic circuits are a promising alternative to other conventional genetic circuits as modular parts implementing functionalities required for synthetic biology applications. To date, metabolic design has been mainly focused on production circuits. Emergent applications such as smart therapeutics, however, require circuits that enable sensing and regulation. Here, we present RetroPath, an automated pipeline for embedded metabolic circuits that explores the circuit design space from a given set of specifications and selects the best circuits to implement based on desired constraints. Synthetic biology circuits embedded in a chassis organism that are capable of controlling the production, processing, sensing, and the release of specific molecules were enumerated in the metabolic space through a standard procedure. In that way, design and implementation of applications such as therapeutic circuits that autonomously diagnose and treat disease, are enabled, and their optimization is streamlined.

  19. Equivalent Circuit for Half-Bridge MMC Dc Fault Current Contribution

    OpenAIRE

    Leterme, Willem; Beerten, Jef; Van Hertem, Dirk

    2016-01-01

    The modular multilevel converter (MMC) is currently the preferred converter topology for HVDC point-to-point links and the likely choice for future meshed HVDC grids. For breaker dimensioning or protection system design, thorough knowledge of the dc fault currents supplied by these converters is required. In this paper, the dc fault current supplied by the half-bridge MMC is analyzed and an equivalent circuit model is proposed. The proposed equivalent circuit has a low complexity and accurate...

  20. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  1. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  2. Advanced circuit simulation using Multisim workbench

    CERN Document Server

    Báez-López, David; Cervantes-Villagómez, Ofelia Delfina

    2012-01-01

    Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi

  3. Transatlantic link

    Science.gov (United States)

    (left) European Geophysical Society (EGS) President Rolf Meissner at AGU Headquarters with (center) Executive Director Fred Spilhaus and (right) Foreign Secretary Juan Roederer. Meissner attended the meeting of AGU's Committee on International Participation (CIP) on February 26, 1988. At that meeting, specific ways of fostering close links between AGU and EGS were discussed.A few weeks later, Roederer and AGU staff, working with EGS Secretary-General Arne Richter at the EGS meeting in Bologna, Italy, March 21-25, planned details of the establishment of an AGU office in Europe. The Copernicus Gesellschaft, a new entity located on the premises of the Max Planck Institute for Aeronomy in Lindau, Federal Republic of Germany, will provide the administrative staff and handle logistics.

  4. A Low Noise Electronic Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Leenaerts, Dominicus M.W.; de Vreede, Petrus W.H.

    2002-01-01

    An electronic circuit, which can be used as a Low Noise Amplifier (LNA), comprises two complementary Field Effect Transistors (M1, M2; M5, M6), each having a gate, a source and a drain. The gates are connected together as a common input terminal, and the drains are connected together as a

  5. A circuit mechanism for neurodegeneration.

    Science.gov (United States)

    Roselli, Francesco; Caroni, Pico

    2012-10-12

    How deficiency in SMN1 selectively affects motoneurons in spinal muscular atrophy is poorly understood. Here, Imlach et al. and Lotti et al. show that aberrant splicing of Stasimon in cholinergic sensory neurons and interneurons leads to motoneuron degeneration, suggesting that altered circuit function may underlie the disorder.

  6. Integrated Circuit Stellar Magnitude Simulator

    Science.gov (United States)

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  7. Structural Testing of RSFQ Circuits

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.; Flokstra, Jakob; Rogalla, Horst; Brinkman, Alexander

    2005-01-01

    The RSFQ family of logic circuits built in Niobium (Nb) tri-layer processes are being widely used for designs in Superconductor Electronics (SCE). But little information is available about the defects and fault mechanisms occurring in an RSFQ Nb process.

  8. Immune Cells Link Obesity-associated Type 2 Diabetes and Periodontitis

    Science.gov (United States)

    Zhu, M.; Nikolajczyk, B.S.

    2014-01-01

    The clinical association between obesity-associated type 2 diabetes (T2D) and periodontitis, coupled with the increasing prevalence of these diseases, justifies studies to identify mechanisms responsible for the vicious feed-forward loop between systemic and oral disease. Changes in the immune system are critical for both obesity-associated T2D and periodontitis and therefore may link these diseases. Recent studies at the intersection of immunology and metabolism have greatly advanced our understanding of the role the immune system plays in the transition between obesity and obesity-associated T2D and have shown that immune cells exhibit similar functional changes in obesity/T2D and periodontitis. Furthermore, myeloid and lymphoid cells likely synergize to promote obesity/T2D-associated periodontitis despite complexities introduced by disease interaction. Thus the groundwork is being laid for researchers to exploit existing models to understand immune cell dysfunction and break the devastating relationship between obesity-associated T2D and oral disease. PMID:24393706

  9. Linked Gauss-Diffusion processes for modeling a finite-size neuronal network.

    Science.gov (United States)

    Carfora, M F; Pirozzi, E

    2017-08-02

    A Leaky Integrate-and-Fire (LIF) model with stochastic current-based linkages is considered to describe the firing activity of neurons interacting in a (2×2)-size feed-forward network. In the subthreshold regime and under the assumption that no more than one spike is exchanged between coupled neurons, the stochastic evolution of the neuronal membrane voltage is subject to random jumps due to interactions in the network. Linked Gauss-Diffusion processes are proposed to describe this dynamics and to provide estimates of the firing probability density of each neuron. To this end, an iterated integral equation-based approach is applied to evaluate numerically the first passage time density of such processes through the firing threshold. Asymptotic approximations of the firing densities of surrounding neurons are used to obtain closed-form expressions for the mean of the involved processes and to simplify the numerical procedure. An extension of the model to an (N×N)-size network is also given. Histograms of firing times obtained by simulations of the LIF dynamics and numerical firings estimates are compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example,upon which the voltage-current relationships (VCRs) between two parallel memristive circuits-a parallel memristor and capacitor circuit (the parallel MC circuit),and a parallel memristor and inductor circuit (the parallel ML circuit)-are investigated.The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters,and the frequency and amplitude of the sinusoidal voltage stimulus.An equivalent circuit model of the memristor is built,upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed,and the results verify the theoretical analysis results.

  11. The Versatile Link Demo Board (VLDB)

    Science.gov (United States)

    Martín Lesma, R.; Alessio, F.; Barbosa, J.; Baron, S.; Caplan, C.; Leitao, P.; Pecoraro, C.; Porret, D.; Wyllie, K.

    2017-02-01

    The Versatile Link Demonstrator Board (VLDB) is the evaluation kit for the radiation-hard Optical Link ecosystem, which provides a 4.8 Gbps data transfer link for communication between front-end (FE) and back-end (BE) of the High Energy Physics experiments. It gathers the Versatile link main radiation-hard custom Application-Specific Integrated Circuits (ASICs) and modules: GBTx, GBT-SCA and VTRx/VTTx plus the FeastMP, a radiation-hard in-house designed DC-DC converter. This board is the first design allowing system-level tests of the Link with a complete interconnection of the constitutive components, allowing data acquisition, control and monitoring of FE devices with the GBT-SCA pair.

  12. Training a Feed-Forward Neural Network with Artificial Bee Colony based Backpropagation Method

    Directory of Open Access Journals (Sweden)

    Sudarshan Nandy

    2012-09-01

    Full Text Available Back-propagation algorithm is one of the most widely used and popular techniques to optimize the feedforward neural network training. Nature inspired meta-heuristic algorithms also provide derivative-freesolution to optimize complex problem. Artificial bee colony algorithm is a nature inspired meta-heuristicalgorithm, mimicking the foraging or food source searching behaviour of bees in a bee colony and thisalgorithm is implemented in several applications for an improved optimized outcome. The proposedmethod in this paper includes an improved artificial bee colony algorithm based back-propagation neuralnetwork training method for fast and improved convergence rate of the hybrid neural network learningmethod. The result is analysed with the genetic algorithm based back-propagation method, and it isanother hybridized procedure of its kind. Analysis is performed over standard data sets, reflecting the lightof efficiency of proposed method in terms of convergence speed and rate.

  13. Application analysis of servo-control system based on PMAC with feed-forward control

    Science.gov (United States)

    Lin, Rongkun; Yao, Bin; Chen, Minghui; Li, Fei; Peng, Liwen

    2011-12-01

    On the basis of traditional PID algorithm, the paper analyzes the improvements of control algorithm of PMAC (Programmable Multiple-Axis Controller) with feedforward control, and presents the computational model of the control algorithm. The debugging results of motors are analyzed in combination with PMAC as the controller. The problems and the final graphics data that appear throughout debugging process are analyzed in detail, which proves that there are better steady characteristics and dynamic performance for the servo-control system based on PMAC with feedforward control. The control system is rebuilded by parameter-adaptive PID+feedforward control for higher machining accuracy.

  14. An Arabidopsis Natural Epiallele Maintained by a Feed-Forward Silencing Loop between Histone and DNA.

    Directory of Open Access Journals (Sweden)

    Astrid Agorio

    2017-01-01

    Full Text Available The extent of epigenetic variation is currently well documented, but the number of natural epialleles described so far remains very limited. Determining the relevance of epigenetic changes for natural variation is an important question of research that we investigate by isolating natural epialleles segregating in Arabidopsis recombinant populations. We previously described a genetic incompatibility among Arabidopsis strains based on the silencing of a gene involved in fitness. Here, we isolated a new epiallele resulting from the silencing of a transfer-RNA editing gene in an Arabidopsis accession from the Netherlands (Nok-1. Crosses with the reference accession Col-0 show a complete incompatibility between this epiallele and another locus localized on a different chromosome. We demonstrate that conversion of an unmethylated version of this allele occurs in hybrids, associated with modifications of small RNA populations. These epialleles can also spontaneously revert within the population. Furthermore, we bring evidence that neither METHYLTRANSFERASE 1, maintaining methylation at CGs, nor components of RNA-directed DNA methylation, are key factors for the transmission of the epiallele over generations. This depends only on the self-reinforcing loop between CHROMOMETHYLASE 3 and KRYPTONITE, involving DNA methylated in the CHG context and histone H3 lysine 9 methylation. Our findings reveal a predominant role of this loop in maintaining a natural epiallele.

  15. FPGA Implementations of Feed Forward Neural Network by using Floating Point Hardware Accelerators

    Directory of Open Access Journals (Sweden)

    Gabriele-Maria Lozito

    2014-01-01

    Full Text Available This paper documents the research towards the analysis of different solutions to implement a Neural Network architecture on a FPGA design by using floating point accelerators. In particular, two different implementations are investigated: a high level solution to create a neural network on a soft processor design, with different strategies for enhancing the performance of the process; a low level solution, achieved by a cascade of floating point arithmetic elements. Comparisons of the achieved performance in terms of both time consumptions and FPGA resources employed for the architectures are presented.

  16. Feed forward and feedback control for over-ground locomotion in anaesthetized cats

    Science.gov (United States)

    Mazurek, K. A.; Holinski, B. J.; Everaert, D. G.; Stein, R. B.; Etienne-Cummings, R.; Mushahwar, V. K.

    2012-04-01

    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1 = 6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, within these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future.

  17. Evidence Feed Forward Hidden Markov Models for Visual Human Action Classification (Preprint)

    Science.gov (United States)

    2011-04-12

    Features for 3-D Jester Recognition,” Proceedings from IEEE Automatic Face and Gesture Recognition (AFGR), 1996, pp. 157-162. 9. Yu, C., Ballard, D...pp. 1-4, doi:10.1109/ICPR.2008.4761290. 11. Wilson, A., Bobick, A., “Parametric Hidden Markov Models for Gesture Recognition ,” IEEE Transaction on

  18. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature

    Science.gov (United States)

    Wang, Hong; Upchurch, Charles T.; Liu, Zhenqi

    2011-01-01

    Insulin, at physiological concentrations, regulates the volume of microvasculature perfused within skeletal and cardiac muscle. It can also, by relaxing the larger resistance vessels, increase total muscle blood flow. Both of these effects require endothelial cell nitric oxide generation and smooth muscle cell relaxation, and each could increase delivery of insulin and nutrients to muscle. The capillary microvasculature possesses the greatest endothelial surface area of the body. Yet, whether insulin acts on the capillary endothelial cell is not known. Here, we review insulin's actions at each of three levels of the arterial vasculature as well as recent data suggesting that insulin can regulate a vesicular transport system within the endothelial cell. This latter action, if it occurs at the capillary level, could enhance insulin delivery to muscle interstitium and thereby complement insulin's actions on arteriolar endothelium to increase insulin delivery. We also review work that suggests that this action of insulin on vesicle transport depends on endothelial cell nitric oxide generation and that insulin's ability to regulate this vesicular transport system is impaired by inflammatory cytokines that provoke insulin resistance. PMID:21610226

  19. Multilayered feed forward neural network based on particle swarm optimizer algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    BP is a commonly used neural network training method, which has some disadvantages, such as local minima,sensitivity of initial value of weights, total dependence on gradient information. This paper presents some methods to train a neural network, including standard particle swarm optimizer (PSO), guaranteed convergence particle swarm optimizer (GCPSO), an improved PSO algorithm, and GCPSO-BP, an algorithm combined GCPSO with BP. The simulation results demonstrate the effectiveness of the three algorithms for neural network training.

  20. Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation

    DEFF Research Database (Denmark)

    Csikász-Nagy, Attila; Kapuy, Orsolya; Tóth, Attila

    2009-01-01

    The eukaryotic cell cycle requires precise temporal coordination of the activities of hundreds of 'executor' proteins (EPs) involved in cell growth and division. Cyclin-dependent protein kinases (Cdks) play central roles in regulating the production, activation, inactivation and destruction......) from Cdk1. By mathematical modelling, we show that such FFLs can activate EPs at different phases of the cell cycle depending of the effective signs (+ or -) of the regulatory steps of the FFL. We provide several case studies of EPs that are controlled by FFLs exactly as our models predict. The signal......-transduction properties of FFLs allow one (or a few) Cdk signal(s) to drive a host of cell cycle responses in correct temporal sequence....

  1. Adaptive filtering and feed-forward control for suppression of vibration and jitter

    Science.gov (United States)

    Anderson, Eric H.; Blankinship, Ross L.; Fowler, Leslie P.; Glaese, Roger M.; Janzen, Paul C.

    2007-04-01

    This paper describes the use of adaptive filtering to control vibration and optical jitter. Adaptive filtering is a class of signal processing techniques developed over the last several decades and applied since to applications ranging from communications to image processing. Basic concepts in adaptive filtering and feedforward control are reviewed. A series of examples in vibration, motion and jitter control, including cryocoolers, ground-based active optics systems, flight motion simulators, wind turbines and airborne optical beam control systems, illustrates the effectiveness of the adaptive methods. These applications make use of information and signals that originate from system disturbances and minimize the correlations between disturbance information and error and performance measures. The examples incorporate a variety of disturbance types including periodic, multi-tonal, broadband stationary and non-stationary. Control effectiveness with slowly-varying narrowband disturbances originating from cryocoolers can be extraordinary, reaching 60 dB of reduction or rejection. In other cases, performance improvements are only 30-50%, but such reductions effectively complement feedback servo performance in many applications.

  2. Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition

    Science.gov (United States)

    Kheradpisheh, Saeed Reza; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-09-01

    Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown whether DCNNs match human performance at the task of view-invariant object recognition, whether they make similar errors and use similar representations for this task, and whether the answers depend on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and humans when variations are weak. When facing larger variations, however, more layers were needed to match human performance and error distributions, and to have representations that are consistent with human behavior. A very deep net with 18 layers even outperformed humans at the highest variation level, using the most human-like representations.

  3. An Arabidopsis Natural Epiallele Maintained by a Feed-Forward Silencing Loop between Histone and DNA

    Science.gov (United States)

    Agorio, Astrid; Durand, Stéphanie; Brousse, Cécile; Gy, Isabelle; Simon, Matthieu; Anava, Sarit; Rechavi, Oded; Loudet, Olivier; Camilleri, Christine

    2017-01-01

    The extent of epigenetic variation is currently well documented, but the number of natural epialleles described so far remains very limited. Determining the relevance of epigenetic changes for natural variation is an important question of research that we investigate by isolating natural epialleles segregating in Arabidopsis recombinant populations. We previously described a genetic incompatibility among Arabidopsis strains based on the silencing of a gene involved in fitness. Here, we isolated a new epiallele resulting from the silencing of a transfer-RNA editing gene in an Arabidopsis accession from the Netherlands (Nok-1). Crosses with the reference accession Col-0 show a complete incompatibility between this epiallele and another locus localized on a different chromosome. We demonstrate that conversion of an unmethylated version of this allele occurs in hybrids, associated with modifications of small RNA populations. These epialleles can also spontaneously revert within the population. Furthermore, we bring evidence that neither METHYLTRANSFERASE 1, maintaining methylation at CGs, nor components of RNA-directed DNA methylation, are key factors for the transmission of the epiallele over generations. This depends only on the self-reinforcing loop between CHROMOMETHYLASE 3 and KRYPTONITE, involving DNA methylated in the CHG context and histone H3 lysine 9 methylation. Our findings reveal a predominant role of this loop in maintaining a natural epiallele. PMID:28060933

  4. A Modified Structure for Feed Forward Active Noise Control Systems With Improved Performa

    Directory of Open Access Journals (Sweden)

    P.Babu

    2010-09-01

    Full Text Available Several approaches have been introduced in literature for active noise control (ANC systems. SinceFxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improveperformance of ANC systems by enhancing and modifying this algorithm. In this paper, the existingFxLMS algorithm is modified which provides a new structure for improving the noise reduction andconvergence rate. Here the proposed method uses two variable step sizes, one for control filter andanother for modelling filter. The control filter step size is varied based on the secondary path thresholdsignal l dˆ . The modelling filter step size is varied based on error signal f (n . It is shown that in theproposed method ANC system noise reduction rate and convergence rate are improved dynamically thanthe FxLMS variable step size methods. The computer simulations results indicate effectiveness of theproposed method.

  5. Sensor based robot laser welding - based on feed forward and gain sceduling algorithms

    DEFF Research Database (Denmark)

    Andersen, Henrik John

    2001-01-01

    A real-time control system forlaser welding of thick steel plates are developed and tested in a industrial environment. The robotic execution of the laser welding process is based on measure weld joint geometry and impirically established welding procedures. The influence of industrial production...

  6. Incoherent feed-forward regulatory loops control segregation of C-mechanoreceptors, nociceptors, and pruriceptors.

    Science.gov (United States)

    Lou, Shan; Pan, Xiaoxin; Huang, Tianwen; Duan, Bo; Yang, Fu-Chia; Yang, Juan; Xiong, Mulin; Liu, Yang; Ma, Qiufu

    2015-04-01

    Mammalian skin is innervated by diverse, unmyelinated C fibers that are associated with senses of pain, itch, temperature, or touch. A key developmental question is how this neuronal cell diversity is generated during development. We reported previously that the runt domain transcription factor Runx1 is required to coordinate the development of these unmyelinated cutaneous sensory neurons, including VGLUT3(+) low-threshold c-mechanoreceptors (CLTMs), MrgprD(+) polymodal nociceptors, MrgprA3(+) pruriceptors, MrgprB4(+) c-mechanoreceptors, and others. However, how these Runx1-dependent cutaneous sensory neurons are further segregated is poorly illustrated. Here, we find that the Runx1-dependent transcription factor gene Zfp521 is expressed in, and required for establishing molecular features that define, VGLUT3(+) CLTMs. Furthermore, Runx1 and Zfp521 form a classic incoherent feedforward loop (I-FFL) in controlling molecular identities that normally belong to MrgprD(+) neurons, with Runx1 and Zfp51 playing activator and repressor roles, respectively (in genetic terms). A knock-out of Zfp521 allows prospective VGLUT3 lineage neurons to acquire MrgprD(+) neuron identities. Furthermore, Runx1 might form other I-FFLs to regulate the expression of MrgprA3 and MrgprB4, a mechanism preventing these genes from being expressed in Runx1-persistent VGLUT3(+) and MrgprD(+) neurons. The evolvement of these I-FFLs provides an explanation for how modality-selective sensory subtypes are formed during development and may also have intriguing implications for sensory neuron evolution and sensory coding.

  7. A feed-forward loop amplifies nutritional regulation of PNPLA3

    OpenAIRE

    Huang, Yongcheng; He, Shaoqing; Li, John Zhong; Seo, Young-Kyo; Osborne, Timothy F.; Cohen, Jonathan C.; Hobbs, Helen H.

    2010-01-01

    The upsurge in prevalence of obesity has spawned an epidemic of nonalcoholic fatty liver disease (NAFLD). Previously, we identified a sequence variant (I148M) in patatin-like phospholipase domain-containing protein 3 (PNPLA3) that confers susceptibility to both hepatic triglyceride (TG) deposition and liver injury. To glean insights into the biological role of PNPLA3, we examined the molecular mechanisms by which nutrient status controls hepatic expression of PNPLA3. PNPLA3 mRNA levels, which...

  8. Developing a supervised training algorithm for limited precision feed-forward spiking neural networks

    CERN Document Server

    Stromatias, Evangelos

    2011-01-01

    Spiking neural networks have been referred to as the third generation of artificial neural networks where the information is coded as time of the spikes. There are a number of different spiking neuron models available and they are categorized based on their level of abstraction. In addition, there are two known learning methods, unsupervised and supervised learning. This thesis focuses on supervised learning where a new algorithm is proposed, based on genetic algorithms. The proposed algorithm is able to train both synaptic weights and delays and also allow each neuron to emit multiple spikes thus taking full advantage of the spatial-temporal coding power of the spiking neurons. In addition, limited synaptic precision is applied; only six bits are used to describe and train a synapse, three bits for the weights and three bits for the delays. Two limited precision schemes are investigated. The proposed algorithm is tested on the XOR classification problem where it produces better results for even smaller netwo...

  9. Effective enhancement of classification of respiratory states using feed forward back propagation neural networks

    Indian Academy of Sciences (India)

    A Bhavani Sankar; J Arputha Vijaya Selvi; D Kumar; K Seetha Lakshmi

    2013-06-01

    In biomedical signal analysis, Artificial Neural Networks are frequently used for classification, owing to their capability to resolve nonlinearly separable problems and the flexibility to implement them on-chip processor, competently. Artificial Neural Network for a classification task attempts to hand design a network topology and to find a set of network parameters using a back propagation training algorithm. This work presents an intelligent diagnosis system using artificial neural network. Features were extracted from respiratory effort signal based on the threshold-based scheme and the respiratory states were classified into normal, sleep apnea and motion artifacts. The introduced neural classifier was then trained with different back propagation training algorithms and the classified output was compared with the hand designed results. Five different back propagation training algorithms were used for training, such as Levenberg–Marquardt, scaled conjugate gradient, BFGS algorithm, one step secant and Powell–Beale restarts. Our results revealed that the system could correctly classify at an average of 98.7%, when the LM training method was used. Receiver Operating Characteristic (ROC) analysis and confusion matrix showed that the LM method conferred a more balanced and an apt classification of sleep apnea and normal states.

  10. Precision requirements for single-layer feed-forward neural networks

    NARCIS (Netherlands)

    Annema, Anne J.; Hoen, K.; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    This paper presents a mathematical analysis of the effect of limited precision analog hardware for weight adaptation to be used in on-chip learning feedforward neural networks. Easy-to-read equations and simple worst-case estimations for the maximum tolerable imprecision are presented. As an

  11. Noiseless phase quadrature amplification via an electro-optic feed-forward technique

    CERN Document Server

    Buchler, B C; Ralph, T C; Buchler, Ben C.; Huntington, Elanor H.; Ralph, Timothy C.

    1999-01-01

    Theoretical results are presented which show that noiseless phase quadrature amplification is possible, and limited experimentally only by the efficiency of the phase detection system. Experimental results obtained using a Nd:YAG laser show a signal gain of 10dB and a signal transfer ratio of T_s=0.9. This result easily exceeds the standard quantum limit for signal transfer. The results also explicitly demonstrate the phase sensitive nature of the amplification process.

  12. Trellis-based feed-forward carrier recovery for coherent optical systems.

    Science.gov (United States)

    Zamani, Mahdi; Najafi, Hossein; Yao, Demin; Mitra, Jeebak; Tang, Xuefeng; Li, Chuandong; Zhang, Zhuhong

    2016-10-03

    An efficient trellis-based phase noise mitigation algorithm is proposed to highly improve the performance of coherent transmission systems, especially in high order modulation formats. The proposed method targets the coherent optical systems where the performance is limited by various sources of phase noise including laser line-width, fiber non-linearity, and phase noise induced by phase-locked loop. Considering hardware limitations of ultra-high data rate processing in optical systems, a hardware-efficient parallelized and pipelined architecture is utilized. Experimental results in 200 Gb/s DP-16QAM co-propagated with 10-G channels demonstrate significant performance improvement over other existing methods.

  13. Feature Extraction of Olive Ridley Sea Turtle Using Feed Forward neural Network

    Directory of Open Access Journals (Sweden)

    Capt. Dr.S.Santhosh Baboo

    2014-10-01

    Full Text Available The paper deals with the computer based auto detection of particular species of sea turtles. In this process, three parameters have been taken and trained in artificial neural network for detecting the particular species among the popular seven species of the world. The existing algorithm for auto photo identification of detecting the particular species is much complicated due to classification process in the algorithm. To improve this algorithm, new technique has been used in feature extraction of the image and there are 10 images where trained and then finally particular species Olive Ridely is retrieved. These images are trained through artificial neural network and result of the images is plotted in the graphs.

  14. Detection of Malignancy Associated Changes in Cervical Cell Nuclei Using Feed-Forward Neural Networks

    Directory of Open Access Journals (Sweden)

    Roger A. Kemp

    1997-01-01

    Full Text Available Normal cells in the presence of a precancerous lesion undergo subtle changes of their DNA distribution when observed by visible microscopy. These changes have been termed Malignancy Associated Changes (MACs. Using statistical models such as neural networks and discriminant functions it is possible to design classifiers that can separate these objects from truly normal cells. The correct classification rate using feed‐forward neural networks is compared to linear discriminant analysis when applied to detecting MACs. Classifiers were designed using 53 nuclear features calculated from images for each of 25,360 normal appearing cells taken from 344 slides diagnosed as normal or containing severe dysplasia. A linear discriminant function achieved a correct classification rate of 61.6% on the test data while neural networks scored as high as 72.5% on a cell‐by‐cell basis. The cell classifiers were applied to a library of 93,494 cells from 395 slides, and the results were jackknifed using a single slide feature. The discriminant function achieved a correct classification rate of 67.6% while the neural networks managed as high as 76.2%.

  15. Use of Feed-Forward Mechanisms in a Novel Research-Led Module

    Science.gov (United States)

    Morrell, Lesley J.

    2014-01-01

    I describe a novel research-led module that combines reduced academic marking loads with increased feedback to students, and allows students to reflect on and improve attainment prior to summative assessment. The module is based around eight seminar-style presentations (one per week), on which the students write 500-word "news &…

  16. Flat acoustic sources with frequency response correction based on feedback and feed-forward distributed control.

    Science.gov (United States)

    Ho, Jen-Hsuan; Berkhoff, Arthur P

    2015-04-01

    This paper presents an acoustic source with a small thickness and high bending stiffness. The high bending stiffness is obtained with a sandwich structure in which the face of the sandwich structure internal to the source is perforated to increase the acoustic compliance, thereby leading to increased electroacoustic conversion efficiency. Multiple actuators are used to drive the moving component of the acoustic source. Control of the acoustic resonances and structural resonances is required to obtain an even frequency response. The use of collocated decentralized feedback control based on velocity sensing was found to be ineffective for controlling these resonances due to the destabilizing asymmetric modes caused by the coupling of the internal acoustic cavity and the rigid body vibration of the moving component. Resonances can be controlled by a set of independent combinations of symmetric driving patterns with corresponding velocity feedback controllers such that the fundamental mass-air resonance is effectively controlled, as is the lowest bending mode of the moving component. Finally, a compensation scheme for low frequencies is used which enables a flat frequency response in the range of 30 Hz to 1 kHz with deviations smaller than 3 dB.

  17. Feed Forward Programming of Car Drivers’ Eye Movement Behavior: A System Theoretical Approach. Volume 2

    Science.gov (United States)

    1980-03-01

    Saccade’s amplitudes: The saccade amplitudes also didn’t change systematically over both runs. The standard devidations were rather great in comparison to...research goals can be achieved such as evaluating the relationship between the preferred driving sp^ed (when a great work load is involved) and tire...experiments should be carried out under a great range of environmental conditions. Each single study should be treated holistically with individual

  18. Simulation of Wave Forces on A Semi-Circular Breakwater Using Multilayer Feed Forward Network

    Institute of Scientific and Technical Information of China (English)

    徐杰; 陶建华

    2003-01-01

    In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks with double implicit layers have been studied by numerical experiments. 117 sets of experimental data are used to train and test the ANN. According to the results of ANN simulation, this method is proved to have good precision compared with experimental and numerical results.

  19. Evidence Feed Forward Hidden Markov Model: A New Type of Hidden Markov Model

    CERN Document Server

    DelRose, Michael; Frederick, Philip; 10.5121/ijaia.2011.2101

    2011-01-01

    The ability to predict the intentions of people based solely on their visual actions is a skill only performed by humans and animals. The intelligence of current computer algorithms has not reached this level of complexity, but there are several research efforts that are working towards it. With the number of classification algorithms available, it is hard to determine which algorithm works best for a particular situation. In classification of visual human intent data, Hidden Markov Models (HMM), and their variants, are leading candidates. The inability of HMMs to provide a probability in the observation to observation linkages is a big downfall in this classification technique. If a person is visually identifying an action of another person, they monitor patterns in the observations. By estimating the next observation, people have the ability to summarize the actions, and thus determine, with pretty good accuracy, the intention of the person performing the action. These visual cues and linkages are important...

  20. Developing a Domain Model for Relay Circuits

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2009-01-01

    the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined......In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...

  1. Driver circuit for solid state light sources

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  2. Fabric circuits and method of manufacturing fabric circuits

    Science.gov (United States)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  3. Two-dimensional lattice gauge theories with superconducting quantum circuits

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, D., E-mail: david.marcos@me.com [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Widmer, P. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Rico, E. [IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg (France); Hafezi, M. [Joint Quantum Institute, NIST/University of Maryland, College Park 20742 (United States); Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Rabl, P. [Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Wiese, U.-J. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Zoller, P. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2014-12-15

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

  4. Controlling chaos in balanced neural circuits with input spike trains

    Science.gov (United States)

    Engelken, Rainer; Wolf, Fred

    The cerebral cortex can be seen as a system of neural circuits driving each other with spike trains. Here we study how the statistics of these spike trains affects chaos in balanced target circuits.Earlier studies of chaos in balanced neural circuits either used a fixed input [van Vreeswijk, Sompolinsky 1996, Monteforte, Wolf 2010] or white noise [Lajoie et al. 2014]. We study dynamical stability of balanced networks driven by input spike trains with variable statistics. The analytically obtained Jacobian enables us to calculate the complete Lyapunov spectrum. We solved the dynamics in event-based simulations and calculated Lyapunov spectra, entropy production rate and attractor dimension. We vary correlations, irregularity, coupling strength and spike rate of the input and action potential onset rapidness of recurrent neurons.We generally find a suppression of chaos by input spike trains. This is strengthened by bursty and correlated input spike trains and increased action potential onset rapidness. We find a link between response reliability and the Lyapunov spectrum. Our study extends findings in chaotic rate models [Molgedey et al. 1992] to spiking neuron models and opens a novel avenue to study the role of projections in shaping the dynamics of large neural circuits.

  5. Dancing links

    CERN Document Server

    Knuth, Donald E

    2009-01-01

    The author presents two tricks to accelerate depth-first search algorithms for a class of combinatorial puzzle problems, such as tiling a tray by a fixed set of polyominoes. The first trick is to implement each assumption of the search with reversible local operations on doubly linked lists. By this trick, every step of the search affects the data incrementally. The second trick is to add a ghost square that represents the identity of each polyomino. Thus puts the rule that each polyomino be used once on the same footing as the rule that each square be covered once. The coding simplifies to a more abstract form which is equivalent to 0-1 integer programming. More significantly for the total computation time, the search can naturally switch between placing a fixed polyomino or covering a fixed square at different stages, according to a combined heuristic. Finally the author reports excellent performance for his algorithm for some familiar puzzles. These include tiling a hexagon by 19 hexiamonds and the N queen...

  6. Brain-machine interface circuits and systems

    CERN Document Server

    Zjajo, Amir

    2016-01-01

    This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

  7. DC operating points of transistor circuits

    Science.gov (United States)

    Trajkovic, Ljiljana

    Finding a circuit's dc operating points is an essential step in its design and involves solving systems of nonlinear algebraic equations. Of particular research and practical interests are dc analysis and simulation of electronic circuits consisting of bipolar junction and field-effect transistors (BJTs and FETs), which are building blocks of modern electronic circuits. In this paper, we survey main theoretical results related to dc operating points of transistor circuits and discuss numerical methods for their calculation.

  8. An Improved Squaring Circuit for Binary Numbers

    Directory of Open Access Journals (Sweden)

    Kabiraj Sethi

    2012-02-01

    Full Text Available In this paper, a high speed squaring circuit for binary numbers is proposed. High speed Vedic multiplier is used for design of the proposed squaring circuit. The key to our success is that only one Vedic multiplier is used instead of four multipliers reported in the literature. In addition, one squaring circuit is used twice. Our proposed Squaring Circuit seems to have better performance in terms of speed.

  9. Solid-State dc Circuit Breaker

    Science.gov (United States)

    Harvey, P.

    1983-01-01

    Circuit breaker with no moving parts protects direct-current (dc) loads. Current which circuit breaker opens (trip current) is adjustable and so is time delay before breaker trips. Forward voltage drop rises from 0.6 to 1.2 V as current rises to trip point. Breaker has two terminals, like fuse, therefore replaces fuse in dc circuit. Powered by circuit it protects and reset by either turning off power source or disconnecting load.

  10. 49 CFR 236.721 - Circuit, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  11. New Logic Circuit with DC Parametric Excitation

    Science.gov (United States)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  12. An eigenvalue study of the MLC circuit

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.

    1998-01-01

    The MLC (Murali-Lakshmanan-Chua) circuit is the simplest non-autonomous chaotic circuit. Insight in the behaviour of the circuit is obtained by means of a study of the eigenvalues of the linearized Jacobian of the nonlinear differential equations. The trajectories of the eigenvalues as functions...

  13. Controllability/observability analysis of digital circuits

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.H.

    1978-11-01

    The testability of a digital circuit is directy related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. A method for analyzing digital circuits in terms of six functions which characterize combinational and sequential controllability and observability is presented.

  14. Controllability/observability analysis of digital circuits

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.H.

    1979-01-01

    The testability of a digital circuit is directly related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. A method for analyzing digital circuits in terms of six functions which characterize combinational and sequential controllability and observability is presented.

  15. Controllability/observability analysis of digital circuits

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.H.

    1979-09-01

    The testability of a digital circuit is directly related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. A method for analyzing digital circuits in terms of six functions which characterize combinational and sequential controllability and observability is presented.

  16. An Equivalent Circuit for Landau Damping

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1976-01-01

    An equivalent circuit simulating the effect of Landau damping in a stable plasma‐loaded parallel‐plate capacitor is presented. The circuit contains a double infinity of LC components. The transition from stable to unstable plasmas is simulated by the introduction of active elements into the circuit....

  17. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting circuits. 75.1323 Section 75.1323... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made...

  18. 30 CFR 57.6403 - Branch circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 57.6403 Section 57.6403... Blasting-Surface and Underground § 57.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate...

  19. 49 CFR 234.203 - Control circuits.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that...

  20. Nanoelectronic circuit design and test

    Science.gov (United States)

    Simsir, Muzaffer Orkun

    Controlling power consumption in CMOS integrated circuits (ICs) during normal mode of operation is becoming one of the limiting factors to further scaling. In addition, it is a well known fact that during testing of a complex IC, power consumption can far exceed the values reached during its normal operation. High power consumption, combined with limited cooling support, leads to overheating of ICs. This can cause permanent damage to the chip or can invalidate test results due to the fact that extreme temperature variations lead to changes in path delays. Therefore, even good chips can fail the test. For these reasons, thermal problems during test need to be identified to prevent the loss of yield in CMOS ICs. In this thesis, we propose a methodology for thermally characterizing circuits under test. Using this methodology, it is possible to simulate the thermal profiles of the chips during test and prevent possible yield loss because of thermal problems. In addition to the problems associated with power and temperature, a more important barrier is the scaling limitations of the CMOS technology. It has been predicted that in next decade, it will not be possible to scale it further. In the near future, rather than a transition to a completely new technology, extensions to CMOS seem to be more realistic. Double-gate CMOS technology is one of the most promising alternatives that offers a simple extension to CMOS. The transistors of this technology are formed by adding a second gate across the conventional CMOS transistor gate. Designing circuits using this technology has attracted a lot of attention. However, as circuit design methods mature, there is a need to identify how these circuits can be tested. From a circuit testing viewpoint, it is unclear if CMOS fault models are comprehensive enough to model all defects in double-gate CMOS circuits. Therefore, fault models of this technology need to be defined to enable manufacturing-time testing. In this thesis, we

  1. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection....

  2. Delay locked loop integrated circuit.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2007-10-01

    This report gives a description of the development of a Delay Locked Loop (DLL) integrated circuit (IC). The DLL was developed and tested as a stand-alone IC test chip to be integrated into a larger application specific integrated circuit (ASIC), the Quadrature Digital Waveform Synthesizer (QDWS). The purpose of the DLL is to provide a digitally programmable delay to enable synchronization between an internal system clock and external peripherals with unknown clock skew. The DLL was designed and fabricated in the IBM 8RF process, a 0.13 {micro}m CMOS process. It was designed to operate with a 300MHz clock and has been tested up to 500MHz.

  3. Optogenetic Investigation of Arousal Circuits.

    Science.gov (United States)

    Tyree, Susan M; de Lecea, Luis

    2017-08-15

    Modulation between sleep and wake states is controlled by a number of heterogeneous neuron populations. Due to the topological proximity and genetic co-localization of the neurons underlying sleep-wake state modulation optogenetic methods offer a significant improvement in the ability to benefit from both the precision of genetic targeting and millisecond temporal control. Beginning with an overview of the neuron populations mediating arousal, this review outlines the progress that has been made in the investigation of arousal circuits since the incorporation of optogenetic techniques and the first in vivo application of optogenetic stimulation in hypocretin neurons in the lateral hypothalamus. This overview is followed by a discussion of the future progress that can be made by incorporating more recent technological developments into the research of neural circuits.

  4. Relativistic causality and clockless circuits

    CERN Document Server

    Matherat, Philippe; 10.1145/2043643.2043650

    2011-01-01

    Time plays a crucial role in the performance of computing systems. The accurate modelling of logical devices, and of their physical implementations, requires an appropriate representation of time and of all properties that depend on this notion. The need for a proper model, particularly acute in the design of clockless delay-insensitive (DI) circuits, leads one to reconsider the classical descriptions of time and of the resulting order and causal relations satisfied by logical operations. This questioning meets the criticisms of classical spacetime formulated by Einstein when founding relativity theory and is answered by relativistic conceptions of time and causality. Applying this approach to clockless circuits and considering the trace formalism, we rewrite Udding's rules which characterize communications between DI components. We exhibit their intrinsic relation with relativistic causality. For that purpose, we introduce relativistic generalizations of traces, called R-traces, which provide a pertinent des...

  5. Phonon waveguides for electromechanical circuits

    Science.gov (United States)

    Hatanaka, D.; Mahboob, I.; Onomitsu, K.; Yamaguchi, H.

    2014-07-01

    Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.

  6. Handbook of microwave integrated circuits

    Science.gov (United States)

    Hoffmann, Reinmut K.

    The design and operation of ICs for use in the 0.5-20-GHz range are described in an introductory and reference work for industrial engineers. Chapters are devoted to an overview of microwave IC (MIC) technology, general stripline characteristics, microwave transmission line (MTL) parameters for microstrips with isotropic dielectric substrates, higher-order modes on a microstrip, the effects of metallic enclosure on MTL transmission parameters, losses in microstrips, the measurement of MTL parameters, and MTLs on anisotropic dielectric substrates. Consideration is given to coupled microstrips on dielectric substrates, microstrip discontinuities, radiation from microstrip circuits, MTL variations, coplanar MTLs, slotlines, and spurious modes in MTL circuits. Diagrams, drawings, graphs, and a glossary of symbols are provided.

  7. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    This book is based on recent research work conducted by the authors dealing with the design and development of active and passive microwave components, integrated circuits and systems. It is divided into seven parts. In the first part comprising the first two chapters, alternative concepts...... and equations for multiport network analysis and characterization are provided. A thru-only de-embedding technique for accurate on-wafer characterization is introduced. The second part of the book corresponds to the analysis and design of ultra-wideband low-noise amplifiers (LNA). The LNA is the most critical...... as sufficient gain in a wide frequency range of operation, which is very difficult to achieve. Most circuits demonstrated are not stable across the frequency band, which makes these amplifiers prone to self-oscillations and therefore limit their applicability. The trade-off between noise figure, gain, linearity...

  8. Foundations for microstrip circuit design

    CERN Document Server

    Edwards, Terry

    2016-01-01

    Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.

  9. Performance measurements of a data link protocol

    Science.gov (United States)

    Kanakia, Hemant; Tobagi, Fouad

    The end-to-end performance of a program implementing IEEE Std 802.2 logical link control protocol, which provides virtual circuit and datagram service and which constitutes the top sublayer of the data link layer of the reference model for Local Area Networks is studied. The measurements of relative execution times of various functions required in transferring data, over virtual circuits or as datagrams, showed that most of the program execution time is spent in a few relatively low-level functions. One of these functions performs block movement of data in memory, and two other functions provide access to various queues. Based on this result, two alternative versions of the program which move data efficiently were written and measured. In this paper the results of the study are reported and their impact on designing hardware and software systems for a network interface are discussed.

  10. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  11. Counterpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, Emanuel M. (Los Alamos, NM)

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  12. Overpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, Emanuel M. (Los Alamos, NM)

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  13. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  14. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  15. Optimization of Bootstrapping in Circuits

    OpenAIRE

    Benhamouda, Fabrice; Lepoint, Tancrède; Mathieu, Claire; Zhou, Hang

    2016-01-01

    In 2009, Gentry proposed the first Fully Homomorphic Encryption (FHE) scheme, an extremely powerful cryptographic primitive that enables to perform computations, i.e., to evaluate circuits, on encrypted data without decrypting them first. This has many applications, in particular in cloud computing. In all currently known FHE schemes, encryptions are associated to some (non-negative integer) noise level, and at each evaluation of an AND gate, the noise level increases. This is problematic bec...

  16. Coulomb drag in quantum circuits

    OpenAIRE

    Levchenko, Alex; Kamenev, Alex

    2008-01-01

    We study drag effect in a system of two electrically isolated quantum point contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima as a function of QPC gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the non-linear regime the drag current is proportional to the shot noise of the driving circuit,...

  17. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    domain by introducing a computation model, which resembles the synchronous datapath and control architecture, but which is completely asynchronous. The model contains the possibility for isolating some or all of the functional units by locking their respective inputs and outputs while the functional unit....... The datapath and control architecture is then expressed in the Balsa-language, and using syntax directed compilation a corresponding handshake circuit implementation (and eventually a layout) is produced....

  18. CMOS circuit design, layout and simulation

    CERN Document Server

    Baker, R Jacob

    2010-01-01

    The Third Edition of CMOS Circuit Design, Layout, and Simulation continues to cover the practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and much more. Regardless of one's integrated circuit (IC) design skill level, this book allows readers to experience both the theory behind, and the hands-on implementation of, complementary metal oxide semiconductor (CMOS) IC design via detailed derivations, discussions, and hundreds of design, layout, and simulation examples.

  19. Self arbitrated VLSI asynchronous sequential circuits

    Science.gov (United States)

    Whitaker, S.; Maki, G.

    1990-01-01

    A new class of asynchronous sequential circuits is introduced in this paper. The new design procedures are oriented towards producing asynchronous sequential circuits that are implemented with CMOS VLSI and take advantage of pass transistor technology. The first design algorithm utilizes a standard Single Transition Time (STT) state assignment. The second method introduces a new class of self synchronizing asynchronous circuits which eliminates the need for critical race free state assignments. These circuits arbitrate the transition path action by forcing the circuit to sequence through proper unstable states. These methods result in near minimum hardware since only the transition paths associated with state variable changes need to be implemented with pass transistor networks.

  20. Design of analog circuits through symbolic analysis

    CERN Document Server

    Fakhfakh, Mourad; V Fernández, Francisco

    2012-01-01

    Symbolic analyzers have the potential to offer knowledge to sophomores as well as practitioners of analog circuit design. Actually, they are an essential complement to numerical simulators, since they provide insight into circuit behavior which numerical analyzers do not provide. Symbolic analysis of electronic circuits addresses the generation of symbolic expressions for the parameters that describe the performance of linear and nonlinear circuits in three domains: DC, AC and time; some or all the circuit parameters can be kept as symbols. Due to the fact that these expressions remain va