WorldWideScience

Sample records for fed-batch continuous stirred

  1. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  2. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John M.

    2015-01-01

    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  3. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    OpenAIRE

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-01-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with th...

  4. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun

    2011-01-01

    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  5. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.

    Science.gov (United States)

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn

    2017-04-01

    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics

  6. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process.

    Science.gov (United States)

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-07-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42(o)C, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  7. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    Directory of Open Access Journals (Sweden)

    Ranjan Singh

    2012-09-01

    Full Text Available Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  8. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase

    Science.gov (United States)

    2014-01-01

    Background In Pichia pastoris bioprocess engineering, classic approaches for clone selection and bioprocess optimization at small/micro scale using the promoter of the alcohol oxidase 1 gene (PAOX1), induced by methanol, present low reproducibility leading to high time and resource consumption. Results An automated microfermentation platform (RoboLector) was successfully tested to overcome the chronic problems of clone selection and optimization of fed-batch strategies. Different clones from Mut+P. pastoris phenotype strains expressing heterologous Rhizopus oryzae lipase (ROL), including a subset also overexpressing the transcription factor HAC1, were tested to select the most promising clones. The RoboLector showed high performance for the selection and optimization of cultivation media with minimal cost and time. Syn6 medium was better than conventional YNB medium in terms of production of heterologous protein. The RoboLector microbioreactor was also tested for different fed-batch strategies with three clones producing different lipase levels. Two mixed substrates fed-batch strategies were evaluated. The first strategy was the enzymatic release of glucose from a soluble glucose polymer by a glucosidase, and methanol addition every 24 hours. The second strategy used glycerol as co-substrate jointly with methanol at two different feeding rates. The implementation of these simple fed-batch strategies increased the levels of lipolytic activity 80-fold compared to classical batch strategies used in clone selection. Thus, these strategies minimize the risk of errors in the clone selection and increase the detection level of the desired product. Finally, the performance of two fed-batch strategies was compared for lipase production between the RoboLector microbioreactor and 5 liter stirred tank bioreactor for three selected clones. In both scales, the same clone ranking was achieved. Conclusion The RoboLector showed excellent performance in clone selection of P

  9. Control of continuous fed-batch fermentation process using neural network based model predictive controller.

    Science.gov (United States)

    Kiran, A Uma Maheshwar; Jana, Asim Kumar

    2009-10-01

    Cell growth and metabolite production greatly depend on the feeding of the nutrients in fed-batch fermentations. A strategy for controlling the glucose feed rate in fed-batch baker's yeast fermentation and a novel controller was studied. The difference between the specific carbon dioxide evolution rate and oxygen uptake rate (Qc - Qo) was used as controller variable. The controller evaluated was neural network based model predictive controller and optimizer. The performance of the controller was evaluated by the set point tracking. Results showed good performance of the controller.

  10. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam.

    Science.gov (United States)

    Yu, Bin; Zhang, Xin; Sun, Wenjun; Xi, Xun; Zhao, Nan; Huang, Zichun; Ying, Zhuojun; Liu, Li; Liu, Dong; Niu, Huanqing; Wu, Jinglan; Zhuang, Wei; Zhu, Chenjie; Chen, Yong; Ying, Hanjie

    2018-03-24

    The efficiency of current methods for industrial production of citric acid is limited. To achieve continuous citric acid production with enhanced yield and reduced cost, immobilized fermentation was employed in an Aspergillus niger 831 repeated fed-batch fermentation system. We developed a new type of material (PAF201), which was used as a carrier for the novel adsorption immobilization system. Hydrophobicity, pore size and concentration of carriers were researched in A. niger immobilization. The efficiency of the A. niger immobilization process was analyzed by scanning electron microscopy. Then eight-cycle repeated fed-batch cultures for citric acid production were carried out over 600 h, which showed stable production with maximum citric acid concentrations and productivity levels of 162.7 g/L and 2.26 g L -1  h -1 , respectively. Compared with some other literatures about citric acid yield, PAF201 immobilization system is 11.3% higher than previous results. These results indicated that use of the new adsorption immobilization system could greatly improve citric acid productivity in repeated fed-batch fermentation. Moreover, these results could provide a guideline for A.niger or other filamentous fungi immobilization in industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Comparative study of production of Bio-Indigo by Pandoraea sp. in a two phase - fed batch and continuous bioreactor

    Directory of Open Access Journals (Sweden)

    Vaishnavi Unde

    2016-03-01

    Full Text Available Indigo, is blue of blue jeans, a synthetic dye used on large scale all over the world. Chemical production of the dye is taking a new route towards bacterial production to overcome the environmental effects that are posed by the synthetic blue powder (Indigo. In the present work a strain Pandoraea sp. isolated from the oil contaminated soil is found to produce blue pigment which is analyzed qualitatively as indigo using UV-visible scan and Thin Layer Chromatography (TLC. The strain is used for indigo production at lab scale in two different bioreactor configurations first the fed batch mode and second continuous mode using two phases. The two phases consisting of medium carrying biomass and the second phase of silicone oil carrying substrate indole. The use of second phase allows higher concentration of substrate injection reducing the inhibition effects of the substrate as well as act as a partitioning agent for removal of the product. In two phase study, the maximum indigo produced was seen to be 0.068 g/L after 22 hours of substrate injection into the Fermentor in a fed batch mode. The maximum yield obtained in this configuration was 19%. For commercial production of bio-indigo a continuous operation is required, which was studied in a bioreactor with 2.5 liter capacity under the optimized conditions. The maximum indigo produced was found to be 0.052 g/L after about 72 hours of operation. The results showed decrease in the production of indigo in continuous mode as compared to fed batch operation, which may be due to the insufficient time available for the bacteria to bio-transform indole into indigo.

  12. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 ω) was the same as the summed power (2.13 mW, 50 ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors. © 2013 Elsevier B.V. All rights reserved.

  13. Scale effect of anaerobic digestion tests in fed-batch and semi-continuous mode for the technical and economic feasibility of a full scale digester.

    Science.gov (United States)

    Ruffino, Barbara; Fiore, Silvia; Roati, Chiara; Campo, Giuseppe; Novarino, Daniel; Zanetti, Mariachiara

    2015-04-01

    Methane production capacity in mesophilic conditions of waste from two food industry plants was assessed in a semi-pilot (6L, fed-batch) and pilot (300 L, semi-continuous) scale. This was carried out in order to evaluate the convenience of producing heat and electricity in a full scale anaerobic digester. The pilot test was performed in order to obtain more reliable results for the design of the digester. Methane yield, returned from the pilot scale test, was approximately 80% of that from the smaller scale test. This outcome was in line with those from other studies performed in different scales and modes and indicates the success of the pilot scale test. The net electricity produced from the digester accounted for 30-50% of the food industry plants' consumption. The available thermal energy could cover from 10% to 100% of the plant requirements, depending on the energy demand of the processes performed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Amillastre, Emilie; Aceves-Lara, César-Arturo; Uribelarrea, Jean-Louis; Alfenore, Sandrine; Guillouet, Stéphane E

    2012-08-01

    The impact of the temperature on an industrial yeast strain was investigated in very high ethanol performance fermentation fed-batch process within the range of 30-47 °C. As previously observed with a lab strain, decoupling between growth and glycerol formation occurred at temperature of 36 °C and higher. A dynamic model was proposed to describe the impact of the temperature on the total and viable biomass, ethanol and glycerol production. The model validation was implemented with experimental data sets from independent cultures under different temperatures, temperature variation profiles and cultivation modes. The proposed model fitted accurately the dynamic evolutions for products and biomass concentrations over a wide range of temperature profiles. R2 values were above 0.96 for ethanol and glycerol in most experiments. The best results were obtained at 37 °C in fed-batch and chemostat cultures. This dynamic model could be further used for optimizing and monitoring the ethanol fermentation at larger scale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli.

    Science.gov (United States)

    Schmideder, Andreas; Cremer, Johannes H; Weuster-Botz, Dirk

    2016-11-01

    In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L -1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016. © 2016 American Institute of Chemical Engineers.

  16. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop a mo...

  17. Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process

    Directory of Open Access Journals (Sweden)

    Danilo Gomes Moriel

    2005-05-01

    Full Text Available The effect of feeding methods on the production of astaxanthin by the yeast Phaffia rhodozyma ATCC 24202 was studied, using continuous and pulsed fed-batch processes and low cost materials as substrates (sugar cane juice and urea. In continuous fed-batch processes, a cellular astaxanthin concentration of 383.73 µg/g biomass was obtained. But in pulsed fed-batch processes a reduction in the cellular astaxanthin concentration (303.34 µg/g biomass was observed. Thus the continuous fed-batch processes could be an alternative to industrial production of astaxanthin, allowing an increase in the biomass productivity without losses on astaxanthin production by the yeast.O efeito da alimentação na produção de astaxantina pela levedura Phaffia rhodozyma ATCC 24202 foi estudado, utilizando processos descontínuo alimentado com alimentação contínua e intermitente, e matérias-primas de baixo custo como substratos (caldo de cana de açúcar e uréia. Em processos descontínuo alimentado com alimentação contínua, uma concentração celular de astaxantina de 383,73 µg/g biomassa foi obtida. Entretanto, em processos descontínuo alimentado com alimentação intermitente, uma redução na concentração celular de astaxantina (303,34 µg/g biomassa foi observada. Desta forma, processos descontínuo alimentado com alimentação contínua poderiam ser uma alternativa na produção industrial de astaxantina, permitindo um aumento na produtividade de biomassa sem perdas na produção de astaxantina pela levedura.

  18. THE EFFECT OF THE ADDITION OF INVERT SUGAR ON THE PRODUCTION OF CEPHALOSPORIN C IN A FED-BATCH BIOREACTOR

    Directory of Open Access Journals (Sweden)

    A.S. Silva

    1998-12-01

    Full Text Available Cephalosporin C, a b -lactam antibiotic, is the starting molecule for industrial production of semi-synthetic cephalosporins. The bioprocess for its production is carried out in batch stirred and aerated tank reactors utilizing strains of the filamentous fungus Cephalosporium acremonium. In this work a comparison was made between the processes of production of cephalosporin C in a conventional batch bioreactor, with synthetic medium containing glucose and sucrose, and in a fed-batch reactor at several flowrates of supplementary medium containing invert sucrose. In general, the fed-batch process was shown to be more efficient than the conventional batch one, and the process in which the lowest supplementation flowrate was used presented an antibiotic production significantly higher than those obtained under the other conditions.

  19. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...

  20. Degradation of chlorophenol mixtures in a fed-batch system by two ...

    African Journals Online (AJOL)

    Degradation of chlorophenol mixtures in a fed-batch system by two soil bacteria. ... This work was undertaken to investigate the effect of variations of the feed rate on a fed-batch set-up used to degrade xenobiotics. ... Keywords: Chlorophenol; fed batch system; aerobic degradation; waste treatment; microbial biocatalysis ...

  1. Fed-batch production of tetanus toxin by Clostridium tetani.

    Science.gov (United States)

    Fratelli, Fernando; Siquini, Tatiana Joly; de Abreu, Marcelo Estima; Higashi, Hisako Gondo; Converti, Attilio; de Carvalho, João Carlos Monteiro

    2010-01-01

    This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed-batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ(0)) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50-60 L(f)/mL) for NZ(0) > or = 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield ( approximately 60 L(f)/mL) about 33% higher than those of fed-batch runs with addition at fixed concentration ( approximately 45 L(f)/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification.

  2. Kinetics and Product Selectivity (Yield) of Second Order Competitive Consecutive Reactions in Fed-Batch Reactor and Plug Flow Reactor

    OpenAIRE

    Selvamony, Subash Chandra Bose

    2013-01-01

    This literature compares the performance of second order competitive consecutive reaction in Fed-Batch Reactor with that in continuous Plug Flow Reactor. In a kinetic sense, this simulation study aims to develop a case for continuous Plug Flow Reactor in pharmaceutical, fine chemical, and related other chemical industries. MATLAB is used to find solutions for the differential equations. The simulation results show that, for certain cases of nonelementary scenario, product selectivity is highe...

  3. Fed-Batch Control and Visualization of Monomer Sequences of Individual ICAR ATRP Gradient Copolymer Chains

    Directory of Open Access Journals (Sweden)

    Dagmar R. D'hooge

    2014-04-01

    Full Text Available Based on kinetic Monte Carlo simulations of the monomer sequences of a representative number of copolymer chains (≈ 150,000, optimal synthesis procedures for linear gradient copolymers are proposed, using bulk Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP. Methyl methacrylate and n-butyl acrylate are considered as comonomers with CuBr2/PMDETA (N,N,N′,N′′,N′′-pentamethyldiethylenetriamine as deactivator at 80 °C. The linear gradient quality is determined in silico using the recently introduced gradient deviation ( polymer property. Careful selection or fed-batch addition of the conventional radical initiator I2 allows a reduction of the polymerization time with ca. a factor 2 compared to the corresponding batch case, while preserving control over polymer properties ( ≈ 0.30; dispersity ≈ 1.1. Fed-batch addition of not only I2, but also comonomer and deactivator (50 ppm under starved conditions yields a below 0.25 and, hence, an excellent linear gradient quality for the dormant polymer molecules, albeit at the expense of an increase of the overall polymerization time. The excellent control is confirmed by the visualization of the monomer sequences of ca. 1000 copolymer chains.

  4. MASS PRODUCTION OF THE BENEFICIAL NEMATODE STEINERNEMA CARPOCAPSAE UTILIZING A FED-BATCH CULTURING PROCESS

    OpenAIRE

    Leonard D. Holmes; Floyd L. Inman III; Sivanadane Mandjiny; Rinu Kooliyottil; Devang Upadhyay

    2013-01-01

    The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process s...

  5. Implementation of Sliding Mode Controller with Boundary Layer for Saccharomyces cerevisiae Fed-batch Cultivation

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2005-04-01

    Full Text Available An implementation of sliding mode control for yeast fed-batch cultivation is presented in this paper. Developed controller has been implemented on two real fed-batch cultivations of Saccharomyces cerevisiae. The controller successfully stabilizes the process and shows a very good performance at high input disturbances.

  6. Optimization of a fed-batch fermentation process for production of ...

    African Journals Online (AJOL)

    Due to the substrate inhibition that takes place at high levels of carbon source, fed-batch fermentation was proposed as a better alternative for BLM production. The combined effects of batch and fed-batch fermentation and various pH profiles on BLM production in a bioreactor were evaluated. The tested pH profiles included ...

  7. Xylitol production by Candida parapsilosis under fed-batch culture

    Directory of Open Access Journals (Sweden)

    Sandra A. Furlan

    2001-06-01

    Full Text Available Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose or mixed (xylose and glucose sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch cultivation.A produção de xylitol por Candida parapsilosis foi investigada em regime de batelada alimentada, usando substratos açucarados de composição simples (xilose ou composta (xilose e glicose. A presença de glicose no meio induziu a formação de etanol como metabólito secundário. A suplementação fracionada do meio de alimentação numa concentração fixa de açúcar não resultou em aumento da produtividade em relação àquela alcançada em batelada simples.

  8. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors....

  9. Adaptive Controller Design for Continuous Stirred Tank Reactor

    OpenAIRE

    K. Prabhu; V. Murali Bhaskaran

    2014-01-01

    Continues Stirred Tank Reactor (CSTR) is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of C...

  10. Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities.

    Science.gov (United States)

    Cruz Bournazou, M N; Barz, T; Nickel, D B; Lopez Cárdenas, D C; Glauche, F; Knepper, A; Neubauer, P

    2017-03-01

    We present an integrated framework for the online optimal experimental re-design applied to parallel nonlinear dynamic processes that aims to precisely estimate the parameter set of macro kinetic growth models with minimal experimental effort. This provides a systematic solution for rapid validation of a specific model to new strains, mutants, or products. In biosciences, this is especially important as model identification is a long and laborious process which is continuing to limit the use of mathematical modeling in this field. The strength of this approach is demonstrated by fitting a macro-kinetic differential equation model for Escherichia coli fed-batch processes after 6 h of cultivation. The system includes two fully-automated liquid handling robots; one containing eight mini-bioreactors and another used for automated at-line analyses, which allows for the immediate use of the available data in the modeling environment. As a result, the experiment can be continually re-designed while the cultivations are running using the information generated by periodical parameter estimations. The advantages of an online re-computation of the optimal experiment are proven by a 50-fold lower average coefficient of variation on the parameter estimates compared to the sequential method (4.83% instead of 235.86%). The success obtained in such a complex system is a further step towards a more efficient computer aided bioprocess development. Biotechnol. Bioeng. 2017;114: 610-619. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. A cubic autocatalytic reaction in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang Malaysia (Malaysia)

    2015-10-22

    In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.

  12. Ethanol effect on batch and fed-batch Arthrospira platensis growth.

    Science.gov (United States)

    Bezerra, Raquel P; Matsudo, Marcelo C; Pérez Mora, Lina S; Sato, Sunao; de Carvalho, João C Monteiro

    2014-04-01

    The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L(-1) days(-1) reached the maximum cell concentration of 2,393 ± 241 mg L(-1), about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.

  13. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2006-09-01

    Full Text Available Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the substrate concentration as well as product concentration in the culture medium. Based on the batch mathematical model, a fed-batch model was developed and simulations were done. Simulation study in fed-batch reactor resulted that substrate concentration should be controlled at 20 g L-1 to soften the product inhibition and also to stimulate utilization of substrate and its hydrolysate. From simulation results of different feeding techniques, it was found that constant feeding at 0.01 L h-1 was most practically effective feeding profile for exopolysaccharides production in fed-batch mode.

  14. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani

    2011-01-01

    as pareto optimal solutions. These solutions gives flexibility in evaluating the trade-offs and selecting the most suitable operating policy. Here, ε-constraint approach was used to generate the pareto solutions for two objectives: product concentration and product per unit cost of media, for batch and fed...... batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g......$-1) for fed batch operations. One pareto solution each for batch and for fed batch mode was experimentally validated....

  15. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures.

    Science.gov (United States)

    Hiller, Gregory W; Ovalle, Ana Maria; Gagnon, Matthew P; Curran, Meredith L; Wang, Wenge

    2017-07-01

    A simple method originally designed to control lactate accumulation in fed-batch cultures of Chinese Hamster Ovary (CHO) cells has been modified and extended to allow cells in culture to control their own rate of perfusion to precisely deliver nutritional requirements. The method allows for very fast expansion of cells to high density while using a minimal volume of concentrated perfusion medium. When the short-duration cell-controlled perfusion is performed in the production bioreactor and is immediately followed by a conventional fed-batch culture using highly concentrated feeds, the overall productivity of the culture is approximately doubled when compared with a highly optimized state-of-the-art fed-batch process. The technology was applied with near uniform success to five CHO cell processes producing five different humanized monoclonal antibodies. The increases in productivity were due to the increases in sustained viable cell densities. Biotechnol. Bioeng. 2017;114: 1438-1447. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  17. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L.

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  18. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  19. Shear rate analysis of water dynamic in the continuous stirred tank

    Science.gov (United States)

    Tulus; Mardiningsih; Sawaluddin; Sitompul, O. S.; Ihsan, A. K. A. M.

    2018-02-01

    Analysis of mixture in a continuous stirred tank reactor (CSTR) is an important part in some process of biogas production. This paper is a preliminary study of fluid dynamic phenomenon in a continuous stirred tank numerically. The tank is designed in the form of cylindrical tank equipped with a stirrer. In this study, it is considered that the tank is filled with water. Stirring is done with a stirring speed of 10rpm, 15rpm, 20rpm, and 25rpm. Mathematical modeling of stirred tank is derived. The model is calculated by using the finite element method that are calculated using CFD software. The result shows that the shear rate is high on the front end portion of the stirrer. The maximum shear rate tend to a stable behaviour after the stirring time of 2 second. The relation between the speed and the maximum shear rate is in the form of linear equation.

  20. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Sin, Gürkan

    2017-01-01

    A majority of industrial fermentation processes are operated in fed-batch mode. In this case, the rate of feed addition to the system is a focus for optimising the process operation, as it directly impacts metabolic activity, as well as directly affecting the volume dynamics in the system...

  1. Fed-batch CHO cell culture for lab-scale antibody production

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam

    2017-01-01

    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech...

  2. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Zhu, Y.; Rinzema, A.; Tramper, J.; Bruin, E. de; Bol, J.

    1998-01-01

    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation.

  3. Optimization of fed-batch fermentation for a staphylokinase-hirudin ...

    African Journals Online (AJOL)

    Then we replace the R-medium with the complex medium which contains yeast extract and tryptone in fed-batch fermentation based on the GMYT as feeding medium. The results showed that the total protein and STH in the complex medium were 6.29 and 7.76 fold of those in R-medium culturing condition, respectively.

  4. Optimal Feeding Trajectories Design for E. coli Fed-batch Fermentations

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2010-08-01

    Full Text Available In this paper optimal control algorithms for two E. coli fed-batch fermentations are developed. Fed-batch fermentation processes of E. coli strain MC4110 and E. coli strain BL21(DE3pPhyt109 are considered. Simple material balance models are used to describe the E. coli fermentation processes. The optimal feed rate control of a primary metabolite process is studied and a biomass production is used as an example. The optimization of the considered fed-batch fermentation processes is done using the calculus of variations to determine the optimal feed rate profiles. The problem is formulated as a free final time problem where the control objective is to maximize biomass at the end of the process. The obtained optimal feed rate profiles consist of sequences of maximum and minimum feed rates. The resulting profiles are used for optimization of the E. coli fed-batch fermentations. Presented simulations show a good efficiency of the developed optimal feed rate profiles.

  5. Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control.

    Science.gov (United States)

    Bäcklund, Emma; Markland, Katrin; Larsson, Gen

    2008-01-01

    A set of mutations in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was used to create Escherichia coli strains with a reduced uptake rate of glucose. This allows a growth restriction, which is controlled on cellular rather than reactor level, which is typical of the fed-batch cultivation concept. Batch growth of the engineered strains resulted in cell accumulation profiles corresponding to a growth rate of 0.78, 0.38 and 0.25 h(-1), respectively. The performance of the mutants in batch cultivation was compared to fed-batch cultivation of the wild type cell using restricted glucose feed to arrive at the corresponding growth profiles. Results show that the acetate production, oxygen consumption and product formation were similar, when a recombinant product was induced from the lacUV5 promoter. Ten times more cells could be produced in batch cultivation using the mutants without the growth detrimental production of acetic acid. This allows high cell density production without the establishment of elaborate fed-batch control equipment. The technique is suggested as a versatile tool in high throughput multiparallel protein production but also for increasing the number of experiments performed during process development while keeping conditions similar to the large-scale fed-batch performance.

  6. Selection of chemically defined media for CHO cell fed-batch culture processes

    NARCIS (Netherlands)

    Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R.H.; Martens, D.E.

    2017-01-01

    Two CHO cell clones derived from the same parental CHOBC cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures.
    Higher

  7. Optimization of fed-batch fermentation for a staphylokinase-hirudin ...

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... In this study, the fed-batch fermentation technique was applied to improve the yield of STH, a chimeric protein composed ... Under optimal conditions (GMYT and complex medium), a final STH expression of 1.48 g/l fermentation broth was ... STH production contained the following materials (per L): Sucrose.

  8. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Rinzema, A; Tramper, J; de Bruin, E; Bol, J

    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation.

  9. High-cell-density fed-batch culture of Saccharomyces cerevisiae KV-25 using molasses and corn steep liquor.

    Science.gov (United States)

    Vu, Van Hanh; Kim, Keun

    2009-12-01

    High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.

  10. Production of Medium Chain Length Polyhydroxyalkanoates From Oleic Acid Using Pseudomonas putida PGA1 by Fed Batch Culture

    Directory of Open Access Journals (Sweden)

    Sidik Marsudi

    2010-10-01

    Full Text Available Bacterial polyhydroxyalkanoates (PHAs are a class of p0lymers currently receiving much attention because of their potential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAs including Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl producers using fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 by continuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs also accumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until the nitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and roductivity were 30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.

  11. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  12. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process.

    Science.gov (United States)

    Jin, Huaiping; Chen, Xiangguang; Yang, Jianwen; Wu, Lei; Wang, Li

    2014-11-01

    The lack of accurate process models and reliable online sensors for substrate measurements poses significant challenges for controlling substrate feeding accurately, automatically and optimally in fed-batch fermentation industries. It is still a common practice to regulate the feeding rate based upon manual operations. To address this issue, a hybrid intelligent control method is proposed to enable automatic substrate feeding. The resulting control system consists of three modules: a presetting module for providing initial set-points; a predictive module for estimating substrate concentration online based on a new time interval-varying soft sensing algorithm; and a feedback compensator using expert rules. The effectiveness of the proposed approach is demonstrated through its successful applications to the industrial fed-batch chlortetracycline fermentation process. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. SIMULATION INVESTIGATIONS TOWARDS THE DEVELOPMENT OF A BACTERIAL BIOPESTICIDE FED-BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    Cunha C.C.F. da

    1998-01-01

    Full Text Available In this work, the growth of Bacillus thuringiensis var. israelensis, a bioinsecticide producer, is investigated. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. The fed-batch mode allows more flexibility in the control of the substrate concentration in the culture medium. Different techniques, such as constant feeding, "bang-bang" control and model based control (exponential feeding and singular control, were compared. For the techniques based on a model, combinations of models with and without a substrate inhibition parameter were used to represent the simulated process and the internal model of the feeding controller. Singular control based on the model with an inhibition parameter proved to be the most robust controller.

  14. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albaek, Mads O.

    2017-01-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved...... in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen...... limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes...

  15. Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey

    Directory of Open Access Journals (Sweden)

    R. Rech

    2006-12-01

    Full Text Available Saccharomyces cerevisiae strain W303 was transformed with two yeast integrative plasmids containing Kluyveromyces lactis LAC4 and LAC12 genes that codify beta-galactosidase and lactose permease respectively. The BLR030 recombinant strain was selected due to its growth and beta-galactosidase production capacity. Different culture media based on deproteinized cheese whey (DCW were tested and the best composition (containing DCW, supplemented with yeast extract 1 %, and peptone 3 % (w/v was chosen for bioreactor experiments. Batch, and fed-batch cultures with linear ascending feeding for 25 (FB25, 35 (FB35, and 50 (FB50 hours, were performed. FB35 and FB50 produced the highest beta-galactosidase specific activities (around 1,800 U/g cells, and also the best productivities (180 U/L.h. Results show the potential use of fed-batch cultures of recombinant S. cerevisiae on industrial applications using supplemented whey as substrate.

  16. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  17. Modelling of Fed-batch Fermentation Process with Droppings for L-lysine Production

    Directory of Open Access Journals (Sweden)

    Velitchka Ivanova

    2006-04-01

    Full Text Available The aim of the article is the development of dynamic unstructured model of L-lysine fed-batch fermentation process with droppings. This approach includes the following procedures: description of the process by generalized stoichiometric equations; preliminary data processing; identification of the specific rates (growth rate (mu , substrate utilization rate (nu, production rate (rho; establishment and optimization of the dynamic model of the process; simulation researches.

  18. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.

    Science.gov (United States)

    Yang, William C; Lu, Jiuyi; Kwiatkowski, Chris; Yuan, Hang; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2014-01-01

    Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N-1 duration, reaching >40 × 10(6) vc/mL at the end of the perfusion N-1 stage. The cultures were subsequently split into high-seed (10 × 10(6) vc/mL) fed-batch production cultures. This strategy significantly shortened the culture duration. The high-seed fed-batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low-seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N-1 and high-seed fed-batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low-seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers.

  19. Application of heat compensation calorimetry to an E. coli fed-batch process.

    Science.gov (United States)

    Müller, Matthias; Meusel, Wolfram; Husemann, Ute; Greller, Gerhard; Kraume, Matthias

    2018-01-20

    The application of biocalorimetry to fermentation processes offers advantageous insights, while being less complex compared to other, sophisticated PAT solutions. Although the general concept is established, calorimetric methods vary in detail. In this work, a special approach, called heat compensation calorimetry, was applied to an E. coli fed-batch process. Much work has been done for batch processes, proving the validity and accuracy of this calorimetric mode. However, the adaption of this strategy to fed-batch processes has some implications. In the first section of this work, batch fermentations were performed, comparing heat capacity calorimetry to the compensation mode. Both processes showed very good agreement by means of growth behavior. The heat related differences, e.g. temperature profiles, were obvious. In addition, the impact of the chosen mode on the calculation of in-process heat transfer coefficients was shown. Finally, a fed-batch fermentation was performed. The compensation mode was kept sufficiently, up to the point where the metabolic heat production accelerated strongly. Controller tuning was a neuralgic point, which would have needed further optimization under these conditions. Nevertheless, in the present work it was possible to realize a working compensation process while demonstrating critical aspects that must be considered when establishing such approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Increasing the production of desulfurizing biocatalysts by means of fed - batch culture

    International Nuclear Information System (INIS)

    Berdugo, C I; Mena, J A; Acero, J R; Mogollon, L

    2001-01-01

    Over the past years, environmental regulations have driven a lot of effort for the development of new technologies for the upgrading of fossil fuels. Biotechnology offers an alternative way to process fossil fuels by means of a biodesulfurization technology where the production of the biocatalyst is one of the key topics. Traditionally, the production is carried out in batch culture where the maximum cellular concentration is restricted by inherent limitations of the culture type and the microorganism growth rate. This work addresses the production of two desulfurizing microorganisms: Rhodococcus erythropolis IGTS8 and gordona rubropertinctus ICP172 using fed-batch culture. Fed-batch cultures were conducted in a 12 L fermentor using ICP 4 medium containing glucose and DMSO as carbon and sulfur sources. As a result, cell concentration was increased 1.5 and 3 times with fed-batch cultures using constant and exponential flow respectively, achieving a maximum cell concentration of 7.3 g DCW/L of biocatalyst igts8 and 12.85 gGDCW/L of the new biocatalyst ICP172. Both biocatalysts presented biodesulfurization activity in a spiked matrix DBT/HXD and in diesel matrix with the detection of 2-HBP which is the end-product of DBT degradation pathway

  1. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    Science.gov (United States)

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A high-throughput media design approach for high performance mammalian fed-batch cultures.

    Science.gov (United States)

    Rouiller, Yolande; Périlleux, Arnaud; Collet, Natacha; Jordan, Martin; Stettler, Matthieu; Broly, Hervé

    2013-01-01

    An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame.

  3. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    Science.gov (United States)

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  4. An Advisory System for On-line Control of Fed-batch Cultivation of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ljakova K.

    2008-12-01

    Full Text Available Free software for entering and documenting data EpiData is here used for design of an advisory system for on-line control of a fermentation process. Based on the preliminary developed system for functional state recognition, presented here system will advise the user which new functional state can be reached and what kind of control actions have to be taken. New-designed system appears as an expert system and comprises knowledge of well-trained operators of cultivation processes. Developed advisory system is further applied for a fed-batch cultivation of Saccharomyces cerevisiae.

  5. Optimal Control of a Fed-Batch Fermentation Involving Multiple Feeds

    Directory of Open Access Journals (Sweden)

    Chongyang Liu

    2012-01-01

    Full Text Available A nonlinear dynamical system, in which the feed rates of glycerol and alkali are taken as the control functions, is first proposed to formulate the fed-batch culture of 1,3-propanediol (1,3-PD production. To maximize the 1,3-PD concentration at the terminal time, a constrained optimal control model is then presented. A solution approach is developed to seek the optimal feed rates based on control vector parametrization method and improved differential evolution algorithm. The proposed methodology yielded an increase by 32.17% of 1,3-PD concentration at the terminal time.

  6. Change in hyphal morphology of Aspergillus Oryzae during fed-batch cultivation

    DEFF Research Database (Denmark)

    Haack, Martin Brian; Olsson, Lisbeth; Hansen, K

    2006-01-01

    the batch phase from 2.8-2.9 up to 4.0-4.4 mu m. The diameter of the hyphal elements remained constant, around 4 mu m, after the feed was started. However, the diameter of the immediate hyphal tip, where the enzyme secretion is thought to take place, increased dramatically with up to a factor 2.5 during......Industrial enzymes are often produced by filamentous fungi in fed-batch cultivations. During cultivation, the different morphological forms displayed by the fungi have an impact on the overall production. The morphology of a recombinant lipase producing Aspergillus oryzae strain was investigated...

  7. Estimation of the Maximum Theoretical Productivity of Fed-Batch Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Bomble, Yannick J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); St. John, Peter C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    A key step towards the development of an integrated biorefinery is the screening of economically viable processes, which depends sharply on the yields and productivities that can be achieved by an engineered microorganism. In this study, we extend an earlier method which used dynamic optimization to find the maximum theoretical productivity of batch cultures to explicitly include fed-batch bioreactors. In addition to optimizing the intracellular distribution of metabolites between cell growth and product formation, we calculate the optimal control trajectory of feed rate versus time. We further analyze how sensitive the productivity is to substrate uptake and growth parameters.

  8. Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations

    DEFF Research Database (Denmark)

    Ödman, Peter; Johansen, C.L.; Olsson, L.

    2010-01-01

    of biomass and substrate (casamino acids) concentrations, respectively. The effect of combination of fluorescence and gas analyzer data as well as of different variable selection methods was investigated. Improved prediction models were obtained by combination of data from the two sensors and by variable......Fed-batch cultivations of Streptomyces coelicolor, producing the antibiotic actinorhodin, were monitored online by multiwavelength fluorescence spectroscopy and off-gas analysis. Partial least squares (PLS), locally weighted regression, and multilinear PLS (N-PLS) models were built for prediction...

  9. Fed-batch production of vanillin by Bacillus aryabhattai BA03.

    Science.gov (United States)

    Paz, Alicia; Outeiriño, David; Pinheiro de Souza Oliveira, Ricardo; Domínguez, José Manuel

    2018-01-25

    Bacillus aryabhattai BA03, a strain isolated in our laboratory, has interesting properties related to the production of natural aromas and flavors. Specifically, we have found that it was able to produce vanillin from ferulic acid (FA). Furthermore, this strain produces high amounts of 4-vinylguaiacol in only 14h, this being the only intermediate metabolite observed in the process. FA is an inexpensive feedstock for the production of natural value-added compounds when extracted from lignocellulosic wastes. In this study, we optimized the operational conditions (temperature, pH and agitation), medium composition and bioconversion technology (batch or fed-batch) to produce vanillin. In a fed-batch process conducted with just one additional supplementation after 24h, the maximal concentration of vanillin (147.1±0.9mg/L) was observed after 216h (Q V =0.681mg/Lh; Y V/fFA =0.082mg/mg) after degrading 90.3% FA. In view of our data, we postulate that Bacillus aryabhattai BA03 carries out a decarboxylation of ferulic acid as a metabolic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Application of different feeding strategies in fed batch culture for pullulanase production using sago starch.

    Science.gov (United States)

    R, Shankar; M S, Madihah; E M, Shaza; K O, Nur Aswati; A A, Suraini; K, Kamarulzaman

    2014-02-15

    The production of pullulanase by Bacillus flavothermus KWF-1 in batch and fed batch culture were compared using 2L bioreactor. In batch culture, 0.0803 U/mL of pullulanase activity with specific activity of 0.0213 U/mg was produced by controlling the agitation speed and temperature at 200 rpm and 50 °C, respectively. Fed batch production was studied by feeding the culture with different sago starch concentrations in various feeding modes for enhanced pullulanase production. Exponential feeding mode at dilution rate of 0.01/h was the preeminent strategy for enhanced pullulanase production of 0.1710 U/mL with specific activity of 0.066 U/mg. It had shown an increment of pullulanase production and specific activity by 2.1 and 3.1-fold, respectively when compared to batch culture. Increment of pullulanase activity in exponential feeding mode improved hydrolyzation of sago starch into maltotriose and panose by 4.5 and 2.5-fold respectively compared to batch system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Decrease of UPR- and ERAD-related proteins in Pichia pastoris during methanol-induced secretory insulin precursor production in controlled fed-batch cultures.

    Science.gov (United States)

    Vanz, Ana Letícia; Nimtz, Manfred; Rinas, Ursula

    2014-02-13

    Pichia pastoris is a popular yeast preferably employed for secretory protein production. Secretion is not always efficient and endoplasmic retention of proteins with aberrant folding properties, or when produced at exaggerated rates, can occur. In these cases production usually leads to an unfolded protein response (UPR) and the induction of the endoplasmic reticulum associated degradation (ERAD). P. pastoris is nowadays also an established host for secretory insulin precursor (IP) production, though little is known about the impact of IP production on the host cell physiology, in particular under industrially relevant production conditions. Here, we evaluate the cellular response to aox1 promoter-controlled, secretory IP production in controlled fed-batch processes using a proteome profiling approach. Cells were first grown in a batch procedure using a defined medium with a high glycerol concentration. After glycerol depletion IP production was initiated by methanol addition which was kept constant through continuous methanol feeding. The most prominent changes of the intracellular proteome after the onset of methanol feeding were related to the enzymes of central carbon metabolism. In particular, the enzymes of the methanol dissimilatory pathway - virtually absent in the glycerol batch phase - dominated the proteome during the methanol fed-batch phase. Unexpectedly, a strong decrease of UPR and ERAD related proteins was also observed during methanol-induced IP production. Compared to non-producing control strains grown under identical conditions the UPR down-regulation was less pronounced indicating that IP production elicits a detectable but non prominent UPR response which is repressed by the general culture condition-dependent UPR down-regulation after the shift from glycerol to methanol. The passage of IP through the secretory pathway using an optimized IP vector and growing the strain at fed-batch conditions with a high initial glycerol concentration does

  12. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  13. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses.

    Science.gov (United States)

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-03-01

    Scheffersomyces stipitis was cultivated in an optimized, controlled fed-batch fermentation for production of ethanol from glucose-xylose mixture. Effect of feed medium composition was investigated on sugar utilization and ethanol production. Studying influence of specific cell growth rate on ethanol fermentation performance showed the carbon flow towards ethanol synthesis decreased with increasing cell growth rate. The optimum specific growth rate to achieve efficient ethanol production performance from a glucose-xylose mixture existed at 0.1 h(-1). With these optimized feed medium and cell growth rate, a kinetic model has been utilized to avoid overflow metabolism as well as to ensure a balanced feeding of nutrient substrate in fed-batch system. Fed-batch culture with feeding profile designed based on the model resulted in high titer, yield, and productivity of ethanol compared with batch cultures. The maximal ethanol concentration was 40.7 g/L. The yield and productivity of ethanol production in the optimized fed-batch culture was 1.3 and 2 times higher than those in batch culture. Thus, higher efficiency ethanol production was achieved in this study through fed-batch process optimization. This strategy may contribute to an improvement of ethanol fermentation from lignocellulosic biomass by S. stipitis on the industrial scale.

  14. Effect of tryptone and ammonia on the biogas process in continuously stirred tank reactors treating cattle manure

    DEFF Research Database (Denmark)

    Nielsen, Hanne Bjerg; Ahring, Birgitte Kiær

    2007-01-01

    Two themophilic continuously stirred tank reactors, R1 and Two thermophilic continuously stirred tank reactors, R1 and R2, were subject to pulses of tryptone and ammonia. R1 was operated at an ammonia-N concentration of 3.0 g l(-1) and R2 was operated at an ammonia-N concentration of 1.7 g l(-1)....

  15. The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli.

    Science.gov (United States)

    Krause, Mirja; Neubauer, Antje; Neubauer, Peter

    2016-06-17

    While the nutrient limited fed-batch technology is the standard of the cultivation of microorganisms and production of heterologous proteins in industry, despite its advantages in view of metabolic control and high cell density growth, shaken batch cultures are still the standard for protein production and expression screening in molecular biology and biochemistry laboratories. This is due to the difficulty and expenses to apply a controlled continuous glucose feed to shaken cultures. New ready-made growth media, e.g. by biocatalytic release of glucose from a polymer, offer a simple solution for the application of the fed-batch principle in shaken plate and flask cultures. Their wider use has shown that the controlled diet not only provides a solution to obtain significantly higher cell yields, but also in many cases folding of the target protein is improved by the applied lower growth rates; i.e. final volumetric yields for the active protein can be a multiple of what is obtained in complex medium cultures. The combination of the conventional optimization approaches with new and easy applicable growth systems has revolutionized recombinant protein production in Escherichia coli in view of product yield, culture robustness as well as significantly increased cell densities. This technical development establishes the basis for successful miniaturization and parallelization which is now an important tool for synthetic biology and protein engineering approaches. This review provides an overview of the recent developments, results and applications of advanced growth systems which use a controlled glucose release as substrate supply.

  16. Fed-batch production of hydrophobin RodB from Aspergillus fumigatus in host Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Frisvad, Jens Christian

    was dependent on the methanol-induced AOX1 promoter. Later production was scaled up to a 2 L fed-batch fermentor. Protein production was analyzed by SDS-PAGE, coomassie and silver-stained, as well as western blotting using an anti-his detection antibody. RodB was purified using His-select Nickel Affinity gel....... The emulsifying property of rRodB was investigated using olive oil stained with Sudan black suspended in tris-buffer. The stability of oil micelles were studied by light microscopy. Results: Protein bands of expected size were detected by SDS-PAGE and western blotting in both the fermentation broth and excess...

  17. Data Driven Modeling for Monitoring and Control of Industrial Fed-Batch Cultivations

    DEFF Research Database (Denmark)

    Bonné, Dennis; Alvarez, María Antonieta; Jørgensen, Sten Bay

    2014-01-01

    A systematic methodology for development of a set of discrete-time sequence models for batch control based on historical and online operating data is presented and investigated experimentally. The modeling is based on the two independent characteristic time dimensions of batch processing, being...... convergence of iterative learning control is combined with the closed-loop performance of model predictive control to form an optimal controller aiming to ensure reliable and reproducible operation of the batch process. This learning model predictive controller may also be used for optimizing control through...... optimization of the bioreactor operations model. The modeling and preliminary control performance is demonstrated on an industrial fed-batch protein cultivation production process. The presented methods lend themselves directly for application as Process Analytical Technologies....

  18. A Genetic Algorithm for Feeding Trajectory Optimisation of Fed-batch Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2009-03-01

    Full Text Available In this work a genetic algorithm is proposed with the purpose of the feeding trajectory optimization during a fed-batch fermentation of E. coli. The feed rate profiles are evaluated based on a number of objective functions. Optimization results obtained for different feeding trajectories demonstrate that the genetic algorithm works well and shows good computational performance. Developed optimal feed profiles meet the defined criteria. The ration of the substrate concentration and the difference between actual cell concentration and theoretical maximum cell concentration is defined as the most appropriate objective function. In this case the final cell concentration of 43 g·l-1 and final product concentration of 125 g·l-1 are achieved and there is not significant excess of substrate.

  19. Fed-batch fermentation of nipa sap to acetic acid by Moorella thermoacetica (f. Clostridium thermoaceticum

    Directory of Open Access Journals (Sweden)

    Nguyen Dung Van

    2017-01-01

    Full Text Available An efficient process for conversion of nipa sap to acetic acid was developed. Nipa sap was hydrolyzed with invertase and provided glucose as well as fructose as main sugars. Batch fermentation of glucose and fructose was inadequate with increased substrate concentration. By contrast, fed-batch technique on hydrolyzed nipa sap with high feeding rate drastically increased acetic acid concentration and productivity to be 42.6 g/L and 0.18 g/(L/h, respectively. All the sugars in hydrolyzed nipa sap were consumed, with acetic acid yield of 0.87 g/g sugar. Overall, nipa sap as hydrolyzed with invertase was efficiently fermented to acetic acid, which is a valuable chemical and a potential biorefinery intermediate.

  20. Simulation and prediction of protein production in fed-batch E. coli cultures: An engineering approach.

    Science.gov (United States)

    Calleja, Daniel; Kavanagh, John; de Mas, Carles; López-Santín, Josep

    2016-04-01

    An overall model describing the dynamic behavior of fed-batch E. coli processes for protein production has been built, calibrated and validated. Using a macroscopic approach, the model consists of three interconnected blocks allowing simulation of biomass, inducer and protein concentration profiles with time. The model incorporates calculation of the extra and intracellular inducer concentration, as well as repressor-inducer dynamics leading to a successful prediction of the product concentration. The parameters of the model were estimated using experimental data of a rhamnulose-1-phosphate aldolase-producer strain, grown under a wide range of experimental conditions. After validation, the model has successfully predicted the behavior of different strains producing two different proteins: fructose-6-phosphate aldolase and ω-transaminase. In summary, the presented approach represents a powerful tool for E. coli production process simulation and control. © 2015 Wiley Periodicals, Inc.

  1. Time Series Analysis of Fed-batch Fermentation Process for L-valine Production

    Directory of Open Access Journals (Sweden)

    Tzanko Georgiev

    2006-04-01

    Full Text Available Fed-batch fermentation processes are some of the most efficient and wildly applied types of cultivation for industrial production of most amino acids including L-valine. Time series analysis is an important tool for description of the experimental data. This article deals with statistical inference from the time series analysis of generalised stoichiometric equations as a hypothesis for modelling and optimisation. The aim of the article is to develop some time series models of generalized stoichiometric equations. The identification procedure includes the following steps: description of the process by generalized stoichiometric equations; preliminary data processing; model structure selection for each stoichiometric equation; estimation of the model's parameters; verification of the derived models.

  2. Brunovsky Normal Form of Monod Kinetics Models and Growth Rate Control of a Fed-batch Cultivation Process

    Directory of Open Access Journals (Sweden)

    Pavlov Y.

    2007-12-01

    Full Text Available A mathematical methodology that gives assistance to design of fed-batch stabilization and control is presented. The methodology is based both on Utility theory and optimal Control theory. The Utility theory deals with the expressed subjective preferences and allows for the expert preferences to be taken in consideration in complex biotechnological systems as criteria for control and optimization. The Control theory is used for parameters stabilization of a fed-batch cultivation process. The control is written based on information of the growth rate. The simulations show good efficiency of the control laws.

  3. Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch process.

    Science.gov (United States)

    Guidini, Carla Zanella; Marquez, Líbia Diniz Santos; de Almeida Silva, Helisângela; de Resende, Miriam Maria; Cardoso, Vicelma Luiz; Ribeiro, Eloízio Júlio

    2014-02-01

    Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40% (v/v), and a filling time of 6 h, which resulted in a 92.20% yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75% and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h(-1), with K(I) and K(s) values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h(-1).

  4. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains

    Directory of Open Access Journals (Sweden)

    Herwig Christoph

    2011-10-01

    Full Text Available Abstract Background The microorganism Pichia pastoris is a commonly used microbial host for the expression of recombinant proteins in biotechnology and biopharmaceutical industry. To speed up process development, a fast methodology to determine strain characteristic parameters, which are needed to subsequently set up fed batch feeding profiles, is required. Results Here, we show the general applicability of a novel approach to quantify a certain minimal set of bioprocess-relevant parameters, i.e. the adaptation time of the culture to methanol, the specific substrate uptake rate during the adaptation phase and the maximum specific substrate uptake rate, based on fast and easy-to-do batch cultivations with repeated methanol pulses in a batch culture. A detailed analysis of the adaptation of different P. pastoris strains to methanol was conducted and revealed that each strain showed very different characteristics during adaptation, illustrating the need of individual screenings for an optimal parameter definition during this phase. Based on the results obtained in batch cultivations, dynamic feeding profiles based on the specific substrate uptake rate were employed for different P. pastoris strains. In these experiments the maximum specific substrate uptake rate, which had been defined in batch experiments, also represented the upper limit of methanol uptake, underlining the validity of the determined process-relevant parameters and the overall experimental strategy. Conclusion In this study, we show that a fast approach to determine a minimal set of strain characteristic parameters based on easy-to-do batch cultivations with methanol pulses is generally applicable for different P. pastoris strains and that dynamic fed batch strategies can be designed on the specific substrate uptake rate without running the risk of methanol accumulation.

  5. Medium composition suitable for L-lysine production by Methylophilus methylotrophus in fed-batch cultivation.

    Science.gov (United States)

    Ishikawa, Kohei; Toda-Murakoshi, Yuriko; Ohnishi, Fumito; Kondo, Kazuya; Osumi, Tsuyoshi; Asano, Kozo

    2008-12-01

    L-Lysine production was investigated in fed-batch fermentation using L-lysine producer of Methylophilus methylotrophus. By the addition of nutrient composition, containing L-methionine, K(2)HPO(4), NaH(2)PO(4), CuSO(4).5aq, MnSO(4).5aq, ZnSO(4).7aq, FeCl(3), MgSO(4).7aq and CaCl(2).2aq, in the feed medium, cell growth could be maintained through the cultivation, and L-lysine production reached to 7.86 g. In addition, the effect of counter ion for NH(4)(+) (Cl(-), SO(4)(2-), glutamate, succinate and citrate) was examined. The result showed that the cell growth in the medium using Cl(-) and glutamate were improved compared with that using SO(4)(2-), succinate and citrate, and L-lysine production in the medium using Cl(-) and glutamate reached to more than 9.0 g. In this experiment, there was a clear correlation between ionic strength and growth rate in the cultivation. In order to examine the influence of ionic strength on growth rate, the activity of enzymes in central metabolic pathway from methanol to pyruvate were assayed using samples at the log-phase and the stationary phase in fed-batch cultivation using (NH(4))(2)SO(4) and (NH(4))Cl as ammonium source. It was found that the higher ionic strength inhibited methanol oxidation activity, which linked to cell growth. In this report, it was revealed that maintaining a relatively low ionic strength had a positive effect on L-lysine production using L-lysine producer of M. methylotrophus.

  6. Fed-Batch Production of Glucose 6-Phosphate Dehydrogenase Using Recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Das Neves, Luiz Carlos Martins; Pessoa, Adalberto; Vitolo, Michele

    The strain Saccharomyces cerevisiae W303-181, having the plasmid YEpPGK-G6P (built by coupling the vector YEPLAC 181 with the promoter phosphoglycerate kinase 1), was cultured by fed-batch process in order to evaluate its capability in the formation of glucose 6-phosphate dehydrogenase (EC.1.1.1.49). Two liters of culture medium (10.0 g/L glucose, 3.7 g/L yeast nitrogen broth (YNB), 0.02 g/L l-tryptophan, 0.02 g/L l-histidine, 0.02 g/L uracil, and 0.02 g/L adenine) were inoculated with 1.5 g dry cell/L and left fermenting in the batch mode at pH 5.7, aeration of 2.2 vvm, 30°C, and agitation of 400 rpm. After glucose concentration in the medium was lower than 1.0 g/L, the cell culture was fed with a solution of glucose (10.0 g/L) or micronutrients (l-tryptophan, l-histidine, uracil, and adenine each one at a concentration of 0.02 g/L) following the constant, linear, or exponential mode. The volume of the culture medium in the fed-batch process was varied from 2 L up to 3 L during 5 h. The highest glucose 6-phosphate dehydrogenase activity (350 U/L; 1 U=1 μmol of NADP/min) occurred when the glucose solution was fed into the fermenter through the decreasing linear mode.

  7. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...

  8. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture

    NARCIS (Netherlands)

    Mars, Astrid E.; Houwing, Joukje; Dolfing, Jan; Janssen, Dick B.

    Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE), The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the

  9. Implementation of a repeated fed-batch process for the production of chitin-glucan complex by Komagataella pastoris.

    Science.gov (United States)

    Farinha, Inês; Freitas, Filomena; Reis, Maria A M

    2017-07-25

    The yeast Komagataella pastoris was cultivated under different fed-batch strategies for the production of chitin-glucan complex (CGC), a co-polymer of chitin and β-glucan. The tested fed-batch strategies included DO-stat mode, predefined feeding profile and repeated fed-batch operation. Although high cell dry mass and high CGC production were obtained under the tested DO-stat strategy in a 94h cultivation (159 and 29g/L, respectively), the overall biomass and CGC productivities were low (41 and 7.4g/Lday, respectively). Cultivation with a predefined profile significantly improved both biomass and CGC volumetric productivity (87 and 10.8g/Lday, respectively). Hence, this strategy was used to implement a repeated fed-batch process comprising 7 consecutive cycles. A daily production of 119-126g/L of biomass with a CGC content of 11-16wt% was obtained, thus proving this cultivation strategy is adequate to reach a high CGC productivity that ranged between 11 and 18g/Lday. The process was stable and reproducible in terms of CGC productivity and polymer composition, making it a promising strategy for further process development. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    (lactate and osmolality). The proportionalities of nutritional consumption were determined by direct analysis. And the robust, metabolically responsive feeding strategy was based on the off-line measurement of glucose. The fed-batch process was shown to perform equivalently in GS-CHO and GS-NS0 culture...

  11. Production of ethanol from xylose by Candida shehatae grown under continuous or fed-batch conditions

    Science.gov (United States)

    T. W. Jeffries; M. A. Alexander

    1990-01-01

    Xylose is a major component of angiosperm lignocellulosic residues. It is available from a number of different sources in the forest products industry, including fiberboard manufacture, sulfite waste liquors, production of dissolving pulp, and the hydrolysis of hardwood residues. Hydrolysis of wood for the production of liquid fuels, particularly ethanol, has been...

  12. On an Anomaly in the Modeling of Electromagnetic Stirring in Continuous Casting

    Science.gov (United States)

    Vynnycky, M.

    2018-02-01

    Early, yet still often-cited, mathematical models for electromagnetic stirring (EMS) in continuous casting are re-examined and found to contain a surprising anomaly: the solutions obtained were not unique. Analysis for the case of a round billet under rotary EMS shows how to avoid this behavior, whilst still making use of the experimental data that motivated the original models. The relevance of this result for current-day modeling of EMS is highlighted, particularly in the context of modulated EMS.

  13. In Vitro Growth of Curcuma longa L. in Response to Five Mineral Elements and Plant Density in Fed-Batch Culture Systems

    Science.gov (United States)

    El-Hawaz, Rabia F.; Bridges, William C.; Adelberg, Jeffrey W.

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments’ macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes. PMID:25830292

  14. In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems.

    Science.gov (United States)

    El-Hawaz, Rabia F; Bridges, William C; Adelberg, Jeffrey W

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.

  15. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V

    2017-07-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is

  16. Continuous production of diatom Entomoneis sp. in mechanically stirred tank and flat-panel airlift photobioreactors.

    Science.gov (United States)

    Viriyayingsiri, Thunyaporn; Sittplangkoon, Pantaporn; Powtongsook, Sorawit; Nootong, Kasidit

    2016-10-02

    Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d(-1). A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d(-1) and modified F/2 growth media containing nitrate at 3.09 mg N/L, phosphate at 2.24 mg P/L, and silicate at 11.91 mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69 × 10(4) cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.

  17. De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation

    Science.gov (United States)

    Cai, Ke; Tan, Xiaoming; Lu, Xuefeng

    2011-01-01

    Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L−1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate. PMID:21629774

  18. The digester modification for biogas production from palm oil mill effluent by Fed-batch

    Science.gov (United States)

    Aznury, M.; Amin, J. M.; Hasan, A.; Harsyah, A.

    2018-03-01

    The purpose of this research is to biogas production in the digester modification equipment by Fed-batch of the palm oil mill effluent (POME) to determine the quality of POME after a treatment and the concentration of biogas that is formed every 24 hours within 10 days. The raw materials used are POME from PT Mitra Ogan, Tbk. In the initial stage is sedimentation process in the first digester tank at a flow rate 6 liters/minute and then observing the retention time of 24 hours. POME flowed into the second digester tank for fermentation process with the addition of active microbes seed every 24 hours to produce biogas. After the fermentation process is complete, POME flowed to third digester tank for water treatment stage before being released into the environment. COD content test values obtained after processing are 766, 362 and 350 mg/L, approximately. While the BOD value is 212.75; 125 and 110.9 mg/L, approximately. Biogas production for 10 days fermentation are 10.88% methane, 19.2% oxygen and 75.83% nitrogen, approximately.

  19. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production.

    Science.gov (United States)

    Dmytruk, Kostyantyn; Lyzak, Oleksy; Yatsyshyn, Valentyna; Kluz, Maciej; Sibirny, Vladimir; Puchalski, Czeslaw; Sibirny, Andriy

    2014-02-20

    Riboflavin (vitamin B2) is an essential nutrition component serving as a precursor of coenzymes FMN and FAD that are involved mostly in reactions of oxidative metabolism. Riboflavin is produced in commercial scale and is used in feed and food industries, and in medicine. The yeast Candida famata (Candida flareri) belongs to the group of so called "flavinogenic yeasts" which overproduce riboflavin under iron limitation. Three genes SEF1, RIB1 and RIB7 coding for a putative transcription factor, GTP cyclohydrolase II and riboflavin synthase, respectively were simultaneously overexpressed in the background of a non-reverting riboflavin producing mutant AF-4, obtained earlier in our laboratory using methods of classical selection (Dmytruk et al. (2011), Metabolic Engineering 13, 82-88). Cultivation conditions of the constructed strain were optimized for shake-flasks and bioreactor cultivations. The constructed strain accumulated up to 16.4g/L of riboflavin in optimized medium in a 7L laboratory bioreactor during fed-batch fermentation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Sin, Gürkan; Gernaey, Krist V

    2017-03-10

    A majority of industrial fermentation processes are operated in fed-batch mode. In this case, the rate of feed addition to the system is a focus for optimising the process operation, as it directly impacts metabolic activity, as well as directly affecting the volume dynamics in the system. This review covers a range of strategies which have been employed to use the feed rate as a manipulated variable in a control strategy. The feed rate is chosen as the focus for this review, as it is seen that this variable may be used towards many different objectives depending on the process of interest, the characteristics of the strain, or the product being produced, which leads to different drivers for process optimisation. This review summarises the methods, as well as focusing on the different objectives for the controllers, and the choice of measured variables involved in the strategy. The discussion includes a summary of considerations for control strategy development. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control.

    Science.gov (United States)

    Meitz, Andrea; Sagmeister, Patrick; Lubitz, Werner; Herwig, Christoph; Langemann, Timo

    2016-03-24

    The Bacterial Ghost (BG) platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs) from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8-10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  2. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Science.gov (United States)

    Duan, Yangkai; Zhu, Zhi; Cai, Ke; Tan, Xiaoming; Lu, Xuefeng

    2011-01-01

    Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1) FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  4. The development of an industrial-scale fed-batch fermentation simulation.

    Science.gov (United States)

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  5. Production optimization for concentration and volume-limited fed-batch reactors in biochemical processes.

    Science.gov (United States)

    Liu, Ping; Liu, Xinggao; Zhang, Zeyin; Wang, Yalin; Yang, Chunhua; Gui, Weihua

    2018-03-01

    Since a very slight violation of constraint could cause process safety and product quality problems in biochemical processes, an adaptive approach of fed-batch reactor production optimization that can strictly satisfy constraints over the entire operating time is presented. In this approach, an improved smooth function is proposed such that the inequality constraints can be transformed into smooth constraints. Based on this, only an auxiliary state is needed to monitor violations in the augmented performance index. Combined with control variable parameterization (CVP), the dynamic optimization is executed and constraint violations are examined by calculating the sensitivities of states to ensure that the inequality constraints are satisfied everywhere inside the time interval. Three biochemical production optimization problems, including the manufacturing of ethanol, penicillin and protein, are tested as illustrations. Meanwhile, comparisons with pure penalty CVP method, famous dynamic optimization toolbox DOTcvp and literature results are carried out. Research results show that the proposed method achieves better performances in terms of optimization accuracy and computation cost.

  6. Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis.

    Science.gov (United States)

    Amin, G A

    2014-01-01

    Surfactin produced by Bacillus subtilis BDCC-TUSA-3 from Maldex-15 was used as a growth-associated product in a conventional batch process. Maldex-15 is a cheap industrial by-product recovered during manufacturing of high fructose syrup from corn starch. Surfactin production was greatly improved in exponential fed-batch fermentation. Maldex-15 and other nutrients were exponentially fed into the culture based on the specific growth rate of the bacterium. In order to maximize surfactin yield and productivity, conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of the Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with the fermentation run supplied with 204 g Maldex-15. Up to 36.1 g l(-1) of surfactin and cell biomass of 31.8 g l(-1) were achieved in 12 h. Also, a marked substrate yield of 0.272 g g(-1) and volumetric reactor productivity of 2.58 g 1(-1) h(-1) were obtained, confirming the establishment of a cost-effective commercial surfactin production.

  7. A novel fed-batch digestion system for biomethanation of plant biomasses.

    Science.gov (United States)

    Sharma, A; Unni, B G; Singh, H D

    1999-01-01

    Plant biomasses, which in the absence of adequate pretreatment pose serious operational problems in biogas production using conventional domestic flow-through digesters, can be successfully digested in a novel fedbatch digestion system that produces a steady rate of biogas. Basically, the system is a batch digestion operated with a regular input of a calculated amount of feed based on first order decay kinetics in order to maintain a regular biogas production rate. For nearly three years the system was tested in a laboratory-scale fed-batch digester (10 l) using dried water hyacinth as feed providing the desired biogas production rate. A field-scale domestic digester of masonry construction with a working volume of 10 m3 was designed and tested for about 9 months by feeding a mixture of dried water hyacinth or banana stem along with sugarcane press mud, yielding an average biogas production of 90-100% of the expected rate calculated on the basis of the feed rate.

  8. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Directory of Open Access Journals (Sweden)

    Yangkai Duan

    Full Text Available Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs and fatty acid ethyl esters (FAEEs, and is currently produced through the transesterification reaction of methanol (or ethanol and triacylglycerols (TAGs. TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  9. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz

    2016-03-01

    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  10. A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations.

    Science.gov (United States)

    Junne, Stefan; Klingner, Arne; Kabisch, Johannes; Schweder, Thomas; Neubauer, Peter

    2011-08-01

    This study describes an advanced version of a two-compartment scale-down bioreactor that simulates inhomogeneities present in large-scale industrial bioreactors on the laboratory scale. The system is made of commercially available parts and is suitable for sterilization with steam. The scale-down bioreactor consists of a usual stirred tank bioreactor (STR) and a plug flow reactor (PFR) equipped with static mixer modules. The PFR module with a working volume of 1.2 L is equipped with five sample ports, and pH and dissolved oxygen (DO) sensors. The concept was applied using the non-sporulating Bacillus subtilis mutant strain AS3, characterized by a SpoIIGA gene knockout. In a fed-batch process with a constant feed rate, it is found that oscillating substrate and DO concentration led to diminished glucose uptake, ethanol formation and an altered amino acid synthesis. Sampling at the PFR module allowed the detection of dynamics at different concentrations of intermediates, such as pyruvic acid, lactic acid and amino acids. Results indicate that the carbon flux at excess glucose and low DO concentrations is shifted towards ethanol formation. As a result, the reduced carbon flux entering the tricarboxylic acid cycle is not sufficient to support amino acid synthesis following the oxaloacetic acid branch point. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Concomitant reduction of lactate and ammonia accumulation in fed-batch cultures: Impact on glycoprotein production and quality.

    Science.gov (United States)

    Karengera, Eric; Robotham, Anna; Kelly, John; Durocher, Yves; De Crescenzo, Gregory; Henry, Olivier

    2018-01-05

    Lactate and ammonia accumulation is a major factor limiting the performance of fed-batch strategies for mammalian cell culture processes. In addition to the detrimental effects of these by-products on production yield, ammonia also contributes to recombinant glycoprotein quality deterioration. In this study, we tackled the accumulation of these two inhibiting metabolic wastes by culturing in glutamine-free fed-batch cultures an engineered HEK293 cell line displaying an improved central carbon metabolism. Batch cultures highlighted the ability of PYC2-overexpressing HEK293 cells to grow and sustain a relatively high viability in absence of glutamine without prior adaptation to the culture medium. In fed-batch cultures designed to maintain glucose at high concentration by daily feeding a glutamine-free concentrated nutrient feed, the maximum lactate and ammonia concentrations did not exceed 5 and 1 mM, respectively. In flask, this resulted in more than a 2.5-fold increase in IFNα2b titer in comparison to the control glutamine-supplied fed-batch. In bioreactor, this strategy led to similar reductions in lactate and ammonia accumulation and an increase in IFNα2b production. Of utmost importance, this strategy did not affect IFNα2b quality with respect to sialylation and glycoform distribution as confirmed by surface plasmon resonance biosensing and LC-MS, respectively. Our strategy thus offers an attractive and simple approach for the development of efficient cell culture processes for the mass production of high-quality therapeutic glycoproteins. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  12. Development of Fed-Batch Cultivation Strategy for Efficient Oxytetracycline Production by Streptomyces rimosus at Semi-Industrial Scale

    Directory of Open Access Journals (Sweden)

    Elsayed Ahmed Elsayed

    2015-10-01

    Full Text Available ABSTRACTOxytetracycline (OTC production byStreptomyces rimosus was studied in batch and fed-batch cultures in shake flask and bioreactor levels using semi-defined medium. First, the effect of glucose concentration on OTC production and growth kinetics was studied intensively. The optimal glucose concentration in the medium was 15 g/L. Higher glucose concentrations supported higher biomass production by less volumetric and specific antibiotic production. Based on these data, cultivations were carried out at semi-industrial scale 15 L bioreactor in batch culture. At bioreactor level, cell growth and OTC production were higher compared to the shake flask culture by about 18 and 38%, respectively. During the bioreactor cultivation, glucose was totally consumed after only 48 h. Thus, the fed-batch experiment was designed for mono-glucose feeding and complete medium feeding to increase the OTC production by overcoming carbon limitations. The results showed that the fed-batch culture using constant glucose feeding strategy with rate of 0.33 g/L/h produced 1072 mg/L. On the other hand, feeding with complete medium resulted in 45% higher biomass but less OTC production by about 26% compared to mono-glucose fed culture. A further improvement in this process was achieved in by keeping the dissolved oxygen (DO value at 60% saturation by cascading the glucose feeding pump with the DO controller. The later feeding strategy resulted in higher antibiotic production, reaching 1414 mg/L after 108 h.

  13. Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate.

    Science.gov (United States)

    Penloglou, Giannis; Vasileiadou, Athina; Chatzidoukas, Christos; Kiparissides, Costas

    2017-08-01

    An integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  14. Comparison of Two Identification Models Used in Adaptive Control of Continuous-Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Vojtesek Jiri

    2016-01-01

    Full Text Available The goal of this paper is to compare two identification methods – continuous-time and discrete-time. The continuous-time identification model is more accurate but not very suitable for on-line identification. This disadvantage was overcome with the use of differential filters. On the other hand, discrete-time identification model has is more suitable for identification but less accurate. Compromise can be found in the delta model as a special type of the discrete-time model parameters of which are related to the sampling period. The adaptive approach is based on the choice of the External Linear Model, parameters of which are identified recursively which satisfies the adaptivity of this system. Proposed control strategy was applied on the mathematical model of the Continuous Stirred-Tank reactor as a typical nonlinear lumped-parameters system used in the industry.

  15. A long-lived lunar dynamo driven by continuous mechanical stirring.

    Science.gov (United States)

    Dwyer, C A; Stevenson, D J; Nimmo, F

    2011-11-09

    Lunar rocks contain a record of an ancient magnetic field that seems to have persisted for more than 400 million years and which has been attributed to a lunar dynamo. Models of conventional dynamos driven by thermal or compositional convection have had difficulty reproducing the existence and apparently long duration of the lunar dynamo. Here we investigate an alternative mechanism of dynamo generation: continuous mechanical stirring arising from the differential motion, due to Earth-driven precession of the lunar spin axis, between the solid silicate mantle and the liquid core beneath. We show that the fluid motions and the power required to drive a dynamo operating continuously for more than one billion years and generating a magnetic field that had an intensity of more than one microtesla 4.2 billion years ago are readily obtained by mechanical stirring. The magnetic field is predicted to decrease with time and to shut off naturally when the Moon recedes far enough from Earth that the dissipated power is insufficient to drive a dynamo; in our nominal model, this occurred at about 48 Earth radii (2.7 billion years ago). Thus, lunar palaeomagnetic measurements may be able to constrain the poorly known early orbital evolution of the Moon. This mechanism may also be applicable to dynamos in other bodies, such as large asteroids.

  16. Physiological changes of Candida tropicalis population degrading phenol in fed batch reactor

    Directory of Open Access Journals (Sweden)

    Eliska Komarkova

    2003-12-01

    Full Text Available Candida tropicalis can use phenol as the sole carbon and energy source. Experiments regarding phenol degradations from the water phase were carried out. The fermentor was operated as a fed-batch system with oxistat control. Under conditions of nutrient limitation and an excess of oxygen the respiration activity of cells was suppressed and some color metabolites (black-brown started to be formed. An accumulation of these products inhibited the cell growth under aerobic conditions. Another impact was a decrease of the phenol hydroxylase activity as the key enzyme of the phenol degradation pathway at the end of the cell respiration activity. This decrease is linked with the above mentioned product inhibition. The cell death studied by fluorescent probe proceeded very slowly after the loss of the respiration activity. The starvation stress induced an increase of the endogenous respiration rate at the expense of phenol oxidation.Candida tropicalis pode utilizar fenol como única fonte de carbono e de energia. O fermentador foi operado em um sistema ''batelada-alimentada'' e controle oxidativo. Em condições limitantes de nutrientes e excesso de oxigênio a atividade respiratória das células foi suprimida e o calor do metabolismo pode ser formado. Uma acumulação desses produtos inibiu o crescimento das células em condições aeróbicas. Outro impacto foi um decréscimo da atividade fenol hidroxilase como enzima chave da degradação do fenol no final da atividade respirométrica. Essa redução está relacionada com os fatos acima mencionados. A morte da célula estudada por sonda de fluorescência ocorreu lentamente após a perda da atividade respiratória. O ''stress'' celular induziu um aumento na taxa de respiração endógena devido à oxidação fenólica.

  17. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  18. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  19. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance.

    Science.gov (United States)

    Ata, Özge; Boy, Erdem; Güneş, Hande; Çalık, Pınar

    2015-05-01

    The objectives of this work are the optimization of the codons of xylA gene from Thermus thermophilus to enhance the production of recombinant glucose isomerase (rGI) in P. pastoris and to investigate the effects of feeding strategies on rGI production. Codons of xylA gene from T. thermophilus were optimized, ca. 30 % of the codons were replaced with those with higher frequencies according to the codon usage bias of P. pastoris, codon optimization resulted in a 2.4-fold higher rGI activity. To fine-tune bioreactor performance, fed-batch bioreactor feeding strategies were designed as continuous exponential methanol feeding with pre-calculated feeding rate based on the pre-determined specific growth rate, and fed-batch methanol-stat feeding. Six feeding strategies were designed, as follows: (S1) continuous exponential methanol- and pulse- sorbitol feeding; (S2) continuous exponential methanol- and peptone- feeding; (S3) continuous exponential methanol- and pulse- mannitol feeding; (S4) continuous exponential methanol- and peptone- feeding and pulse-mannitol feeding; (S5) methanol-stat feeding by keeping methanol concentration at 5 g L(-1); and, (S6) methanol-stat feeding by keeping methanol concentration at 5 g L(-1) and pulse-mannitol feeding. The highest cell and rGI activity was attained as 117 g L(-1) at t = 66 h and 32530 U L(-1) at t = 53 h, in strategy-S5. The use of the co-substrate mannitol does not increase the rGI activity in methanol-stat feeding, where 4.1-fold lower rGI activity was obtained in strategy-S6. The overall cell yield on total substrate was determined at t = 53 h as 0.21 g g(-1) in S5 strategy.

  20. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media.

    Science.gov (United States)

    Gąciarz, Anna; Khatri, Narendar Kumar; Velez-Suberbie, M Lourdes; Saaranen, Mirva J; Uchida, Yuko; Keshavarz-Moore, Eli; Ruddock, Lloyd W

    2017-06-15

    The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA 1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.

  1. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Gasser Brigitte

    2006-12-01

    Full Text Available Abstract Background Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. Results We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. Conclusion The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  2. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris.

    Science.gov (United States)

    Maurer, Michael; Kühleitner, Manfred; Gasser, Brigitte; Mattanovich, Diethard

    2006-12-11

    Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  3. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities

    OpenAIRE

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J.; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4???5.7% of TCOD and 64.9???4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304???31?m W m?2. Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank re...

  4. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  5. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates.

    Science.gov (United States)

    Wiebe, Marilyn G; Koivuranta, Kari; Penttilä, Merja; Ruohonen, Laura

    2012-05-30

    Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100) media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Lipid production was most efficient with glucose (up to 25 g lipid L(-1), 48 to 75% lipid in the biomass, at up to 0.21 g lipid L(-1) h(-1)) as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass). Lipid production was low (15-19% lipid in biomass) with arabinose as sole carbon source and was lower than expected (30% lipid in biomass) when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L(-1), with 49% lipid in the biomass) and fed-batch (35 to 47 g L(-1), with 50 to 75% lipid in the biomass) cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Lipid production in R. toruloides was lower from arabinose and mixed carbohydrates than from glucose or xylose. Although high biomass and lipid

  6. Thermodynamics of metabolic pathways for penicillin production: Analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation

    DEFF Research Database (Denmark)

    Pissarra, P.D.; Nielsen, Jens Bredal

    1997-01-01

    ) is an intermediate. It is found that the L-lysine pathway in P. chrysogenum is thermodynamically feasible and that the calculated standard Gibbs free energy values of the two enzymes controlling the pathway flux indicate that they operate far from equilibrium. It is therefore proposed that the regulation of alpha......-aminoadipate reductase by lysine is important to maintain a high concentration of alpha-aminoadipate in order to direct the carbon flux to penicillin production. Secondly the changes in Gibbs free energy in the penicillin biosynthetic pathway during fed-batch cultivation were studied. The analysis showed that all...

  7. Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor.

    Science.gov (United States)

    Vojtesek, Jiri; Dostal, Petr

    2015-01-01

    Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system.

  8. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    Science.gov (United States)

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    A. Jayachitra

    2014-01-01

    Full Text Available Genetic algorithm (GA based PID (proportional integral derivative controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR process using a weighted combination of objective functions, namely, integral square error (ISE, integral absolute error (IAE, and integrated time absolute error (ITAE. Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating range of processes with dynamic nonlinearity. In our proposed work, globally optimized PID parameters tend to operate the CSTR process in its entire operating range to overcome the limitations of the linear PID controller. The simulation study reveals that the GA based PID controller tuned with fixed PID parameters provides satisfactory performance in terms of set point tracking and disturbance rejection.

  10. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  11. Performance of continuous stirred tank reactor (CSTR) on fermentative biohydrogen production from melon waste

    Science.gov (United States)

    Cahyari, K.; Sarto; Syamsiah, S.; Prasetya, A.

    2016-11-01

    This research was meant to investigate performance of continuous stirred tank reactor (CSTR) as bioreactor for producing biohydrogen from melon waste through dark fermentation method. Melon waste are commonly generated from agricultural processing stages i.e. cultivation, post-harvesting, industrial processing, and transportation. It accounted for more than 50% of total harvested fruit. Feedstock of melon waste was fed regularly to CSTR according to organic loading rate at value 1.2 - 3.6 g VS/ (l.d). Optimum condition was achieved at OLR 2.4 g VS/ (l.d) with the highest total gas volume 196 ml STP. Implication of higher OLR value is reduction of total gas volume due to accumulation of acids (pH 4.0), and lower substrate volatile solid removal. In summary, application of this method might valorize melon waste and generates renewable energy sources.

  12. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    Science.gov (United States)

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  13. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation.

    Science.gov (United States)

    Kim, Hee-Sik; Jeon, Jong-Woon; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Yoon, Byung-Dae

    2006-04-01

    Candida sp. strain SY16 produces a glycolipid-type biosurfactant, mannosylerythritol lipid (MEL-SY16), which can reduce the surface tension of a culture broth from 72 to 30 dyne cm(-1) and highly emulsify hydrocarbons when cultured in soybean-oil-containing media. As such, laboratory-scale fermentation for MEL-SY16 production was performed using optimized conditions. In batch fermentation, MEL-SY16 was mainly produced during the stationary phase of growth, and the concentration of MEL-SY16 reached 37 g l(-1) after 200 h. The effect of pH control on the production of MEL-SY16 was also examined in batch fermentation. The highest production yield of MEL-SY16 was when the pH was controlled at 4.0, and the production was significantly improved compared to batch fermentation without pH control. In fed-batch fermentation, glucose and soybean oil (1:1, w/w) were used in combination as the initial carbon sources for cell growth, and soybean oil was used as the feeding carbon source during the MEL production phase. The feeding of soybean oil resulted in the disappearance of any foam and a sharp increase in the MEL production until 200 h, at which point the concentration of MEL-SY16 was 95 g l(-1). Among the investigated culture systems, the highest MEL-SY16 production and volumetric production rate were achieved with fed-batch fermentation.

  15. Evaluation of several protein a resins for application to multicolumn chromatography for the rapid purification of fed-batch bioreactors.

    Science.gov (United States)

    Hilbold, Nicolas-Julian; Le Saoût, Xavier; Valery, Eric; Muhr, Laurence; Souquet, Jonathan; Lamproye, Alain; Broly, Hervé

    2017-07-01

    Most of the existing production capacity is based on fed-batch bioreactors. Thanks to the development of more efficient cell lines and the development of high-performance culture media, cell productivity dramatically increased. In a manufacturing perspective, it is necessary to clear as quickly as possible the protein A capture step to respect the manufacturing agenda. This article describes the methodology applied for the design of a multicolumn chromatography process with the objective of purifying as quickly as possible 1,000 and 15,000 L fed-batch bioreactors. Several recent and reference protein A resins are compared based on characteristic values obtained from breakthrough curves. The importance and relevance of resin parameters are explained, and purposely simple indicators are proposed to quickly evaluate the potential of each candidate. Based on simulation data, the optimum BioSC systems associated with each resin are then compared. The quality of the elution delivered by each resin is also compared to complete the assessment. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:941-953, 2017. © 2017 American Institute of Chemical Engineers.

  16. Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation.

    Science.gov (United States)

    Xie, Youping; Jin, Yiwen; Zeng, Xianhai; Chen, Jianfeng; Lu, Yinghua; Jing, Keju

    2015-03-01

    The C-phycocyanin generated in blue-green algae Arthrospira platensis is gaining commercial interest due to its nutrition and healthcare value. In this study, the light intensity and initial biomass concentration were manipulated to improve cell growth and C-phycocyanin production of A.platensis in batch cultivation. The results show that low light intensity and high initial biomass concentration led to increased C-phycocyanin accumulation. The best C-phycocyanin productivity occurred when light intensity and initial biomass concentration were 300μmol/m(2)/s and 0.24g/L, respectively. The fed-batch cultivation proved to be an effective strategy to further enhance C-phycocyanin production of A.platensis. The results indicate that C-phycocyanin accumulation not only requires nitrogen-sufficient condition, but also needs other nutrients. The highest C-phycocyanin content (16.1%), production (1034mg/L) and productivity (94.8mg/L/d) were obtained when using fed-batch strategy with 5mM medium feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    Science.gov (United States)

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Influence of feeding conditions on clavulanic acid production in fed-batch cultivation with medium containing glycerol.

    Science.gov (United States)

    Teodoro, Juliana C; Baptista-Neto, Alvaro; Cruz-Hernández, Isara L; Hokka, Carlos O; Badino, Alberto C

    2006-09-01

    First, the effect of different levels of nitrogen source on clavulanic acid (CA) production was evaluated in batch cultivations utilizing complex culture medium containing glycerol and three different levels of soy protein isolate (SPI). Cellular growth, evaluated in terms of the rheological parameter K, was highest with a SPI concentration of 30 g.L(-1) (4.42 g.L(-1) N total). However, the highest production of CA (380 mg.L(-1)) was obtained when an intermediate concentration of 20 g.L(-1) of SPI (2.95 g.L(-1) total N) was used. To address this, the influences of volumetric flow rate (F) and glycerol concentration in the complex feed medium (Cs(F)) in fed-batch cultivations were investigated. The best experimental condition for CA production was F=0.01 L.h(-1) and Cs(F)=120 g.L(-1), and under these conditions maximum CA production was practically twice that obtained in the batch cultivation. A single empirical equation was proposed to relate maximum CA production with F and Cs(F) in fed-batch experiments.

  19. Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation.

    Science.gov (United States)

    Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2012-07-13

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general

  20. A mathematical model for multiple hydrogeneration reactions in a continuous stirred three phase slurry reactor with an evaporating solvent

    NARCIS (Netherlands)

    Janssen, H.J.; Westerterp, K.R.; Vos, J.; Vos, J.

    1992-01-01

    An experimental study of the catalytic hydorgenation of 2,4-dinitrotoluene (DNT) in a mini-installation with a continuously operated stirred three-phase slurry reactor and an evaporating solvent is discussed. Some characteristic properties of the reactor system and the influence of the operating

  1. Fed-batch cultivation of the marine bacterium Sulfitobacter pontiacus using immobilized substrate and purification of sulfite oxidase by application of membrane adsorber technology.

    Science.gov (United States)

    Muffler, Kai; Ulber, Roland

    2008-03-01

    Sulfitobacter pontiacus, a gram-negative heterotrophic bacterium isolated from the Black Sea is well known to produce a soluble AMP-independent sulfite oxidase (sulfite: acceptor oxidoreductase) of high activity. Such an enzyme can be of great help in establishing biosensor systems for detection of sulfite in food and beverages considering the high sensitivity of biosensors and the increasing demand for such biosensor devices. For obtaining efficient amounts of the enzyme, an induction of its biosynthesis by supplementing sufficient concentrations of sodium sulfite to the fermentation broth is required. Owing to the fact that a high initial concentration of sodium sulfite decreases dramatically the enzyme expression, different fed-batch strategies can be applied to circumvent such inhibition or repression of the enzyme respectively. By the use of sulfite species immobilized in polyvinyl alcohol gels, an approach to the controlled and continuous feeding of sulfite to the cultivation media could be established to diminish inhibitory concentrations. Furthermore, the purification of the enzyme is described by using membrane adsorber technology. Copyright 2007 Wiley Periodicals, Inc.

  2. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  3. Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction

    Directory of Open Access Journals (Sweden)

    Valero Francisco

    2007-07-01

    Full Text Available Abstract Background The analysis of transcriptional levels of the genes involved in protein synthesis and secretion is a key factor to understand the host organism's responses to recombinant protein production, as well as their interaction with the cultivation conditions. Novel techniques such as the sandwich hybridization allow monitoring quantitatively the dynamic changes of specific RNAs. In this study, the transcriptional levels of some genes related to the unfolded protein response (UPR and central metabolism of Pichia pastoris were analysed during batch and fed-batch cultivations using an X-33-derived strain expressing a Rhizopus oryzae lipase under control of the formaldehyde dehydrogenase promoter (FLD1, namely the alcohol oxidase gene AOX1, the formaldehyde dehydrogenase FLD1, the protein disulfide isomerase PDI, the KAR2 gene coding for the BiP chaperone, the 26S rRNA and the R. oryzae lipase gene ROL. Results The transcriptional levels of the selected set of genes were first analysed in P. pastoris cells growing in shake flask cultures containing different carbon and nitrogen sources combinations, glycerol + ammonium, methanol + methylamine and sorbitol + methylamine. The transcriptional levels of the AOX1 and FLD1 genes were coherent with the known regulatory mechanism of C1 substrates in P. pastoris, whereas ROL induction lead to the up-regulation of KAR2 and PDI transcriptional levels, thus suggesting that ROL overexpression triggers the UPR. This was further confirmed in fed-batch cultivations performed at different growth rates. Transcriptional levels of the analysed set of genes were generally higher at higher growth rates. Nevertheless, when ROL was overexpressed in a strain having the UPR constitutively activated, significantly lower relative induction levels of these marker genes were detected. Conclusion The bead-based sandwich hybridization assay has shown its potential as a reliable instrument for quantification of

  4. Bioconversion of Waste Gases into Biofuel via Fermentation in a Continuous Stirred Tank Bioreactor

    Directory of Open Access Journals (Sweden)

    Najafpour, G.

    2005-01-01

    Full Text Available Biological hydrogen production was carried out in a continuous stirred tank bioreactor. A photosynthetic bacterium, Rhodospirillum rubrum, was used as biocatalyst to oxidize carbon monoxides in the waste gas generated from biomass in a gasification process. The fresh liquid media was supplied for microbial growth which contained sodium acetate as carbon source at initial concentration of 4 gL-1. The optimum media space velocity or the suitable ratio of liquid flow rate to the reactor volume (F/VL was 0.02 h-1. At the steady state condition, the concentration of acetate was independent of the dilution rate and it was approximately 1.5 gL-1. The average cell dry weight in the fermentation broth was at satisfactory concentration, approximately 3.4 gL-1 with dilution rate at 0.55 mL min-1. The maximum value of KLa and CO conversion were about 58 h-1 and 80%, respectively, with agitation speed at 500 rpm and gas flow rate at 14 mL min-1. At this condition, the maximum yield of hydrogen production was 0.82 mmol H2•mmol-1 CO.

  5. Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems

    DEFF Research Database (Denmark)

    Mehmood, Sajid; Gulfraz, M.; Rana, N. F.

    2009-01-01

    The objective of this work was to find the best combination of different experimental conditions during pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production. The optimization of pre-treatment using different...... were used in order to increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using...... Saccharomyces cerevisiae Ethanol Red (TM) and it was observed that simultaneous saccharification and fermentation ( SSF) with both batch and fed batch resulted in better ethanol yield as compared to separate hydrolysis and fermentation ( SHF). Detoxification of furan during SHF facilitated reduction...

  6. Model based optimization of the fed-batch production of a highly active transglutaminase variant in Escherichia coli.

    Science.gov (United States)

    Sommer, Christian; Volk, Norbert; Pietzsch, Markus

    2011-05-01

    A process for the production of a thermostable variant of a microbial transglutaminase was developed. The transglutaminase variant produced, carried a single amino acid exchange (serine replaced by proline at position 2) and showed a nearly doubled specific activity of 46.1 Umg(-1) compared to the wild-type enzyme. Based on a model based optimization strategy, intracellular soluble production in Escherichia coli was optimized. After parameter identification and only two fed-batch cultivations, a space time yield of 1438 U(TG)L(-1)h(-1) was obtained which is 175% higher than the highest values published so far (extracellular production using Corynebacterium ammoniagenes). High carbon source concentrations during expression were found to increase the product formation. Prior to the fed-batch cultivation, the host strain was adapted from complex medium to minimal medium by serial dilution. Upon transfer to the minimal medium, initially the maximal growth rate dropped to 0.13 h(-1). After the six consecutive cultivations the rate increased to 0.47 h(-1) and the portion of the complex medium was reduced to 1 ppm. Using the adapted cells, temperature after induction and IPTG-concentration were investigated by satellite batch cultivation according to a Design of Experiment (DoE) plan. The product yield was strongly influenced by the temperature after induction but not by the inductor concentration. The highest specific activity of 1386 Ug(-1) bio dry mass was obtained at 29°C and 0.7 mM IPTG. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Optimization of the Production of Polygalacturonase from Aspergillus kawachii Cloned in Saccharomyces cerevisiae in Batch and Fed-Batch Cultures

    Directory of Open Access Journals (Sweden)

    Diego Jorge Baruque

    2011-01-01

    Full Text Available Polygalacturonases (PG; EC 3.2.1.15 catalyze the hydrolysis of pectin and/or pectic acid and are useful for industrial applications such as juice clarification and pectin extraction. Growth and heterologous expression of recombinant Saccharomyces cerevisiae which expresses an acidic PG from Aspergillus kawachii has been studied in batch and fed-batch cultures. Kinetics and stoichiometric parameters of the recombinant yeast were determined in batch cultures in a synthetic medium. In these cultures, the total biomass concentration, protein concentration, and enzyme activity achieved were 2.2 g/L, 10 mg/L, and 3 U/mL, respectively, to give a productivity of 0.06 U/(mL·h. In fed-batch cultures, various strategies for galactose feeding were used: (i after a glucose growth phase, the addition of a single pulse of galactose which gave a productivity of 0.19 U/(mL·h; (ii after a glucose growth phase, a double pulse of galactose at the same final concentration was added, resulting in a productivity of 0.21 U/(mL·h; (iii a simultaneous feeding of glucose and galactose, yielding a productivity of 1.32 U/(mL·h. Based on these results, the simultaneous feeding of glucose and galactose was by far the most suitable strategy for the production of this enzyme. Moreover, some biochemical characteristics of the recombinant enzyme such as a molecular mass of ~60 kDa, an isoelectric point of 3.7 and its ability to hydrolyze polygalacturonic acid at pH=2.5 were determined.

  8. Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures.

    Science.gov (United States)

    Fernández-Castané, Alfred; Vine, Claire E; Caminal, Glòria; López-Santín, Josep

    2012-02-10

    The lac-operon and its components have been studied for decades and it is widely used as one of the common systems for recombinant protein production in Escherichia coli. However, the role of the lactose permease, encoded by the lacY gene, when using the gratuitous inducer IPTG for the overexpression of heterologous proteins, is still a matter of discussion. A lactose permease deficient strain was successfully constructed. Growing profiles and acetate production were compared with its parent strain at shake flask scale. Our results show that the lac-permease deficient strain grows slower than the parent in defined medium at shake flask scale, probably due to a downregulation of the phosphotransferase system (PTS). The distributions of IPTG in the medium and inside the cells, as well as recombinant protein production were measured by HPLC-MS and compared in substrate limiting fed-batch fermentations at different inducer concentrations. For the mutant strain, IPTG concentration in the medium depletes slower, reaching at the end of the culture higher concentration values compared with the parent strain. Final intracellular and medium concentrations of IPTG were similar for the mutant strain, while higher intracellular concentrations than in medium were found for the parent strain. Comparison of the distribution profiles of IPTG of both strains in fed-batch fermentations showed that lac-permease is crucially involved in IPTG uptake. In the absence of the transporter, apparently IPTG only diffuses, while in the presence of lac-permease, the inducer accumulates in the cytoplasm at higher rates emphasizing the significant contribution of the permease-mediated transport. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo method.

    Science.gov (United States)

    Xing, Zizhuo; Bishop, Nikki; Leister, Kirk; Li, Zheng Jian

    2010-01-01

    Markov chain Monte Carlo (MCMC) method was applied to model kinetics of a fed-batch Chinese hamster ovary cell culture process in 5,000-L bioreactors. The kinetic model consists of six differential equations, which describe dynamics of viable cell density and concentrations of glucose, glutamine, ammonia, lactate, and the antibody fusion protein B1 (B1). The kinetic model has 18 parameters, six of which were calculated from the cell culture data, whereas the other 12 were estimated from a training data set that comprised of seven cell culture runs using a MCMC method. The model was confirmed in two validation data sets that represented a perturbation of the cell culture condition. The agreement between the predicted and measured values of both validation data sets may indicate high reliability of the model estimates. The kinetic model uniquely incorporated the ammonia removal and the exponential function of B1 protein concentration. The model indicated that ammonia and lactate play critical roles in cell growth and that low concentrations of glucose (0.17 mM) and glutamine (0.09 mM) in the cell culture medium may help reduce ammonia and lactate production. The model demonstrated that 83% of the glucose consumed was used for cell maintenance during the late phase of the cell cultures, whereas the maintenance coefficient for glutamine was negligible. Finally, the kinetic model suggests that it is critical for B1 production to sustain a high number of viable cells. The MCMC methodology may be a useful tool for modeling kinetics of a fed-batch mammalian cell culture process.

  10. Evaluation of Packed-Bed Reactor and Continuous Stirred Tank Reactor for the Production of Colchicine Derivatives

    OpenAIRE

    Dubey, Kashyap Kumar; Kumar, Dhirendra; Kumar, Punit; Haque, Shafiul; Jawed, Arshad

    2013-01-01

    Bioconversion of colchicine into its pharmacologically active derivative 3-demethylated colchicine (3-DMC) mediated by P450BM3 enzyme is an economic and promising strategy for the production of this inexpensive and potent anticancer drug. Continuous stirred tank reactor (CSTR) and packed-bed reactor (PBR) of 3 L and 2 L total volumes were compared for the production of 3-demethylated colchicine (3-DMC) a colchicine derivative using Bacillus megaterium MTCC*420 under aerobic conditions. Statis...

  11. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  12. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity and qual...

  13. High-level expression of a fungal pyranose oxidase in high cell-density fed-batch cultivations of Escherichia coli using lactose as inducer

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Kočanová, Marcela; Marešová, Helena; Kyslík, Pavel

    2004-01-01

    Roč. 36, - (2004), s. 61-69 ISSN 1046-5928 Institutional research plan: CEZ:AV0Z5020903 Keywords : fed-batch * lactose * inclusion bodies Subject RIV: EE - Microbiology, Virology Impact factor: 1.336, year: 2004

  14. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c(4) by high-cell-density fed-batch cultivation of Pseudomonas putida

    DEFF Research Database (Denmark)

    Thuesen, Marianne Hallberg; Nørgaard, Allan; Hansen, Anne Merete

    2003-01-01

    The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein...

  15. Improved production of medium-chain-length Polyhydroxyalkanotes in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains

    NARCIS (Netherlands)

    Poblete-Castro, I.; Rodriguez, A.L.; Lam, M.C.; Kessler, W.

    2014-01-01

    One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains which can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch

  16. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content.

    Science.gov (United States)

    Kuwae, Shinobu; Miyakawa, Ichiko; Doi, Tomohiro

    2018-01-11

    A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 10 6  cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 10 7 to 1.8 × 10 7  cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.

  17. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation.

    Science.gov (United States)

    Shang, Tingting; Si, Dayong; Zhang, Dongyan; Liu, Xuhui; Zhao, Longmei; Hu, Cong; Fu, Yu; Zhang, Rijun

    2017-06-21

    Xylanase degrades xylan into monomers of various sizes by catalyzing the endohydrolysis of the 1,4-β-D-xylosidic linkage randomly, possessing potential in wide industrial applications. Most of xylanases are susceptible to be inactive when suffering high temperature and high alkaline process. Therefore, it is necessary to develop a high amount of effective thermoalkaliphilic xylanases. This study aims to enhance thermoalkaliphilic xylanase production in Pichia pastoris through fermentation parameters optimization and novel efficient fed-batch strategy in high cell-density fermentation. Recombinant xylanase activity increased 12.2%, 7.4%, 12.0% and 9.9% by supplementing the Pichia pastoris culture with 20 g/L wheat bran, 5 mg/L L-histidine, 10 mg/L L-tryptophan and 10 mg/L L-methionine in shake flasks, respectively. Investigation of nutritional fermentation parameters, non-nutritional fermentation parameters and feeding strategies in 1 L bioreactor and 1 L shake flask revealed that glycerol and methanol feeding strategies were the critical factors for high cell density and xylanase activity. In 50 L bioreactor, a novel glycerol feeding strategy and a four-stage methanol feeding strategy with a stepwise increase in feeding rate were developed to enhance recombinant xylanase production. In the initial 72 h of methanol induction, the linear dependence of xylanase activity on methanol intake was observed (R 2  = 0.9726). The maximum xylanase activity was predicted to be 591.2 U/mL, while the actual maximum xylanase activity was 560.7 U/mL, which was 7.05 times of that in shake flask. Recombinant xylanase retained 82.5% of its initial activity after pre-incubation at 80 °C for 50 min (pH 8.0), and it exhibited excellent stability in the broad temperature (60-80 °C) and pH (pH 8.0-11.0) ranges. Efficient glycerol and methanol fed-batch strategies resulting in desired cell density and xylanase activity should be applied in other P. pastoris

  18. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness.

    Science.gov (United States)

    Konakovsky, Viktor; Clemens, Christoph; Müller, Markus Michael; Bechmann, Jan; Berger, Martina; Schlatter, Stefan; Herwig, Christoph

    2016-01-11

    Biomass and cell-specific metabolic rates usually change dynamically over time, making the "feed according to need" strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i) inline pH and online glucose concentration measurement or (ii) inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA) has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8) is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G) around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With this contribution

  19. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky

    2016-01-01

    Full Text Available Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i inline pH and online glucose concentration measurement or (ii inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8 is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With

  20. High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper.

    Science.gov (United States)

    Elliston, Adam; Collins, Samuel R A; Wilson, David R; Roberts, Ian N; Waldron, Keith W

    2013-04-01

    A fundamental goal of second generation ethanol production is to increase the ethanol concentration to 10% (v/v) or more to optimise distillation costs. Semi simultaneous saccharification and fermentations (SSSF) were conducted at small pilot scale (5L) utilising fed-batch additions of solid shredded copier paper substrate. Early addition of Accellerase® 1500 at 16 FPU/g substrate and 30 U/g β-glucosidase followed by substrate only batch addition allowed low final equivalent enzyme concentrations to be achieved (3.7 FPU/g substrate) whilst maintaining digestion. Batch addition resulted in a cumulative substrate concentration equivalent to 65% (w/v). This in turn resulted in the production of high concentrations of ethanol (11.6% v/v). The success of this strategy relied on the capacity of the bioreactor to perform high shear mixing as required. Further research into the timing and number of substrate additions could lead to further improvement in overall yields from the 65.5% attained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. High level expression of Glomerella cingulata cutinase in dense cultures of Pichia pastoris grown under fed-batch conditions.

    Science.gov (United States)

    Seman, W M K Wan; Bakar, S A; Bukhari, N A; Gaspar, S M; Othman, R; Nathan, S; Mahadi, N M; Jahim, J; Murad, A M A; Bakar, F D Abu

    2014-08-20

    A Pichia pastoris transformant carrying the cutinase cDNA of Glomerella cingulata was over-expressed in a 5L bioreactor (2.0L working volume) under fed-batch conditions. Bioreactor experiments rely on varying selected parameters in repeated rounds of optimisation: here these included duration of induction, pH and temperature. Highest cell densities (320gL(-1) wet cell weight) with a cutinase production of 3800mgL(-1) and an activity of 434UmL(-1) were achieved 24h after induction with methanol in basal salt medium (at pH 5 and 28°C). Characterisation of the cutinase showed that it was stable between pH 6 and pH 11, had an optimum pH of 8.0 and retained activity for 30min at 50°C (optimum temperature 25°C).The preferred substrates of G. cingulata cutinase were the medium- to long-chain ρ-nitrophenyl esters of ρ-nitrophenylcaprylate (C8), ρ-nitrophenyllaurate (C12) and ρ-nitrophenylmyristate (C14), with the highest catalytic efficiency, kcat/Km of 7.7±0.7mM(-1)s(-1) for ρ-nitrophenylcaprylate. Microscopic analyses showed that the G. cingulata cutinase was also capable of depolymerising the high molecular weight synthetic polyester, polyethylene terephthalate. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Profiling of a microbial community under confined conditions in a fed-batch garbage decomposer by denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Horisawa, Sakae; Sakuma, Yoh; Nakamura, Yasunori; Doi, Shuichi

    2008-05-01

    In order to determine the conditions for the maximum performance of a fed-batch composting (FBC) reactor, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial communities established under the confined conditions of moisture content and environmental temperature. To evaluate the effects of microbial community structures on the performance of FBC reactors, degradation experiments using small-scale reactors and model waste were conducted under confined environmental conditions. A high degradation rate was observed under a wide range of MC conditions (30-60%) and at higher than usual temperatures (30-50 degrees C). The microbial communities that formed in the experimental FBC reactors were analyzed by DGGE of PCR-amplified 16S rRNA genes. The DGGE banding patterns at the same level as the degradation rates were similar even if the environmental conditions were different. Sequence analysis of the DGGE bands revealed the primary microbes which act in the reactor.

  3. Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture.

    Science.gov (United States)

    Cavaillé, Laëtitia; Grousseau, Estelle; Pocquet, Mathieu; Lepeuple, Anne-Sophie; Uribelarrea, Jean-Louis; Hernandez-Raquet, Guillermina; Paul, Etienne

    2013-12-01

    Polyhydroxybutyrate (PHB) production directly by waste activated sludge (WAS) was investigated in aerobic fed-batch conditions using acetic acid as substrate. PHB production was induced by phosphorus limitation. WAS of different origin were tested with various degrees of phosphorus limitation and PHB contents of up to 70% (gCOD PHB/gCOD particulate) were obtained. This strategy showed the importance of maintaining cell growth for PHB production in order to increase PHB concentration and that the degree of phosphorus limitation has a direct impact on the quantity of PHB produced. Pyrosequencing of 16S rRNA transcripts showed changes in the active bacteria of the WAS microbial community as well as the acclimation of populations depending on sludge origin. The monitoring of the process appeared as the key factor for optimal PHB production by WAS. Different strategies are discussed and compared in terms of carbon yield and PHB content with the feast and famine selection process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Biosynthesis of Citric Acid from Glycerol by Acetate Mutants of Yarrowia lipolytica in Fed-Batch Fermentation

    Directory of Open Access Journals (Sweden)

    Anita Rywińska

    2009-01-01

    Full Text Available Pure and crude glycerol from biodiesel production have been used as substrates for citric acid production by acetate-negative mutants of Yarrowia lipolytica in fed-batch fermentation. Both the final concentration and the yield of the product were the highest when Y. lipolytica Wratislavia AWG7 strain was used in the culture with pure or crude glycerol. With a medium containing 200 g/L of glycerol, production reached a maximum of citric acid of 139 g/L after 120 h. This high yield of the product (up to 0.69 g of citric acid per gram of glycerol consumed was achieved with both pure and crude glycerol. Lower yield of citric acid in the culture with Y. lipolytica Wratislavia K1 strain (about 0.45 g/g resulted from increased erythritol concentrations (up to 40 g/L, accumulated simultaneously with the citric acid. The concentration of isocitric acid, a by-product in this fermentation, was very low, in the range from 2.6 to 4.6 g/L.

  5. Genetic Algorithmic Optimization of PHB Production by a Mixed Culture in an Optimally Dispersed Fed-batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Pratap R. Patnaik

    2009-10-01

    Full Text Available Poly-β-hydroxybutyrate (PHB is an energy-storage polymer whose properties are similar to those of chemical polymers such as polyethylene and polypropylene. Moreover, PHB is biodegradable, absorbed by human tissues and less energy-consuming than synthetic polymers. Although Ralstonia eutropha is widely used to synthesize PHB, it is inefficient in utilizing glucose and similar sugars. Therefore a co-culture of R. eutropha and Lactobacillus delbrueckii is preferred since the latter can convert glucose to lactate, which R. eutropha can metabolize easily. Tohyama et al. [24] maximized PHB production in a well-mixed fed-batch bioreactor with glucose and (NH42SO4 as the primary substrates. Since production-scale bioreactors often deviate from ideal laboratory-scale reactors, a large bioreactor was simulated by means of a dispersion model with the kinetics determined by Tohyama et al. [24] and dispersion set at an optimum Peclet number of 20 [32]. The time-dependent feed rates of the two substrates were determined through a genetic algorithm (GA to maximize PHB production. This bioreactor produced 22.2% more PHB per liter and 12.8% more cell mass than achieved by Tohyama et al. [24]. These results, and similar observations with other fermentations, indicate the feasibility of enhancing the efficiency of large nonideal bioreactors through GA optimizations.

  6. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum.

    Science.gov (United States)

    Karmann, Stephanie; Follonier, Stéphanie; Egger, Daniel; Hebel, Dirk; Panke, Sven; Zinn, Manfred

    2017-11-01

    Recently, syngas has gained significant interest as renewable and sustainable feedstock, in particular for the biotechnological production of poly([R]-3-hydroxybutyrate) (PHB). PHB is a biodegradable, biocompatible polyester produced by some bacteria growing on the principal component of syngas, CO. However, working with syngas is challenging because of the CO toxicity and the explosion danger of H 2 , another main component of syngas. In addition, the bioprocess control needs specific monitoring tools and analytical methods that differ from standard fermentations. Here, we present a syngas fermentation platform with a focus on safety installations and process analytical technology (PAT) that serves as a basis to assess the physiology of the PHB-producing bacterium Rhodospirillum rubrum. The platform includes (i) off-gas analysis with an online quadrupole mass spectrometer to measure CO consumption and production rates of H 2 and CO 2 , (ii) an at-line flow cytometer to determine the total cell count and the intracellular PHB content and (iii) different online sensors, notably a redox sensor that is important to confirm that the culture conditions are suitable for the CO metabolization of R. rubrum. Furthermore, we present as first applications of the platform a fed-batch and a chemostat process with R. rubrum for PHB production from syngas. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    Science.gov (United States)

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  8. ON-LINE MONITORING OF BIOMASS CONCENTRATION BASED ON A CAPACITANCE SENSOR: ASSESSING THE METHODOLOGY FOR DIFFERENT BACTERIA AND YEAST HIGH CELL DENSITY FED-BATCH CULTURES

    Directory of Open Access Journals (Sweden)

    A. C. L. Horta

    2015-12-01

    Full Text Available Abstract The performance of an in-situ capacitance sensor for on-line monitoring of biomass concentration was evaluated for some of the most important microorganisms in the biotechnology industry: Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Bacillus megaterium. A total of 33 batch and fed-batch cultures were carried out in a bench-scale bioreactor and biomass formation trends were followed by dielectric measurements during the growth phase as well as the induction phase, for 5 recombinant E. coli strains. Permittivity measurements and viable cellular concentrations presented a linear correlation for all the studied conditions. In addition, the permittivity signal was further used for inference of the cellular growth rate. The estimated specific growth rates mirrored the main trends of the metabolic states of the different cells and they can be further used for setting-up control strategies in fed-batch cultures.

  9. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    Science.gov (United States)

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  10. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation.

    Science.gov (United States)

    Dubey, Swati; Singh, Jyoti; Singh, R P

    2018-01-01

    Herein, sweet lime pulp waste (SLPW) was utilized as a low- or no-cost feedstock for the production of bacterial nanocellulose (BNC) alone and in amalgamation with other nutritional supplements by the isolate K. europaeus SGP37 under static batch and static intermittent fed-batch cultivation. The highest yield (26.2±1.50gL -1 ) was obtained in the hot water extract of SLPW supplemented with the components of HS medium, which got further boosted to 38±0.85gL -1 as the cultivation strategy was shifted from static batch to static intermittent fed-batch. BNC obtained from various SLPW medium was similar or even superior to that obtained with standard HS medium in terms of its physicochemical properties. The production yields of BNC thus obtained are significantly higher and fit well in terms of industrial scale production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    Directory of Open Access Journals (Sweden)

    Nevoigt Elke

    2010-05-01

    Full Text Available Abstract Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH. Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g

  12. Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor.

    Science.gov (United States)

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-01-01

    Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4-hydroxy-3-methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid-liquid two-phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel(®) G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3-L working volume solid-liquid fed-batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer-liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations. © 2013 American Institute of Chemical Engineers.

  13. Fuzzy control of ethanol concentration its application to maximum glutathione production in yeast fed-batch culture.

    Science.gov (United States)

    Alfafara, C G; Miura, K; Shimizu, H; Shioya, S; Suga, K; Suzuki, K

    1993-02-20

    A fuzzy logic controller (FLC) for the control of ethanol concentration was developed and utilized to realize the maximum production of glutathione (GSH) in yeast fedbatch culture. A conventional fuzzy controller, which uses the control error and its rate of change in the premise part of the linguistic rules, worked well when the initial error of ethanol concentration was small. However, when the initial error was large, controller overreaction resulted in an overshoot.An improved fuzzy controller was obtained to avoid controller overreaction by diagnostic determination of "glucose emergency states" (i.e., glucose accumulation or deficiency), and then appropriate emergency control action was obtained by the use of weight coefficients and modification of linguistic rules to decrease the overreaction of the controller when the fermentation was in the emergency state. The improved fuzzy controller was able to control a constant ethanol concentration under conditions of large initial error.The improved fuzzy control system was used in the GSH production phase of the optimal operation to indirectly control the specific growth rate mu to its critical value micro(c). In the GSH production phase of the fed-batch culture, the optimal solution was to control micro to micro(c) in order to maintain a maximum specific GSH production rate. The value of micro(c) also coincided with the critical specific growth rate at which no ethanol formation occurs. Therefore, the control of micro to micro(c) could be done indirectly by maintaining a constant ethanol concentration, that is, zero net ethanol formation, through proper manipulation of the glucose feed rate. Maximum production of GSH was realized using the developed FLC; maximum production was a consequence of the substrate feeding strategy and cysteine addition, and the FLC was a simple way to realize the strategy.

  14. ENHANCED PRODUCTION OF POLYHYDROXYBUTYRATE (PHB FROM AGRO-INDUSTRIAL WASTES; FED-BATCH CULTIVATION AND STATISTICAL MEDIA OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Berekaa

    2016-06-01

    Full Text Available Bacillus megaterium SW1-2 showed enhanced growth and polyhydroxybutyrate (PHB production during cultivation on date palm syrup (DEPS or sugar cane molasses. FT-IR and NMR spectroscopic analyses of the polymer accumulated during growth on DEPS revealed specific absorption peaks characteristic for PHB. 1.65 g/L of PHB (56.9% CDW was produced during growth on medium supplemented with 2 g/L of DEPS. Approximately, 36.1% CDW of PHB were recorded during growth on sugar cane molasses. Six runs of different fed-batch cultivation strategies were tested, the optimal run showed approximately 6.87-fold increase. Modified E2 medium was prefered recording 10.11 and 11.34 g/L of total PHB produced for runs 1 and 2, at the end of 96 h incubation period, respectively. Decrease in PHB was recorded during growth on complex medium (run 3 and run 4. In another independent optimization strategy, ten variables were concurrently examined for their significance on PHB production by Plackett-Burman statistical design for the first time. Among variables, DEPS-II and inoculum concentration followed by KH2PO4 and (NH42SO4 were found to be the most significant variables encourage PHB production. Indeed, DEPS-II or Fresh syrup is more significant than commercial syrup DEPS-I (p-value= 0.05. RPM, incubation period have highly negative effect on PHB production. Role of ago-industrial wastes, especially DEPS, in enhancement of PHB production was closely discussed.

  15. Galactose-limited fed-batch cultivation of Escherichia coli for the production of lacto-N-tetraose.

    Science.gov (United States)

    Baumgärtner, Florian; Sprenger, Georg A; Albermann, Christoph

    2015-01-01

    Lacto-N-tetraose (Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc) is one of the most abundant oligosaccharide structures in human milk. We recently described the synthesis of lacto-N-tetraose by a whole-cell biotransformation with recombinant Escherichia coli cells. However, only about 5% of the lactose was converted into lacto-N-tetraose by this approach. The major product obtained was the intermediate lacto-N-triose II (GlcNAc(β1-3)Gal(β1-4)Glc). In order to improve the bioconversion of lactose to lacto-N-tetraose, we have investigated the influence of the carbon source on the formation of lacto-N-tetraose and on the intracellular availability of the glycosyltransferase substrates, UDP-N-acetylglucosamine and UDP-galactose. By growth of the recombinant E. coli cells on D-galactose, the yield of lacto-N-tetraose (810.8 mg L(-1) culture) was 3.6-times higher compared to cultivation on D-glucose. Using fed-batch cultivation with galactose as sole energy and carbon source, a large-scale synthesis of lacto-N-tetraose was demonstrated. During the 26 h feeding phase the growth rate (μ = 0.05) was maintained by an exponential galactose feed. In total, 16 g L(-1) lactose were fed and resulted in final yields of 12.72 ± 0.21 g L(-1) lacto-N-tetraose and 13.70 ± 0.10 g L(-1) lacto-N-triose II. In total, 173 g of lacto-N-tetraose were produced with a space-time yield of 0.37 g L(-1) h(-1). Copyright © 2015 Elsevier Inc. All rights reserved.

  16. User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine

    Directory of Open Access Journals (Sweden)

    Fudi Chen

    2015-07-01

    Conclusion: According to the modeling results, the GRNN is considered as the most suitable ANN model for the design of the fed-batch fermentation conditions for the production of iturin A because of its high robustness and precision, and the SVM is also considered as a very suitable alternative model. Under the tolerance of 30%, the prediction accuracies of the GRNN and SVM are both 100% respectively in repeated experiments.

  17. A fed-batch strategy to produce high poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer yield with enhanced mechanical properties in bioreactor.

    Science.gov (United States)

    Aziz, Nursolehah Abd; Huong, Kai-Hee; Sipaut, Coswald Stephen; Amirul, A A

    2017-11-01

    This study reports an efficient fed-batch strategy to improve poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer production by Cupriavidus sp. USMAA2-4 with enhanced mechanical properties in bioreactor. The cultivations have been performed by combining oleic acid with γ-butyrolactone at different concentration ratios with 1-pentanol at a fixed concentration. The batch and fed-batch fermentations have resulted in P(3HB-co-3HV-co-4HB) with compositions of 9-35 mol% 3HV and 4-24 mol% 4HB monomers. The DO-stat fed-batch fermentation strategies have significantly improved the production with a maximum 4.4-fold increment of cell dry weight (CDW). Besides, appropriate feeding of the substrates has resulted in an increment of terpolymer productivity from 0.086-0.347 g/L/h, with a significantly shortened cultivation time. The bacterial growth and terpolymer formation have been found to be affected by the concentration of carbon sources supplied. Characterization of P(3HB-co-3HV-co-4HB) has demonstrated that incorporation of 3HV and 4HB monomer has significantly improved the physical and thermodynamic properties of the polymers, by reducing the polymer's crystallinity. The tensile strength, Young's modulus of the terpolymer has been discovered to increase with the increase of M w . The fed-batch fermentation strategies employed in this study have resulted in terpolymers with a range of flexible materials having improved tensile strength and Young's modulus as compared to the terpolymer produced from batch fermentation. Possession of lower melting temperature indicates an enhanced thermal stability which broadens the polymer processing window.

  18. [Enhanced ε-poly-L-lysine production through pH regulation and organic nitrogen addition in fed-batch fermentation].

    Science.gov (United States)

    Sun, Qixing; Chen, Xusheng; Ren, Xidong; Zheng, Gencheng; Mao, Zhonggui

    2015-05-01

    During the production of ε-poly-L-lysine (ε-PL) in fed-batch fermentation, the decline of ε-PL synthesis often occurs at middle or late phase of the fermentation. To solve the problem, we adopted two strategies, namely pH shift and feeding yeast extract, to improve the productivity of ε-PL. ε-PL productivity in fermentation by pH shift and feeding yeast extract achieved 4.62 g/(L x d) and 5.16 g/(L x d), which were increased by 27.3% and 42.2% compared with the control ε-PL fed-batch fermentation, respectively. Meanwhile, ε-PL production enhanced 36.95 g/L and 41.32 g/L in 192 h with these two strategies, increased by 27.4% and 42.48% compared to the control, respectively. ε-PL production could be improved at middle or late phase of fed-batch fermentation by pH shift or feeding yeast extract.

  19. Feeding strategies for the improved biosynthesis of canthaxanthin from enzymatic hydrolyzed molasses in the fed-batch fermentation of Dietzia natronolimnaea HS-1.

    Science.gov (United States)

    Gharibzahedi, Seyed Mohammad Taghi; Razavi, Seyed Hadi; Mousavi, Mohammad

    2014-02-01

    The effect of two enzymatic hydrolyzed molasses (EHM)-feeding strategies including constant-(CFR) and exponential-(EFR) feeding rate on canthaxanthin (CTX) biosynthesis by Dietzia natronolimnaea HS-1 fed-batch fermentation was studied. The results showed that the CFR of 7 ml/h with an EHM content of 45 g/l led to the highest values of specific growth rate (0.127 h(-1)), biomass dry weight (17.66 g/l), total carotenoid (16.31 mg/l) and CTX (14.67 mg/l). A significant decrease in the kinetic growth and production parameters by the increasing EHM concentration from 30 to 60 g/l during EFR fed-batch bioprocess was observed (p<0.01). This study concluded that EHM alone can displace glucose-based medium towards improved CTX biosynthesis from D. natronolimnaea HS-1 using a CFR strategy during fed-batch culture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Linear and Non-linear Multi-Input Multi-Output Model Predictive Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Muayad Al-Qaisy

    2015-02-01

    Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.

  1. Designing an enzymatic oscillator: Bistability and feedback controlled oscillations with glucose oxidase in a continuous flow stirred tank reactor

    Science.gov (United States)

    Vanag, Vladimir K.; Míguez, David G.; Epstein, Irving R.

    2006-11-01

    The reaction of glucose with ferricyanide catalyzed by glucose oxidase from Aspergillus niger gives rise to a wide range of bistability as the flow rate is varied in a continuous flow stirred tank reactor. Oscillations in pH can be obtained by introducing a negative feedback on the autocatalytic production of H+ that drives the bistability. In our experiments, this feedback consists of an inflow of hydroxide ion at a rate that depends on [H+] in the reactor as k0[OH-]0[H+]/(K+[H+]). pH oscillations are found over a broad range of enzyme and ferricyanide concentrations, residence times (k0-1), and feedback parameters. A simple mathematical model quantitatively accounts for the experimentally found oscillations.

  2. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B.L.; Kivaisi, A.K.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  3. Optimum CFST (continuous flow stirred tank) bioreactor design: Experimental study using batch growth parameters for Saccharomyces cerevisiae producing ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wall, J.B.; Hill, G.A. (Saskatchewan Univ., Saskatoon, SK (Canada))

    1992-02-01

    An optimum continuous flow stirred-tank (CFST) bioreactor design equation is presented which can be used with linear growth-associated product inhibition models. Batch experiments were performed to determine Saccharomyces cerevisiae growth parameters required for solving the optimum design equation. The three bioreactors were designed in decreasing volumes to achieve theoretical glucose conversions of 99.9% and 99.99%. At steady state, the bioreactors appeared to reach the theoretical conditions as long as the flowrates were held equal or slightly below the optimum conditions. At very low flowrates, biomass death was observed in down-stream reactors while at high flowrates, the theoretical conversions were not achieved. The experimental results confirm that optimally designed bioreactors can offer lower processing volumes to achieve high substrate conversions as compared to single CFST bioreactors. 9 refs., 8 figs., 1 tab.

  4. Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Kuthiala, Sidhant

    2018-01-01

    This study investigates the co-digestion of source separated municipal organic waste (SSMOW), pretreated using a biopulper, and cattle manure both in batch and continuous stirred tank reactors. The optimum co-digestion feeding mixture was consisted of 90% SSMOW and 10% cattle manure on organic...

  5. Molecular weight​/branching distribution modeling of low-​density-​polyethylene accounting for topological scission and combination termination in continuous stirred tank reactor

    NARCIS (Netherlands)

    Yaghini, N.; Iedema, P.D.

    2014-01-01

    We present a comprehensive model to predict the molecular weight distribution (MWD),(1) and branching distribution of low-density polyethylene (IdPE),(2) for free radical polymerization system in a continuous stirred tank reactor (CSTR).(3) The model accounts for branching, by branching moment or

  6. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    Science.gov (United States)

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  7. Enhancement of canthaxanthin production from Dietzia natronolimnaea HS-1 in a fed-batch process using trace elements and statistical methods

    Directory of Open Access Journals (Sweden)

    M. R. Nasri Nasrabadi

    2010-12-01

    Full Text Available Under fed-batch process conditions, the statistical analysis of trace elements was performed by application of Plackett-Burman design (for screening tests and response surface methodology (for predicting the optimal points to achieve the highest level of canthaxanthin production from Dietzia natronolimnaea HS-1. Plackett-Burman design was conducted on eleven trace elements (i. e., aluminum, boron, cobalt, copper, iron, magnesium, manganese, molybdenum, selenium, vanadium and zinc to select out elements that significantly enhance the canthaxanthin production of D. natronolimnaea HS-1. Plackett-Burman design revealed that Fe3+, Cu2+ and Zn2+ ions had the highest effect on canthaxanthin production of D. natronolimnaea HS-1 (P<0.05. These three elements were used for further optimization. By means of response surface methodology for the fed-batch process, the optimum conditions to achieve the highest level of canthaxanthin (8923±18 µg/L were determined as follow: Fe3+ 30 ppm, Cu2+ 28.75 ppm and Zn2+ 27 ppm.

  8. Semi-industrial scale (30 m3) fed-batch fermentation for the production of D-lactate by Escherichia coli strain HBUT-D15.

    Science.gov (United States)

    Fu, Xiangmin; Wang, Yongze; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde

    2017-02-01

    D(-)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale D-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L -1 of glucose, producing 184-191 g L -1 of D-lactic acid, with a volumetric productivity of 4.38 g L -1  h -1 , a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m 3 ) via fed-batch fermentation with up to 160 g L -1 of glucose, producing 146-150 g L -1 of D-lactic acid, with a volumetric productivity of 3.95-4.29 g L -1  h -1 , a yield of 91-94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale L(+)-lactic acid fermentation.

  9. Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinant β-mananase by Pichia pastoris.

    Science.gov (United States)

    Zheng, Jia; Zhao, Wei; Guo, Ning; Lin, Fulai; Tian, Jian; Wu, Lishuang; Zhou, Hongbo

    2012-08-01

    An industrial medium, Corn Steep Liquor Powder Dextrose (CSD medium) was developed for constitutive expression of recombinant β-mananase by Pichia pastoris. The β-mananase activity (513 U/mL) with CSD medium was 1.64- and 2.5-fold higher than with YPD and BSM in shaken flasks. The β-mananase productivity with CSD medium was 61.0 U/mL h, which was 1.7- and 2.5-fold higher than with YPD and BSM in a 5-L fermenter based on a novel fed-batch strategy combining the real-time exponential feed mode with the DO-stat feed mode. The β-mananase activity, dry cell weight and the recombinant enzyme reached up to 5132 U/mL, 110.0 g/L and 4.50 g/L after 50 h cultivation in a 50-L fermenter. The high efficient expression of recombinant β-mananase by P. pastoris indicated that CSD medium and the novel fed-batch strategy have great potential for the production of recombinant β-mananase in industrial fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production.

    Science.gov (United States)

    Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism.

  11. Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production.

    Directory of Open Access Journals (Sweden)

    Xuezhi Li

    Full Text Available Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h. The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism.

  12. Batch and continuous production of stable dense suspensions of drug nanoparticles in a wet stirred media mill

    Science.gov (United States)

    Afolabi, Afola we mi

    One way to improve the bioavailability of poorly water-soluble drugs is to reduce particle size of drug crystals down to nanoscale via wet stirred media milling. An increase in total surface area per mass loading of the drug and specific surface area as well as reduced external mass transfer resistance allow a faster dissolution of the poorly-water soluble drug from nanocrystals. To prevent aggregation of nanoparticles, polymers and surfactants are dissolved in water acting as stabilizers via adsorption onto the drug crystals. In the last two decades, ample experimental data were generated in the area of wet stirred media milling for the production of drug nanoparticle suspensions. However, a fundamental scientific/engineering understanding of various aspects of this process is still lacking. These challenges include elucidation of the governing mechanism(s) during nanoparticle formation and physical stabilization of the nanosuspension with the use of polymers and surfactants (formulation parameters), understanding the impact of process parameters in the context of first-principle-based models, and production of truly nanosized drug particles (10-100 nm) with acceptable physical stability and minimal contamination with the media. Recirculation mode of milling operation, where the drug suspension in a holding tank continuously circulates through the stirred media mill, has been commonly used in lab, pilot, and commercial scales. Although the recirculation is continuous, the recirculation operation mode is overall a batch operation, requiring significant number of batches for a large-volume pharmaceutical product. Hence, development and investigation of a truly continuous process should offer significant advantages. To explain the impact of some of the processing parameters, stress intensity and stress number concepts were widely used in literature, which do not account for the effect of suspension viscosity explicitly. The impact of the processing parameters has not

  13. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia)

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l{sup -1} to 8 mg TPH l{sup -1}. Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  14. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    International Nuclear Information System (INIS)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-01-01

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l -1 to 8 mg TPH l -1 . Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  15. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source.

    Science.gov (United States)

    Fei, Qiang; O'Brien, Marykate; Nelson, Robert; Chen, Xiaowen; Lowell, Andrew; Dowe, Nancy

    2016-01-01

    Industrial biotechnology that is able to provide environmentally friendly bio-based products has attracted more attention in replacing petroleum-based industries. Currently, most of the carbon sources used for fermentation-based bioprocesses are obtained from agricultural commodities that are used as foodstuff for human beings. Lignocellulose-derived sugars as the non-food, green, and sustainable alternative carbon sources have great potential to avoid this dilemma for producing the renewable, bio-based hydrocarbon fuel precursors, such as microbial lipid. Efficient bioconversion of lignocellulose-based sugars into lipids is one of the critical parameters for industrial application. Therefore, the fed-batch cultivation, which is a common method used in industrial applications, was investigated to achieve a high cell density culture along with high lipid yield and productivity. In this study, several fed-batch strategies were explored to improve lipid production using lignocellulosic hydrolysates derived from corn stover. Compared to the batch culture giving a lipid yield of 0.19 g/g, the dissolved-oxygen-stat feeding mode increased the lipid yield to 0.23 g/g and the lipid productivity to 0.33 g/L/h. The pulse feeding mode further improved lipid productivity to 0.35 g/L/h and the yield to 0.24 g/g. However, the highest lipid yield (0.29 g/g) and productivity (0.4 g/L/h) were achieved using an automated online sugar control feeding mode, which gave a dry cell weight of 54 g/L and lipid content of 59 % (w/w). The major fatty acids of the lipid derived from lignocellulosic hydrolysates were predominately palmitic acid and oleic acid, which are similar to those of conventional oilseed plants. Our results suggest that the fed-batch feeding strategy can strongly influence the lipid production. The online sugar control feeding mode was the most appealing strategy for high cell density, lipid yield, and lipid productivity using lignocellulosic hydrolysates as

  16. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m 3 d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m 3 d) and 32kgCOD/(m 3 d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fed-batch production of the hydrophobins RodA and RodB from Aspergillus fumigatus in host Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Frisvad, Jens Christian

    Objectives: Aspergillus fumigatus expresses the hydrophobins RodA and RodB on the surface of its conidia. RodA is known to be important for the pathogenesis of the fungus, but the role of RodB is unknown. The aim was to produce recombinant RodA and RodB for further characterication. Methods....... The expression of the RodA and RodB genes was first studied in culture flasks in buffered complex methanol medium as protein production was dependent on the methanol-induced AOX1 promoter. Later production was scaled up to a 2 L fed-batch fermentor. Hydrophobins were purified using His-select Nickel Affinity gel...

  18. Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse.

    Science.gov (United States)

    Zhang, Teng; Zhu, Ming-Jun

    2017-04-01

    A study on the fed-batch simultaneous saccharification and co-fermentation (SSCF) of Fenton reaction combined with NaOH pretreated sugarcane bagasse (SCB) at a high solid loading of 10-30% (w/v) was investigated. Enzyme feeding mode, substrate feeding mode and combination of both were compared with the batch mode under respective solid loadings. Ethanol concentrations of above 80g/L were obtained in batch and enzyme feeding modes at a solid loading of 30% (w/v). Enzyme feeding mode was found to increase ethanol productivity and reduce enzyme loading to a value of 1.23g/L/h and 9FPU/g substrate, respectively. The present study provides an economically feasible process for high concentration bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Olsson, Lisbeth; Rønnow, B.

    2002-01-01

    An industrial strain of Saccharomyces cerevisiae (DGI 342) was cultivated in fed-batch cultivations at a specific growth rate of 0.2 h(-1). The yeast was then exposed to carbon or nitrogen starvation for up to 8 h, to study the effect of starvation on fermentative capacity and content of protein...... of the yeast cells, and the fermentative capacity per gram dry-weight decreased by 40%. The protein content in the carbon-starved yeast increased as a result of starvation due to the fact that the content of glycogen was reduced. The fermentative capacity per gram dry-weight was, however, unaltered....... increased from 45 to 64 mg (g dry-weight)(-1), whereas the glycogen content in the same period was reduced from 55 to 5 mg (g dry-weight)(-1). Glycogen was consumed faster than trehalose during storage of the starved yeast for 1 month. Nitrogen starvation resulted in a decrease in the protein content...

  20. An integral term adaptive neural control of fed-batch fermentation biotechnological process; Control neuronal adaptable con termino integral para un proceso biotecnologico de fermentacion por lote alimentado

    Energy Technology Data Exchange (ETDEWEB)

    Baruch, Ieroham; Hernandez, Luis Alberto; Barrera Cortes, Josefina [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Mexico D.F. (Mexico)

    2005-07-15

    A nonlinear mathematical model of aerobic biotechnological process of a fed-batch fermentation system is derived using ordinary differential equations. A neurocontrol is applied using Recurrent Trainable Neural Network (RTNN) plus integral term; the first network performs an approximation of the plant's output; the second network generates the control signal so that the biomass concentration could be regulated by the nutrient influent flow rate into the bioreactor. [Spanish] Un modelo matematico no lineal de un proceso biotecnologico aerobio de un sistema de fermentacion por lote alimentado es presentado mediante ecuaciones diferenciales ordinarias. Es propuesto un control utilizando dos redes neuronales recurrentes entrenables (RNRE) con la adicion de un termino integral; la primera red representa un aproximador de la salida de la planta y la segunda genera la senal de control tal que la concentracion de la biomasa pueda ser regulada mediante la alimentacion de un flujo con nutrientes al biorreactor.

  1. Biomass composition, lipid characterization, and metabolic profile analysis of the fed-batch fermentation process of two different docosahexanoic acid producing Schizochytrium sp. strains.

    Science.gov (United States)

    Qu, Liang; Ren, Lu-Jing; Li, Juan; Sun, Guan-Nan; Sun, Li-Na; Ji, Xiao-Jun; Nie, Zhi-Kui; Huang, He

    2013-12-01

    Growth and fermentation characteristics, biomass composition, lipid characterization and metabolic profiling analysis of two different Schizochytrium sp. strains, the original strain and the industrial adaptive strain, were investigated in the fed-batch fermentation process. The final cell biomass, total lipids content, docosahexanoic acid (DHA) content and DHA productivity of the adaptive strain were much higher than those of the original strain. The metabolic distinctions which extensively existed between these two strains were revealed by the score plot of principal component analysis. In addition, potential biomarkers responsible for discriminating different strains were identified as myo-inositol, histidine, alanine, asparagine, cysteine, and oxalic acid. These findings provided new insights into the industrial strain screening and further improvement of DHA production by Schizochytrium sp.

  2. Using a medium of free amino acids to produce penicillin g acylase in fed-batch cultivations of Bacillus megaterium ATCC 14945

    Directory of Open Access Journals (Sweden)

    R. G. Silva

    2006-03-01

    Full Text Available The production of penicillin G acylase (PGA, an important industrial enzyme from a wild strain of Bacillus megaterium using a pool of free amino acids as substrate was studied in a bench-scale bioreactor. Experiments carried out in shakers showed that the substitution of casein for free amino acids in the presence of cheese whey was the culture medium that provided the highest productivity. Several cultivations were carried out in a bioreactor operated in either batch or fed-batch mode. Batch runs showed that enzyme production is associated with microorganism growth. The following set of amino acids was preferentially consumed: Ala, Arg, Asp, Gly, Lys, Ser, Thr and Trp. On the other hand, the rates of consumption of His, Ile, Leu, Met, Phe, Pro, Tyr and Val were lower.

  3. GROWTH AND COMPOSITION OF Arthrospira (Spirulina platensis IN A TUBULAR PHOTOBIOREACTOR USING AMMONIUM NITRATE AS THE NITROGEN SOURCE IN A FED-BATCH PROCESS

    Directory of Open Access Journals (Sweden)

    C. Cruz-Martínez

    2015-06-01

    Full Text Available AbstractNH4NO3 simultaneously provides a readily assimilable nitrogen source (ammonia and a reserve of nitrogen (nitrate, allowing for an increase in Arthrospira platensis biomass production while reducing the cost of the cultivation medium. In this study, a 22plus star central composite experimental design combined with response surface methodology was employed to analyze the influence of light intensity (I and the total amount of added NH4NO3 (Mt on a bench-scale tubular photobioreactor for fed-batch cultures. The maximum cell concentration (Xm, cell productivity (PX and biomass yield on nitrogen (YX/N were evaluated, as were the protein and lipid contents. Under optimized conditions (I = 148 μmol·photons·m-2·s-1 and Mt = 9.7 mM NH4NO3, Xm = 4710 ±34.4 mg·L-1, PX = 478.9 ±3.8 mg·L-1·d-1 and YX/N = 15.87 ±0.13 mg·mg-1 were obtained. The best conditions for protein content in the biomass (63.2% were not the same as those that maximized cell growth (I = 180 μmol·photons·m-2·s-1 and Mt = 22.5 mM NH4NO3. Based on these results, it is possible to conclude that ammonium nitrate is an interesting alternate nitrogen source for the cultivation of A. platensisin a fed-batch process and could be used for other photosynthetic microorganisms.

  4. Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates from Saponified Palm Kernel Oil by Pseudomonas putida: Kinetics of Batch and Fed-Batch Fermentations

    Directory of Open Access Journals (Sweden)

    Annuar, M. S. M.

    2006-01-01

    Full Text Available The kinetics of medium-chain-length poly(3-hydroxyalkanoates, PHAMCL production by Pseudomonas putida PGA1 in batch and fed-batch fermentations were studied. With saponified palm kernel oil (SPKO supplying the free fatty acids mixture as the sole carbon and energy source, PHAMCL accumulation is encouraged under ammonium-limited condition, which is a nitrogen stress environment. The amount of PHAMCL accumulated and its specific production rate, qPHA were influenced by the residual ammonium concentration level in the culture medium. It was observed that in both fermentation modes, when the residual ammonium was exhausted (< 0.05 gL-1, the PHAMCL accumulation (11.9% and qPHA (0.0062 h-1 were significantly reduced. However, this effect can be reversed by feeding low amount of ammonium to the culture, resulting in significantly improved PHAMCL yield (71.4% and specific productivity (0.6 h-1. It is concluded that the feeding of low ammonium concentration to the culture medium during the PHAMCL accumulation has a positive effect on sustaining the PHAMCL biosynthetic capability of the organism. It was also found that increasing SPKO concentration in the medium significantly reduced (up to 50% the volumetric oxygen transfer coefficient (KLa of the fermentation system.

  5. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.

    Science.gov (United States)

    Seong, Yeong-Je; Park, Haeseong; Yang, Jungwoo; Kim, Soo-Jung; Choi, Wonja; Kim, Kyoung Heon; Park, Yong-Cheol

    2017-05-01

    The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.

  6. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  7. Combining mechanistic and data-driven approaches to gain process knowledge on the control of the metabolic shift to lactate uptake in a fed-batch CHO process.

    Science.gov (United States)

    Zalai, Dénes; Koczka, Krisztina; Párta, László; Wechselberger, Patrick; Klein, Tobias; Herwig, Christoph

    2015-01-01

    A growing body of knowledge is available on the cellular regulation of overflow metabolism in mammalian hosts of recombinant protein production. However, to develop strategies to control the regulation of overflow metabolism in cell culture processes, the effect of process parameters on metabolism has to be well understood. In this study, we investigated the effect of pH and temperature shift timing on lactate metabolism in a fed-batch Chinese hamster ovary (CHO) process by using a Design of Experiments (DoE) approach. The metabolic switch to lactate consumption was controlled in a broad range by the proper timing of pH and temperature shifts. To extract process knowledge from the large experimental dataset, we proposed a novel methodological concept and demonstrated its usefulness with the analysis of lactate metabolism. Time-resolved metabolic flux analysis and PLS-R VIP were combined to assess the correlation of lactate metabolism and the activity of the major intracellular pathways. Whereas the switch to lactate uptake was mainly triggered by the decrease in the glycolytic flux, lactate uptake was correlated to TCA activity in the last days of the cultivation. These metabolic interactions were visualized on simple mechanistic plots to facilitate the interpretation of the results. Taken together, the combination of knowledge-based mechanistic modeling and data-driven multivariate analysis delivered valuable insights into the metabolic control of lactate production and has proven to be a powerful tool for the analysis of large metabolic datasets. © 2015 American Institute of Chemical Engineers.

  8. High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain.

    Science.gov (United States)

    Coelho, Luciana Fontes; Beitel, Susan Michelz; Sass, Daiane Cristina; Neto, Paulo Marcelo Avila; Contiero, Jonas

    2018-04-01

    Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH) 2 . The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.

  9. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol.

    Science.gov (United States)

    Celik, Eda; Calik, Pinar; Oliver, Stephen G

    2009-09-01

    Batch-wise sorbitol addition as a co-substrate at the induction phase of methanol fed-batch fermentation by Pichia pastoris (Mut(+)) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch-wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag-phase for the cells and reaching 'high cell density production' at t = 24 h of the process (C(X) = 70 g CDW/l); (b) achieving 1.8-fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2-fold; (d) eliminating the lactic acid build-up period; (e) lowering the oxygen uptake rate two-fold; and (f) obtaining 1.4-fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut(+) strains of P. pastoris for the production of any bio-product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris.

  10. Batch and fed-batch bioreactor studies for the enhanced production of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428.

    Science.gov (United States)

    Kumar, Sanjay; Prabhu, Ashish A; Dasu, V Venkata; Pakshirajan, Kannan

    2017-01-02

    The effect of dissolved oxygen (DO) level and pH (controlled/uncontrolled) was first studied to enhance the production of novel glutaminase-free L-asparaginase by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor. The optimum level of DO was found to be 20%. The production of L-asparaginase was found to be maximum when pH of the medium was maintained at 8.5 after 12 h of fermentation. Under these conditions, P. carotovorum produced 17.97 U/mL of L-asparaginase corresponding to the productivity of 1497.50 U/L/h. The production of L-asparaginase was studied in fed-batch bioreactor by feeding L-asparagine (essential substrate for production) and/or glucose (carbon source for growth) at the end of the reaction period of 12 h. The initial medium containing both L-asparagine and glucose in the batch mode and L-asparagine in the feeding stream was found to be the best combination for enhanced production of glutaminase-free L-asparaginase. Under this condition, the L-asparaginase production was increased to 38.8 U/mL, which corresponded to a productivity of 1615.8 U/L/h. The production and productivity were increased by 115.8% and 7.9%, respectively, both of which are higher than those obtained in the batch bioreactor experiments.

  11. Continuous abatement of methane coupled with ectoine production by Methylomicrobium alcaliphilum 20Z in stirred tank reactors: A step further towards greenhouse gas biorefineries

    OpenAIRE

    Cantera, Sara; Lebrero Fernández, Raquel; Rodríguez, Elisa; García Encina, Pedro A.; Muñoz Torre, Raúl

    2017-01-01

    Producción Científica This study demonstrates for the first time the feasibility of producing ectoine (a high added value osmoprotectant intensively used in the cosmetic industry) during the continuous abatement of diluted emissions of methane by Methylomicrobium alcaliphilum 20Z in stirred tank reactors under non-sterile conditions. An increase in NaCl concentration in the cultivation broth from 3 to 6% increased the intra-cellular ectoine yield by a factor of 2 (from 16.5 to 37.4 mg ecto...

  12. Novel approach of high cell density recombinant bioprocess development: Optimisation and scale-up from microlitre to pilot scales while maintaining the fed-batch cultivation mode of E. coli cultures

    Directory of Open Access Journals (Sweden)

    Rimšeliene Renata

    2010-05-01

    Full Text Available Abstract Background Bioprocess development of recombinant proteins is time consuming and laborious as many factors influence the accumulation of the product in the soluble and active form. Currently, in most cases the developmental line is characterised by a screening stage which is performed under batch conditions followed by the development of the fed-batch process. Performing the screening already under fed-batch conditions would limit the amount of work and guarantee that the selected favoured conditions also work in the production scale. Results Here, for the first time, high throughput multifactorial screening of a cloning library is combined with the fed-batch technique in 96-well plates, and a strategy is directly derived for scaling to bioreactor scale. At the example of a difficult to express protein, an RNase inhibitor, it is demonstrated that screening of various vector constructs and growth conditions can be performed in a coherent line by (i applying a vector library with promoters and ribosome binding sites of different strength and various fusion partners together with (ii an early stage use of the fed-batch technology. It is shown that the EnBase® technology provides an easy solution for controlled cultivation conditions in the microwell scale. Additionally the high cell densities obtained provide material for various analyses from the small culture volumes. Crucial factors for a high yield of the target protein in the actual case were (i the fusion partner, (ii the use of of a mineral salt medium together with the fed-batch technique, and (iii the preinduction growth rate. Finally, it is shown that the favorable conditions selected in the microwell plate and shake flask scales also work in the bioreactor. Conclusions Cultivation media and culture conditions have a major impact on the success of a screening procedure. Therefore the application of controlled cultivation conditions is pivotal. The consequent use of fed-batch

  13. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  14. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy

    Directory of Open Access Journals (Sweden)

    Zueco Jesus

    2009-12-01

    Full Text Available Abstract Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β, using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1, negligible if compared to that of the parental strain (0.028 h-1. However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the

  15. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation.

    Science.gov (United States)

    Maeda, Roberto Nobuyuki; Barcelos, Carolina Araújo; Santa Anna, Lídia Maria Melo; Pereira, Nei

    2013-01-10

    This study aimed to produce a cellulase blend and to evaluate its application in a simultaneous saccharification and fermentation (SSF) process for second generation ethanol production from sugar cane bagasse. The sugar cane bagasse was subjected to pretreatments (diluted acid and alkaline), as for disorganizing the ligocellulosic complex, and making the cellulose component more amenable to enzymatic hydrolysis. The residual solid fraction was named sugar cane bagasse partially delignified cellulignin (PDC), and was used for enzyme production and ethanol fermentation. The enzyme production was performed in a bioreactor with two inoculum concentrations (5 and 10% v/v). The fermentation inoculated with higher inoculum size reduced the time for maximum enzyme production (from 72 to 48). The enzyme extract was concentrated using tangential ultrafiltration in hollow fiber membranes, and the produced cellulase blend was evaluated for its stability at 37 °C, operation temperature of the simultaneous SSF process, and at 50 °C, optimum temperature of cellulase blend activity. The cellulolytic preparation was stable for at least 300 h at both 37 °C and 50 °C. The ethanol production was carried out by PDC fed-batch SSF process, using the onsite cellulase blend. The feeding strategy circumvented the classic problems of diffusion limitations by diminishing the presence of a high solid:liquid ratio at any time, resulting in high ethanol concentration at the end of the process (100 g/L), which corresponded to a fermentation efficiency of 78% of the maximum obtainable theoretically. The experimental results led to the ratio of 380 L of ethanol per ton of sugar cane bagasse PDC. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Mathematical modeling of fed-batch fermentation ofSchizochytriumsp. FJU-512 growth and DHA production using a shift control strategy.

    Science.gov (United States)

    Zhang, Mingliang; Wu, Weibin; Guo, Xiaolei; Weichen, You; Qi, Feng; Jiang, Xianzhang; Huang, Jianzhong

    2018-03-01

    To obtain high-cell-density cultures of Schizochytrium sp. FJU-512 for DHA production, two stages of fermentation strategy were used and carbon/nitrogen ratio, DO and temperature were controlled at different levels. The final dry cell weight, total lipid production and DHA yield in 15 l bioreactor reached 103.9, 37.2 and 16.0 g/l, respectively. For the further study of microbial growth and DHA production dynamics, we established a set of kinetic models for the fed-batch production of DHA by Schizochytrium sp. FJU-512 in 15 and 100 l fermenters and a compensatory parameter n was integrated into the model in order to find the optimal mathematical equations. A modified Logistic model was proposed to fit the cell growth data and the following kinetic parameters were obtained: µ m  = 0.0525/h, X m  = 100 g/l and n  = 4.1717 for the 15 l bioreactor, as well as µ m  = 0.0382/h, X m  = 107.4371 g/l and n  = 10 for the 100 l bioreactor. The Luedeking-Piret equations were utilized to model DHA production, yielding values of α  = 0.0648 g/g and β  = 0.0014 g/g/h for the 15 l bioreactor, while the values of α and β obtained for the 100 l fermentation were 0.0209 g/g and 0.0030 g/g/h. The predicted results compared with experimental data showed that the established models had a good fitting precision and were able to exactly depict the dynamic features of the DHA production process.

  17. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Directory of Open Access Journals (Sweden)

    Chugh Dipti

    2010-05-01

    Full Text Available Abstract Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant. Using immobilized metal ion affinity chromatography (IMAC as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.

  18. Production of exopolysaccharides by Acinetobacter strains in a controlled fed-batch fermentation process using soap stock oil (SSO) as carbon source.

    Science.gov (United States)

    Shabtai, Y

    1990-04-01

    The production of two extracellular capsular heteropolysaccharides by two different Acinetobacter strains has been studied in separate controlled fermentation processes with a view to their industrial applications as specific dispersing agents. The first, emulsan, is an extracellular polyanionic amphipathic heteropolysaccharide (MW 10(6) D) made by A. calcoaceticus RAG-1. It forms and stabilizes oil in water emulsions. The other, biodispersan (PS-A2), is another extracellular zwitterionic heteropolysaccharide (MW 51 kD) made by A. calcoaceticus A2. This polysaccharide disperses big solid limestone granules forming micron-size water suspension. Both polysaccharides are synthesized within the cells, exported to their outer surface to form an extracellular cell-associated capsule and released subsequently into the growth medium. The polymers were produced in a computer-controlled fed-batch intensively aerated fermentation process. A commercially available and cheap fatty acids mixture (soap stock oil) served as the carbon source, and was fed in coordination with the required nitrogen. The coordinated feed of carbon and nitrogen was operated on the basis of two metabolic correlations: The first correlation related the cell protein produced and the ammonium nitrogen consumed with the outcoming coeffients of 24 and 21 mM NH3/g protein for the emulsan and the biodispersan fermentations respectively. The second correlation linked the consumption of the fatty acids with that of the nitrogen source dictating the appropriate C/N ratio of the feed into the operating fermentor. These ratios were 7.7 g C/g N for the emulsan fermentation and 8.5 gC/g N in the case of the biodispersan production process.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs.

    Science.gov (United States)

    Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V; Lettieri, Paola; Titchener-Hooker, Nigel J

    2016-09-01

    Life-cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost-efficient, robust and environmentally-friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale-up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed-batch (FB) and perfusion-based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO 2 than the FB process. Water consumption was the most important impact category, especially when scaling-up the processes, as energy was required to produce process water and water-for-injection, while CO 2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally-friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324-1335, 2016. © 2016 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  20. The FM01-LC reactor modeling using axial dispersion model with a reaction term coupled with a continuous stirred tank (CST)

    International Nuclear Information System (INIS)

    Cruz-Díaz, Martín; Rivera, Fernando F.; Rivero, Eligio P.; González, Ignacio

    2012-01-01

    This work is aimed at modeling the operation of the FM01-LC reactor coupled with a continuous stirred tank (CST) in recirculation mode. The parametric flow dispersion model with an electrochemical reaction limited by mass transfer coupled with Poisson (tertiary potential distribution) and CST equations are used to describe the performance of a FM01-LC reactor with 3D electrodes. Theoretical predictions for dispersion reaction coupled with CST showed a good agreement with the experimental data on depletion of electroactive species as a function of time and potential distribution, whereas these data have not been adequately described by the plug-flow model. Fluid dispersion obtained in the reaction zone (depending on the fluid flow velocities and geometric configuration), plays an important role in tertiary potential distribution.

  1. Enhanced fed-batch production of pyrroloquinoline quinine in Methylobacillus sp. CCTCC M2016079 with a two-stage pH control strategy.

    Science.gov (United States)

    Si, Zhenjun; Machaku, David; Wei, Peilian; Huang, Lei; Cai, Jin; Xu, Zhinan

    2017-06-01

    The effects of pH control strategy and fermentative operation modes on the biosynthesis of pyrroloquinoline quinine (PQQ) were investigated systematically with Methylobacillus sp. CCTCC M2016079 in the present work. Firstly, the shake-flask cultivations and benchtop fermentations at various pH values ranging from 5.3 to 7.8 were studied. Following a kinetic analysis of specific cell growth rate (μ x ) and specific PQQ formation rate (μ p ), the discrepancy in optimal pH values between cell growth and PQQ biosynthesis was observed, which stimulated us to develop a novel two-stage pH control strategy. During this pH-shifted process, the pH in the broth was controlled at 6.8 to promote the cell growth for the first 48 h and then shifted to 5.8 to enhance the PQQ synthesis until the end of fermentation. By applying this pH-shifted control strategy, the maximum PQQ production was improved to 158.61 mg/L in the benchtop fermenter, about 44.9% higher than that under the most suitable constant pH fermentation. Further fed-batch study showed that PQQ production could be improved from 183.38 to 272.21 mg/L by feeding of methanol at the rate of 11.5 mL/h in this two-stage pH process. Meanwhile, the productivity was also increased from 2.02 to 2.84 mg/L/h. In order to support cell growth during the shifted pH stage, the combined feeding of methanol and yeast extract was carried out, which brought about the highest concentration (353.28 mg/L) and productivity (3.27 mg/L/h) of PQQ. This work has revealed the potential of our developed simple and economical strategy for the large-scale production of PQQ.

  2. A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage ΦX174-derived lysis protein E.

    Science.gov (United States)

    Ehgartner, Daniela; Sagmeister, Patrick; Langemann, Timo; Meitz, Andrea; Lubitz, Werner; Herwig, Christoph

    2017-07-01

    Production of recombinant proteins as inclusion bodies is an important strategy in the production of technical enzymes and biopharmaceutical products. So far, protein from inclusion bodies has been recovered from the cell factory through mechanical or chemical disruption methods, requiring additional cost-intensive unit operations. We describe a novel method that is using a bacteriophage-derived lysis protein to directly recover inclusion body protein from Escherichia coli from high cell density fermentation process: The recombinant inclusion body product is expressed by using a mixed feed fed-batch process which allows expression tuning via adjusting the specific uptake rate of the inducing substrate. Then, bacteriophage ΦX174-derived lysis protein E is expressed to induce cell lysis. Inclusion bodies in empty cell envelopes are harvested via centrifugation of the fermentation broth. A subsequent solubilization step reveals the recombinant protein. The process was investigated by analyzing the impact of fermentation conditions on protein E-mediated cell lysis as well as cell lysis kinetics. Optimal cell lysis efficiencies of 99% were obtained with inclusion body titers of >2.0 g/l at specific growth rates higher 0.12 h -1 and inducer uptake rates below 0.125 g/(g × h). Protein E-mediated cell disruption showed a first-order kinetics with a kinetic constant of -0.8 ± 0.3 h -1 . This alternative inclusion body protein isolation technique was compared to the one via high-pressure homogenization. SDS gel analysis showed 10% less protein impurities when cells had been disrupted via high-pressure homogenization, than when empty cell envelopes including inclusion bodies were investigated. Within this contribution, an innovative technology, tuning recombinant protein production and substituting cost-intensive mechanical cell disruption, is presented. We anticipate that the presented method will simplify and reduce the production costs of inclusion body

  3. Cultivo mixotrófico da microalga Spirulina platensis em batelada alimentada Mixotrophic growth of Spirulina platensis in fed-batch mode

    Directory of Open Access Journals (Sweden)

    Adriana Muliterno

    2005-12-01

    Full Text Available A Spirulina platensis tem sido estudada devido a seu alto valor protéico, digestibilidade e por apresentar quantidades significativas de ácidos graxos poliinsaturados, vitaminas, fenólicos e ficocianina, podendo ser utilizada na alimentação humana. A utilização de nutrientes de baixo custo é um fator importante na produção da cianobactéria por possibilitar a redução de custos de processo. Objetivou-se com este trabalho estudar o cultivo mixotrófico da S. platensis por meio da adição de uma fonte orgânica de carbono (glicose em modo bateladaalimentada. Foi utilizado um Planejamento Fatorial Completo 2³ para o cultivo e as variáveis de estudo foram a concentração de glicose (0,5 gL-1 e 1,0 gL-1, a diluição do meio Zarrouk (50% e 75% e a iluminância (1800 lux e 3000 lux. A concentração celular máxima obtida foi de 5,38 gL-1 com uma velocidade específica máxima de crescimento de 0,0063 h-1, nas condições de 0,5 gL-1 de glicose, diluição do meio de 75% e iluminância de 3000 lux.The cyanobacterium Spirulina platensis has been studied due to its high content (~65% of highly digestible protein as well as significant amounts of polyunsaturated fatty acids, phenolics, vitamins, minerals and phycocyanin which could be useful in the human nutrition. The use of nutrients of low costs in the cyanobacterium growth could reduce the costs of production. We studied the fed-batch mixotrophic growth of the S. platensis in Zarrouk's medium with glucose (0.5 gL-1 and 1.0 gL-1 as carbon source and also investigated the effects of dilution (50% and 75%, with water and illumination (1,800 lux and 3,000 lux using a 2³ factorial design. The maximum celular concentration of 5.38 gL-1 and maximum specific growth rate of 0.0063 h-1 were obtained with a glucose concentration of 0.5 gL-1, 50% dilution and 1800 lux of illuminance.

  4. Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7.

    Science.gov (United States)

    Tang, Yue-Qin; An, Ming-Zhe; Zhong, Ya-Ling; Shigeru, Morimura; Wu, Xiao-Lei; Kida, Kenji

    2010-01-01

    Waste molasses is one of the most important feedstock for ethanol production in Brazil as well as in many Southeast Asian countries, including China. Sulfuric acid pretreatment is employed in most ethanol distilleries in China to control bacterial contamination, which results in difficulties in the treatment of wastewater containing high levels of sulfate ions. In this study, a high efficiency, non-sterilized, continuous ethanol fermentation process without sulfuric acid pretreatment was developed using the flocculating yeast strain KF-7 and the widely utilized, traditional, stirred tank reactors. An alternative molasses medium feeding method, which differs from traditional methods, is proposed that effectively controls bacterial contamination. Separate feeding of 1.2-fold diluted molasses and tap water into the reactor proved to be effective against bacterial contamination during long-term continuous fermentation. By feeding yeast cells with high metabolic activity to the second reactor, a two-stage continuous fermentation process that yielded a high ethanol concentration of 80 g/l as well as high ethanol productivity of 6.6 g/l/h was successfully operated for more than one month. This fermentation process can be applied to ethanol distilleries in which traditional tank reactors are used. 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures.

    Science.gov (United States)

    Park, Jin Hyoung; Jin, Jong Hwa; Ji, In Jung; An, Hyun Joo; Kim, Jong Won; Lee, Gyun Min

    2017-10-01

    Chinese hamster ovary (CHO) cells are the most widely used host cell lines for the commercial production of therapeutic proteins including Fc-fusion proteins. During the culture of recombinant CHO (rCHO) cells, host cell proteins (HCPs), secreted from viable cells and released from dead cells, accumulate extracellularly, potentially impairing product quality. In this study, the HCPs that accumulated extracellularly in batch and fed-batch cultures of Fc-fusion protein-producing rCHO cell lines (DG-Fc and DUKX-Fc) were identified and quantified using nanoflow liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by gene ontology and functional analysis. When the proteome database of Cricetulus griseus was used as a reference to identify the HCPs, more HCPs were identified for DG-Fc (1632 HCPs in batch culture and 1733 HCPs in fed-batch culture) than for DUKX-Fc (1114 HCPs in batch culture and 1002 HCPs in fed-batch culture). Clustering analysis of HCPs, which were classified into four clusters according to their concentration profiles during culture, showed that the concentration profiles of HCPs affecting the quality of Fc-fusion proteins correlated with changes in Fc-fusion protein quality. Taken together, the dataset of HCPs obtained in this study using the two different rCHO cell lines provides insights into the determination of appropriate target proteins to be removed during the culture and purification steps so as to ensure good Fc-fusion protein quality. Biotechnol. Bioeng. 2017;114: 2267-2278. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    Science.gov (United States)

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor.

    Science.gov (United States)

    Ueno, Y; Haruta, S; Ishii, M; Igarashi, Y

    2001-10-01

    Changes in product formation during carbohydrate fermentation by anaerobic microflora in a continuous flow stirred tank reactor were investigated with respect to the dilution rate in the reactor. In the fermentation by methanogenic microflora, stable methane fermentation, producing methane and carbon dioxide, was observed at relatively low dilution rates (less than 0.33 d(-1) on glucose and 0.20 d(-1) on cellulose). Decomposition of cellulose in the medium was a rate-limiting step in the reaction, because glucose was easily consumed at all applied dilution rates (0.07-4.81 d(-1)). Intermediate metabolites of methane fermentation, such as lactate, ethanol, acetate, butyrate, formate, hydrogen, and carbon dioxide, were accumulated as dilution rate increased. Maximum yield of hydrogen was obtained at 4.81 d(-1) of dilution rate (0.1 mol/mol glucose on glucose or 0.7 mol/mol hexose on cellulose). Lactate was the major product on glucose (1.2 mol/mol glucose), whereas ethanol was predominant on cellulose (0.7 mol/mol hexose). An analysis by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial 16S rDNA of the microflora indicated that changes in the microbial community took place at various dilution rates, and these changes appeared to correspond to the changes in product distributions. Sequence analyses of the DGGE fragments revealed the probable major population of the microflora. A band closely related to the microorganisms of thermophilic anaerobic bacteria was detected with strong intensity on both glucose and cellulose. Differences in the production yield of hydrogen could have been caused by different populations of microorganisms in each microflora. In the case of cellulose, increasing the dilution rate brought about an accumulation of microorganisms related to Clostridia species that have cellulolytic activity, this being in accordance with the notion of cellulose decomposition being the rate-limiting reaction.

  8. Adiabatic continuous stirred tank reactor

    DEFF Research Database (Denmark)

    Schroll-Fleischer, Eskild; Wu, Hao; Huusom, Jakob Kjøbsted

    the experiment for use in course 28845 Chemical Reaction Engineering Laboratory. Initially the experimental setup is described in terms of programmable logic controller (PLC) hardware, laboratory apparatus and software. This is followed by a description of how to connect to the PLC via OPC-UA. The appendix...... contains an experimental guide for use in course 28845, step-by-step instructions on how to control the setup with a computer, sample code and datasheets....

  9. Modelling, Optimization and Optimal Control of Small Scale Stirred Tank Bioreactors

    Directory of Open Access Journals (Sweden)

    Mitko Petrov

    2004-10-01

    Full Text Available Models of the mass-transfer in a stirred tank bioreactor depending on general indexes of the processes of aeration and mixing in concrete simplifications of the hydrodynamic structure of the flows are developed. The offered combined model after parameters identification is used for optimization of the parameters of the apparatus construction. The optimization problem is solved by using of the fuzzy sets theory and in this way the unspecified as a result of the model simplification are read. In conclusion an optimal control of a fed-batch fermentation process of E. coli is completed by using Neuro-Dynamic programming. The received results after optimization show a considerable improvement of the mass-transfer indexes and the quantity indexes at the end of the process.

  10. Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate.

    Science.gov (United States)

    Klocke, Michael; Mähnert, Pia; Mundt, Kerstin; Souidi, Khadidja; Linke, Bernd

    2007-03-01

    The bioconversion of renewable raw material to biogas by anaerobic microbial fermentation processes in completely stirred tank reactors (CSTR) is a valuable alternative resource of energy especially for rural areas. However, knowledge about the microorganisms involved in the degradation of plant biomass is still poor. In this study, a first analysis of the biogas-forming process within a CSTR fed continuously with fodder beet silage as mono-substrate is presented in the context of molecular data on the microbial community composition. As indicated by the conventional process parameters like pH value, content of volatile fatty acids, N:P ratio and the biogas yield, the biogas-forming process within the CSTR occurred with a stable and efficient performance. The average biogas yield based on volatile solids was 0.87m(3)kg(-1) at an organic loading rate of 1.2-2.3kgm(-3)d(-1). This amounts to 94% of the theoretical maximum. In order to identify microorganisms within the CSTR, a 16S rDNA clone library was constructed by PCR amplification applying a prokaryote-specific primer set. One hundred and forty seven clones were obtained and subsequently characterized by amplified rDNA restriction analysis (ARDRA). The sequences of 60 unique ARDRA patterns were estimated in a length of approximately 800-900bp each. Four of them were assigned to the domain Archaea and 56 to the domain Bacteria. Within the domain Archaea, all clones showed a close relationship to methanogenic species. Major bacterial groups represented in the clone library were the class Clostridia of the phylum Firmicutes (22% of all 16S rDNA clones), the class Deltaproteobacteria of the phylum Proteobacteria (24%), the class Bacilli of the phylum Firmicutes (22%) and members of the phylum Bacteroidetes (21%). Within these major groups, the highest biodiversity was found within the class Clostridia (35% of all operational taxonomic units). Members of the phyla Actinobacteria and Spirochaetes were represented only

  11. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  12. Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7-2-4.

    Science.gov (United States)

    Pang, Zong-Wen; Lu, Wei; Zhang, Hui; Liang, Zheng-Wu; Liang, Jing-Juan; Du, Liang-Wei; Duan, Cheng-Jie; Feng, Jia-Xun

    2016-07-01

    Sugarcane bagasse (SB) is a potential feedstock for butanol production. However, biological production of butanol from SB is less economically viable. In this study, evaluation of eight pretreatments on SB showed that alkali pretreatment efficiently removed lignin from SB while retaining the intact native structure of the released microfibrils. In total, 99% of cellulose and 100% of hemicellulose in alkali-pretreated SB were hydrolysed by enzymes from Thermoascus aurantiacus. The hydrolysate was used to produce butanol in a fed-batch fermentation by Clostridium acetobutylicum. At 60h, 14.17 and 21.11gL(-1) of butanol and acetone-butanol-ethanol (ABE) were produced from 68.89gL(-1) of total sugars, respectively, yielding 0.22 and 0.33gg(-1) of sugars. The maximum yield of butanol and ABE reached 15.4g and 22.9g per 100g raw SB, respectively. This established process may have potential application for butanol production from SB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition.

    Science.gov (United States)

    Hu, Jinlong; Zhang, Zhenting; Lin, Yanxu; Zhao, Shumiao; Mei, Yuxia; Liang, Yunxiang; Peng, Nan

    2015-04-01

    Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  15. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  16. 21 CFR 133.144 - Granular and stirred curd cheese.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular and stirred curd cheese. 133.144 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.144 Granular and stirred curd cheese. (a) Description. (1...

  17. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    Science.gov (United States)

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ce-Zr-La/Al2O3 prepared in a continuous stirred-tank reactor: a highly thermostable support for an efficient Rh-based three-way catalyst.

    Science.gov (United States)

    Wang, Su-Ning; Lan, Li; Hua, Wei-Bo; Shi, Zhong-Hua; Chen, Yao-Qiang; Gong, Mao-Chu; Zhong, Lin

    2015-12-21

    Two Ce-Zr-La/Al2O3 composite oxides, CZLA-C and CZLA-B, were synthesized using a co-precipitation method in a continuous stirred-tank reactor (CSTR) and a batch reactor (BR), respectively. Two Rh-based three-way catalysts (TWCs), Rh/CZLA-C and Rh/CZLA-B were obtained by a wet-impregnation method using the two composites as the supports. The physicochemical properties of the samples before and after thermal treatment at 1000 °C were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), H2-temperature programmed reduction (H2-TPR) and CO chemisorption. The results indicated that CZLA-C shows higher thermal stability than CZLA-B due to a sparsely-agglomerated morphology. Compared with Rh/CZLA-B, Rh/CZLA-C displayed better reducibility and higher thermal stability and exhibited significantly higher activity in the catalytic removal of the simulated gasoline vehicle exhaust emission (NO, CO and C3H8). Our work can provide a facile and economical synthesis route to advanced support materials and catalysts for exhaust emission control.

  19. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    Science.gov (United States)

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A system of miniaturized stirred bioreactors for parallel continuous cultivation of yeast with online measurement of dissolved oxygen and off-gas.

    Science.gov (United States)

    Klein, Tobias; Schneider, Konstantin; Heinzle, Elmar

    2013-02-01

    Chemostat cultivation is a powerful tool for physiological studies of microorganisms. We report the construction and application of a set of eight parallel small-scale bioreactors with a working volume of 10 mL for continuous cultivation. Hungate tubes were used as culture vessels connected to multichannel-peristaltic pumps for feeding fresh media and removal of culture broth and off-gas. Water saturated air is sucked into the bioreactors by applying negative pressure, and small stirrer bars inside the culture vessels allow sufficient mixing and oxygen transfer. Optical sensors are used for non-invasive online measurement of dissolved oxygen, which proved to be a powerful indicator of the physiological state of the cultures, particularly of steady-state conditions. Analysis of culture exhaust-gas by means of mass spectrometry enables balancing of carbon. The capacity of the developed small-scale bioreactor system was validated using the fission yeast Schizosaccharomyces pombe, focusing on the metabolic shift from respiratory to respiro-fermentative metabolism, as well as studies on consumption of different substrates such as glucose, fructose, and gluconate. In all cases, an almost completely closed carbon balance was obtained proving the reliability of the experimental setup. Copyright © 2012 Wiley Periodicals, Inc.

  1. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  2. Understanding Friction Stir Welding

    Science.gov (United States)

    Nunes, A. C., Jr.

    2018-01-01

    This Technical Memorandum explains the friction stir welding process in terms of two basic concepts: the concentration of deformation in a shear surface enveloping the tool and the composition of the overall plastic flow field around the tool from simple flow field components. It is demonstrated how weld structure may be understood and torque, drag, and lateral tool forces may be estimated using these concepts. Some discrepancies between computations and accompanying empirical data are discussed in the text. This work is intended to be helpful to engineers in diagnosing problems and advancing technology.

  3. Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from cellulomonas flavigena PR-22.

    Science.gov (United States)

    Rojas-Rejón, Óscar A; Poggi-Varaldo, Héctor M; Ramos-Valdivia, Ana C; Ponce-Noyola, Teresa; Cristiani-Urbina, Eliseo; Martínez, Alfredo; de la Torre, Mayra

    2016-03-01

    Cellulase (CMCase) and xylanase enzyme production and saccharification of sugar cane bagasse were coupled into two stages and named enzyme production and sugar cane bagasse saccharification. The performance of Cellulomonas flavigena (Cf) PR-22 cultured in a bubble column reactor (BCR) was compared to that in a stirred tank reactor (STR). Cells cultured in the BCR presented higher yields and productivity of both CMCase and xylanase activities than those grown in the STR configuration. A continuous culture with Cf PR-22 was run in the BCR using 1% alkali-pretreated sugar cane bagasse and mineral media, at dilution rates ranging from 0.04 to 0.22 1/h. The highest enzymatic productivity values were found at 0.08 1/h with 1846.4 ± 126.4 and 101.6 ± 5.6 U/L·h for xylanase and CMCase, respectively. Effluent from the BCR in steady state was transferred to an enzymatic reactor operated in fed-batch mode with an initial load of 75 g of pretreated sugar cane bagasse; saccharification was then performed in an STR at 55°C and 300 rpm for 90 h. The constant addition of fresh enzyme as well as the increase in time of contact with the substrate increased the total soluble sugar concentration 83% compared to the value obtained in a batch enzymatic reactor. This advantageous strategy may be used for industrial enzyme pretreatment and saccharification of lignocellulosic wastes to be used in bioethanol and chemicals production from lignocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:321-326, 2016. © 2016 American Institute of Chemical Engineers.

  4. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR).

    Science.gov (United States)

    Zhou, Xin; Zhou, Xuelian; Xu, Yong; Yu, Shiyuan

    2016-08-01

    In this study, a compressed oxygen gas supply was connected to a sealed aerated stirred tank reactor (COS-SSTR) bio-system, leading to a high-oxygen pressure bioreactor used to improve the bio-transformative performance in the production of 1,3-dihydroxyacetone (DHA) from glycerol using Gluconobacter oxydans NL71. A concentration of 301.2 ± 8.2 g L(-1) DHA was obtained from glycerol after 32 h of fed-batch fermentation in the COS-SSTR system. The volumetric productivity for this process was 9.41 ± 0.23 g L(-1) h(-1), which is presently the highest obtained level of glycerol bioconversion into DHA. These results show that the application of this bioreactor would enable microbial production of DHA from glycerol at the industrial scale.

  5. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    KAUST Repository

    Lanas, Vanessa

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode. © 2013 Elsevier B.V. All rights reserved.

  6. Stirring by swimming bodies

    Energy Technology Data Exchange (ETDEWEB)

    Thiffeault, Jean-Luc, E-mail: jeanluc@math.wisc.ed [Department of Mathematics, University of Wisconsin - Madison, 480 Lincoln Dr., Madison, WI 53706 (United States); Institute for Mathematics and Applications, University of Minnesota - Twin Cities, 207 Church Street S.E., Minneapolis, MN 55455 (United States); Childress, Stephen [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (United States)

    2010-07-26

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  7. The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance - two-compartment scale-down modelling and intracellular pH excursion.

    Science.gov (United States)

    Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens

    2017-07-01

    Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Melt Stirring by Horizontal Crucible Vibration

    Science.gov (United States)

    Wolf, M. F.; Elwell, D.; Feigelson, R. S.

    1985-01-01

    Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.

  9. Modelling of baffled stirred tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H.; Lahtinen, M. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-31

    The three-dimensional flow field of a baffled stirred tank has been calculated using four different turbulence models. The tank is driven by a Rushton-type impeller. The boundary condition for the impeller region has been given as a source term or by calculating the impeller using the sliding mesh technique. Calculated values have been compared with measured data. (author)

  10. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  11. Flexible Friction Stir Joining Technology

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lim, Yong Chae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mahoney, Murray [MegaStir Technologies LLC, Orem, UT (United States); Sanderson, Samuel [MegaStir Technologies LLC, Orem, UT (United States); Larsen, Steve [MegaStir Technologies LLC, Orem, UT (United States); Steel, Russel [MegaStir Technologies LLC, Orem, UT (United States); Fleck, Dale [MegaStir Technologies LLC, Orem, UT (United States); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Babb, Jon [MegaStir Technologies LLC, Orem, UT (United States); Higgins, Paul [MegaStir Technologies LLC, Orem, UT (United States)

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding and 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.

  12. Fed-Batch Feeding Strategies for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John

    2014-01-01

    of the differences in the interfacial and bulk concentrations of the enzyme. The model is then used to evaluate various feeding strategies to improve the enzymatic biodiesel production. The feeding strategies investigated, gave insight into how the methanol should be fed to potentially mitigate enzyme deactivation...... while improving the biodiesel yield. The best experimental results gave a yield of 703 .76 g FAME L-1 and a reactor productivity of 28.12 g FAME L-1 h-1. In comparison, to reach the same yield, the optimised two step feeding strategy took 6.25 hours less, which equates to an increase the reactor...

  13. Uniform and reproducible stirring in a microbioreactor

    DEFF Research Database (Denmark)

    Bolic, Andrijana; Eliasson Lantz, Anna; Rottwitt, Karsten

    At present, research in bioprocess science and engineering increasingly requires fast and accurate analytical data (rapid testing) that can be used for investigation of the interaction between bioprocess operation conditions and the performance of the bioprocess. Miniaturization is certainly...... microbioreactor application. In order to address some of these questions, we are currently investigating and developing a microbioreactor platform with a reactor volume up to 1ml, as we believe that this volume is of interest to many industrial applications. It is widely known that stirring plays a very important...... role in achieving successful cultivations by promoting uniform process conditions and – for aerobic cultivations – a high oxygen transfer rate. In this contribution, the development of a suitable, reliable and reproducible stirrer in a microbioreactor for batch and continuous cultivation of S...

  14. Ozone absorption in a mechanically stirred reactor

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIC

    2007-08-01

    Full Text Available Ozone absorption in water was investigated in a mechanically stirred reactor, using both the semi-batch and continuous mode of operation. A model for the precise determination of the volumetric mass transfer coefficient in open tanks without the necessity of the measurement the ozone concentration in the outlet gas was developed. It was found that slow ozone reactions in the liquid phase, including the decomposition of ozone, can be regarded as one pseudo-first order reaction. Under the examined operating conditions, the liquid phase was completely mixed, while mixing in a gas phase can be described as plug flow. The volumetric mass transfer coefficient was found to vary with the square of the impeller speed.

  15. CFD stimulation of gluconic acid production in a stirred gas-liquid fermenter

    OpenAIRE

    Elqotbi, Mohammed; Montastruc, Ludovic; Vlaev, S.D.; Nikov, Iordan

    2006-01-01

    Designing large-scale stirred bioreactors with performance closely matching the one achieved in lab-scale fermenters presents continuous challenge. In this contribution, dynamic modelling of the aerobic biocatalytic conversion process in viscous batch stirred tank reactor is developed. Its operation is illustrated by simulation of the interaction of fluid flow, mass transfer and reaction relevant to gluconic acid production by a strictly aerophilic Aspergiluc niger based on a “two...

  16. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  17. Gimbaled-shoulder friction stir welding tool

    Science.gov (United States)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  18. A Review of Permanent Magnet Stirring During Metal Solidification

    Science.gov (United States)

    Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander

    2017-12-01

    Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

  19. Recent Developments in Friction Stir Welding of Al-alloys

    Science.gov (United States)

    Çam, Gürel; Mistikoglu, Selcuk

    2014-06-01

    The diversity and never-ending desire for a better life standard result in a continuous development of the existing manufacturing technologies. In line with these developments in the existing production technologies the demand for more complex products increases, which also stimulates new approaches in production routes of such products, e.g., novel welding procedures. For instance, the friction stir welding (FSW) technology, developed for joining difficult-to-weld Al-alloys, has been implemented by industry in manufacturing of several products. There are also numerous attempts to apply this method to other materials beyond Al-alloys. However, the process has not yet been implemented by industry for joining these materials with the exception of some limited applications. The microstructures and mechanical properties of friction stir welded Al-alloys existing in the open literature will be discussed in detail in this review. The correlations between weld parameters used during FSW and the microstructures evolved in the weld region and thus mechanical properties of the joints produced will be highlighted. However, the modeling studies, material flow, texture formation and developments in tool design are out of the scope of this work as well as the other variants of this technology, such as friction stir spot welding (FSSW).

  20. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia

    DEFF Research Database (Denmark)

    Tian, Hailin; Fotidis, Ioannis; Mancini, Enrico

    2017-01-01

    Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic...... reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic...... activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method...

  1. Gimballed Shoulders for Friction Stir Welding

    Science.gov (United States)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  2. Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool

    International Nuclear Information System (INIS)

    Zhang Yu; Sato, Yutaka S.; Kokawa, Hiroyuki; Park, Seung Hwan C.; Hirano, Satoshi

    2008-01-01

    In the present study, friction stir welding was applied to commercial purity titanium using a polycrystalline cubic boron nitride tool, and microstructure and hardness in the weld were examined. Additionally, the microstructural evolution during friction stir welding was also discussed. The stir zone consisted of fine equiaxed α grains surrounded by serrate grain boundaries, which were produced through the β → α allotropic transformation during the cooling cycle of friction stir welding. The fine α grains caused higher hardness than that in the base material. A lath-shaped α grain structure containing Ti borides and tool debris was observed in the surface region of the stir zone, whose hardness was the highest in the weld

  3. Friction Stir Welding of Steel Alloys

    Science.gov (United States)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  4. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    Science.gov (United States)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack

  5. School-Meals Makeover Stirs the Pot

    Science.gov (United States)

    Shah, Nirvi

    2011-01-01

    Proposed new federal rules governing the meals served to school children across the country each weekday are causing a stir among food industry groups, cafeteria managers, parents, and students. The skirmish is over the U.S. Department of Agriculture's efforts, prompted by the recent passage of the Healthy, Hunger-Free Kids Act, to rewrite the…

  6. On Electromagnetic Stirring of Molten Metals

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Šolín, Pavel; Zítka, M.; Ulrych, B.

    2005-01-01

    Roč. 50, č. 1 (2005), s. 35-51 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA102/03/0047; GA ČR(CZ) GA102/05/0629 Institutional research plan: CEZ:AV0Z20570509 Keywords : electromagnetic stirring * molten metal * induction heating Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  7. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control.

    Science.gov (United States)

    Xu, Sen; Chen, Hao

    2016-08-10

    Maintaining desired pH is a necessity for optimal cell growth and protein production. It is typically achieved through a two-sided pH control loop on the bioreactor controller. Here we investigated cell culture processes with minimum or no pH control and demonstrated that high-density mammalian cell cultures could be maintained for long-term protein production without pH control. The intrinsic interactions between pCO2, lactate, and pH were leveraged to maintain culture pH. Fed-batch cultures at the same lower pH limit of 6.75 but different upper pH limits (7.05, 7.30, 7.45, 7.65) were evaluated in the 3L bioreactors and comparable results were obtained. Neither CO2 sparging nor base addition was required to control pH in the pH range of 6.75-7.65. The impact of sparger configurations (drilled hole sparger vs. frit sparger) and scales (3L vs. 200L) on CO2 accumulation and culture pH was also demonstrated. The same principle was applied in two perfusion cultures with steady state cell densities at 42.5±3.3 or 68.3±6.0×10(6)cells/mL with low cell specific perfusion rates (15±2 to 23±3pL/cell/day), achieving up to 1.9±0.1g/L/day bioreactor productivity. Culture pH level in the 3L perfusion bioreactors was steadily maintained by controlling the residual lactate and pCO2 levels without the requirement of external pH control for up to 40days with consistent productivity and product quality. Furthermore, culture pH could be potentially modulated via adjusting residual glucose levels and CO2 stripping capability in perfusion cultures. To the best of our knowledge, this is the first time a systematic study was performed to evaluate the long-term cell cultivation and protein production in stirred-tank bioreactors without external pH control. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of a stirring process in an isothermal titration microcalorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Socorro, F.; Nuez, I. de la; Alvarez, L.; Rodriguez de Rivera, M

    2004-10-01

    In this paper, it is analysed the way in which the thermodynamic results obtained in an isothermal titration microcalorimeter, with continuous injection of a liquid and a variable mass are affected. Two aspects are presented, the first one refers to a variation in the baseline that takes place when the liquid mass is increased in the laboratory cell, this variation is due to the change in the thermal coupling between the stirrer and its contact with the thermostat. The second aspect is the analysis of the effect of the stirring process and the injection velocity on the homogenization of the remaining mixture in the laboratory cell. The aim of the study of these two previous aspects is to increase the accuracy of the thermodynamic measures carried out. The variation of the baseline affects in a percentage from 1 to 2% of the total energy developed. It is also shown the necessity of a stirring process according to the injection velocity in order to obtain a homogeneous mixture at every instant. This fact allows to carry out a deconvolution of the calorimetric signal and to obtain directly the power developed in the mixture process in terms of the amount of mixed substance [Meas. Sci. Technol. 1 (1990) pp. 1285-1290; J. Thermal Analysis 41 (1994) pp. 1385-1392].

  9. Friction stir processing on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Sergei Yu., E-mail: tsy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, Alexander G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Rubtsov, Valery E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring the wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively.

  10. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  11. Thermal modelling of friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    The objective of the present work is to present the basic elements of the thermal modelling of friction stir welding as well as to clarify some of the uncertainties in the literature regarding the different contributions to the heat generation. Some results from a new thermal pseudomechanical model...... in which the temperature-dependent yield stress of the weld material controls the heat generation are also presented....

  12. Joining dissimilar materials using Friction Stir scribe technique

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep; Fifield, Leonard S.

    2016-10-03

    The ability to effectively join materials with vastly different melting points like Aluminum-Steel, Polymer composites - metals has been one of the road blocks in realizing multi-material components for light weighting efforts. Friction stir scribe (FSS) technique is a promising method that produces continuous overlap joint between materials with vastly different melting regimes and high temperature flow characteristics. FSS uses an offset cutting tool at the tip of the FSW pin to create an insitu mechanical interlock between material interfaces. With investments from Vehicle Technology office, US DOE and several automotive manufacturers and suppliers PNNL is developing the FSS process and has demonstrated viability of joining several material combinations. Details of welding trails, unique challenges and mitigation strategies in different material combinations will be discussed. Joint characterization including mechanical tests and joint performances will also be presented.

  13. Continuous Ethanol Production Using Immobilized-Cell/Enzyme Biocatalysts in Fluidized-Bed Bioreactor (FBR)

    Energy Technology Data Exchange (ETDEWEB)

    Nghiem, NP

    2003-11-16

    The immobilized-cell fluidized-bed bioreactor (FBR) was developed at Oak Ridge National Laboratory (ORNL). Previous studies at ORNL using immobilized Zymomonas mobilis in FBR at both laboratory and demonstration scale (4-in-ID by 20-ft-tall) have shown that the system was more than 50 times as productive as industrial benchmarks (batch and fed-batch free cell fermentations for ethanol production from glucose). Economic analysis showed that a continuous process employing the FBR technology to produce ethanol from corn-derived glucose would offer savings of three to six cents per gallon of ethanol compared to a typical batch process. The application of the FBR technology for ethanol production was extended to investigate more complex feedstocks, which included starch and lignocellulosic-derived mixed sugars. Economic analysis and mathematical modeling of the reactor were included in the investigation. This report summarizes the results of these extensive studies.

  14. Friction Stir Processing of Cast Superalloys, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  15. Engineered Alloy Structures by Friction Stir Reaction Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative surface modification technology incorporating friction stir reaction processing for producing...

  16. Open and continuous fermentation: products, conditions and bioprocess economy.

    Science.gov (United States)

    Li, Teng; Chen, Xiang-bin; Chen, Jin-chun; Wu, Qiong; Chen, Guo-Qiang

    2014-12-01

    Microbial fermentation is the key to industrial biotechnology. Most fermentation processes are sensitive to microbial contamination and require an energy intensive sterilization process. The majority of microbial fermentations can only be conducted over a short period of time in a batch or fed-batch culture, further increasing energy consumption and process complexity, and these factors contribute to the high costs of bio-products. In an effort to make bio-products more economically competitive, increased attention has been paid to developing open (unsterile) and continuous processes. If well conducted, continuous fermentation processes will lead to the reduced cost of industrial bio-products. To achieve cost-efficient open and continuous fermentations, the feeding of raw materials and the removal of products must be conducted in a continuous manner without the risk of contamination, even under 'open' conditions. Factors such as the stability of the biological system as a whole during long cultivations, as well as the yield and productivity of the process, are also important. Microorganisms that grow under extreme conditions such as high or low pH, high osmotic pressure, and high or low temperature, as well as under conditions of mixed culturing, cell immobilization, and solid state cultivation, are of interest for developing open and continuous fermentation processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Dmitriev, Andrey I., E-mail: dmitr@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G., E-mail: sp@ms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  18. Friction stir welding of 6061 aluminium alloy

    International Nuclear Information System (INIS)

    Abdel Rahman, M.A.M.S.

    2009-01-01

    6061 AA (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio and good corrosion resistance such as marine frames, pipelines, storage tanks, and aircraft components [1]. It is also used for the manufacturing of fuel elements in the nuclear research reactors. Compared to many of the fusion welding processes that are routinely used for joining structural alloys, friction stir welding (FSW) is a solid state joining process in which the material that is being welded is not melted and recast [2]. The welding parameters such as tool rotational speed, welding traverse speed, and tool profile play a major role in deciding the weld quality. Several FSW tools (differ from each other in pin angle, shoulder diameter, and shoulder concavity) have been used to fabricate a number of joints in order to obtain a tool with which a sound weld can be produced. It was found that the FSW tool with tapered cone pin, concave shoulder, and shoulder diameter equal to four times the welded plate thickness is suitable to produce a sound weld. The effect of the traverse speed on the global and local tensile properties of friction stir welded joints has been investigated in the 6061-T6 AA. The global tensile properties of the FSW joints were improved with increasing the traverse speed at constant rotation rate. It is found that the global tensile strength of the FSW joint is limited by the local tensile strength of the nearest region to the weld center at which the cross section is composed mainly of the HAZ. The effect of the initial butt surface on the formation of the zigzag line on the tensile properties of the welds was examined by using three types of welding samples differ in the preparation of the initial butt surface. The first type of samples welded without removing the oxide layer from the initial butt surface (uncleaned butt surfaces joint). In the second type of samples the oxide layer was removed from

  19. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... to new crystal orientations, producing new grain boundaries in the process. These refined grains develop a {112}. texture closer to the tool. Large conventionally recrystallised grains sometimes form in the outer regions of the refined grain structure, but become ever more deformed as they approach...

  20. Integrated continuous production of recombinant therapeutic proteins.

    Science.gov (United States)

    Warikoo, Veena; Godawat, Rahul; Brower, Kevin; Jain, Sujit; Cummings, Daniel; Simons, Elizabeth; Johnson, Timothy; Walther, Jason; Yu, Marcella; Wright, Benjamin; McLarty, Jean; Karey, Kenneth P; Hwang, Chris; Zhou, Weichang; Riske, Frank; Konstantinov, Konstantin

    2012-12-01

    In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost-effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high-density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four-column periodic counter-current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high-density perfusion CHO cell cultures were operated at a quasi-steady state of 50-60 × 10(6) cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed-batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time-based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch-column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non-value-added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins. Copyright © 2012 Wiley Periodicals, Inc.

  1. Low temperature enhanced ductility of friction stir processed 5083 ...

    Indian Academy of Sciences (India)

    Administrator

    forming loads. The occurrence of a relatively high value of strain rate sensitivity, m of 0⋅45 for a grain size of. 0⋅95 μm, suggests the operation of superplastic deformation under these present experimental conditions. Keywords. AA5083; friction stir processing; ductility; superplasticity. 1. Introduction. Friction stir processing ...

  2. A Rotating Plug Model of Friction Stir Welding Heat Transfer

    Science.gov (United States)

    Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.

    2006-01-01

    A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.

  3. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  4. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  5. Steady shear viscosity of stirred yoghurts with varying ropiness

    NARCIS (Netherlands)

    van Marle, M.E.; van Marle, M.E.; van den Ende, Henricus T.M.; de Kruif, C.G.; de Kruif, C.G.; Mellema, J.

    1999-01-01

    Stirred yogurt was viewed as a concentrated dispersion of aggregates consisting of protein particles. The steady-shear behavior of three types of stirred yogurt with varying ropiness was investigated experimentally. To describe the shear-dependent viscosity, a microrheological model was used which

  6. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  7. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  8. Orbital friction stir welding of aluminium pipes

    International Nuclear Information System (INIS)

    Engelhard, G.; Hillers, T.

    2002-01-01

    Friction stir welding (FSW) was originally developed for flat plates. This contribution shows how it can be applied to the welding of aluminium pipes. Pipes made of AlMG 3 (EN5754), AlMg 4.5Mn (EN5083) and AlMgSi 0.5 (EN6106) with dimensions of Da 600 and 520 x 10-8 mm were welded. The FSW orbital system comprises an annular cage with integrated FSW head, a hydraulic system, and a control unit. The welds were tested successfully according to EN 288. The mechanical and technical properties of the welds were somewhat better than with the TIG orbital process, and welding times were about 40 percent shorter [de

  9. Thermomechanical Modelling of Friction Stir Welding

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Schmidt, Henrik Nikolaj Blicher; Tutum, Cem Celal

    2009-01-01

    Friction Stir Welding (FSW) is a fully coupled thermomechanical process and should in general be modelled as such. Basically, there are two major application areas of thermomechanical models in the investigation of the FSW process: i) Analysis of the thermomechanical conditions such as e.g. heat...... generation and local material deformation (often referred to as flow) during the welding process itself. ii) Prediction of the residual stresses that will be present in the joint structure post to welding. While the former in general will call for a fully-coupled thermomechanical procedure, however...... for the FSW process at hand, the heat generation must either be prescribed analytically or based on a fully coupled analysis of the welding process itself. Along this line, a recently proposed thermal-pseudo-mechanical model is presented in which the temperature dependent yield stress of the weld material...

  10. Metal Flow in Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2006-01-01

    The plastic deformation field in Friction Stir Welding (FSW) is compared to that in metal cutting. A shear surface around the FSW tool analogous to the metal cutting shear plane is identified and comprises the basis of the "rotating plug" flow field model and the "wiping" model of tool interaction with weld metal. Within the context of these models: The FSW shear rate is estimated to be comparable to metal cutting shear rates. The effect of tool geometry on the FSW shear surface is discussed and related to published torque measurements. Various FS W structural features are explained, including a difference in structure of bimetallic welds when alloys on the advancing and retreating sides of the weld seam are exchanged. The joining mechanism and critical parameters of the FSW process are made clear.

  11. Applications of Friction Stir Processing during Engraving of Soft Materials

    Directory of Open Access Journals (Sweden)

    V. Kočović

    2015-12-01

    Full Text Available Friction stir processing has extensive application in many technological operations. Application area of friction stir processing can be extended to the processing of non-metallic materials, such as wood. The paper examines the friction stir processing contact between a specially designed hard and temperature-resistant rotating tool and workpiece which is made of wood. Interval of speed slip and temperature level under which the combustion occurs and carbonization layer of soft material was determined. The results of the research can be applied in technological process of wood engraving operations which may have significant technological and aesthetic effects.

  12. Friction stir processing on high carbon steel U12

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, S. Yu., E-mail: tsy@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, A. G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation.

  13. Continuous Membrane-Based Screening System for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Matthias Kraume

    2011-02-01

    Full Text Available The use of membrane reactors for enzymatic and co-factor regenerating reactions offers versatile advantages such as higher conversion rates and space-time-yields and is therefore often applied in industry. However, currently available screening and kinetics characterization systems are based on batch and fed-batch operated reactors and were developed for whole cell biotransformations rather than for enzymatic catalysis. Therefore, the data obtained from such systems has only limited transferability for continuous membrane reactors. The aim of this study is to evaluate and to improve a novel screening and characterization system based on the membrane reactor concept using the enzymatic hydrolysis of cellulose as a model reaction. Important aspects for the applicability of the developed system such as long-term stability and reproducibility of continuous experiments were very high. The concept used for flow control and fouling suppression allowed control of the residence time with a high degree of precision (±1% accuracy in a long-term study (>100 h.

  14. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Department of Materials Science and Engineering, The Ohio State University — OSU, Columbus, OH 43221 (United States)

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showed a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.

  15. Real-time Thermal Stir Weld Temperature Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal stir welding (TSW) is a solid state welding process which has shown promise in joining high strength, high temperature metals needed for space launch...

  16. Automatic Gap Detection in Friction Stir Welding Processes (Preprint)

    National Research Council Canada - National Science Library

    Yang, Yu; Kalya, Prabhanjana; Landers, Robert G; Krishnamurthy, K

    2006-01-01

    .... This paper develops a monitoring algorithm to detect gaps in Friction Stir Welding (FSW) processes. Experimental studies are conducted to determine how the process parameters and the gap width affect the welding process...

  17. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  18. Friction Stir Processing of Cast Superalloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  19. Torque Control of Friction Stir Welding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  20. In-Space Friction Stir Welding Machine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC, and Vanderbilt University propose an in-space friction stir welding (FSW) machine for joining complex structural aluminum components. The...

  1. In-Space Friction Stir Welding Machine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC, and Vanderbilt University propose an in-space friction stir welding (FSW) machine for joining complex structural aluminum components. The...

  2. Friction stir processing (FSP: refining microstructures and improving properties

    Directory of Open Access Journals (Sweden)

    McNelley, T. R.

    2010-12-01

    Full Text Available FSP is reviewed as an allied technology of friction stir welding (FSW and additional considerations such as processing pattern and step over distance are introduced. The application of FSP to continuously cast AA5083 material in the as-cast condition is described and the extent of grain refinement and homogenization of microstructure is documented. The FSP-induced superplastic response of this material is compared to the response of conventionally processed AA5083 and the improved ductility of the FSP material is related to grain refinement and microstructure homogenization.

    Se revisa el procesado por fricción batida (FSP como un aliado tecnológico de la soldadura por fricción batida (FSW y se introducen consideraciones adicionales tales como el patrón de procesado y el paso en función de la distancia. Se describe la aplicación de FSP al material AA5083 por colada continua en la condición de colada y se documenta el grado de afino de grano y homogeneización de la microestructura. La respuesta de superplasticidad inducida por FSP se compara con la respuesta de la aleación AA5083 procesada convencionalmente y la mejora de ductilidad del material FSP se relaciona con el afino de grano y la homogeneización de la microestructura.

  3. Feasibility of Underwater Friction Stir Welding of Hardenable Alloy Steel

    Science.gov (United States)

    2010-12-01

    Base Material CNC – Computer Numerical Controlled EDM – Electrical Discharge Machining FSP – Friction Stir Processing FSW – Friction Stir Welding...emission spectroscopy according to ASTM E 1097-07. C. MICROSTRUCTURE ANALYSIS 1. Specimen Preparation A Charmilles Andrew EF630 CNC Wire EDM...Andrew EF630 CNC Wire EDM system. The shape and dimensions of these specimens are shown in Figure 5. The thickness of each specimen varied from 1.0

  4. Consolidation of Surface Coatings by Friction Stir Techniques

    Science.gov (United States)

    2010-09-01

    4] Morisada, Fujii, Mizuno, Abe, Nagaoka, Fukusumi, 2010, “Modification of Thermally Sprayed Cemented Carbide Layer by Friction Stir Processing...Affected Zone SEM Scanning Electron Microscope SiC Silicon Carbide SZ Stir Zone TMAZ Thermo=Mechanically Affected Zone Ti Titanium TWI The...tool plastically deforms the metals in the weld zone (WZ), heating the material and then traverses along the butted edges. Since the welding

  5. Mechanism for Self-Reacted Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  6. Effects of tool speeds and corresponding torque/energy on stir zone formation during friction stir welding/processing

    International Nuclear Information System (INIS)

    Cui, S; Chen, Z W

    2009-01-01

    The way processing parameters and the measurable thermomechanical responses relate to the individual and combined flows forming the different processed zones during friction stir welding/processing has been studied. Experimentally, a cast Al-7Si-0.3Mg alloy was used to provide readily identifiable processed zones. A series of friction stir experiments covering a wide range of tool forward and rotation speeds were conducted followed by the measurement of individual and combined stir areas. It has been found that the basic modes of material flow did not change but the relative volume of each flow depended on both forward and rotation speeds. The trends observed in the present data explain how pin rotation relates to the material transportation mechanism and the associated torque required. This data also explains how forward speed, not rotation speed, relates to specific energy and the volume of the total stir zone.

  7. Inspecting Friction Stir Welding using Electromagnetic Probes

    Science.gov (United States)

    Kinchen, David G.

    2004-01-01

    A report describes the use of advanced electromagnetic probes to measure the dimensions, the spatial distribution of electrical conductivity, and related other properties of friction stir welds (FSWs) between parts made of the same or different aluminum alloy(s). The probes are of the type described in in another Tech Brief. To recapitulate: A probe of this type is essentially an eddy-current probe that includes a primary (driver) winding that meanders and multiple secondary (sensing) windings that meander along the primary winding. Electrical conductivity is commonly used as a measure of heat treatment and tempering of aluminum alloys, but prior to the development of these probes, the inadequate sensitivity and limited accuracy of electrical-conductivity probes precluded such use on FSWs between different aluminum alloys, and the resolution of those probes was inadequate for measurement of FSW dimensions with positions and metallurgical properties. In contrast, the present probes afford adequate accuracy and spatial resolution for the purposes of measuring the dimensions of FSW welds and correlating spatially varying electrical conductivities with metallurgical properties, including surface defects.

  8. The Plunge Phase of Friction Stir Welding

    Science.gov (United States)

    McClure, John C.

    2005-01-01

    The many advantages of Friction Stir Welding have led to a relatively rapid acceptance in the often conservative welding community. Because the process is so different from traditional fusion welding, with which most investigators are most familiar, there remain many aspects of FSW for which there is no clear consensus. For example, the well known onion rings seen in transverse sections have been variously interpreted as grain size variations, variation in density of second phase particles and parts of the carousel of material rotating with the pin that have been shed from the carousel. Using Orientation Imaging Microscopy, Schneider has recently noted that the onion rings have a different orientation (and hence etch differently) than the surrounding material, and this orientation is consistent with slip plane orientations at the edge of the carousel. Likewise, the forces and torque exerted by the FSW tool on the work piece largely remain unaccounted for. Although these forces are routinely measured by investigators with commercial instrumented welders, they are rarely reported or even qualitatively analyzed. This paper will introduce a model based on a carousel or disk of material that rotates with the tool to estimate the torque and plunge force required to plunge a tool into the work piece. A stationary tool is modeled rather than the moving tool because effects such as thermal transients and metallurgical changes in the sample (primarily aging in aluminum) can be more easily accounted for. It is believed, however, that with some modifications the model should be applicable to a moving tool also.

  9. Material Flow During Friction Stir Welds

    Science.gov (United States)

    Guerra, M.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The flow of metal during Friction Stir Welding is clarified using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported in two distinct streams or currents. One stream is a wiping of material from the advancing front side of the nib onto a plug of material that rotates and advances with the nib. The material undergoes a helical motion within the plug that both rotates and advances with the plug and descends in the wash of the threads on the nib and rises on the outer part of the plug. After one or more rotations, this material is sloughed off the plug in the wake of the tool primarily on the advancing side. The second stream of material is an entrainment of material from the retreating side of the nib that fills in between the sloughed off pieces from the advancing side. These two processes produce material with different mechanical properties and the strength of a weld should depend on the relative importance of the processes.

  10. Plankton bloom controlled by horizontal stirring

    Science.gov (United States)

    McKiver, W.; Neufeld, Z.; Scheuring, I.

    2009-10-01

    Here we show a simple mechanism in which changes in the rate of horizontal stirring by mesoscale ocean eddies can trigger or suppress plankton blooms and can lead to an abrupt change in the average plankton density. We consider a single species phytoplankton model with logistic growth, grazing and a spatially non-uniform carrying capacity. The local dynamics have multiple steady states for some values of the carrying capacity that can lead to localized blooms as fluid moves across the regions with different properties. We show that for this model even small changes in the ratio of biological timescales relative to the flow timescales can greatly enhance or reduce the global plankton productivity. Thus, this may be a possible mechanism in which changes in horizontal mixing can trigger plankton blooms or cause regime shifts in some oceanic regions. Comparison between the spatially distributed model and Lagrangian simulations considering temporal fluctuations along fluid trajectories, demonstrates that small scale transport processes also play an important role in the development of plankton blooms with a significant influence on global biomass.

  11. Effect of Friction Stir Welding Parameters on the Mechanical and Microstructure Properties of the Al-Cu Butt Joint

    Directory of Open Access Journals (Sweden)

    Sare Celik

    2016-05-01

    Full Text Available Friction Stir Welding (FSW is a solid-state welding process used for welding similar and dissimilar materials. FSW is especially suitable to join sheet Al alloys, and this technique allows different material couples to be welded continuously. In this study, 1050 Al alloys and commercially pure Cu were produced at three different tool rotation speeds (630, 1330, 2440 rpm and three different tool traverse speeds (20, 30, 50 mm/min with four different tool position (0, 1, 1.5, 2 mm by friction stir welding. The influence of the welding parameters on the microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine the mechanical properties. The microstructures of the weld zone were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in an energy dispersed spectrometer (EDS. Intermetallic phases were detected based on the X-ray diffraction (XRD analysis results that evaluated the formation of phases in the weld zone. When the welding performance of the friction stir welded butt joints was evaluated, the maximum value obtained was 89.55% with a 1330 rpm tool rotational speed, 20 mm/min traverse speed and a 1 mm tool position configuration. The higher tensile strength is attributed to the dispersion strengthening of the fine Cu particles distributed over the Al material in the stir zone region.

  12. Assessment Of Joints Using Friction Stir Welding And Refill Friction Stir Spot Welding Methods

    Directory of Open Access Journals (Sweden)

    Lacki P.

    2015-09-01

    Full Text Available FSW (Friction Stir Welding and RFSSW (Refill Friction Stir Spot Welding joints have been increasingly used in industrial practice. They successfully replace fusion-welded, riveted or resistance-welded joints. In the last two decades, dynamic development of this method has stimulated investigations of the fast methods for joint diagnostics. These methods should be non-destructive and easy to be used in technological processes. The methods of assessment of joint quality are expected to detect discontinuities in the structures welded using FSW and FSSW methods. Reliable detection of flaws would substantially extend the range of applications of FSW joints across many sectors of industry, including aviation. The investigations carried out in this paper allowed for characterization of defects present in FSW and RFSSW joints. Causes of these defects were also stressed. An overview of the methodologies for assessment of joint quality was presented. Results of assessment of the quality of joints made of 2024T6 aluminium sheet metal using FSW and RFSSW method were presented.

  13. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  14. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Sabina Luisa Campanelli

    2013-12-01

    Full Text Available Friction Stir Welding (FSW is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  15. Continuous wok-frying of vegetables:

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens

    2007-01-01

    A new process for continuous stir-frying in industrial scale has been developed for producing convenience high-quality vegetables. The understanding of the dynamics of heat and mass transfer during stir-frying is crucial for up-scaling and controlling the process. The effect of different factors...... of loosely bound water from the vegetables allows the products to be frozen and re-heated without drip loss, and it is also an advantage when using them as ingredients in composite foods, such as pâtés. Examples developed by a professional chef indicate that he saved up to half of the cooking time compared...

  16. Processing-property correlation in friction stir welds

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, A.P.; Lockwood, W.D.; Seidel, T.U. [South Carolina Univ., Columbia, SC (United States). Dept. of Mechanical Engineering

    2000-07-01

    Friction stir welding (FSW) is a relatively new process for joining of metals. The process was invented in 1992 at The Welding Institute, Cambridge, UK. FSW is particularly well suited to use in highly alloyed aluminum because it is a solid state process; therefore, no undesirable, brittle, low-melting eutectic phases are formed during the welding process. The microstructure of a typical friction stir weld is that of a wrought product. The details of the weld formation mechanism have been the subject of some debate. Previous work on elucidation of flow patterns in friction stir welds indicated that the process may be described as an in-situ extrusion. Material flow in two friction stir welds produced using different welding parameters was visualized using embedded marker materials and the fidelity of the visualization technique was demonstrated. Flow of material in the friction stir welds was observed to depend strongly on the temperature of the weld. In this paper, welding temperature measurements are combined with tensile test data to further promote understanding of the process in 2XXX, 5XXX, 6XXX, and 7XXX series aluminum alloys. Weld parameters (spindle rotation rate and welding speed) and time-temperature histories are correlated with the global and local tensile properties, and microstructure of the resulting welds. (orig.)

  17. Azimuthal MHD stirring of metal in vessels with cross-sections of different configuration

    Science.gov (United States)

    Siraev, R. R.; Khripchenko, S. Yu

    2017-11-01

    Continuous casting of cylindrical ingots from aluminum and preparation of aluminum-based alloys and composites require intensive mixing of liquid metal phase in the crystallization area of the melt. It is evident that the topology of the flow in the liquid phase of an ingot should influence the processes occurring during crystallization. Contemporary continuous casting machines use MHD-stirrers that generate an azimuthal motion in a crystallizer with a warm top of circular cross-section in the presence of rotating magnetic field. The flow of metal in the liquid phase of an ingot is similar to its rotation in a solid state, and transport processes are most intensively carried out in the near near-wall region and near the ingot solidification front, where shear flows are essential. In this work, we consider the possibility of amplifying transport processes in the entire volume of a stirred metal by making the cross-section shape of the warm top of the crystallizer different from a circle. It has been found numerically that the total energy of the flow in a crucible of square cross-section is twice as lower as that in a crucible with circular cross-section at the same inductor current. Turbulent pulsations in the square crucible, as well as in the circular one, are concentrated mainly in the near-wall region. The energy of pulsations in the square crucible also reduces, but the time of stirring of the passive impurity introduced into the volume of the metal is less than in the circular crucible. The effect of MHD stirring on the vertical temperature distribution on the square crucible is higher than in the “round crucible”.

  18. Fed-batch production of baker's yeast ( S. cerevisiae ) from cassava ...

    African Journals Online (AJOL)

    Ife Journal of Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 10, No 1 (2008) >. Log in or Register to get access to full text downloads.

  19. Enzyme feeding strategies for better fed-batch enzymatic hydrolysis of empty fruit bunch.

    Science.gov (United States)

    Sugiharto, Yohanes Eko Chandra; Harimawan, Ardiyan; Kresnowati, Made Tri Ari Penia; Purwadi, Ronny; Mariyana, Rina; Andry; Fitriana, Hana Nur; Hosen, Hauna Fathmadinda

    2016-05-01

    Lignin inhibitory becomes a major obstacle for enzymatic hydrolysis of empty fruit bunch conducted in high solid loading. Since current technology required high enzyme loading, surfactant application could not effectively used since it is only efficient in low enzyme loading. In addition, it will increase final operation cost. Hence, another method namely "proportional enzyme feeding" was investigated in this paper. In this method, enzyme was added to reactor proportionally to substrate addition, different from conventional method ("whole enzyme feeding") where whole enzyme was added prior to hydrolysis process started. Proportional enzyme feeding could increase enzymatic digestibility and glucose concentration up to 26% and 12% respectively, compared to whole enzyme feeding for hydrolysis duration more than 40h. If enzymatic hydrolysis was run less than 40h (25% solid loading), whole enzyme feeding is preferable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A framework for the systematic design of fed-batch strategies in mammalian cell culture.

    Science.gov (United States)

    Kyriakopoulos, Sarantos; Kontoravdi, Cleo

    2014-12-01

    A methodology to calculate the required amount of amino acids (a.a.) and glucose in feeds for animal cell culture from monitoring their levels in batch experiments is presented herein. Experiments with the designed feeds on an antibody-producing Chinese hamster ovary cell line resulted in a 3-fold increase in titer compared to batch culture. Adding 40% more nutrients to the same feed further increases the yield to 3.5 higher than in batch culture. Our results show that above a certain threshold there is no linear correlation between nutrient addition and the integral of viable cell concentration. In addition, although high ammonia levels hinder cell growth, they do not appear to affect specific antibody productivity, while we hypothesize that high extracellular lactate concentration is the cause for the metabolic shift towards lactate consumption for the cell line used. Overall, the performance of the designed feeds is comparable to that of a commercial feed that was tested in parallel. Expanding this approach to more nutrients, as well as changing the ratio of certain amino acids as informed by flux balance analysis, could achieve even higher yields. © 2014 Wiley Periodicals, Inc.

  1. Production-process optimization algorithm: Application to fed-batch bioprocess

    Czech Academy of Sciences Publication Activity Database

    Pčolka, M.; Čelikovský, Sergej

    2017-01-01

    Roč. 354, č. 18 (2017), s. 8529-8551 ISSN 0016-0032 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : Optimal control * Bioprocess * Optimization Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 3.139, year: 2016 https:// doi . org /10.1016/j.jfranklin.2017.10.012

  2. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology.

    Science.gov (United States)

    Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan

    2015-07-01

    Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Optimal Control of a Fed-batch Fermentation Process by Neuro-Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Tatiana Ilkova

    2004-10-01

    Full Text Available In this paper the method for optimal control of a fermentation process is presented, that is based on an approach for optimal control - Neuro-Dynamic programming. For this aim the approximation neural network is developed and the decision of the optimization problem is improved by an iteration mode founded on the Bellman equation. With this approach computing time and procedure are decreased and quality of the biomass at the end of the process is increased.

  4. Mechanistic Models for Process Development and Optimization of Fed-batch Fermentation Systems

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads O.

    2016-01-01

    . This is based on on-line gas measurements and ammonia addition flow rate measurements. Additionally, a mechanistic model is applied offline as a tool for batch planning, based on definition of the process back pressure, aeration rate and stirrer speed. This allows the batch starting fill to be planned, taking...... into account the oxygen transfer conditions, as well as the evaporation rates of the system. Mechanistic models are valuable tools which are applicable for both process development and optimization. The state estimator described will be a valuable tool for future work as part of control strategy development...... for on-line process control and optimization....

  5. Simple control of fed-batch processes for recombinant protein production with E. coli.

    Science.gov (United States)

    Schaepe, Sebastian; Kuprijanov, Artur; Aehle, Mathias; Simutis, Rimvydas; Lübbert, Andreas

    2011-09-01

    A very simple but effective process control technique is proposed that leads to a high batch-to-batch reproducibility with respect to biomass concentration as well as the specific biomass growth rate profiles in E. coli fermentations performed during recombinant protein production. It makes use of the well-established temperature controllers in currently used fermenters, but takes its information from the difference between the controlled culture temperature T (cult) and the temperature T (coolin) of the coolant fed to the fermenter's cooling jacket as adjusted by the fermenter temperature controller. For process control purposes this measured difference is corrected regarding stirrer influences and cumulated before it is used as a new process control variable. As a spin-off of this control, it becomes possible to estimate online the oxygen mass transfer rates and the corresponding k(L)a values during the real cultivation process. © Springer Science+Business Media B.V. 2011

  6. Development of an on-line state estimator for fed-batch filamentous fungal fermentations

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads O.

    to monitor and control bioprocess systems. There is therefore an interest in state estimation, in order to model these key process states based on available on-line measurements [1]. This work discusses the application of a first principle model to pilot scale filamentous fungal fermentation systems operated...... pressure [4], [5]. This stoichiometric-based coupled process model is successfully applied on-line as a state estimator in order to predict the biomass and product concentration, from robust, available on-line measurements. Such state estimators will be valuable as part of control strategy development...... for on-line process control and optimization....

  7. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Beusekom, van O.C.; Buisman, C.J.N.; Janssen, A.J.H.

    2007-01-01

    A biotechnological process is described to remove hydrogen sulfide (H2S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO) and

  8. Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey

    OpenAIRE

    Rech, Rosane; Ayub, Marco Antônio Záchia

    2006-01-01

    Saccharomyces cerevisiae strain W303 was transformed with two yeast integrative plasmids containing Kluyveromyces lactis LAC4 and LAC12 genes that codify beta-galactosidase and lactose permease respectively. The BLR030 recombinant strain was selected due to its growth and beta-galactosidase production capacity. Different culture media based on deproteinized cheese whey (DCW) were tested and the best composition (containing DCW, supplemented with yeast extract 1 %, and peptone 3 % (w/v)) was c...

  9. An evolutionary strategy for fed-batch bioreactor optimization : concepts and performance

    NARCIS (Netherlands)

    Roubos, J.A.; Straten, van G.; Boxtel, van A.J.B.

    1999-01-01

    An evolutionary program, based on a real-code genetic algorithm (GA), is applied to calculate optimal control policies for bioreactors. The GA is used as a nonlinear optimizer in combination with simulation software and constraint handling procedures. A new class of GA-operators is introduced to

  10. Fed-batch decolorization of Poly R-478 by Trametes versicolor

    Directory of Open Access Journals (Sweden)

    Moreira María Teresa

    2004-01-01

    Full Text Available Physiological aspects were evaluated to determine optimal conditions for the decolorization of a synthetic dye, Poly R-478, by white-rot fungus Trametes versicolor # 52J. The decolorization experiments were carried out in semicontinuous operation during three cycles to improve the process efficiency. The best decolorization efficiencies (65% to 80% were obtained in fungal cultures performed in nitrogen limited conditions under aerobic conditions.

  11. Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis.

    Science.gov (United States)

    Rau, U; Nguyen, L A; Roeper, H; Koch, H; Lang, S

    2005-09-01

    Two strains of Pseudozyma aphidis, DSM 70725 and DSM 14930, were used for the bioreactor production of mannosylerythritol lipids (MELs). Foam formation interfered substantially with the cultivation process. Soybean oil was simultaneously employed as both carbon source and anti-foam agent. Primary MEL formation occurred after nitrate limitation. After a first short time-period of nitrate limitation and further nitrate addition, MELs were secreted in spite of nitrate excess. The sedimentation of MEL-enriched beads indicated enhanced product formation. Maximum yield, productivity and yield coefficient of 165 g l(-1), 13.9 g l(-1) day(-1) and 0.92 g g(-1) were achieved using strain DSM 14930 with additional substrate-feeding (glucose, sodium nitrate, yeast extract) and a foam-controlled soybean oil supply.

  12. Differential expression of small RNAs under chemical stress and fed-batch fermentation in E. coli

    DEFF Research Database (Denmark)

    Rau, Martin Holm; Nielsen, Alex Toftgaard; Long, Katherine

    2015-01-01

    Bacterial small RNAs (sRNAs) are recognized as posttranscriptional regulators involved in the control of bacterial lifestyle and adaptation to stressful conditions. Although chemical stress due to the toxicity of precursor and product compounds is frequently encountered in microbial bioprocessing...... applications, the involvement of sRNAs in this process is not well understood. We have used RNA sequencing to map sRNA expression in E. coli under chemical stress and high cell density fermentation conditions with the aim of identifying sRNAs involved in the transcriptional response and those with potential...... roles in stress tolerance....

  13. Optimization of a fed-batch fermentation process for production of ...

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... ments, limitations and objectives of the operator (Hewitt and Nienow, 2007). Bleomycin (BLM) belongs to a general group of medi- .... Actual pH profiles of BLM fermentation by S. mobaraensis when using: (a) profile 1; (b) profile 2;. (c) profile 3. size from regular 10 to 30% (v/v) level (data not shown).

  14. Cloning, multicopy expression and fed-batch production of Rhodotorula araucariae epoxide hydrolase in yarrowia lipolytica

    CSIR Research Space (South Africa)

    Ramduth, D

    2008-05-01

    Full Text Available cloned and functionally expressed in Y. lipolytica, under the control of a growth inducible hp4d promoter. The transformation experiments yielded only two positive multicopy transformants, which were assessed in flask cultures. The selected transformant...

  15. Phenotypes and fed-batch fermentation of ubiquinone-overproducing fission yeast using ppt1 gene.

    Science.gov (United States)

    Zhang, Dawei; Shrestha, Binaya; Niu, Weining; Tian, Pingfang; Tan, Tianwei

    2007-01-30

    Ubiquinone (UQ), a component of the electron transfer system in many organisms, has been widely used for pharmaceuticals and cosmetics. In this study, we cloned and overexpressed the full-length ppt1 (MTppt1) gene, which encodes p-hydroxybenzoate:polyprenyltransferase and ERppt1 gene, which was modified to be localized on endoplasmic reticulum in fission yeast. The yeast MTppt1 and ERppt1 transgenic lines showed about 3.7 and 5.1 times increment in UQ content and the recombinant yeasts with a higher UQ level are more resistant to H(2)O(2), Cu(2+) and NaCl, and interestingly their growth was also faster than the wild type at lower temperature. For large-scale cultivation, the direct feedback control of glucose using an on-line ethanol concentration monitor for ubiquinone production of yeast ERppt1 by high-cell-density fermentation was investigated and the fermentation parameters (e.g., dissolved oxygen, pH, ethanol concentration, oxygen uptake rate, carbon dioxide evolution rate and respiration quotient) were also discussed. After 90 h cultures, the yeast dry cell weight reached 57 gl(-1) and the ubiquinone yield reached 23 mgl(-1). In addition, plasmid stability was maintained at high level throughout the fermentation.

  16. Anaerobic co-digestion of agro-food waste mixtures in a fed-batch basis.

    Science.gov (United States)

    Hidalgo, Dolores; Martín-Marroquín, Jesús M; Nieto, Pedro

    2016-10-01

    The agro-food industry (including livestock) generates millions of tonnes of waste products. A solution to this sector's waste disposal challenges was explored by a joint treatment model of organic waste products from several industries. An inventory of agro-food industry organic waste streams with high potential for biogas production was carried out in a logistically viable area (Cider Region, Asturias, Spain). Three industries were selected as those with the higher potential for this study: livestock, dairy and beverage. The kinetics of anaerobic degradation and methane production of four mixtures of selected waste streams were investigated. The specific methane production at five different substrate-to-inoculum ratios (0.50, 0.75, 1.00, 1.50 and 2.00) showed a slightly decreasing trend at the higher ratios. Some hints of a synergistic effect have been observed in mixtures with higher content in milled apple waste, while antagonistic symptoms were noted in mixtures mainly composed of dairy wastes. The estimation of fluxes of waste and methane potentials in the Cider Region suggests centralised anaerobic digestion as a sustainable solution for the valorisation of livestock and agro-food wastes generated in this area. Sector-specific waste streams (livestock and agro-food industry) could cover up to 12% of regional total energy demand.

  17. Degradation of chlorophenol mixtures in a fed-batch system by two ...

    African Journals Online (AJOL)

    2010-12-16

    Dec 16, 2010 ... 3462-3467. SAHINKAYA E and DILEK FB (2005) Biodegradation of 4-chlo- rophenol by acclimated and unacclimated activated sludge –. Evaluation of biokinetic coefficients. Environ. Res. 99 (2) 243-252. SAHINKAYA E and DILEK FB (2007) Biodegradation kinetics of. 2,4-dichlorophenol by acclimated ...

  18. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    OpenAIRE

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, th...

  19. Microstructure Evolution during Friction Stir Spot Welding of TRIP Steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    In this study, the feasibility of friction stir spot welding of TRIP steel is investigated. In addition to manufacturing successful welds, the present study aims at a fundamental understanding of the mechanisms occurring at the (sub)micron scale during friction stir spot welding. As one of the main...... parameters to control friction stir welding, the influence of the rotational speed of the tool was investigated. Three different rotational speeds (500 rpm, 1000 rpm and 1500 rpm, respectively) were applied. The microstructure of the welded samples was investigated with reflected light microscopy, scanning...... electron microscopy, and electron backscatter diffraction. Microhardness measurements and lap-shear tensile tests completed the investigations of the welded samples and allow evaluation of the quality of the welds....

  20. A Brief Introduction to the Theory of Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  1. Performance Improvement of Friction Stir Welds by Better Surface Finish

    Science.gov (United States)

    Russell, Sam; Nettles, Mindy

    2015-01-01

    The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.

  2. The Effect of Stirring on the Morphology of Birnessite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Marcos A. Cheney

    2008-01-01

    Full Text Available The effect of mechanical stirring on the morphology of hexagonal layer-structure birnessite nanoparticles produced from decomposition of KMnO4 in dilute aqueous H2SO4 is investigated, with characterization by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, thermogravimetric analysis (TGA, and N2 adsorption (BET. Mechanical stirring during an initial stage of synthesis is shown to produce black birnessite containing nanofibers, whereas granular particulates of brown birnessite are produced without stirring. This is the first reduction synthesis of black birnessite nanoparticles with dendritic morphology without any use of organic reductant, and suggests that a particular morphology can arise from structural preferences of Mn in acidic conditions rather than particular organic reactants. These results enlighten the possibility of synthesizing nanoparticles with controlled size and morphology.

  3. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  4. Heat Control via Torque Control in Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  5. A METHOD AND APPARATUS FOR STIR-FRYING

    DEFF Research Database (Denmark)

    1999-01-01

    A method and apparatus for stir-frying discrete pieces or particles of one or more foodstuffs by heating a surface (14) and bringing discrete pieces into contact with the heated surface through an inlet means (22), transporting said discrete pieces across the heated surface (14) by means of a mec......A method and apparatus for stir-frying discrete pieces or particles of one or more foodstuffs by heating a surface (14) and bringing discrete pieces into contact with the heated surface through an inlet means (22), transporting said discrete pieces across the heated surface (14) by means...

  6. A Survey on Friction Stir Welding Of Dissimilar Magnesium Alloys

    Science.gov (United States)

    Unnikrishnan, M. A.; Raja, Dhas. J. Edwin

    2017-10-01

    There is a consistent demand for superior materials in every industry. The areas on demand are automobile and aerospace sectors in major.. The most commonly used material in these fields is Aluminium.Though it possess all the properties up to some extent constant demand is pushing for alternate materials. Dissimilar alloys have been a relatively new approach towards these fields.. Friction stir welding dissimilar alloys is a big leap in Automobile sector. In this paper a detailed review of Friction stir welding of Dissimilar Magnesium alloys has been done. This work will serve as a reference to subsequent researchers.

  7. Friction stir weld tools having fine grain structure

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott

    2016-03-15

    Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.

  8. Unraveling the Processing Parameters in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.

  9. Near Net Manufacturing Using Thin Gage Friction Stir Welding

    Science.gov (United States)

    Takeshita, Jennifer; Potter, David; Holquin, Michael

    2006-01-01

    Friction Stir Welding (FSW) and near net spin forming of FSW aluminumn blanks were investigated for large-scale pressure vessel applications. With a specific focus on very thin gage 2xxx and 7xxx aluminum alloys, the program concentrated on the following: the criteria used for material selection, a potential manufacturing flow, and the effectiveness and associated risks of near net spin forming. Discussion will include the mechanical properties of the friction stir welds and the parent material from before and after the spin forming process. This effort was performed under a NASA Space Exploration initiative focused on increasing the affordability, reliability and performance of pressure vessels larger than 10 ft. diameter.

  10. Stirred cell ultrafiltration of lignin from black liquor generated from South African kraft mills

    CSIR Research Space (South Africa)

    Kekana, Paul

    2016-12-01

    Full Text Available Ultrafiltration of lignin from black liquor was carried out in a stirred batch cell using polyethersulfone membranes. Parameters such as operating pressure, feed concentration, stirring rate and membrane cut-off size were varied and their effects...

  11. Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc

    Science.gov (United States)

    Shen, Junjun; Lage, Sara B. M.; Suhuddin, Uceu F. H.; Bolfarini, Claudemiro; dos Santos, Jorge F.

    2018-01-01

    The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.

  12. Very High Cycle Fatigue Crack Initiation Mechanism in Nugget Zone of AA 7075 Friction Stir Welded Joint

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-01-01

    Full Text Available Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.

  13. Lateral position detection and control for friction stir systems

    Science.gov (United States)

    Fleming, Paul; Lammlein, David; Cook, George E.; Wilkes, Don Mitchell; Strauss, Alvin M.; Delapp, David; Hartman, Daniel A.

    2010-12-14

    A friction stir system for processing at least a first workpiece includes a spindle actuator coupled to a rotary tool comprising a rotating member for contacting and processing the first workpiece. A detection system is provided for obtaining information related to a lateral alignment of the rotating member. The detection system comprises at least one sensor for measuring a force experienced by the rotary tool or a parameter related to the force experienced by the rotary tool during processing, wherein the sensor provides sensor signals. A signal processing system is coupled to receive and analyze the sensor signals and determine a lateral alignment of the rotating member relative to a selected lateral position, a selected path, or a direction to decrease a lateral distance relative to the selected lateral position or selected path. In one embodiment, the friction stir system can be embodied as a closed loop tracking system, such as a robot-based tracked friction stir welding (FSW) or friction stir processing (FSP) system.

  14. Recent developments in Micro Friction Stir Welding: A review

    International Nuclear Information System (INIS)

    Sithole, Keydon; Rao, Veeredhi Vasudeva

    2016-01-01

    The advent of friction stir welding (FSW) in 1991 has been evolutionary in the joining of metals and related materials. Friction stir welding has enabled the joining of metals that could not be joined by other welding processes. Research has shown that dissimilar materials with very different properties, plastics, composites and even wood can be joined by FSW. Recent activities in the application of FSW has seen the development of micro friction stir welding (μFSW), which is the FSW of very thin sections of thickness 1000 μm (1 mm) or less. Micro friction stir welding further extends the applications of FSW to areas such as copper electrical contacts, tailor-welded blanks, wood. Though μFSW is relatively new development significant work has been done to date with interesting research findings being reported. This paper aims to review developments in μFSW to date. The focus of the paper will be on problems peculiar to μFSW due to downscaling to the micro scale and other practical considerations. (paper)

  15. Low temperature enhanced ductility of friction stir processed 5083 ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Commercial 5083 Al rolled plates were subjected to friction stir processing (FSP) with two differ- ent processing parameters, having 430 and 850 rpm tool rotational speed with a single traverse feed rate of. 90 mm/min. These FSP conditions resulted in two fine grained microstructures of 0⋅95 μm (430 rpm) and.

  16. Role of friction stir processing parameters on microstructure

    Indian Academy of Sciences (India)

    Friction stir processing (FSP) was applied to fabricate boron carbide (B4C) particulate reinforced copper surface composites. The effect of FSP parameters such as tool rotational speed, processing speed and groove width on microstructure and microhardness was investigated. A groove was contrived on the 6mm thick ...

  17. Effect of stirring on striae in glass melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng

    2012-01-01

    Chemical striae have often negative effect on the glass properties, and hence, elimination of striae has been a key issue in glass science and technology. To produce highly homogeneous glasses, it is necessary to stir melts during the melting process. To explore the physical origin of the stria...

  18. Numerical optimisation of friction stir welding: review of future challenges

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    During the last decade, the combination of increasingly more advanced numerical simulation software with high computational power has resulted in models for friction stir welding (FSW), which have improved the understanding of the determining physical phenomena behind the process substantially. T...

  19. Calibration and performance of a stirred benthic chamber

    Science.gov (United States)

    Buchholtz-ten Brink, M. R.; Gust, G.; Chavis, D.

    1989-07-01

    The physical and chemical boundary layer parameters characteristic for a benthic chamber were cross-calibrated by the use of two methods in the laboratory: (1) flush-mounted hot-film sensors, which measure the friction velocity u ∗, and (2) the alabaster dissolution technique, which measures the equivalent film thickness z. Tests of five stirring devices were made, using both techniques, to improve the stirring mechanism in the MANOP Lander flux chambers. The stirring device that was finally implemented consisted of four rods and produced spatially averaged friction velocities u ∗ ranging from 0.1 to 0.5 cm s -1 (i.e. mean film thickness z from 500 to 180 μm) when running at speeds from 3 to 9 rpm. The friction velocity field at the sediment surface is related to the rpm of the stirring device and the penetration depth of the chamber into the sediments; combinations of both can create z and u ∗ inside the chamber that duplicate those of many natural environments. The log-log calibration relationship found between u ∗ and transfer coefficients K' also provides a means to predict the mass-transfer resistance of solutes at the sediment-water interface from measurements of mean bottom stress.

  20. Role of friction stir processing parameters on microstructure and ...

    Indian Academy of Sciences (India)

    Friction stir processing (FSP) was applied to fabricate boron carbide (B4C) particulate reinforced copper surface composites. The effect of FSP parameters such as tool rotational speed, processing speed and groove width on microstructure and microhardness was investigated. A groove was contrived on the 6mm thick ...

  1. Electromagnetic Stirring of Molten Metal in Induction Crucible Furnace

    Czech Academy of Sciences Publication Activity Database

    Barglik, J.; Doležel, Ivo; Škopek, M.; Ulrych, B.

    2002-01-01

    Roč. 47, č. 3 (2002), s. 229-242 ISSN 0001-7043 R&D Projects: GA MŠk LN00B084; GA MŠk ME 542 Grant - others:PSC(PL) BK/RM3/405/01 Keywords : Electromagnetic stirring * molten metal * induction heating Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. A Jet-Stirred Apparatus for Turbulent Combustion Experiments

    Science.gov (United States)

    Davani, Abbasali; Ronney, Paul

    2015-11-01

    A novel jet-stirred combustion chamber is designed to study turbulent premixed flames. In the new approach, multiple impinging turbulent jets are used to stir the mixture. It is well known that pair of counterflowing turbulent jets produces nearly a constant intensity (u') along the jet axes. In this study, different numbers of impinging jets in various configurations are used to produce isotropic turbulence intensity. FLUENT simulations have been conducted to assess the viability of the proposed chamber. In order to be able to compare different configurations, three different non dimensional indices are introduces. Mean flow index; Homogeneity index, and Isotropicity index. Using these indices one can compare various chambers including conventional Fan-stirred Reactors. Results show that a concentric inlet/outlet chamber (CAIO) with 8 inlets and 8 outlets with inlet velocity of 20 m/s and initial intensity of 15% produces near zero mean flow and 2.5 m/s turbulence intensity which is much more higher than reported values for Fan-stirred chamber. This research was sponsored by National Science Foundation.

  3. Numeric simulations of a liquid metal model of a bloom caster under the effect of rotary electromagnetic stirring

    Science.gov (United States)

    Barna, M.; Javurek, M.; Willers, B.; Eckert, S.; Reiter, J.

    2016-07-01

    At the voestalpine Stahl Donawitz GmbH the continuous casting of round steel blooms is commonly supported by electromagnetically induced stirring of the liquid steel flow. A number of beneficial effects are attributed to electromagnetic stirring in the mould region (M-EMS), e.g. the enhanced transition from columnar to equiaxed solidification, the homogenization of the liquid steel flow or the reduction of surface and subsurface defects. Although the positive effects of M-EMS can be seen on the blooms (e.g. in etchings), the link between electromagnetic stirring of the steel melt and the quality of the solidified bloom is not sufficiently understood. Theoretical considerations are often limited to general cases and their results are therefore not directly applicable to real continuous casting geometries. On the other hand, plant measurements can only be performed to a limited extent due to the harsh conditions and other restrictions (e.g. safety regulations). In this work an alternative approach is used to investigate the steel flow in a round bloom caster under the influence of M-EMS. In a 1:3 scale Perspex model of a round bloom strand, measurements of the flow under the influence of a rotating magnetic field can be conducted. These measurements provide a validation benchmark for the numeric simulations. A numeric model of the before mentioned 1:3 scale model is implemented, encompassing the strand, the submerged entry nozzle as well as the M-EMS device. In the modelling approach, the bidirectional coupling between liquid steel flow and the electromagnetic field/forces has to be considered because otherwise the resulting tangential velocities will be overestimated. With the validated modelling approach, simulations of real casting machines can then be conducted, stirring parameter influences can be shown and conclusions for the real casting process can be drawn.

  4. Microstructural evolution in friction stir welding of nanostructured ODS alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Tatlock, G.J.; Jones, A.R.

    2010-01-01

    Nanostructured oxide dispersion strengthened (ODS) Fe-based alloys manufactured by mechanical alloying (MA) are generally considered to be promising candidate materials for high-temperature applications up to at least 1100 o C because of their excellent creep strength and good oxidation resistance. However, a key issue with these alloys is the difficulty in using fusion welding techniques to join components due to oxide particle agglomeration and loss in the weld zone and the disruption and discontinuity in the grain structure introduced at the bond. In this study, the evolution of microstructure has been comprehensively studied in friction stir welds in a ferritic ODS alloy. Initially, electron backscattering diffraction (EBSD) was used to analyze the grain orientation, the grain boundary geometries and recrystallization behaviour. It suggested that deformation heterogeneities were introduced during the friction stirring process which facilitated the onset of recrystallization. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to observe the effects of the friction stir welding (FSW) process on the grain structure and the distribution of Y 2 O 3 and other particles in the metal substrates in the FSW and adjacent regions, after the alloys had been recrystallized at temperatures up to 1380 o C for 1 h in air. The results show that fine-equiaxed grains and a uniform distribution of oxide particles were present in the friction stirred region but that the grain boundaries in the parent metal were pinned by particles. Friction stirring appeared to release these boundaries and allowed secondary recrystallization to occur after further heat treatment. The FSW process appears to be a promising technique for joining ferritic ODS alloys in the form of sheet and tube.

  5. Mechanical properties of friction stir welded 11Cr-ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Yano, Y.; Sato, Y.S.; Sekio, Y.; Ohtsuka, S.; Kaito, T.; Ogawa, R.; Kokawa, H.

    2013-01-01

    Friction stir welding was applied to the wrapper tube materials, 11Cr-ferritic/martensitic steel, designed for fast reactors and defect-free welds were successfully produced. The mechanical and microstructural properties of the friction stir welded steel were subsequently investigated. The hardness values of the stir zone were approximately 550 Hv (5.4 GPa) with minimal dependence on the rotational speed, even though they were much higher than those of the base material. However, tensile strengths and elongations of the stir zones were high at 298 K, compared to those of the base material. The excellent tensile properties are attributable to the fine grain formation during friction stir welding

  6. Batch leachate treatment using stirred electrocoagulation reactor with variation of residence time and stirring rate

    Science.gov (United States)

    Sitorus, I. S.; Astono, W.; Iswanto, B.

    2018-01-01

    This study aims to reduce pollutant levels of the leachate by electrocoagulation method using a stirred electrocoagulation reactor as the electrochemical water treatment. The release of active coagulants as metallic ions took place in the anode, while in the cathode, the electrolysis reaction in the form of hydrogen gas dischargeoccurred. The source of wastewater is Waste Water Treatment Plant inlet III of Bantar Gebang, Bekasi. Some parameters were analyzed in this research, i.e., Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), NH3, NO3 -, NO2 -, N-total, and organic substances as well as the microorganism growth before and after electrocoagulation, with variations of detention time (seconds) of 10, 20, 120, 600 and rapid mixing conditions (rpm) of 60, 100 and 200. The results show that the greater the rapid mixing speed and the detention time of electrolysis, the higher the removal of contaminants in liquid waste. The optimum condition of electrocoagulation was encountered at 200 rpm rapid mixing with 600 seconds of processing time. The removal efficiencies of electrocoagulation method for each parameter are TSS of 46.80%, BOD5 of 71.33%, COD of 73.77%, Pb of 62.5%,and NH3-N of 57.92%,whereas the pH value has been increased from 8.03 to 8.95. The electrocoagulation method can reduce levels of pollutants, complying with the environmental standards.

  7. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    Science.gov (United States)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-03-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized-β grains.

  8. StirMark Benchmark: audio watermarking attacks based on lossy compression

    Science.gov (United States)

    Steinebach, Martin; Lang, Andreas; Dittmann, Jana

    2002-04-01

    StirMark Benchmark is a well-known evaluation tool for watermarking robustness. Additional attacks are added to it continuously. To enable application based evaluation, in our paper we address attacks against audio watermarks based on lossy audio compression algorithms to be included in the test environment. We discuss the effect of different lossy compression algorithms like MPEG-2 audio Layer 3, Ogg or VQF on a selection of audio test data. Our focus is on changes regarding the basic characteristics of the audio data like spectrum or average power and on removal of embedded watermarks. Furthermore we compare results of different watermarking algorithms and show that lossy compression is still a challenge for most of them. There are two strategies for adding evaluation of robustness against lossy compression to StirMark Benchmark: (a) use of existing free compression algorithms (b) implementation of a generic lossy compression simulation. We discuss how such a model can be implemented based on the results of our tests. This method is less complex, as no real psycho acoustic model has to be applied. Our model can be used for audio watermarking evaluation of numerous application fields. As an example, we describe its importance for e-commerce applications with watermarking security.

  9. Construction and Experimental Validation of a Homemade Stirred Tank Bioreactor for Lab-scale Submerged Fermentations

    Directory of Open Access Journals (Sweden)

    Dr.C. Manuel Serrat-Díaz

    2015-11-01

    Full Text Available Small-scale bioreactors are widely used for experimentation in microbiological laboratories. Currently, the price of these systems is in the order of € 20 000, which obstructs its acquisition. A homemade stirred tank system, with easily available and inexpensive resources, was designed and assembled so that meets the essential requirements  for the establishment of microbial fermentation processes on a small-scale.  In this regard, the sterility of the system was checked by applying sterility controls during 24 h of continuous operation under real conditions of handling, including three samplings.  The oxygen transfer coefficient (kla was determined  by the sulfite method, under different aeration-agitation conditions, yielding  values of 0, 058 s-1 and 0, 033 s-1  under 0, 67 L·min-1 of air flow rate and stirring rates of 850 min-1 and 650 min-1, respectively, which result usually sufficient for optimal microbial growth. The bioreactor exhibited a satisfactory mixing performance, which is expressed by its ability to maintain the temporal stability of the concentration of an insoluble, high density and finely divided solid  (BaSO4.  These results show the practical potentialities of this homemade bioreactor to the study of microbial fermentation at lab -scale level.

  10. [Optimization of stir-baking with vinegar technology for Curcumae Radix by orthogonal test].

    Science.gov (United States)

    Shi, Dianhua; Su, Benzheng; Sun, Lili; Zhang, Jun; Qu, Yongsheng

    2011-05-01

    To optimize the stir-baking with vinegar technology for Curcumae Radix. The intrinsic quality (the content of Curcumin) and traditional outward appearance were chosen as indexes. The best technology was determined by orthogonal test L9 (3(4)). The factors of the moistening time, stir-baking temperature and stir-baking time were investigated. The optimal technology was as follows: the quantity of vinegar was 10%, the moistening time was 10 min, the stir-baking temperature was 130 degrees C and the stir-baking time was 10 min. The optimal stir-baking with vinegar technology for Curcumae Radix is reasonable, which can be used to guide the standardized production of Curcumae Radix stir-baked with vinegar.

  11. Protein crystallization in a 100 nl solution with new stirring equipment

    International Nuclear Information System (INIS)

    Maki, S.; Murai, R.; Yoshikawa, H. Y.; Kitatani, T.; Nakata, S.; Kawahara, H.; Hasenaka, H.; Kobayashi, A.; Okada, S.; Sugiyama, S.; Adachi, H.; Matsumura, H.; Takano, K.; Murakami, S.; Inoue, T.; Sasaki, T.; Mori, Y.

    2008-01-01

    To investigate quantitatively the effects of stirring on protein crystallization, a new stirring system which can agitate a protein solution, ∼100 nl, by providing Hagen–Poiseuille flow has been successfully developed. To investigate quantitatively the effects of stirring on protein crystallization, a new stirring system which can agitate a protein solution, ∼100 nl, by providing Hagen–Poiseuille flow has been successfully developed. In addition, this new stirring system provides flow with a well defined pattern and velocity. Using this system, hen egg-white lysozyme was crystallized in 100–200 nl solutions while being stirred. The optimum stirring conditions for lysozyme crystals have been explored by evaluating the Reynolds (Re) number and the crystals obtained. Intermittent flow, as well as a low Re number, was found to contribute significantly to the growth of a smaller number of larger crystals

  12. More than add Women and Stir

    DEFF Research Database (Denmark)

    Kjær, Katrine Meldgaard; Leer, Jonatan

    2015-01-01

    Food studies and the study of food and gender have been particularly strong scholarly currents in the US. Here, anthropologist Carole Counihan was one of the first scholars to work with the food-gender intersection. Over the past four decades, she has continued to work with the area in an array...... of different contexts. In this interview, Counihan describes how she has worked with the gendering of food culture. Along the way, she also offers her perspectives on working in changing academic environments and shares her suggestions for future areas of research....

  13. Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry.

    Science.gov (United States)

    Nunes, Mário A P; Rosa, M Emilia; Fernandes, Pedro C B; Ribeiro, Maria H L

    2014-07-01

    The immobilization of naringinase in PVA lens-shaped particles, a cheap and biocompatible hydrogel was shown to provide an effective biocatalyst for naringin hydrolysis, an appealing reaction in the food and pharmaceutical industries. The present work addresses the operational stability and scale-up of the bioconversion system, in various types of reactors, namely shaken microtiter plates (volume ⩽ 2 mL), batch stirred tank reactors (volume reactor (PBR, 6.8 mL). Consecutive batch runs were performed with the shaken/stirred vessels, with reproducible and encouraging results, related to operational stability. The PBR was used to establish the feasibility for continuous operation, running continuously for 54 days at 45°C. The biocatalyst activity remained constant for 40 days of continuous operation. The averaged specific productivity was 9.07 mmol h(-1) g enzyme(-1) and the half-life of 48 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Friction stir welding of Aluminium matrix composites – A Review

    Directory of Open Access Journals (Sweden)

    Subramanya Prabhu

    2018-01-01

    Full Text Available Friction stir welding (FSW is established as one of the prominent welding techniques to join aluminium matrix composites (AMCs. It is a solid state welding process, takes place well below the melting temperature of the material, eliminates the detrimental effects of conventional fusion welding process. Although the process is capable to join AMCs, challenges are still open that need to be fulfill to widen its applications. This paper gives the outline of the friction stir welding technique used to join AMCs. Effect of process variables on the microstructure and mechanical properties of the joints, behavior of reinforcing materials during welding, effect of tool profiles on the joint strength are discussed in detail. Few improvements and direction for future research are also proposed.

  15. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; Carlson, Blair; Boettcher, Eric; Ruokolainen, Robert

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Although the friction stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.

  16. Multiaxial fatigue of aluminium friction stir welded joints: preliminary results

    Directory of Open Access Journals (Sweden)

    D. G. Hattingh

    2015-07-01

    Full Text Available The aim of the present research is to check the accuracy of the Modified Wöhler Curve Method (MWCM in estimating the fatigue strength of friction stir (FS welded tubular joints of Al 6082-T6 subjected to in-phase and out-of-phase multiaxial fatigue loading. The welded samples being investigated were manufactured by equipping an MTS I-STIR process development system with a retracting tool that was specifically designed and optimised for this purpose. These specimens were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out by using the generated experimental results allowed us to prove that the MWCM (applied in terms of nominal stresses is highly accurate in predicting the fatigue strength of the tested FS welded joints, its usage resulting in estimates falling with the uniaxial and torsional calibration scatter bands.

  17. Process optimization of friction stir welding based on thermal models

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup

    2010-01-01

    This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed...... and the backingplate by solving an inverse modelling problem in which experimental data and a numerical model are used for determining the contact heat transfer coefficient. Different parametrizations of the spatial distribution of the heat transfer coefficient are studied and discussed, and the optimization problem...

  18. Tracing Material Flow Paths in Friction Stir Welds

    Science.gov (United States)

    Sanders, Johnny; Schneider, Judy; Numes, Arthur, Jr.

    2005-01-01

    Heat and mechanical work are coupled in the friction stir welding process. The process variables are RPM, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the process variables plus the individual flow path taken by the particular filament of metal flowing around the tool and ending on flat point. The strain-temperature history determines the properties of a metal element on the weld cross-section. The strain-temperature history is carefully controlled in metal processes where direct control is feasible. Indirect estimates of the flow paths and the strain-temperature histories of filaments comprising friction stir welds can be made from a model, if the model is good enough. This paper describes marker studies of flow path geometries for various process parameters. Observed geometries are compared with geometries estimated from models.

  19. Transport and Stirring by the Asian Monsoon Anticyclone

    Science.gov (United States)

    Bowman, K. P.; Siu, L. W.

    2016-12-01

    During boreal summer the Asian monsoon anticyclone (AMA) dominates the atmospheric circulation of the northern hemisphere upper troposphere and lower stratosphere (UTLS). The convection that drives the AMA also transports water and pollutants from the lower troposphere to the UTLS. This air can be exported from within the AMA to the global tropical upper troposphere and the northern hemisphere lower stratosphere by large-scale stirring. Here we analyze the mechanisms responsible for stirring air into and out of the AMA by using air parcel trajectories computed with wind fields that have been filtered to remove selected space and time scales. We focus on the role of Rossby waves propagating along the subtropical jet on the northern flank of the AMA, and on the importance of fluctuations in the size and strength of the AMA circulation itself due to variations in convective heating.

  20. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture.

    Science.gov (United States)

    Pollock, James; Coffman, Jon; Ho, Sa V; Farid, Suzanne S

    2017-07-01

    This paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete-event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision-making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps. The cost of goods per gram (COG/g), E-factor, and operational risk scores of each strategy were established across a matrix of scenarios with differing combinations of clinical development phase and company portfolio size. The tool outputs predict that the optimal strategy for early phase production and small/medium-sized companies is the integrated continuous strategy (alternating tangential flow filtration (ATF) perfusion, continuous capture, continuous polishing). However, the top ranking strategy changes for commercial production and companies with large portfolios to the hybrid strategy with fed-batch culture, continuous capture and batch polishing from a COG/g perspective. The multiattribute decision-making analysis highlighted that if the operational feasibility was considered more important than the economic benefits, the hybrid strategy would be preferred for all company scales. Further considerations outside the scope of this work include the process development costs required to adopt continuous processing. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:854-866, 2017. © 2017 The

  1. Structure formation of 5083 alloy during friction stir welding

    Science.gov (United States)

    Zaikina, A. A.; Kolubaev, A. V.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.

    2017-12-01

    This paper provides a comparative study of structures obtained by friction stir welding and sliding friction of 5083 Al alloy. Optical and electron microscopy reveals identical fine-grained structures with a grain size of ˜5 µm both in the weld nugget zone and subsurface layer in friction independently of the initial grain size of the alloy. It has been suggested that the grain boundary sliding is responsible for the specific material flow pattern in both techniques considered.

  2. Optimization of process parameters for friction stir processing (FSP ...

    Indian Academy of Sciences (India)

    An Al-5 wt% TiC composite was processed in situ using K2TiF6 and graphite in Al melt and subjected to FSP. Processing parameters for FSP were optimized to get a defect free stir zone and homogenize the particle distribution. It was found that a rotation speed > 800 rpm is needed. A rotation speed of 1000 rpm and a ...

  3. Optimization of process parameters for friction stir processing (FSP ...

    Indian Academy of Sciences (India)

    Administrator

    An Al-5 wt% TiC composite was processed in situ using K2TiF6 and graphite in Al melt and subjected to FSP. Processing .... Optimization of process parameters for friction stir processing of Al–TiC in situ composite. 573. Table 1. FSP process ... (Model 3367) at a strain rate of 10–3 s–1. 3. Results and discussion. 3.1 XRD ...

  4. Friction stir spot welding of dissimilar aluminium alloys

    International Nuclear Information System (INIS)

    Bozkurt, Yahya

    2016-01-01

    Friction stir spot welding (FSSW) has been proposed as an effective technology to spot weld the so-called “difficult to be welded” metal alloys such as thin sheets aluminum alloys and dissimilar materials. FSSW is derived from friction stir welding technology, its principle benefit being low cost joining, lower welding temperature and shorter welding time than conventional welding methods. In this study, dissimilar AlMg 3 and AlCu 4 Mg 1 aluminium alloy plates were FSSWed by offsetting the low strength sheet on upper side of the weld. The effects of tool rotation speed on the microstructure, lap shear fracture load (LSFL), microhardness and fracture features of the weld are investigated by constant welding parameters. The maximum LSFL was obtained by increasing the tool rotational speed. However, the joints exhibited pull-out nugget fracture mode under lap shear tensile testing conditions. The largest completely bonded zone was observed as 5.86 mm which was narrower at the opposite position of the joint. Key words: friction stir spot welding, aluminium alloys, mechanical properties, dissimilar joint, welding parameters

  5. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  6. Modelling of the temperature field that accompanies friction stir welding

    Directory of Open Access Journals (Sweden)

    Nosal Przemysław

    2017-01-01

    Full Text Available The thermal modelling of the Friction Stir Welding process allows for better recognition and understanding of phenomena occurring during the joining process of different materials. It is of particular importance considering the possibilities of process technology parameters, optimization and the mechanical properties of the joint. This work demonstrates the numerical modelling of temperature distribution accompanying the process of friction stir welding. The axisymmetric problem described by Fourier’s type equation with internal heat source is considered. In order to solve the diffusive initial value problem a fully implicit scheme of the finite difference method is applied. The example under consideration deals with the friction stir welding of a plate (0.7 cm thick made of Al 6082-T6 by use of a tool made of tungsten alloy, whereas the material subjected to welding was TiC powder. Obtained results confirm both quantitatively and qualitatively experimental observations that the superior temperature corresponds to the zone where the pin joints the shoulder.

  7. The Formability of Friction Stir Welds in Automotive Stamping Environments

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Glenn J.; Davies, Richard W.; Stephens, Elizabeth V.; Wazny, Scott; Kaunitz, Leon; Waldron, Douglas J.

    2006-02-01

    Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal. Friction Stir Welding (FSW) is a process recently applied to Aluminum TWBs that has the potential to produce a higher quality weld. The current study presents data on the mechanical properties, formability, and FSW weld process parameter development for friction stir welded aluminum, Tailor Welded Blanks. Friction stir welded TWBs can be shown to have higher formability, higher ductility, and lower defect content than many competing joining processes, and they can be fabricated at speeds appropriate for automotive manufacturing.

  8. The Formability of Friction Stir Welds in Automotive Stamping Environments

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Glenn J.; Davies, Richard W.; Stephens, Elizabeth V.; wazny, scott; Kaunitz, Leon; Waldron, D.

    2005-04-01

    Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arrise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal. Friction Stir Welding (FSW) is a process recently applied to Aluminum TWBs that has the potential to produce a higher quality weld. The current study presents data on the mechanical properties, formability, and FSW weld process parameter development for friction stir woined, aluminum, Tailor Welded Blanks. Friction stir welded TWBs can be shown to have higher formability, higher ductility, and lower defect content than many competing joining processes, and they can be fabricated at speeds appropriate for automotive manufacturing.

  9. Effects of Friction Stir Welding Speed on AA2195 alloy

    Directory of Open Access Journals (Sweden)

    Lee Ho-Sung

    2016-01-01

    Full Text Available The application of friction stir welding (FSW to aerospace has grown rapidly due to the high efficiency and environmental friendly nature of the process. FSW is achieved by plastic flow of frictionally heated material in solid state and offers many advantages of avoiding hot cracking and limiting component distortion. Recently low density, high modulus and high strength AA2195 are used as substitute for conventional aluminum alloys since the weight saving is critical in aerospace applications. One of the problems for this alloy is weld metal porosity formation leading to hot cracking. Combination of FSW and AA2195 provides synergy effect to improve mechanical properties and weight saving of aerospace structure such as cryogenic fuel tanks for launch systems. The objective of this paper is to investigate the effect of friction stir welding speed on mechanical and microstructural properties of AA2195. The friction stir welded materials were joined with four different tool rotation speeds (350~800 rpm and five welding speeds (120~360 mm/min, which are the two prime welding parameters in this process.

  10. PCs stir reliability, real-time concerns

    Energy Technology Data Exchange (ETDEWEB)

    Strothman, J. [ed.

    1994-11-01

    While pre-Christmas price wars regularly boost personal computer sales this time of year, price cuts alone won`t cause process control systems designers to open their wallets and buy PCs. User studies and user feedback to process control equipment suppliers show several other issues continue to rank higher than price including: (1) Hardware and software reliability; (2) easy-to-use user interfaces; (3) ability to do multitasking; (4) need for real-time updates. These and several other non-price issues - including open versus proprietary systems, slower scan rates from PCs compared to programmable controllers, and assurances that the PC will work in an industrial environment - scored high in a study authored earlier this year by Jesse Yoder, owner of Idea Network, Clinton, NJ. The report, titled {open_quotes}The World Market for Process Control Equipment,{close_quotes} was written for FIND/SVP, a New York City market research firm.

  11. Process and system for stirring liquid sodium flowing through the primary circuit of a steam generator

    International Nuclear Information System (INIS)

    Fabregue, J.P.

    1982-01-01

    The invention concerns the stirring of the liquid sodium of a steam generator comprising a primary circuit composed of an elongated vessel through which the liquid sodium flows, a secondary circuit composed of a number of tubes extending inside the long cyclindrical vessel. The process consists in imparting simultaneously to the liquid sodium, during its passage through the cylindrical vessel, a movement of continuous rotation about the longitudinal axis of the cylindrical vessel and an alternating series of radial movements, centripetal and centrifugal, in relation to the longitudinal axis, so that each unit quantity of the sodium comes into contact with a large number of tubes. The application particularly concerns steam generators for nuclear power stations [fr

  12. Effect of the Modified Pitched Blade Turbines on the Flow Pattern in Stirred Tanks

    International Nuclear Information System (INIS)

    Bouzgarrou, Ghazi; Driss, Zied; Chtourou; Wajdi; Abid, Mohamed Salah

    2009-01-01

    The hydrodynamic and turbulence model have been simulated by our computational fluid dynamics (CFD) code in a mechanically stirred tank equipped by axial turbine. The effect of the modified attack angle of the blade on the flow prediction is studied. The Reynolds-averaged continuity and Navier-Stokes equations were solved. For the closure of the above equations, a turbulence model κ-ε has been employed. The numerical solution of these equations was achieved by a finite-volume method. The CFD predicted flow fields at different locations in the tank as well as the power number show reasonably good agreement with the measured data and with those calculated from published experimental correlations

  13. Melt-particle mixing in gas-stirred ladles with throughflow

    Science.gov (United States)

    Torii, S.; Yang, W. J.

    1992-05-01

    An experimental study is performed on a gas-particle stirred ladle system with throughflow, using a simplified water model. Narrow ladles are used to produce 2-D flows. Flow visualization by the direct photographic method is employed to investigate the effects of ladle geometry, throughflow rate, air flow rate and its injection location on the melt-particle mixing performance. Image processing is applied to aid in determining the mixing performance. It is disclosed that an efficient mixing may be achieved if the gas at a higher flow rate is injected with particles through a nozzle near the bottom corner of the ladle wall on the melt inlet side. The mixing performance is better in a rectangular ladle (aspect ratio of 2) than in a square ladle (aspect ratio of unity). The effect of throughflow rate on mixing is minor. The study has an important application in manufacturing processes, such as continuous casting process, and materials processing.

  14. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.

    Science.gov (United States)

    Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini

    2017-05-01

    Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  16. Particle deformation during stirred media milling

    Science.gov (United States)

    Hamey, Rhye Garrett

    Production of high aspect ratio metal flakes is an important part of the paint and coating industry. The United States Army also uses high aspect ratio metal flakes of a specific dimension in obscurant clouds to attenuate infrared radiation. The most common method for their production is by milling a metal powder. Ductile metal particles are initially flattened in the process increasing the aspect ratio. As the process continues, coldwelding of metal flakes can take place increasing the particle size and decreasing the aspect ratio. Extended milling times may also result in fracture leading to a further decrease in the particle size and aspect ratio. Both the coldwelding of the particles and the breakage of the particles are ultimately detrimental to the materials performance. This study utilized characterization techniques, such as, light scattering and image analysis to determine the change in particle size as a function of milling time and parameters. This study proved that a fundamental relationship between the milling parameters and particle deformation could be established by using Hertz's theory to calculate the stress acting on the aluminum particles. The study also demonstrated a method by which milling efficiency could be calculated, based on the amount of energy required to cause particle deformation. The study found that the particle deformation process could be an energy efficient process at short milling times with milling efficiency as high as 80%. Finally, statistical design of experiment was used to obtain a model that related particle deformation to milling parameters, such as, rotation rate and milling media size.

  17. Calculation of energy costs of composite biomass stirring at biogas stations

    Science.gov (United States)

    Suslov, D. Yu; Temnikov, D. O.

    2018-03-01

    The paper is devoted to the study of the equipment to produce biogas fuel from organic wastes. The bioreactor equipped with a combined stirring system ensuring mechanical and bubbling stirring is designed. The method of energy cost calculation of the combined stirring system with original design is suggested. The received expressions were used in the calculation of the stirring system installed in the 10 m3 bioreactor: power consumed by the mixer during the start-up period made Nz =9.03 kW, operating power of the mixer made NE =1.406 kW, compressor power for bubbling stirring made NC =18.5 kW. Taking into account the operating mode of single elements of the stirring system, the energy cost made 4.38% of the total energy received by the biogas station.

  18. Alloy dissolution in argon stirred steel

    Science.gov (United States)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  19. Superplastic Forming of Aluminum Multisheet Structures Fabricated Using Friction Stir Welding and Refill Friction Stir Spot Welding

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Glenn J.; Herling, Darrell R.; Arbegast, William J.; Allen, Casey D.; Degen, Cassandra M.

    2006-12-20

    Superplastically-formed structural panels are growing in their applications in aerospace, aircraft, automotive, and other industries. Generally, monolithic sheets are employed, limiting the size and complexity of the final part. However, more complex and larger final geometries are possible if individual sheet materials can be joined together through an appropriate joining technology, then SPF formed to final shape. The primary challenge in this type of SPF fabrication has been making a joint between the sheets that will survive the SPF forming event and display the correct amount of elongation in the joint relative to the base materials being formed. Friction Stir Welding is an ideal joining technology for SPF applications because the forming response of the weld metal at SPF conditions is adjustable by selecting different weld process parameters during initial joining. This allows the SPF deformation in the weld metal to be “tuned” to the deformation of the parent sheet to prevent early failure from occurring in either the weld metal or the parent sheet due to mismatched SPF flow stresses. Industrial application of the concept of matching flow stresses is currently being pursued on a program at the Pacific Northwest National Laboratory on room temperature formed friction stir welded tailor welded blanks for heavy truck applications. Flow stress matching and process parameter “tuning” is also important in the fabrication of SPF multisheet structural panels. These panels are fabricated by joining three sheets together with alternating welds top and bottom, so that each weld penetrates only two of the three sheets. This sheet pack is then sealed with a weld seam around the outside and hot gas is introduced between the sheets through a welded tube. Under SPF conditions the sheet pack inflates to produce an internally supported structure. In this paper we presents results on an investigation into using FSW and Refill Friction Stir Spot Welding to fabricated

  20. Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Wang Xunhong; Wang Kuaishe

    2006-01-01

    Friction stir welding (FSW) is a relatively new joining technique particularly for magnesium and aluminum alloys that are difficult to fusion weld. In this paper, an excellent friction stir weld of AZ31 magnesium alloy was obtained at proper parameter. In the friction stir zone (FSZ), the microstructure of the base material (BM) is replaced by fine grains and small particles of intermetallic compounds. The average microhardness of the friction stir zone is higher than that of the base material. The maximum tensile strength of joint can reach 93% that of the base material. And the failure locations are almost at the heating affected zone

  1. [Fat-suppressing STIR sequences with and without contrast media in the MRT of ENT tumors].

    Science.gov (United States)

    Brüning, R; Heuck, A; Naegele, M; Seelos, K; Vahlensieck, M; Reiser, M

    1994-05-01

    Fat-suppressed STIR (short TI inversion recovery) sequences were compared to plain and contrast-enhanced T1-weighted SE sequences of head and neck tumors. 19 patients underwent MR imaging on a 0.5 Telsa system (T5-II, Philips). STIR imaging parameters: TR/TE = 1000/20 ms, inversion pulse 100 ms. All films were read by four radiologists. The image quality was graded: score from 0 to 5, by means that grade 5 = optimal quality. Sensitivity was 89% in STIR, 96% in SE sequences. Tumor delineation was graded good in the enhanced T1-weighted and enhanced fat suppression images. The unenhanced imaging was superior in STIR (STIR/T1 = 2.8/2.43). The tumor contrast was best in contrast enhanced and plain STIR sequences (STIR contrast = 3.41), and in the contrast enhanced T1-weighted SE (3.33). STIR almost equaled T1 post-contrast in respect of tumour conspicuity, but the sensitivity was lower. STIR can be a supplement to SE, but cannot substitute T1 postcontrast. The combined use is expected to have the highest assessment value.

  2. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  3. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon

    2013-01-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT)....... sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7)....

  4. Modeling herbivorous animal digestive system as 3- continuous ...

    African Journals Online (AJOL)

    Modeling herbivorous animal digestive system as 3- continuous stirred tank reactor (CSTR) and 1-plug flow reactor (PFR) in series with specific reference to ... This shows the efficiency of each reactor at converting the purely lignocellulosics substrates to useful products like protein, vitamin, fatty acid and the bye-products.

  5. Continuous production of glycerol by catalytic high pressure hydrogenolysis of sucrose

    NARCIS (Netherlands)

    van Ling, Gerrit; Driessen, Alfons J.; Piet, Arie C.; Vlugter, Jozef C.

    1970-01-01

    Several continuous reactor systems have been discussed for the catalytic high pressure hydrogenolysis of sucrose to glycerol. Theoretically and actually, continuous reactors lead to lower glycerol yields than in a batch process. Two continuous stirred tank reactors in cascade constitute a reasonable

  6. Controlling Force and Depth in Friction Stir Welding

    Science.gov (United States)

    Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard

    2005-01-01

    Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).

  7. India-China Relations: Giants Stir, Cooperate and Compete

    Science.gov (United States)

    2004-10-01

    SPECIAL ASSESSMENT O C T O B E R 2 0 0 4 Asia’s Bilateral Relations India - China Relations: Giants Stir, Cooperate and Compete M O H A N M A L I K...Executive Summary ● For the first time in more than half a millennium, both India and China are on the march upward simultaneously on their relative...United Nations (UN) Security Council, Nuclear Five, and the Shanghai Cooperation Organization). ● The future of the India - China relationship will be

  8. Friction Stir Processing of ODS and FM Steels

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Chun, Young Bum; Noh, Sang Hoon; Jang, Jin Sung; Kim, Tae Kyu

    2013-01-01

    In ODS steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and martensite, and the oxide

  9. Friction stir welding (FSW of aluminium foam sandwich panels

    Directory of Open Access Journals (Sweden)

    M. Bušić

    2016-07-01

    Full Text Available The article focuses on the influence of welding speed and tool tilt angle upon the mechanical properties at the friction stir welding of aluminium foam sandwich panels. Double side welding was used for producing butt welds of aluminium sandwich panels applying insertion of extruded aluminium profile. Such insertion provided lower pressure of the tool upon the aluminium panels, providing also sufficient volume of the material required for the weldment formation. Ultimate tensile strength and flexural strength for three-point bending test have been determined for samples taken from the welded joints. Results have confirmed anticipated effects of independent variables.

  10. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  11. Microstructural Evolution in Friction Stir Welding of Ti-5111

    Science.gov (United States)

    2010-08-01

    3-72 Figure 78. Stir zone bottom wormhole defect within 12.7mm Ti-5111 FSW. The defect extends...given in Figure 8. Wormhole defects were found in welds with high travel speed and high spindle speed. Weld development led to optimized parameters of...Notes BJ-1 A Butt 190-210 3.5 10 Wormhole BJ-2 A Butt 180-200 3.5 14.5 Wormhole BJ-3 A Butt 170-150 3.5 12.5 Wormhole ; void free @150rpm BJ-4 A

  12. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    2013-08-01

    joint of 304 stainless steel and AA6056 were also rich in chromium, nickel and manganese [33]. Precipitation of second phase particles rich in Cu, Mg...joints/. Accessed July 11, 2012. 19. W.H. Jiang, R. Kovacevic. “Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI ...alloy to AISI 1018 steel by combined effects of fusion and solid state welding.” Int J Mach Tool Manu 44 (2004) 1205-1214. 23. Y. Hovanski, M.L

  13. Emergence of Multiscaling in a Random-Force Stirred Fluid

    Science.gov (United States)

    Yakhot, Victor; Donzis, Diego

    2017-07-01

    We consider the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that, due to multiscaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different "Reynolds numbers" reflecting a multitude of anomalous scaling exponents. The theoretically predicted transition disappears at Rλ≤3 . The developed theory is in quantitative agreement with the outcome of large-scale numerical simulations.

  14. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    Science.gov (United States)

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  15. Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 IITG under continuous mode of operation.

    Science.gov (United States)

    Kumar, Vikram; Muthuraj, Muthusivaramapandian; Palabhanvi, Basavaraj; Das, Debasish

    2016-01-01

    Synchronized growth and neutral lipid accumulation with high lipid productivity under mixotrophic growth of the strain Chlorella sorokiniana FC6 IITG was achieved via manipulation of substrates feeding mode and supplementation of lipid elicitors in the growth medium. Screening and optimization of lipid elicitors resulted in lipid productivity of 110.59mgL(-1)day(-1) under the combined effect of lipid inducers sodium acetate and sodium chloride. Fed-batch cultivation of the strain in bioreactor with intermittent feeding of limiting nutrients and lipid inducer resulted in maximum biomass and lipid productivity of 2.08 and 0.97gL(-1)day(-1) respectively. Further, continuous production of biomass with concomitant lipid accumulation was demonstrated via continuous feeding of BG11 media supplemented with lipid inducers sodium acetate and sodium chloride. The improved biomass and lipid productivity in chemostat was found to be 2.81 and 1.27gL(-1)day(-1) respectively operated at a dilution rate of 0.54day(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. JOINING DISSIMILAR MATERIALS USING FRICTION STIR SCRIBE TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep; Fifield, Leonard S.

    2016-09-01

    Development of robust and cost effective method of joining dissimilar materials can provide a critical pathway to enable widespread use of multi-material design and components in mainstream industrial applications. The use of multi-material components such as Steel-Aluminum, Aluminum-Polymer allows design engineers to optimize material utilization based on service requirements and often lead weight and cost reductions. However producing an effective joint between materials with vastly different thermal, microstructural and deformation response is highly problematic using conventional joining and /or fastening methods. This is especially challenging in cost sensitive high volume markets that largely rely on low–cost joining solutions. Friction Stir Scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like Magnesium and Aluminum to high temperature materials like Steels and Titanium. Additionally viable joints between polymer composites and metal can also be made using this method. This paper will present state of the art, progress made and challenges associated with this innovative derivative of Friction Stir welding in reference to joining dissimilar metals and polymer/metal combinations.

  17. Improving friction stir welding of blanks of different thicknesses

    International Nuclear Information System (INIS)

    Fratini, L.; Buffa, G.; Shivpuri, R.

    2007-01-01

    Friction stir welding (FSW) appears to be a promising process even in the welding of blanks of different thicknesses. Actually, such particular tailor welded blanks (TWBs) are usually characterized by a reduction in ductility due to the utilized fusion welding process. In this paper the authors, starting from a preliminary feasibility study, investigate the possibility to improve the mechanical performances of friction stir welded blanks of aluminum alloy with different thicknesses. Both experiments and a FE analyses are developed for a few case studies with different thickness ratios between the blanks. The numerical investigations are performed with the aim to highlight the material temperature distribution during the process in order to determine process conditions for which an almost symmetric thermal flow is obtained in the two blanks of the joint. In this way, a few simple process design rules are derived and verified through experiments. In particular a thickness ratio up to 2 was considered and a joint resistance of about the 80% of the parent material ultimate tensile strength was observed

  18. Simulation of Friction Stir Processing in 304L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Miles M.P.

    2016-01-01

    Full Text Available A major dilemma facing the nuclear industry is repair or replacement of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for weld repair, the high temperatures and thermal stresses inherent in the process enhance the growth of helium bubbles, causing intergranular cracking in the heat-affected zone (HAZ. Friction stir processing (FSP has potential as a weld repair technique for irradiated stainless steel, because it operates at much lower temperatures than fusion welding, and is therefore less likely to cause cracking in the HAZ. Numerical simulation of the FSP process in 304L stainless steel was performed using an Eulerian finite element approach. Model input required flow stresses for the large range of strain rates and temperatures inherent in the FSP process. Temperature predictions in three locations adjacent to the stir zone were accurate to within 4% of experimentally measure values. Prediction of recrystallized grain size at a location about 6mm behind the tool center was less accurate, because the empirical model employed for the prediction did not account for grain growth that occurred after deformation in the experiment was halted.

  19. Metal Cutting Theory and Friction Stir Welding Tool Design

    Science.gov (United States)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  20. Joining Dissimilar Materials Using Friction Stir Scribe Technique

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Piyush [Pacific Northwest National Laboratory, Richland 99352, WA e-mail: piyush.upadhyay@pnnl.gov; Hovanski, Yuri [Pacific Northwest National Laboratory, Richland 99352, WA; Jana, Saumyadeep [Pacific Northwest National Laboratory, Richland 99352, WA; Fifield, Leonard S. [Pacific Northwest National Laboratory, Richland 99352, WA

    2016-10-03

    Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multi-material designs and components in mainstream industrial applications. The use of multi-material components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low cost joining solutions. Friction stir scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding in reference to joining dissimilar metals and polymer/metal combinations.

  1. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-05-01

    Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in 

  2. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  3. Grain refinement of Aluminium alloys using friction stir processing

    International Nuclear Information System (INIS)

    Khraisheh, M.

    2004-01-01

    Full text.Friction Stir Processing (FSP) is a new advanced material processing technique used to refine and homogenize the microstructure of sheet metals. FSP is a solid state processing technique that uses a rapidly rotating non-consumable high strength tool steel pin that extends from a cylindrical shoulder. The rotating pin is forced with a predetermined load into the work piece and moved along with the work pieces, while the rotating pin deforms and stirs the locally heated material. It is a hot working process in which a large amount of deformation is imparted to the sheet. FS processed zone is characterized by dynamic recrystallization which results in grain refinement . this promising emerging process needs further investigations to develop optimum process parameters to produce the desired microstructure. In this work, we present preliminary results on the effects of rotational and translational speeds on grain refinement of AA5052. Under certain processing conditions, sub-micron grain structure was produced using this technique

  4. Friction Stir Weld Restart+Reweld Repair Allowables

    Science.gov (United States)

    Clifton, Andrew

    2008-01-01

    A friction stir weld (FSW) repair method has been developed and successfully implemented on Al 2195 plate material for the Space Shuttle External Fuel Tank (ET). The method includes restarting the friction stir weld in the termination hole of the original weld followed by two reweld passes. Room temperature and cryogenic temperature mechanical properties exceeded minimum FSW design strength and compared well with the development data. Simulated service test results also compared closely to historical data for initial FSW, confirming no change to the critical flaw size or inspection requirements for the repaired weld. Testing of VPPA fusion/FSW intersection weld specimens exhibited acceptable strength and exceeded the minimum design value. Porosity, when present at the intersection was on the root side toe of the fusion weld, the "worst case" being 0.7 inch long. While such porosity may be removed by sanding, this "worst case" porosity condition was tested "as is" and demonstrated that porosity did not negatively affect the strength of the intersection weld. Large, 15-inch "wide panels" FSW repair welds were tested to demonstrate strength and evaluate residual stresses using photo stress analysis. All results exceeded design minimums, and photo stress analysis showed no significant stress gradients due to the presence of the restart and multi-pass FSW repair weld.

  5. Effects of Laser Peening, and Shot Peening, on Friction Stir Welding

    Science.gov (United States)

    Hatamleh, Omar; Hackel, Lloyd; Rankin, Jon; Truong, Chanh; Walter, Matt

    2006-01-01

    A viewgraph presentation describing the effects of laser peening and shot peening on friction stir welding is shown. The topics include: 1) Background; 2) Friction Stir Welding (FSW); 3) Microstructure; 4) Laser & Shot Peening; 5) Residual Stresses; 6) Tensile Behavior; 7) Fatigue Life & Surface Roughness; 8) Crack Growth; and 9) Benefits.

  6. Stir-Frying of Chinese Cabbage and Pakchoi Retains Health-Promoting Glucosinolates

    NARCIS (Netherlands)

    Nugrahedi, Probo Y.; Oliviero, Teresa; Heising, Jenneke K.; Dekker, Matthijs; Verkerk, Ruud

    2017-01-01

    Stir-frying is a cooking method, originating from Asia, in which food is fried in small amount of very hot oil. Nowadays in many other parts of the world stir-frying is a very popular method to prepare vegetables, because it is fast and fried vegetables are tasty. However, the retention of

  7. Evaluation of Friction Stir Processing of HY-80 Steel Under Wet and Dry Conditions

    Science.gov (United States)

    2012-03-01

    High Strength Steel , Microstructural Properties, Hardenable Alloy Steel , Weld Repair, HY-80, Charpy Impact Test , Tensile Test , Microhardness Test ...evaluated by tensile, microhardness, and Charpy V-notch impact resistance tests . The results indicated that austenitization occurred within the stir...tensile, microhardness, and Charpy V-notch impact resistance tests . The results indicated that austenitization occurred within the stir zones and

  8. 7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.

    Science.gov (United States)

    2010-01-01

    ... stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... soaked curd, granular or stirred curd cheese. Cheese, used in the manufacture of pasteurized process cheese products should possess a pleasing and desirable taste and odor consistent with the age of the...

  9. Colosed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Ppart Qualification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  10. The Concept of Electrically Assisted Friction Stir Welding (EAFSW) and Application to the Processing of Various Metals

    National Research Council Canada - National Science Library

    Ferrando, William A

    2008-01-01

    This report introduces a novel variant of conventional friction stir welding (FSW). Since 1991, friction stir welding provides an alternative to arc welding as a metal joining method in numerous applications...

  11. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  12. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  13. Primary Structure and Mechanical Properties of AlSi2 Alloy Continuous Ingots

    Directory of Open Access Journals (Sweden)

    Wróbel T.

    2017-06-01

    Full Text Available The paper presents the research results of horizontal continuous casting of ingots of aluminium alloy containing 2% wt. silicon (AlSi2. Together with the casting velocity (velocity of ingot movement we considered the influence of electromagnetic stirring in the area of the continuous casting mould on refinement of the ingot’s primary structure and their selected mechanical properties, i.e. tensile strength, yield strength, hardness and elongation. The effect of primary structure refinement and mechanical properties obtained by electromagnetic stirring was compared with refinement obtained by using traditional inoculation, which consists in introducing additives, i.e. Ti, B and Sr, to the metal bath. On the basis of the obtained results we confirmed that inoculation done by electromagnetic stirring in the range of the continuous casting mould guarantees improved mechanical properties and also decreases the negative influence of casting velocity, thus increasing the structure of AlSi2 continuous ingots.

  14. Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel

    International Nuclear Information System (INIS)

    Sato, Y.S.; Nelson, T.W.; Sterling, C.J.; Steel, R.J.; Pettersson, C.-O.

    2005-01-01

    The microstructure and mechanical properties of friction stir (FS) welded SAF 2507 super duplex stainless steel were examined. High-quality, full-penetration welds were successfully produced in the super duplex stainless steel by friction stir welding (FSW) using polycrystalline cubic boron nitride (PCBN) tool. The base material had a microstructure consisting of the ferrite matrix with austenite islands, but FSW refined grains of the ferrite and austenite phases in the stir zone through dynamic recrystallisation. Ferrite content was held between 50 and 60% throughout the weld. The smaller grain sizes of the ferrite and austenite phases caused increase in hardness and strength within the stir zone. Welded transverse tensile specimen failed near the border between the stir zone and TMAZ at the retreating side as the weld had roughly the same strengths as the base material

  15. The Effect of Premixed Al-Cu Powder on the Stir Zone in Friction Stir Welding of AA3003-H18

    Science.gov (United States)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2015-02-01

    In this research, 3-mm-thick AA3003-H18 non-heat-treatable aluminum alloy plates were joined by friction stir welding (FSW). It was performed by adding pure Cu and premixed Cu-Al powders at various rotational speeds of 800, 1000, and 1200 rpm and constant traveling speeds of 100 mm/min. At first, the powder was filled into the gap (0.2 or 0.4 mm) between two aluminum alloy plates, and then the FSW process was performed in two passes. The microstructure, mechanical properties, and formation of intermetallic compounds were investigated in both cases of using pure Cu and premixed Al-Cu powders. The results of using pure Cu and premixed Al-Cu powders were compared in the stir zone at various rotational speeds. The copper particle distribution and formation of Al-Cu intermetallic compounds (Al2Cu and AlCu) in the stir zone were desirable using premixed Al-Cu powder into the gap. The hardness values were significantly increased by formation of Al-Cu intermetallic compounds in the stir zone and it was uniform throughout the stir zone when premixed Al-Cu powder was used. Also, longitudinal tensile strength from the stir zone was higher when premixed Al-Cu powder was used instead of pure Cu powder.

  16. The Effect of Vibration during Friction Stir Welding on Corrosion Behavior, Mechanical Properties, and Machining Characteristics of Stir Zone

    Directory of Open Access Journals (Sweden)

    Sajad Fouladi

    2017-10-01

    Full Text Available Different methods have been applied to refine various characteristics of the zone (or nugget obtained by friction stir welding (FSW. In the current research, joining components are vibrated normal to the weld line during FSW to refine the zone microstructure. This process is described as friction stir vibration welding (FSVW. The effect of FSVW on mechanical properties, corrosion behavior, and machining characteristics of the zone are investigated. Al5052 alloy specimens are welded using FSW and FSVW processes and their different characteristics are compared and discussed. The results show that the strength and ductility of the welded parts increase when the vibration is applied. The outcomes also show that corrosion resistance of the nugget for FSV-welded specimens is lower than FS welded samples, and machining force of the former specimens is higher than the latter ones. These are related to smaller grain size in the zone of FSV-welded specimens compared to FS welded parts. Smaller grain size leads to a greater volume fraction of grain boundaries and, correspondingly, higher strength and hardness, as well as lower corrosion resistance.

  17. Numerical simulation of temperature distribution using finite difference equations and estimation of the grain size during friction stir processing

    International Nuclear Information System (INIS)

    Arora, H.S.; Singh, H.; Dhindaw, B.K.

    2012-01-01

    Highlights: ► Magnesium alloy AE42 was friction stir processed under different cooling conditions. ► Heat flow model was developed using finite difference heat equations. ► Generalized MATLAB code was developed for solving heat flow model. ► Regression equation for estimation of grain size was developed. - Abstract: The present investigation is aimed at developing a heat flow model to simulate temperature history during friction stir processing (FSP). A new approach of developing implicit form of finite difference heat equations solved using MATLAB code was used. A magnesium based alloy AE42 was friction stir processed (FSPed) at different FSP parameters and cooling conditions. Temperature history was continuously recorded in the nugget zone during FSP using data acquisition system and k type thermocouples. The developed code was validated at different FSP parameters and cooling conditions during FSP experimentation. The temperature history at different locations in the nugget zone at different instants of time was further utilized for the estimation of grain growth rate and final average grain size of the FSPed specimen. A regression equation relating the final grain size, maximum temperature during FSP and the cooling rate was developed. The metallurgical characterization was done using optical microscopy, SEM, and FIB-SIM analysis. The simulated temperature profiles and final average grain size were found to be in good agreement with the experimental results. The presence of fine precipitate particles generated in situ in the investigated magnesium alloy also contributed in the evolution of fine grain structure through Zener pining effect at the grain boundaries.

  18. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae

    2012-10-11

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148 ± 8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20 ± 13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55 ± 15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73 ± 13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor. © 2012 Springer-Verlag Berlin Heidelberg.

  19. Tool for Two Types of Friction Stir Welding

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A tool that would be useable in both conventional and self-reacting friction stir welding (FSW) has been proposed. The tool would embody both a prior tooling concept for self-reacting FSW and an auto-adjustable pin-tool (APT) capability developed previously as an augmentation for conventional FSW. Some definitions of terms are prerequisite to a meaningful description of the proposed tool. In conventional FSW, depicted in Figure 1, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a rotating pin that protrudes from the shoulder into the depth of the workpiece. The main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional FSW is augmented with an APT capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or force-control system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding (SR-FSW), there are two rotating shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft, back into the FSW machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. A tool for SRFSW embodying this concept was reported in "Mechanism for Self-Reacted Friction Stir Welding" (MFS-31914), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 53. In its outward appearance, the proposed tool (see Figure 2) would fit the above description of an SR

  20. Multi-stir bar sorptive extraction for analysis of odor compounds in aqueous samples.

    Science.gov (United States)

    Ochiai, Nobuo; Sasamoto, Kikuo; Ieda, Teruyo; David, Frank; Sandra, Pat

    2013-11-08

    As reproducible coating of stir bars with more polar phases was found to be very difficult, a supporting grid was used in the development of an ethyleneglycol-modified Silicone (EG Silicone) coated stir bar. This new polar coating showed good performance for the extraction of polar solutes, but long term use also showed degradation of the coating due to friction while stirring. In order to address the lower robustness of the EG Silicone stir bar which has a much softer coating compared to a conventional polydimethylsiloxane (PDMS) stir bar, a novel SBSE procedure termed multi-SBSE ((m)SBSE) was developed. (m)SBSE consists of the robust PDMS stir bar stirring at the bottom of the vial and the EG Silicone stir bar attached on the inner side wall of the vial (a magnetic clip is used for the set-up). After extraction, the two stir bars are placed in a single glass desorption liner and are simultaneously thermally desorbed. The desorbed compounds were analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Compared to conventional SBSE, (m)SBSE provides more uniform enrichment of a wide range of odor compounds in aqueous sample since both stir bars can complement each other, while eliminating the damage of the EG Silicone phase during the extraction. The robustness of the EG Silicone stir bar was dramatically increased and more than 30 extraction and desorption cycles were possible without loss in performance. The recoveries for polar solutes such as 2-acetyl pyrrole (logKow: 0.55), benzyl alcohol (logKow: 1.08), guaiacol (logKow: 1.34), and indole (logKow: 2.05) were increased by a factor of about 2-7. The (m)SBSE-TD-GC-MS method showed good linearity (r(2)>0.9913) and high sensitivity (limit of detection: 0.011-0.071 ng mL(-1)) for the test compounds spiked in water. The feasibility and benefit of the method was demonstrated with analysis of odor compounds in roasted green tea. The normalized areas obtained from (m)SBSE showed the best

  1. Production of Concentrated Pickering Emulsions with Narrow Size Distributions Using Stirred Cell Membrane Emulsification.

    Science.gov (United States)

    Manga, Mohamed S; York, David W

    2017-09-12

    Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.

  2. Characteristics of Friction Stir Processed UHMW Polyethylene Based Composite

    Science.gov (United States)

    Hussain, G.; Khan, I.

    2018-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) based composites are widely used in biomedical and food industries because of their biocompatibility and enhanced properties. The aim of this study was to fabricate UHMWPE / nHA composite through heat assisted Friction Stir Processing. The rotational speed (ω), feed rate (f), volume fraction of nHA (v) and shoulder temperature (T) were selected as the process parameters. Macroscopic and microscopic analysis revealed that these parameters have significant effects on the distribution of reinforcing material, defects formation and material mixing. Defects were observed especially at low levels of (ω, T) and high levels of (f, v). Low level of v with medium levels of other parameters resulted in better mixing and minimum defects. A 10% increase in strength with only 1% reduction in Percent Elongation was observed at the above set of conditions. Moreover, the resulted hardness of the composite was higher than that of the parent material.

  3. Prolegomena to the Study of Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2010-01-01

    The literature contains many approaches toward modeling of the friction stir welding (FSW) process with varying treatments of the weld metal properties. It is worthwhile to consider certain fundamental features of the process before attempting to interpret FSW phenomena: Because of the unique character of metal deformation (as opposed to, say, viscous deformation) a velocity "discontinuity" or shear surface occurs in FSW and determines much of the character of the welding mechanism. A shear surface may not always produce a sound bond. Balancing mechanical power input against conduction and convection heat losses yields a relation, a "temperature index", between spindle speed and travel speed to maintain constant weld temperature. But many process features are only weakly dependent upon temperature. Thus, unlike modeling of metal forming processes, it may be that modeling the FSW process independently of the material conditions has some merit.

  4. Friction stir welding (FSW process of copper alloys

    Directory of Open Access Journals (Sweden)

    M. Miličić

    2016-01-01

    Full Text Available The present paper analyzes the structure of the weld joint of technically pure copper, which is realized using friction stir welding (FSW. The mechanism of thermo-mechanical processes of the FSW method has been identified and a correlation between the weld zone and its microstructure established. Parameters of the FSW welding technology influencing the zone of the seam material and the mechanical properties of the resulting joint were analyzed. The physical joining consists of intense mixing the base material along the joint line in the “doughy” phase. Substantial plastic deformations immediately beneath the frontal surface of tool provide fine-grained structure and a good quality joint. The optimum shape of the tool and the optimum welding regime (pressure force, rotation speed and the traverse speed of the tool in the heat affected zone enable the achievement of the same mechanical properties as those of the basic material, which justifies its use in welding reliable structures.

  5. Pin Tool Geometry Effects in Friction Stir Welding

    Science.gov (United States)

    Querin, J. A.; Rubisoff, H. A.; Schneider, J. A.

    2009-01-01

    In friction stir welding (FSW) there is significant evidence that material can take one of two different flow paths when being displaced from its original position in front of the pin tool to its final position in the wake of the weld. The geometry of the pin tool, along with the process parameters, plays an important role in dictating the path that the material takes. Each flow path will impart a different thermomechanical history on the material, consequently altering the material microstructure and subsequent weld properties. The intention of this research is to isolate the effect that different pin tool attributes have on the flow paths imparted on the FSWed material. Based on published weld tool geometries, a variety of weld tools were fabricated and used to join AA2219. Results from the tensile properties and microstructural characterization will be presented.

  6. Micro friction stir welding of copper electrical contacts

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2014-10-01

    Full Text Available The paper presents an analysis of micro friction stir welding (μFSW of electrolytic tough pitch copper (CuETP in a lap and butt joint. Experimental plan was done in order to investigate the influence of tool design and welding parameters on the formation of defect free joints. The experiments were done using universal milling machine where the tool rotation speed varied between 600 and 1 900 rpm, welding speed between 14 and 93 mm/min and tilt angle between 3° and 5°. From the welds samples for analysis of microstructure and samples for tensile tests were prepared. The grain size in the nugget zone was greatly reduced compared to the base metal and the joint tensile strength exceeded the strength of the base metal.

  7. Modelling the Thermomechanical Conditions in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich

    Friction Stir Welding is a solid-state welding process invented by TWI in 1991. The FSW process is unique in the sense that joining of un-weldable alloys readily can be made. The thermomechanical conditions present in the workpiece during the welding process are of great interest since...... these control the properties of the weld. In the present work, a set of experimental, analytical and numerical analyses are carried out in order to evaluate the thermomechanical conditions descriptive for welding of aluminium, in this case AA2024-T3, under a specific set of welding parameters. Despite...... these specific data, the developed models can be applied for other alloys and welding parameters as well. A detailed experiment is carried out which constitutes the basis for the development and validation of the numerical and analytical models presented in this work. The contact condition at the tool...

  8. Microstructure Evolution during Friction Stir Spot Welding of TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding

    and thereby reduced weight of the vehicles. One of the limitations for the wide application of TRIP steel is associated with joining, since so far no method has succeeded in joining TRIP steel, without comprising the steel properties. In this study, the potential of joining TRIP steel with Friction Stir Spot...... Welding (FSSW) is investigated. The aim of the study is to assess whether high quality welds can be produced and, in particular, to obtain an understanding of the microstructural changes during welding. The microstructure of the welded samples was investigated by means of reflected light microscopy......, scanning electron microscopy and electron backscatter diffraction. Microhardness measurements and lab-shear tests completed the investigations of the welded samples and allow evaluation of the quality of the welds as seen from a practical point of view. Selected samples were also investigated by X...

  9. Microstructure characterization of Friction Stir Spot Welded TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Adachi, Yoshitaka; Peterson, Jeremy

    2012-01-01

    Transformation Induced Plasticity (TRIP) steels have not yet been successfully joined by any welding technique. It is desirable to search for a suitable welding technique that opens up for full usability of TRIP steels. In this study, the potential of joining TRIP steel with Friction Stir Spot...... Welding (FSSW) is investigated. The aim of the study is to investigate whether acceptable welds can be produced, and additionally, to obtain an understanding of the microstructural changes during welding. The microstructure was investigated with a combination of microscopical techniques with the aim...... of identifying the transformations occurring during welding. Reflected light microscopy, scanning electron microscopy, and electron backscatter diffraction were among the methods applied for detailed investigations. The microstructure adjacent to the welds can generally be subdivided in two thermo...

  10. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.

    2016-07-06

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  11. Mixing-Structure Relationship in Jet-Stirred Reactors

    KAUST Repository

    Ayass, Wassim W.

    2016-05-26

    In this study, measurements were performed to assess the overall mixing in jet-stirred reactors (JSRs) passively agitated by feed nozzles. The reactor diameter, nozzle shape, and nozzle diameter were varied to determine the effects of these geometrical parameters on mixing. The mixing was studied at ambient conditions using laser absorption spectroscopy to follow the exit concentration of a tracer gas, carbon dioxide, after a step change in its input flow. The results indicate that the use of a JSR of diameter D = 40 mm, having inclined or crossed nozzles of diameter d = 1 mm is recommended for low residence times up to 0.4 sec, while at moderate/high residence times 0.5-5 sec the use of a JSR of D = 56 mm and d = 0.3 mm having crossed nozzles is suggested.

  12. Stir bar sorptive extraction: recent applications, limitations and future trends.

    Science.gov (United States)

    Camino-Sánchez, F J; Rodríguez-Gómez, R; Zafra-Gómez, A; Santos-Fandila, A; Vílchez, J L

    2014-12-01

    Stir bar sorptive extraction (SBSE) has generated growing interest due to its high effectiveness for the extraction of non-polar and medium-polarity compounds from liquid samples or liquid extracts. In particular, in recent years, a large amount of new analytical applications of SBSE has been proposed for the extraction of natural compounds, pollutants and other organic compounds in foods, biological samples, environmental matrices and pharmaceutical products. The present review summarizes and discusses the theory behind SBSE and the most recent developments concerning its effectiveness. In addition, the main results of recent analytical approaches and their applications, published in the last three years, are described. The advantages, limitations and disadvantages of SBSE are described and an overview of future trends and novel extraction sorbents and supports is given. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Designing aluminium friction stir welded joints against multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    L. Susmel

    2016-07-01

    Full Text Available The present paper investigates the accuracy of the Modified Wöhler Curve Method (MWCM in estimating multiaxial fatigue strength of aluminium friction stir (FS welded joints. Having developed a bespoke joining technology, circumferentially FS welded tubular specimens of Al 6082-T6 were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out using the experimental results have demonstrated that the MWCM applied in terms of nominal stresses, notch stresses, and also the Point Method is accurate in predicting the fatigue lifetime of the tested FS welded joints, with its use resulting in life estimates that fall within the uniaxial and torsional calibration scatter bands.

  14. EVOLUTIONARY TRACKS OF TIDALLY STIRRED DISKY DWARF GALAXIES

    International Nuclear Information System (INIS)

    Lokas, Ewa L.; Kazantzidis, Stelios; Mayer, Lucio

    2011-01-01

    Using collisionless N-body simulations, we investigate the tidal evolution of late-type, rotationally supported dwarfs inside Milky Way sized host galaxies. Our study focuses on a wide variety of dwarf orbital configurations and initial structures. During the evolution, the disky dwarfs undergo strong mass loss, the stellar disks are transformed into spheroids, and rotation is replaced by random motions of the stars. Thus, the late-type progenitors are transformed into early-type dwarfs as envisioned by the tidal stirring model for the formation of dwarf spheroidal (dSph) galaxies in the Local Group. We determine the photometric properties of the dwarfs, including the total visual magnitude, the half-light radius, and the central surface brightness as they would be measured by an observer near the galactic center. Special emphasis is also placed on studying their kinematics and shapes. We demonstrate that the measured values are biased by a number of observational effects including the increasing angle of the observation cone near the orbital pericenter, the fact that away from the pericenter the tidal tails are typically oriented along the line of sight, and the fact that for most of the evolution the stellar components of the dwarfs are triaxial ellipsoids whose major axis tumbles with respect to the line of sight. Finally, we compare the measured properties of the simulated dwarfs to those of dwarf galaxies in the Local Group. The evolutionary tracks of the dwarfs in different parameter planes and the correlations between their different properties, especially the total magnitude and the surface brightness, strongly suggest that present-day dSph galaxies may have indeed formed from late-type progenitors as proposed by the tidal stirring scenario.

  15. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  16. Delamination of hexagonal boron nitride in a stirred media mill

    Energy Technology Data Exchange (ETDEWEB)

    Damm, C., E-mail: cornelia.damm@fau.de; Koerner, J.; Peukert, W., E-mail: Wolfgang.Peukert@lfg.fau.de [University Erlangen-Nuremberg, Institute of Particle Technology (Germany)

    2013-04-15

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO{sub 2} beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO{sub 2} grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm{sup -1} showing that the in-plane order in the milled platelets is remained.

  17. Delamination of hexagonal boron nitride in a stirred media mill

    International Nuclear Information System (INIS)

    Damm, C.; Körner, J.; Peukert, W.

    2013-01-01

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO 2 beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO 2 grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm −1 showing that the in-plane order in the milled platelets is remained.

  18. A Multiple-objective Optimization of Whey Fermentation in Stirred Tank Bioreactors

    Directory of Open Access Journals (Sweden)

    Mitko Petrov

    2006-12-01

    Full Text Available A multiple-objective optimization is applied to find an optimal policy of a fed-batch fermentation process for lactose oxidation from a natural substratum of the strain Kluyveromyces marxianus var. lactis MC5. The optimal policy is consisted of feed flow rate, agitation speed, and gas flow rate. The multiple-objective problem includes: the total price of the biomass production, the second objective functions are the separation cost in downstream processing and the third objective function corresponds to the oxygen mass-transfer in the bioreactor. The multiple-objective optimization are transforming to standard problem for optimization with single-objective function. Local criteria are defined utility function with different weight for single-type vector task. A fuzzy sets method is applied to be solved the maximizing decision problem. A simple combined algorithm guideline to find a satisfactory solution to the general multiple-objective optimization problem. The obtained optimal control results have shown an increase of the process productiveness and a decrease of the residual substrate concentration.

  19. Use of limited MR protocol (coronal STIR) in the evaluation of patients with hip pain

    International Nuclear Information System (INIS)

    Khoury, N.J.; Birjawi, G.A.; Hourani, M.H.; Chaaya, M.

    2003-01-01

    To assess the role of a limited MR protocol (coronal STIR) as the initial part of the MR examination in patients with hip pain. Eighty-five patients presenting with hip pain, and normal radiographs of the pelvis, and who underwent our full MR protocol for hips were included retrospectively in the study. The full protocol consists of coronal T1-weighted and short tau inversion-recovery (STIR), and axial T2-weighted sequences. Ninety-three MR examinations were performed. Two radiologists interpreted the STIR (limited) examinations and the full studies separately, masked to each other's findings and to the final diagnosis. Comparison between the two protocols was then undertaken. For both readers, all normal MR examinations on the coronal STIR limited protocol were normal on the full protocol, with an interobserver reliability of 0.96. The STIR protocol was able to detect the presence or absence of an abnormality in 100% of cases (sensitivity). The STIR-only protocol provided a specific diagnosis in only 65% of cases (specificity). A normal coronal STIR study of the hips in patients with hip pain and normal radiographs precludes the need for further pelvic MR sequences. Any abnormality detected on this limited protocol should be further assessed by additional MR sequences. (orig.)

  20. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    Science.gov (United States)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  1. Process Intensification of Enzymatic Fatty Acid Butyl Ester Synthesis Using a Continuous Centrifugal Contactor Separator

    NARCIS (Netherlands)

    Ilmi, Miftahul; Abduh, Muhammad Yusuf; Hommes, Arne; Winkelman, Jozef; Hidayat, C.; Heeres, Hero

    2018-01-01

    Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)– water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous

  2. Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints

    Science.gov (United States)

    Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.

    2017-10-01

    The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.

  3. Use of Friction Stir Welding and Friction Stir Processing for Advanced Nuclear Fuels and Materials Joining Applications

    International Nuclear Information System (INIS)

    J. I. Cole; J. F. Jue

    2006-01-01

    Application of the latest developments in materials technology may greatly aid in the successful pursuit of next generation reactor and transmutation technologies. One such area where significant progress is needed is joining of advanced fuels and materials. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for joining traditionally difficult to join materials such as aluminum alloys. This relatively new technology, first developed in 1991, has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. An overview of the FSW technology is provided and two specific nuclear fuels and materials applications where the technique may be used to overcome limitations of conventional joining technologies are highlighted

  4. Continuous auditing & continuous monitoring : Continuous value?

    NARCIS (Netherlands)

    van Hillo, Rutger; Weigand, Hans; Espana, S; Ralyte, J; Souveyet, C

    2016-01-01

    Advancements in information technology, new laws and regulations and rapidly changing business conditions have led to a need for more timely and ongoing assurance with effectively working controls. Continuous Auditing (CA) and Continuous Monitoring (CM) technologies have made this possible by

  5. Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process.

    Science.gov (United States)

    Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I

    2014-04-30

    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.

  6. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints

    International Nuclear Information System (INIS)

    Tao, Y.; Ni, D.R.; Xiao, B.L.; Ma, Z.Y.; Wu, W.; Zhang, R.X.; Zeng, Y.S.

    2017-01-01

    Friction stir welded (FSW) joints of conventional precipitation-hardened aluminum alloys usually fracture in the lowest hardness zone (LHZ) during tension testing. However, all of the FSW joints of a 2198-T8 Al-Li alloy fractured in the stirred zone (SZ) instead of the LHZ with the welding parameters of 800 rpm-200 mm/min and 1600 rpm-200 mm/min under the condition that no welding defects existed in the SZ. The experiment results revealed that lazy S was not the dominant factor resulting in the unusual fracture. The SZ consisted of three subzones, i.e., the shoulder-affected zone, the pin-affected zone, and the transition zone between them. While the former two zones were characterized by fine and equiaxed recrystallized grains, incompletely dynamically recrystallized microstructure containing coarse elongated non-recrystallized grains was observed in the transition zone. The transition zone exhibited the lowest average Taylor factor in the SZ, resulting in a region that was crystallographically weak. Furthermore, obvious lithium segregation at grain boundaries was observed in the transition zone via time-of-flight secondary ion mass spectroscopy analysis, but not in the shoulder-affected zone or the pin-affected zone. The combined actions of both the two factors resulted in the appearance of preferential intergranular fracture in the transition zone and eventually caused the failure in the SZ. The lithium segregation at grain boundaries in the transition zone was closely associated with both the segregation in the base material and the partially dynamically recrystallized microstructure resulting from the inhomogeneous plastic deformation in the SZ.

  7. 40 CFR Table 4 to Subpart Cccc of... - Continuous Compliance With Emission Limitations

    Science.gov (United States)

    2010-07-01

    ... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock... the applicable maximum concentration. 2. Each fed-batch fermenter producing yeast in a fermentation... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Part...

  8. Equipment for Solid State Stir Welding of High Temperature Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Stir welding generates high-quality joints in fabricated structure and is the baseline joining process for most NASA aluminum alloy structures such as cryogenic...

  9. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    International Nuclear Information System (INIS)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay

    2017-01-01

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  10. Nonlinear Time Reversal Acoustic Method of Friction Stir Weld Assessment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is demonstration of the feasibility of Friction Stir Weld (FSW) assessment by novel Nonlinear Time Reversal Acoustic (TRA) method. Time...

  11. Immersed friction stir welding of ultrafine grained accumulative roll-bonded Al alloy

    International Nuclear Information System (INIS)

    Hosseini, M.; Danesh Manesh, H.

    2010-01-01

    In this research, ultrafine grained strips of commercial pure strain hardenable aluminum (AA1050) were produced by accumulative roll-bonding (ARB) technique. These strips were joined by friction stir welding (FSW) in immersed (underwater) and conventional (in-air) conditions to investigate the effect of the immersion method on the microstructure and mechanical properties of the joint, aiming to reduce the deterioration of the mechanical properties of the joint. Transmission electron microscopy and X-ray diffraction analyses were used to evaluate the microstructure, showing smaller grains and subgrains in the stir zone of the immersed FSW condition with respect to the conventional FSW method. The hardness and tensile properties of the immersed friction stir welded sample and ARBed base metal show more similarity compared to the conventional friction stir welded sample. Moreover, the aforementioned method can result in the enhancement of the superplasticity tendency of the material.

  12. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  13. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay [Indian Institute of Technology Guwahati, Assam (India)

    2017-05-15

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  14. Investigation of the L-Glutamic acid polymorphism: Comparison between stirred and stagnant conditions

    Science.gov (United States)

    Tahri, Yousra; Gagnière, Emilie; Chabanon, Elodie; Bounahmidi, Tijani; Mangin, Denis

    2016-02-01

    This work highlights the effect of the stirring, the temperature and the supersaturation on the cooling crystallization of L-Glutamic acid (LGlu) polymorphs. First, solubility measurements of the metastable polymorph α and the stable polymorph β were performed. Then, crystallization experiments were carried out in stirred vessel and in stagnant cell. All these experiments were monitored by in situ devices. The effect of the temperature on the LGlu polymorphs was found to be more relevant than the supersaturation in the stirred crystallizer. In the stagnant cell, only the stable form β crystallized regardless of the operating conditions. Moreover, an unexpected and new habit of the β form was discovered and confirmed. These results suggest that the temperature and the stirring can strongly affect the nucleation and the growth kinetics of polymorphic forms.

  15. Counterrotating-Shoulder Mechanism for Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2007-01-01

    A counterrotating-shoulder mechanism has been proposed as an alternative to the mechanism and fixtures used in conventional friction stir welding. The mechanism would internally react most or all of the forces and torques exerted on the workpiece, making it unnecessary to react the forces and torques through massive external fixtures. In conventional friction stir welding, a rotating pin tool is inserted into, and moved along, a weld seam. As the pin tool moves, it stirs together material from the opposite sides of the seam to form the weld. A large axial plunge force must be exerted upon the workpiece through and by the pin tool and a shoulder attached above the pin tool in order to maintain the pressure necessary for the process. The workpiece is secured on top of an anvil, which supports the workpiece against the axial plunge force and against the torque exerted by the pin tool and shoulder. The anvil and associated fixtures must be made heavy (and, therefore, are expensive) to keep the workpiece stationary. In addition, workpiece geometries must be limited to those that can be accommodated by the fixtures. The predecessor of the proposed counterrotating-shoulder mechanism is a second-generation, self-reacting tool, resembling a bobbin, that makes it possible to dispense with the heavy anvil. This tool consists essentially of a rotating pin tool with opposing shoulders. Although the opposing shoulders maintain the necessary pressure without need to externally apply or react a large plunge force, the torque exerted on the workpiece remains unreacted in the absence of a substantial external fixture. Depending on the RPM and the thickness of the workpiece, the torque can be large. The proposed mechanism (see figure) would include a spindle attached to a pin tool with a lower shoulder. The spindle would be coupled via splines to the upper one of three bevel gears in a differential drive. The middle bevel gear would be the power-input gear and would be coupled to the

  16. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    Science.gov (United States)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  17. Experimental Characterisation and Modelling of Homogeneous Solid Suspension in an Industrial Stirred Tank

    Directory of Open Access Journals (Sweden)

    Sébastien Calvo

    2013-01-01

    Full Text Available In this work, we study the conditions needed to reach homogeneous distribution of aluminium salts particles in water inside a torispherical bottom shaped stirred tank of 70 L equipped with a Pfaudler RCI type impeller and three equispaced vertical baffles. The aim of the present study is to develop a CFD model describing the quality of particle distribution in industrial scale tanks. This model, validated with experimental data, is used afterwards to develop scale-up and scale-down correlations to predict the minimum impeller speed needed to reach homogeneous solid distribution Nhs. The commercial CFD software Fluent 14 is used to model the fluid flow and the solid particle distribution in the tank. Sliding Mesh approach is used to take the impeller motion into account. Assuming that the discrete solid phase has no influence on the continuous liquid phase behaviour, the fluid flow dynamics is simulated independently using the well-known k-∊ turbulence model. The liquid-solid mixture behaviour is then described by implementing the Eulerian Mixture model. Computed liquid velocity fields are validated by comparison with PIV measurements. Computed Nhs were found to be in good agreement with experimental measurements. Results from different scales allowed correlating Nhs values to the volumetric power consumption.

  18. Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors

    DEFF Research Database (Denmark)

    Kildegaard, Helene Faustrup; Fan, Yuzhou; Wagtberg Sen, Jette

    2016-01-01

    Therapeutic monoclonal antibodies (mAbs) are mainly produced by heterogonous expression in Chinese hamster ovary (CHO) cells. The glycosylation profile of the mAbs has major impact on the efficacy and safety of the drug and is therefore an important parameter to control during production. In this......Therapeutic monoclonal antibodies (mAbs) are mainly produced by heterogonous expression in Chinese hamster ovary (CHO) cells. The glycosylation profile of the mAbs has major impact on the efficacy and safety of the drug and is therefore an important parameter to control during production...

  19. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    growth rate of the fungus were independent of pH when grown in batch cultivations. The specific glucoamylase productivity increased linearly with the specific growth rate in the range 0-0.1 h(-1) and was constant in the range 0.1-0.2 h(-1) Maltose and maltodextrin were non-inducing carbon sources...

  20. Differential expression of small RNAs under chemical stress and fed-batch fermentation in Escherichia coli

    DEFF Research Database (Denmark)

    Rau, Martin Holm; Bojanovic, Klara; Nielsen, Alex Toftgaard

    2015-01-01

    Introduction: Bacterial small RNAs (sRNAs) are often expressed in response to changing environmental conditions and function to modulate gene expression. Although chemical stress is routinely encountered in microbial processing applications, the cellular response and the involvement of sRNAs in t......Introduction: Bacterial small RNAs (sRNAs) are often expressed in response to changing environmental conditions and function to modulate gene expression. Although chemical stress is routinely encountered in microbial processing applications, the cellular response and the involvement of s......RNAs in this process is poorly understood. We have used RNA sequencing to map the Escherichia coli sRNome during chemical stress and high cell density fermentations with the aim of identifying sRNAs involved in the stress response and those with potential roles in stress tolerance.Methods: RNA sequencing libraries...... were prepared from RNA isolated from E. coli MG1655 cells subjected to chemical stress with twelve compounds. The strain was also grown under high cell density fermentation conditions, where cells were harvested in four growth phases.Results: We have discovered over 250 novel intergenic transcripts...

  1. HSF-1, HIF-1and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Andrea B. Zepeda

    2014-06-01

    Full Text Available Pichia pastoris is a methylotrophic yeast used as an efficient expression system for heterologous protein production as compared to other expression systems. Considering that every cell must respond to environmental changes to survive and differentiate, determination of endogenous protein related to heat stress responses and hypoxia, it would necessary to establish the temperature and methanol concentration conditions for optimal growth. The aim of this study is characterize the culture conditions through the putative biomarkers in different conditions of temperature and methanol concentration. Three yeast cultures were performed: 3X = 3% methanol -10 °C, 4X = 3% methanol -30 °C, and 5X = 1% methanol -10 °C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. The western blot results of HIF-1α and HSP-90 did not indicate statistically significant in the culture conditions studied. Respect to biomarkers location, HIF-1α and HSP-90 presented differences between cultures. In conclusion, the results suggest the cultures in a hypoxic condition produce a high density and yeast cells smaller. Beside the high density would not necessary related with a high production of recombinant proteins in modified-genetically P. pastoris.

  2. Pathway kinetics and metabolic control analysis of a high-yielding strain of Penicillium chrysogenum during fed-batch cultivations

    DEFF Research Database (Denmark)

    Pissarra, Pedro de N.; Nielsen, Jens Bredal; Bazin, M. J.

    1996-01-01

    , the flux is controlled by IPNS as this enzyme becomes saturated with tripeptide delta-(L-alpha-amino-adipyl)-L-cysteinyl-D-valine (LLD-ACV). In the simulations, oxygen was shown to be a bottleneck alleviator by stimulating the rate of IPNS which prevents the accumulation of LLD-ACV. As a consequence...

  3. STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials

    Science.gov (United States)

    2016-11-02

    STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...developing tapered fiber mount at the end of the program Side Effort: Explored pulse reflection from a temporally moving boundary. There is a temporal

  4. Corrosion Behavior of Arc Weld and Friction Stir Weld in Al 6061-T6 Alloys

    International Nuclear Information System (INIS)

    Yoon, Byoung Hyun; Kim, Heung Ju; Chang, Woong Seong; Kweon, Young Gak

    2006-01-01

    For the evaluation of corrosion resistance of Al 6061-T6 Alloy, Tafel method and immersion test was performed with Friction Stir Weld(FSW) and Gas Metal Arc Weld(GMAW). The Tafel and immersion test results indicated that GMA weld was severely attacked compared with those of friction stir weld. It may be mainly due to the galvanic corrosion mechanism act on the GMA weld

  5. Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys

    International Nuclear Information System (INIS)

    Rao, H.M.; Yuan, W.; Badarinarayan, H.

    2015-01-01

    Highlights: • Lap-shear failure load of ∼2.5 kN was achieved in dissimilar Mg to Al spot welds. • Failure load depends on both welding geometrical features and IMCs formation. • Thin and discontinuous IMCs formed in stir zone are beneficial for weld strength. • Low heat input and good material mixing/interlocking is essential for high strength. - Abstract: Friction stir spot welding was applied to dissimilar cast magnesium (Mg) alloy AM60B and wrought aluminum (Al) alloy 6022-T4 under various welding conditions. The influence of tool rotation rate and shoulder plunge depth on lap-shear failure load was examined. Welds were made at four different tool rotation rates of 1000, 1500, 2000 and 2500 revolution per minute (rpm) and various tool shoulder plunge depths from 0 mm to 0.9 mm. The cross section of each weld exhibited the formation of intermetallic compounds (IMCs) in the stir zone. An increase in tool rotation rate decreased the width of the stir zone and resulted in lower lap-shear failure loads. The stir zone width increased and interlocking of IMCs was observed with an increase in tool shoulder plunge depth at 1000 rpm. High lap-shear failure loads were achieved in welds having a large stir zone width with formation of discontinuous IMCs at the tip of the interfacial hook. An average lap-shear failure load of 2.5 kN was achieved for welds made at 1000 rpm and 0.9 mm shoulder plunge. The present study suggests that the mechanical properties of friction stir spot welded dissimilar alloys are greatly influenced by the stir zone width, interfacial hooks and IMCs which are all weld process dependent

  6. Mechanical properties and fracture behaviour of ODS Steel Friction Stir Welds at variable temperatures

    OpenAIRE

    Dawson, Huw; Serrano, Marta; Hernandez, Roberto; Cater, Steve; Jimenez-Melero, Enrique

    2017-01-01

    We have assessed the microstructure and the temperature-dependent mechanical behaviour of five bead-on-plate friction stir welds of Oxide Dispersion Strengthened (ODS) steel, produced using systematic changes to the tool rotation and traverse speed. Friction stir welding can potentially retain the fine dispersion of nanoparticles, and therefore also the high-temperature strength and radiation damage resistance of these materials. Tensile testing was carried out on the MA956 base material at a...

  7. Investigation and development of friction stir welding process for unreinforced polyphenylene sulfide and reinforced polyetheretherketone

    Science.gov (United States)

    Ahmed, Hossain

    were performed for both PPS and PEEK samples to identify the fracture toughness of these materials. Presence of un-welded section in the welded specimen due to the setup of the experiments yielded notched tensile strengths during the tensile test process. With the help of fracture toughness values of these materials, notched tensile strengths of the welded samples were compared with the notched tensile strengths or residual tensile strengths of the base materials. In this study, residual joint efficiency of PEEK samples was found higher than that of PPS samples. Additionally, notched tensile strengths of the welded samples were compared with un-notched tensile strengths of the materials. The notched tensile strengths of PPS and PEEK were found about 80% and 75% of the respective base materials. Micrographs of PEEK samples showed the presence of more voids and cracks in the weld line compared to the un-welded samples. In this study, continuous friction stir welding process has been developed for butt joining of unreinforced PPS and short carbon fiber reinforced PEEK. The process parameters and the experimental setup can be utilized to investigate the weldability of different types of thermoplastic composites and various types of joint configurations.

  8. Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys

    International Nuclear Information System (INIS)

    Zhao, Yong; Lu, Zhengping; Yan, Keng; Huang, Linzhao

    2015-01-01

    Highlights: • Aluminum and magnesium alloys were joined by underwater friction stir welding. • Underwater FSW was conducted to improve properties of joint with lower heat input. • Microstructures and mechanical properties of dissimilar joint were investigated. • Intermetallic compounds developed in the fracture interface were analyzed. • Fracture features of the tensile samples were analyzed. - Abstract: Formation of intermetallic compounds in the stir zone of dissimilar welds affects the mechanical properties of the joints significantly. In order to reduce heat input and control the amount and morphological characteristics of brittle intermetallic compounds underwater friction stir welding of 6013 Al alloy and AZ31 Mg alloy was carried out. Microstructures, mechanical properties, elements distribution, and the fracture surface of the joints were analyzed by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, etc. The result shows that sound dissimilar joint with good mechanical properties can be obtained by underwater friction stir welding. Al and Mg alloys were stirred together and undergone the process of recrystallization, forming complex intercalated flow patterns in the stir zone. Tensile strength of the dissimilar joint was up to 152.3 MPa. Maximum hardness (142HV) appeared in the middle of the centerline of the specimen. Intermetallic compounds layer consisting of Al 3 Mg 2 and Mg 17 Al 12 formed in the Al/Mg interface and resulted in the fracture of the joint

  9. Friction stir welding of F82H steel for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Fusion Structural Materials Division, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Ando, Masami; Tanigawa, Hiroyasu [Fusion Structural Materials Division, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan)

    2016-09-15

    In the present study, friction stir welding was employed to join F82H steels and develop a potential joining technique for a reduced activation ferritic/martensitic steel. The microstructures and mechanical properties on the joint region were investigated to evaluate the applicability of friction stir welding. F82H steel sheets were successfully butt-joined with various welding parameters. In welding conditions, 100 rpm and 100 mm/min, the stirred zone represented a comparable hardness distribution with a base metal. Stirred zone induced by 100 rpm reserved uniformly distributed precipitates and very fine ferritic grains, whereas the base metal showed a typical tempered martensite with precipitates on the prior austenite grain boundary and lath boundary. Although the tensile strength was decreased at 550 °C, the stirred zone treated at 100 rpm showed comparable tensile behavior with base metal up to 500 °C. Therefore, friction stir welding is considered a potential welding method to preserve the precipitates of F82H steel.

  10. Study of Low Flow Rate Ladle Bottom Gas Stirring Using Triaxial Vibration Signals

    Science.gov (United States)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle; Li, Zushu; Goodwin, Tim

    2018-02-01

    Secondary steelmaking plays a great role in enhancing the quality of the final steel product. The metal quality is a function of metal bath stirring in ladles. The metal bath is often stirred by an inert gas to achieve maximum compositional and thermal uniformity throughout the melt. Ladle operators often observe the top surface phenomena, such as level of meniscus disturbance, to evaluate the status of stirring. However, this type of monitoring has significant limitations in assessing the process accurately especially at low gas flow rate bubbling. The present study investigates stirring phenomena using ladle wall triaxial vibration at a low flow rate on a steel-made laboratory model and plant scale for the case of the vacuum tank degasser. Cold model and plant data were successfully modeled by partial least-squares regression to predict the amount of stirring. In the cold model, it was found that the combined vibration signal could predict the stirring power and recirculation speed effectively in specific frequency ranges. Plant trials also revealed that there is a high structure in each data set and in the same frequency ranges at the water model. In the case of industrial data, the degree of linear relationship was strong for data taken from a single heat.

  11. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  12. Design of Friction Stir Welding Tool for Avoiding Root Flaws.

    Science.gov (United States)

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-12-12

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.

  13. Heat generation during plunge stage in friction stir welding

    Directory of Open Access Journals (Sweden)

    Veljić Darko M.

    2013-01-01

    Full Text Available This paper deals with the heat generation in the Al alloy Al2024-T3 plate under different rotating speeds and plunge speeds during the plunge stage of friction stir welding (FSW. A three-dimensional finite element model (FEM is developed in the commercial code ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb’s Law of friction. The heat generation in FSW can be divided into two parts: frictional heat generated by the tool and heat generated by material deformation near the pin and the tool shoulder region. Numerical results obtained in this work indicate a more prominent influence from the friction-generated heat. The slip rate of the tool relative to the workpiece material is related to this portion of heat. The material velocity, on the other hand, is related to the heat generated by plastic deformation. Increasing the plunging speed of the tool decreases the friction-generated heat and increases the amount of deformation-generated heat, while increasing the tool rotating speed has the opposite influence on both heat portions. Numerical results are compared with the experimental ones, in order to validate the numerical model, and a good agreement is obtained.

  14. Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned

    Directory of Open Access Journals (Sweden)

    Bettina Grün

    2012-05-01

    Full Text Available Beta regression – an increasingly popular approach for modeling rates and proportions – is extended in various directions: (a bias correction/reduction of the maximum likelihood estimator, (b beta regression tree models by means of recursive partitioning, (c latent class beta regression by means of finite mixture models. All three extensions may be of importance for enhancing the beta regression toolbox in practice to provide more reliable inference and capture both observed and unobserved/latent heterogeneity in the data. Using the analogy of Smithson and Verkuilen (2006, these extensions make beta regression not only “a better lemon squeezer” (compared to classical least squares regression but a full-fledged modern juicer offering lemon-based drinks: shaken and stirred (bias correction and reduction, mixed (finite mixture model, or partitioned (tree model. All three extensions are provided in the R package betareg (at least 2.4-0, building on generic algorithms and implementations for bias correction/reduction, model-based recursive partioning, and finite mixture models, respectively. Specifically, the new functions betatree( and betamix( reuse the object-oriented flexible implementation from the R packages party and flexmix, respectively.

  15. EFFECT OF THICKENERS ON THE TEXTURE OF STIRRED YOGURT

    Directory of Open Access Journals (Sweden)

    D. GONÇALVEZ

    2009-03-01

    Full Text Available

    The effect of the addition of gelatin and starch on the rheological properties of sweetened plain stirred yogurt was studied by manufacturing six samples: two with gelatin (3000 and 6000 ppm, three with starch (1000, 5000, 10000 ppm and a sample without thickener (control. Rheological characterization of the samples was performed using a coaxial cylinder Haake VT500 viscometer. Yield stress ( and hysteresis were also determined. Syneresis (% was measured by centrifugation at 1100 rpm for 10 minutes. Sensory characterization was performed with a panel of trained sensory assessors, who evaluated the following texture attributes: viscosity, ropiness, creaminess and mouthfeel. All samples showed thixotropic and pseudoplastic behaviour. Since the upward curve did not fit a unique model, it was divided in two regions. The first one fitted Herschel-Bulkley’s model. The addition of gelatine decreased flow behaviour index (n, whereas yield stress significantly increased with the addition of both thickeners. Gelatine was more efficient in reducing syneresis than starch. The addition of thickeners significantly increased all the studied sensory texture attributes. Non-oral and oral parameters were highly correlated witch each other and witch rheological parameters. KEYWORDS: Yogurt; texture; thickeners.

  16. Stir-Frying of Chinese Cabbage and Pakchoi Retains Health-Promoting Glucosinolates.

    Science.gov (United States)

    Nugrahedi, Probo Y; Oliviero, Teresa; Heising, Jenneke K; Dekker, Matthijs; Verkerk, Ruud

    2017-12-01

    Stir-frying is a cooking method, originating from Asia, in which food is fried in small amount of very hot oil. Nowadays in many other parts of the world stir-frying is a very popular method to prepare vegetables, because it is fast and fried vegetables are tasty. However, the retention of phytochemicals like the health-beneficial glucosinolates in Brassica vegetables is less explored for stir-frying in comparison to other cooking methods. This study investigates the retention of glucosinolates in Chinese cabbage (Brassica rapa ssp. pekinensis) and pakchoi (Brassica rapa ssp. chinensis) as affected by stir-frying at various cooking durations and temperatures. Stir-frying experiments were performed at set pan temperatures ranging from 160 to 250 °C for a duration of 1 to 8 min. Results showed that aliphatic glucobrassicanapin is the most abundant glucosinolate identified in fresh Chinese cabbage and pakchoi, contributing for 48 and 63% of the total glucosinolate content, respectively, followed by glucoiberin and gluconapin. Stir-frying retains the glucosinolates even at the highest temperature applied. Such retention is explained by the quick inactivation of the glucosinolate-hydrolytic enzyme myrosinase during the first minutes of frying, and by the thermal stability of the glucosinolates at those temperature/time conditions. Moreover, due to the absence of a separate water phase, leaching losses did not occur, in contrast to what is observed when boiling Brassica vegetables. These results show that stir-frying may be a suitable health-beneficial cooking option that prevents the loss of glucosinolates.

  17. Stir Friction Welding Used in Ares I Upper Stage Fabrication

    Science.gov (United States)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  18. Mixing In Jet-Stirred Reactors With Different Geometries

    KAUST Repository

    Ayass, Wassim W.

    2013-12-01

    This work offers a well-developed understanding of the mixing process inside Jet- Stirred Reactors (JSR’s) with different geometries. Due to the difficulty of manufacturing these JSR’s made in quartz, existing JSR configurations were assessed with certain modifications and optimal operating conditions were suggested for each reactor. The effect of changing the reactor volume, the nozzle diameter and shape on mixing were both studied. Two nozzle geometries were examined in this study, a crossed shape nozzle and an inclined shape nozzle. Overall, six reactor configurations were assessed by conducting tracer experiments - using the state-of-art technologies of high-speed cameras and laser absorption spectroscopy- and Computational Fluid Dynamics (CFD) simulations. The high-speed camera tracer experiment gives unique qualitative information – not present in the literature – about the actual flow field. On the other hand, when using the laser technique, a more quantitative analysis emerges with determining the experimental residence time distribution (RTD) curves of each reactor. Comparing these RTD curves with the ideal curve helped in eliminating two cases. Finally, the CFD simulations predict the RTD curves as well as the mixing levels of the JSR’s operated at different residence times. All of these performed studies suggested the use of an inclined nozzle configuration with a reactor diameter D of 40mm and a nozzle diameter d of 1mm as the optimal choice for low residence time operation. However, for higher residence times, the crossed configuration reactor with D=56mm and d=0.3mm gave a nearly perfect behavior.

  19. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  20. The Effect of Rotation Stirring on Macrosegregation in Bi-Sn Alloy

    Directory of Open Access Journals (Sweden)

    Zulaida Yeni Muriani

    2017-01-01

    Full Text Available Macrosegregation is a defect that difficult to avoid in a metal alloy made by casting method. Macrosegregation can cause decreasing in mechanical properties of casting products. It will reduce their performance in industrial application. Macrosegregation is convinced occur during solidification time in liquid alloy. In the early solidified, The solids move upward/downward in liquid alloy during solidification are considered to contribute on macrosegregation formation. This movement occur due to the density differences between the solid and the surrounding liquid. This research want to observe the effect of stirring on macrosegregation formation for interfering on the movement of initial solidified solid. Stiring with rotation method is applied in this experiment at certain temperature. The temperature and the rotation speed of stirring are varied to observe the effect of rotation stirring on macrosegregation formation. The mold is covered by insulation jacket and kept the bottom part opened in order to obtain the directionally solidification. The result shows that the rotation stirring can change the macrostructure of casting but in case of composition distribution, the macrosegregation still appear. Increasing the rotation stirring will rise solid crystals up and the macrosegregation become more uniform and the treatment is better if conducting at lower temperature.